WO2013005252A1 - 電気分解用電極及びその作製方法、並びに電気分解装置 - Google Patents

電気分解用電極及びその作製方法、並びに電気分解装置 Download PDF

Info

Publication number
WO2013005252A1
WO2013005252A1 PCT/JP2011/003848 JP2011003848W WO2013005252A1 WO 2013005252 A1 WO2013005252 A1 WO 2013005252A1 JP 2011003848 W JP2011003848 W JP 2011003848W WO 2013005252 A1 WO2013005252 A1 WO 2013005252A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
base metal
metal oxide
electrolysis
noble metal
Prior art date
Application number
PCT/JP2011/003848
Other languages
English (en)
French (fr)
Inventor
杉政 昌俊
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to EP11869163.3A priority Critical patent/EP2730681A4/en
Priority to PCT/JP2011/003848 priority patent/WO2013005252A1/ja
Publication of WO2013005252A1 publication Critical patent/WO2013005252A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrode for electrolysis, a method for producing the electrode, and an electrolyzer.
  • Hydrogen is attracting attention as an energy source for the next generation in place of fossil fuels as global warming becomes more serious due to the effects of carbon dioxide due to the massive consumption of fossil fuels. Since hydrogen discharges only water after use, it is considered to be a clean energy source with low environmental impact.
  • Patent Document 1 an electrode catalyst layer having a platinum group or platinum group oxide as a main catalyst is provided on a substrate, and high temperature oxidation excellent in peeling resistance and corrosion resistance is provided between the electrode catalyst layer and the substrate.
  • An electrode for electrolysis provided with a film as an intermediate layer is disclosed.
  • platinum group materials such as platinum, ruthenium oxide and iridium oxide have been used as the electrode catalyst layer as disclosed in Patent Document 1 and the like.
  • Iridium and ruthenium oxides are used as oxygen generating electrodes because they have higher electron conductivity and lower resistance than other metal oxides.
  • platinum is expensive, and iridium and ruthenium have a global annual production of around 10 tons, which is problematic in terms of material costs and available resources. For this reason, it is necessary to develop a new oxygen electrode having corrosion resistance and low overvoltage while using a material having abundant resources.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an oxygen-generating electrode that is made of a platinum group free, has excellent corrosion resistance, and has a low overvoltage.
  • the present invention relates to an electrode for electrolysis that electrolyzes an electrolytic solution to generate hydrogen, a conductive base material, a base metal oxide formed on the surface of the base material, and a surface of the base metal oxide. And a noble metal supported, wherein the noble metal is at least one selected from Au, Ag, and oxides thereof.
  • FIG. 1 is an example of a schematic diagram of a cell 101 of an electrolysis apparatus to which an electrode for electrolysis of the present invention is applied.
  • the cell 101 includes a hydrogen generation electrode 102, an oxygen generation electrode 103, a partition wall 104, an electrolytic cell 105, and an electrolytic solution 106.
  • the oxygen generation electrode 103 and the hydrogen generation electrode 102 are disposed to face each other with the partition wall 104 interposed therebetween. These are inserted into the electrolytic bath 105, and the electrolytic solution 106 is injected for use.
  • the oxygen generation electrode 103 and the hydrogen generation electrode 102 are connected to a load 108, and electrolysis is performed by applying a voltage between the electrodes.
  • FIG. 2 is a schematic diagram showing an example of the configuration of an oxygen generating electrode applied to the electrolysis apparatus of the present invention.
  • the oxygen generation electrode 201 is composed of a conductive base material 204, a base metal oxide 203 formed on the surface thereof, and a noble metal 202 selected from gold, silver supported by the base metal oxide 203, or oxides thereof.
  • the term “support” refers to a state in which the noble metal 202 is chemically or physically adsorbed with a part of the surface of the base metal oxide 203 serving as a support being exposed.
  • any structure may be used as long as the noble metal is supported in a state in which a part of the surface of the base metal oxide is exposed so that a three-phase interface of the electrolyte, the base metal oxide, and the noble metal is formed.
  • the shape is not particularly limited.
  • FIG. 2 shows a structure in which fine particles of noble metal 202 are supported on the surface of a base metal oxide 203 having a high specific surface area in order to increase the reaction area.
  • Base metal oxides are resistant to corrosive environments and have activity against oxygen generation reactions, but they have low electrical conductivity and high reaction resistance at potentials where oxygen generation reactions proceed. It was not possible to demonstrate sufficient performance as a pole.
  • Gold, silver and their oxides have low resistance and are widely used as electrode materials. However, since the overvoltage required for the progress of the oxygen generation reaction is high, the performance as the oxygen generation electrode is poor. In particular, gold is considered to be the cause of high overvoltage because of its low surface reactivity and inertness to oxygen generation reaction.
  • the base metal oxide and the noble metal used for the oxygen generating electrode of the present invention cannot each have sufficient characteristics as an oxygen generating electrode.
  • the present inventors have found that excellent characteristics can be obtained as an oxygen generating electrode. That is, the electrode of the present invention has a configuration in which a noble metal is supported on the surface of a base metal oxide. Since noble metals are difficult to oxidize and are resistant to corrosion, they have conductivity even at potentials where oxygen generation reaction proceeds. Thereby, the reaction resistance of a base metal oxide can be reduced by using a noble metal as an electron passage path.
  • the catalytic activity tends to increase at the interface between the metal oxide and the noble metal. This is presumably because water is likely to be adsorbed on the surface of the noble metal having a strong adsorptive power, and an effect of improving the rate of the electrolytic reaction is expected.
  • the generated oxygen molecule strongly adsorbs on the surface and inhibits the electrolytic reaction, but the base metal oxide creates a negative charge on the surface of the noble metal and weakens the adsorption with oxygen. An increase is also conceivable.
  • the electrode of the present invention by supporting a small amount of noble metal on the surface of the base metal oxide, it is highly active while suppressing the member cost due to the conductivity improvement effect of the noble metal and the catalyst performance activation effect of the interface. Realized oxygen electrode.
  • the base metal oxide used for the oxygen generating electrode of the present invention is composed of any one metal of Ni, Mo, Nb, Ta, Ti, Zr, Fe, Mn, W, and Sn, or an alloy composed of a plurality of metals.
  • the base metal oxide it is preferable to use Ni, Fe, or Mn having high catalytic activity for the oxygen generation reaction.
  • Mn has a high oxygen generation activity with respect to salt water, and is particularly preferable when hydrogen and oxygen are produced by electrolysis of salt water.
  • Nb, Ta, Ti, Zr, Mn, and W having high corrosion stability are preferably used in combination from the viewpoint of extending the life of the electrode. In terms of available resources, it is desirable to use Ti or Fe.
  • the shape of the base metal oxide is not particularly limited as long as it has a high specific surface area, but is preferably a porous body, particles, columns, plates, or dendrites.
  • the specific surface area is desirably 10 to 1000 times the actual surface area with respect to the apparent surface area.
  • the noble metal supported on the base metal oxide surface is composed of Au, Ag, and any one or a combination of these oxides.
  • Ag is desirable as an electrode material of the present invention because it has catalytic activity for oxygen generation reaction, has high conductivity, is inexpensive, and has a large output.
  • Au does not have catalytic activity for oxygen generation reaction in bulk, but it is expected that catalytic activity will be manifested by forming nanoparticles. Moreover, it has high corrosion resistance and can be used in a corrosive environment stronger than Ag.
  • the form of the noble metal is preferably fine particles.
  • Au, Ag, and their oxides are more expensive than base metals, and the amount used must be reduced in order to reduce material costs.
  • excessive miniaturization is not preferable because it causes a decrease in strength.
  • the noble metal fine particles are preferably about 1 to 100 nm in size, more preferably 1 to 20 nm.
  • it is desirable that the noble metal fine particles are uniformly dispersed on the surface of the base metal oxide, but there is no problem even if they are aggregated. From the viewpoint of improving conductivity, the noble metal may be supported in a thin film shape or a linear shape.
  • the noble metal and the base metal oxide have a longer interface.
  • the noble metal is desirably in the form of fine particles.
  • the area occupied by the noble metal and the area occupied by the base metal oxide on the electrode surface is ideally 1: 1, but considering the difficulty of production, the surface area of the noble metal is the surface area of the base metal oxide support. On the other hand, it may be about 30 to 70%, and more preferably in the range of 40 to 60%.
  • the base material supporting the base metal oxide and the noble metal only needs to be conductive and is not particularly limited as long as it is a metal material. However, it is preferable to use Fe in terms of cost and Ni or Ti in terms of corrosion resistance.
  • a carbon material may be used as a base material as long as adhesion with a base metal oxide can be maintained.
  • the surface of the substrate has a concavo-convex shape and the substrate has a high specific surface area. At that time, it is desirable that the actual surface area be 10 to 1000 times the apparent surface area.
  • the method for producing the oxygen generating electrode of the present invention is not particularly limited as long as the above configuration can be produced. However, in view of the simplicity of production and cost, it is preferable to use a dry method in which coating and baking are repeated, or a wet method using electrolytic deposition.
  • a solvent containing a base metal salt is first applied to the surface of a conductive base material, and a base metal oxide is produced by firing in air.
  • the kind of base metal salt and the kind of solvent are not particularly limited, and it is sufficient that a base metal oxide can be produced by firing.
  • the base material is a metal
  • cracks occur in the base metal oxide due to the difference in thermal expansion coefficient. Therefore, a high specific surface area can be obtained simply by applying a solvent and baking.
  • fine organic structures such as surfactant micelles and polystyrene beads are mixed in a solvent, the portion containing the organic structures when baked becomes voids, and a base metal oxide having a very high specific surface area is formed. It is possible to produce.
  • the type, concentration, and size of the organic structure are not particularly limited, and may be selected according to a desired base metal oxide.
  • the total amount of the base metal oxide can be adjusted by the number of coating and firing, the concentration of the base metal salt, and the viscosity of the solvent. It is also possible to continuously form different types of base metal oxides.
  • a base metal oxide having an effect of improving adhesion can be formed, and a base metal oxide to be used can be formed thereon.
  • a solvent containing a noble metal salt is applied and baked to complete an electrode carrying the noble metal on the surface of the base metal oxide.
  • the type of the noble metal salt and the type of the solvent are not particularly limited, but a solvent with good wettability is preferable for highly dispersing the noble metal fine particles, and a low molecular weight alcohol such as methanol, ethanol, propanol, or butanol is used. Good.
  • the amount, size, and dispersibility of the noble metal fine particles can be adjusted by the number of coating and firing, the concentration of the base metal salt, and the viscosity of the solvent.
  • the dry method is a simple and low-cost production method in which an electrode can be produced simply by repeatedly applying and baking a solution containing a salt.
  • a conductive base material is immersed in a solvent containing a base metal salt together with a counter electrode, and is electrolytically deposited by applying a voltage. If the anode is deposited on the oxidation potential side, the base metal oxide can be directly formed on the substrate surface. In addition, after the base metal is deposited on the cathode at the reduction potential side, the base metal oxide can be produced by firing in air.
  • the structure of the porous body is controlled by changing the organic structure, but in the wet method, the shape of the base metal oxide is comparatively easy to columnar, plate-like, dendritic, etc., depending on the type of additive and deposition conditions. The advantage is that it can be controlled.
  • the produced base metal oxide has a high conductivity, it is possible to carry a noble metal by electrolytic deposition.
  • the size and degree of dispersion of the noble metal fine particles can be controlled by electrolytic deposition techniques such as pulse electrodeposition, constant potential, and constant current. Further, the shape and size of the noble metal fine particles can be controlled by the additive.
  • noble metal fine particles may be supported on the surface of a base metal oxide produced by a wet method by a dry method, or vice versa.
  • Other techniques may be used, and commercially available noble metal nanoparticles may be supported on the surface of the produced base metal oxide.
  • the hydrogen generation electrode 102 has a role of promoting a reaction for reducing water to generate hydrogen.
  • the hydrogen generating electrode 102 preferably has a high specific surface area, more preferably a porous body, a net-like shape, or a non-woven fabric shape. Further, a nanostructure or the like is preferably formed on the surface. Since the hydrogen generation electrode performs the hydrogen generation reaction with lower power, it is preferable to use a platinum group such as Pt, Rh, Ir or the like having a smaller hydrogen overvoltage. Since the platinum group is expensive, Ni, Fe, etc., which are cheaper, may be used, or may be alloyed with the platinum group.
  • the electrolytic solution 106 is not particularly limited, but an alkaline aqueous solution is preferably used in order to suppress corrosion of the electrode and the electrolytic cell.
  • the material of the partition 104 is not particularly specified, but a highly stable resin that does not dissolve in an aqueous solution is preferable.
  • a highly stable resin that does not dissolve in an aqueous solution is preferable.
  • examples include polyimide and polyethylene.
  • a resin it needs to be porous and sponge-like so that ions can move inside.
  • a proton conductive resin is used, an aqueous solution is not necessary on the oxygen electrode side, and water is not required on the hydrogen electrode side, and only pure hydrogen is required, so that gas-liquid separation is not necessary and power generation is facilitated.
  • the electrode of the present embodiment is suitable as an oxygen electrode of a hydrogen production apparatus because it has a high specific surface area, a low oxygen generation overvoltage, and a low member cost.
  • FIG. 2 shows a schematic cross-sectional view of the oxygen generating electrode 201 of this example.
  • the oxygen generation electrode 201 includes noble metal fine particles 202, a base metal oxide 203, and a conductive base material 204.
  • the base metal oxide 203 has a high specific surface area, and the noble metal fine particles 202 are supported in a highly dispersed manner throughout.
  • the surface shape was evaluated by an optical microscope, the cross-sectional shape was evaluated by SEM, and the particle size of noble metal fine particles was evaluated by XRD.
  • the electrochemical characteristics were evaluated in a tripolar manner in a 1 mol / L KOH aqueous solution. Silver / silver chloride was used for the reference electrode, and a platinum mesh was used for the counter electrode.
  • the electrocatalytic activity for the oxygen generation reaction was evaluated from the rise of the oxygen generation potential and the magnitude of the current value at a constant potential.
  • FIG. 3 is a schematic view showing an example of an electrode manufacturing process by a dry method.
  • dissolved 5 weight% of water-soluble Ti complex in water was apply
  • the solvent 302 contains sodium dodecyl sulfate to form a micellar organic structure 303.
  • the Ti plate coated with the solvent 302 was dried in air at 160 ° C. for 2 hours, and then baked at 500 ° C. for 10 minutes to form a base metal oxide 304 made of TiO 2 .
  • a butanol solution 305 containing 1% by weight of chloroauric acid was applied to the surface, and then baked at 500 ° C. for 1 hour to obtain an electrode 307.
  • the electrode 307 was subjected to XRD measurement, and it was confirmed that Au fine particles 306 having a crystallite diameter of 26 nm were formed. Next, the electrocatalytic activity was evaluated. When the current value at 0.7 V was measured, an oxygen generation current of 26 mA could be observed.
  • Comparative Example 1 In Comparative Example 1, the characteristics of an electrode in which a Ti oxide was formed as a base metal oxide on the surface of a Ti base material were evaluated. The manufacturing method is the same as in Example 1.
  • Example 2 An electrode having a surface shape equivalent to that of Example 1 was obtained. On the other hand, the current value at 0.7 V was 2 mA.
  • Example 2 Ag was selected as the noble metal fine particles, NiTi alloy oxide was selected as the base metal oxide, and a Ti plate was selected as the base material. It was produced in the same manner as in Example 1 except that a solvent in which Ni sulfate and a water-soluble Ti complex were dissolved in water was used to form a NiTi alloy oxide on the surface of the Ti plate.
  • Example 1 As for the surface shape, a surface with severe irregularities was obtained as in Example 1.
  • the crystallite diameter of Ag was 35 nm.
  • the current value at 0.7 V was 32 mA, and the same activity as in Example 1 was confirmed.
  • Comparative Example 2 In Comparative Example 3, the characteristics of an electrode in which a NiTi alloy oxide was formed as a base metal oxide on the Ti substrate surface were evaluated. The manufacturing method is the same as in Example 2.
  • Example 2 An electrode having a surface shape equivalent to that of Example 1 was obtained. On the other hand, the current value at 0.7 V was 1 mA or less.
  • Example 3 the characteristics of an electrode using a Ti plate having a high specific surface area as a substrate were evaluated.
  • Au was selected as the noble metal fine particles, and Ti oxide was selected as the base metal oxide.
  • FIG. 4 is a schematic cross-sectional view of the electrode 401 of this embodiment.
  • the substrate 404 was prepared by immersing a Ti plate in a 10% by weight oxalic acid aqueous solution heated to 85 ° C. for 60 minutes and etching the surface to produce a Ti plate having a high specific surface area. Next, an aqueous solvent containing 5% by weight of a water-soluble Ti complex was applied and then baked to carry the Ti oxide fine particles 403. Further, a butanol solution containing 1% by weight of chloroauric acid was applied and then fired again to carry Au fine particles 402 on the surface of the Ti oxide fine particles 403.
  • FIG. 5 is a surface optical microscope image of the electrode 401. A surface with severe irregularities can be confirmed.
  • the electrode 401 was subjected to XRD measurement, and it was confirmed that Au fine particles 402 having a crystallite diameter of 20 nm were formed. Next, the electrocatalytic activity was evaluated. When the current value at 0.7 V was measured, an oxygen generation current of 25 mA could be observed.
  • Example 4 a thin film of a base metal oxide 602 was formed on the base material 604 shown in FIG. 6, and the electrode characteristics of a configuration in which noble metal fine particles 603 were supported on the base metal oxide 602 were evaluated.
  • a Ti plate is used for the substrate 604
  • a Ti oxide is used for the base metal oxide 602
  • Au is used for the noble metal fine particles.
  • the Ti oxide thin film was prepared by applying a solvent in which a water-soluble Ti complex was dissolved in water to a Ti base material a plurality of times.
  • the thickness of the Ti oxide thin film was 129 nm, and Au fine particles having a particle size of about 50 nm were supported on the surface in a highly dispersed manner. When the current value at 0.7 V was measured, an oxygen generation current of 17 mA could be observed.
  • Comparative Example 3 In Comparative Example 3, the characteristics of an electrode having an Au thin film sputter-supported on the surface of a Ti base material on which a Ti oxide thin film was formed were evaluated. The method for producing the Ti thin film is the same as in Example 4.
  • the XRD peak of the Au thin film supported on the flat Ti oxide thin film was broad and an average crystallite size was not obtained.
  • the current value at 0.7 V was 1 mA or less.
  • FIG. 7 is a schematic diagram showing an example of an electrode manufacturing process by a wet method.
  • the base material 701 was immersed in an aqueous solution 702 in which 10% by weight of NiSO 4 was dissolved. 5% by weight of sodium dodecyl sulfate was added to the aqueous solution 702 as an additive for increasing the specific surface area of the precipitate.
  • a plate-like high specific surface area Ni structure 703 was electrolytically deposited on the Ni plate surface under a constant voltage condition of cathode deposition.
  • Ni oxide 704 After electrolytic deposition, it was washed with pure water and baked in air at 500 ° C. for 1 hour to obtain a Ni oxide 704 having a plate-like structure. Ni oxide 704 was immersed in an aqueous solution 705 containing 2% by weight of chloroauric acid, and Au fine particles 706 were electrolytically deposited by applying a constant voltage to the counter electrode of Pt. Then, after washing with pure water, it was dried and fired again at 500 ° C. for 1 hour to obtain an electrode 707.
  • the Ni oxide 704 had a plate-like structure with a vertical width of 300 to 500 nm, a horizontal width of 20 to 100 nm, and a height of 1 ⁇ m. Further, the electrode 707 was subjected to XRD measurement, and it was confirmed that Au fine particles 706 having a crystallite diameter of 12 nm were formed. In Example 5, the proportion of the Au fine particles on the surface was calculated. When the surface area was calculated by setting the shape of the Ni oxide to 500 nm ⁇ 100 nm ⁇ 1 ⁇ m, the ratio of the Au fine particles to the surface was about 60%. The current value at 0.7 V was 127 mA.
  • Comparative Example 4 Ni oxide was formed on the Ni substrate surface.
  • the manufacturing method is the same as in Example 5.
  • the Ni oxide formed a plate-like structure as in Example 5.
  • the current value at 0.7 V was 91 mA.
  • Example 6 Au was selected as the noble metal fine particles, Mn oxide was selected as the base metal oxide, and a Ni plate was selected as the base material.
  • the electrode fabrication method combined a wet method and a dry method. First, the Ni plate was immersed in a 0.1 mol / L NaSO 4 aqueous solution in which 10% by weight of MnSO 4 was dissolved, and MnOx was deposited on the surface of the Ni plate under the condition of constant voltage for anode deposition. After electrolytic deposition, it was washed with pure water and dried in air at 250 ° C. for 1 hour. Further, a butanol solution containing 1% by weight of chloroauric acid was applied to the surface, followed by baking at 300 ° C. for 1 hour to form an electrode.
  • the Mn oxide formed a surface with severe irregularities similar to the Ti oxide of Example 1 shown in FIG.
  • the particle diameter of the Au fine particles was 8 nm.
  • the surface area was calculated from the amount of Mn oxide per unit area and the crystallite diameter.
  • the current value at 0.7 V was 190 mA.
  • the electrode of this example has high oxygen generation activity with respect to salt water. For example, it is possible to produce hydrogen and oxygen by electrolyzing seawater.

Abstract

 本発明は、水の電気分解において卑貴金属の酸化物を用いた酸素極及びその作製方法を提供することを目的とする。 本発明は、電解液を電気分解して水素を生成する電気分解用電極201であって、導電性の基材204と、該基材表面上に形成された卑金属酸化物203と、該卑金属酸化物203表面に担持した貴金属202とを備え、前記貴金属202が、Au,Ag及びこれらの酸化物から選択される1種以上であることを特徴とする。この構成により、資源量の多い卑金属の酸化物と微量の貴金属とを組み合わせた電極の作製が可能となり、本手法を用いることで資源量に問題なく、耐食性を有し、さらに過電圧の低い水の電気分解用酸素極を提供できる。

Description

電気分解用電極及びその作製方法、並びに電気分解装置
 本発明は電気分解用電極及びその作製方法、並びに電気分解装置に関する。
 化石燃料の大量消費による二酸化炭素の影響によって、地球温暖化の進行が深刻になる中で、化石燃料に代わって次世代を担うエネルギー源として水素が注目されている。水素は使用後に水しか排出しないため、環境負荷の少ないクリーンなエネルギー源と考えられている。
 水素の製造に関しては、化石燃料の水蒸気改質がもっともポピュラーであるが、鉄やソーダの製造に伴う副生水素,熱分解反応,光触媒反応,微生物反応,水の電気分解反応など多数の手法が存在する。特に水の電気分解は太陽光発電や風力発電など再生可能エネルギー由来の電力を用いれば、製造時の二酸化炭素排出量も極めて低レベルに抑えられるため、真にクリーンなエネルギー製造方法として注目されている。
 水の電気分解反応において、酸素発生側は腐食性の強い環境であるため、耐食性が高く、酸素発生反応に対する過電圧の低い電極が求められる。そこで電極材料としては白金や白金族であるイリジウムおよびルテニウムの酸化物が、一般的に広く利用されている。例えば、特許文献1には、白金族又は白金族酸化物を主触媒とする電極触媒層を基材上に設け、電極触媒層と基材との間に耐剥離性及び耐食性に優れた高温酸化皮膜を中間層として設けた電解用電極が開示されている。
特開2004-360067号公報
 従来、特許文献1等に示されているように電極触媒層としては、白金,ルテニウム酸化物,イリジウム酸化物などの白金族材料が用いられている。水の電気分解反応において酸素が発生する電位では、ほとんどの金属は酸化する。イリジウムやルテニウムの酸化物は他の金属酸化物に比べ電子伝導度が高く、低抵抗であるため酸素発生電極として利用されている。しかしながら、白金は高コストであり、イリジウムやルテニウムは世界の年間生産量が10トン前後であるため、材料コストおよび利用可能な資源量という観点から問題がある。このため、より豊富な資源量を持つ材料を用いながら、耐食性を有し、過電圧の低い新たな酸素極の開発が必要とされている。
 しかしながら、白金族以外の他の金属酸化物、特に生産量の多い卑金属の酸化物は一般的に電子伝導性が低く抵抗が高いため、電極として用いるには不向きであり、電解用電極として白金族と同等の特性を備える代替材料が見つかっていないのが実情である。
 本発明は、以上の問題点を踏まえ、電気分解電極において、白金族フリーで構成され、耐食性に優れ、さらに過電圧の低い酸素発生極を提供することを目的とする。
 本発明は、電解液を電気分解して水素を生成する電気分解用電極であって、導電性の基材と、該基材表面上に形成された卑金属酸化物と、該卑金属酸化物表面に担持した貴金属とを備え、前記貴金属が、Au,Ag及びこれらの酸化物から選択される1種以上であることを特徴とする。
 以上の構造により、高コストな白金や資源量に課題を持つイリジウムおよびルテニウムの代替として、資源量は多いが酸素極としての性能に劣る卑金属酸化物を用いながら、耐食性を有し、過電圧の低い新たな酸素極として利用することが可能となる。
 本発明によれば、資源量の多い卑金属の酸化物と微量の貴金属とを組み合わせた電極の作製が可能となり、資源量に問題なく、耐食性を有し、さらに過電圧の低い水の電気分解用電極を提供することができる。
本実施形態に係る電気分解装置の模式図である。 本実施形態に係る電気分解用電極の断面模式図である。 本実施形態に係る焼成による電極作製方法を説明する断面模式図である。 本実施形態に係る電気分解用電極の断面模式図である。 本実施形態に係る電気分解用電極の表面光学顕微鏡像である。 本実施形態に係る電気分解用電極の断面模式図である。 本発明における湿式による電極作製方法を説明する断面模式図である。
 以下、本発明の実施形態について、図面を用いて説明する。
 図1は、本発明の電解用電極を適用した電気分解装置のセル101の模式図の一例である。セル101は水素発生極102,酸素発生極103,隔壁104,電解槽105および電解液106からなる。酸素発生極103と水素発生極102は隔壁104を挟んで対向して設置する。これらを電解槽105に挿入し、電解液106を注入して利用する。酸素発生極103と水素発生極102は負荷108と接続され、電極間に電圧が印加されることによって電気分解が行われる。
 図2に本発明の電気分解装置に適用される酸素発生極の構成の一例を示す模式図を示す。酸素発生極201は、導電性の基材204、その表面に形成された卑金属酸化物203、卑金属酸化物203に担持された金,銀またはそれらの酸化物から選ばれる貴金属202で構成される。本発明において、担持とは、担持体である卑金属酸化物203の表面の一部が露出した状態で貴金属202が化学的または物理的に吸着した状態を指す。本発明の酸素発生極としては、電解液,卑金属酸化物および貴金属の三相界面が形成されるように卑金属酸化物の表面の一部が露出した状態で貴金属が担持された構成であれば良く、その形状は特に限定されない。図2では、反応面積を増大させるために高比表面積化された形状の卑金属酸化物203の表面に貴金属202の微粒子が担持された構成となっている。このように、電極の比表面積を増加でき、電解液,卑金属酸化物、及び、貴金属の三相界面を多くできる構造とすることがより好ましい。この構成により、白金族フリーで耐食性に優れ、さらに過電圧の低い酸素発生極とすることができる。詳細を以下に説明する。
 卑金属酸化物は腐食環境に強く、また酸素発生反応に対する活性を備えているが、電気導電性が低く、酸素発生反応が進行する電位での反応抵抗が高い点が問題となり、これまでは酸素発生極として十分な性能を発揮することはできなかった。また、金,銀およびこれらの酸化物は抵抗が低く、電極材料として広く用いられている。しかしながら、酸素発生反応の進行に必要な過電圧が高いため、酸素発生極としての性能は劣る。特に金は表面の反応性が低く酸素発生反応に不活性であることが高い過電圧の原因と考えられる。このように、本発明の酸素発生極に用いる卑金属酸化物と貴金属は、それぞれ単体では酸素発生極として十分な特性が得られなかった。これに対し、鋭意検討を行った結果、本発明の酸素発生極のように電解液と卑金属酸化物および貴金属との間で三相界面が形成されるように卑金属酸化物および貴金属を組み合わせることによって、酸素発生極として優れた特性が得られることを見出した。すなわち、本発明の電極では、卑金属酸化物の表面に貴金属を担持した構成としている。貴金属は酸化しにくく腐食に強いため、酸素発生反応が進行する電位でも導電性を有している。これにより、貴金属を電子の通過パスとして用いることにより卑金属酸化物の反応抵抗が低減できる。また金属酸化物と貴金属の界面において触媒活性が高まる傾向にあることを確認した。これは、吸着力の強い貴金属表面には水が吸着しやすく、電解反応の速度向上効果が見込まれるためと考えられる。また貴金属単体では、発生した酸素分子が表面に強く吸着し電解反応を阻害するところを、卑金属酸化物により貴金属表面に負電荷が生じ酸素との吸着が弱まるため、反応阻害の抑制効果による触媒活性の増加も考えられる。なお、卑金属酸化物の反応抵抗を低減する観点からは、貴金属を担持せず、卑金属内部に混合する、もしくは貴金属構造体表面に卑金属酸化物を担持しても効果を得られるが、上述の三相界面が形成されないため十分な触媒活性を得ることはできない。また、表面に担持する場合に比べ貴金属の使用量が増加し、コスト増要因にもなる。したがって、卑金属酸化物の表面に貴金属を担持した構成とすることが好ましい。
 以上のように、本発明の電極では卑金属酸化物表面に微量の貴金属を担持することで、貴金属の導電性向上効果と界面の触媒性能活性化効果により、部材コストを抑制しながら、高活性の酸素極を実現した。
 本発明の酸素発生極に用いる卑金属酸化物は、Ni,Mo,Nb,Ta,Ti,Zr,Fe,Mn,W,Snのいずれかひとつの金属、もしくは複数からなる合金から構成される。卑金属酸化物としては、酸素発生反応に対して高い触媒活性を有するNi,Fe,Mnを利用することが好ましい。特にMnは塩水に対する酸素発生活性が高く、塩水を電解して水素と酸素を製造する場合には特に好ましい。また酸素発生電位は腐食環境であるため、電極の長寿命化を図る観点から高い腐食安定性を有するNb,Ta,Ti,Zr,Mn,Wを組み合わせて使用するとよい。利用可能な資源量の面ではTiもしくはFeの活用が望ましい。
 卑金属酸化物の形状は、高比表面積ならばよく、特に制限するものではないが、多孔体,粒子状,柱状,板状,樹状が好ましい。電極の高比表面積化には、構造の微細化が有効であるが、過度な微細化は電極強度の低下につながる。そこで比表面積としては見かけの表面積に対し、実表面積が10~1000倍であることが望ましい。
 卑金属酸化物表面に担持する貴金属は、Au,Ag及びこれらの酸化物のいずれかひとつ、もしくは複数の組み合わせで構成される。Agは酸素発生反応に対して触媒活性を有しており、導電性も高く、安価で、産出量も多いため本発明の電極材料として望ましい。Auはバルクでは酸素発生反応に対する触媒活性を有していないが、ナノ粒子化することで触媒活性の発現が見込まれる。また耐食性が高く、Agより強い腐食環境で利用できる。
 貴金属の形態は、微粒子であることが望ましい。Au,Ag及びこれらの酸化物は卑金属に比べ高価であり、材料コストを削減するためにも使用量は抑える必要がある。しかしながら、過度な微細化は強度低下の要因となるため好ましくない。そこで貴金属の微粒子は1~100nm程度のサイズであることが好ましく、1~20nmであるとより好ましい。安定な電極性能を発現するため、貴金属微粒子は卑金属酸化物表面に均一に高分散されることが望ましいが、凝集していても問題ない。導電性向上の観点から、貴金属は薄膜状、もしくは線状に担持してもよい。しかしながら、高比表面積な卑金属酸化物表面に均一に薄膜状もしくは線状の貴金属を担持するのは技術的に困難であり、作製コストの増加につながるため、貴金属は微粒子状で担持することが好ましい。高い導電性が必要な場合は、担持量を増やし、微粒子の凝集を促すとよい。
 貴金属と卑金属酸化物との界面では、酸素発生反応を加速する、より高い触媒活性の発現作用が期待できる。そこで貴金属と卑金属酸化物とはより長い界面を有することが好ましい。界面の最大化のためには、貴金属は微粒子状であることが望ましい。また電極表面で貴金属が占める面積と卑金属酸化物が占める面積とは1:1であることが理想的であるが、作製の困難さを考慮すると、貴金属の表面積が該卑金属酸化物担体の表面積に対して30~70%程度であればよく、40~60%の範囲内であればより好ましい。
 卑金属酸化物と貴金属を担持する基材は導電性があればよく、金属材料であれば特に制限するものではないが、コスト面ではFe、耐食性の面ではNiもしくはTiを用いるとよい。また、卑金属酸化物との密着性を維持できれば、炭素材料を基材として用いてもよい。また、基板の表面を凹凸形状とし、基板を高比表面積化することが好ましい。その際、見かけの表面積に対し、実表面積が10~1000倍とすることが望ましい。このように高比表面積化した基材上に卑金属酸化物を形成することによって、上述した卑金属酸化物を高比表面積化と同様の効果が得られる。
 本発明の酸素発生電極の作製方法は、上記の構成が作製できればよく、特に制限されるものではない。しかしながら、作製の簡便性やコストを考慮すると、塗布と焼成を繰り返す乾式法、もしくは電解析出を利用する湿式法を用いるとよい。
 乾式法では、まず導電性の基材表面に卑金属塩を含む溶媒を塗布し、空気中で焼成することにより卑金属酸化物を作製する。このとき卑金属塩の種類、および溶媒の種類は特に制限はなく、焼成することにより卑金属酸化物が作製できればよい。基材が金属の場合、熱膨張率の違いにより卑金属酸化物はひび割れが生じるため、単純に溶媒を塗布し、焼成しただけでも高い比表面積は得られる。しかしながら、界面活性剤のミセルやポリスチレンビーズなどの微小な有機構造体を溶媒に混合すると、焼成した時に有機構造体が含まれていた部分が空隙となり、非常に高い比表面積を有する卑金属酸化物を作製することが可能である。有機構造体の種類,濃度,サイズに関しては特に規定はなく、所望の卑金属酸化物に応じて選択すればよい。卑金属酸化物の総量は塗布・焼成の回数、もしくは卑金属塩の濃度,溶媒の粘度で調整することができる。また種類の異なる卑金属酸化物を連続で形成することも可能である。基材との密着性の悪い卑金属酸化物を利用したい場合、密着性向上効果のある卑金属酸化物を形成し、その上に利用したい卑金属酸化物を形成することもできる。
 卑金属酸化物を形成し終えた後、貴金属塩を含む溶媒を塗布し、焼成することで貴金属を卑金属酸化物表面に担持した電極が完成する。貴金属塩の種類、および溶媒の種類は特に規定するものではないが、貴金属微粒子を高分散するためには濡れ性のよい溶媒が好ましく、メタノール,エタノール,プロパノール,ブタノールなどの低分子量のアルコールを用いるとよい。貴金属微粒子の担持量,サイズ,分散性は塗布・焼成の回数、もしくは卑金属塩の濃度,溶媒の粘度で調整することができる。
 乾式法は、塩を含む溶液の塗布・焼成を繰り返すだけで電極の作製が可能であり、簡便で低コストな作製方法である。
 湿式法では、導電性の基材を対極とともに卑金属塩を含む溶媒中に浸漬し、電圧をかけて電解析出する。酸化電位側でアノード析出させれば、卑金属酸化物を直接基材表面に作製することが可能である。また還元電位側で卑金属をカソード析出させた後、空気中で焼成することで卑金属酸化物を作製することもできる。乾式法では有機構造体を変化させ多孔体の構造を制御する程度だが、湿式法では添加剤の種類や析出条件などにより卑金属酸化物の形状を柱状,板状,樹状などに比較的容易に制御できるところが利点である。
 作製した卑金属酸化物の導電度が高ければ、貴金属を電解析出によって担持することも可能である。この場合、パルス電着法や定電位法,定電流法などの電解析出手法により貴金属微粒子のサイズや分散度を制御できる。また添加剤によって貴金属微粒子の形状やサイズを制御することも可能である。
 作製法については、湿式法で作製した卑金属酸化物の表面に乾式法で貴金属微粒子を担持してもよく、その逆でもよい。他の手法を利用してもよく、作製した卑金属酸化物の表面に市販の貴金属ナノ粒子を担持してもよい。
 本実施形態の電気分解装置において、水素発生極102は水を還元して水素を発生させる反応を促進する役割を有する。水素発生極102は高比表面積が好ましく、多孔体や網状,不織布状であるとより好ましい。さらに表面にナノ構造体などを作製するとよい。水素発生極は水素発生反応をより低電力で行うため、より水素過電圧の小さなPt,Rh,Irなどの白金族を利用することが好ましい。白金族はコスト高であるため、より安価なNi,Feなどを用いてもよく、白金族と合金化して用いても良い。
 電解液106としては、特に制限はないが、電極や電解槽の腐食を抑えるため、アルカリ性の水溶液を用いることが好ましい。
 隔壁104の材料としては、特に規定はしないが、水溶液に溶解しない安定性の高い樹脂が好ましい。ポリイミド,ポリエチレンなどが例として挙げられる。樹脂の場合、イオンが内部を移動できるように多孔体,スポンジ状であることが必要である。また電解質と隔壁の特性を併せ持つイオン導電性樹脂を利用しても良い。特にプロトン導電性樹脂を利用した場合、酸素極側は水溶液,水素極側には水が必要なく、純粋な水素のみになるため気液分離の必要がなく、発電も容易になる。
 水電解による水素製造では、水素コストの削減のため電力消費量と部材コストの低減が強く求められる。本実施形態の電極は、高比表面積で酸素発生過電圧が低く、部材コストが安いため、水素製造装置の酸素極として好適である。
 以下、本発明を実施するための最良の形態を具体的な実施例によって説明するが、本発明は以下の実施例に限定されるものではない。
 図2に本実施例の酸素発生極201の断面模式図を示す。酸素発生極201は貴金属微粒子202,卑金属酸化物203,導電性の基材204からなる。卑金属酸化物203は高比表面積であり、全体に貴金属微粒子202が高分散担持される。
 電極の評価に関しては、表面形状評価を光学顕微鏡、断面形状評価をSEM、貴金属微粒子の粒径評価をXRDにより行った。電気化学的特性の評価は、1mol/LのKOH水溶液中において3極式で行った。参照極には銀/塩化銀を用い、対極は白金メッシュを利用した。酸素発生電位の立ち上がりと、一定電位における電流値の大きさから酸素発生反応に対する電極触媒活性を評価した。
 実施例1では、貴金属微粒子202にAuを、卑金属酸化物203にTi酸化物を、基材204にTi板を選択した。電極作製法は乾式法を用いた。図3に乾式法による電極作製プロセスの一例を模式図で示す。まず基材301(Ti板)に5重量%の水溶性Ti錯体を水に溶解した溶媒302を塗布した。溶媒302には、ドデシル硫酸ナトリウムが含まれておりミセル状の有機構造体303を形成している。溶媒302を塗布したTi板を空気中で160℃,2時間乾燥させた後、500℃,10分間焼成することによりTiO2からなる卑金属酸化物304を形成した。さらに表面に1重量%の塩化金酸を含むブタノール溶液305を塗布した後、500℃で1時間焼成し、電極307を得た。
 さらに電極307をXRD測定し、結晶子径26nmのAu微粒子306が形成していることを確認した。次に電極触媒活性を評価した。0.7Vにおける電流値を測定したところ、26mAの酸素発生電流が観測できた。
〔比較例1〕
 比較例1では、Ti基材表面に卑金属酸化物としてTi酸化物を形成した電極の特性を評価した。作製方法は実施例1と同等である。
 表面形状は実施例1と同等の電極が得られた。一方、0.7Vにおける電流値は2mAであった。
 実施例2では、貴金属微粒子にAgを、卑金属酸化物にNiTi合金の酸化物を、基材にTi板を選択した。Ti板の表面にNiTi合金の酸化物を形成するために硫酸Niと水溶性Ti錯体を水に溶解した溶媒を用いた以外は、実施例1と同様の方法により作製した。
 表面形状は実施例1と同じく凹凸の激しい表面が得られた。Agの結晶子径は35nmであった。0.7Vにおける電流値は32mAで、実施例1と同等の活性が確認できた。
〔比較例2〕
 比較例3では、Ti基材表面に卑金属酸化物としてNiTi合金酸化物を形成した電極の特性を評価した。作製方法は実施例2と同等である。
 表面形状は実施例1と同等の電極が得られた。一方、0.7Vにおける電流値は1mA以下であった。
 実施例3では、基材として高比表面積化したTi板を使用した電極の特性を評価した。貴金属微粒子にAuを、卑金属酸化物にTi酸化物を選択した。図4に本実施例の電極401の断面模式図を示す。
 基材404は、85度に加熱した10重量%のシュウ酸水溶液中にTi板を60分間浸漬して、表面をエッチングすることで高比表面積のTi板を作製した。次に5重量%の水溶性Ti錯体を含む水溶媒を塗布した後に焼成することで、Ti酸化物微粒子403を担持した。さらに1重量%の塩化金酸を含むブタノール溶液を塗布した後、再び焼成しAu微粒子402をTi酸化物微粒子403の表面に担持した。図5は電極401の表面光学顕微鏡像である。凹凸の激しい表面が確認できる。さらに、電極401をXRD測定し、結晶子径20nmのAu微粒子402が形成していることを確認した。次に電極触媒活性を評価した。0.7Vにおける電流値を測定したところ、25mAの酸素発生電流が観測できた。
 実施例4では、図6に示した基材604上に卑金属酸化物602の薄膜を形成し、卑金属酸化物602に貴金属微粒子603を担持した構成の電極特性を評価した。本実施例では、基材604にTi板、卑金属酸化物602にTi酸化物、貴金属微粒子にAuを用いた。Ti酸化物薄膜は水溶性Ti錯体を水に溶解した溶媒をTi基材に複数回塗布して作製した。Ti酸化物薄膜の膜厚は129nmであり、表面に粒径50nm程度のAu微粒子を高分散担持した。0.7Vにおける電流値を測定したところ、17mAの酸素発生電流が観測できた。
〔比較例3〕
 比較例3では、Ti酸化物薄膜を形成したTi基材表面にAu薄膜をスパッタ担持した電極の特性を評価した。Ti薄膜の作製方法は実施例4と同等である。
 平坦なTi酸化物薄膜に担持したAu薄膜のXRDピークはブロードとなり平均的な結晶子径は得られなかった。一方、0.7Vにおける電流値は1mA以下であった。
 実施例5では、貴金属微粒子にAuを、卑金属酸化物にNi酸化物を、基材にNi板を選択した。電極作製法は湿式法を用いた。図7に湿式法による電極作製プロセスの一例を模式図で示す。まず、基材701を10重量%のNiSO4を溶解した水溶液702に浸漬した。水溶液702には、析出物の高比表面積化を図る添加剤として5重量%のドデシル硫酸ナトリウムを添加した。Niメッシュを対極とし、カソード析出の定電圧条件でNi板表面に板状の高比表面積Ni構造体703を電解析出した。電解析出後、純水で洗浄し、空気中で500℃1時間焼成し、板状の構造を有するNi酸化物704を得た。Ni酸化物704を2重量%の塩化金酸を含む水溶液705に浸漬し、Ptの対極との間に定電圧をかけてAu微粒子706を電解析出した。その後、純水で洗浄した後、乾燥し、再び500℃1時間焼成して電極707を得た。
 断面SEMで観察したところ、Ni酸化物704は縦幅が300~500nm、横幅が20~100nm、高さが1μmの板状構造を形成していることが確認できた。さらに、電極707をXRD測定し、結晶子径12nmのAu微粒子706が形成していることを確認した。なお、実施例5では計算によりAu微粒子の表面に占める割合を求めた。Ni酸化物の形状を500nm×100nm×1μmとして表面積を計算したところ、Au微粒子が表面に占める割合は60%程度であった。0.7Vにおける電流値は127mAであった。
〔比較例4〕
 比較例4ではNi基材表面にNi酸化物を形成した。作製方法は実施例5と同様である。Ni酸化物は実施例5と同じく板状の構造体を形成していた。0.7Vにおける電流値は91mAであった。
 実施例6では、貴金属微粒子にAuを、卑金属酸化物にMnの酸化物を、基材にNi板を選択した。電極作製法は湿式法と乾式法を組み合わせた。まずNi板を10重量%のMnSO4を溶解した0.1mol/L NaSO4水溶液に浸漬し、アノード析出の定電圧条件でNi板表面にMnOxを析出した。電解析出後、純水で洗浄し、空気中で250℃1時間乾燥した。さらに表面に1重量%の塩化金酸を含むブタノール溶液を塗布した後、300℃で1時間焼成し、電極化した。
 表面構造を観察したところ、Mn酸化物は図2に示した実施例1のTi酸化物と同様の、凹凸の激しい表面を形成していた。Au微粒子の粒径は8nmであった。なお、実施例6では単位面積当たりのMn酸化物の量と結晶子径から表面積を計算した。その結果、Au微粒子が表面に占める割合は50%程度であった。0.7Vにおける電流値は190mAであった。
 また10重量%のNaCl水溶液中でも電解反応が進行し、電極表面構造が維持できていることが確認できた。
 本実施例の電極は塩水に対する酸素発生活性が高く、例えば海水を電気分解して水素と酸素を製造することも可能である。
101 セル
102 水素発生極
103 酸素発生極
104 隔壁
105 電解槽
106 電解液
201 酸素発生極
202 貴金属
203,304,602 卑金属酸化物
204,301,604,701 基材
302 溶媒
303 有機構造体
305 溶液
306,402,706 Au微粒子
307,401,601,707 電極
403 Ti酸化物微粒子
603 貴金属微粒子
702,705 水溶液
703 高比表面積Ni構造体
704 Ni酸化物

Claims (17)

  1.  電解液を電気分解して水素を生成する電気分解用電極であって、
     導電性の基材と、該基材表面上に形成された卑金属酸化物と、該卑金属酸化物表面に担持した貴金属とを備え、
     前記貴金属が、Au,Ag及びこれらの酸化物から選択される1種以上であることを特徴とする電気分解用電極。
  2.  請求項1において、前記卑金属酸化物の表面が露出するように前記貴金属が担持されていることを特徴とする電気分解用電極。
  3.  請求項2において、前記卑金属酸化物がNi,Mo,Nb,Ta,Ti,Zr,Fe,Mn,W,Snのいずれかひとつもしくは複数を組み合わせた酸化物からなることを特徴とする電気分解用電極。
  4.  請求項2において、前記卑金属酸化物の形態が多孔体,粒子状,柱状,板状,樹状のいずれかであり、見かけの表面積に対し、実表面積が10~1000倍であることを特徴とする電気分解用電極。
  5.  請求項2において、前記基材は表面に凹凸を有し、見かけの表面積に対し、実表面積が10~1000倍であることを特徴とする電気分解用電極。
  6.  請求項2において、前記貴金属が粒子状であり、そのサイズが1~100nmであることを特徴とする電気分解用電極。
  7.  請求項2において、前記貴金属の表面積が該卑金属酸化物担体の表面積に対して40~60%であることを特徴とする電気分解用電極。
  8.  電解液と接するように配置された水素発生極,酸素発生極を備えた電気分解装置において、
     前記酸素発生極が、導電性の基材と、該基材表面上に形成された卑金属酸化物と、該卑金属酸化物表面に担持した貴金属とで構成され、前記貴金属が、Au,Ag及びこれらの酸化物から選択される1種以上であることを特徴とする電気分解装置。
  9.  請求項8において、前記卑金属酸化物の表面が露出するように前記貴金属が担持されていることを特徴とする電気分解装置。
  10.  請求項9において、前記卑金属酸化物がNi,Mo,Nb,Ta,Ti,Zr,Fe,Mn,W,Snのいずれかひとつもしくは複数を組み合わせた酸化物からなることを特徴とする電気分解装置。
  11.  請求項9において、前記卑金属酸化物の形態が多孔体,粒子状,柱状,板状,樹状のいずれかであり、見かけの表面積に対し、実表面積が10~1000倍であることを特徴とする電気分解装置。
  12.  請求項9において、前記基材は表面に凹凸を有し、見かけの表面積に対し、実表面積が10~1000倍であることを特徴とする電気分解用電極。
  13.  請求項9において、前記貴金属が粒子状であり、そのサイズが1~100nmであることを特徴とする電気分解用電極。
  14.  請求項9において、前記貴金属の表面積が該卑金属酸化物担体の表面積に対して40~60%であることを特徴とする電気分解用電極。
  15.  電解液を電気分解して水素を生成する電気分解用電極の製造方法であって、
     導電性の基材の表面に卑金属酸化物を形成する工程と、
     前記卑金属酸化物の表面にAu,Ag及びこれらの酸化物から選択される1種以上の貴金属を担持する工程とを備えることを特徴とする電気分解用電極の製造方法。
  16.  請求項15において、前記基材の表面に卑金属塩を含む溶媒を塗布し、焼成することにより、前記基材の表面に卑金属酸化物を形成した後、前記卑金属酸化物に前記貴金属の塩を含む溶媒を塗布し、焼成することで前記貴金属を卑金属酸化物表面に担持する電気分解用電極の製造方法。
  17.  請求項15において、溶液中の電解析出により卑金属もしくは卑金属化合物を前記基材表面に析出し、それを焼成することで酸化物を作製した後、前記貴金属の塩を含む溶液中において前記貴金属を析出することで前記貴金属を卑金属酸化物表面に担持する電気分解用電極の製造方法。
PCT/JP2011/003848 2011-07-06 2011-07-06 電気分解用電極及びその作製方法、並びに電気分解装置 WO2013005252A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11869163.3A EP2730681A4 (en) 2011-07-06 2011-07-06 ELECTRODE FOR ELECTROLYSIS, METHOD FOR MANUFACTURING SAME, AND ELECTROLYSIS APPARATUS
PCT/JP2011/003848 WO2013005252A1 (ja) 2011-07-06 2011-07-06 電気分解用電極及びその作製方法、並びに電気分解装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/003848 WO2013005252A1 (ja) 2011-07-06 2011-07-06 電気分解用電極及びその作製方法、並びに電気分解装置

Publications (1)

Publication Number Publication Date
WO2013005252A1 true WO2013005252A1 (ja) 2013-01-10

Family

ID=47436630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003848 WO2013005252A1 (ja) 2011-07-06 2011-07-06 電気分解用電極及びその作製方法、並びに電気分解装置

Country Status (2)

Country Link
EP (1) EP2730681A4 (ja)
WO (1) WO2013005252A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229084B1 (ja) * 2017-02-10 2017-11-08 田中貴金属工業株式会社 チタン部材およびチタン部材の製造方法、並びに電解セル用部材
CN109628952A (zh) * 2018-12-31 2019-04-16 武汉工程大学 一种泡沫镍负载银掺杂镍基双金属氢氧化物电催化析氢催化剂及其制备方法
US10344388B2 (en) 2015-09-16 2019-07-09 Kabushiki Kaisha Toshiba CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3204533B1 (en) * 2014-10-07 2020-09-16 Yeda Research and Development Co., Ltd. Water splitting method and system
US11680329B2 (en) * 2019-10-01 2023-06-20 King Fahd University Of Petroleum And Minerals Manganese oxide nanoparticle carbon microparticle electrocatalyst and method of making from Albizia procera leaf

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198280A (en) * 1981-06-01 1982-12-04 Asahi Glass Co Ltd Electrolytic process of water
JPS62500459A (ja) * 1984-09-17 1987-02-26 エルテック・システムズ・コ−ポレ−ション 電解電極用等の複合触媒材料ならびにその製造方法
JPH01176086A (ja) * 1987-12-29 1989-07-12 Permelec Electrode Ltd 耐久性を有する電解用電極及びその製造方法
JPH06101083A (ja) * 1992-06-25 1994-04-12 Eltech Syst Corp 耐用寿命が改善された電極
JP2007046130A (ja) * 2005-08-11 2007-02-22 Japan Nuclear Cycle Development Inst States Of Projects 電解水素製造システムおよびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430177A (en) * 1979-12-11 1984-02-07 The Dow Chemical Company Electrolytic process using oxygen-depolarized cathodes
CA2111882A1 (en) * 1992-12-25 1994-06-26 De Nora S.P.A. Gas electrode, catalyst for gas electrode, and process for production thereof
JP4341838B2 (ja) * 2004-10-01 2009-10-14 ペルメレック電極株式会社 電解用陰極

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57198280A (en) * 1981-06-01 1982-12-04 Asahi Glass Co Ltd Electrolytic process of water
JPS62500459A (ja) * 1984-09-17 1987-02-26 エルテック・システムズ・コ−ポレ−ション 電解電極用等の複合触媒材料ならびにその製造方法
JPH01176086A (ja) * 1987-12-29 1989-07-12 Permelec Electrode Ltd 耐久性を有する電解用電極及びその製造方法
JPH06101083A (ja) * 1992-06-25 1994-04-12 Eltech Syst Corp 耐用寿命が改善された電極
JP2007046130A (ja) * 2005-08-11 2007-02-22 Japan Nuclear Cycle Development Inst States Of Projects 電解水素製造システムおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730681A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10344388B2 (en) 2015-09-16 2019-07-09 Kabushiki Kaisha Toshiba CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst
JP6229084B1 (ja) * 2017-02-10 2017-11-08 田中貴金属工業株式会社 チタン部材およびチタン部材の製造方法、並びに電解セル用部材
CN109628952A (zh) * 2018-12-31 2019-04-16 武汉工程大学 一种泡沫镍负载银掺杂镍基双金属氢氧化物电催化析氢催化剂及其制备方法

Also Published As

Publication number Publication date
EP2730681A1 (en) 2014-05-14
EP2730681A4 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
CN108172850B (zh) 一种析氢电极及其制备和应用
Erikson et al. Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions
Li et al. Electrochemical synthesis of one-dimensional mesoporous Pt nanorods using the assembly of surfactant micelles in confined space.
Rezaei et al. Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction
JP5714724B2 (ja) スーパーキャパシタ用ナノ多孔性電極及びこれの製造方法
Wu et al. Carbon-encapsulated nickel-iron nanoparticles supported on nickel foam as a catalyst electrode for urea electrolysis
Tung et al. Electrochemical growth of gold nanostructures on carbon paper for alkaline direct glucose fuel cell
KR101726575B1 (ko) 극소량의 백금이 도포된 니켈 전극촉매, 이의 제조방법 및 이를 이용한 음이온 교환막 물 전기분해 장치
CN113544313B (zh) 碱性水电解方法和碱性水电解用阳极
US11692276B2 (en) Alkaline water electrolysis method, and anode for alkaline water electrolysis
Chen et al. Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte
WO2013005252A1 (ja) 電気分解用電極及びその作製方法、並びに電気分解装置
CN102703953B (zh) 一种循环伏安电沉积制备纳米铂/二氧化钛纳米管电极的方法
Al-Akraa et al. A promising amendment for water splitters: boosted oxygen evolution at a platinum, titanium oxide and manganese oxide hybrid catalyst
Chen et al. Controllable preparation of Ti/TiO2-NTs/PbO2–CNTs–MnO2 layered composite materials with excellent electrocatalytic activity for the OER in acidic media
Wang et al. Facile synthesis MnCo2O4. 5@ C nanospheres modifying PbO2 energy-saving electrode for zinc electrowinning
JP2014229516A (ja) 燃料電池用触媒の製造方法
CN106191945A (zh) 一种脉冲电沉积制备二氧化钛纳米管固载铂‑镍双金属复合电极的方法
US20210351394A1 (en) Porous ni electrodes and a method of fabrication thereof
Minch et al. A versatile approach to processing of high active area pillar coral-and sponge-like Pt-nanostructures. Application to electrocatalysis
Wang et al. Constructing of Pb–Sn/α-PbO2/β-PbO2-Co2MnO4 composite electrode for enhanced oxygen evolution and zinc electrowinning
Chang et al. Recent advances in zinc-air batteries: self-standing inorganic nanoporous metal film as air cathodes
JP2008138282A (ja) アルカリ電解用陽極
JPWO2013005252A1 (ja) 電気分解用電極及びその作製方法、並びに電気分解装置
CA3081715A1 (en) Porous ni electrodes and a method of fabrication thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522364

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011869163

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011869163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE