WO2012177864A1 - Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom - Google Patents
Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom Download PDFInfo
- Publication number
- WO2012177864A1 WO2012177864A1 PCT/US2012/043533 US2012043533W WO2012177864A1 WO 2012177864 A1 WO2012177864 A1 WO 2012177864A1 US 2012043533 W US2012043533 W US 2012043533W WO 2012177864 A1 WO2012177864 A1 WO 2012177864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- carbon nanotube
- discrete
- graphene
- nanotubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
- B01J21/185—Carbon nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/343—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/194—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62839—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62889—Coating the powders or the macroscopic reinforcing agents with a discontinuous coating layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62892—Coating the powders or the macroscopic reinforcing agents with a coating layer consisting of particles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B40/00—Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
- C04B40/0028—Aspects relating to the mixing step of the mortar preparation
- C04B40/0039—Premixtures of ingredients
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
- H10F77/1433—Quantum dots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0018—Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/009—Preparation by separation, e.g. by filtration, decantation, screening
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/20—Nanotubes characterized by their properties
- C01B2202/22—Electronic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/22—Electronic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/13—Nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/20—Particle morphology extending in two dimensions, e.g. plate-like
- C01P2004/24—Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/54—Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/447—Phosphates or phosphites, e.g. orthophosphate or hypophosphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
- C04B2235/5288—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5292—Flakes, platelets or plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention is directed to compositions and methods of producing nanoplates and nanotubes.
- the present invention relates to a composition of nanoplates and nanotubes wherein at least a portion of the nanoplates have at least one nanotube interspersed between two nanoplates.
- Graphene structures here is meant to include graphene and oxygenated graphene structures.
- the carbon nanotubes here is meant to include carbon nanotubes and oxidized carbon nanotubes.
- the oxygenated structures of carbon nanotubes or graphene include, but are not limited to, carboxylic acid, amide, glycidyl and hydroxyl groups attached to the carbon surface.
- nanoplate- nanotube mixtures can be further modified by surface active or modifying agents.
- This invention also relates to nanoplate- nanotube composites with materials such as elastomers, thermosets. thermoplastics, ceramics and electroactive or photoactive materials.
- the graphene-carbon nanotube compositions are also useful as catalysts for chemical reactions.
- the present invention pertains to methods for production of such composites in high yield.
- Carbon nanotubes in their solid state are currently produced as agglomerated nanotube bundles in a mixture of chiral or non-chiral forms. Various methods have been developed to debundle or disentangle carbon nanotubes in solution.
- carbon nanotubes may be shortened extensively by aggressive oxidative means and then dispersed as individual nanotubes in dilute solution. These tubes have low aspect ratios not suitable for high strength composite materials. Carbon nanotubes may also be dispersed in very dilute solution as individuals by sonication in the presence of a surfactant.
- Illustrative surfactants used for dispersing carbon nanotubes in solution include, for example, sodium dodecyl sulfate and PLURONICS.
- solutions of individualized carbon nanotubes may be prepared from polymer-wrapped carbon nanotubes.
- Individualized single-wall carbon nanotube solutions have also been prepared in very dilute solutions using polysaccharides, polypeptides, water- soluble polymers, nucleic acids, DNA, polynucleotides, polyimides, and polyvinylpyrrolidone.
- the dilution ranges are often in the mg/liter ranges and not suitable for commercial usage.
- discrete tubes ranging in diameter from a nanometer to 100 nanometers can be inserted between inorganic plates.
- carbon nanotubes can be inserted between graphene plates thus restricting their agglomeration and facilitating exfoliation in a broad range of materials including liquids and solids.
- reactions can be entertained at the surface of the graphene plates to give, for example, oxygenated graphene structures.
- the diameter of the tubes can be used to control the inter plate distance. Selecting tubes of different diameters can lead to controlled transport of molecules or ions between the plates.
- nanoplate-discrete nanotube compositions and methods for obtaining them are of considerable interest in the art.
- a number of uses for discrete nanotube/single inorganic plates, particularly carbon nanotube/graphene compositions are proposed including, for example, energy storage devices (e.g., ultracapacitors, supercapacitors and batteries), field emitters, conductive films, conductive wires, photoactive materials, drug delivery and membrane filters.
- Use f discrete carbon nanotube/graphene compositions as a reinforcing agent in material composites is another area which is predicted to have significant utility.
- Materials include, for example, polymers, ceramics, rubbers, cements.
- Applications include tires, adhesives, and engineered stmctures such as windblades. aircraft and the like.
- One embodiment of this invention includes a composition comprising inorganic plates with individual plate thickness less than 10 nanometers, termed nanoplates, interspersed with at least a portion of discrete nanotubes of diameter ranging from about 1 nanometer to 150 nanometers and aspect ratio about 10 to 500.
- the inorganic plates are graphene and the discrete nanotubes are carbon nanotubes.
- the range of weight ratio of inorganic plates to nanotubes is about 1 : 100 to 100: 1.
- the mixture of nanoplates and nanotubes may further comprise a polymer selected from the group consisting of thermoplastics, thermosets and elastomers and/or inorganic materials selected from the group consisting of ceramics, clays, silicates, metal complexes and salts.
- a further embodiment of this invention includes a mixture of nanoplates and nanotubes which may further comprise at least one electroactive material, which may be useful, for example, in an energy storage device or photovoltaic.
- a yet further embodiment of this invention is a composition of nanoplates and nanotubes further comprising at least one transition metal complex or active catalyst species.
- An active catalyst can be ionically, or covalently attached to the discrete nanotubes, or inorganic plates or combinations thereof.
- the chemical reactions can involve contact of the composition with, for example, but not limited to, alkenes and alkynes, chemical moieties containing oxygen, chemical moieties containing nitrogen, chemical moieties containing halogen, and chemical moieties containing phosphorous.
- the composition may be in the form of a powder for gas phase reaction or in the form of a liquid mixture for solution and slurry phase reactions.
- Another embodiment of this invention is a method for preparing graphene carbon nanotube composites, said method comprising: a) suspending non-discrete graphene and non- discrete carbon nanotube fibers in an acidic solution for a time period: b) optionally agitating said suspension; c) sonically treating said suspension of graphene-carbon nanotubes to form graphene-discrete carbon nanotube fibers; and d) isolating the resultant graphene-discrete carbon nanotube composition from the acid prior to further treatment using solid/liquid separations, wherein said separations comprise filtration.
- Another embodiment of this invention is a method for preparing inorganic plate- carbon nanotube composites, said method comprising: a) suspending non-discrete carbon nanotube fibers in an acidic solution for a time period, b) sonicallv treating said suspension of carbon nanotubes to form discrete carbon nanotube fibers, c) isolating the resultant oxidized discrete carbon nanotube composition from the acid , d) washing the oxidized discrete carbon nanotubes with water or other liquids to remove acid, e) redispersing the discrete oxidized carbon nanotubes with inorganic plates, optionally with surfactants and sonication, f) optionally adding a polymer, g) optionally adding a transition metal complex, h) optionally adding an electroactive material, i) optionally adding a ceramic , j) separating the mixture and optionally drying.
- a further embodiment of this invention is the composition nanoplates and nanotubes in the form of a part of a fabricated article such as a tire, industrial rubber part or wind blade.
- the compositions are also useful for batteries, capacitors, photovoltaics catalysts and catalyst supports. Further utility is envisioned, but not limited to, membranes, conductive inks, sensors and static management and electromagnetic shielding.
- FIGURE 1 shows a secondary electron micrograph of graphene plates with a discrete carbon nanotube of this invention.
- the magnification is 200,000X.
- FIGURE 2 shows a secondary electron micrograph of lithium iron phosphate and magnesium hydroxide plates with a discrete carbon nanotube of this invention.
- the magnification is 5,060X.
- FIGURE 3 shows a secondary electron micrograph of zirconium phosphate plates with discrete carbon nanotube of this invention.
- the magnification is 155,000X.
- Nanotubes are tubular structures that have a diameter of at least 1 nanometer and up to 100 nanometers.
- Examples of nanotubes are single, double and multiwall carbon nanotubes or titanium dioxide nanotubes.
- the aspect ratio is defined as the ratio of the tube length to the tube diameter.
- Nanoplates are defined as being discernible plates of thickness less than ten nanometers.
- Discrete oxidized carbon nanotubes can be obtained from as-made bundled carbon nanotubes by methods such as oxidation using a combination of concentrated sulfuric and nitric acids.
- the bundled carbon nanotubes can be made from any known means such as, for example, chemical vapor deposition, laser ablation, and high pressure carbon monoxide synthesis.
- the bundled carbon nanotubes can be present in a variety of forms including, for example, soot, powder, fibers, and bucky paper.
- the bundled carbon nanotubes may be of any length, diameter, or chirality.
- Carbon nanotubes may be metallic, semi-metallic, semi-conducting, or non-metallic based on their chirality and number of walls.
- the discrete oxidized carbon nanotubes may include, for example, single-wall, double-wall carbon nanotubes, or multi-wall carbon nanotubes and combinations thereof.
- Graphene is an allotrope of carbon, whose structure is one-atom-thick planar sheets of sp -bonded carbon atoms that are densely packed in a honeycomb crystal lattice.
- the crystalline or "flake" form of graphite consists of many graphene sheets stacked together. Graphene sheets stack to form graphite with an interplanar spacing of 0.335 nm.
- Graphene is the basic structural element of some carbon allotropes including graphite, charcoal, carbon nanotubes and fullerenes. It can also be considered as an indefinitely large aromatic molecule, the limiting case of the family of flat polycyclic aromatic hydrocarbons.
- One method for graphene obtainment consists of mixing low concentrations of graphite in a solvent such as N- methylpyrrolidone then sonicating. Non-exfoliated graphite is eventually separated from graphene by centrifugation.
- a 1% w/v dispersion of the mixture is prepared in a 3 : 1 sulfuric (96%, KMG) /nitric (70%, Honeywell) acid solution and sonicated using a sonicator bathe while maintaining a bath temperature in the 30°C-35°C range for 3 hours.
- each formulation was Buchner-filtered on a 5 ⁇ PVDF membrane (Whatman) with a 200mL portion of water. The samples were dried for two hours at 80°C in a vacuum oven.
- the same specimen was analyzed at 5, 15, 30, 45 and 60-minute time periods at a wavelength of 500nm to evaluate the stability of the mixture in water.
- the decay in initial absorbance value at 500nm after 60 minutes was determined as 0.4%.
- Comparison 1 repeats the experimental procedure as example 1 but with graphene only. The decay in initial absorbance value at 500nm after 60 minutes was determined as 12.1%.
- Comparison 2 repeats the experimental procedure as example 1 but with multiwall carbon nanotubes only.
- the decay in initial absorbance value at 500nm after 60 minutes was determined as 0%.
- the discrete carbon nanotubes of example 1 are shown by the UV spectroscopy to have provided stability to the graphene dispersions by interspersing between the graphene plates.
- a dispersed solution of carbon nanotubes was prepared from 1 0 nig of multi-wall carbon nanotubes placed in 2 mL of a mixture of ⁇ ( ⁇ 0 4 )2 ⁇ LO and tetrabutylammomum hydroxide (5 weight % Zri HIH HiO: 1 :0.8 ratio of Zr(HP0 4 )2I L():tetrabutylanmionium hydroxide).
- the solution was subsequently diluted to 30 mL and then sonicated for 2 hours.
- the solution is stable for at least 24 hours.
- a drop of this solution is placed on a carbon tape and dried.
- the secondary electron microscope picture, Figure 3 reveals zirconium phosphate nanoplates of approximate plate diameter of 200 nanometers interspersed with discrete carbon nanotubes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Composite Materials (AREA)
- Optics & Photonics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Toxicology (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Catalysts (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Civil Engineering (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201280029880.4A CN103764553B (zh) | 2011-06-23 | 2012-06-21 | 纳米片-纳米管复合材料、其生产方法以及由其获得的产品 |
| KR1020147001465A KR101999866B1 (ko) | 2011-06-23 | 2012-06-21 | 나노플레이트-나노튜브 복합체, 그의 생산 방법 및 그로부터 수득한 생성물 |
| EP12738267.9A EP2723682B1 (en) | 2011-06-23 | 2012-06-21 | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom |
| CA2839318A CA2839318A1 (en) | 2011-06-23 | 2012-06-21 | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom |
| US14/128,350 US9475921B2 (en) | 2011-06-23 | 2012-06-21 | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom |
| JP2014517156A JP5940658B2 (ja) | 2011-06-23 | 2012-06-21 | ナノプレート−ナノチューブ複合体、その製造方法およびそれから得られる生成物 |
| US15/299,588 US9997785B2 (en) | 2011-06-23 | 2016-10-21 | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201161500562P | 2011-06-23 | 2011-06-23 | |
| US61/500,562 | 2011-06-23 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US14/128,350 A-371-Of-International US9475921B2 (en) | 2011-06-23 | 2012-06-21 | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom |
| US15/299,588 Continuation-In-Part US9997785B2 (en) | 2011-06-23 | 2016-10-21 | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2012177864A1 true WO2012177864A1 (en) | 2012-12-27 |
Family
ID=46551853
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2012/043533 Ceased WO2012177864A1 (en) | 2011-06-23 | 2012-06-21 | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom |
Country Status (9)
| Country | Link |
|---|---|
| US (2) | US9475921B2 (enExample) |
| EP (1) | EP2723682B1 (enExample) |
| JP (1) | JP5940658B2 (enExample) |
| KR (1) | KR101999866B1 (enExample) |
| CN (1) | CN103764553B (enExample) |
| CA (1) | CA2839318A1 (enExample) |
| SA (1) | SA112330632B1 (enExample) |
| TW (1) | TW201300312A (enExample) |
| WO (1) | WO2012177864A1 (enExample) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103472021A (zh) * | 2013-09-13 | 2013-12-25 | 东南大学 | 一种碳纳米管水性分散体稳定性的定量表征方法 |
| JP2017529300A (ja) * | 2014-08-18 | 2017-10-05 | ガーマー インク.Garmor, Inc. | セメント及びアスファルト複合材中へのグラファイト酸化物の取り込み |
| US10287167B2 (en) | 2013-03-08 | 2019-05-14 | University Of Central Florida Research Foundation, Inc. | Large scale oxidized graphene production for industrial applications |
| US10351711B2 (en) | 2015-03-23 | 2019-07-16 | Garmor Inc. | Engineered composite structure using graphene oxide |
| US10535443B2 (en) | 2013-03-08 | 2020-01-14 | Garmor Inc. | Graphene entrainment in a host |
| US10815583B2 (en) | 2011-10-27 | 2020-10-27 | Garmor Inc. | Composite graphene structures |
| US10981791B2 (en) | 2015-04-13 | 2021-04-20 | Garmor Inc. | Graphite oxide reinforced fiber in hosts such as concrete or asphalt |
| US11038182B2 (en) | 2015-09-21 | 2021-06-15 | Garmor Inc. | Low-cost, high-performance composite bipolar plate |
| US11214658B2 (en) | 2016-10-26 | 2022-01-04 | Garmor Inc. | Additive coated particles for low cost high performance materials |
| US11791061B2 (en) | 2019-09-12 | 2023-10-17 | Asbury Graphite North Carolina, Inc. | Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite |
| US12195340B2 (en) | 2015-03-13 | 2025-01-14 | University Of Central Florida Research Foundation, Inc. | Uniform dispersing of graphene nanoparticles in a host |
Families Citing this family (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8363657B2 (en) * | 2007-05-23 | 2013-01-29 | Apple Inc. | SIP-enabled framework for multi-domain roaming control plane in a WiMAX access network |
| EP2651821A1 (en) | 2010-12-14 | 2013-10-23 | Styron Europe GmbH | Improved elastomer formulations |
| EP2562766A1 (de) * | 2011-08-22 | 2013-02-27 | Bayer MaterialScience AG | Kohlenstoffnanoröhren und Graphenplättchen umfassende Dispersionen |
| TWI494269B (zh) * | 2012-10-17 | 2015-08-01 | Nat Univ Tsing Hua | 碳材料鍍銀之方法 |
| KR20140081327A (ko) * | 2012-12-21 | 2014-07-01 | 삼성전기주식회사 | 방열용 수지 조성물 및 이를 이용하여 제조된 방열 기판 |
| EP2960913A4 (en) * | 2013-02-20 | 2016-10-05 | Nippon Chemicon | ELECTRODE, ELECTRIC DOUBLE-LAYER CAPACITOR THEREWITH AND METHOD OF ELECTRODE PRODUCTION |
| CN105452358A (zh) * | 2013-03-15 | 2016-03-30 | 瑞来斯实业公司 | 聚合物纳米复合材料 |
| US10166529B2 (en) | 2013-03-15 | 2019-01-01 | Honda Motor Co., Ltd. | Method for preparation of various carbon allotropes based magnetic adsorbents with high magnetization |
| US20140299820A1 (en) * | 2013-04-08 | 2014-10-09 | Michael Harandek | Graphene nanoparticles as conductive filler for resistor materials and a method of preparation |
| KR101619438B1 (ko) | 2013-06-14 | 2016-05-10 | 주식회사 엘지화학 | 금속 나노플레이트, 이의 제조 방법, 이를 포함하는 도전성 잉크 조성물 및 전도성 필름 |
| CA2820227C (en) * | 2013-07-10 | 2020-10-20 | Grafoid, Inc. | Novel composite conductive material |
| CN105295554B (zh) * | 2014-08-01 | 2018-04-06 | 北京阿格蕾雅科技发展有限公司 | 高分散、粘度可控的碳纳米管透明电极墨水 |
| US9945720B1 (en) | 2014-12-22 | 2018-04-17 | Magnolia Optical Technologies, Inc. | Infrared radiation detectors using bundled-vxoy or amorphous silicon nanoparticles nanostructures and methods of constructing the same |
| CN104627979B (zh) * | 2015-01-26 | 2016-10-05 | 合肥学院 | 一种碳纳米管/α-磷酸锆复合粉体及其制备方法 |
| US10376847B2 (en) * | 2015-03-31 | 2019-08-13 | Shinshu University | Reverse osmosis composite membrane and method for manufacturing reverse osmosis composite membrane |
| WO2016175714A1 (en) * | 2015-04-28 | 2016-11-03 | Khon Kaen University | Carbon nanotube - cement composite composition for catalysis on counter electrodes of dye sensitized solar cells |
| US10836679B2 (en) * | 2015-11-30 | 2020-11-17 | Knauf Gips Kg | Building products comprising graphene or graphene oxide in the bulk material and method for producing such building products |
| CN106673564B (zh) * | 2017-02-22 | 2019-09-24 | 青岛理工大学 | Go增强cnt覆膜砂的智能混凝土、无线传感器及制法 |
| KR102091760B1 (ko) * | 2018-05-23 | 2020-03-20 | 전남대학교산학협력단 | 고압 셀 및 기능성 첨가제를 이용한 저두께 그래핀 제조방법 |
| CN114103287A (zh) * | 2021-11-09 | 2022-03-01 | 同济大学 | 兼具优异力学性能和阻燃性能的复合材料层合板及其制备方法 |
| CN114927345B (zh) * | 2022-05-19 | 2024-10-29 | 江苏科技大学 | 一种pvdf复合储能材料及其制备方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101734650A (zh) * | 2009-12-23 | 2010-06-16 | 沈阳建筑大学 | 一种石墨烯-碳纳米管混杂复合材料的制备方法 |
| CN101811690A (zh) * | 2009-02-24 | 2010-08-25 | 国家纳米科学中心 | 一种用碳纳米管与石墨烯形成碳复合结构体的方法 |
| WO2011002222A2 (en) * | 2009-06-30 | 2011-01-06 | Hanwha Chemical Corporation | Blending improvement carbon-composite having carbon-nanotube and its continuous manufacturing method and apparatus |
| US20110017921A1 (en) * | 2009-07-24 | 2011-01-27 | Tsinghua University | Carbon nanotube film composite structure, transmission electron microscope grid using the same, and method for making the same |
Family Cites Families (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4697829B2 (ja) | 2001-03-15 | 2011-06-08 | ポリマテック株式会社 | カーボンナノチューブ複合成形体及びその製造方法 |
| JP3818193B2 (ja) * | 2002-03-27 | 2006-09-06 | 大阪瓦斯株式会社 | カーボンナノチューブ含有炭素材料の製造方法 |
| JP3537811B2 (ja) | 2002-03-29 | 2004-06-14 | 独立行政法人 科学技術振興機構 | 単層カーボンナノチューブの製造方法 |
| WO2004106420A2 (en) | 2003-05-22 | 2004-12-09 | Zyvex Corporation | Nanocomposites and method for production |
| EP1644438A1 (en) | 2003-06-23 | 2006-04-12 | William Marsh Rice University | Elastomers reinforced with carbon nanotubes |
| US7169329B2 (en) | 2003-07-07 | 2007-01-30 | The Research Foundation Of State University Of New York | Carbon nanotube adducts and methods of making the same |
| ATE550804T1 (de) | 2003-09-18 | 2012-04-15 | Commw Scient Ind Res Org | Hochleistungsfähige energiespeichereinrichtungen |
| JP4868490B2 (ja) | 2004-01-06 | 2012-02-01 | 国立大学法人京都大学 | カーボンナノチューブの精製方法 |
| JP2005262391A (ja) * | 2004-03-18 | 2005-09-29 | Misuzu Kogyo:Kk | ナノカーボンと炭素系第二フィラーからなるコンポジット材およびその製造方法 |
| WO2005113434A1 (en) | 2004-03-25 | 2005-12-01 | William Marsh Rice University | Functionalization of carbon nanotubes in acidic media |
| JP2008500933A (ja) | 2004-05-14 | 2008-01-17 | ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング | カーボンナノチューブと金属炭酸塩とを具備する複合材料 |
| US20090317710A1 (en) | 2008-06-20 | 2009-12-24 | Mysticmd, Inc. | Anode, cathode, grid and current collector material for reduced weight battery and process for production thereof |
| US7189455B2 (en) * | 2004-08-02 | 2007-03-13 | The Research Foundation Of State University Of New York | Fused carbon nanotube-nanocrystal heterostructures and methods of making the same |
| JP4908745B2 (ja) | 2004-08-09 | 2012-04-04 | 双葉電子工業株式会社 | カーボンナノチューブの複合材料とその製造方法 |
| US7879388B2 (en) | 2004-10-28 | 2011-02-01 | The Regents Of The University Of Michigan | Methods for production and use of synthetic hydroxyapatite and fluorapatite nanorods, and superstructures assembled from the same |
| MX2007005793A (es) * | 2004-11-16 | 2007-10-04 | Hyperion Catalysis Int | Metodo para preparar catalizadores soportados a partir de nanotubos de carbono cargados con metales. |
| JP2006240901A (ja) | 2005-03-01 | 2006-09-14 | Bussan Nanotech Research Institute Inc | 反応性カーボンナノチューブ、高分子被覆カーボンナノチューブ、およびこれらの製造方法 |
| CN101171372B (zh) | 2005-03-04 | 2011-11-30 | 西北大学 | 在密度梯度中分离碳纳米管的方法 |
| US7645497B2 (en) * | 2005-06-02 | 2010-01-12 | Eastman Kodak Company | Multi-layer conductor with carbon nanotubes |
| US20060286456A1 (en) | 2005-06-20 | 2006-12-21 | Zhiguo Fu | Nano-lithium-ion batteries and methos for manufacturing nano-lithium-ion batteries |
| WO2008051239A2 (en) | 2005-11-16 | 2008-05-02 | Hyperion Catalysis International, Inc. | Mixed structures of single walled and multi walled carbon nanotubes |
| US20100215724A1 (en) | 2005-11-22 | 2010-08-26 | Mcgill University | Microcapsule Nanotube Devices for Targeted Delivery of Therapeutic Molecules |
| US20080090951A1 (en) | 2006-03-31 | 2008-04-17 | Nano-Proprietary, Inc. | Dispersion by Microfluidic Process |
| EP2007830A1 (en) | 2006-04-19 | 2008-12-31 | The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin | Modified organoclays |
| US8623509B2 (en) * | 2006-05-06 | 2014-01-07 | Anchor Science Llc | Thermometric carbon composites |
| US7771695B2 (en) | 2006-07-21 | 2010-08-10 | International Business Machines Corporation | Complexes of carbon nanotubes and fullerenes with molecular-clips and use thereof |
| WO2008153609A1 (en) | 2007-02-07 | 2008-12-18 | Seldon Technologies, Inc. | Methods for the production of aligned carbon nanotubes and nanostructured material containing the same |
| KR20080082811A (ko) | 2007-03-09 | 2008-09-12 | 성균관대학교산학협력단 | 카본나노튜브 함유 투명 전극 및 그의 제조방법 |
| US20080290007A1 (en) | 2007-05-24 | 2008-11-27 | National Institute Of Standards And Technology | Centrifugal length separation of carbon nanotubes |
| US8540922B2 (en) | 2007-08-27 | 2013-09-24 | Hewlett-Packard Development Company, L.P. | Laser patterning of a carbon nanotube layer |
| US20100136327A1 (en) * | 2008-04-17 | 2010-06-03 | National Tsing Hua University | Method of preparation of a MWCNT/polymer composite having electromagnetic interference shielding effectiveness |
| US9525177B2 (en) | 2008-11-18 | 2016-12-20 | Johnson Controls Technology Company | Electrical power storage devices |
| EP2379325B1 (en) * | 2008-12-18 | 2023-07-26 | Molecular Rebar Design, LLC | Exfoliated carbon nanotubes, methods for production thereof and products obtained therefrom |
| KR101611422B1 (ko) * | 2009-11-17 | 2016-04-12 | 삼성전자주식회사 | 그래핀과 나노구조체의 복합 구조체 및 그 제조방법 |
| US10049783B2 (en) * | 2010-02-19 | 2018-08-14 | Mike Foley | Utilizing nanoscale materials as dispersants, surfactants or stabilizing molecules, methods of making the same, and products produced therefrom |
| US8460711B2 (en) | 2010-08-30 | 2013-06-11 | Fatemeh Atyabi | Poly(citric acid) functionalized carbon nanotube drug delivery system |
| JP2012133959A (ja) | 2010-12-21 | 2012-07-12 | Furukawa Battery Co Ltd:The | 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池 |
| WO2013011516A1 (en) | 2011-07-20 | 2013-01-24 | Vulcan Automotive Industries Ltd | Funcionalized carbon nanotube composite for use in lead acid battery |
-
2012
- 2012-06-21 EP EP12738267.9A patent/EP2723682B1/en active Active
- 2012-06-21 US US14/128,350 patent/US9475921B2/en active Active
- 2012-06-21 WO PCT/US2012/043533 patent/WO2012177864A1/en not_active Ceased
- 2012-06-21 US US13/529,784 patent/US20120329640A1/en not_active Abandoned
- 2012-06-21 CA CA2839318A patent/CA2839318A1/en not_active Abandoned
- 2012-06-21 CN CN201280029880.4A patent/CN103764553B/zh active Active
- 2012-06-21 KR KR1020147001465A patent/KR101999866B1/ko active Active
- 2012-06-21 JP JP2014517156A patent/JP5940658B2/ja active Active
- 2012-06-23 SA SA112330632A patent/SA112330632B1/ar unknown
- 2012-06-25 TW TW101122699A patent/TW201300312A/zh unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101811690A (zh) * | 2009-02-24 | 2010-08-25 | 国家纳米科学中心 | 一种用碳纳米管与石墨烯形成碳复合结构体的方法 |
| WO2011002222A2 (en) * | 2009-06-30 | 2011-01-06 | Hanwha Chemical Corporation | Blending improvement carbon-composite having carbon-nanotube and its continuous manufacturing method and apparatus |
| US20110017921A1 (en) * | 2009-07-24 | 2011-01-27 | Tsinghua University | Carbon nanotube film composite structure, transmission electron microscope grid using the same, and method for making the same |
| CN101734650A (zh) * | 2009-12-23 | 2010-06-16 | 沈阳建筑大学 | 一种石墨烯-碳纳米管混杂复合材料的制备方法 |
Non-Patent Citations (3)
| Title |
|---|
| DATABASE WPI Week 201050, Derwent World Patents Index; AN 2010-J06705, XP002687024 * |
| DATABASE WPI Week 201063, Derwent World Patents Index; AN 2010-L68331, XP002687025 * |
| WEBSTER: "Webster's Dictionary, 3rd Edition,", 2009 |
Cited By (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10815583B2 (en) | 2011-10-27 | 2020-10-27 | Garmor Inc. | Composite graphene structures |
| US11466380B2 (en) | 2011-10-27 | 2022-10-11 | Asbury Graphite Of North Carolina, Inc. | Composite graphene structures |
| US11361877B2 (en) | 2013-03-08 | 2022-06-14 | Asbury Graphite Of North Carolina, Inc. | Graphene entrainment in a host |
| US10287167B2 (en) | 2013-03-08 | 2019-05-14 | University Of Central Florida Research Foundation, Inc. | Large scale oxidized graphene production for industrial applications |
| US10535443B2 (en) | 2013-03-08 | 2020-01-14 | Garmor Inc. | Graphene entrainment in a host |
| CN103472021A (zh) * | 2013-09-13 | 2013-12-25 | 东南大学 | 一种碳纳米管水性分散体稳定性的定量表征方法 |
| JP2017529300A (ja) * | 2014-08-18 | 2017-10-05 | ガーマー インク.Garmor, Inc. | セメント及びアスファルト複合材中へのグラファイト酸化物の取り込み |
| US10351473B2 (en) | 2014-08-18 | 2019-07-16 | Garmor Inc. | Graphite oxide entrainment in cement and asphalt composite |
| US12195340B2 (en) | 2015-03-13 | 2025-01-14 | University Of Central Florida Research Foundation, Inc. | Uniform dispersing of graphene nanoparticles in a host |
| US10351711B2 (en) | 2015-03-23 | 2019-07-16 | Garmor Inc. | Engineered composite structure using graphene oxide |
| US10981791B2 (en) | 2015-04-13 | 2021-04-20 | Garmor Inc. | Graphite oxide reinforced fiber in hosts such as concrete or asphalt |
| US11038182B2 (en) | 2015-09-21 | 2021-06-15 | Garmor Inc. | Low-cost, high-performance composite bipolar plate |
| US11916264B2 (en) | 2015-09-21 | 2024-02-27 | Asbury Graphite Of North Carolina, Inc. | Low-cost, high-performance composite bipolar plate |
| US11214658B2 (en) | 2016-10-26 | 2022-01-04 | Garmor Inc. | Additive coated particles for low cost high performance materials |
| US11791061B2 (en) | 2019-09-12 | 2023-10-17 | Asbury Graphite North Carolina, Inc. | Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2723682A1 (en) | 2014-04-30 |
| JP5940658B2 (ja) | 2016-06-29 |
| US20120329640A1 (en) | 2012-12-27 |
| JP2014529325A (ja) | 2014-11-06 |
| KR20140068853A (ko) | 2014-06-09 |
| US9475921B2 (en) | 2016-10-25 |
| CA2839318A1 (en) | 2012-12-27 |
| SA112330632B1 (ar) | 2015-08-09 |
| CN103764553A (zh) | 2014-04-30 |
| KR101999866B1 (ko) | 2019-07-12 |
| CN103764553B (zh) | 2016-05-11 |
| EP2723682B1 (en) | 2016-03-30 |
| TW201300312A (zh) | 2013-01-01 |
| US20140127511A1 (en) | 2014-05-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2723682B1 (en) | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom | |
| US11942281B2 (en) | Carbon-titania nanocomposite thin films and applications of the same | |
| Lim et al. | A review on the synthesis, properties, and utilities of functionalized carbon nanoparticles for polymer nanocomposites | |
| Jeong et al. | Nanoscale assembly of 2D materials for energy and environmental applications | |
| Mohapatra et al. | Facile wick-and-oil flame synthesis of high-quality hydrophilic onion-like carbon nanoparticles | |
| Zhao et al. | A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant | |
| Khan et al. | A review on composite papers of graphene oxide, carbon nanotube, polymer/GO, and polymer/CNT: Processing strategies, properties, and relevance | |
| Sui et al. | Large-scale preparation and catalytic properties of one-dimensional α/β-MnO2 nanostructures | |
| Zhang et al. | Ultralight conducting polymer/carbon nanotube composite aerogels | |
| Wang et al. | Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids | |
| Zhou et al. | Graphene‐based nanoporous materials assembled by mediation of polyoxometalate nanoparticles | |
| Chen et al. | Chemical-free synthesis of graphene–carbon nanotube hybrid materials for reversible lithium storage in lithium-ion batteries | |
| Chen et al. | A dehydration and stabilizer-free approach to production of stable water dispersions of graphene nanosheets | |
| Kohlmeyer et al. | Preparation of stable carbon nanotube aerogels with high electrical conductivity and porosity | |
| IT201700000211A1 (it) | Graphene and other 2D materials as layered “shells” supported on “core” nanoparticle carriers | |
| AU6078700A (en) | Methods of oxidizing multiwalled carbon nanotubes | |
| Jiang et al. | Carbon nanotubides: an alternative for dispersion, functionalization and composites fabrication | |
| Aravind et al. | Facile synthesis of one dimensional graphene wrapped carbon nanotube composites by chemical vapour deposition | |
| US9997785B2 (en) | Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom | |
| Jafry et al. | Single walled carbon nanotubes (SWNTs) as templates for the growth of TiO2: the effect of silicon in coverage and the positive and negative synergies for the photocatalytic degradation of Congo red dye | |
| Kang et al. | Direct synthesis of fullerene-intercalated porous carbon nanofibers by chemical vapor deposition | |
| Li et al. | Evaluation of the physiochemical properties and catalytic performance of mixed metal oxides-carbon nanotubes nanohybrids containing carbon nanotubes with different diameters | |
| Singh et al. | A simple and feasible approach to decorating MWCNT with Fe3O4 and ZnS and their use as a magnetically separable photocatalyst in the degradation of Cr (VI) in wastewater | |
| Tewari et al. | Development and optimization of water-soluble double-walled carbon nanotubes by effective surface treatment of inner walls | |
| Li et al. | Emulsion droplets as a dynamic interface for the direct and large-scale synthesis of ultrathin free-standing mesoporous silica films as well as 2D polymeric and carbon nanomaterials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201280029880.4 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12738267 Country of ref document: EP Kind code of ref document: A1 |
|
| DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
| ENP | Entry into the national phase |
Ref document number: 2839318 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 2014517156 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14128350 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20147001465 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012738267 Country of ref document: EP |