WO2012177061A2 - 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자 - Google Patents

광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자 Download PDF

Info

Publication number
WO2012177061A2
WO2012177061A2 PCT/KR2012/004910 KR2012004910W WO2012177061A2 WO 2012177061 A2 WO2012177061 A2 WO 2012177061A2 KR 2012004910 W KR2012004910 W KR 2012004910W WO 2012177061 A2 WO2012177061 A2 WO 2012177061A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
bis
compound
diamino
Prior art date
Application number
PCT/KR2012/004910
Other languages
English (en)
French (fr)
Other versions
WO2012177061A3 (ko
Inventor
이성규
최진욱
안용호
소상완
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to CN201280030930.0A priority Critical patent/CN103649199B/zh
Publication of WO2012177061A2 publication Critical patent/WO2012177061A2/ko
Publication of WO2012177061A3 publication Critical patent/WO2012177061A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/36Compounds containing oxirane rings with hydrocarbon radicals, substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • Photoactive crosslinking agent compound manufacturing method of ah, liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
  • This invention relates to a photoactive crosslinking agent compound, its manufacturing method, a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element. More specifically, it relates to a photoactive crosslinking agent compound having a novel structure, a manufacturing method thereof, a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element.
  • the liquid crystal alignment layer is in contact with the liquid crystal molecules and plays a role of uniformly aligning the liquid crystal molecules.
  • the liquid crystal alignment layer is a key material for driving the liquid crystal to uniformly align the liquid crystal in one direction so that the liquid crystal plays a role of a switch of polarized light.
  • the liquid crystal alignment characteristic of the liquid crystal alignment layer and the electrical characteristics as a thin film are the characteristics of the liquid crystal display. It influences the display quality.
  • Representative methods for forming the liquid crystal alignment layer include an inorganic vapor deposition method, Langmuir-Blodgett (LB) method, polymer stretching method, rubbing method, etc., and new alignment methods include photo-alignment method and ion beam irradiation method. It is proposed. Among them, the most commonly used method is a rubbing method of rubbing a substrate surface with a cloth.
  • the rubbing method is a method in which a glass substrate is rubbed with a seed in a certain direction, and the long axes of the liquid crystal molecules are aligned and aligned according to the rubbing direction.
  • This rubbing method is an orientation method that is most commonly used industrially because it has an advantage of easy alignment treatment, which is suitable for mass production, stable orientation, and easy control of pretilt angle.
  • Photo-alignment technology utilizes the principle of generating optical reaction and generating optical anisotropy in the film. Therefore, in order to use the photo-alignment control technology of the liquid crystal, it is necessary to use the light having a linear polarization directional light, the optical reaction process of the polymer film such as photoisomerization, photopolymerization or photolysis is required, and the polarization of the light irradiated with the direction of the liquid crystal molecules Various conditions are required, such as being able to be controlled by direction.
  • the present invention uses a photo-alignment technology, which is a method for aligning the liquid crystal molecules without rubbing to solve the problems of the conventional liquid crystal alignment method, excellent thermal stability even after the formation of the alignment layer, high orientation and stability even after ultraviolet irradiation It is an object to provide a novel photoactive crosslinking agent compound for producing a liquid crystal aligning agent.
  • an object of this invention is to provide the manufacturing method of the said photoactive crosslinking agent compound.
  • the present invention is a photoactive crosslinker compound; And it aims at providing the liquid crystal aligning agent containing polyamic acid or polyimide.
  • an object of this invention is to provide the liquid crystal aligning film formed from the said liquid crystal aligning agent. .
  • the present invention has for its object to provide a liquid crystal display device having the liquid crystal alignment film.
  • the present invention provides a photoactive crosslinking agent compound represented by the following formula (I).
  • At least one of ⁇ , x 2 , x 3 and 3 ⁇ 4 is o ' and the rest are H:
  • R, to R 8 are the same as or different from each other, and are each independently selected from the group consisting of H, CN, NO 2 , CF 3 , halogen, C 1 -C 10 alkyl group and C 1 -C 10 alkoxy group;
  • A is:
  • n is an integer from 1 to 20.
  • the present invention also provides a photoactive crosslinking compound represented by the following formula (II). '
  • R, to R 8 are the same as or different from each other, and are each independently one selected from the group consisting of. ⁇ > ⁇ 0 2 , CF 3 , a halogen, an alkyl group of C1 C10 and an alkoxy group of C1 C10;
  • n is an integer from 1 to 20.
  • the present invention also provides a photoactive crosslinker compound; And a polyamic acid or a polyimide.
  • this invention provides the liquid crystal aligning film formed from the said liquid crystal aligning agent.
  • this invention provides the liquid crystal display element provided with the said liquid crystal aligning film.
  • It provides a method for producing a photoactive crosslinker compound represented by the formula (20) comprising the step of reacting the compound represented by 5.
  • R j to R 8 are the same as or different from each other, and are each independently selected from the group consisting of H, CN, N0 2 , CF 3 , halogen, C1 C10 alkyl group and C1 C10 alkoxy group; '
  • n is an integer from 1 to 20.
  • the present invention provides a method for producing a photoactive crosslinking compound represented by the following formula (40) comprising the step of reacting a compound represented by the formula (39), and a compound represented by the formula (28).
  • To 3 ⁇ 4 are the same as or different from each other, and each independently selected from H, CN, NO 2 , CF 3 , halogen, C 1 -C 10 alkyl group, and C 1 C 10 and alkoxy group;
  • n is an integer from 1 to 20.
  • the optical alignment technology which is a method for aligning the liquid crystal molecules without rubbing, it is possible to secure the safety and economical efficiency of the process progress, it is possible to establish an environmentally friendly manufacturing process.
  • strength of the pretilt angle of a liquid crystal aligning film can be improved more,
  • the pretilt of a liquid crystal is formed only by UV exposure, and the process progress is simplified. This can reduce production costs and improve product productivity.
  • Example 1 shows a liquid crystal alignment photograph of the liquid crystal display device manufactured by Example 3 of the present invention.
  • FIG. 2 shows a liquid crystal alignment photograph of the liquid crystal display device manufactured by Comparative Example 1.
  • the liquid crystal aligning agent prepared from the photoactive crosslinking agent compound of the present invention can produce a liquid crystal aligning film by using a photoalignment technique in which polarized ultraviolet (UV) is irradiated onto the polymer film without a rubbing treatment.
  • UV polarized ultraviolet
  • Photo-alignment technology uses the principle of generating optical reaction and generating optical anisotropy in the film. Therefore, in order to use the photo-alignment control technology of the liquid crystal, it is necessary to use the light having a linear polarization directional light, the optical reaction process of the polymer film such as photoisomerization, photopolymerization or photolysis is required, and the polarization of the light irradiated with the direction of the liquid crystal molecules Various conditions are required, such as being able to be controlled by direction.
  • Photoisomerization reaction has disadvantages such as the effects of inverse reaction and contamination of the liquid crystal layer by decomposition products in photolysis reaction.
  • the initial polyvinyl cinnamate polymer was studied. Since the wavelength of the ultraviolet ray to be used is short, there is a problem in mass production such as a general-purpose large exposure apparatus that is difficult to use.
  • polyimide resins that have been widely used as photo-alignment agents refer to high heat-resistant resins prepared by condensation polymerization of aromatic tetracarboxylic acids or derivatives thereof with aromatic diamines or aromatic diisocyanates, followed by imidization.
  • the polyimide resin may have various molecular structures depending on the type of monomer used. Generally, pyromellitic dianhydride (PMDA) or nonphthalic anhydride (BPDA) is used as the aromatic tetracarboxylic acid component, and para-phenylenediamine (p-PDA) and meta-phenylenediamine (m) are used as the aromatic diamine component. -PDA), 4,4'-oxydianiline (ODA), 4,4'-methylenedianiline (MDA), 2,2'- bisaminophenylnuclear fullopropane (HFDA),
  • PMDA pyromellitic dianhydride
  • BPDA nonphthalic anhydride
  • p-PDA para-phenylenediamine
  • m meta-phenylenediamine
  • -PDA 4,4'-oxydianiline
  • MDA 4,4'-methylenedianiline
  • HFDA 2,2'- bisaminophenylnuclear
  • p-BAPS Parabisaminophenoxydiphenylsulfone
  • TPE-Q 1,4-bisaminophenoxybenzene
  • TPE-R 1,3-bisaminophenoxybenzene
  • BAPP 2,2'-bisamino Phenoxyphenylpropane
  • HFBAPP 2,2'-bisaminophenoxyphenylnucleofluoropropane
  • a multi-orientation treatment method is required, but since the orientation range cannot be adjusted in micro units by the rubbing orientation method, a method of patterning or forming electrodes on the upper and lower substrates has been mainly used.
  • the above two methods require a manufacturing process additionally, and there are disadvantages in that problems occur in electro-optic properties such as a stepping speed or initial light leakage.
  • the present invention provides a photoactive crosslinking compound compound and a liquid crystal aligning agent comprising the same, by forming the alignment liquid crystal molecules in the liquid crystal display device by using the optical alignment technology, which can form pretilt using only UV exposure after forming the alignment layer. I would like to.
  • the photoactive crosslinker compound of the present invention may be represented by the following formula (I):
  • the rest is H;
  • Rr to 3 ⁇ 4 are the same as or different from each other, and are each independently selected from the group consisting of H, CN, NO 2 , CF 3 , halogen, C 1 -C 10 alkyl group and C 1 -C 10 alkoxy group;
  • A is:
  • n is an integer from 1 to 20.
  • n may be an integer of 1 to 5.
  • the compound of Formula I may be a compound represented by the following Formula 20, Formula 22 or Formula 24.
  • R, to 3 ⁇ 4 are the same as or different from each other, and are each independently selected from the group consisting of H, CN, NO 2 , CF 3 , halogen, C1 C10 alkyl group and C1 C10 alkoxy group; n is an integer from 1 to 20.
  • the method for preparing a photoactive crosslinking compound represented by Formula 20 includes reacting a compound represented by Formula 19 with a compound represented by Formula 5 below.
  • R! To 3 ⁇ 4 are the same as or different from each other, and are each independently H, CN, N0 2 ,
  • n is an integer from 1 to 20.
  • the method for preparing the photoactive crosslinking compound represented by Formula 20 may be prepared by performing the following Schemes 1, 2, 3, 4, and 5 step by step, but the present invention is not limited thereto.
  • the compounds of Chemical Formulas 22 and 24 may be prepared in a manner similar to the reaction formulas 1 to 5 using the compounds of Chemical Formulas 21 and 23 instead of the compounds of Chemical Formula 6 in Schemes 1 to 5, respectively.
  • the photoactive crosslinking compound of the present invention may be represented by the following formula ( ⁇ ).
  • X 1 At least one of X 2 , and X4 is ⁇ ' and the others are H:
  • Ri to 3 ⁇ 4 are the same as or different from each other, and are each independently selected from the group consisting of H, CN, NO 2 , CF 3 , halogen, C1 C10 alkyl group and C1 to C10 alkoxy group;
  • A is:
  • n is an integer of 1-20.
  • R 8 may be H, and ⁇ may be an integer of 1 to 5.
  • the formula ⁇ may be represented by the following formula 40.
  • R 4 are the same as or different from each other, and are each independently selected from the group consisting of H, CN, NO 2 , CF 3 , halogen, C 1 -C 10 alkyl group, and C 1 -C 10 alkoxy group; n is an integer from 1 to 20.
  • a method of preparing a photoactive crosslinking compound represented by Formula 40 is provided.
  • the method for preparing a photoactive crosslinking agent compound represented by Formula 40 includes reacting a compound represented by Formula 39 with a compound represented by Formula 28.
  • Ri to R 4 are the same as or different from each other, and are each independently selected from the group consisting of H, CN, NO 2 , CF 3 , halogen, C 1 -C 10 alkyl group and C 1 -C 10 alkoxy group; n is an integer from 1 to 20.
  • the method for preparing a photoactive crosslinking compound represented by Formula 40 may be prepared by the following reactions 6 and 7, but the present invention is not limited thereto.
  • the starting compound, the intermediate compound and the resulting compound used in the reaction formulas 6 and 7 may be represented by the following Chemical Formulas 25 to 40.
  • Ri to and n are as defined in Formula II.
  • the novel photoactive crosslinking compound of the present invention as described above further improves the stability and film strength of the pretilt angle of the liquid crystal alignment film. Specifically, by adding the photoactive crosslinking compound of the present invention to polyamic acid or polyimide When manufacturing a liquid crystal aligning agent, the stability and film
  • the present invention is a photoactive crosslinker compound described above; And a polyamic acid or polyimide.
  • the polyamic acid can be obtained by reacting a diamine compound and tetracarboxylic dianhydride, and the polyimide can be obtained by imidization by dehydrating and closing the polyamic acid.
  • the liquid crystal aligning agent may include 0.1 to 40 parts by weight, preferably 0.1 to 30 parts by weight of the photoactive crosslinking compound, based on 100 parts by weight of the polyamic acid or polyimide. .
  • the diamine compound which can be used to obtain a polyamic acid for example, P-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4 ' -Diaminodiphenyl ethane, 4,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfone, 3,3'-dimethyl-4,4'-diaminobiphenyl, 4 , 4'-diaminobenzanilide, 4,4'-diaminodiphenyl ether, 1,5-diaminonaphthalene, 2,2'- dimethyl-4,4'-diaminobiphenyl, 5-amino- 1- (4'-aminophenyl) -1,3,3-trimethylindane, 6-amino-1- (4'-aminophenyl) -1,3,3-trimethylindan
  • Examples of the tetracarboxylic dianhydride used to synthesize polyamic acid or polyimide in the liquid crystal aligning agent of the present invention include alicyclic tetracarboxylic dianhydride, aliphatic tetracarboxylic dianhydride and aromatic tetracarboxylic dianhydride. Water is available.
  • the said alicyclic tetracarboxylic dianhydride is a 1, 2, 3, 4- cyclobutane tetracarboxylic dianhydride, a 1, 2- dimethyl- 1, 2, 3, 4- cyclobutane tetra, for example.
  • Carboxylic Acid Anhydride 1,3-Dimethyl-1,2,3,4- Cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4 -Cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclonucleic acid tetracarboxylic dianhydride, 3,3 ', 4,4 'dicyclonucleoside tetracarboxylic dianhydride, cis-3,7-dibutylcycloocta-1,5-diene- 1,2,5,6-tetracarboxylic dianhydride, 2,3 , 5-tricarboxycyclopentylacetic dianhydride, 5- (2,5-dioxotetrahydro-3-furanyl
  • aliphatic tetracarboxylic dianhydride butane tetracarboxylic dianhydride etc. are mentioned, for example.
  • aromatic tetracarboxylic dianhydride a pyromellitic dianhydride, 4,4'- nonphthalic dianhydride, 3,3 ', 4,4'- benzophenone tetracarboxylic dianhydride, 3, for example , 3 ', 4,4'-biphenylsulfontetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride , 3,3 ', 4,4'-biphenylethertetracarboxylic dianhydride, 3,3', 4,4'- Dimethyldiphenylsilanetetracarboxylic dianhydride, 3,3
  • a polyamic acid can be obtained by making the said diamine compound and the said tetracarboxylic dianhydride react.
  • the use ratio of the tetracarboxylic dianhydride and the diamine compound used for the synthesis reaction of the said polyamic acid is a ratio in which the acid anhydride group of the tetracarboxylic dianhydride is 0.2-2 equivalent with respect to 1 equivalent of the amino group of a diamine compound. This is preferable, More preferably, it is the ratio which becomes 7 to 1.2 equivalent.
  • the synthesis reaction of the polyamic acid may be carried out in an organic solvent for 1 to 72 hours, preferably 3 to 48 hours, under a temperature condition of -20 to 150 ° C., preferably 0 to 10 CTC.
  • the organic solvent is not particularly limited as long as it can dissolve the polyamic acid produced.
  • the said organic solvent can use together alcohol, a ketone, ester, an ether, a halogenated hydrocarbon, a hydrocarbon round which are the poor solvents of a polyamic acid, in the range which does not precipitate the produced polyamic acid.
  • such a poor solvent for example, methyl alcohol, ethyl alcohol, isopropyl alcohol, cyclonucleoside, ethylene glycol, propylene glycol, 1,4-butanediol, triethylene glycol : ethylene glycol monomethyl ether, ethyl lactate, lactic acid Butyl, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, methyl methoxy propionate, ethyl ethoxy propionate, diethyl oxalate, diethyl malonate, diethyl Ether, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol -n-propyl ether, ethylene glycol -i-propyl ether, ethylene glycol -n-buty
  • a reaction solution obtained by dissolving the polyamic acid can be obtained.
  • the reaction mixture is poured into a large amount of poor solvent to obtain a precipitate, and the precipitate is dried under reduced pressure or the reaction mixture is distilled off under reduced pressure with an evaporator to obtain a polyamic acid.
  • the polyamic acid can be purified by dissolving the polyamic acid again in an organic solvent and then depositing with a poor solvent or distilling off under reduced pressure with an evaporator once or several times.
  • the polyimide can be obtained by imidating by dehydrating and closing the polyamic acid obtained as mentioned above.
  • Dehydration ring-closure of the polyamic acid is preferably, as needed by the dehydrating agent and the dehydration ring-closure catalyst in the dissolution, and the solution in the year, or (ii) the polyamic sanol organic solvent in the method for heating (i) a polyamic acid was added It is performed by the method of heating.
  • the reaction temperature in the method of heating the polyamic acid of the above (i) is 50 to 200 ° C., preferably 60 to 170 ° C.
  • the reaction time is 1 to 8 hours, preferably 3 to 5 hours. If the reaction temperature is less than 50 ° C., the dehydration ring closure reaction does not proceed well, and if the reaction temperature exceeds 200 ° C., the molecular weight of the resulting polyimide may decrease.
  • the method of adding the dehydrating agent and the dehydrating ring-closure catalyst in the solution of (ii) polyamic acid for example, acid anhydrides such as acetic anhydride, propionic anhydride and trifluoroacetic anhydride can be used.
  • acid anhydrides such as acetic anhydride, propionic anhydride and trifluoroacetic anhydride
  • the usage-amount of a dehydrating agent changes with target imidation ratio, it is preferable to set it as (alpha) ⁇ 20-20 mol with respect to 1 mol of the amic-acid structure of a polyamic acid.
  • the dehydration ring closure catalyst tertiary amines such as pyridine, collidine, lutidine and triethylamine can be used, for example. However, it is not limited to this. It is preferable that the usage-amount of a dehydration ring-closure catalyst shall be 0.01-10 mol with respect to 1 mol of dehydrating agents used. This mididation ratio can be made higher, so that the usage-amount of said dehydrating agent and dehydration ring closure agent is large.
  • an organic solvent used for dehydration ring-closure reaction the organic solvent illustrated as what is used for the synthesis
  • the reaction temperature of the dehydration ring-closure reaction is 0 to 18 CTC, and preferably 10 to 150 ° C.
  • the reaction time is 1 to 8 hours, preferably 3 to 5 hours.
  • the polyimide obtained in the above-mentioned method (i) may be used as it is for the preparation of a liquid crystal aligning agent or may be obtained by purifying the polyimide obtained. It can also be used for the manufacture of the liquid crystal aligning agent after.
  • the reaction solution containing a polyimide is obtained.
  • This reaction solution can also be used for manufacture of a liquid crystal aligning agent as it is, after removing a dehydrating agent and a dehydration ring closure catalyst from a reaction solution. It can also be used for the manufacture of the liquid crystal aligning agent, and after isolation of the polyimide, It may be used for manufacture, or may be used for manufacture of a liquid crystal aligning agent after refine
  • a method such as solvent replacement may be applied.
  • Isolation and purification of polyimide are performed by the same operation as described above as isolation and purification method of polyamic acid. I can do it.
  • the liquid crystal aligning agent of this invention is a polyimide which dehydrated and closed the polyamic acid or polyamic acid obtained by reaction of tetracarboxylic dianhydride and a diamine compound as mentioned above, the photoactive crosslinking agent compound, and the other compounded arbitrarily as needed.
  • An additive is included, and the components may preferably be dissolved in an organic solvent.
  • organic solvent which can be used for the liquid crystal aligning agent of this invention, N-methyl- 2-pyridone, (gamma) -butyrolactone, (gamma) -butyrolactam, ⁇ , ⁇ - dimethylformamide, ⁇ , ⁇ -dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methypropionate, ethyl ethpropionate, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol - ⁇ - propyl ether, ethylene glycol -i- propyl ether, ethylene glycol -n- butyl ether (butyl cellosolve with Sal), ethylene glycol dimethyl ether, ethylene glycol ethyl ether acetate, diethylene Glycol dimethyl ether diethylene glycol diethyl ether, diethylene glycol mono
  • the solid content concentration (the ratio of the total weight of components other than the solvent of the liquid crystal aligning agent to the total weight of the liquid crystal aligning agent) in the liquid crystal aligning agent of the present invention is appropriately selected in consideration of viscosity, volatility, etc., but preferably 1 To 10% by weight.
  • the solid content concentration is less than 1 weight 0 / ° , the film thickness formed by applying the liquid crystal aligning agent becomes too small to obtain a good liquid crystal-oriented film, while the solid content concentration exceeds 10 weight%, The thickness becomes so large that a good liquid crystal aligning film cannot be obtained, the viscosity of the liquid crystal aligning agent is increased, and the coating property is lowered.
  • a liquid crystal aligning agent may be prepared by adding the photoactive crosslinking compound according to the present invention to the polyamic acid.
  • the photoactive crosslinking agent compound may be added to a polyimide obtained from a polyamic acid to prepare a liquid crystal aligning agent.
  • an effective vertical alignment with respect to the liquid crystal aligning film may be induced by forming a crosslinked structure by a light reaction group included in the structure of the photoactive crosslinking agent compound.
  • the photoactive crosslinking agent compound can further improve the stability and film strength of the pretilt angle of the liquid crystal alignment film to be formed, and can perform photo alignment without rubbing treatment by UV exposure.
  • the liquid crystal aligning agent may include 1 to 40 parts by weight, preferably 0.1 to 30 parts by weight of the photoactive crosslinking compound, based on 100 parts by weight of the polyamic acid or polyimide. . If the amount of the photoactive crosslinking agent compound is less than 0.1 part by weight, it is difficult to expect a vertical alignment improvement effect. If the photoactive crosslinker compound is contained in an excess of 40 parts by weight, the basic physical properties of the liquid crystal aligning agent may be reduced. Liquid crystal alignment film and liquid crystal display element
  • a liquid crystal aligning film can be formed by apply
  • the liquid crystal aligning agent can be applied, for example, by a method such as a coater method, a spinner method, a printing method, or an inkjet method, and then a liquid crystal alignment film is formed by heating the applied surface.
  • preliminary heating can be preferably performed for the purpose of preventing the liquid flow of the applied aligning agent.
  • Preliminary baking temperature Preferably about 30 to about 300 ° C, more preferably from about 40 to about 200 ° C, particularly preferably from about 50 to about 150.
  • the solvent may be completely removed and a firing (post-baking) process may be performed for the purpose of thermally imidizing the polyamic acid.
  • This firing (post-baking) temperature is preferably about 80 to about 300 ° C., more preferably about 120 to about 250.
  • the liquid crystal aligning agent containing a polyamic acid is apply
  • the film thickness of the liquid crystal alignment film to be formed is preferably about 0.001 to about 1 ⁇ , and more preferably about 0.005 to about 5 ⁇ .
  • the dried coating surface may be subjected to an alignment treatment by irradiating ultraviolet rays in a wavelength range of about 150 to about 450 nm.
  • the intensity of the exposure may be irradiated with energy of about 50 mJ / cm 2 to about 10 J / cm 2 , preferably about 500 mJ / cm 2 to about 5 J / cm 2 .
  • a liquid crystal display device having the liquid crystal alignment layer may be manufactured by a conventional method known in the art. For example, after applying a resin adhesive to the outer edge of the substrate having a pair of liquid crystal alignment film, the surface of the liquid crystal alignment film is overlapped and pressed so as to face each other, the adhesive is cured and the liquid crystal is deposited between the substrate from the liquid crystal inlet and then the liquid crystal A liquid crystal display device can be manufactured by the method of sealing an injection hole.
  • the compound of Formula 13 (175 g, 0.54 mol), PPh 3 (145 g, 0.55 mol) was added to acetonitrile (1.5 L) and reacted for 6 hours at room temperature to prepare the compound of Formula 14.
  • the compound of formula 14 (290 g, 0.52 mol) was dissolved in THF (2.5 L), and then 2 M Na 2 CO 3 (2 L) was added thereto, followed by reaction for 12 hours (226 g, 91% ) was prepared.
  • the compound of formula 16 (102 g, 0.22 mol) was dissolved in 2.0 L of Methylene Chloride and TFA (200 mL) was added at 0 0 C for 1 hour. And reacted for 4 hours at room temperature to prepare a compound of formula 17 (70.2 g, 91%).
  • a liquid crystal aligning agent was prepared in the same manner as in Example 3 except that the photoactive crosslinking compound was not added.
  • Filtration was carried out using a filter of 1 ⁇ .
  • the liquid crystal aligning agent was applied to two stages under a condition of 500 rpm rotation, 10 seconds rotation time, 1800 rpm rotation time, and 20 seconds rotation time using a spinner on a transparent conductive film including a ⁇ film provided on one surface of a glass substrate.
  • the coating was formed by applying and removing the solvent by precure at 180 ° C. for 60 seconds and main cure at 210 ° C. for 20 minutes.
  • the substrate was exposed for 30 seconds at an intensity of 300 mJ / cm 2 and 10 mW using an exposure machine to prepare two (pair) substrates having a liquid crystal alignment film.
  • an aluminum oxide sphere-containing epoxy resin adhesive having a diameter of 4 mu ⁇ to each outer edge of the substrate having the liquid crystal alignment film of the substrate having the pair of liquid crystal alignment films, the liquid crystal alignment film surface was overlapped and pressed to face each other. The adhesive was cured.
  • a layer of nematic liquid crystals (n e 1.5601, n 0 1.4780) was laminated between the substrates from the liquid crystal inlet, and then the liquid crystal inlet was sealed with an acrylic photocurable adhesive to manufacture a liquid crystal display device.
  • the kinematic viscosity was measured using a cannon viscometer at 25 ° C, specific gravity was measured with a hydrometer, and the viscosity was calculated by multiplying the two values.
  • Fig. 1 shows a liquid crystal alignment photo of the liquid crystal display device manufactured by Example 3 of the present invention.
  • the left side is before exposure and the right side is after exposure.
  • FIG. 2 shows a liquid crystal alignment photograph of the liquid crystal display device manufactured by Comparative Example 1.
  • FIG. 2 the left side is a photograph before exposure, and the right side is a photograph after exposure.
  • Tables 1, 1 and 2 ⁇ it could be confirmed that the liquid crystal display device manufactured according to the embodiment of the present invention exhibited excellent characteristics after the exposure, compared to the liquid crystal display device according to the comparative example.
  • the liquid crystal display device manufactured according to the embodiment of the present invention can be confirmed that the domain after the exposure is not observed at all, the alignment state is excellent, but the liquid crystal display device of the comparative example is poor in the alignment state because the domain difference before and after exposure is small I could confirm it. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자에 관한 것이다. 더욱 상세하게는 신규한 구조의 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자에 관한 것이다. 본 발명에 따르면, 높은 수직 배향 성능을 가지면서 보존 안정성이 양호하고, 투명성이 우수하며, 액정 배향성, 인쇄성 및 전기 특성이 뛰어난 액정 배향제를 제공할 수 있다. 또한 액정 배향막의 프리틸트각의 안정성 및 막 강도를 보다 향상시킬 수 있고, UV 노광만으로 액정의 프리틸트를 형성시킬 수 있다.

Description

【명세서】
【발명의 명칭】
광활성 가교제 화합물, 아의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자
[기술분야]
본 발명은 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자에 관한 것이다. 더욱 상세하게는 신규한 구조의 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자에 관한 것이다.
본 출원은 2011년 6월 23일에 한국특허청에 제출된 한국 특허 출원 제 10-2011-0061213 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
【배경기술】
액정디스플레이의 구성재료 중 액정 배향막은 액정분자와 접하여 액정분자를 균일하게 배향시키는 역할을 담당하고 있다. 액정 배향막은 액정이 편광된 빛의 개폐자의 역할을 잘 수행할 수 있도록 액정을 한쪽 방향으로 균일하게 배향시켜주는 액정 구동의 핵심재료이며, 액정 배향막의 액정배향 특성 및 박막으로서의 전기적 특성은 액정디스플레이의 표시 품질을 좌우한다.
액정 배향막을 형성하는 대표적인 방법으로는 무기물의 경사 증착법, 랑뮈어-블로짓 (Langmuir-Blodgett, LB)법, 고분자 연신법, 러빙법 등이 있으며, 새로운 배향방법으로서 광배향법 및 이온빔 조사법 등이 제안되고 있다. 이 중에서도 가장 보편적으로 운용되고 있는 방법은 기판 표면을 천으로 마찰시키는 러빙 (rubbing)법이다. 러빙법은 글래스 기판올 종아로 일정방향으로 문지르면, 그 문지르는 방향에 따라 액정분자의 장축이 가지런하게 배열되면서 배향하는 것을 이용하는 방법이다. 이러한 러빙법은 배향처리가 용이하여 대량 생산에 적합하며 배향이 안정하고 프리틸트 (pretilt)각의 제어가 용이한 장점을 가지고 있어 공업적으로 가장 많이 사용되고 있는 배향 방법이다.
배향막의 재료로는 낮은 유전상수와 높은 열 안정성, 우수한 기계적 강도와 더불어 공정 능력이 뛰어난 폴리이미드가 가장 많이 사용되고 있다. 그러나 폴리이미드를 배향막 재료로 사용하는 데에는 다음과 같은 여러가지 문제점 또는 단점이 지적되고 있다. 첫째, 정전기가 박막트랜지스터 (TFT) 장치꾀 파괴를 초래할 수 있기 때문에, 생산 기계는 일반적으로 정전기에 대한 대책을 포함하고 있으나, 러빙법에서는 배향 과정에서 생성되는 정전기에 대한 완전한 해결책을 제공하지 못하는 단점이 있다. 둘째, 러빙법에 따른 배향이 진행되는 과정에서 분진이 발생될 수 있으므로, 후속 단계로서 클리닝 공정이 요구되며, 이로써 공정 진행 상의 비효율성이 발생할 수 있는 단점이 있다. 셋째, 계단부를 가지는 정렬층의 평면부와 계단부와의 러빙 조건이 서로 다르기 때문에, 얼라이먼트 고정력과 경사각이 고르지 못할 가능성이 높은 단점이 있다. 넷째, 러빙 과정은 한 방향만으로만 실시되기 때문에, 분리된 얼라이먼트 픽샐을 포함하는 정렬 층의 . 생산 공정이 복잡하게 되는 단점이 있다. 마지막으로, 대형 기판을 균일하게 러빙하기 위해서는 특수장비가 필요한 단점이 있다.
이러한 단점을 극복하기 위한 기술로서, 러빙처리 없이 편광된 자외선 (UV)을 고분자 막에 조사하여 액정 배향막올 제조하는 광배향 기술이 대두돠고 있다. 광배향 기술이란 광 반응을 일으켜 그 막에 광학 이방성을 발생시키는 원리를 이용하고 있다. 따라서 액정의 광배향 제어기술을 이용하기 위해서는, 직선 편광의 방향성을 가진 광을 사용하여야 하며, 광이성화, 광중합 또는 광분해 등의 고분자 막의 광 반웅 과정이 요구되고, 액정 분자의 방향이 조사된 광의 편광방향에 의해 제어될 수 있어야 하는 등의 여러 조건이 요구되고 있다.
일반적으로 수직 배향 액정 모드 (Vertical Alignment Liquid Crystal Mode)에서는 시야각에 따른 휘도의 변화를 최소화하기 위하여 당위적으로 다중 도메인을 형성해야 한다. 이를 위해서는 다중 배향 처리 방식이 요구되지만, 러빙 배향 방식으로는 마이크로 단위로 배향 범위를 조절할 수 없기 때문에, 상부와 하부 기판에 전극을 패턴하거나 돌기를 형성시키는 방식이 주로 이용되었다. 하지만 상기와 같은 두 방식은 제조 공정이 추가적으로 요구되며, 웅답속도나 초기 빛샘과 같은 전기 광학 특성에서의 문제점이 발생하는 단점이 존재한다. . 따라서, 종래의 광학적 패턴 형성 공정의 비경제성, 환경비친화성, 비안정성 및 제조된 광학적 패턴이 제품의 성능을 저하시키는 등의 다양한 문제'점을 해결하기 위한 방안이 요구된다.
【발명의 내용】
【해결하려는 과제】
본 발명은 종래의 액정 배향 방법이 갖는 문제점을 해결하기 위해 러빙없이 액정분자를 정렬시키기 위한 방법인 광배향 기술을 이용하되, 배향막 형성 후에도 열적 안정성이 우수하고, 자외선 조사 후에도 높은 배향성과 안정성을 발현할 수 있는 액정 배향제 제조용의 신규한 광활성 가교제 화합물을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 광활성 가교제 화합물의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 광활성 가교제 화합물; 및 폴리아믹산 또는 폴리이미드를 포함하는 액정 배향제를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 액정 배향제로부터 형성되는 액정 배향막을 제공하는 것을 목적으로 한다. .
' 또한, 본 발명은 상기 액정 배향막을 구비하는 액정 표시 소자를 제공하는 것을 목적으로 한다.
【과제의 해결 수단】
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 I 로 표시되는 광활성 가교제 화합물을 제공한다.
Figure imgf000005_0001
상기 화학식 I에서 P T/KR2012/004910
o
N—
χ,, x2, x3 및 ¾중 어느 하나 이상은 o' 이고 나머지는 H 이고:
R,내지 R8은 서로 동일하거나 상이하고 각각 독립적으로 ,H,CN,N02, CF3, 할로겐, C1~C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고;
A 는 이고:
B 는
Figure imgf000006_0001
또는 이며; n은 1 내지 20의 정수이다.
본 발명은 또한, 하기 화학식 II 로 표시돠는 광활성 가교제 화합물을 제공한다. '
[
Figure imgf000006_0002
상기 화학식 II에서, Xi, X2, X3 및 ¾중 어느 하나 이상은
Figure imgf000007_0001
이고 나머지는 H 이고;
R,내지 R8은 서로 동일하거나 상이하고 각각 독립적으로, 。^>^02, CF3, 할로겐, C1 C10의 알킬기 및 C1 C10의 알콕시기로 구성된 군으로부터 선택되는 느 하나이고;
Figure imgf000007_0002
n은 1 내지 20의 정수이다.
본 발명은 또한, 상기 광활성 가교제 화합물; 및 폴리아믹산 또는 폴리이미드를 포함하는 액정 배향제를 제공한다.
또한 본 발명은, 상기 액정 배향제로부터 형성되는 액정 배향막을 제공한다.
또한 본 발명은, 상기 액정 배향막을 구비하는 액정 표시 소자를 제공한다. 一
또한 본 발명은, 하기 화학식 19 로 표시되는 화합물과, 하기 화학식
5 로 표시되는 화합물을 반웅시키는 단계를 포함하는 하기 화학식 20 으로 표시되는 광활성 가교제 화합물의 제조 방법을 제공한다.
[ 19]
Figure imgf000007_0003
[화학식 5]
Figure imgf000008_0001
[화학식 20]
Figure imgf000008_0002
상기 화학식 5, 19및 20에서,
Rj내지 R8은 서로 동일하거나 상이하고 각각 독립적으로, H,CN,N02, CF3, 할로겐, C1 C10의 알킬기 및 C1 C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; '
n은 1 내지 20의 정수이다.
또한 본 발명은, 하기 화학식 39 로 표시되는 화합물과, 하기 화학식 28 로 표시되는 화합물을 반웅시키는 단계를 포함하는 하기 화학식 40 으로 표시되는 광활성 가교제 화합물의 제조 방법을 제공한다.
[
Figure imgf000008_0003
[화학식 28]
Figure imgf000009_0001
[화학식 40]
Figure imgf000009_0002
상기 화학식 28, 39및 40에서,
내지 ¾는 서로 동일하거나 상이하고 각각 독립작으로 ,H,CN,N02, CF3, 할로겐, C1~C10의 알킬기 및 C1 C10와알콕시기로 구성된 군으로부터 선택되는 어느 하나이고;
n은 1 내지 20의 정수이다. 【발명의 효과】
본 발명에 따르면, 러빙 없이 액정분자를 정렬시키기 위한 방법인 광배향 기술을 이용함으로써, 공정진행의 안전성과 경제성을 확보할 수 있으며, 친환경적 제조 공정을 확립할 수 있다.
또한 본 발명의 광활성 가교제 화합물을 포함하는 액정 배향제에 따르면, 액정 배향막의 프리틸트각의 안정성 및 막 강도를 보다 향상시킬 수 있고, UV 노광만으로 액정의 프리틸트를 형성시켜 공정 진행의 간편성이 도모될 수 있으므로 생산원가의 절감 및 제품 생산성을 향상시킬 수 있다. 또한, 높은 수직 배향 성능을 가지면서 보존 안정성이 양호하고, 투명성이 우수하며, 액정 배향성, 인쇄성 및 전기 특성이 뛰어난 액정 배향제를 제공할 수 있다.
【도면의 간단한 설명】
도 1은 본 발명의 실시예 3에 의하여 제조된 액정 표시 소자의 액정 배향 사진을 나타낸 것이다.
도 2 는 비교예 1 에 의하여 제조된 액정 표시 소자의 액정 배향 사진을 나타낸 것이다.
【발명을 실시하기 위한 구체적인 내용】
본 발명의 광활성 가교제 화합물로부터 제조된 액정 배향제는, 러빙처리 없이 편광된 자외선 (UV)을 고분자 막에 조사하는 광배향 기술을 이용하여 액정 배향막을 제조할 수 있다.
광배향 기술은 광 반웅을 일으켜 그 막에 광학 이방성을: 발생시키는 원리를 이용하고 있다. 따라서 액정의 광배향 제어기술을 이용하기 위해서는, 직선 편광의 방향성을 가진 광을 사용하여야 하며, 광이성화, 광중합 또는 광분해 등의 고분자 막의 광 반웅 과정이 요구되고, 액정 분자의 방향이 조사된 광의 편광방향에 의해 제어될 수 있어야 하는 등의 여러 조건이 요구되고 있다.
광이성화 반웅은 역반웅의 영향, 광분해 반응에서는 분해생성물에 의한 액정층의 오염 등의 단점이 있고 광중합 반웅에 있어서는 초기 폴리 (비닐시나메이트) [polyvinyl cinnamate)]계 고분자가 검토되었으나, 사용하는 자외선의 파장이 짧기 때문에 범용 대형 노광 장치가 사용되기 어려운 등의 대량화에 문제가 있다.
일반적으로 광배향제로 많이 사용되어온 폴리이미드 수지는 방향족 테트라카르복실산 또는 그 유도체와 방향족 디아민 또는 방향족 디이소시아네이트를 축중합한 후, 이미드화하여 제조되는 고내열성 수지를 일컫는다.
폴리이미드 수지는 사용된 단량체의 종류에 따라 여러 가지 분자 구조를 가질 수 있다. 일반적으로, 방향족 테트라카르복실산 성분으로서는 피로멜리트산이무수물 (PMDA) 또는 비프탈산무수물 (BPDA)이 사용되고, 방향족 디아민 성분으로서는 파라-페닐렌디아민 (p-PDA), 메타- 페닐렌디아민 (m-PDA), 4,4'-옥시디아닐린 (ODA), 4,4'-메틸렌디아닐린 (MDA), 2,2'- 비스아미노페닐핵사풀루오로프로판 (HFDA),
메타비스아미노페녹시디페닐설폰 (m-BAPS),
파라비스아미노페녹시디페닐설폰 (p-BAPS), 1,4-비스아미노페녹시벤젠 (TPE-Q), 1,3-비스아미노페녹시벤젠 (TPE-R), 2,2'-비스아미노페녹시페닐프로판 (BAPP), 및 2,2'-비스아미노페녹시페닐핵사풀루오로프로판 (HFBAPP)등미 사용되고 있다. 일반적으로 수직 배향 액정 모드 (Vertical Alignment Liquid Crystal Mode)에서는 시야각에 따른 휘도의 변화를 최소화하기 위하여 당위적으로 다중 도메인을 형성해야 한다. 이를 위해서는 다중 배향 처리 방식이 요구되지만, 러빙 배향 방식으로는 마이크로 단위로 배향 범위를 조절할 수 없기 때문에, 상부와 하부 기판에 전극을 패턴하거나 돌기를 형성시키는 방식이 주로 이용되었다. 하지만 상기와 같은 두 방식은 제조 공정이 추가적으로 요구되며, 웅답속도나 초기 빛샘과 같은 전기 광학 특성에서의 문제점이 발생하는 단점미 존재한다.
본 발명에서는 이러한 광배향 기술을 이용하여 액정 표시 소자에서의 액정 분자의 정렬을 이루어냄으로써, 배향막 형성 후, 단지 UV 노짷만으로도 프리틸트를 형성할 수 있는 광활성 가교제 화합물 및 이를 포함하는 액정 배향제를 제공하고자 한다.
본 명세서에서 사용되는 특정한 용어들은 당업자에게 본 발명을 상세히 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위해 사용된 것은 아니다.
이하, 본 발명을 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자를 실시예를 참고로 하여 보다 상세하게 설명한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않아야 한다. 본 발명의 실시예들은 당 업계에서 평균작인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 광활성 가교제 화합물 및 이의 제조방법
본 발명의 일 측면에 따르면, 본 발명의 광활성 가교제 화합물은 하기 화학식 I로 표시될 수 있다ᅳ ¬화학식 I]
Figure imgf000012_0001
나머지는 H 이고;
Rr내지 ¾은 서로 동일하거나 상이하고 각각 독립적으로, H, CN, N02, CF3, 할로겐, C1~C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; A 이고:
B 는
Figure imgf000013_0001
또는 이며;
n은 1 내지 20의 정수이다.
본 발명의 일 실시예에 따르면, 상기 화학식 I 에서, 내지 R8은 H 이고, n은 1내지 5의 정수일 수 있다.
본 발명의 일 실시예에 따르면, 예를 들어 상기 화학식 I 의 화합물은 하기 화학식 20, 화학식 22 또는 화학식 24로 표시되는 화합물일 수 있다.
Figure imgf000013_0002
[화학식 22]
Figure imgf000013_0003
[화학식 24]
Figure imgf000014_0001
상기 화학식 20에서,
R,내지 ¾은 서로 동일하거나 상이하고 각각 독립적으로, H,CN, N02, CF3, 할로겐, C1 C10의 알킬기 및 C1 C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; n은 1 내지 20의 정수이다.
본 발명의 다른 일 측면에 따르면, 상기 화학식 20 으로 표시되는 광활성 가교제 화합물의 제조 방법을 제공한다.
상기 화학식 20 으로 표시되는 광활성 가교제 화합물의 제조 방법은 하기 화학식 19 로 표시되는 화합물과, 하기 화학식 5 로 표시되는 화합물을 반응시키는 단계를 포함한다.
[화학식 19]
Figure imgf000014_0002
[화학식 20]
Figure imgf000015_0001
상기 화학식 5, 19및 20에서,
R!내지 ¾은 서로 동일하거나 상이하고 각각 독립적으로, H,CN,N02,
CF3, 할로겐, ci~cia의 알킬기 및 ci~cio의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; n은 1 내지 20의 정수이다.
보다 구체적으로, 상기 화학식 20 로 표시되는 광활성 가교제 화합물의 제조방법은, 하기 반응식 1, 2, 3, 4 및 5 를 단계적으로 수행하여 제조될 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
·
Figure imgf000015_0002
[반웅식 4]
Figure imgf000016_0001
싱:기 반응식 1 내지 5 에서, 내지 R8 및 n 은 상기 화학식 I 에서 정의한 바와 같다. 상기 반웅식 1 내지 5 에서 사용되는 출발 화합물, 중간체 화합물 및 합물은 하기 화학식 1 내지 24 로 표시 될 수 있다.
Figure imgf000017_0001
[화학식 2]
" i"'" 、 '
[화학식 3]
Figure imgf000017_0002
[화학식 4
Figure imgf000017_0003
[화학식 7]
Figure imgf000018_0001
[화학식 8]
Figure imgf000018_0002
[화학식 9]
Figure imgf000018_0003
[화학식 10]
Figure imgf000018_0004
Figure imgf000018_0005
[화학식 12]
Figure imgf000018_0006
[화학식 13]
Figure imgf000019_0001
Figure imgf000019_0002
[화학식 15]
Figure imgf000019_0003
[화학식 18]
Figure imgf000020_0001
[
Figure imgf000020_0002
[화학식 20]
Figure imgf000020_0003
[화학식 21]
Figure imgf000020_0004
[화학식 22]
Figure imgf000021_0001
Figure imgf000021_0002
[화학식 24]
Figure imgf000021_0003
상기 화학식 1 내지 24 에서 , 내지 R8 및 n 은 상기 화학식 I 에서 정의 한 바와 같다.
또한, 상기 화학식 22 및 화학식 24 의 화합물은 상기 반응식 1 내지 5 에서, 화학식 6 의 화합물 대신 각각 화학식 21 및 23 의 화합물을 사용하여 상기 반웅식 1 내지 5 와 유사한 방법으로 각각 제조할 수 있다. 본 발명은 다른 일 측면에 따르면, 본 발명 의 광활성 가교제 화합물은 하기 화학식 Π 로 표시될 수 있다.
[화학식 Π]
Figure imgf000022_0001
상기 화학식 π에서
0
N—
X1; X2, 및 X4증 어느 하나 이상은 ο' 이고 나머지는 H 이고:
Ri내지 ¾은 서로 동일하거나 상이하고 각각 독립적으로, H,CN,N02, CF3, 할로겐, C1 C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고;
A 이고:
B 는
Figure imgf000022_0002
또는 이며;
n은 1 내지 20·의 정수이다.
본 발명의 일 실시예에 따르면, 상기 화학식 II 에서, 내지 R8은 H 이고 ,η은 1내지 5의 정수일 수 있다.
본 발명의 일 실시예에 따르면, 예를 들어 상기 화학식 Π 은 하기 화학식 40으로 표시될 수 있다.
[화학식 40]
Figure imgf000023_0001
상기 화학식 40에서,
¾내지 R4는 서로 동일하거나 상이하고 각각 독립적으로, H, CN,N02, CF3, 할로겐, C1~C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; n은 1 내지 20의 정수이다.
본 발명의 다른 일 측면에 따르면, 상기 화학식 40 으로 표시되는 광활성 가교제 화합물의 제조 방법을제공한다.
상기 화학식 40 으로 표시되는 광활성 가교제 화합물의 제조 방법은 하기 화학식 39로 표시되는 화합물과, 하기 화학식 28로 표시되는 화합물을 반응시키는 단계를 포함한다.
[화학식 39]
Figure imgf000024_0001
상기 화학식 28, 39 및 40 에서, Ri내지 R4는 서로 동일하거나 상이하고 각각 독립적으로 ,H, CN,N02, CF3, 할로겐, C1~C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; n은 1 내지 20의 정수이다.
보다 구체적으로, 상기 화학식 40 으로 표시되는 광활성 가교제 화합물의 제조방법은, 하기 반웅식 6 및 7을 수행하여 제조될 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
[반웅식 6]
Figure imgf000025_0001
Figure imgf000025_0002
[반응식 7]
Figure imgf000026_0001
상기 반웅식 6 및 7 에서, 내지 F 및 n 은 상기 화학식 II 에서 정의한 바와 같다.
상기 반웅식 6 및 7 에서 사용되는 출발 화합물, 중간체 화합물 및 생성 화합물은 하기 화학식 25 내지 40으로 표시될 수 있다.
[화학식 25]
Figure imgf000027_0001
Figure imgf000027_0002
[화학식 28]
Figure imgf000027_0003
[화학식 29]
Figure imgf000027_0004
[화학식 30]
Figure imgf000028_0001
[화학식 31]
Figure imgf000028_0002
[화학식 33]
Figure imgf000028_0003
[화학식 34]
Figure imgf000029_0001
[화학식 35]
Figure imgf000029_0002
[화학식 37]
Figure imgf000030_0001
[화학식 39]
Figure imgf000031_0001
Figure imgf000031_0002
상기 화학식 25 내지 40 에서, Ri 내지 및 n 은 화학식 II 에서 정의한 바와 같다.
상기와 같은 본 발명의 신규한 광활성 가교제 화합물은 액정 배향막의 프리틸트각의 안정성 및 막 강도를 보다 향상시킨다. 구체적으로, 폴리아믹산 또는 폴리이미드에 본 발명의 광활성 가교제 화합물을 첨가하여 액정 배향제를 제조하는 경우 액정 배향막의 프리틸트각의 안정성 및 막 강도를 보다 향상시 킬 수 있다. 액정 배향제
본 발명은 또 다른 측면에 따르면, 본 발명은 상기 에서 설명 한 광활성 가교제 화합물; 및 폴리 아믹산 또는 폴리 이 미드를 포함하는 액정 배향제를 제공한다.
상기 폴리아믹산은 디아민 화합물과 테트라카르복실산 이무수물을 반웅시 켜 얻을 수 있으며 , 상기 폴리 이미드는 폴리 아믹산을 탈수 폐환하여 이 미드화함으로써 얻을 수 있다.
본 발명의 일 실시 예에 따르면, 상기 액정 배향제는 상기 폴리아믹산 또는 폴리 이 미드 100 중량부에 대하여 , 상기 광활성 가교제 화합물을 0.1 내지 40 중량부, 바람직하게는 0.1 내지 30 중량부로 포함할 수 있다.
본 발명에서 , 폴리 아믹산을 얻기 위 해 사용될 수 있는 상기 디아민 화합물로는, 예를 들면 P-페닐렌디아민, m-페닐렌디아민, 4,4'- 디 아미노디 페닐메탄, 4,4'-디아미노디페닐에 탄, 4,4'-디 아미노디페닐술피드, 4,4'- 디 아미노디페닐술폰, 3,3'-디 메틸 -4,4'-디아미노비페닐, 4,4'- 디아미노벤즈아닐리드, 4,4'-디아미노디페닐에테르, 1,5-디아미노나프탈렌, 2,2'- 디 메틸 -4,4'-디아미노비 페닐, 5-아미노 -1-(4'-아미노페닐) -1,3,3-트리 메틸인단, 6- 아미노 -1-(4'-아미노페닐) -1,3,3-트리 메틸인단, 3,4'-디 아미노디페닐에 테르, 3,3'- 디아미노벤조페논, 3,4'-디아미노벤조페논, 4,4'-디아미노벤조페논, 2,2-비스 [4-(4- 아미노페녹시)페닐]프로판, 2,2-비스 [4-(4- 아미노페녹시)페닐]핵사플루오로프로판, 2,2-비스 (4- 아미노페닐)핵사플루오로프로판, 2,2-비스 [4-(4-아미노페녹시)페닐]술폰, 1,4- 비스 (4-아미노페녹시)벤젠, 1,3-비스 (4-아미노페녹시)벤젠, 1,3-비스 (3- 아미노페녹시)벤젠, 9,9-비스 (4-아미 노페닐) -10-히드로안트라센, 2,7- 디아미노플루오렌, 9,9-비스 (4-아미노페닐)플루오렌, 4,4'-메틸렌 -비스 (2- 클로로아닐린), 2,2',5,5'-테트라클로로 -4,4'-디 아미노비 페닐, 2,2'-디클로로 -4,4'- 디아미노 -5,5'-디 메특시 비쩨닐, 3,3'-디 메톡시 -4,4'-디아미노비페닐, l,4,4'-(p- 페닐렌이소프로필리 덴)비스아닐린, 4,4'-(m-페닐렌이소프로필리 덴)비스아닐린, 2,2'-비스 [4-(4-아미노 -2-트리플루오로메틸페녹시)페닐]핵사플루오로프로판, 4,4'- 디 아미노 -2,2'-비스 (트리플루오로메틸)비페닐, 4,4'-비스 [(4-아미노 -2- 트리플루오로메틸)페녹시 ] -옥타플루오로비페닐, 디 (4-아미노페닐)벤지딘, 1-(4- 아미노페닐) -1,3,3-트리 메틸 -1H-인덴 -5-아민, 1,1-메타크실릴렌디 아민, 1,3- 프로판디 아민, 테트라메틸렌디아민, 펜타메틸렌디 아민., 핵사메틸렌디 아민, 헵타메틸렌디 아민, 옥타메틸렌디 아민, 노나메틸렌디아민, 1,4- 디아미노시클로핵산, 이소포론디 아민, 테트라히드로디시클로펜타디에 닐렌디아민, 트리시클로 [6.2.1.02'7]- 운데실렌디 메틸디 아민, 4,4'-메틸렌비스 (시클로핵실아민), 1,3- 비스 (아미노메틸)시클로핵산 등의 지방족 또는 지환식 디 아민; 및 2,3- 디 아미노피 리 딘, 2,6-디아미노피 리딘, 3,4-디아미노피 리딘, 2,4-디 아미노피리미 딘, 5,6-디아미노 -2,3-디시아노피라진, 5,6-디 아미노 -2,4-디히드록시피 리미 딘, 2,4- 디아미노 -6-디 메틸아미노 -1,3,5-트리 아진, 1,4-비스 (3-아미노프로필)피페라진, 2,4-디아미노 -6-이소프로폭시 -1,3,5-트리아진, 2,4-디 아미노 -6-메특시 -1,3,5- 트리 아진, 2,4-디아미노 -6-페닐 -1,3,5-트리 아진, 2,4-디아미노 -6-메틸 -s-트리 아진, 2,4-디 아미노 -1,3,5-트리아진, 4,6-디 아미노 -2-비 닐 -S-트리아진, 2,4-디 아미노 -5- 페닐티아졸, 2,6-디아미노푸린, 5,6-디 아미노 -1,3-디 메틸우라실, 3,5-디아미노- 1,2,4-트리아졸, 6,9-디아미노 -2-에록시아크리딘락테 이트, 3,8-디아미노 -6- 페닐페난트리 딘, 1,4-디 아미노피페라진, 3,6-디 아미노아크리딘, 비스 (4- 아미노페닐)페닐아민, 1-(3,5-디 아미노페닐 )-3-데실숙신이미드, 1-(3,5- 디아미노페닐 )-3-옥타데실숙신이미드 등의 분자 내에 2 개의 1 급 아미노기 및 상기 1 급 아미노기 외에 질소 원자를 더 포함하는 디아민으로 구성 된 군에서 선택되는 1 종 이상의 디아민 화합물을 들 수 있다.
본 발명 의 액정 배향제에서 폴리아믹산 또는 폴리 이미드를 합성하기 위해 사용되는 테트라카르복실산 이무수물로서는, 지환식 테트라카르복실산 이무수물, 지방족 테트라카르복실산 이무수물 및 방향족 테트라카르복실산 이무수물을 들 수 있다.
상기 지환식 테트라카르복실산 이무수물의 구체 예로서는, 예를 들면 1,2,3,4-시클로부탄테트라카르복실산 이무수물, 1,2-디 메틸 -1,2,3,4- 시클로부탄테트라카르복실산 이무수물, 1,3-디 메 틸 -1,2,3,4- 시클로부탄테트라카르복실산 이무수물, 1,3-디클로로 -1,2,3,4- 시클로부탄테트라카르복실산 이무수물, 1,2,3,4-테트라메틸 -1,2,3,4-시클 로부탄테트라카르복실산 이무수물, 1,2,3,4-시클로펜탄테트라카르복실산 이무수물, 1,2,4,5-시클로핵산테트라카르복실산 이무수물, 3,3',4,4' 디시클로핵실테트라카르복실산 이무수물, 시스 -3,7-디부틸시클로옥타 -1,5-디 엔- 1,2,5,6-테트라카르복실산 이무수물, 2,3,5-트리카르복시시클로펜틸아세트산 이무수물, 5-(2,5-디옥소테트라히드로 -3-푸라닐 )-3-메틸 -3-시클로핵센 -1,2- 디카르복실산 무수물, 3,5,6-트리카르보닐 -2-카르복시노르보르난 -2:3,5:6- 디무수물, 2,3,4,5-테트라히드로푸란테트라카르복실산 이무수물, l,3,3a,4,5,9b- 핵사히드로 -5(테트라히드로 -2,5-디옥소 -3-푸라닐) -나프토 [1 ,2-c]-푸란 -1 ,3-디온, l,3,3a,4,5,9b-핵사히드로 -5-메틸 -5(테트라히드로 -2,5-디옥소 -3-푸라닐) - 나프토 [1,2-c]-푸란 -1,3-디온, 1,3,3 4,5, -핵사히드로-5-에 틸-5(테트라히드로-2,5- 디옥소 -3-푸라닐) -나프토 [1,2-c]-푸란 -1,3-디온, 1,3,33,4,5, -핵사히드로-7-메틸- 5(테트라히드로 -2,5-디옥소 -3-푸라닐) -나프토 [1,2-c]-푸란 -1,3-디은, l,3,3a,4,5,9b- 핵사히드로 -7-에틸 -5(테트라히드로 -2,5-디옥소 -3-푸라닐) -나프토 [1,2-c]-푸란 -1,3- 디온, 1,3,3^4,5, -핵사히드로-8-메틸-5(테트라히드로ᅳ2,5-디옥소-3-푸라닐)- 나프토 [1,2-c]-푸란 -1,3-디온, 1,3,3&,4,5, -핵사히드로-8-에 틸-5(테트라히드로-2,5- 디옥소 -3-푸라닐) -나프토 [1,2-c]-푸란 -1 ,3-디온, l,3,3a,4,5,9b-핵사히드로 -5,8- 디 메틸 -5(테트라히드로 -2,5-디옥소 -3-푸라닐) -나프토 [1,2-c]-푸란 -1,3-디온, 5-(2,5- 디옥소테트라히드로푸라닐 )-3-메틸 -3-시클로핵센 -1,2-디 카르복실산 무수물, 비시클로 [2.2.2]-옥트 -7-엔 -2,3,5,6ᅳ테트라카르복실산 이무수물, 3- 옥사비시클로 [3.2.1]옥탄 -2,4-디온 -6-스피로 -3'- (테트라히드로푸란 -2',5'-디온) 등을 들 수 있다.
상기 지 방족 테트라카르복실산 이무수물의 구체예로서는, 예를 들면 부탄테트라카르복실산 이무수물 등을 들 수 있다. 상기 방향족 테트라카르복실산 이무수물의 구체예로서는, 예를 들면 피로멜리트산 이무수물, 4,4'-비프탈산 이무수물, 3,3',4,4'-벤조페논테트라카르복실산 이무수물, 3,3',4,4'-비페닐술폰테트라카르복실산 이무수물, 1,4,5,8- 나프탈렌테트라카르복실산 이무수물, 2,3,6,7-나프탈렌테트라카르복실산 이무수물, 3,3',4,4'-비 페닐에 테르테트라카르복실산 이무수물, 3,3',4,4'- 디 메틸디 페닐실란테트라카르복실산 이무수물, 3,3',4,4'-테트라페닐 실란테트라카르복실산 이무수물, 1,2,3,4-푸란테트라카르복실산 이무수물, 4,4'- 비스 (3 ,4-디카르복시페녹시)디페닐술피드 이무수물, 4,4'-비스 (3,4- 디카르복시페녹시)디페닐술폰 이무수물, 4,4'-비스 (3,4- 디카르복시 페녹시)디페닐프로판 이무수물, 3,3',4,4'- 퍼플루오로이소프로필리 덴디프탈산 이무수물, 3,3',4,4'- 비페닐테트라카르복실산 이무수물, 비스 (프탈산)페닐포스핀옥시드 이무수물, p_페닐렌 -비스 (트리페닐프탈산) 이무수물, m-페닐렌 -비스 (트리페닐프탈산) 이무수물, 비스 (트리페닐프탈산) -4,4'-디 페닐에 테르 이무수물, 비스 (트리페닐프탈산) -4,4'-디 페닐메탄 이무수물, 에 틸렌글리콜- 비스 (안히드로트리 멜리 테 이트), 프로필렌글리콜-비스 (안히드로트리 멜리 테 이트), 1,4-부탄디올-비스 (안히드로트리 멜리 테이트), 1 ,6-핵산디올- 비스 (안히드로트리 멜리 테 이트), 1,8-옥탄디을-비스 (안히드로트리 멜리 테이트), 2,2-비스 (4-히드록시페닐)프로판 -비스 (안히드로트리 멜리 테이트) 등을 들 수 있다.
상기 디아민 화합물, 및 상기 테트라카르복실산 이무수물을 반응시 킴으로써 폴리 아믹산을 얻을 수 있다.
상기 플리아믹산의 합성 반웅에 사용되는 테트라카르복실산 이무수물과 디 아민 화합물의 사용 비율은, 디 아민 화합물의 아미노기 1 당량에 대하여 테트라카르복실산 이무수물의 산 무수물기가 0.2 내지 2 당량이 되는 비율이 바람직하고, 더욱 바람직하게는 으7 내지 1.2 당량이 되는 비율이다.
폴리아믹산의 합성 반웅은, 유기 용매 중에서 -20 내지 150°C, 바람직하게는 0 내지 10CTC 의 온도 조건하에, 1 내지 72 시간, 바람직하게는 3 내지 48 시 간 동안 행해질 수 있다.
이 때, 상기 유기 용매로서는, 생성 되는 폴리아믹산을 용해할 수 있는 것 이 면 특별히 제한은 없고, 예를 들면 N-메틸 -2-피를리돈, Ν,Ν- 디 메틸아세트아미드, Ν,Ν_디 메틸포름아미드, 3-부특시 -Ν,Ν-디 메틸프로판아미드, 3-메톡시 -Ν,Ν-디 메틸프로판아미드, 3-핵실옥시 -Ν,Ν-디 메틸프로판아미드 등의 아미드 화합물, 디 메틸술폭시드, γ-부티로락톤, 테트라메틸요소, 핵사메틸포스포르트리아미드 등의 비양성자성 화합물;. m-크레졸, 크실레놀, 페놀, 할로겐화 페놀 등의 페놀성 화합물 등을 예사할 수 있다.
한편, 상기 유기 용매에는, 폴리아믹산의 빈용매인 알코올, 케톤, 에스테르, 에테르, 할로겐화 탄화수소, 탄화수소 둥을, 생성되는 폴리아믹산이 석출되지 않는 범위에서 병용할 수 있다. 이러한 빈용매의 구체예로서는, 예를 들면 메틸 알코올, 에틸 알코을, 이소프로필 알코올, 시클로핵산올, 에틸렌글리콜, 프로필렌글리콜, 1,4-부탄디올, 트리에틸렌글리콜 : 에틸렌글리콜모노메틸에테르, 락트산에틸, 락트산부틸, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥사논, 아세트산메틸, 아세트산에틸, 아세트산부틸, 메틸메톡시프로피오네이트, 에틸에록시프로피오네이트, 옥살산디에틸, 말론산디에틸, 디에틸에테르, 에틸렌글리콜메틸에테르, 에틸렌글리콜에틸에테르, 에틸렌글리콜 -n-프로필에테르, 에틸렌글리콜 -i- 프로필에테르, 에틸렌글리콜 -n-부틸에테르, 에틸렌글리콜 디메틸에테르, 에틸렌글리콜에틸에테르아세테이트, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르아세테이트, 디에틸렌글리콜모노에틸에테르아세테이트, 테트라히드로푸란, 디클로로메탄, 1,2-디클로로에탄, 1,4-디클로로부탄, 트리클로로에탄, 클로르벤젠, 0- 디클로르벤젠, 핵산, 헵탄, 옥탄, 벤젠, 를루엔, 크실렌, 이소아밀프로피오네이트, 이소아밀이소부티레이트, 디이소펜틸에테르 등을 들 수 있다. 이상과 같이 하여, 폴리아믹산을 용해하여 이루어지는 반웅 용액이 얻어질 수 있다. 그리고, 이 반웅 용액을 대량의 빈용매 중에 부어 석출물을 얻고, 이 석출물을 감압 하에서 건조시키거나, 또는 반웅 용액을 증발기로 감압 증류 제거함으로써 폴리아믹산을 얻을 수 있다. 또한, 이 폴리아믹산을 다시 유기 용매에 용해시키고, 이어서 빈용매로 석출시키는 공정, 또는 증발기로 감압 증류 제거하는 공정을 1 회 또는 수회 행함으로써, 폴리아막산을 정제할 수 있다. '
상기한 바와 같이 수득된 폴리아믹산을 탈수 폐환하여 이미드화함으로써 폴리이미드를 얻을 수 있다. 폴리아믹산의 탈수 폐환은, 바람직하게는 (i) 폴리아믹산을 가열하는 방법에 의 해, 또는 (ii) 폴리아믹산올 유기 용매에 용해하고, 이 용액 중에 탈수제 및 탈수 폐환 촉매를 첨가하여 필요에 따라 가열하는 방법에 의해 행해진다. 상기 (i)의 폴리 아믹산을 가열하는 방법 에서의 반응 온도는 50 내지 200°C 이고, 바람직하게는 60 내지 170°C 이다. 반응 시 간은 1 내지 8 시 간이고, 바람직하게는 3 내지 5 시 간이다. 반응 온도가 50°C 미 만이 면 탈수 폐환 반웅이 층분히 진행되지 않고, 반웅 온도가 200°C 를 초과하면 얻어지는 폴리 이미드의 분자량이 저하되는 경우가 있다.
한편, 상기 (ii) 폴리아믹산의 용액 중에 탈수제 및 탈수 폐환 촉매를 첨 가하는 방법에서 탈수제로서는, 예를 들면 아세트산 무수물, 프로피온산 무수물, 트리플루오로아세트산 무수물 등의 산 무수물을 사용할 수 있다. 탈수제의 사용량은 목적으로 하는 이미드화율에 따라 상이하지만, 폴리 아믹산의 아믹산 구조의 1 몰에 대하여 αοι 내지 20 몰로 하는 것 이 바람직하다.
또한, 탈수 폐환 촉매로서는, 예를 들면 피리딘, 콜리딘, 루티 딘, 트리에 틸아민 등의 3 급 아민을 사용할 수 있다. 그러나, 이 것으로 한정되는 것은 아니다. 탈수 폐환 촉매의 사용량은, 사용하는 탈수제 1 몰에 대하여 0.01 내지 10 몰로 하는 것 이 바람직 하다. 이 미드화율은 상기 한 탈수제, 탈수 폐환제의 사용량이 많을수록 높게 할 수 있다. 탈수 폐환 반응에 사용되는 유기 용매로서는, 폴리아믹산의 합성에 사용되는 것으로서 예시한 유기 용매를 들 수 있다.
탈수 폐환 반응의 반웅 온도는 0 내지 18CTC 이고, 바람직하게는 10 내지 150°C 이다. 반웅 시 간은 1 내지 8 시간이고, 바람직하게는 3 내지 5 시간이다ᅳ 상기 방법 (i)에서 얻어지는 폴리 이미드는 이 것을 그대로 액정 배향제의 제조에 사용할 수도 있고, 또는 얻어지는 폴리 이미드를 정제한 후 액정 배향제의 제조에 사용할 수도 있다.
한편, 상기 방법 (ii)에서는, 폴리이미드를 함유하는 반웅 용액이 얻어진다ᅳ 이 반웅 용액은, 이 것을 그대로 액정 배향제의 제조에 사용할 수도 있고, 반웅 용액으로부터 탈수제 및 탈수 폐환 촉매를 제거 한 후 액정 배향제의 제조에 사용할 수도 있고, 폴리 이미드를 단리 한 후 액정 배향제의 제조에 사용할 수도 있고, 또는 단리한 폴리이미드를 정제한 후 액정 배향제의 제조에 사용할 수도 있다. 반웅 용액으로부터 탈수제 및 탈수 폐환 촉매를 제거하기 위해서는, 예를 들면 용매 치환 등의 방법을 적용할 수 있다ᅳ 폴리이미드의 단리, 정제는 폴리아믹산의 단리, 정제 방법으로서 상기한 것과 동일한 조작을 행함으로써 행할 수 있다.
본 발명의 액정 배향제는, 상기한 바와 같은 테트라카르복실산 이무수물과 디아민 화합물의 반웅에 의해 얻어지는 폴리아믹산 또는 폴리아믹산을 탈수 폐환한 폴리이미드, 광활성 가교제 화합물 및 필요에 따라 임의적으로 배합되는 기타 첨가제를 포함하며, 상기 성분들은 바람직하게는 유기 용매 중에 용해되어 포함될 수 있다.
본 발명의 액정 배향제에 사용할 수 있는 상기 유기 용매로서는, 예를 들면 N-메틸 -2-피를리돈, γ-부티로락톤, γ-부티로락탐, Ν,Ν- 디메틸포름아미드, Ν,Ν-디메틸아세트아미드, 4-히드록시 -4-메틸 -2-펜타논, 에틸렌글리콜모노메틸에테르, 락트산 부틸, 아세트산 부틸, 메틸메특시프로피오네이트, 에틸에특시프로피오네이트, 에틸렌글리콜메틸에테르, ' 에틸렌글리콜에틸에테르, 에틸렌글리콜 -η- 프로필에테르, 에틸렌글리콜 -i-프로필에테르, 에틸렌글리콜 -n- 부틸에테르 (부틸샐로솔브), 에틸렌글리콜디메틸에테르 에틸렌글리콜에틸에테르아세테이트, 디에틸렌글리콜디메틸에테르 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜모노메틸에테르 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르아세테이트 디에틸렌글리콜모노에틸에테르아세테이트, 3-부특시 -Ν,Ν-디메틸프로판아미드 3-메록시 -Ν,Ν-디메틸프로판아미드, 3-핵실옥시 -Ν,Ν-디메틸프로판아미드 등을 들 수 있다.
' 본 발명의 액정 배향제에서의 고형분 농도 (액정 배향제의 용매 이외의 성분의 합계 중량이 액정 배향제의 전체 중량에서 차지하는 비율)는 점성, 휘발성 등올 고려하여 적절하게 선택되지만, 바람직하게는 1 내지 10 중량 % 의 범위일 수 있다. 상기 고형분 농도가 1 중량0 /。 미만인 경우에는, 액정 배향제를 도포하여 형성되는 막 두께가 지나치게 작아져 양호한 액정 -배향막을 얻을 수 없고, 한편 고형분 농도가 10 중량 %를 초과하는 경우에는, 두께가 지나치게 커져 양호한 액정 배향막을 얻을 수 없으며, 액정 배향제의 점성이 증대되어 도포 특성이 저하되게 된다.
본 발명의 일 실시예에 따르면, 상기 폴리아믹산에 본 발명에 따른 광활성 가교제 화합물을 첨가하여 액정 배향제를 제조할 수 있다.
또한 본 발명의 다른 실시예에 따르면, 상기 광활성 가교제 화합물은 폴리아믹산으로부터 얻어진 폴리이미드에 첨가하여 액정 배향제를 제조할 수도 있다.
상기 광활성 가교제 화합물을 포함하는 액정 배향제에 UV 를 조사하면, 상기 광활성 가교제 화합물의 구조 내에 포함된 광반웅기에 의해 가교된 구조를 형성함으로써 액정 배향막에 대해 효과적인 수직 배향을 유도할 수 있다.
상기 광활성 가교제 화합물은 형성되는 액정 배향막의 프리틸트각의 안정성 및 막 강도를 보다 향상시킬 수 있고, UV 노광으로 러빙 처리 없이 광배향을 할 수 있다.
본 발명의 일 실시예에 따르면, 상기 액정 배향제는 상기 폴리아믹산 또는 폴리이미드 100 중량부에 대하여, 상기 광활성 가교제 화합물을 으1 내지 40 중량부, 바람직하게는 0.1 내지 30 중량부로 포함할 수 있다. 상기 광활성 가교제 화합물이 0.1 중량부 미만으로 너무 적으면 수직 배향 향상 효과를 기대하기 어렵고, 40 중량부를 초과하여 과량으로 포함되면 액정 배향제의 기본 물성이 저하될 수 있다. 액정배향막 및 액정 표시 소자
본 발명의 액정 배향제를 기재 상에 도포하고 가열함으로써 액정 배향막을 형성할 수 있다.
상기 액정 배향제는 예를 들면 를코터법, 스피너법, 인쇄법, 잉크젯법 등의 방법에 의해서 도포할 수 있으며, 이어서 도포된 면을 가열함으로써 액정 배향막을 형성한다.
액정 배향제 도포 후, 도포한 배향제의 액 흐름 방지 등의 목적으로, 바람직하게는 예비 가열 (예비 베이킹)을 수행할 수 있다. 예비 베이킹 온도는, 바람직하게는 약 30 내지 약 300 °C 이고, 보다 바람직하게는 약 40 내지 약 200°C 이고, 특히 바람직하게는 약 50 내지 약 150 이다.
그 후, 용매를 완전히 제거하고, 폴리아믹산을 열 이미드화하는 것을 목적으로 하여 소성 (후 베이킹) 공정을 수행할 수 있다.. 이 소성 (후 베이킹) 온도는, 바람직하게는 약 80 내지 약 300°C 이고, 보다 바람직하게는 약 120 내지 약 250 이다. 이와 같이 하여, 폴리아믹산을 함유하는 액정 배향제를 도포하고, 도포 후에 유기 용매를 제거함으로써 액정 배향막이 되는 도막을 형성하고, 또한 가열함으로써 탈수 폐환을 진행시켜, 보다 이미드화된 액정 배향막으로 형성할 수도 있다. 형성되는 액정 배향막의 막 두께는, 바람직하게는 약 0.001 내지 약 1 μηι이고, 보다 바람직하게는 약 0.005 내지 약으5 μηι일 수 있다.
건조된 도막면에, 파장 범위가 약 150 내지 약 450 nm 영역의 자외선올 조사하여 배향 처리를 할 수 있다. 이때, 노광의 세기는 약 50 mJ/cm2 내지 약 10 J/cm2의 에너지, 바람직하게는 약 500 mJ/cm2 내지 5 약 J/cm2 의 에너지를 조사할 수 있다.
상기와 같은 광배향에 의해 일련의 과정을 거친 이후에, 열적 안정성이 우수하고 배향성이 높은 배향능을 가지는 액정 배향막을 얻올 수 있다.
또한 본 발명이 속하는 기술분야에 알려진 통상의 방법으로 상기 액정 배향막을 구비하는 액정 표시 소자를 제조할 수 있다. 예를 들어, 한 쌍의 액정 배향막을 갖는 기판의 외연부에 수지 접착제를 도포한 후, 액정 배향막 면이 마주보도록 중첩하여 압착하고, 접착제를 경화시키고 액정 주입구로부터 기판 사이에 액정을 층전한 후 액정 주입구를 밀봉하는 방법으로 액정 표시 소자를 제조할 수 있다.
.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상와 지식을가진 자에게 있어서 자명할 것이다. <실人 >
광활성 가교제 화합물의 제조
실시 예 1: 화학식 2( n=l, R1~R8=H 일 때)의 광활성 가교제 화합물의 제조
[반웅식 1]
Figure imgf000041_0001
출발물질 . 4,4,4-trifluorobutan-l-ol (화학식 1) (95.0 g, 0.74 mol)을 triethylamine (135 mi, 0.97 mol), 1 L 의 Methylene Chloride 어 1 녹이고 0°C 로 넁각하였다. 여기에 methanesulfonyl chloride (63.0 ml, 62.0 mol)을 30 분간 천천히 가하였다. 상기 흔합물은 0°C 에서 10 분간 교반하고, 실온에서 2 시간 동안 반응시 켜, 4,4,4-trifluorobutyl methanesulfonate (화학식 2)를 제조하였다.
Figure imgf000041_0002
methyl-4-hydroxybenzoate (화학식 3) (87.3 g, 0.57 mol), K2C03 (95.2 g, 0.69 mol), 4,4,4-trifluorobutyl methanesulfonate (화학식 2) (130.3 g, 0.63 mol)을 2 L 의 acetonitrile 에 넣고 12 시간 동안 reflux 시켰다. 반응물을 상온으로 식히고, 추출하여 화학식 4 의 화합물을 제조하였다. 화학식 4 의 화합물 (160 g, 0.57 mol)을 1.5L methanol 에 넣고, 25% NaOH 370 mL 을 가하여 4 시 간 동안 반웅시켜 화학식 5 의 화합물을 제조하였다.
[반응식 3]
Figure imgf000042_0001
오토클레이브에 4-nitrocinnamic acid (화학식 6) (110 g, 0.57 mol), 메탄을 1.5 L, 50% wet 10% Pd/C (11.0 g, 10% w/w.)을 넣고, 수소 (3 atm) 분위기 에서 24 시간 반웅을 시 켜 화학식 7 의 화합물을 제조하였다.
화학식 7 화합물 (95.0 g, 0.57 mol)을 1,4-dioxane (1L) I Na2C03 (120.6 g in H20 1.2 L)에 녹이고, Boc20 (149 g, 0.68 mol)을 0 °C 에서 가한 후, 실온에서 3 시간 동안 반웅시 켜 화학식 8 의 화합물 (145 g, 96%)을 제조하였다.
화학식 8 의 화합물 (61.0 g, 0.23 mol), TEA (38.6 mL, 0.27 mol)를 DME 700 mL 에 넣고 ethyl chloroformate (26.3 mL, 0.27 mol)을 0 0C 에서 가한 후 24 시간 동안 반웅시 켰다. 반웅물을 0oC 로 넁각하고, NaBH4 (14.8 g, 0.39 mol)을 가한다. 흔합물을 12 시간 반웅시켜 화학식 9 의 화합물을 얻었다. 화학식 9 의 화합물 (I25 g)과 PCC (196 g, 0.91 mol) 및 silica gel (100 g)을 Methylene Chloride (1.7 L)에 넣고, 실온에서 3 시간 반웅시 켜 화학식 10 의 화합물 (57.8 g)을 제조하였다.
[반웅식 4]
Figure imgf000042_0002
4-hydroxyacetophenone (화학식 11) (100 g, 0.73 mol)을 EtOAc (1.5 L)에 녹이고, 상온에서 CuBr2 (328 g, 1.47 mol)을 가하였다. 그리고 12 시간 reflux 시 켜 화학식 12 화합물을 제조하여 , 화학식 12 화합물 (116 g, 0.54 mol), 3,4-dihydro-2H-pyran (200 mL, 2.16 mol)을 PPTS (4.10 g, 0.016 mol)이 포함된 Methylene Chloride 1.5 L 에 넣고, 실은에서 4 시간 동안 반웅시 켜 화학식 13 의 화합물을 제조하였다.
화학식 13 의 화합물 (175 g, 0.54 mol), PPh3 (145 g, 0.55 mol)를 acetonitrile (1.5 L)에 넣고, 실은에서 6 시 간 반웅시 켜 화학식 14 의 화합물을 제조하였다. 화학식 14 의 화합물 (290 g, 0.52 mol)을 THF (2.5 L)에 녹인 후, 2 M Na2C03 (2 L)를 가하여 , 12 시 간 반응시 켜 화학식 15 의 화합물 (226 g, 91%)을 제조하였다.
Figure imgf000043_0001
화학식 10 화합물 (73.8 g, 0.29 mol)과 상기 반웅식 4 에서 제조된 화학식 15 화합물 (171 g, 0.36 mol)을 toluene 에 녹이고, 7 시간 동안 reflux 하여 화학식 16 화합물 (102 g, 76%)을 제조하였다.
화학식 16 의 화합물 (102 g, 0.22 mol)을 2.0 L 의 Methylene Chloride 에 녹이고, TFA (200 mL)를 0 0C 에서 1 시간 동안 가하였다. 그리고 실온에서 4 시간 동안 반응시 켜 화학식 17 의 화합물 (70.2 g, 91%)을 제조하였다.
화학식 17 의 화합물 (7으2 g, 0.20 mol)을 AcOH 200 mL 에 녹이고 epichlorohydrin (20.3 g, 0.22 mol)을 가하여 12 시간 반웅시켜 화학식 18 의 화합물 (85.0 g, 92%)을 제조하였다. 화학식 18 화합물 (85.0 g, 0.18 mol), PPTS (5.67 g, 0.02 mol)을 메탄올에 넣고, 4 시간 동안 반웅시 켜 화학식 19 의 화합물 (60.0 g, 88%)을 제조하였다.
화학식 19 의 화합물 (60.0 g, 0.16 mol)을 1 L 의 Methylene Chloride 에 녹이고, 반웅식 2 에서 제조한 화학식 5 의 화합물 (51.0 g, 0.20 mol), EDCI (45.9 g, 0.25 mol), DMAP (10.4 g, 0.09 mol), DIPEA (89.0 mL, 0.51 mol)을 10 °C 이하에서 가하였다. 이 것을 실온에서 12 시 간 반웅시 킨 후 추출하여 생성물을 얻고, 이 생성물을 컬럼크로마트그래피 [MC/EtOAc(20: l)]를 사용하여 정 제하여 화학식 20 의 화합물 (91.4 g, 94%)을 제조하였다. 실시예 2: 화학식 40(n=l, R1~R4=H 일 때ᅵ의 광활성 가교제 화합물의 제조
[반웅식 6]
Figure imgf000045_0001
Figure imgf000045_0002
4-hydroxyacetophenone (화학식 25) (72.5 g, 0.53 mol)을 DMF (700 mL)에 녹이고, 상기 실시 예 1 의 반웅식 1 에서 제조한 4,4,4-trifluorobiityl methanesulfonate (화학식 2) (152 g, 0.64 mol), K2C03 (110 g, 0.80 mol)와 반웅시 켜 화학식 26 화합물 (98.0 g, 75%)를 제조하였다.
화학식 26 화합물 (98.0 g, 0.4 mol)을 MC/MeOH (2:1, 1.2 L)에 녹이고, Bu4NBr2 (192 g, 0.4 mol)* 10°C 이하에서 천천히 가하였다. 이후 12 시간 동안 반웅시 켜 화학식 27 화합물 (120 g, 93%)을 제조하였다.
화학식 27 화합물 (120 g, 0.4 mol)을 triethylphosphite (193 mL, 1.11 mol)에 넣고, 4 시 간 동안 reflux 하여 화학식 28 화합물 (60 g, 43%)를 제조하였다.
[반웅식 7]
Figure imgf000046_0001
benzophenone (화학식 29) (100 g, 0.55 mol), KOH (30.8 g, 0.55 mol)를 acetonitrile (700 mL)에 넣고, 2 시 간 동안 reflux 하여 화학식 30 화합물 (98.0 g, 87%)을 제조하였다. -78 °C, 질소 분위기 에서 acetonirile (88.0 mL, 1.67 mol), THF (900 mL)의 흔합 용액에 BuLi (2.5 M solution in hexane, 480 mL, 1.19 mol)를 천천히 가하여 , 3 시간 동안 교반하고, 화학식 30 화합물 (98.0 g, 0.48 mol)과 THF (600 mL)을 추가하여 3 시간 반웅시 켜 화학식 31 화합물 (102 g, 87%)을 제조하였다.
Concentrated sulfuric acid (460 mL)과 fuming nitric acid (69.1 mL)¾ 0 에서 -5 °C 사이로 넁각하여 화학식 31 화합물 (91.5 g, 0.37 mol)를 넣고, 10 °C 이하에서 5 시간 동안 반응시켜 화학식 32 화합물 (103 g, 83%)을 제조하였다. 화학식 32 화합물 (109 g, 0.32 mol)을 50% H2S04 (2 L, v/v)에 넣고, 150 °C에서 반웅시 킨 후, 실온으로 온도를 낮추었다. 이후 반웅물을 추출하여 화학식 33 화합물을 제조하였다.
화학식 33 화합물 (143 g, 0.32 mol)을 EtOH (l L)에 녹이고, HC1 을 가한 후, 12 시 간 reflux 시 켜 화학식 34 화합물 (129 g, 94%)을 제조하였다. 오토클레이브에 화학식 34 화합물 (129 g, 0.30 mol), 메탄올 (1.5 L), 10% Pd/C (20 g, 20% w/w)을 넣고, 수소 (3 atm) 분위 기 에서 24 시 간 반웅시켜 화학식 35 화합물을 제조하였다.
화학식 35 화합물 (113 g, 0.30 mol)을 AcOH 300 mL 에 녹이고 epichlorohydrine (33.3 g, 0.36 mol)을 가하여 12 시간 반웅시 켜 화학식 36 화합물 (148 g, 83%)을 제조하였다. 화학식 36 화합물 (148.6 g, 0.25 mol)을 EtOH (1 L)에 녹이고, NaOH (20 g, 0.50 mol)을 물에 녹여 가한 후, 3 시 간 reflux 시 켜 화학식 37 화합물 (107.7 g, 80%)을 제조하였다.
화학식 37 화합물 (107.7 g. 0.20 mol)을 THF (1 L)에 녹이고, BH3SMe2 (45.5 g, 0.60 mol)을 0 0C 에서 천천히 가한 후, 50 °C 에서 5 시 간 반웅시 켜 화학식 38 화합물을 제조하였다. 화학식 38 화합물 (91.9 g, 0.18 mol)을 acetonitrile (1.5 L)에 녹인 용액에 4-formylbenzoic acid (80.6 g, 0.54 mol), EDCI (148.4 g, 0.72 mol), DMAP (12.4 g, 0.11 mol), DIPEA (78.3 mL, 0.45 mol)을 넣고 10 0C 이하에서 반웅시 켜 화학식 39 화합물 (7그 4 g, 55%)를 제조하였다.
상기 반응식 6 에서 제조된 화학식 28 화합물 (93.5g, 0.25 mol)을 DMF
(600 mL)에 녹이고, 60% NaOH (9.72 g, 0.25 mol)을 DMF (400 mL)에 분산시 킨 용액을 넣고, 24 시간 반웅시 켰다. 여기 에 화학식 39 화합물 (77.4 g, 0.10 mol)을 DMF (600 mL)에 녹인 용액을 흔합하여 실온에서 14 시간 반웅시 킨 후, 컬럼 크로마토그래피 [hexane/EtOAc (2: 1)]을 사용하여 정 제하여 화학식 40 화합물 (86.1 g. "70%)을 제조하였다. 액정 배향제의 제조
실시예 3
4,4-메틸렌 디아민 (MDA) 0.75 g, p-페닐 렌 디 아민 (p-PDA) 1.02 g, 콜레스탄을 (3,5-디아미노 벤조에 이트) (CDB) 5.62 g 을 질소분위기 하에서 N- 메틸 -2-피를리돈 (NMP) 69.0 g 에 녹인 다음 20 °C 를 유지하면서 2,3,5- :트리카르복시 사이클로펜틸 아세틱 무수물 (TCAAH) 5.40 g 을 첨가하였다. 여 기에 g-부티로락톤 (GBL) 46.0 g 을 첨가하고 24 시간 동안 반웅시 켰다. 반웅 후 g-부티로락톤 (GBL) 51.13 g, N-메틸 -2-피를리돈 (NMP) 3.83 g, 부틸샐로솔브 (BC) 72.9 g 을 첨가하여 5 wt% 폴리아믹산 용액을 얻었다. (점도 12 cP, 25 °C)
여기 에 상기 실시 예 1 의 광활성 가교제 화합물을 5 wt%가 되도톡 첨 가하여 액정 배향제를 제조하였다. 비교예 1
광활성 가교제 화합물을 첨가하지 않은 것을 제외하고는 실시 예 3 과 동일한 방법으로 액정 배향제를 제조하였다. 액정 배향막 및 액정 표시 소자의 제조
상기 의 실시 예 3 및 비교예 1 에서 수득된 액정 배향제를 각각 공경
1 μηι 의 필터를 사용하여 여과하였다. 이 액정 배향제를 유리 기판의 일면에 설치된 ΠΌ 막을 포함하는 투명 도전막 위에 스피너를 사용하여 회 전수 500 rpm, 회 전 시 간 10 초, 회 전수 1800 rpm, 회 전 시간 20 초 조건의 두 단계로 도포하고, 180 oC 에서 60 초 pre cure, 210 °C 에서 20 분 동안 main cure 하여 용매를 제거함으로써 , 도막을 형성하였다.
그 후에 노광기를 이용하여 300 mJ/cm2, 10 mW 의 세기로 30 초 노광하여 액정 배향막을 갖는 기판을 2 매 (한 쌍) 제조하였다. 이 어서, 이 한 쌍의 액정 배향막을 갖는 기판의 액정 배향막을 갖는 각각의 외 연부에 직경 4 μΦ 의 산화알루미늄 구 함유 에폭시 수지 접착제를 도포한 후, 액정 배향막면이 마주보도록 중첩하여 압착하고, 접 착제를 경화시 켰다. 이어서, 액정 주입구로부터 기판 사이 에 네마틱 액정 (ne 1.5601, n0 1.4780)을 층전한 후 아크릴계 광 경화 접 착제로 액정 주입구를 밀봉하여 액정 표시 소자를 제조하였다. <실험 예 >
액정 표시 소자의 물성 평가
평가 방법
1. 점도
25°C 에서 cannon 점도계를 이용하여 동점도를 측정하고, 비중계로 비중을 측정 한 후 두 값을 곱하여 점도를 계산하였다.
2. 선경사각
문헌 (TJ. Schffer, et.al.,J., Appl., Phys., vol. 19, 2013 (1980))에 기 재된 방법에 따라 He-Ne 레이 저광을 사용하여 결정회 전법에 의 해 측정하였다.
3. 액정 의 배향성
액정 표시 소자에 전압을 온, 오프시 켰을 때의 액정 표시 소자 중의 이상 도메 인 유무를 현미 경으로 관찰하고, 이상 도메 인이 없는 경우를 양호하다고 판단하였다.
4. 전압 유지율
액정 표시 소자에 5 V 의 전압을 60 마이크로 초 동안 인가한 후, 인가 해제로부터 16.67 밀리 초 후의 전압 유지율을 측정하였다. 본 발명의 실시 예 3 및 비교예 1 에 의하여 제조된 액정 표시 소자의 물성평가 결과를 하기 표 1 과 같이 나타내었다. 또한, 노광 전후의 사진을 도 1 및 도 2 에 나타내었다.
【표 1】
구분 선경사각 전압유지율 배향성 노광 전 노광 후 실시예 3 89° 99% 불량 양호
비교예 1 89° 99% 불량 불량 도 1은 본 발명의 실시예 3에 의하여 제조된 액정 표시 소자의 액정 배향 사진을 나타낸 것이다. 도 1 에서, 좌측은 노광 전, 우측은 노광 후의 사진이다.
도 2 는 비교예 1 에 의하여 제조된 액정 표시 소자의 액정 배향 사진을 나타낸 것이다. 도 2 에서, 좌측은 노광 전, 우측은 노광 후의 사진이다. 상기 표 1, 도 1 및 2 晕 참조하면, 본 발명의 실시예에 따라 제조된 액정 표시 소자는 노광 후 특성이 양호하여 비교예에 의한 액정 표시 소자에 비하여 우수한 특성을 나타낸다는 것을 확인할 수 있었다. 또한, 본 발명의 실시예에 따라 제조된 액정 표시 소자는 노광 후 도메인이 전혀 관찰되지 않아 배향 상태가 우수한 것을 확인할 수 있으나, 비교예의 액정 표시 소자는 노광 전 후의 도메인 차이가 적어 배향 상태가 불량한 것을 확인할 수 있었다. .

Claims

【특허청구범위】
【청구항 1】
하기 화학식 I로 표시되는 광활성 가교제 화합물:
[화학식 I]
Figure imgf000051_0001
상기 화학식 I에서
Xi, ¾, X3 및 ¾중 어느 하나 이상은
Figure imgf000051_0002
이고 나머지는 Η 이고:
Ri내지 R8은 서로 동일하거나 상이하고 각각 독립적으로 ,H,CN,N02, CF3, 할로겐, C1~C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고;
A는 이고:
B 는
Figure imgf000051_0003
또는 이며;
n은 1 내지 20의 정수이다.
【청구항 2】
제 1 항에 있어서, . 상기 화학식 I 의 화합물은 하기 화학식 20, 화학식 22 및 화학식 24로 표시되는 화합물로 이루어진 군으로부터 선택되는 것인 광활성 가교제 화합물:
[화학식 20]
Figure imgf000052_0001
상기 화학식 20,22 및 24에서,
R!내지 ¾은 서로 동일하거나 상이하고 각각 독립적으로, H, CN,N02, CF3, 할로겐, C1 C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; n은 1 내지 20의 정수이다. 【청구항 3】
하기 화학식 Π로 표시되는 광활성 가교제 화합물:
Figure imgf000053_0001
상기 화학식 II에서
Χι, X2, X3 및 ¾중 어느 하나 이상은
Figure imgf000053_0002
이고 나머지는 Η 이고:
Ri내지 R8은 서로 동일하거나 상이하고 각각 독립적으로, H,CN,N02, CF3, 할로겐, C1 C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고;
A 는 이고:
B 는
Figure imgf000053_0003
또 이며;
n은 1 내지 20의 정수이다 【청구항 4】
제 3 항에 있어서,
상기 화학식 Π 의 화합물은 하기 화학식 40 으로 표시되는 광활성 ¬교제 화합물:
Figure imgf000054_0001
상기 화학식 40에서,
¾내지 R4는 서로 동일하거나 상이하고 각각 독립적으로, H,CN,NC , CF3, 할로겐, C1 C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고; n은 1 내지 20의 정수이다.
【청구항 5】
제 1 항 내지 제 4 항 중 어느 한 항의 광활성 가교제 화합물; 및 폴리아믹산 또는 폴리이미드를 포함하는 액정 배향제.
【청구항 6】 제 5 항에 있어서, 상기 폴리아믹산 또는 폴리 이미드 100 중량부에 대하여, 상기 광활성 가교제 화합물을 0.1 내지 40 중량부로 포함하는 액정 배향제. 【청구항 7】
제 5 항에 있어서 , 상기 폴리아믹산은 디아민 화합물 및 테트라카르복실산 무수물을 반웅시 켜 제조되는 액정 배향제.
【청구항 8】
제 7 항에' 있어서 , 상기 디아민 화합물은 P-.페닐렌디아민, m- 페닐렌디 아민, 4,4'-디아미노디페닐메탄, 4,4'-디 아미노디페닐에탄, 4,4'- 디아미노디페닐술피드, 4,4'-디 아미노디페닐술폰, 3,3'-디 메틸 -4,4'- 디아미노비페닐, 4,4'-디아미노벤즈아닐리드, 4,4'-디아미 노디페닐에 테르, 1,5- 디 아미노나프탈렌, 2,2'-디 메틸 -4,4'-디아미노비페닐, 5-아미노 -1-(4'-아미노페닐) - 1,3,3-트리 메틸인단, 6-아미노 -1-(4'-아미노페닐) -1,3,3-트리 메틸인단, 3,4'- 디아미노디페닐에 테르, 3,3'-디 아미노벤조페논, 3,4'-디아미노벤조페논, 4,4'- 디아미노벤조페논, 2,2-비스 [4-(4-아미노페녹시)페닐]프로판, 2,2-비스 [4-(4- 아미노페녹시 )페닐]핵사폴루오로프로판, 2,2-비스 (4- 아미노페닐)핵사플루오로프로판, 2,2-비스 [4-(4-아미노페녹시)페닐]술폰, 1,4- 비스 (4-아미노페녹시)벤젠, 1,3-비스 (4-아미노페녹시)벤젠, 1,3-비스 (3- 아미노페녹시)벤젠, 9,9-비스 (4-아미노페닐) -10-히드로안트라센, 2,7- 디아미노플루오렌, 9,9-비스 (4-아미노페닐)플루오렌, 4,4'-메틸렌 -비스 (2- 클로로아닐린), 2,2',5,5'-테트라클로로 -4,4'-디 아미노비페닐, 2,2'-디클로로 -4,4'- 디아미노 -5,5'-디메록시비페닐, 3,3'-디 메록시 -4,4'-디 아미노비페닐, 1,4,4'ᅳ (P- 페닐렌이소프로필리 덴)비스아닐린, 4,4'-(m-페닐렌이소프로필리 덴)비스아닐린, 2,2'-비스 [4-(4-아미노 -2-트리플루오로메틸페녹시 )페닐]핵사플루오로프로판, 4,4'- 디 아미노 -2,2'-비스 (트리플루오로메틸)비페닐, 4,4'-비스 [(4-아미노 -2- 트리플루오로메틸)페녹시 ] -옥타플루오로비페닐, 디 (4-아미노페닐)벤지딘, 1-(4- 아미노페닐) -1,3,3-트리 메틸 -1H-인덴 -5-아민, 1,1-메타크실릴렌디 아민, 1,3- 프로판디아민, 테트라메틸렌디아민, 펜타메틸렌디아민, 핵사메틸렌디아민, 헵타메틸렌디아민, 옥타메틸렌디 아민, 노나메틸렌디 아민, 1,4- 디 아미노시클로헥산, 이소포론디 아민, 테트라히드로디시클로펜타디에 닐렌디 아민, 트리시클로 [6.2.1.02'7]- 운데실렌디 메틸디 아민, 4,4'-메틸렌비스 (시클로핵실아민), 1 ,3- 비스 (아미노메틸)시클로핵산, 2,3-디 아미노피 리 딘, 2,6-디 아미노피 리 딘, 3,4- 디 아미노피 리딘, 2,4-디 아미노피 리미 딘, 5,6-디 아미노 -2,3-디 시아노피 라진, 5,6- 디 아미노 -2,4-디히드록시피 리 미딘, 2,4-디 아미노 -6-디 메틸아미노 -1,3,5-트리아진, 1,4-비스 (3-아미노프로필)피 페라진, 2,4-디 아미노 -6-이소프로폭시 -1,3,5-트리아진, 2,4-디아미노 -6-메특시 -1,3,5-트리아진, 2,4-디 아미노 -6-페닐 -1,3,5-트리 아진, 2,4- 디 아미노 -6-메틸 -S-트리 아진, 2,4-디 아미노 -1,3,5-트리아진, 4,6-디아미노 -2-비 닐 -s- 트리아진, 2,4-디아미 노 -5-페닐티아졸, 2,6-디아미노푸린, 5,6-디아미노 -1 ,3- 디 메틸우라실, 3,5-다아미노 -1,2,4-트리 아졸, 6,9-디 아미노 -2- 에특시 아크리 딘락테이트, 3,8-디아미노 -6-페닐페난트리딘, 1,4-디아미노피페라진, 3,6-디 아미노아크리딘, 비스 (4-아미노페닐)페닐아민, 1ᅳ (3,5-디 아미노페닐 )-3- 데실숙신이미드 및 1-(3,5-디아미노페닐 )-3-옥타데실숙신이미드로 구성된 군에서 선택되는 1 종 이상을 포함하는 액정 배향제.
【청구항 9】
제 5 항의 액정 배향제로부터 형성되는 액정 배향막.
【청구항 10】
제 9 항의 액정 배향막을 구비하는 액정 표시 소자. 【청구항 11】
하기 화학식 19 로 표시 되는 화합물과, 하기 화학식 5 로 표시 되는 화합물을 반웅시 키는 단계를 포함하는 하기 화학식 20 으로 표시되는 광활성 가교제 화합물의 제조 방법 : .
[화학식 19]
Figure imgf000057_0001
Figure imgf000057_0002
Figure imgf000057_0003
상기 화학식 5, 19및 20에서,
i내지 R8은 서로 동일하거나 상이하고 각각 독립적으로,H,CN,N02, CF3, 할로겐, C1 C10의 알킬기 및 C1~C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고;
n은 1 내지 20의 정수이다.
【청구항 12】
하기 화학식 39 로 표시되는 화합물과, 하기 화학식 28 로 표시되는 화합물을 반응시키는 단계를 포함하는 하기 화학식 40으로 표시되는 광활성 가교제 화합물의 제조 방법:
[화학식 39]
Figure imgf000058_0001
[화학식 28]
Figure imgf000058_0002
[화학식 40]
Figure imgf000058_0003
상기 화학식 28, 39및 40에서,
¾내지 ¾는 서로 동일하거나 상이하고 각각 독립적으로, H,CN,N02, CF3, 할로겐, C1~C10의 알킬기 및 C1 C10의 알콕시기로 구성된 군으로부터 선택되는 어느 하나이고;
n은 1 내지 20의 정수이다.
PCT/KR2012/004910 2011-06-23 2012-06-21 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자 WO2012177061A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280030930.0A CN103649199B (zh) 2011-06-23 2012-06-21 光活性交联化合物、其制备方法、液晶配向剂、液晶配向膜、以及液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20110061213 2011-06-23
KR10-2011-0061213 2011-06-23

Publications (2)

Publication Number Publication Date
WO2012177061A2 true WO2012177061A2 (ko) 2012-12-27
WO2012177061A3 WO2012177061A3 (ko) 2013-04-04

Family

ID=47423090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/004910 WO2012177061A2 (ko) 2011-06-23 2012-06-21 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자

Country Status (4)

Country Link
KR (1) KR20130001144A (ko)
CN (1) CN103649199B (ko)
TW (1) TW201309751A (ko)
WO (1) WO2012177061A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204178A1 (ja) * 2015-06-16 2016-12-22 三菱化学株式会社 配向膜及び配向膜用組成物
WO2020105927A1 (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 가교제 화합물, 이를 포함하는 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518521B (zh) * 2013-07-05 2020-04-10 日产化学工业株式会社 聚合物组合物和横向电场驱动型液晶表示元件用液晶取向膜
WO2015026191A1 (ko) * 2013-08-22 2015-02-26 전북대학교산학협력단 액정배향재료, 이를 이용한 액정표시소자 및 액정표시소자의 제조방법
KR101976864B1 (ko) * 2013-08-22 2019-05-09 전북대학교산학협력단 액정 표시 소자의 제조방법 및 이를 이용하여 제조된 액정 표시 소자
KR102267590B1 (ko) 2018-11-20 2021-06-18 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102267591B1 (ko) 2018-11-20 2021-06-18 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
KR102410008B1 (ko) 2019-01-21 2022-06-16 주식회사 엘지화학 액정 배향제 조성물, 이를 이용한 액정 배향막 및 액정표시소자
CN117551267B (zh) * 2024-01-10 2024-04-19 武汉柔显科技股份有限公司 液晶取向剂、液晶取向膜和液晶表示元件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239804B1 (en) * 1986-03-03 1989-08-09 Amoco Corporation Epoxy resins based on tetraglycidyl diamines and the use thereof for epoxy systems and prepregs
KR910009769A (ko) * 1989-11-27 1991-06-28 리챠드 지. 워터맨 신규의 에폭시 중합체성 비선형 광학 물질
EP0573573B1 (en) * 1991-03-01 1999-09-29 The Dow Chemical Company Mesogenic glycidyl amines
KR20000070141A (ko) * 1997-11-13 2000-11-25 기타지마 요시토시 이접착성 폴리에스테르 필름

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101143129B1 (ko) * 2007-08-02 2012-05-08 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 형성 방법 및 액정 표시 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0239804B1 (en) * 1986-03-03 1989-08-09 Amoco Corporation Epoxy resins based on tetraglycidyl diamines and the use thereof for epoxy systems and prepregs
KR910009769A (ko) * 1989-11-27 1991-06-28 리챠드 지. 워터맨 신규의 에폭시 중합체성 비선형 광학 물질
EP0573573B1 (en) * 1991-03-01 1999-09-29 The Dow Chemical Company Mesogenic glycidyl amines
KR20000070141A (ko) * 1997-11-13 2000-11-25 기타지마 요시토시 이접착성 폴리에스테르 필름

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016204178A1 (ja) * 2015-06-16 2016-12-22 三菱化学株式会社 配向膜及び配向膜用組成物
JPWO2016204178A1 (ja) * 2015-06-16 2018-04-12 三菱ケミカル株式会社 配向膜及び配向膜用組成物
WO2020105927A1 (ko) * 2018-11-20 2020-05-28 주식회사 엘지화학 가교제 화합물, 이를 포함하는 액정 배향제 조성물, 이를 이용한 액정 배향막의 제조 방법, 이를 이용한 액정 배향막 및 액정표시소자
CN111836817A (zh) * 2018-11-20 2020-10-27 株式会社Lg化学 交联剂化合物、包含其的液晶取向组合物、制备液晶取向膜的方法、液晶取向膜、使用其的液晶显示器
US11781071B2 (en) 2018-11-20 2023-10-10 Lg Chem, Ltd. Cross-linking agent compound, liquid crystal alignment composition comprising the same, method of preparing liquid crystal alignment film, and liquid crystal alignment film and liquid crystal display using the same
CN111836817B (zh) * 2018-11-20 2023-11-24 株式会社Lg化学 交联剂化合物、液晶取向组合物、制备液晶取向膜的方法、液晶取向膜、液晶显示器

Also Published As

Publication number Publication date
CN103649199A (zh) 2014-03-19
KR20130001144A (ko) 2013-01-03
CN103649199B (zh) 2015-11-25
TW201309751A (zh) 2013-03-01
WO2012177061A3 (ko) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2012177061A2 (ko) 광활성 가교제 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자
KR101625539B1 (ko) 액정 배향제, 액정 표시 소자 및 관련 화합물
KR101143129B1 (ko) 액정 배향제, 액정 배향막 및 그의 형성 방법 및 액정 표시 소자
KR101193350B1 (ko) 액정 배향제 및 액정 배향막의 형성 방법
TWI399596B (zh) 液晶配向劑及液晶顯示元件
TWI386434B (zh) 液晶配向劑及液晶顯示元件
TWI648579B (zh) 化合物、聚合物、液晶配向劑、液晶配向膜以及液晶顯示元件
JP4096944B2 (ja) 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP4978433B2 (ja) 液晶配向剤および液晶表示素子
TW201005005A (en) Liquid crystal alignment agent and liquid crystal display element
TWI461802B (zh) 液晶配向劑及液晶顯示元件
JP5041169B2 (ja) 液晶配向剤および液晶表示素子
KR102096369B1 (ko) 액정 배향제, 액정 배향막, 액정 표시 소자, 중합체 및 화합물
WO2015182894A1 (ko) 광반응성 다이아민 단량체 합성 및 이를 이용한 lcd용 배향막
KR102016949B1 (ko) 아민 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자
US11230670B2 (en) Liquid crystal aligning agent composition, method for producing liquid crystal alignment film using same, and liquid crystal alignment film using same
KR101990302B1 (ko) 디아민 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자
TWI537308B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP2008107814A (ja) 液晶配向剤、液晶配向膜および液晶表示素子
JP2000336168A (ja) ポリアミック酸、ポリイミド、液晶配向剤および液晶表示素子
KR20150138022A (ko) 액정 배향제용 디아민 화합물, 액정 배향제, 액정 배향막 및 액정표시소자
KR102629649B1 (ko) 광정렬 조성물
JP2000063515A (ja) ポリアミック酸、ポリイミドおよび液晶配向剤
JP4924832B2 (ja) 液晶配向剤および液晶表示素子
JP2009075140A (ja) 液晶配向剤および液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802687

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802687

Country of ref document: EP

Kind code of ref document: A2