WO2013000319A1 - 发动机转速控制方法、控制系统及臂架式工程机械 - Google Patents

发动机转速控制方法、控制系统及臂架式工程机械 Download PDF

Info

Publication number
WO2013000319A1
WO2013000319A1 PCT/CN2012/074034 CN2012074034W WO2013000319A1 WO 2013000319 A1 WO2013000319 A1 WO 2013000319A1 CN 2012074034 W CN2012074034 W CN 2012074034W WO 2013000319 A1 WO2013000319 A1 WO 2013000319A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
speed
boom
control unit
load pressure
Prior art date
Application number
PCT/CN2012/074034
Other languages
English (en)
French (fr)
Other versions
WO2013000319A8 (zh
Inventor
易小刚
蒲东亮
刘强
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Priority to BR112013033075A priority Critical patent/BR112013033075A2/pt
Priority to RU2013155988/06A priority patent/RU2595318C2/ru
Priority to KR1020137034837A priority patent/KR20140043097A/ko
Priority to EP12803783.5A priority patent/EP2728148A4/en
Priority to JP2014517404A priority patent/JP5948413B2/ja
Publication of WO2013000319A1 publication Critical patent/WO2013000319A1/zh
Priority to US14/141,012 priority patent/US9194139B2/en
Publication of WO2013000319A8 publication Critical patent/WO2013000319A8/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps

Definitions

  • the present invention relates to the field of boom-type construction machinery, and in particular to an engine speed control method for controlling an engine output speed of a boom-type construction machine when the boom is actuated, and the present invention also relates to an engine speed control system and the same Boom-type construction machinery for engine speed control systems.
  • Concrete pump truck is a common boom-type construction machinery. Concrete pump trucks are widely used in modern construction projects such as cities, transportation, and national defense facilities. The economic performance is directly related to the construction cost and the degree of environmental pollution. In the context of today's energy-saving and environmental protection concepts, high-efficiency, energy-saving and environmentally-friendly concrete pump truck products are increasingly favored.
  • the power system of the concrete pump truck transmits the power of the engine to the hydraulic pump unit through the power transfer box.
  • the hydraulic oil discharged from the hydraulic pump drives the concrete pump to work, and the other part is used to drive the booms of the boom structure to operate.
  • the engine power system control mode allows the engine to operate at the rated speed. This control mode can provide sufficient power and meet the maximum flow demand when the boom is operated. Do power matching and flow matching, control method, and high reliability.
  • the above engine power system control mode sets the engine at the rated speed, the power reserve is quite sufficient, the equipment works in an area with high fuel consumption, and does not operate in the economic working area, resulting in a decline in the economic performance of the chassis power system.
  • a first object of the present invention is to provide an engine speed control method for controlling an engine output speed of a boom type construction machine when the boom is actuated, so that the engine is always operated in an efficient region of fuel utilization.
  • a second object of the present invention is to provide an engine speed control system, and a third object of the present invention is to provide a boom type mechanical machine having the above engine speed control system.
  • the present invention provides an engine speed control method for controlling an output speed of an engine of a boom type construction machine when the boom is actuated, including:
  • Step A detecting the load pressure of the hydraulic system and the moving speed of the boom;
  • Step B The central control unit determines an engine target speed according to the load pressure and the moving speed of the boom;
  • Step C The central control unit sends the engine target speed to the engine control unit, and the engine control unit performs closed-loop speed adjustment according to the current speed value fed back by the engine, so that the current speed of the engine is consistent with the engine target speed.
  • the step B is specifically: the central control unit calculates an initial engine control speed that matches the load pressure and the movement speed of the boom according to the power matching model and the flow matching model, according to the initial control of the engine.
  • the rotational speed determines the engine target speed.
  • the engine target speed is the engine initial control speed; or the central control unit acquires an engine section speed corresponding to the engine initial control speed, the engine target speed being the engine section Rotating speed.
  • the load pressure is detected using a pressure sensor incorporated in the hydraulic system.
  • the speed of movement of the boom is reflected by the pusher pusher and gear position of the boom remote control.
  • the initial relationship between the engine initial control speed and the load pressure and the push rod push width satisfies the following relationship: n : ? ⁇ , ! , ! ... T ) , where n is the initial engine Control the speed, P is the load pressure, q is the hydraulic pump displacement, T.
  • the engine speed control method provided by the present invention comprises the steps of: detecting a load pressure of a hydraulic system, and detecting a speed of movement of the boom; the central control unit determining an engine target speed according to the load pressure and the boom speed; the central control unit The engine target speed Sended to the engine control unit, the engine control unit performs closed-loop adjustment based on the current speed value fed back by the engine to match the current speed of the engine with the engine target speed.
  • the engine speed control method collects the load pressure signal of the hydraulic system and the boom speed signal, and calculates the optimal engine speed that satisfies the power flow demand of the boom and the output power of the engine, and sets the optimal engine speed as the engine.
  • the target speed is input to the engine control unit, and the current speed of the engine real-time feedback is sent to the central control unit.
  • the engine control unit implements PID closed-loop control according to the current speed of the engine feedback, so that the current engine speed is set at the set speed. Engine target speed.
  • This engine speed control method can realize the on-demand supply of power system energy when the boom is actuated, so that the engine always works in the high-efficiency area of fuel utilization, no excess energy loss, and the system impact, noise, mechanical loss, etc. are significantly reduced;
  • the engine speed control method can realize the on-demand supply of the hydraulic system flow when the boom is in motion, and has no overflow loss;
  • the engine speed control method can realize the real-time automatic change of the engine speed with the load pressure and the operation of the boom when the boom is actuated. Adjustment, high degree of automation, and strong adaptability.
  • the central control unit calculates an initial engine control speed that matches the load pressure and the boom motion speed according to the power matching model and the flow matching model; and the central control unit acquires the engine segment speed corresponding to the initial engine control speed.
  • the engine section speed is the engine target speed.
  • the flow rate of the hydraulic oil required to control the movement of the boom has a uniformity of the hook; and the initial control speed of the engine is the real-time optimal speed, which is a real-time change amount, in order to ensure The continuity and stability of the boom movement, the engine section speed corresponding to the real-time varying engine initial control speed is set, and the engine section speed is composed of a plurality of consecutive speed sections different in speed, each speed section For a stable speed value, the engine section speed is used as the engine target speed to ensure the continuity of the flow during the boom operation and the stability of the engine output power.
  • the present invention provides an engine speed control system including a central control unit and an engine control unit, wherein the central control unit acquires a load pressure of a hydraulic system and a speed of movement of the boom, and according to the a load pressure, the boom speed determines an engine target speed; a central control unit transmits the engine target speed to an engine control unit, and the engine control unit performs a closed loop speed adjustment according to a current speed value fed back by the engine, The front speed of the engine is made to coincide with the engine target speed.
  • a pressure sensor for detecting a load pressure of the hydraulic system is further included, the pressure sensor being installed in the hydraulic system.
  • the engine speed control system comprises a central control unit and an engine control unit, wherein the central control unit acquires a load pressure of the hydraulic system and a moving speed of the boom, and determines an engine target according to the load pressure and the boom speed.
  • the central control unit transmits the engine target speed to the engine control unit, and the engine control unit performs closed-loop speed adjustment according to the current speed value fed back by the engine to make the current speed of the engine coincide with the engine target speed.
  • This engine speed control system can realize the on-demand supply of power system energy when the boom is actuated, so that the engine always works in the high-efficiency area of fuel utilization, no excess energy loss, and the system impact, noise, mechanical loss, etc. are significantly reduced;
  • the engine speed control method can realize the on-demand supply of the hydraulic system flow when the boom is in motion, and has no overflow loss;
  • the engine speed control method can realize the real-time automatic change of the engine speed with the load pressure and the operation of the boom when the boom is actuated. Adjustment, high degree of automation, and strong adaptability.
  • the present invention provides a boom type construction machine having the above engine speed control system. Since the above engine speed control system has the above technical effects, the boom type construction machine having the engine speed control system should also have corresponding technical effects.
  • the boom type construction machine is a concrete pump truck, a cloth machine, an all-terrain crane or a truck crane.
  • FIG. 1 is a schematic structural view of a specific embodiment of an engine speed control method according to the present invention.
  • FIG. 2 is a schematic view showing the control principle of the engine speed control method shown in FIG. 1.
  • FIG. 3 is a schematic structural view showing another embodiment of the engine speed control method according to the present invention.
  • FIG. 1 is a schematic structural view of a specific embodiment of an engine speed control method according to the present invention
  • FIG. 2 is a schematic diagram of a control principle of the engine speed control method shown in FIG.
  • the engine speed control method provided by the present invention is used for controlling the output speed of the engine of the boom type construction machine when the boom is operated.
  • the engine speed control method includes the following steps.
  • Step S11 detecting a load pressure of the hydraulic system and a moving speed of the boom.
  • a pressure sensor can be installed on the pipeline of the hydraulic system, and the pressure pressure P of the hydraulic system is detected by the pressure sensor, and the pressure sensor sends a pressure signal to the central control unit.
  • the movement speed of the boom can be reflected by the pusher pusher and gear position of the boom remote controller.
  • the pusher pusher of the boom remote control is manually input by the operator, and the controller can convert the pusher pusher into a percentage of the pusher, thereby reflecting the operator's command input on the speed of the boom, that is, the boom
  • the size of the pusher pusher of the corresponding boom to the corresponding boom corresponds to the moving speed of the boom
  • the gear position is the adjustment gear position selection of the moving speed of the operating boom on the boom remote controller, and the gear position can be manually input.
  • the pusher pushes together to reflect the operator's command input on the speed of the boom movement; the pusher pusher corresponding to the rotary boom (the rotary pusher in FIG. 2) is ⁇ . , the pusher pusher corresponding to the first section of the boom (the pusher of the boom in Figure 2) is! ;, the push-pull pusher corresponding to the n- th beam is ⁇ ⁇ .
  • Step S12 The central control unit calculates an initial engine control speed that matches the load pressure and the moving speed of the boom according to the power matching model and the flow matching model.
  • nl is the best economic operating speed and Ne is the power
  • Ne f2( P , Q ) (2) Where Ne is power, P is load pressure, and Q is flow;
  • Nl f3( P , Q ) (3)
  • Qn g3(T ) (6) where Q0 is the rotational flow, Q1 is the boom flow, and Qn is the boom n flow.
  • the total flow demand for the boom structure action is:
  • N2 f5(Q , q ) (9)
  • the initial engine speed of the engine that matches the load pressure and the speed of movement of the boom can be calculated by (10).
  • Step S13 the central control unit acquires an engine segment rotational speed corresponding to the engine initial control rotational speed, and the engine segment rotational speed is the engine target rotational speed.
  • the flow rate of the hydraulic oil required to control the movement of the boom has a uniformity of the hook; and the initial control speed of the engine is the real-time optimal speed, which is a
  • the amount of real-time change in order to ensure the continuity and stability of the boom movement, set the engine section speed corresponding to the real-time varying engine initial control speed, and the engine section speed is composed of multiple consecutive speed zones with different speeds.
  • each of the rotational speed segments has a stable rotational speed value, and the engine segment rotational speed is used as the engine target rotational speed to ensure the continuity of the flow during the operation of the boom and the stability of the engine output power.
  • Step S14 The central control unit sends the engine target rotational speed to the engine control unit, and the engine control unit performs closed-loop speed adjustment according to the current speed value fed back by the engine, so that the current speed is consistent with the engine target rotational speed.
  • the engine speed control method collects the load pressure signal of the hydraulic system and the boom speed signal, and calculates the optimal engine speed that satisfies the power flow demand of the boom and the output power of the engine, and sets the optimal engine speed as the engine.
  • the target speed is input to the engine control unit, and the current speed of the engine real-time feedback is sent to the central control unit.
  • the engine control unit implements PID closed-loop control according to the current speed of the engine feedback, so that the current engine speed is set at the set speed. Engine target speed.
  • This engine speed control method can realize the on-demand supply of power system energy when the boom is actuated, so that the engine always works in the high-efficiency area of fuel utilization, no excess energy loss, and the system impact, noise, mechanical loss, etc. are significantly reduced;
  • the engine speed control method can realize the on-demand supply of the hydraulic system flow when the boom is in motion, and has no overflow loss;
  • the engine speed control method can realize the real-time automatic change of the engine speed with the load pressure and the operation of the boom when the boom is actuated. Adjustment, high degree of automation, and strong adaptability.
  • the engine speed control method provided by the above embodiment reflects the moving speed of the boom by the pusher push and the gear position corresponding to each boom on the boom remote control, and the present invention is not limited thereto, and may be other.
  • the method is to detect the movement speed of the boom, for example, a displacement sensor is installed on each boom, and the movement speed of each boom is detected by a displacement sensor.
  • a displacement sensor is installed on each boom, and the movement speed of each boom is detected by a displacement sensor.
  • the initial control speed of the engine can still be calculated through the power matching model and the flow matching model.
  • FIG. 3 is a schematic structural diagram of another embodiment of an engine speed control method according to the present invention.
  • the engine speed control method provided by this embodiment includes the following steps. Step S21, detecting a load pressure of the hydraulic system and a moving speed of the boom.
  • Step S22 The central control unit calculates an initial engine control speed that matches the load pressure and the movement speed of the boom according to the power matching model and the flow matching model, and the engine initial control speed is the engine target speed.
  • Step S23 The central control unit sends the engine target rotational speed to the engine control unit, and the engine control unit performs closed-loop speed adjustment according to the current speed value fed back by the engine, so that the current speed is consistent with the engine target rotational speed.
  • the present invention also provides an engine speed control system including a central control unit, an engine control unit, the central control unit acquiring a load pressure of a hydraulic system and a moving speed of the boom, and according to the load pressure, the boom The speed determines the engine target speed; the central control unit transmits the engine target speed to the engine control unit, and the engine control unit performs a closed loop speed adjustment according to the current speed value fed back by the engine to make the current speed coincide with the engine target speed.
  • the engine speed control system adopts the engine speed control method provided by the above embodiment as a control strategy, and the output speed of the engine of the boom type construction machine when the boom is actuated, the control strategy has been described in detail in the above embodiment, This is no longer an introduction.
  • a pressure sensor can be added to the pipeline of the hydraulic system, and the load pressure P of the hydraulic system is detected by the pressure sensor, and the pressure sensor sends a pressure signal to the central control unit; the movement speed of the boom can be passed through the boom remote controller. Pusher push and gear position to reflect.
  • This engine speed control system can realize the on-demand supply of power system energy when the boom is actuated, so that the engine always works in the high-efficiency area of fuel utilization, no excess energy loss, and the system impact, noise, mechanical loss, etc. are significantly reduced;
  • the engine speed control method can realize the on-demand supply of the hydraulic system flow when the boom is in motion, and has no overflow loss;
  • the engine speed control method can realize the real-time automatic change of the engine speed with the load pressure and the operation of the boom when the boom is actuated. Adjustment, high degree of automation, and strong adaptability.
  • the present invention also provides a boom type construction machine having the above engine speed control system. Since the above engine speed control system has the above technical effects, The boom-type construction machinery with the engine speed control system should also have corresponding technical effects, and will not be described in detail here.
  • the boom type construction machine may be a construction machine device with a boom operation such as a concrete pump truck, a cloth machine, an all-terrain crane or a truck crane.

Abstract

公开了一种发动机转速控制方法,用于控制臂架动作时臂架式工程机械的发动机的输出转速,包括:步骤A,检测液压系统的负载压力及臂架的运动速度;步骤B,中央控制单元根据负载压力、臂架的运动速度确定发动机目标转速;步骤C,中央控制单元将发动机目标转速发送给发动机控制单元,发动机控制单元根据发动机反馈的当前速度值,进行转速闭环调节,使发动机的当前速度与发动机目标转速一致。还公开了一种发动机转速控制系统及具有该发动机转速控制系统的臂架式工程机械。该发动机转速控制方法自动化程度高,适应能力强。

Description

发动机转速控制方法、 控制系统及臂架式工程^^ 本申请要求于 2011 年 06 月 28 日提交中国专利局、 申请号为 2011101771915.0、 发明名称为"发动机转速控制方法、 控制系统及臂架式 工程机械"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。
技术领域
本发明涉及臂架式工程机械技术领域, 尤其涉及一种用于控制臂架动 作时臂架式工程机械的发动机输出转速的发动机转速控制方法, 本发明还 涉及一种发动机转速控制系统及具有该发动机转速控制系统的臂架式工程 机械。
背景技术
混凝土泵车是一种常见的臂架式工程机械,混凝土泵车广泛用于城市、 交通、 国防设施等现代化建设工程中, 其经济性能的优劣直接关系到施工 成本的高低及环境污染的程度, 在当今节能环保理念日趋深入人心的情况 下, 高效、 节能、 环保的混凝土泵车产品越来越受到青睐。
混凝土泵车的动力系统是通过动力分动箱将发动机的动力传递给液压 泵组, 液压泵排出的液压油一部分带动混凝土泵工作, 另一部分用于驱动 臂架结构的各节臂架进行动作。
现有技术中, 混凝土泵车臂架动作时, 发动机动力系统控制模式均让 发动机工作在额定转速下, 这种控制模式可以提供充足的动力, 同时满足 臂架操作时的最大流量需求, 不需做动力匹配及流量匹配,控制方法筒单, 可靠性较高。
上述的发动机动力系统控制模式, 将发动机设定在额定转速, 动力储 备相当充足, 设备工作在油耗 ^艮高的区域, 没有运行在经济工作区, 导致 底盘动力系统的经济性能下降。
另外, 混凝土泵车臂架属于轻载工况, 发动机工作在额定转速下, 必 然使得多余的功率以振动、 沖击、 噪音等形式消耗掉, 由此造成的长期能 源浪费是相当严重。
因此, 在进行臂架操作时, 如何使得发动机始终工作在燃油利用的高 效区域, 成为本领域技术人员亟待解决的技术难题。 发明内容
本发明的第一个目的是提供一种发动机转速控制方法, 用于控制臂架 动作时臂架式工程机械的发动机输出转速, 可使得发动机始终工作在燃油 利用的高效区域。 本发明的第二个目的是提供一种发动机转速控制系统, 本发明的第三个目的是提供一种具有上述发动机转速控制系统的臂架式工 程机械。
为了实现上述第一个目的, 本发明提供了一种发动机转速控制方法, 用于控制臂架动作时臂架式工程机械的发动机的输出转速, 包括:
步骤 A, 检测液压系统的负载压力及臂架的运动速度;
步骤 B , 中央控制单元根据所述负载压力、 所述臂架的运动速度确定 发动机目标转速;
步骤 C,中央控制单元将所述发动机目标转速发送给发动机控制单元, 发动机控制单元根据发动机反馈的当前速度值, 进行转速闭环调节, 使发 动机的当前速度与所述发动机目标转速一致。
优选的, 所述步骤 B具体为: 中央控制单元根据功率匹配模型、 流量 匹配模型计算出与所述负载压力、 所述臂架的运动速度相匹配的发动机初 始控制转速, 根据所述发动机初始控制转速确定所述发动机目标转速。
优选的, 所述发动机目标转速为所述发动机初始控制转速; 或者, 所述中央控制单元获取与所述发动机初始控制转速相对应的发动机区 段转速, 所述发动机目标转速为所述发动机区段转速。
优选的, 采用加装在液压系统中的压力传感器来检测所述负载压力。 优选的, 所述臂架的运动速度通过臂架遥控器的推杆推幅及档位来反 映。
优选的, 所述发动机初始控制转速与所述负载压力、 所述推杆推幅之 间满足以下关系: n : ?^,! ,! ...... T ) , 其中, n为发动机初始控制转速, P 为负载压力, q为液压泵排量, T。为旋转臂架所对应的推杆推幅, 1:为第一 节臂架所对应的推杆推幅, Τη为第 η节臂架所对应的推杆推幅。
本发明提供的发动机转速控制方法包括以下步骤, 检测液压系统的负 载压力, 并检测臂架的运动速度; 中央控制单元根据所述负载压力、 所述 臂架运动速度确定发动机目标转速; 中央控制单元将所述发动机目标转速 发送给发动机控制单元, 发动机控制单元根据发动机反馈的当前速度值, 进行闭环调节, 使发动机的当前速度与发动机目标转速一致。
这种发动机转速控制方法, 采集液压系统的负载压力信号、 臂架动作 速度信号, 计算出满足臂架动力流量需求及发动机输出功率需求的最佳发 动机转速, 将该最佳发动机转速设定为发动机目标转速, 将给发动机目标 转速输入给发动机控制单元, 发动机实时反馈的当前转速发送给中央控制 单元, 发动机控制单元根据发动机反馈的当前转速实施 PID闭环控制, 使 得发动机的当前转速工作在设定的发动机目标转速。
这种发动机转速控制方法可实现臂架动作时动力系统能量的按需供 给, 使发动机始终工作在燃油利用的高效区域, 无多余能量损失, 系统的 沖击、 噪声、 机械损耗等显著降低; 这种发动机转速控制方法可实现臂架 动作时液压系统流量的按需供给, 无溢流损失; 这种发动机转速控制方法 可实现臂架动作时发动机转速随负载压力及臂架操作的变化而实时自动调 节, 自动化程度较高, 适应能力强。
优选方案中, 中央控制单元根据功率匹配模型、 流量匹配模型计算出 与负载压力、 臂架运动速度相匹配的发动机初始控制转速; 中央控制单元 获取与发动机初始控制转速相对应的发动机区段转速, 该发动机区段速度 为所述发动机目标转速。
根据臂架动作的连续性和稳定性要求, 需要用于控制臂架动作的液压 油的流量具有均勾连续性; 而发动机初始控制转速是实时最佳速度, 是一 个实时变化的量, 为了保证臂架动作的连续性和稳定性, 设定与实时变化 的发动机初始控制转速相对应的发动机区段转速, 发动机区段转速由多个 转速不同的连续的转速区段构成, 每个转速区段为稳定的转速值, 将该发 动机区段转速作为所述发动机目标转速, 可保证臂架动作时流量的连续性 及发动机输出功率的稳定性。
为了实现上述第二个目的, 本发明提供了一种发动机转速控制系统, 包括中央控制单元、 发动机控制单元, 所述中央控制单元获取液压系统的 负载压力及臂架的运动速度, 并根据所述负载压力、 所述臂架速度确定发 动机目标转速; 中央控制单元将所述发动机目标转速发送给发动机控制单 元, 发动机控制单元根据发动机反馈的当前速度值, 进行转速闭环调节, 使当发动机的前速度与所述发动机目标转速一致。
优选的, 还包括用于检测液压系统负载压力的压力传感器, 所述压力 传感器加装在所述液压系统中。
本发明提供的发动机转速控制系统包括中央控制单元、 发动机控制单 元, 所述中央控制单元获取液压系统的负载压力及臂架的运动速度, 并根 据所述负载压力、 所述臂架速度确定发动机目标转速; 中央控制单元将所 述发动机目标转速发送给发动机控制单元, 发动机控制单元根据发动机反 馈的当前速度值, 进行转速闭环调节, 使发动机的当前速度与所述发动机 目标转速一致。
这种发动机转速控制系统可实现臂架动作时动力系统能量的按需供 给, 使发动机始终工作在燃油利用的高效区域, 无多余能量损失, 系统的 沖击、 噪声、 机械损耗等显著降低; 这种发动机转速控制方法可实现臂架 动作时液压系统流量的按需供给, 无溢流损失; 这种发动机转速控制方法 可实现臂架动作时发动机转速随负载压力及臂架操作的变化而实时自动调 节, 自动化程度较高, 适应能力强。
为了实现上述第三个目的, 本发明提供了一种臂架式工程机械, 该臂 架式工程机械具有上述的发动机转速控制系统。 由于上述的发动机转速控 制系统具有上述技术效果, 具有该发动机转速控制系统的臂架式工程机械 也应具备相应的技术效果。
具体的方案中, 该臂架式工程机械为混凝土泵车、 布料机、 全地面起 重机或汽车起重机。
附图说明
图 1为本发明所提供的发动机转速控制方法的一种具体实施方式的结 构示意图;
图 2为图 1所示的发动机转速控制方法的控制原理示意图; 图 3为本发明所提供的发动机转速控制方法的另一种具体实施方式的 结构示意图。
具体实施方式
为了使本领域的技术人员更好的理解本发明的技术方案, 下面结合附 图和具体实施方式对本发明作进一步的详细说明。 请参看图 1、 图 2, 图 1为本发明所提供的发动机转速控制方法的一种 具体实施方式的结构示意图, 图 2为图 1所示的发动机转速控制方法的控 制原理示意图。
如图 1、 图 2所示, 本发明提供的发动机转速控制方法, 用于控制臂 架动作时臂架式工程机械的发动机的输出转速, 该发动机转速控制方法具 体包括以下步骤。
步骤 S11 , 检测液压系统的负载压力及臂架的运动速度。
具体的方案中, 可在液压系统的管路上加装压力传感器, 通过压力传 感器来检测液压系统的负载压力 P, 压力传感器向中央控制单元发出压力 信号。
具体的方案中, 臂架的运动速度可通过臂架遥控器的推杆推幅及档位 来反映。 臂架遥控器的推杆推幅由操作者手动输入, 控制器可将推杆推幅 转化为推幅的百分比例, 依此来反映操作者对臂架运动速度快慢的指令输 入, 即臂架遥控器对相应臂架的推杆推幅的大小与该臂架的运动速度相对 应, 档位是臂架遥控器上操作臂架运动速度快慢的调节档位选择, 档位可 与手动输入的推杆推幅一起反映操作者对臂架运动速度快慢的指令输入; 旋转臂架所对应的推杆推幅 (图 2中筒称旋转推幅) 为 τ。, 第一节臂架所 对应的推杆推幅 (图 2中筒称臂架一推幅) 为!;, 第 η节臂架所对应的推 干推幅为 Τη
步骤 S12, 中央控制单元根据功率匹配模型、 流量匹配模型计算出与 所述负载压力、 所述臂架的运动速度相匹配的发动机初始控制转速。
功率匹配模型:
根据发动机特性试验, 可以得到发动机稳态工况下功率、 转速、 燃油 消耗之间的关系, 分析后找到不同功率下的最佳经济工作转速, 功率与最 佳经济工作转速之间的函数关系如下:
nl=fl( Ne ) (1)
其中, nl为最佳经济工作转速, Ne为功率;
根据动力传动关系可得负载压力、 流量与功率之间的关系:
Ne = f2( P , Q ) (2) 其中, Ne为功率, P为负载压力, Q为流量;
综合( 1 )和( 2 ), 可得最佳经济工作转速与负载压力、 流量之间的关 系:
nl=f3( P , Q ) (3)
流量匹配模型:
根据臂架液压系统试验, 可得各臂架操作时不同推杆推幅与系统流量 的关系:
Q0=gl(To ) (4)
(5)
Qn=g3(T ) (6) 其中, Q0为旋转流量, Q1为臂架一流量, Qn为臂架 n流量
臂架结构动作时总的流量需求为:
Q=Q0+Q1+ +Qn (7)
臂架动作时总的流量需求与推杆推幅之间的关系:
Q=f4(T0 , T1 , Tn ) (8)
臂架动作时流量、 液压泵排量、 发动机转速之间的关系:
n2=f5(Q , q ) (9) 综合上述功率匹配模型及流量匹配模型, 可得发动机转速 n与负载压 力 P、 液压泵排量 q、 臂架遥控器的各臂架所对应的推杆推幅之间的关系: n=f( P , q, TO , Tl , Tn) (10)
通过(10 )可计算出与所述负载压力、 所述臂架的运动速度相匹配的 发动机初始控制转速。
步骤 S13 , 所述中央控制单元获取与所述发动机初始控制转速相对应 的发动机区段转速, 该发动机区段转速为所述发动机目标转速。
根据臂架动作的连续性和稳定性要求, 需要用于控制臂架动作的液压 油的流量具有均勾连续性; 而发动机初始控制转速是实时最佳速度, 是一 个实时变化的量, 为了保证臂架动作的连续性和稳定性, 设定与实时变化 的发动机初始控制转速相对应的发动机区段转速, 发动机区段转速由多个 转速不同的连续的转速区段构成, 每个转速区段为稳定的转速值, 将该发 动机区段转速作为所述发动机目标转速, 可保证臂架动作时流量的连续性 及发动机输出功率的稳定性。
步骤 S14, 中央控制单元将所述发动机目标转速发送给发动机控制单 元, 发动机控制单元根据发动机反馈的当前速度值, 进行转速闭环调节, 使当前速度与所述发动机目标转速一致。
这种发动机转速控制方法, 采集液压系统的负载压力信号、 臂架动作 速度信号, 计算出满足臂架动力流量需求及发动机输出功率需求的最佳发 动机转速, 将该最佳发动机转速设定为发动机目标转速, 将给发动机目标 转速输入给发动机控制单元, 发动机实时反馈的当前转速发送给中央控制 单元, 发动机控制单元根据发动机反馈的当前转速实施 PID闭环控制, 使 得发动机的当前转速工作在设定的发动机目标转速。
这种发动机转速控制方法可实现臂架动作时动力系统能量的按需供 给, 使发动机始终工作在燃油利用的高效区域, 无多余能量损失, 系统的 沖击、 噪声、 机械损耗等显著降低; 这种发动机转速控制方法可实现臂架 动作时液压系统流量的按需供给, 无溢流损失; 这种发动机转速控制方法 可实现臂架动作时发动机转速随负载压力及臂架操作的变化而实时自动调 节, 自动化程度较高, 适应能力强。
上述实施例提供的发动机转速控制方法, 通过臂架遥控器上的各臂架 所对应的推杆推幅及档位来反映臂架的运动速度, 本发明并不局限于此, 还可别的方式来检测臂架的运动速度, 如在各臂架上均安装位移传感器, 通过位移传感器来检测各臂架的运动速度, 各臂架运动时, 臂架的运动速 度与系统流量满足一定的函数关系, 仍可通过功率匹配模型、 流量匹配模 型, 计算出发动机初始控制转速。
上述实施例中, 中央控制单元中设定了与发动机初始控制转速相对应 的发动机区段转速, 将发动机区段转速作为发动机目标转速, 本发明提供 的发动机转速控制方法并不局限于此, 还可以直接将发动机初始控制转速 作为发动机目标转速, 以下实施例对这种情况进行筒单介绍。 请参看图 3 , 图 3为本发明所提供的发动机转速控制方法的另一种具 体实施方式的结构示意图。
如图 3所示, 该实施例提供的发动机转速控制方法包括以下步骤。 步骤 S21 , 检测液压系统的负载压力及臂架的运动速度。
步骤 S22, 中央控制单元根据功率匹配模型、 流量匹配模型计算出与 所述负载压力、 所述臂架的运动速度相匹配的发动机初始控制转速, 该发 动机初始控制转速为所述发动机目标转速。
步骤 S23 , 中央控制单元将所述发动机目标转速发送给发动机控制单 元, 发动机控制单元根据发动机反馈的当前速度值, 进行转速闭环调节, 使当前速度与所述发动机目标转速一致。
其余具体实施方式与上述实施例类似, 在此不再做详细介绍。
本发明还提供了一种发动机转速控制系统, 包括中央控制单元、 发动 机控制单元, 所述中央控制单元获取液压系统的负载压力及臂架的运动速 度, 并根据所述负载压力、 所述臂架速度确定发动机目标转速; 中央控制 单元将所述发动机目标转速发送给发动机控制单元, 发动机控制单元根据 发动机反馈的当前速度值, 进行转速闭环调节, 使当前速度与所述发动机 目标转速一致。 该发动机转速控制系统采用上述实施例提供的发动机转速 控制方法作为控制策略, 臂架动作时对臂架式工程机械的发动机的输出转 速, 该控制策略在上述实施例中已进行了详细说明, 在此不再进行介绍。
优选方案中, 可在液压系统的管路上加装压力传感器, 通过压力传感 器来检测液压系统的负载压力 P, 压力传感器向中央控制单元发出压力信 号; 臂架的运动速度可通过臂架遥控器的推杆推幅及档位来反映。
这种发动机转速控制系统可实现臂架动作时动力系统能量的按需供 给, 使发动机始终工作在燃油利用的高效区域, 无多余能量损失, 系统的 沖击、 噪声、 机械损耗等显著降低; 这种发动机转速控制方法可实现臂架 动作时液压系统流量的按需供给, 无溢流损失; 这种发动机转速控制方法 可实现臂架动作时发动机转速随负载压力及臂架操作的变化而实时自动调 节, 自动化程度较高, 适应能力强。
本发明还提供了一种臂架式工程机械, 该臂架式工程机械具有上述的 发动机转速控制系统。由于上述的发动机转速控制系统具有上述技术效果, 具有该发动机转速控制系统的臂架式工程机械也应具备相应的技术效果, 在此不再做详细介绍。
具体的方案中, 该臂架式工程机械可以为混凝土泵车、 布料机、 全地 面起重机或汽车起重机等具有臂架操作的工程机械设备。
以上所述仅是发明的优选实施方式的描述, 应当指出, 由于文字表达 的有限性, 而在客观上存在无限的具体结构, 对于本技术领域的普通技术 人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、一种发动机转速控制方法,用于控制臂架动作时臂架式工程机械的 发动机的输出转速, 其特征在于, 包括:
步骤 A, 检测液压系统的负载压力及臂架的运动速度;
步骤 B, 中央控制单元根据所述负载压力、 所述臂架的运动速度确定 发动机目标转速;
步骤 C,中央控制单元将所述发动机目标转速发送给发动机控制单元, 发动机控制单元根据发动机反馈的当前速度值, 进行转速闭环调节, 使发 动机的当前速度与所述发动机目标转速一致。
2、根据权利要求 1所述的发动机转速控制方法, 其特征在于, 所述步 骤 B具体为: 中央控制单元根据功率匹配模型、 流量匹配模型计算出与所 述负载压力、 所述臂架的运动速度相匹配的发动机初始控制转速, 根据所 述发动机初始控制转速确定所述发动机目标转速。
3、 根据权利要求 2所述的发动机转速控制方法, 其特征在于, 所述发动机目标转速为所述发动机初始控制转速; 或者,
所述中央控制单元获取与所述发动机初始控制转速相对应的发动机区 段转速, 所述发动机目标转速为所述发动机区段转速。
4、根据权利要求 2或 3所述的发动机转速控制方法, 其特征在于, 采 用加装在液压系统中的压力传感器来检测所述负载压力。
5、根据权利要求 2或 3所述的发动机转速控制方法, 其特征在于, 所 述臂架的运动速度通过臂架遥控器的推杆推幅及档位来反映。
6、根据权利要求 5所述的发动机转速控制方法, 其特征在于, 所述发 动机初始控制转速与所述负载压力、 所述推杆推幅之间满足以下关系: n = f(P,q,T0,T1...... T ) , 其中, n为发动机初始控制转速, P为负载压力, q为 液压泵排量, τ。为旋转臂架所对应的推杆推幅, !;为第一节臂架所对应的 推杆推幅, Τη为第 n节臂架所对应的推杆推幅。
7、 一种发动机转速控制系统, 其特征在于, 包括中央控制单元、 发动 机控制单元, 所述中央控制单元获取液压系统的负载压力及臂架的运动速 度, 并根据所述负载压力、 所述臂架速度确定发动机目标转速; 中央控制 单元将所述发动机目标转速发送给发动机控制单元, 发动机控制单元根据 发动机反馈的当前速度值, 进行转速闭环调节, 使发动机的当前速度与所 述发动机目标转速一致。
8、根据权利要求 7所述的发动机转速控制系统, 其特征在于, 还包括 用于检测液压系统负载压力的压力传感器, 所述压力传感器加装在所述液 压系统中。
9、一种臂架式工程机械, 其特征在于, 该臂架式工程机械具有权利要 求 7或 8所述的发动机转速控制系统。
10、 根据权利要求 9所述的臂架式工程机械, 其特征在于, 该臂架式 工程机械为混凝土泵车、 布料机、 全地面起重机或汽车起重机。
PCT/CN2012/074034 2011-06-28 2012-04-14 发动机转速控制方法、控制系统及臂架式工程机械 WO2013000319A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112013033075A BR112013033075A2 (pt) 2011-06-28 2012-04-14 método e sistema para o controle da velocidade do motor e de maquinário de engenharia do tipo lança de guindaste
RU2013155988/06A RU2595318C2 (ru) 2011-06-28 2012-04-14 Способ и устройство для управления скоростью двигателя и техническое устройство с выносной стрелой
KR1020137034837A KR20140043097A (ko) 2011-06-28 2012-04-14 엔진 회전수 제어 방법, 제어 시스템 및 지브형 건설기계
EP12803783.5A EP2728148A4 (en) 2011-06-28 2012-04-14 MOTOR SPEED CONTROL METHOD, CONTROL SYSTEM AND ARROW TYPE ENGINEERING MACHINE
JP2014517404A JP5948413B2 (ja) 2011-06-28 2012-04-14 エンジン回転数制御方法、制御システム及びブーム式建設機械
US14/141,012 US9194139B2 (en) 2011-06-28 2013-12-26 Method and system for controlling engine speed and boom-type engineering machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2011101771915.0 2011-06-28
CN201110177191.5 2011-06-28
CN201110177191.5A CN102392747B (zh) 2011-06-28 2011-06-28 发动机转速控制方法、控制系统及臂架式工程机械

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/141,012 Continuation US9194139B2 (en) 2011-06-28 2013-12-26 Method and system for controlling engine speed and boom-type engineering machine

Publications (2)

Publication Number Publication Date
WO2013000319A1 true WO2013000319A1 (zh) 2013-01-03
WO2013000319A8 WO2013000319A8 (zh) 2014-11-06

Family

ID=45860111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074034 WO2013000319A1 (zh) 2011-06-28 2012-04-14 发动机转速控制方法、控制系统及臂架式工程机械

Country Status (8)

Country Link
US (1) US9194139B2 (zh)
EP (1) EP2728148A4 (zh)
JP (1) JP5948413B2 (zh)
KR (1) KR20140043097A (zh)
CN (1) CN102392747B (zh)
BR (1) BR112013033075A2 (zh)
RU (1) RU2595318C2 (zh)
WO (1) WO2013000319A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088710A (zh) * 2014-07-10 2014-10-08 三一汽车起重机械有限公司 工程车辆及其发动机转速控制系统与方法
CN114033564A (zh) * 2021-11-22 2022-02-11 潍柴动力股份有限公司 一种发动机转速控制方法、装置、系统及存储介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392747B (zh) 2011-06-28 2016-09-07 三一汽车制造有限公司 发动机转速控制方法、控制系统及臂架式工程机械
CN102644251B (zh) * 2012-04-28 2015-03-18 中联重科股份有限公司 洗扫车副发动机的控制方法、装置及系统
CN102817725A (zh) * 2012-08-22 2012-12-12 中联重科股份有限公司 移动式起重机及其发动机转速控制方法、装置和系统
CN102913332B (zh) * 2012-11-09 2016-08-03 中联重科股份有限公司渭南分公司 液压系统及其功率分配方法和功率分配装置
CN102976222B (zh) * 2012-11-26 2015-03-04 中联重科股份有限公司 工程机械及液压系统投入负载功率控制设备、方法、系统
KR102046661B1 (ko) * 2013-10-21 2019-11-20 두산인프라코어 주식회사 작업기계의 엔진 회전수의 급 저하 방지 장치 및 방법
CN103670750B (zh) * 2013-12-12 2016-04-06 中联重科股份有限公司 极限功率匹配控制系统、方法、装置及工程机械
CN105373147B (zh) * 2014-08-26 2018-01-09 中联重科股份有限公司 一种混凝土泵车控制系统、方法及控制器
CN104386584B (zh) * 2014-09-16 2018-01-26 潍柴动力股份有限公司 一种起重设备的动力控制方法、动力控制系统
CN105041491B (zh) * 2015-06-11 2017-08-25 福建纬龙机械制造有限公司 一种集装箱堆高机的转速控制系统
CN105065129A (zh) * 2015-07-20 2015-11-18 柳州一健科技有限公司 一种具有节能效果的工程机械控制方法
CN105402039B (zh) * 2015-12-21 2018-05-11 徐州燕大传动与控制技术有限公司 一种基于扭矩与转速复合控制的旋挖钻机功率匹配方法
CN106948952A (zh) * 2017-05-02 2017-07-14 广西五丰机械有限公司 一种粉垄机功率自动控制系统及控制方法
CN110195452A (zh) * 2019-06-13 2019-09-03 三一重机有限公司 挖掘机控制方法及系统
CN111306027B (zh) * 2020-02-17 2022-11-11 柳州柳工挖掘机有限公司 旋挖钻机主泵功率控制方法及系统
CN111706438A (zh) * 2020-06-29 2020-09-25 东风商用车有限公司 一种应用于混凝土泵车的车辆控制方法及系统
KR102575818B1 (ko) * 2021-11-16 2023-09-07 대한민국 농업용 작업차량의 이산화탄소 배출량 제어장치 및 제어방법
CN114263226B (zh) * 2021-12-16 2023-03-31 湖南三一华源机械有限公司 速度控制方法、装置、系统及作业机械

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350034A (ja) * 1989-07-18 1991-03-04 Komatsu Ltd ホイールローダのタイヤスリップ防止方法
CN101076636A (zh) * 2004-12-10 2007-11-21 株式会社小松制作所 建筑机械
CN101835968A (zh) * 2007-10-24 2010-09-15 日立建机株式会社 作业车辆的原动机控制装置
CN102392747A (zh) * 2011-06-28 2012-03-28 三一重工股份有限公司 发动机转速控制方法、控制系统及臂架式工程机械

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565871B2 (ja) * 1992-05-11 2004-09-15 新キャタピラー三菱株式会社 油圧ポンプ駆動用エンジンの制御方法
JP3316053B2 (ja) * 1993-10-25 2002-08-19 日立建機株式会社 油圧建設機械の原動機回転数制御装置
JPH07189764A (ja) * 1993-12-27 1995-07-28 Yutani Heavy Ind Ltd 建設機械のエンジン制御装置
JP3050034B2 (ja) * 1994-02-15 2000-06-05 トヨタ自動車株式会社 塗装ロボットの洗浄方法
KR0173835B1 (ko) * 1994-06-01 1999-02-18 오까다 하지모 건설기계의 영역제한 굴삭제어장치
JP2989749B2 (ja) * 1994-11-10 1999-12-13 日立建機株式会社 建設機械の駆動制御装置
RU2107655C1 (ru) * 1995-10-20 1998-03-27 Акционерное общество закрытого типа "НК Уралтерминалмаш" Гидроманипулятор
JP3587957B2 (ja) * 1997-06-12 2004-11-10 日立建機株式会社 建設機械のエンジン制御装置
JPH11210514A (ja) * 1998-01-22 1999-08-03 Komatsu Ltd 建設機械の原動機制御装置
JP2002179387A (ja) * 2000-10-03 2002-06-26 Komatsu Ltd 作業用車両の速度制御装置とその速度制御方法
JP2002205899A (ja) * 2001-01-05 2002-07-23 Aichi Corp 高所作業車
RU2264347C2 (ru) * 2003-07-21 2005-11-20 Закрытое акционерное общество "Национальная компания Уралтерминалмаш" Крано-манипуляторная установка
JP4413122B2 (ja) * 2004-10-13 2010-02-10 日立建機株式会社 油圧建設機械の制御装置
JP2007071265A (ja) * 2005-09-06 2007-03-22 Nissan Motor Co Ltd ベルト式無段変速機の油圧制御装置
US8424302B2 (en) * 2005-10-28 2013-04-23 Komatsu Ltd. Control device of engine, control device of engine and hydraulic pump, and control device of engine, hydraulic pump, and generator motor
CN1932215B (zh) * 2006-09-30 2010-08-11 三一重工股份有限公司 用于抑制混凝土泵车臂架振动的方法及装置
CN100591880C (zh) * 2006-12-31 2010-02-24 三一重工股份有限公司 一种智能臂架控制装置
JP2009068351A (ja) * 2007-09-11 2009-04-02 Tcm Corp 作業用車両のエンジン制御装置
CN101487343B (zh) * 2009-01-14 2011-01-19 三一重工股份有限公司 一种混凝土泵车的控制方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350034A (ja) * 1989-07-18 1991-03-04 Komatsu Ltd ホイールローダのタイヤスリップ防止方法
CN101076636A (zh) * 2004-12-10 2007-11-21 株式会社小松制作所 建筑机械
CN101835968A (zh) * 2007-10-24 2010-09-15 日立建机株式会社 作业车辆的原动机控制装置
CN102392747A (zh) * 2011-06-28 2012-03-28 三一重工股份有限公司 发动机转速控制方法、控制系统及臂架式工程机械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728148A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104088710A (zh) * 2014-07-10 2014-10-08 三一汽车起重机械有限公司 工程车辆及其发动机转速控制系统与方法
CN104088710B (zh) * 2014-07-10 2017-06-30 三一汽车起重机械有限公司 工程车辆及其发动机转速控制系统与方法
CN114033564A (zh) * 2021-11-22 2022-02-11 潍柴动力股份有限公司 一种发动机转速控制方法、装置、系统及存储介质
CN114033564B (zh) * 2021-11-22 2023-09-26 潍柴动力股份有限公司 一种发动机转速控制方法、装置、系统及存储介质

Also Published As

Publication number Publication date
RU2013155988A (ru) 2015-08-10
JP5948413B2 (ja) 2016-07-06
WO2013000319A8 (zh) 2014-11-06
RU2595318C2 (ru) 2016-08-27
JP2014528533A (ja) 2014-10-27
CN102392747A (zh) 2012-03-28
US9194139B2 (en) 2015-11-24
KR20140043097A (ko) 2014-04-08
EP2728148A4 (en) 2015-12-16
CN102392747B (zh) 2016-09-07
EP2728148A1 (en) 2014-05-07
BR112013033075A2 (pt) 2017-01-24
US20140129096A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
WO2013000319A1 (zh) 发动机转速控制方法、控制系统及臂架式工程机械
CN102108790B (zh) 混凝土泵送设备及其臂架状态控制系统
CN101487343B (zh) 一种混凝土泵车的控制方法、装置及系统
CN103397678B (zh) 一种发动机和液压泵的功率匹配节能系统及方法
CN101086232A (zh) 一种混凝土输送泵的节能控制方法
CN102777364B (zh) 泵送机构及其控制方法以及混凝土泵送设备
CN108331728B (zh) 工况自适应节能控制平台、使用方法、泵车及混凝土泵
CN104613055A (zh) 一种挖掘机动臂势能液压式能量回收系统
CN205934665U (zh) 一种新型混凝土抹光机
CN103629293B (zh) 臂架残余振动的抑制方法及装置
CN101463848A (zh) 一种工程机械控制系统、工程机械及工程机械控制方法
WO2023092667A1 (zh) 一种电比例控制多工作位阀的液压系统及其控制方法
CN101625543A (zh) 工程机械的控制系统、工程机械和工程机械的控制方法
CN208430992U (zh) 一种油电混合驱动压裂机组控制系统
CN102297182B (zh) 液压系统的控制方法和混凝土泵车的控制方法
CN102251546A (zh) 一种降低挖掘机发动机油耗的控制方法
CN101922349B (zh) 动力单元及其控制方法
CN104003305B (zh) 一种起重机泵控系统极限功率的匹配方法及装置
CN103132557B (zh) 挖掘机及其优先控制回路
CN110777876A (zh) 电动装载机工作控制系统及控制方法
CN208533609U (zh) 一种液压挖掘机回转能量回收系统
CN211395807U (zh) 一种电动装载机工作控制系统
CN103216477A (zh) 一种单动力液压源的定量泵压力补偿方法及装置
CN202991064U (zh) 一种混凝土湿喷台车驱动系统及混凝土湿喷台车
CN109094353B (zh) 一种并联式复合作业动力取力系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803783

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012803783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012803783

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014517404

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034837

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013155988

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033075

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033075

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131220