WO2013008349A1 - 強度が高く、かつ反りの少ない電解銅箔及びその製造方法 - Google Patents
強度が高く、かつ反りの少ない電解銅箔及びその製造方法 Download PDFInfo
- Publication number
- WO2013008349A1 WO2013008349A1 PCT/JP2011/078048 JP2011078048W WO2013008349A1 WO 2013008349 A1 WO2013008349 A1 WO 2013008349A1 JP 2011078048 W JP2011078048 W JP 2011078048W WO 2013008349 A1 WO2013008349 A1 WO 2013008349A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- electrolytic
- electrolytic copper
- tensile strength
- strength
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an electrolytic copper foil having high strength and less warpage and a method for producing the same, and particularly to an electrolytic copper foil useful for a secondary battery negative electrode current collector.
- Electrolytic copper foil produced by electroplating greatly contributes to the development of electrical and electronic industries, and is indispensable as a printed circuit material and secondary battery negative electrode current collector.
- the manufacturing history of the electrolytic copper foil is old (see Patent Document 1 and Patent Document 2), but recently its usefulness as a secondary battery negative electrode current collector has been reconfirmed.
- An example of producing an electrolytic copper foil is as follows. For example, in an electrolytic cell, a titanium or stainless steel rotating drum having a diameter of about 3000 mm and a width of about 2500 mm and an electrode distance of about 5 mm around the drum are arranged. Deploy. Copper, sulfuric acid, and glue are introduced into this electrolytic cell to form an electrolytic solution. Then, the linear velocity, the electrolyte solution temperature, and the current density are adjusted, copper is deposited on the surface of the rotating drum, the copper deposited on the surface of the rotating drum is peeled off, and a copper foil is continuously produced.
- This electrolytic copper foil manufacturing method can reduce the manufacturing cost, and can manufacture from a very thin layer thickness of about several ⁇ to a thick copper foil of about 70 ⁇ m, and one side of the electrolytic copper foil is moderate. Therefore, it has many advantages such as high adhesive strength with the resin.
- an electrolytic copper foil is used as a copper foil for a battery negative electrode material for vehicles, and as a characteristic, the strength of the electrolytic copper foil is required to be high.
- Conventionally manufactured electrolytic copper foils have characteristics that can meet this heat resistance requirement, but there is a problem that when the copper foil is drawn from a roll, the foil warps.
- the warpage of the electrolytic copper foil is not preferable, and therefore it is necessary to reduce it as much as possible or not to occur at all.
- an evaluation method of the warpage amount an electrolytic copper foil is punched out into a 100 mm square sheet with a press and defined as an average value of the four-corner lifting amount when left at room temperature for 30 minutes, and further examination is to be proceeded. .
- the present invention relates to an electrolytic copper foil having high strength and little warpage and a method for producing the same, and an object of the present invention is to provide an electrolytic copper foil that is particularly useful for a secondary battery negative electrode current collector.
- Tensile strength in the normal state (hereinafter referred to as “normal tensile strength”) is 45 kgf / mm 2 to 55 kgf / mm 2 , and the average value of the lift amount at four corners of 100 mm square is 2 mm or less.
- An electrolytic copper foil characterized by that.
- the crystal grain of the cross section of the electrolytic copper foil is composed of fine particles having an aspect ratio of less than 2.0 and columnar particles having an aspect ratio of 2.0 or more.
- Electrolytic copper foil of description (4) The electrolytic copper foil as described in any one of (1) to (3) above, wherein the total area of the columnar particles is 5% to 30%, and the remainder is fine particles.
- the present application also provides the following invention.
- a method for producing electrolytic copper foil is described in any one of (1) to (4) above, wherein the average particle size of fine particles having an aspect ratio of less than 2.0 is 0.2 ⁇ m or less.
- electrolysis is performed at an electrolytic solution temperature of 60 to 65 ° C. and a current density of 60 to 120 A / dm 2.
- a method for producing an electrolytic copper foil comprising producing the electrolytic copper foil according to any one of (6).
- the present invention relates to an electrolytic copper foil having high strength and less warpage and a method for producing the same, and has an excellent effect of providing an electrolytic copper foil that is particularly useful for a secondary battery negative electrode current collector.
- FIG. 2 is a photomicrograph showing the shape of particles in the cross section of the electrolytic copper foil of Example 1.
- FIG. 4 is a photomicrograph showing the shape of a cross-sectional particle of the electrolytic copper foil of Comparative Example 1.
- the present invention provides an electrolytic copper foil in which columnar particles and fine particles are present simultaneously in the electrolytic copper foil so that there is no warp and the strength can be maintained.
- the electrolytic copper foil of the present invention is particularly useful as a copper foil for a secondary battery negative electrode current collector.
- the presence of columnar particles can reduce the amount of warpage, and the presence of fine particles can maintain strength. That is, the normal tensile strength of the electrolytic copper foil (hereinafter referred to as “normal tensile strength”) is set to 45 kgf / mm 2 to 55 kgf / mm 2, and the average value of the lifting heights at the four corners of 100 mm square is defined as It can be 2 mm or less.
- the higher the current density the smaller particles can be formed and the strength can be increased.
- it does not fall below the lower limit of the present invention. Rather, the problem of warping is large. That is, when the current density is less than 60 A / dm 2 , there is no temperature condition that can reduce the warp to 2 mm or less. This is presumably because the effect becomes small even when the whole particle becomes large and columnar particles are present.
- the current density exceeds 120 A / dm 2 , the whole becomes too fine, and even if the liquid temperature is raised, columnar particles are hardly generated, and it is considered that warpage increases.
- an appropriate range is a combination of the electrolyte temperature and the current density.
- the liquid temperature is preferably low.
- the particles are originally larger, and therefore, when the liquid temperature is increased, the overall particle size is larger than the increase of the columnar particles, so that the warp increases even if there are columnar particles.
- the current density is high in the appropriate current density range, it is desirable that the liquid temperature is high. This is probably because when the current density is high, the particle diameter is originally small, so that the columnar grains are difficult to develop unless the liquid temperature is high.
- the particle shape in the structure of the electrolytic copper foil can be known by observing the cross section of the electrolytic copper foil.
- the aspect ratio ratio between the maximum height and minimum width of the particles
- the aspect ratio is 2.0 or more, and the two are distinguished. be able to.
- the particle shape in the structure of the electrolytic copper foil of the present invention is determined by this aspect ratio.
- the total area of the columnar particles can be 10% to 55%, and the remainder can be fine particles.
- the “area of columnar particles” means “area of columnar particles” that can be observed in the cross section of the electrolytic copper foil. This is a preferred form that can suppress warping of the electrolytic copper foil and maintain strength.
- the amount of columnar particles is too small, that is, when it is less than 5%, warpage increases, which is not preferable.
- the preferable condition is that the total area of the columnar particles is 5% to 30%.
- the average particle diameter of the fine particles present in the electrolytic copper foil that is, the fine particles having an aspect ratio of less than 2.0 is 0.2 ⁇ m or less.
- the fine particles play a role of increasing the strength, and the lower limit value of the average particle size is not particularly limited.
- the average particle size of the fine particles is large, even if columnar particles are present, the effect of columnar particles in reducing warpage tends to be reduced. Therefore, it is a desirable form that the average particle size of the fine particles is 0.2 ⁇ m or less.
- the foil thickness of the copper foil for secondary battery negative electrode collectors 20 micrometers or less are desirable and 10 micrometers or less are more preferable.
- the electrolytic copper foil of the present invention is produced by an electrolytic method using a sulfuric acid copper electrolytic solution.
- the present invention relates to a conventional electrolytic copper foil in which a rotating drum made of titanium or stainless steel having a diameter of about 3000 mm and a width of about 2500 mm and an electrode is disposed with a distance of about 5 mm around the drum in an electrolytic cell. It can manufacture using a manufacturing apparatus.
- the example of this apparatus is an example and there is no restriction
- a copper concentration of 80 to 110 g / L, a sulfuric acid concentration of 70 to 110 g / L, and a glue concentration of 2.0 to 10.0 ppm are introduced into the electrolytic cell to obtain an electrolytic solution.
- the linear velocity was adjusted to 1.5 to 5.0 m / s
- the electrolyte temperature was adjusted to 60 ° C. to 65 ° C.
- the current density was adjusted to 60 to 120 A / dm 2 to deposit copper on the surface of the rotating drum,
- the copper deposited on the surface of the rotating drum is peeled off to continuously produce a copper foil. That is, as described above, electrolysis at an electrolyte temperature of 60 to 65 ° C. and a current density of 60 to 120 A / dm 2 is a preferable condition for obtaining an electrolytic copper foil having the above characteristics. In particular, the adjustment of the electrolyte temperature is important. Details will be described in Examples and Comparative Examples.
- a roughening treatment can be applied to the surface or back surface of this electrolysis, or both surfaces as necessary.
- the average surface roughness Ra can be set to 0.04 to 0.20 ⁇ m.
- the reason why the lower limit of the average surface roughness Ra is 0.04 ⁇ m is to form fine particles and improve the adhesion. Thereby, for example, it becomes possible to apply as much active material as possible for the secondary battery, and the electric capacity of the battery can be increased.
- the reason for setting the upper limit to 0.20 ⁇ m is to reduce variation in weight thickness. Thereby, for example, the charge / discharge characteristics of the secondary battery can be improved.
- the average diameter of the roughened particles on the roughened surface be 0.1 to 0.4 ⁇ m. It is desired that the roughened particles are fine particles and the fine particles are more uniform. Similarly to the above, this is a preferable mode for improving the adhesion of the battery active material and applying as much active material as possible to increase the electric capacity of the battery.
- the maximum height of a roughening process layer is desirable for the maximum height of a roughening process layer to be 0.2 micrometer or less. This is also a preferable mode for reducing the thickness variation of the roughening treatment layer, improving the adhesion of the battery active material, and increasing the electric capacity of the battery by applying as much active material as possible.
- the present invention can be managed and achieved based on an index that makes the thickness of the roughened particles 0.2 ⁇ m or less.
- the copper foil for a negative electrode current collector for a secondary battery can form one type of plating of copper, cobalt, nickel or two or more types of alloy plating as roughening particles. Usually, roughened particles are formed by three-part alloy plating of copper, cobalt, and nickel. Furthermore, the copper foil for the negative electrode current collector for the secondary battery has a cobalt-nickel alloy plating layer on the roughened surface on both the front and back sides of the rolled copper alloy foil in order to improve heat resistance and weather resistance (corrosion resistance). It is a desirable element to form one or more rust-proofing layers or heat-resistant layers and / or silane coupling layers selected from zinc-nickel alloy plating layers and chromate layers.
- the copper foil for a negative electrode current collector for a secondary battery of the present invention can reduce the thickness variation in the copper foil width direction of the rolled copper alloy foil after the front and back surface roughening treatment to 0.5% or less.
- An excellent copper foil for a negative electrode current collector for a secondary battery can be provided.
- the roughening treatment on the copper foil for the secondary battery negative electrode current collector of the present invention can be performed, for example, copper roughening treatment or copper-cobalt-nickel alloy plating treatment.
- the copper roughening treatment is as follows. Copper roughening treatment Cu: 10 to 25 g / L H 2 SO 4 : 20 to 100 g / L Temperature: 20-40 ° C Dk: 30 to 70 A / dm 2 Time: 1-5 seconds
- the roughening treatment by the copper-cobalt-nickel alloy plating treatment is as follows.
- electrolytic plating the amount of deposition is carried out to form a ternary alloy layer such that 15 ⁇ 40mg / dm 2 of copper -100 ⁇ 3000 ⁇ g / dm 2 of cobalt -100 ⁇ 500 ⁇ g / dm 2 of nickel.
- This ternary alloy layer also has heat resistance.
- the general bath and plating conditions for forming such ternary copper-cobalt-nickel alloy plating are as follows. (Copper-cobalt-nickel alloy plating) Cu: 10 to 20 g / liter Co: 1 to 10 g / liter Ni: 1 to 10 g / liter pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 20 to 50 A / dm 2 Time: 1-5 seconds
- a cobalt-nickel alloy plating layer can be formed on the roughened surface.
- the cobalt-nickel alloy plating layer has a cobalt adhesion amount of 200 to 3000 ⁇ g / dm 2 and a cobalt ratio of 60 to 70 mass%.
- This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
- the conditions for the cobalt-nickel alloy plating are as follows. (Cobalt-nickel alloy plating) Co: 1-20 g / liter Ni: 1-20 g / liter pH: 1.5-3.5 Temperature: 30-80 ° C Current density D k : 1.0 to 20.0 A / dm 2 Time: 0.5-4 seconds
- a zinc-nickel alloy plating layer can be further formed on the cobalt-nickel alloy plating.
- the total amount of the zinc-nickel alloy plating layer is 150 to 500 ⁇ g / dm 2 and the nickel ratio is 16 to 40% by mass. This has the role of a heat and rust preventive layer.
- the conditions for zinc-nickel alloy plating are as follows. (Zinc-nickel alloy plating) Zn: 0-30 g / liter Ni: 0-25 g / liter pH: 3-4 Temperature: 40-50 ° C Current density D k : 0.5 to 5 A / dm 2 Time: 1 to 3 seconds
- a preferable antirust treatment is a coating treatment of chromium oxide alone or a mixture coating treatment of chromium oxide and zinc / zinc oxide.
- Chromium oxide and zinc / zinc oxide mixture film treatment means zinc or zinc oxide comprising zinc oxide and chromium oxide by electroplating using a plating bath containing zinc salt or zinc oxide and chromate. It is the process which coat
- the plating bath typically, at least one kind of dichromate such as K 2 Cr 2 O 7 and Na 2 Cr 2 O 7 and CrO 3 and a water-soluble zinc salt such as ZnO 4 and ZnSO 4 ⁇ 7H are used.
- a mixed aqueous solution of at least one kind such as 2 O and an alkali hydroxide is used.
- a typical plating bath composition and electrolysis conditions are as follows. The copper foil thus obtained has excellent heat resistance peel strength, oxidation resistance and hydrochloric acid resistance.
- Chromium rust prevention treatment K 2 Cr 2 O 7 (Na 2 Cr 2 O 7 or CrO 3 ): 2 to 10 g / liter NaOH or KOH: 10 to 50 g / liter ZnO or ZnSO 4 ⁇ 7H 2 O: 0.05 to 10 g / liter pH: 3-13 Bath temperature: 20-80 ° C Current density D k : 0.05 to 5 A / dm 2 Time: 5 to 30 seconds Anode: Pt—Ti plate, stainless steel plate, etc. Chromium oxide requires a coating amount of 15 ⁇ g / dm 2 or more, and zinc requires a coating amount of 30 ⁇ g / dm 2 or more.
- silane treatment is performed by applying a silane coupling agent to at least the roughened surface on the rust preventive layer, mainly for the purpose of improving the adhesion between the copper foil and the resin substrate.
- a silane coupling agent used for the silane treatment include olefin silane, epoxy silane, acrylic silane, amino silane, and mercapto silane, and these can be appropriately selected and used. .
- the application method may be any of spraying a silane coupling agent solution by spraying, coating with a coater, dipping, pouring and the like.
- Japanese Patent Publication No. 60-15654 describes that the adhesion between a copper foil and a resin substrate is improved by subjecting the rough surface of the copper foil to a chromate treatment followed by a silane coupling agent treatment. . Refer to this for details. Thereafter, if necessary, an annealing treatment may be performed for the purpose of improving the ductility of the copper foil.
- an annealing treatment may be performed for the purpose of improving the ductility of the copper foil.
- the additional surface treatment layer to the electrolytic copper foil of this invention applied mainly to the negative electrode collector for secondary batteries was demonstrated, these can be arbitrarily applied according to the use of electrolytic copper foil. Needless to say.
- the present invention includes all of these.
- Example 1 In the electrolytic cell, a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum. A copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution. Then, the linear velocity was adjusted to 3.0 m / s, the electrolyte temperature: 60 ° C., and the current density: 84 A / dm 2 , copper was deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum was peeled off. The copper foil was continuously manufactured.
- the current density is 84 A / dm 2 .
- the microscope picture which shows the particle shape of the cross section of this electrolytic copper foil is shown in FIG. FIG. 1 shows a feature that columnar particles having an aspect ratio of 2.0 or more and fine particles having an aspect ratio of less than 2.0 are mixed.
- Example 2 In the electrolytic cell, a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum. A copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution. Then, the linear velocity is adjusted to 3.0 m / s, the electrolyte temperature is 63 ° C., the current density is 84 A / dm 2 , copper is deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off. The copper foil was continuously manufactured.
- Example 3 In the electrolytic cell, a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum. A copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution. Then, the linear velocity is adjusted to 3.0 m / s, the electrolyte temperature is 63 ° C., the current density is 109 A / dm 2 , copper is deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off. The copper foil was continuously manufactured.
- Example 4 In the electrolytic cell, a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum. A copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution. Then, the linear velocity is adjusted to 3.0 m / s, the electrolyte temperature is 65 ° C., the current density is 84 A / dm 2 , copper is deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off. The copper foil was continuously manufactured.
- Example 5 In the electrolytic cell, a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum. A copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution. Then, the linear velocity is adjusted to 3.0 m / s, the electrolyte temperature is 65 ° C., the current density is 97 A / dm 2 , copper is deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off. The copper foil was continuously manufactured.
- Example 6 In the electrolytic cell, a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum. A copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution. Then, the linear velocity is adjusted to 3.0 m / s, the electrolyte temperature is 65 ° C., the current density is 109 A / dm 2 , copper is deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off. The copper foil was continuously manufactured.
- Example 7 In the electrolytic cell, a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum. A copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution. Then, the linear velocity is adjusted to 3.0 m / s, the electrolyte temperature is 65 ° C., the current density is 120 A / dm 2 , copper is deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off. The copper foil was continuously manufactured.
- FIG. 2 is a photomicrograph showing the shape of the cross-sectional particles of the electrolytic copper foil of Comparative Example 1.
- FIG. 1 of Example 1 columnar particles having an aspect ratio of 2.0 or more and fine particles having an aspect ratio of less than 2.0 are in a mixed state.
- FIG. 1 of Example 1 columnar particles having an aspect ratio of 2.0 or more and fine particles having an aspect ratio of less than 2.0 are in a mixed state.
- a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum.
- a copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution.
- the linear velocity was adjusted to 3.0 m / s, the electrolyte temperature: 60 ° C., and the current density: 61 A / dm 2 , copper was deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum was peeled off.
- the copper foil was continuously manufactured.
- a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum.
- a copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution.
- the linear velocity is adjusted to 3.0 m / s
- the electrolyte temperature is 63 ° C.
- the current density is adjusted to 61 A / dm 2
- copper is deposited on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off.
- the copper foil was continuously manufactured.
- a rotating drum made of titanium having a diameter of about 3133 mm and a width of 2476.5 mm and an electrode distance of about 5 mm are arranged around the drum.
- a copper concentration: 90 g / L, a sulfuric acid concentration: 80 g / L, and a glue concentration: 3 ppm were introduced into this electrolytic cell to obtain an electrolytic solution.
- the linear velocity is adjusted to 3.0 m / s
- the electrolyte temperature is set to 70 ° C.
- the current density is set to 109 A / dm 2 to deposit copper on the surface of the rotating drum, and the copper deposited on the surface of the rotating drum is peeled off.
- the copper foil was continuously manufactured.
- the present invention is particularly useful for an electrolytic copper foil for a negative electrode current collector for a secondary battery because it can provide an electrolytic copper foil having a high normal tensile strength and a high heat tensile strength and less warping.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Electrolytic Production Of Metals (AREA)
Abstract
Description
この電解槽の中に、銅、硫酸、にかわを導入して電解液とする。そして、線速、電解液温、電流密度を調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造している。
(1)常態における引張り強さ( 以下、「常態引張り強さ」と称する。) が、45kgf/mm2~55kgf/mm2であり、100mm角の四隅の浮き上がり量の平均値が2mm以下であることを特徴とする電解銅箔。
(3)電解銅箔の断面の結晶粒が、アスペクト比が2.0未満である微細粒子とアスペクト比が2.0以上の柱状粒子からなることを特徴とする上記(1)又は(2)記載の電解銅箔。
(4)柱状粒子の面積の合計が5%~30%であり、残余が微細粒子であることを特徴とする上記(1)~(3)のいずれか一項に記載の電解銅箔。
(5)アスペクト比が2.0未満である微細粒子の平均粒径が0.2μm以下あることを特徴とする上記(1)~(4)のいずれか一項に記載の電解銅箔。
(6)二次電池負極集電体用銅箔であることを特徴とする上記(1)~(5)のいずれか一項に記載の電解銅箔。
(7)硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60~65°Cとし、電流密度を60~120A/dm2として電解することを特徴とする電解銅箔の製造方法。
(8)硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60~65°Cとし、電流密度を60~120A/dm2として電解することにより、上記(1)~(6)のいずれか一項に記載の電解銅箔を製造することを特徴とする電解銅箔の製造方法。
具体的には、柱状の粒子の存在が反り量を軽減させることができ、微細粒子の存在が強度を維持することができる。
すなわち、これによって電解銅箔の常態における引張り強さ( 以下、「常態引張り強さ」と称する。) を、45kgf/mm2~55kgf/mm2とし、100mm角の四隅の浮き上がり量の平均値を2mm以下とすることができる。
他方、電流密度が120A/dm2を超えると全体が微細になり過ぎて、液温を上げても、柱状粒子が発生し難くなり、反りが大きくなると考えられる。
一方、適正な電流密度の範囲の中で、電流密度が高い場合には、液温が高い方が望ましい。電流密度が高い場合には、粒子径がもともと小さいため、液温がたかくないと柱状粒が発達しにくいためと考えられる。
柱状粒子が少なすぎる場合、すなわち5%未満では反りが大きくなるので、好ましくない。また、30%を超えると逆に微細粒子が相対的に少なくなるので、強度が低下して好ましくない。したがって、柱状粒子の面積の合計が5%~30%とするのが好適な条件と言える。
そして、線速:1.5~5.0m/s、電解液温:60°C~65°C、電流密度:60~120A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造する。
すなわち、上記の通り、電解液温度を60~65°Cとし、電流密度を60~120A/dm2として電解することが、上記の特性を有する電解銅箔を得る好適な条件である。特に電解液温の調整は重要である。詳細は、実施例及び比較例で説明する。
これによって、例えば二次電池の活物質を極力多く塗布することが可能となり、電池の電気容量を高めることができる。他方、上限を0.20μmとする理由は、重量厚みのばらつきを少なくするためである。これによって、例えば二次電池の充放電特性を向上させることができる。これらの表面粗さは一例を示すものであり、電解銅箔の用途に応じて適宜調節できる。
本願発明は、この粗化粒子の厚みを0.2μm以下とする指標を基に、管理し、これを達成することが可能である。
例えば、銅の粗化処理は、次の通りである。
銅粗化処理
Cu: 10~25g/L
H2SO4: 20~100g/L
温度: 20~40°C
Dk: 30~70A/dm2
時間: 1~5秒
(銅-コバルト-ニッケル合金めっき)
Cu:10~20g/リットル
Co:1~10g/リットル
Ni:1~10g/リットル
pH:1~4
温度:30~50°C
電流密度Dk :20~50A/dm2
時間:1~5秒
(コバルト-ニッケル合金めっき)
Co:1~20g/リットル
Ni:1~20g/リットル
pH:1.5~3.5
温度:30~80°C
電流密度Dk :1.0~20.0A/dm2
時間:0.5~4秒
(亜鉛-ニッケル合金めっき)
Zn:0~30g/リットル
Ni:0~25g/リットル
pH:3~4
温度:40~50°C
電流密度Dk :0.5~5A/dm2
時間:1~3秒
K2Cr2O7(Na2Cr2O7或いはCrO3):2~10g/リットル
NaOH或いはKOH :10~50g/リットル
ZnO 或いはZnSO4・7H2O:0.05~10g/リットル
pH:3~13
浴温:20~80°C
電流密度Dk :0.05~5A/dm2
時間:5~30秒
アノード:Pt-Ti 板、ステンレス鋼板等
クロム酸化物はクロム量として15μg/dm2以上、亜鉛は30μg/dm2以上の被覆量が要求される。
上記については、主として二次電池用負極集電体に適用する本願発明の電解銅箔への付加的な表面処理層について説明したが、電解銅箔の用途に応じてこれらを任意に適用できることは言うまでもない。本発明はこれらを全て包含するものである。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:60°C、電流密度:84A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。なお、表1において、「柱状粒子」を「柱状晶」と記載しているが、両者はいずれも「柱状晶からなる粒子」の意味であり、同一の意味で使用している。以下、同様である。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:63°C、電流密度:84A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:63°C、電流密度:109A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:84A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:97A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:109A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
いずれも本願発明の条件を満足していた。この結果を、同様に表1に示す。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:65°C、電流密度:120A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:57°C、電流密度:84A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
前記実施例1の図1では、アスペクト比が2.0以上である柱状粒子とアスペクト比が2.0未満である微細粒子が混在する状態となっているのに対して、この比較例1の図2では、アスペクト比が2.0以上の柱状粒子が少なく、2.0未満の微細粒子が殆どであるという好ましくない傾向を示していた。すなわち、柱状粒子の面積の合計が10%以上という本願発明の要件を満たしていなかった。この結果を表1に示すが、実施例に比べて、反り量が増加する原因となった。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:57°C、電流密度:97A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:57°C、電流密度:109A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:60°C、電流密度:61A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
いずれも本願発明の条件を満足していなかった。この結果を、同様に表1に示す。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:60°C、電流密度:109A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:63°C、電流密度:61A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
電解槽の中に、直径約3133mm、幅2476.5mmのチタン製の回転ドラムと、ドラムの周囲に5mm程度の極間距離を置いて電極を配置する。この電解槽の中に、銅濃度:90g/L、硫酸濃度:80g/L、にかわ濃度:3ppmを導入して電解液とした。
そして、線速:3.0m/s、電解液温:70°C、電流密度:109A/dm2に調節し、回転ドラムの表面に銅を析出させ、回転ドラムの表面に析出した銅を剥ぎ取り、連続的に銅箔を製造した。
Claims (7)
- 常態における引張り強さ( 以下、「常態引張り強さ」と称する。) が、45kgf/mm2~55kgf/mm2であり、100mm角の四隅の浮き上がり量の平均値が2mm以下であることを特徴とする電解銅箔。
- 電解銅箔の断面の結晶粒子が、アスペクト比が2.0未満である微細粒子とアスペクト比が2.0以上の柱状粒子からなることを特徴とする請求項1又は2記載の電解銅箔。
- 柱状粒子の面積の合計が10%~55%であり、残余が微細粒子であることを特徴とする請求項1~3のいずれか一項に記載の電解銅箔。
- アスペクト比が2.0未満である微細粒子の平均粒径が0.2μm以下あることを特徴とする請求項1~4のいずれか一項に記載の電解銅箔。
- 二次電池負極集電体用銅箔であることを特徴とする請求項1~5のいずれか一項に記載の電解銅箔。
- 硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60~65°Cとし、電流密度を60~120A/dm2として電解することを特徴とする電解銅箔の製造方法。
- 硫酸系銅電解液を用いた電解法により電解銅箔を製造する方法において、電解液温度を60~65°Cとし、電流密度を60~120A/dm2として電解することにより、請求項1~6のいずれか一項に記載の電解銅箔を製造することを特徴とする電解銅箔の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020147003631A KR20140035524A (ko) | 2011-07-13 | 2011-12-05 | 강도가 높고 또한 휨이 적은 전해 동박 및 그 제조 방법 |
KR1020167003978A KR102048116B1 (ko) | 2011-07-13 | 2011-12-05 | 강도가 높고 또한 휨이 적은 전해 동박 및 그 제조 방법 |
JP2013523768A JP5822928B2 (ja) | 2011-07-13 | 2011-12-05 | 強度が高く、かつ反りの少ない電解銅箔及びその製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011154480 | 2011-07-13 | ||
JP2011-154480 | 2011-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013008349A1 true WO2013008349A1 (ja) | 2013-01-17 |
Family
ID=47505667
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078048 WO2013008349A1 (ja) | 2011-07-13 | 2011-12-05 | 強度が高く、かつ反りの少ない電解銅箔及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5822928B2 (ja) |
KR (2) | KR102048116B1 (ja) |
TW (1) | TWI540227B (ja) |
WO (1) | WO2013008349A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017051767A1 (ja) * | 2015-09-25 | 2017-03-30 | 古河電気工業株式会社 | 電解銅箔、その電解銅箔を用いた各種製品 |
JP2018080384A (ja) * | 2016-11-15 | 2018-05-24 | エル エス エムトロン リミテッドLS Mtron Ltd. | カールを最小化した電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 |
JP2019536211A (ja) * | 2016-11-11 | 2019-12-12 | イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. | 二次電池用電解銅箔及びその製造方法 |
JP2021085095A (ja) * | 2019-11-27 | 2021-06-03 | 長春石油化學股▲分▼有限公司 | 電解銅箔ならびにそれを含む電極およびリチウムイオン電池 |
CN114703515A (zh) * | 2022-04-14 | 2022-07-05 | 中国科学院金属研究所 | 一种铜箔及其制备方法、以及一种电路板和集电体 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102463038B1 (ko) | 2021-01-11 | 2022-11-03 | 세일정기 (주) | 전해 동박 제조 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02182890A (ja) * | 1989-01-10 | 1990-07-17 | Furukawa Saakitsuto Fuoiru Kk | 電解銅箔の製造方法 |
JPH05502062A (ja) * | 1990-05-30 | 1993-04-15 | ジーエイテック インコーポレイテッド | 電着された銅箔およびこれを低塩素イオン濃度の電解質溶液を用いて製造する方法 |
JPH0754183A (ja) * | 1993-05-28 | 1995-02-28 | Gould Electron Inc | 電着銅箔、および、塩化物イオンならびに有機添加剤の制御添加物を含有する電解質溶液を用いる電着銅箔の製造方法 |
JP2000182623A (ja) * | 1998-12-11 | 2000-06-30 | Nippon Denkai Kk | 電解銅箔、二次電池の集電体用銅箔及び二次電池 |
JP2006299320A (ja) * | 2005-04-19 | 2006-11-02 | Ls Cable Ltd | 高強度を有する低粗度銅箔及びその製造方法 |
WO2008132987A1 (ja) * | 2007-04-20 | 2008-11-06 | Nippon Mining & Metals Co., Ltd. | リチウム二次電池用電解銅箔及び該銅箔の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5431803A (en) | 1990-05-30 | 1995-07-11 | Gould Electronics Inc. | Electrodeposited copper foil and process for making same |
JP3789107B2 (ja) | 2002-07-23 | 2006-06-21 | 株式会社日鉱マテリアルズ | 特定骨格を有するアミン化合物及び有機硫黄化合物を添加剤として含む銅電解液並びにそれにより製造される電解銅箔 |
KR100827042B1 (ko) * | 2004-01-06 | 2008-05-02 | 닛폰 덴카이 가부시키가이샤 | 전자파 실드필터용 동박 및 전자파 실드필터 |
-
2011
- 2011-12-05 WO PCT/JP2011/078048 patent/WO2013008349A1/ja active Application Filing
- 2011-12-05 KR KR1020167003978A patent/KR102048116B1/ko active IP Right Grant
- 2011-12-05 KR KR1020147003631A patent/KR20140035524A/ko active Application Filing
- 2011-12-05 JP JP2013523768A patent/JP5822928B2/ja active Active
- 2011-12-08 TW TW100145244A patent/TWI540227B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02182890A (ja) * | 1989-01-10 | 1990-07-17 | Furukawa Saakitsuto Fuoiru Kk | 電解銅箔の製造方法 |
JPH05502062A (ja) * | 1990-05-30 | 1993-04-15 | ジーエイテック インコーポレイテッド | 電着された銅箔およびこれを低塩素イオン濃度の電解質溶液を用いて製造する方法 |
JPH0754183A (ja) * | 1993-05-28 | 1995-02-28 | Gould Electron Inc | 電着銅箔、および、塩化物イオンならびに有機添加剤の制御添加物を含有する電解質溶液を用いる電着銅箔の製造方法 |
JP2000182623A (ja) * | 1998-12-11 | 2000-06-30 | Nippon Denkai Kk | 電解銅箔、二次電池の集電体用銅箔及び二次電池 |
JP2006299320A (ja) * | 2005-04-19 | 2006-11-02 | Ls Cable Ltd | 高強度を有する低粗度銅箔及びその製造方法 |
WO2008132987A1 (ja) * | 2007-04-20 | 2008-11-06 | Nippon Mining & Metals Co., Ltd. | リチウム二次電池用電解銅箔及び該銅箔の製造方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017051767A1 (ja) * | 2015-09-25 | 2017-03-30 | 古河電気工業株式会社 | 電解銅箔、その電解銅箔を用いた各種製品 |
JPWO2017051767A1 (ja) * | 2015-09-25 | 2017-09-21 | 古河電気工業株式会社 | 電解銅箔、その電解銅箔を用いた各種製品 |
KR20180058735A (ko) | 2015-09-25 | 2018-06-01 | 후루카와 덴키 고교 가부시키가이샤 | 전해 동박, 그 전해 동박을 사용한 각종 제품 |
CN108350588A (zh) * | 2015-09-25 | 2018-07-31 | 古河电气工业株式会社 | 电解铜箔以及使用该电解铜箔的各种制品 |
KR20210024237A (ko) | 2015-09-25 | 2021-03-04 | 후루카와 덴키 고교 가부시키가이샤 | 전해 동박, 그 전해 동박을 사용한 각종 제품 |
JP2019536211A (ja) * | 2016-11-11 | 2019-12-12 | イルジン マテリアルズ カンパニー リミテッドIljin Materials Co., Ltd. | 二次電池用電解銅箔及びその製造方法 |
JP2018080384A (ja) * | 2016-11-15 | 2018-05-24 | エル エス エムトロン リミテッドLS Mtron Ltd. | カールを最小化した電解銅箔、それを含む電極、それを含む二次電池、およびその製造方法 |
JP2021085095A (ja) * | 2019-11-27 | 2021-06-03 | 長春石油化學股▲分▼有限公司 | 電解銅箔ならびにそれを含む電極およびリチウムイオン電池 |
CN114703515A (zh) * | 2022-04-14 | 2022-07-05 | 中国科学院金属研究所 | 一种铜箔及其制备方法、以及一种电路板和集电体 |
CN114703515B (zh) * | 2022-04-14 | 2024-05-03 | 中国科学院金属研究所 | 一种铜箔及其制备方法、以及一种电路板和集电体 |
Also Published As
Publication number | Publication date |
---|---|
JP5822928B2 (ja) | 2015-11-25 |
JPWO2013008349A1 (ja) | 2015-02-23 |
KR102048116B1 (ko) | 2019-11-22 |
TWI540227B (zh) | 2016-07-01 |
TW201303083A (zh) | 2013-01-16 |
KR20160023927A (ko) | 2016-03-03 |
KR20140035524A (ko) | 2014-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5417458B2 (ja) | 二次電池負極集電体用銅箔 | |
JP5074611B2 (ja) | 二次電池負極集電体用電解銅箔及びその製造方法 | |
TWI554392B (zh) | A liquid crystal polymer copper clad laminate and a copper foil for the laminated sheet | |
JP5822928B2 (ja) | 強度が高く、かつ反りの少ない電解銅箔及びその製造方法 | |
KR101967022B1 (ko) | 전해 동박 및 전해 동박의 제조 방법 | |
EP2544282A1 (en) | Surface treatment method for copper foil, surface treated copper foil and copper foil for negative electrode collector of lithium ion secondary battery | |
JPWO2020017655A1 (ja) | 粗化ニッケルめっき板 | |
JP2012172198A (ja) | 電解銅箔及びその製造方法 | |
TWI633196B (zh) | 附有銅鍍層的壓延銅箔 | |
WO2014112619A1 (ja) | 銅箔、リチウムイオン電池用負極及びリチウムイオン二次電池 | |
CN115881974A (zh) | 一种复合金属箔、电极材料和电池 | |
JP5941959B2 (ja) | 電解銅箔及びその製造方法 | |
JP2005350761A (ja) | 非水電解液二次電池の負極集電体用の複合箔及びその製造方法、並びに該複合箔を用いた負極集電体、非水電解液二次電池用電極及び非水電解液二次電池 | |
WO2012121020A1 (ja) | 強度が高く、異常電着による突起形状が少ない電解銅箔及びその製造方法 | |
WO2014033917A1 (ja) | 電解銅箔及びその製造方法 | |
JP5019654B2 (ja) | リチウムイオン二次電池の負極集電体用銅(合金)箔、その製造方法、及びリチウムイオン二次電池の負極電極、その製造方法 | |
JP2014152343A (ja) | 複合銅箔および複合銅箔の製造方法 | |
WO2013150640A1 (ja) | 電解銅箔及びその製造方法 | |
US20230057775A1 (en) | Roughened nickel-plated sheet | |
JP2024145588A (ja) | 表面処理銅箔、銅張積層板及びプリント配線板 | |
TW201410922A (zh) | 強度高且由異常電沉積所導致之突起形狀少之電解銅箔及其製造方法 | |
TW201341594A (zh) | 電解銅箔及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11869428 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2013523768 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147003631 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11869428 Country of ref document: EP Kind code of ref document: A1 |