WO2012176796A1 - Nk細胞の増幅方法 - Google Patents

Nk細胞の増幅方法 Download PDF

Info

Publication number
WO2012176796A1
WO2012176796A1 PCT/JP2012/065718 JP2012065718W WO2012176796A1 WO 2012176796 A1 WO2012176796 A1 WO 2012176796A1 JP 2012065718 W JP2012065718 W JP 2012065718W WO 2012176796 A1 WO2012176796 A1 WO 2012176796A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
positive
amplifying
blood
Prior art date
Application number
PCT/JP2012/065718
Other languages
English (en)
French (fr)
Inventor
米満 吉和
結 原田
智 齊藤
雄一郎 矢崎
正人 岡本
武文 石田尾
Original Assignee
国立大学法人九州大学
テラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, テラ株式会社 filed Critical 国立大学法人九州大学
Priority to US14/129,143 priority Critical patent/US9404083B2/en
Priority to CN201280031188.5A priority patent/CN103620022B/zh
Priority to CA2840161A priority patent/CA2840161C/en
Priority to AU2012274478A priority patent/AU2012274478B2/en
Priority to EP12801859.5A priority patent/EP2725100B1/en
Priority to KR1020147001579A priority patent/KR101963920B1/ko
Publication of WO2012176796A1 publication Critical patent/WO2012176796A1/ja
Priority to HK14103574.2A priority patent/HK1190432A1/xx

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4613Natural-killer cells [NK or NK-T]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0646Natural killers cells [NK], NKT cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2302Interleukin-2 (IL-2)

Definitions

  • the present invention relates to a method for amplifying natural killer cells (NK cells) having high cytotoxic activity with high purity and high amplification factor, and a pharmaceutical composition containing NK cells obtained by the method.
  • NK cells natural killer cells
  • NK cells do not attack normal cells that express MHC class I molecules, but mainly attack cells in which the expression and decrease of MHC class I molecules are reduced.
  • GVH Growth-versus-host
  • Non-patent Document 3 From a single apheresis of normal adult peripheral blood, about 1 ⁇ 10 10 mononuclear cells can be collected, and assuming that the composition ratio of NK cells in the peripheral blood mononuclear cells is about 7%, 7 ⁇ 10 8 Individual NK cells are obtained (Non-patent Document 3). On the other hand, for transplantation of NK cells, 1 ⁇ 10 5 cells / kg to 2 ⁇ 10 7 cells / kg (Non-patent Document 1) or 5 ⁇ 10 5 cells / kg to 8.1 ⁇ 10 7 cells / kg ( Non-patent document 2) NK cells of the order are used. If a patient weighs 60 kg, 6 ⁇ 10 6 to 4.8 ⁇ 10 9 NK cells are required.
  • NK cells obtained from a single apheresis of normal adult peripheral blood.
  • the engraftment period of NK cells was not correlated with the number of NK cells administered, and was 2 to 189 days, and the median was only 10 days.
  • transplantation of NK cells is frequent. This has to be repeated for the patient.
  • NK cells obtained from a donor in a test tube to obtain NK cells sufficient to kill the target cells.
  • Patent document 1 cultivated peripheral blood mononuclear cells of healthy individuals for 13 days in the presence of OKT3, which is an agonist antibody against human CD3, IL-2, and anti-CD16 antibody, to purify NK cells. Amplification was 81.2%, 130 times.
  • Patent Document 2 describe peripheral blood mononuclear cells of healthy individuals by a method using a medium supplemented with IL-2, IL-15, anti-CD3 antibody, 5% human AB serum, tacrolimus and dalteparin.
  • IL-2 peripheral blood mononuclear cells
  • IL-15 peripheral blood mononuclear cells
  • anti-CD3 antibody 5% human AB serum
  • tacrolimus 5% human AB serum
  • tacrolimus dalteparin
  • the present invention provides a method for amplifying NK cells.
  • the method for amplifying NK cells of the present invention comprises preparing a cell population containing NK cells, removing T cells from the cell population containing NK cells, and remaining cells from which the T cells have been removed. Culturing in a medium containing 2500 IU / mL to 2813 IU / mL of IL-2.
  • the step of removing the T cells from the cell population containing the NK cells may be achieved by a step of removing CD3 positive cells.
  • the NK cell amplification method of the present invention may include a step of removing hematopoietic progenitor cells from the cell population containing the NK cells.
  • the step of removing the hematopoietic progenitor cells from the cell population containing the NK cells may be achieved by a step of removing CD34 positive cells.
  • the medium may contain autologous serum, AB type serum, and / or serum albumin.
  • the step of preparing the cell population containing the NK cells may be achieved by a step of separating mononuclear cells from blood cells collected from a subject.
  • the blood cell may be collected from peripheral blood, umbilical cord blood, bone marrow and / or lymph node.
  • the blood cell may be collected from peripheral blood by an apheresis method.
  • the cell population containing the NK cell is a hematopoietic stem cell derived from any stem cell selected from the group consisting of embryonic stem cells, adult stem cells, and induced pluripotent stem (iPS) cells. And at least one selected from the group consisting of cord blood-derived hematopoietic stem cells, peripheral blood-derived hematopoietic stem cells, bone marrow blood-derived hematopoietic stem cells, cord blood mononuclear cells, and peripheral blood mononuclear cells May be prepared from cells.
  • the donor of the cell population containing the NK cells may be derived from the recipient patient himself, a close relative of the patient, or an unrelated patient.
  • the NK cells may be derived from a donor in which the recipient's major histocompatibility antigen (MHC) and killer immunoglobulin-like receptor (KIR) do not match.
  • MHC major histocompatibility antigen
  • KIR killer immunoglobulin-like receptor
  • the present invention provides a pharmaceutical composition for cell therapy comprising NK cells prepared by the amplification method of the present invention.
  • the pharmaceutical composition of the present invention may contain NK cell precursors, T cells, NKT cells, hematopoietic progenitor cells and the like in addition to the amplified NK cells.
  • the pharmaceutical composition of the present invention may be used for treating infectious diseases and / or cancer.
  • the pharmaceutical composition of the present invention may be administered to a patient having an HLA genotype different from that of NK cells prepared by the amplification method of the present invention.
  • the present invention provides a step of preparing a cell population containing the NK cells, a step of removing T cells from the cell population containing the NK cells, and a remaining cell from which the T cells have been removed, from 2500 IU / mL to 2813 IU.
  • a cell therapy comprising culturing in a medium containing / mL of IL-2 and transplanting NK cells amplified from the remaining cells to a patient.
  • the cell therapy may include removing hematopoietic progenitor cells from the cell population containing the NK cells.
  • the amplified NK cell may be transplanted together with an NK cell precursor, T cell, NKT cell, hematopoietic progenitor cell, and the like.
  • the cell therapy of the present invention may be used to treat and / or prevent infection and / or cancer.
  • the cell therapy of the present invention may comprise the step of transplanting into a patient having an HLA genotype different from the NK cells prepared by the amplification method of the present invention.
  • the step of transplanting the NK cells into a patient may be achieved by administering the pharmaceutical composition of the present invention to the patient.
  • the cell population containing the NK cells includes any hematopoietic stem cell derived from any of the group consisting of embryonic stem cells, adult stem cells and induced pluripotent stem (iPS) cells, and umbilical cord Prepared from at least one cell selected from the group consisting of blood-derived hematopoietic stem cells, peripheral blood-derived hematopoietic stem cells, bone marrow blood-derived hematopoietic stem cells, cord blood mononuclear cells, and peripheral blood mononuclear cells May be.
  • the donor of the cell population containing the NK cells may be derived from the recipient patient himself, a close relative of the patient, or an unrelated patient.
  • the NK cells may be derived from a donor in which the recipient's major histocompatibility antigen (MHC) and killer immunoglobulin-like receptor (KIR) do not match.
  • MHC major histocompatibility antigen
  • KIR killer immunoglobulin-like receptor
  • NK cell refers to a CD3-negative CD56-positive mononuclear cell, and particularly has a cytotoxic activity against cells in which the expression of MHC class I molecules is low or the expression is lost.
  • the cell population containing the NK cells can be prepared using various procedures known to those skilled in the art. For example, specific gravity centrifugation can be used when recovering mononuclear cells from blood such as umbilical cord blood and peripheral blood. NK cells can be collected using immunomagnetic beads. Furthermore, the NK cells can be isolated and identified using immunofluorescent staining with a specific antibody against a cell surface marker, using a FACS (Fluorescence activated cell sorter) or a flow cytometer.
  • FACS Fluorescence activated cell sorter
  • the NK cells may include cell surface antigen CD3 using immunomagnetic beads including, but not limited to, Dynabeads (trademark) manufactured by Dynal and CliniMACS (trademark) manufactured by Miltenyi Biotech.
  • it may be prepared by separating and removing cells expressing CD34.
  • a specific binding partner for T cells and / or hematopoietic progenitor cells may be used to selectively injure or kill T cells and / or hematopoietic progenitor cells.
  • the step of removing the T cells from the mononuclear cells may be a step of removing other cell types such as hematopoietic progenitor cells, B cells and / or NKT cells together with the T cells.
  • the step of removing hematopoietic progenitor cells from the mononuclear cells may be a step of removing other cell types such as T cells, B cells and / or NKT cells together with hematopoietic progenitor cells.
  • mononuclear cells separated from umbilical cord blood and peripheral blood may be cryopreserved, thawed according to the time of transplantation into a patient, and used for amplification of NK cells.
  • the mononuclear cells are frozen either during amplification by the NK cell amplification method of the present invention or after the amplification is completed, and are thawed according to the time of transplantation to the patient, and used for transplantation to the patient. May be. Any method known to those skilled in the art may be used for freezing and thawing blood cells. Any commercially available cell cryopreservation solution may be used for freezing the cells.
  • the solution for suspending living NK cells is generally, for example, physiological saline, phosphate buffered saline (PBS), culture medium, serum or the like.
  • the solution may contain pharmaceutically acceptable carriers as pharmaceuticals and quasi drugs.
  • the NK cell therapy of the present invention can be applied to the treatment and / or prevention of various diseases sensitive to NK cells. Examples of the disease include, but are not limited to, oral cancer, gallbladder cancer, bile duct cancer, lung cancer, liver cancer, colon cancer, kidney cancer, bladder cancer, leukemia, and infections caused by viruses, bacteria, and the like.
  • the cell therapy of the present invention may be performed alone or in combination with surgery, chemotherapy, radiation therapy or the like.
  • NK cells may be transplanted, for example, by intravenous, arterial, subcutaneous, intraperitoneal administration or the like.
  • Cell culture media for preparing NK cells of the present invention include KBM501 medium (Kohjin Bio Co., Ltd.), CellGro SCGM medium (Celgenics, Iwai Chemical Co., Ltd.), X-VIVO15 medium (Lonza, Takara Bio Inc.) Company), IMDM, MEM, DMEM, RPMI-1640 and the like.
  • Interleukin-2 may be added to the medium at a concentration that can achieve the object of the present invention.
  • the IL-2 concentration may be 2500 IU / mL to 2813 IU / mL.
  • the IL-2 preferably has a human amino acid sequence, and is preferably produced by recombinant DNA technology for safety.
  • the concentration of IL-2 may be indicated in domestic standard units (JRU) and international units (IU). Since 1 IU is about 0.622 JRU, 1750 JRU / mL is about 2813 IU / mL.
  • the medium may be supplemented with the subject's autologous serum, human AB serum available from BioWhittaker and others, or donated human serum albumin available from the Japanese Red Cross.
  • the autologous serum and the human type AB serum are preferably added at a concentration of 1 to 10%, and the donated human serum albumin is preferably added at a concentration of 1 to 10%.
  • the subject may be a healthy person and a patient suffering from the disease.
  • the medium may contain appropriate proteins, cytokines, antibodies, compounds and other components, provided that the amplification effect of NK cells is not impaired.
  • the cytokines include interleukin 3 (IL-3), interleukin 7 (IL-7), interleukin 12 (IL-12), interleukin-15 (IL-15), and interleukin-21 (IL-21).
  • SCF Stem cell factor
  • Flt3L FMS-like tyrosine kinase 3 ligand
  • the IL-3, IL-7, IL-12, IL-15, IL-21, SCF and Flt3L preferably have a human amino acid sequence, and are preferably produced by recombinant DNA technology for safety.
  • the medium may be replaced at any time after the start of culture, provided that the desired number of NK cells can be obtained, but is preferably every 3-5 days.
  • the culture vessel includes, but is not limited to, a commercially available dish, flask, plate, and multiwell plate.
  • the culture conditions are not particularly limited as long as they do not impair the amplification effect of NK cells, but culture conditions under 37 ° C., 5% CO 2 and saturated water vapor atmosphere are common. Since the object of the present invention is to prepare a large amount of NK cells, the longer the period of culturing in the medium, the more advantageous NK cells can be obtained.
  • the culture period is not particularly limited, provided that NK cells are amplified to the desired number of cells.
  • the cell population containing NK cells may contain NK cell precursors, T cells, NKT cells, hematopoietic progenitor cells and the like in addition to NK cells.
  • Desired NK cells may be selected after amplification using, for example, specific gravity centrifugation, immunomagnetic beads, FACS, flow cytometry, and the like.
  • the NK cells are anti-CD3 antibody, anti-CD16 antibody, anti-CD34 antibody, anti-CD56 antibody, anti-CD69 antibody, anti-CD94 antibody, anti-CD107a antibody, anti-KIR3DL1 antibody, anti-KIR3DL2 antibody, anti-KIR2DL3 antibody, anti-KIR2DL1 antibody.
  • the anti-KIR2DS1 antibody, the anti-KIR2DL5 antibody, the anti-NKp46 antibody, the anti-NKp30 antibody, the anti-NKG2D antibody, and the like may be selectively separated from the cell population.
  • the antibody may be a monoclonal antibody, a polyclonal antibody, or the like.
  • the selection of NK cells may be performed by selectively removing T cells, NKT cells, hematopoietic progenitor cells and other cells.
  • the production of the method and pharmaceutical composition of the present invention is preferably carried out under conditions (good manufacturing practice (GMP)) that conform to the manufacturing control and quality control rules of pharmaceuticals and quasi drugs.
  • GMP good manufacturing practice
  • the cytotoxic activity of the amplified NK cells can be evaluated by methods well known to those skilled in the art.
  • the cytotoxic activity is generally quantified by measuring the radiation dose or fluorescence intensity after incubation of the NK cells (effector cells) and target cells labeled with a radioactive substance, a fluorescent dye or the like.
  • the target cells may be, but are not limited to, K562 cells, acute myeloid leukemia cells, and chronic myeloid leukemia cells.
  • the properties of the amplified NK cells can be examined using RT-PCR, solid-phase hybrid formation, ELISA, Western blot, immunoprecipitation, immunoturbidimetry, FACS, flow cytometry, etc. There is.
  • NK cells whole blood of umbilical cord blood and peripheral blood
  • preparation of autologous serum preparation of mononuclear cells from the whole blood
  • measurement of the number of cells before and after the culture of the mononuclear cells and before and after the culture
  • the measurement of the composition ratio of NK cells, T cells, hematopoietic progenitor cells, and other cell types in the mononuclear cells, calculation of amplification factor of NK cells, and statistical analysis of measurement error and significance are those skilled in the art. It may be carried out using any known method.
  • FIG. 3 is a graph showing the results of double staining with antibodies against CD3 and CD56 and measurement by flow cytometry before removal of CD3-positive cells.
  • 3 is a graph showing the results of measuring and averaging the change over time in the composition ratio of NK cells (CD3 negative / CD56 positive) isolated from 5 healthy individuals with respect to the whole cultured cells. Changes in the composition ratio of NK cells (CD3 negative / CD56 positive) isolated from 3 patients with advanced cancer (oral cancer, gallbladder cancer, and bile duct cancer) over time were measured by flow cytometry. Result diagram. Average growth curve of amplification factor of NK cells (CD3 negative / CD56 positive) isolated from 3 patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer). The graph which compared the flow cytometry analysis result of CD69.
  • NK cells Amplification of NK cells (1) 1. Materials and Methods (1) Blood collection from peripheral blood Peripheral blood was collected from healthy individuals and patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer). This experiment was conducted with the approval of the Kyushu University Medical District Department Clinical Research Ethics Review Committee (approval number 22-176, approval date: March 31, 2011). Written consent has been obtained from the healthy person and the patient. Blood collection, cryopreservation, and thawing were performed by methods well known to those skilled in the art.
  • the intermediate layer collected from one or two centrifuge tubes was collected in one new centrifuge tube, and the volume was adjusted to 50 mL with the diluent.
  • the second centrifugation was performed under conditions of 500 ⁇ g, room temperature, 5 minutes, or 15 minutes.
  • the supernatant was removed and the pellet was suspended in 30 mL of the diluent.
  • the third centrifugation was performed under the conditions of 280 ⁇ g and room temperature for 10 minutes.
  • the supernatant was removed, and the pellet was suspended in PBS supplemented with 2 mM EDTA and 0.1% BSA so that the cell concentration was 1 ⁇ 10 7 cells / mL (hereinafter referred to as “mononuclear”).
  • Sphere suspension ”).
  • CD3-negative cells The remaining cells in the suspension (hereinafter referred to as “CD3-negative cells”) are cell culture media (KBM501) supplemented with 5% autologous serum. 16025015, Kojin Bio Inc .; containing 1750 JRU / mL of IL-2 (hereinafter referred to as “KBM medium”), diluted to 5 ⁇ 10 5 cells / mL, and a 6-well culture plate (140675, nunc, Thermo Fisher Scientific Co., Ltd.). Cell culture was performed for 21 days at 37 ° C., 5% CO 2 and saturated water vapor atmosphere. Medium exchange was performed on the 5th, 9th, 13th and 17th days of culture. The cells were cultured without feeder cells.
  • KBM501 cell culture media
  • KBM medium 1750 JRU / mL of IL-2
  • the cell number of the peripheral blood mononuclear cells was determined by measuring the number of living cells using a hemocytometer between the start of culture and the 21st day.
  • Cell surface markers of the cells include anti-CD3 antibody (317308, BioLegend Japan), anti-CD16 antibody (556618, BD Pharmingen, Nippon Becton Dickinson), anti-CD56 antibody (304607, 318321, BioLegend Japan) , Anti-CD69 antibody (310905, BioLegend Japan), anti-KIR3DL1 / KIR3DL2 antibody (130-095-205, Miltenyi Biotech), anti-KIR2DL3 antibody (FAB2014P, R & D SYSTEMS, Cosmo Bio) KIR2DL1 / KIR2DS1 antibody (339505, BioLegend Japan, Inc.), anti-KIR2DL5 antibody (341003, BioLegend Japan Co., Ltd., anti-NKp46 antibody (331907, Bio
  • FIG. 1A shows the experimental results of double staining with antibodies against CD3 and CD56 and measurement by flow cytometry before the removal of CD3-positive cells.
  • FIG. 1B shows the experimental results of double staining with antibodies against CD3 and CD56 after removal of CD3 positive cells and measurement by flow cytometry.
  • the composition ratio of CD3 positive cells the ratio of CD3 positive cells in the total cultured cells of each experimental group measured by the flow cytometry method is expressed as a percentage.
  • the composition ratio (%) of CD3-positive cells was 69.37% before removal of CD3-positive cells, and 0.68% after removal of CD3-positive cells. As is apparent from these results, CD3-positive cells were significantly removed from the mononuclear cell suspension.
  • FIG. 2A is a proliferation curve of the number of CD3-negative cells separated from mononuclear cells in the peripheral blood of five healthy subjects.
  • FIG. 2B is an average growth curve of the number of CD3-negative cells isolated from mononuclear cells in the peripheral blood of five healthy subjects.
  • the number of CD3-negative cells per 1 mL of peripheral blood collected from 5 healthy subjects is 5 days after culture, 9 days after culture, 13 days after culture, 17 days after culture and 21 days after culture. Measured. The standard deviation of each experimental condition was calculated from the measured values of experimental results repeated five times under the same conditions.
  • CD3 negative cells continued to increase from the beginning of culture until 21st day. The rate of increase continued to increase until the 13th day and decreased after the 13th day.
  • the number of CD3-negative cells increased from about 5 ⁇ 10 5 cells at the start of culture to about 700 ⁇ 10 5 cells after 21 days of culture.
  • FIG. 3A is a proliferation curve of each amplification factor of CD3-negative cells separated from mononuclear cells in the peripheral blood of five healthy subjects.
  • FIG. 3B is an average growth curve of the magnification of CD3 negative cells isolated from mononuclear cells in the peripheral blood of 5 healthy subjects.
  • the amplification factor is calculated by dividing the number of CD3 negative cells after 5 days, 9 days, 13 days, 17 days and 21 days by the number of CD3 negative cells at the start of culture. Calculated as the quotient. The standard deviation of each experimental condition was calculated from the measured values of experimental results repeated five times under the same conditions.
  • the amplification factor of CD3 negative cells continued to increase from the beginning of the culture until the 21st day.
  • the amplification factor continued to increase significantly until day 13, and increased to about 150 times after 21 days of culture.
  • FIG. 4A is a proliferation curve of each amplification factor of NK cells (CD3 negative / CD56 positive) isolated from mononuclear cells in the peripheral blood of five healthy subjects.
  • FIG. 4B is an average growth curve of amplification factor of NK cells (CD3 negative / CD56 positive) isolated from mononuclear cells in peripheral blood of five healthy subjects.
  • CD3-negative cells were double-stained with antibodies against CD3 and CD56 and analyzed by flow cytometry.
  • the amplification factor was calculated as the quotient obtained by dividing the number of NK cells after 7 days, 14 days and 21 days by the number of NK cells at the start of culture.
  • the standard deviation of each experimental condition was calculated from the measured values of experimental results repeated five times under the same conditions.
  • the amplification factor of NK cells continued to increase from the beginning of culture until the 21st day.
  • the amplification factor continued to increase significantly up to day 14, and increased to about 400 times after 21 days of culture.
  • FIG. 5A shows the results of an experiment in which the change over time in the composition ratio of NK cells (CD3 negative / CD56 positive) isolated from 5 healthy subjects to the whole cultured cells was measured by a flow cytometry method.
  • FIG. 5B shows an experiment in which the change over time in the average value of the composition ratio of NK cells (CD3 negative / CD56 positive) isolated from 5 healthy subjects to the whole cultured cells was measured by flow cytometry and averaged. It is a result. 5A and 5B, CD3 negative cells were double-stained with antibodies against CD3 and CD56 and analyzed by flow cytometry.
  • the ratio of NK cells in the total cultured cells of each experimental group, measured by flow cytometry, is expressed as a percentage.
  • the vertical axis of the graph is the composition ratio (%) of NK cells (CD3 negative / CD56 positive) to the whole cultured cells, and the horizontal axis is the number of culture days.
  • the standard deviation of each experimental condition was calculated from the measured values of experimental results repeated five times under the same conditions.
  • the composition ratio of NK cells continued to increase from the beginning of culture until the 21st day.
  • the composition ratio of the NK cells continued to increase significantly until the 14th day and increased to about 90% after 14 days of culture.
  • the present invention has been shown to selectively amplify NK cells over time.
  • FIG. 6A shows the composition ratio of NK cells (CD3 negative / CD56 positive) isolated from three patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer) to the whole cultured cells. It is the experimental result which measured the change with time by the flow cytometry method.
  • FIG. 6B is an average growth curve of amplification factor of NK cells (CD3 negative / CD56 positive) isolated from 3 patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer).
  • the “constituent ratio of NK cells” the ratio of NK cells in the total cultured cells of each experimental group, measured by flow cytometry, is expressed as a percentage.
  • FIG. 6A shows the composition ratio of NK cells (CD3 negative / CD56 positive) isolated from three patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer) to the whole cultured cells. It is the experimental result which measured the change with time by the flow cytometry method.
  • FIG. 6B is an
  • the vertical axis represents the composition ratio (%) of NK cells (CD3 negative / CD56 positive) with respect to the whole cultured cells, and the horizontal axis represents the number of culture days.
  • “Amplification magnification of NK cells” represents the result of dividing the number of NK cells after amplification by the number of NK cells present in peripheral blood mononuclear cells before amplification.
  • the vertical axis represents the amplification factor of NK cells
  • the horizontal axis represents the number of culture days. The standard deviation of each experimental condition was calculated from the measured values of the experimental results repeated three times under the same conditions. As shown in FIG.
  • the composition ratio of NK cells continued to increase remarkably from the beginning of the culture to the 14th day, and increased to about 85% after the 14-day culture.
  • the amplification factor of NK cells continued to increase remarkably from the beginning of the culture to the 14th day, and increased to about 140 times after the 14-day culture.
  • the proportion of NK cells decreased due to the proliferation of CD3-positive cells.
  • the proliferation of the CD3 positive cells hardly affected the amplification of NK cells. From the above results, it was shown that NK cells isolated from patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer) are amplified over time. In addition, it was suggested that the present invention can amplify NK cells isolated from patients suffering from cancer, infectious diseases, etc. over time.
  • FIGS. 7, 9 and 11 show graphs comparing the results of flow cytometry analysis of each cell surface marker. Moreover, the graph of the measured value of the mean fluorescence intensity (MFI) which compared the flow cytometry analysis result of CD69 and CD16 to FIG. 8 and 10 is shown. The standard deviation of each experimental condition was calculated from the measured values of the experimental results repeated three times under the same conditions.
  • the cells amplified by the method of the present invention strongly expressed CD69, KIR2DL3, KIR2DL1 / KIR2DS1, KIR2DL5, NKp30, and NKG2D as compared to the cells before amplification. .
  • the expression of CD69 was about 100%.
  • the cells prepared by the method of the present invention were shown to express differentiation markers as NK cells.
  • the NK cells have high cytotoxic activity.
  • NK cells can be selectively and efficiently amplified by removing CD3-positive cells, ie, T cells, and then culturing them in the KBM medium. It was suggested that a large amount of NK cells can be prepared not only from healthy subjects but also from patients suffering from cancer, infectious diseases and the like. Moreover, it was suggested that the method of the present invention can remarkably amplify not only peripheral blood-derived NK cells but also cells derived from other tissues / organs, particularly umbilical cord blood-derived NK cells.
  • NK cells were prepared from healthy individuals according to the method described in Example 1.
  • CellGro SCGM 2001, Cellogenics, Iwai Chemicals
  • 2500 IU / mL IL-2 AF-200-02-2, PeproTech, Toyobo Co., Ltd.
  • 5% autologous serum "CellGro medium”
  • the NK cells were amplified in the KBM medium and the CellGro medium according to the method described in Example 1.
  • FIG. 12 is a growth curve of amplification factor of NK cells cultured in KBM medium and CellGro medium.
  • the amplification factor was calculated as the quotient obtained by dividing the number of NK cells after 7 days, 14 days and 21 days by the number of NK cells at the start of culture. The standard deviation of each experimental condition was calculated from the measured values of the experimental results repeated twice under the same conditions.
  • the amplification factor of NK cells continued to increase in the KBM medium and CellGro medium from the start of culture until the 21st day. After 21 days of culture, the amplification factor was about 670 times in the KBM medium and about 140 times in the CellGro medium.
  • NK cells are sufficiently amplified in the KBM medium and the CellGro medium.
  • NK cells can be amplified in media containing 2500 IU / mL to 2813 IU / mL IL-2 regardless of the type of cell culture media.
  • Cytotoxic activity of amplified NK cells Materials and Methods (1) Quantification of cytotoxic activity NK cells were prepared according to the method described in Example 1 and used as effector cells. K562 cells (chronic myeloid leukemia cells) were prepared by methods well known to those skilled in the art and used as target cells. The cytotoxic activity of amplified NK cells and non-amplified NK cells (hereinafter referred to as “non-amplified NK cells”) was quantified by methods well known to those skilled in the art.
  • the target cells are cultured in RPMI-1640 medium supplemented with 3-3'-dioctadesiloxacarbocyanine (D4292, Sigma-Aldrich Japan Co., Ltd.) (final concentration: 0.01 mM) for 10 minutes.
  • the target cells were washed three times with PBS ( ⁇ ) and serum-free IMDM medium after labeling.
  • the effector cells and the target cells were seeded in a round bottom 96-well culture plate and co-cultured in serum-free IMDM medium for 2 hours.
  • the ratio of effector cells to target cells (E: T ratio) was adjusted to 3: 1, 2: 1, 1: 1, 1: 5, and 1:10. Cytotoxic activity (%) was quantified by flow cytometry using anti-MHC class I antibody (311409, BioLegend Japan) and 7-amino-actinomycin D (A9400, Sigma-Aldrich Japan). .
  • NK cell differentiation marker NK cells were amplified according to the method described in Example 1. At the start of culture, after culturing for 3 days, after culturing for 7 days, after culturing for 14 days and after culturing for 21 days, the NK cells and the K562 cells were co-cultured at a 2: 1 E: T ratio for 2 hours. . Thereafter, the composition ratio of CD107a positive cells in the NK cells was analyzed by flow cytometry using an anti-CD107a antibody (328606, BioLegend Japan).
  • FIG. 13 is a graph showing the experimental results of examining the cytotoxic activity of peripheral blood-derived NK cells amplified by the method of the present invention against K562.
  • the vertical axis represents cytotoxic activity (unit:%).
  • the white bar indicates the cytotoxic activity of non-amplified NK cells, and the black bar indicates the cytotoxic activity of amplified NK cells.
  • the horizontal axis represents the E: T ratio between amplified NK cells or non-amplified NK cells and K562 cells. When the E: T ratio was 3: 1, the cytotoxic activity was about 30% for unamplified NK cells and about 110% for amplified NK cells.
  • the cytotoxic activity was about 20% for unamplified NK cells and about 107% for amplified NK cells.
  • the E: T ratio was 1: 1, the cytotoxic activity was about 10% for unamplified NK cells and about 100% for amplified NK cells.
  • the E: T ratio was 1: 5 and 1:10, the cytotoxic activity of the amplified NK cells was about 25% and about 15%, respectively.
  • FIG. 14 shows the results of experiments in which the change over time in the composition ratio of CD107a-positive cells isolated from healthy subjects to the whole cultured cells was measured by flow cytometry. The standard deviation of each experimental condition was calculated from the measured values of experimental results repeated five times under the same conditions.
  • “constituent ratio of CD107a positive cells” the ratio of CD107a positive cells in the total cultured cells of each experimental group, measured by flow cytometry, is expressed as a percentage.
  • the vertical axis represents the composition ratio (%) of CD107a positive cells to the whole cultured cells, and the horizontal axis represents the number of culture days. The composition ratio of CD107a positive cells was increased to about 35% by the third day from the start of the culture, and the composition ratio was maintained even on the 21st day.
  • NK cells amplified according to the present invention have high cytotoxic activity. Therefore, it was shown that the present invention can selectively and efficiently amplify NK cells having high cytotoxic activity without using feeder cells, NK cells transfected with foreign molecules, or the like. It was also suggested that NK cells have high cytotoxic activity when amplified from cells derived from other tissues and organs, particularly cells derived from umbilical cord blood, as well as cells derived from peripheral blood.
  • NK cell amplification (3) (repeated removal of CD3 positive cells) After the experiments of Examples 1 to 3, CD3 positive cells increased non-selectively as NK cell amplification experiments were repeated, and the composition ratio of CD3 positive cells to the whole cultured cells was as shown in the results of this example. The knowledge that it may exceed 30% was obtained. The frequency of non-selective increase of CD3-positive cells was about 30% of the experiments in which NK cells were amplified using peripheral blood mononuclear cells collected by apheresis from patients with advanced cancer ( Data is not shown.) Therefore, in order to selectively amplify NK cells, it was attempted to repeat the step of removing CD3-positive cells.
  • NK cells were amplified and cell number and cell surface markers were analyzed.
  • Mononuclear cell suspensions were prepared from patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer). Removal of CD3 positive cells was performed once or twice.
  • CD3-negative cells were cultured in the KBM medium for 14 days.
  • FIG. 15 is a bar graph showing the composition ratio of NK cells (CD3 negative / CD56 positive) with respect to the whole cultured cells after removal of CD3 positive cells once and twice.
  • the error bar for each experimental condition indicates the standard error of the measured value of the experimental result repeated three times under the same condition.
  • the composition ratio of NK cells, CD3 positive cells and other cells the percentages of NK cells, CD3 positive cells and other cells in the total cultured cells of each experimental group, measured by flow cytometry, are percentages. expressed.
  • the vertical axis of the graph is the composition ratio (%) of NK cells, CD3 positive cells and other cells to the whole cultured cells, and the horizontal axis is the number of removals of CD3 positive cells.
  • the composition ratio (%) of the NK cells to the whole cultured cells was about 50% when the CD3 positive cells were removed once and about 65% when the CD3 positive cells were removed twice.
  • NK cells were amplified and cell number and cell surface markers were analyzed.
  • Mononuclear cell suspensions were prepared from patients with advanced cancer (oral cancer, gallbladder cancer and bile duct cancer). After removal of CD3 positive cells, hematopoietic progenitor cells were removed.
  • the removal of the hematopoietic progenitor cells is performed by removing cells expressing CD34 (CD34 positive cells), biotinylated anti-CD34 antibody (343523, BioLegend Japan Co., Ltd.) and magnetic beads (Dynabeads biotin binder, 110-47, Life Technology Japan Co., Ltd.). Briefly, the CD34 positive cells were reacted with the biotinylated anti-CD34 antibody. Thereafter, centrifugation was performed, the supernatant was removed, and a suspension of cells bound with the antibody was prepared. The magnetic beads are washed once with 0.1% BSA was added PBS, the cells 10 7 per 50 ⁇ L is added to the suspension.
  • the suspension containing the magnetic beads was stirred with a rotator at 4 ° C. for 30 minutes.
  • the magnetic beads were separated from the suspension by a magnet, and CD34 positive cells were removed.
  • the remaining cells hereinafter referred to as “CD3 and CD34 negative cells” in the suspension were cultured in the KBM medium for 14 days.
  • an anti-CD34 antibody (343505, BioLegend Japan Co., Ltd.) was additionally used.
  • FIG. 16A is a bar graph showing the composition ratio of CD34 positive cells in CD3 negative cells before amplification and CD3 and CD34 negative cells.
  • FIG. 16B is a bar graph showing the composition ratio of CD3 positive cells in CD3 negative cells before amplification and CD3 and CD34 negative cells.
  • the error bar for each experimental condition indicates the standard error of the measured value of the experimental result repeated three times under the same condition.
  • the composition ratio of CD34 positive cells and CD3 positive cells the ratio of CD34 positive cells and CD3 positive cells in all cells of each experimental group, measured by flow cytometry, is expressed as a percentage.
  • the vertical axis of the graph represents the composition ratio (%) of CD34 positive cells and CD3 positive cells before amplification to the whole cells.
  • the horizontal axis of the graph indicates the cell type of each experimental group for amplification.
  • the composition ratio (%) of CD34 positive cells before amplification was about 0.15% for CD3 negative cells and about 0.02% for CD3 and CD34 negative cells.
  • the composition ratio (%) of CD3 positive cells before amplification was about 0.15% for CD3 negative cells and about 0.25% for CD3 and CD34 negative cells.
  • FIG. 17 is a bar graph showing the composition ratio of NK cells (CD3 negative / CD56 positive) to the whole cultured cells in the amplified CD3 negative cells and CD3 and CD34 negative cells.
  • the error bar for each experimental condition indicates the standard error of the measured value of the experimental result repeated three times under the same condition.
  • the composition ratio of NK cells, CD3 positive cells and other cells the percentages of NK cells, CD3 positive cells and other cells in the total cultured cells of each experimental group, measured by flow cytometry, are percentages. expressed.
  • the vertical axis of the graph represents the composition ratio (%) of NK cells, CD3 positive cells and other cells to the whole cultured cells.
  • the horizontal axis of the graph indicates the cell type of each experimental group used for amplification.
  • the composition ratio (%) of NK cells after amplification to the whole cultured cells was about 60% for CD3 negative cells and about 90% for CD3 and CD34 negative cells.
  • NK cells CD3 negative / CD56 positive
  • the composition ratio of NK cells was remarkably increased by removing CD3 positive cells and CD34 positive cells.
  • NK cells are amplified using peripheral blood mononuclear cells collected by apheresis
  • NK cells are amplified with high purity by removing CD3-positive cells and CD34-positive cells. It was shown that it can be done.
  • NK cells could be prepared in large quantities by removing CD3-positive cells (T cells) from peripheral blood-derived mononuclear cells. Further, the cells amplified by the method of the present invention had a very high cytotoxic activity, as revealed by the experimental results of this example. Furthermore, NK cells could be prepared with high purity by removing CD3-positive cells (T cells) and CD34-positive cells (hematopoietic progenitor cells) from mononuclear cells derived from peripheral blood.
  • cytotoxic activity of NK cells is low in the currently reported NK cell amplification methods.
  • NK cells derived from peripheral blood of healthy subjects
  • Patent Literature 1). Tanaka, J .;
  • the purity is 96.8%
  • the amplification factor is 277 times
  • the present invention is remarkably superior to the prior art because the cytotoxic activity of NK cells is high and there is no risk of the feeder cells being mixed into the final product. Therefore, the present invention is useful for preparing NK cells having high cytotoxic activity in large quantities with high purity from collected blood cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Developmental Biology & Embryology (AREA)
  • Virology (AREA)

Abstract

 採取された血球細胞から、試験管内でNK細胞を増幅させて、細胞療法の最適数のNK細胞を調製する技術を開発する。 本発明はNK細胞の増幅方法を提供する。本発明のNK細胞の増幅方法は、NK細胞を含む細胞集団を調製するステップと、前記NK細胞を含む細胞集団からT細胞を除去するステップと、前記T細胞が除去された残りの細胞を、2500IU/mLないし2813IU/mLのIL-2を含む培地で培養するステップとを含む。本発明のNK細胞の増幅方法は、前記NK細胞を含む細胞集団から造血前駆細胞を除去するステップを含む場合がある。本発明は、本発明のNK細胞の増幅方法によって調製されるNK細胞を含む、細胞療法のための医薬品組成物を提供する。本発明の細胞療法のための医薬品組成物は、感染症及び/又は癌を治療するために用いられる場合がある。

Description

NK細胞の増幅方法
 本発明は、高い細胞傷害活性を有するナチュラルキラー細胞(NK細胞)を、高い純度及び高い増幅倍率で増幅する方法と、該方法によって得られるNK細胞を含む医薬品組成物とに関する。
 NK細胞は、MHCクラスI分子を発現する正常細胞は攻撃しないで、MHCクラスI分子の発現が低下及び欠損した細胞を主に攻撃する。そこで癌及び感染症の細胞療法に同種NK細胞を用いると、GVH(Graft-versus-host)病の副作用を回避できる利点がある。実際、Millerら(非特許文献1)及びRubnitzら(非特許文献2)の報告によると、癌患者をレシピエントとし、その近縁の健常者のドナーの新鮮な末梢血単核球をNK細胞を濃縮したうえで移植したとき、移植されたNK細胞は、レシピエントに副作用を起こすことなく、一時的に生着し、細胞傷害活性を保持した。しかし、NK細胞の移植療法の有効性を示す臨床治験の報告はまだない。その理由の1つは、ドナーからリンパ球アフェレーシスで回収できる細胞数に限度があるため、癌細胞及び病原体感染細胞のような標的細胞を死滅させるのに十分な数のNK細胞を標的細胞が死滅するまでの期間レシピエント体内に滞留させることができないからである。
 正常な成人の末梢血の1回のアフェレーシスからは約1×1010個の単核球が回収でき、末梢血単核球中のNK細胞の構成比率を約7%とすると、7×10個のNK細胞が得られる(非特許文献3)。一方、NK細胞の移植には、1×10個/kgないし2×10個/kg(非特許文献1)か、5×10個/kgないし8.1×10個/kg(非特許文献2)かのオーダーのNK細胞が用いられる。患者の体重を60kgとすると、6×10個ないし4.8×10個のNK細胞が必要となる。これは、正常な成人の末梢血の1回のアフェレーシスから得られるNK細胞の0.0086倍ないし6.86倍に相当する。しかし、例えば非特許文献2によると、NK細胞の生着期間は投与されたNK細胞の数とは相関がみられず、2日ないし189日で、中央値は10日にすぎなかった。すると、癌細胞及び病原体感染細胞のような標的細胞を死滅させるのに十分な数のNK細胞を、標的細胞が死滅するまでの期間レシピエント体内に滞留させるためには、NK細胞の移植が頻繁に繰り返される必要があり、これは患者に大きな負担となる。
 そこで、ドナーから得たNK細胞をいったん試験管内で培養増幅して、標的細胞を死滅させるのに十分なNK細胞を得る技術の開発が進められている。Terunuma,H.ら(特許文献1)は、ヒトCD3に対するアゴニスト抗体であるOKT3と、IL-2と、抗CD16抗体との存在下で健常者の末梢血単核球を13日間培養して、NK細胞を純度81.2%、130倍に増幅した。また、K562細胞に対する前記NK細胞の細胞傷害活性(E:T=3:1)は66%だった。Tanaka,J.ら(特許文献2)は、IL-2、IL-15、抗CD3抗体、5%のヒトAB型血清、タクロリムス及びダルテパリンが添加された培地を用いる方法によって、健常者の末梢血単核球細胞を21日間培養して、NK細胞を純度73.4%、6268倍に増幅した。また、K562細胞に対する前記NK細胞の細胞傷害活性(E:T=1:1)は約55%だった。Carlens,S.ら(非特許文献4)は、ヒトCD3に対するアゴニスト抗体であるOKT3と、IL-2との存在下で健常者の末梢血単核球を21日間培養して、NK細胞を純度55%、193倍に増幅したと報告した。また、K562細胞に対する前記NK細胞の細胞傷害活性(E:T=1:1)は45%だった。Alici,E.ら(非特許文献5)は、同様の条件でミエローマ患者の末梢血単核球を20日間培養して、NK細胞を純度65%、1625倍に増幅したと報告した。また、K562細胞に対する前記NK細胞の細胞傷害活性(E:T=1:1)は約10%だった。Fujisaki,H.ら(非特許文献6)は、NK細胞を活性化する因子を発現するように遺伝的に改変された白血病細胞をフィーダー細胞として用いる培養条件で健常者の末梢血単核球を21日間培養して、NK細胞を純度96.8%、277倍に増幅したと報告した。また、K562細胞に対する前記NK細胞の細胞傷害活性(E:T=1:1)の最大値は約90%だった。
 Terunuma,H.ら(特許文献1)、Tanaka,J.ら(特許文献2)、Carlens,S.ら(非特許文献4)及びAlici,E.ら(非特許文献5)の方法で増幅されたNK細胞の細胞傷害活性(E:T=1:1)は、それぞれ、66%、約55%、45%及び約10%であった。したがって、従来技術では、NK細胞の細胞傷害活性が低いため、治療効果が低く、NK細胞の投与数が増大するので好ましくない。Fujisaki,H.ら、(非特許文献6)の方法では、増幅されたNK細胞の細胞傷害活性は約90%(最大値)であった。しかし、遺伝的に改変された腫瘍細胞がフィーダー細胞として用いられるため、該細胞が最終産物に混入するリスクがあるので好ましくない。
特開2007-297291号公報 特願2011-140504号出願明細書
Miller,J.S.ら、Blood、105:3051(2005) Rubnitz,J.E.ら、J.Clin.Oncol.、28:955(2010) Cho,D.及びCampana,D.、Korean J.Lab.Med.、29:89(2009) Carlens,S.ら、Hum.Immunol.、62:1092(2001) Alici,E.ら、Blood、111:3155(2008) Fujisaki,H.ら、Cancer Res.、69:4010(2009)
 そこで、フィーダー細胞を用いないで、臍帯血からでも、末梢血からでも、高い細胞傷害活性を有するNK細胞を高純度で増幅できる技術を開発する必要がある。
 本発明はNK細胞の増幅方法を提供する。本発明のNK細胞の増幅方法は、NK細胞を含む細胞集団を調製するステップと、前記NK細胞を含む細胞集団からT細胞を除去するステップと、前記T細胞が除去された残りの細胞を、2500IU/mLないし2813IU/mLのIL-2を含む培地で培養するステップとを含む。
 本発明のNK細胞の増幅方法において、前記NK細胞を含む細胞集団から前記T細胞を除去するステップは、CD3陽性細胞を除去するステップによって達成される場合がある。
 本発明のNK細胞の増幅方法は、前記NK細胞を含む細胞集団から造血前駆細胞を除去するステップを含む場合がある。
 本発明のNK細胞の増幅方法において、前記NK細胞を含む細胞集団から前記造血前駆細胞を除去するステップは、CD34陽性細胞を除去するステップによって達成される場合がある。
 本発明のNK細胞の増幅方法において、前記培地は、自家血清、AB型血清、及び/又は、血清アルブミンを含む場合がある。
 本発明のNK細胞の増幅方法において、前記NK細胞を含む細胞集団を調製するステップは、被験者から採取された血球細胞から単核球を分離するステップによって達成される場合がある。
 本発明のNK細胞の増幅方法において、前記血球細胞は、末梢血、臍帯血、骨髄及び/又はリンパ節から採取される場合がある。
 本発明のNK細胞の増幅方法において、前記血球細胞は末梢血からアフェレーシス法により採取される場合がある。
 本発明のNK細胞の増幅方法において、前記NK細胞を含む細胞集団は、胚性幹細胞、成体幹細胞及び人工多能性幹(iPS)細胞からなるグループから選択されるいずれかの幹細胞由来の造血幹細胞と、臍帯血由来の造血幹細胞と、末梢血由来の造血幹細胞と、骨髄血由来の造血幹細胞と、臍帯血単核球と、末梢血単核球とからなる群から選択される少なくとも1種類の細胞から調製される場合がある。前記NK細胞を含む細胞集団のドナーは、レシピエントである患者自身か、該患者の近縁者か、患者とは血縁関係のない者かに由来する場合がある。前記NK細胞は、レシピエントの主要組織適合性抗原(MHC)と、キラー免疫グロブリン様受容体(Killer Immunoglobulin-like Receptor:KIR)とが不一致であるドナーに由来する場合がある。
 本発明は、本発明の増幅方法によって調製されるNK細胞を含む、細胞療法のための医薬品組成物を提供する。本発明の医薬品組成物は、増幅されたNK細胞の他に、NK細胞前駆体、T細胞、NKT細胞、造血前駆細胞等を含む場合がある。
 本発明の医薬品組成物は、感染症及び/又は癌を治療するために用いられる場合がある。
 本発明の医薬品組成物は、本発明の増幅方法によって調製されるNK細胞と異なるHLA遺伝子型を有する、患者に投与される場合がある。
 本発明は、前記NK細胞を含む細胞集団を調製するステップと、前記NK細胞を含む細胞集団からT細胞を除去するステップと、前記T細胞が除去された残りの細胞を、2500IU/mLないし2813IU/mLのIL-2を含む培地で培養するステップと、前記残りの細胞から増幅されたNK細胞を患者に移植するステップとを含む、細胞療法を提供する。前記細胞療法は、前記NK細胞を含む細胞集団から造血前駆細胞を除去するステップを含む場合がある。前記NK細胞を患者に移植するステップにおいて、増幅されたNK細胞は、NK細胞前駆体、T細胞、NKT細胞、造血前駆細胞等とともに移植される場合がある。本発明の細胞療法は、感染症及び/又は癌を治療及び/又は予防するために用いられる場合がある。本発明の細胞療法は、本発明の増幅方法によって調製されるNK細胞と異なるHLA遺伝子型を有する患者に移植するステップを含む場合がある。本発明の細胞療法において、前記NK細胞を患者に移植するステップは、本発明の医薬品組成物を患者に投与するステップによって達成される場合がある。
 本発明の細胞療法において、前記NK細胞を含む細胞集団は、胚性幹細胞、成体幹細胞及び人工多能性幹(iPS)細胞からなるグループから選択されるいずれかの幹細胞由来の造血幹細胞と、臍帯血由来の造血幹細胞と、末梢血由来の造血幹細胞と、骨髄血由来の造血幹細胞と、臍帯血単核球と、末梢血単核球とからなる群から選択される少なくとも1種類の細胞から調製される場合がある。前記NK細胞を含む細胞集団のドナーは、レシピエントである患者自身か、該患者の近縁者か、患者とは血縁関係のない者かに由来する場合がある。前記NK細胞は、レシピエントの主要組織適合性抗原(MHC)と、キラー免疫グロブリン様受容体(Killer Immunoglobulin-like Receptor:KIR)とが不一致であるドナーに由来する場合がある。
 本明細書において「NK細胞」とは、CD3陰性CD56陽性の単核球をいい、特にMHCクラスI分子の発現が少ないか、該発現が消失している細胞に対する細胞傷害活性を有する。
 本発明の増幅方法において、前記NK細胞を含む細胞集団は、当業者に知られたさまざまな手順を用いて調製することができる。例えば、臍帯血及び末梢血のような血液から単核球を回収する際には、比重遠心法を用いることができる。またNK細胞は、免疫磁気ビーズを用いて採取することができる。さらに前記NK細胞は、細胞表面マーカーに対する特異的抗体で免疫蛍光染色を行い、FACS(Fluorescence activated cell sorter)又はフローサイトメーターを用いて単離・同定できる。また、前記NK細胞は、Invitrogen社から販売されるDynal社製Dynabeads(商標)や、ミルテニーバイオテック社のCliniMACS(商標)を含むがこれらに限定されない免疫磁気ビーズを用いて、細胞表面抗原CD3及び/又はCD34を発現する細胞を分離除去して調製されてもかまわない。また、T細胞及び/又は造血前駆細胞に対する特異的結合パートナーを利用して、T細胞及び/又は造血前駆細胞を選択的に傷害又は死滅させる場合がある。なお、前記T細胞を前記単核球から除去するステップは、他の細胞タイプ、例えば、造血前駆細胞、B細胞及び/又はNKT細胞をT細胞とともに除去するステップであってもかまわない。造血前駆細胞を前記単核球から除去するステップは、他の細胞タイプ、例えば、T細胞、B細胞及び/又はNKT細胞を造血前駆細胞とともに除去するステップであってもかまわない。
 本発明の増幅方法において、臍帯血及び末梢血から分離された単核球は凍結保存され、患者への移植時期に応じて解凍され、NK細胞の増幅に供される場合がある。あるいは、前記単核球は、本発明のNK細胞の増幅方法によって増幅される途中か、増幅が終わった後かに凍結され、患者への移植時期に応じて解凍され、患者への移植に供される場合がある。血球細胞の凍結及び解凍は当業者に周知のいかなる方法を用いてもかまわない。前記細胞の凍結には、いずれかの市販の細胞凍結保存液が用いられる場合がある。
 本発明の細胞療法において、生きているNK細胞を懸濁するための溶液は、例えば、生理食塩水、リン酸緩衝生理食塩水(PBS)、培地、血清等が一般的である。前記溶液は、医薬品及び医薬部外品として薬学的に許容される担体を含む場合がある。本発明のNK細胞療法は、NK細胞に感受性を有するさまざまな疾患の治療及び/又は予防に適用することができる。前記疾患は、例えば、口腔癌、胆嚢癌、胆管癌、肺癌、肝臓癌、大腸癌、腎臓癌、膀胱癌、白血病や、ウイルス、細菌等による感染症を含むが、これらに限定されない。本発明の細胞療法は、単独か、あるいは外科療法、化学療法、放射線療法等と組み合わせて実施される場合がある。本発明の細胞療法において、NK細胞は、例えば、静脈、動脈、皮下、腹腔内等への投与によって移植される場合がある。
 本発明のNK細胞を調製するための細胞培養用培地は、KBM501培地(コージンバイオ株式会社)、CellGro SCGM培地(セルジェニックス、岩井化学薬品株式会社)、X-VIVO15培地(ロンザ、タカラバイオ株式会社)、IMDM、MEM、DMEM、RPMI-1640等を含むが、これらに限定されない。
 前記培地には、インターロイキン-2(IL-2)が、本発明の目的を達成できる濃度で添加される場合がある。前記IL-2の濃度は、2500IU/mLないし2813IU/mLの場合がある。前記IL-2は、ヒトのアミノ酸配列を有することが好ましく、安全上、組換えDNA技術で生産されることが好ましい。
 本明細書において、IL-2の濃度は、国内標準単位(JRU)及び国際単位(IU)で示される場合がある。1IUが約0.622JRUであるから、1750JRU/mLは約2813IU/mLである。
 前記培地には、被験者の自家血清、BioWhittaker社その他から入手可能なヒトAB型血清や、日本赤十字社から入手可能な献血ヒト血清アルブミンが添加される場合がある。前記自家血清及び前記ヒトAB型血清は1ないし10%の濃度で添加されることが好ましく、前記献血ヒト血清アルブミンは1ないし10%の濃度で添加されることが好ましい。前記被験者は、健常者と、前記疾患に罹患した患者との場合がある。
 前記培地には、NK細胞の増幅効果を損なわないことを条件として、適切なタンパク質、サイトカイン、抗体、化合物その他の成分が含まれる場合がある。前記サイトカインは、インターロイキン3(IL-3)、インターロイキン7(IL-7)、インターロイキン12(IL-12)、インターロイキン-15(IL-15)、インターロイキン-21(IL-21)、幹細胞因子(SCF)、及び/又は、FMS様チロシンキナーゼ3リガンド(Flt3L)の場合がある。前記IL-3、IL-7、IL-12、IL-15、IL-21、SCF及びFlt3Lは、ヒトのアミノ酸配列を有することが好ましく、安全上、組換えDNA技術で生産されることが好ましい。前記培地の交換は、所望のNK細胞の細胞数が得られることを条件として、培養開始後いつ行われてもかまわないが、3-5日毎が好ましい。
 本発明の増幅方法において、培養容器は、商業的に入手可能なディッシュ、フラスコ、プレート、マルチウェルプレートを含むが、これらに限定されない。培養条件は、NK細胞の増幅効果を損なわないことを条件として特に限定されないが、37°C、5%CO及び飽和水蒸気雰囲気下の培養条件が一般的である。本発明の目的はNK細胞を大量に調製することであるため、前記培地で培養する期間が長いほどより多くのNK細胞が得られるので有利である。培養期間は、NK細胞を所望の細胞数まで増幅することを条件として、特に限定されない。
 本発明の増幅方法において、前記NK細胞を含む細胞集団は、NK細胞に加えて、NK細胞前駆体、T細胞、NKT細胞、造血前駆細胞等を含む場合がある。所望のNK細胞が、増幅後、例えば、比重遠心法、免疫磁気ビーズ、FACS、フロー・サイトメトリー等を用いて選択される場合がある。例えば、前記NK細胞は、抗CD3抗体、抗CD16抗体、抗CD34抗体、抗CD56抗体、抗CD69抗体、抗CD94抗体、抗CD107a抗体、抗KIR3DL1抗体、抗KIR3DL2抗体、抗KIR2DL3抗体、抗KIR2DL1抗体、抗KIR2DS1抗体、抗KIR2DL5抗体、抗NKp46抗体、抗NKp30抗体、抗NKG2D抗体等を用いて、前記細胞集団から選択的に分離される場合がある。前記抗体は、モノクローナル抗体、ポリクローナル抗体等の場合がある。NK細胞の選択は、T細胞、NKT細胞、造血前駆細胞その他の細胞を選択的に除去して行われる場合がある。
 本発明の方法及び医薬品組成物の製造は、医薬品及び医薬部外品の製造管理及び品質管理規則に適合した条件(good manufacturing practice、GMP)で実施されることが好ましい。
 増幅されたNK細胞の細胞傷害活性は、当業者に周知の方法によって評価できる。前記細胞傷害活性は、前記NK細胞(エフェクター細胞)と、放射性物質、蛍光色素等で標識した標的細胞とをインキュベーションした後、放射線量又は蛍光強度を測定することによって定量することが一般的である。前記標的細胞は、K562細胞、急性骨髄性白血病細胞、慢性骨髄性白血病細胞の場合があるが、これらに限定されない。増幅されたNK細胞の性質は、RT?PCR法、固相雑種形成法、ELISA法、ウエスタンブロット法、免疫沈降法、免疫比濁法、FACS、フロー・サイトメトリー法等を用いて調べられる場合がある。
 本発明において、臍帯血及び末梢血の全血の採取と、自家血清の調製と、前記全血からの単核球の調製と、該単核球の培養前後の細胞数の測定と、培養前後の前記単核球中のNK細胞、T細胞、造血前駆細胞その他の細胞タイプの構成比率の測定と、NK細胞の増幅倍率の算出と、測定誤差や有意性についての統計解析とは、当業者に周知のいかなる方法を使用して実施されてもかまわない。
 本明細書において言及される全ての文献はその全体が引用により本明細書に取り込まれる。
CD3陽性細胞の除去前に、CD3及びCD56に対する抗体で2重染色しフロー・サイトメトリー法で測定した結果図。 CD3陽性細胞の除去後に、CD3及びCD56に対する抗体で2重染色しフロー・サイトメトリー法で測定した結果図。 健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の細胞数それぞれの増殖曲線。 健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の細胞数の平均増殖曲線。 健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の増幅倍率それぞれの増殖曲線。 健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の増幅倍率の平均増殖曲線。 健常者5人の末梢血中の単核球から分離されたNK細胞(CD3陰性/CD56陽性)の増幅倍率それぞれの増殖曲線。 健常者5人の末梢血中の単核球から分離されたNK細胞(CD3陰性/CD56陽性)の増幅倍率の平均増殖曲線。 健常者5人から分離されたNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率の経時的な変化をフロー・サイトメトリー法で測定した結果図。 健常者5人から分離されたNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率の経時的な変化をフロー・サイトメトリー法で測定し、平均化した結果図。 進行癌(口腔癌、胆嚢癌及び胆管癌)の患者3人から分離されたNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率の経時的な変化をフロー・サイトメトリー法で測定した結果図。 進行癌(口腔癌、胆嚢癌及び胆管癌)の患者3人から分離されたNK細胞(CD3陰性/CD56陽性)の増幅倍率の平均増殖曲線。 CD69のフロー・サイトメトリー解析結果を比較したグラフ。 CD69のフロー・サイトメトリー解析結果を比較した平均蛍光強度(MFI)の測定値のグラフ。 CD16のフロー・サイトメトリー解析結果を比較したグラフ。 CD16のフロー・サイトメトリー解析結果を比較した平均蛍光強度(MFI)の測定値のグラフ。 さまざまな細胞表面マーカーのフロー・サイトメトリー解析結果を比較したグラフ。 KBM培地と、CellGro培地とで培養されたNK細胞の増幅倍率の増殖曲線。 本発明の方法で増幅された末梢血由来NK細胞のK562に対する細胞傷害活性を調べた実験結果を示すグラフ。 健常者から分離されたCD107a陽性細胞の培養細胞全体に対する構成比率の経時的な変化をフロー・サイトメトリー法で測定した結果図。 CD3陽性細胞の1回除去及び2回除去後のNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率を示す棒グラフ。 増幅前のCD3陰性細胞と、CD3及びCD34陰性細胞とにおけるCD34陽性細胞の構成比率を示す棒グラフ。 増幅前のCD3陰性細胞と、CD3及びCD34陰性細胞とにおけるCD3陽性細胞の構成比率を示す棒グラフ。 増幅後のCD3陰性細胞と、CD3及びCD34陰性細胞とにおけるNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率を示す棒グラフ。
 以下に説明する本発明の実施例は例示のみを目的とし、本発明の技術的範囲を限定するものではない。本発明の技術的範囲は特許請求の範囲の記載によってのみ限定される。本発明の趣旨を逸脱しないことを条件として、本発明の変更、例えば、本発明の構成要件の追加、削除及び置換を行うことができる。
 NK細胞の増幅(1)
 1.材料及び方法
 (1)末梢血からの採血
 末梢血が、健常者と、進行癌(口腔癌、胆嚢癌及び胆管癌)の患者とから採取された。本実験は、九州大学医系地区部局臨床研究倫理審査委員会の承認(承認番号22?176、承認日:平成23年3月31日)を得て実施された。書面による同意が、前記健常者及び前記患者から得られている。採血、凍結保存、及び、解凍は当業者に周知の方法で行われた。
 (2)末梢血からの単核球の分離
 得られた血液は、常温に保たれた希釈液(1mM EDTA及び2%ウシ胎仔血清が添加されたPBS)で2倍希釈され、各遠心管に、希釈血20ないし35mLが、10ないし15mLのFicoll Paque(比重1.077)に重層された。遠心は、500×g、室温で20分間行われ、ブレーキをかけずに停止された。遠心上清(血漿部分)は数mLを残して除去され、中間層が回収された。遠心管1ないし2本から回収された前記中間層が1本の新たな遠心管に集められ、前記希釈液により体積が50mLに調整された。2回目の遠心は、500×g、室温、5分間又は15分間の条件で行われた。上清は除去され、ペレットが、前記希釈液30mLに懸濁された。3回目の遠心は、280×g、室温10分間の条件で行われた。上清は除去され、ペレットは、細胞濃度が1×10個/mLになるように、2mM EDTAと、0.1%BSAとが添加されたPBSに懸濁された(以下、「単核球懸濁液」という。)。
 (3)CD3陽性細胞の除去
 抗CD3抗体が固定化された磁気ビーズ(Dynabeads CD3)は、0.1%BSAが添加されたPBSで1回洗浄された後、前記単核球懸濁液に細胞10個あたり50μLが添加された。前記ビーズを含む単核球懸濁液は、4°Cで30分間ローテーターにて攪拌された。その後、前記磁気ビーズは磁石によって前記懸濁液から分離され、CD3を細胞表面に発現する細胞(CD3陽性細胞)が除去された。
 (4)CD3陽性細胞が除去された細胞集団の培養
 前記懸濁液中の残りの細胞(以下、「CD3陰性細胞」という。)は、5%自家血清が添加された細胞培養用培地(KBM501、16025015、コージンバイオ株式会社;1750JRU/mLのIL-2含有)(以下、「KBM培地」という。)で5×10個/mLになるように希釈され、6ウェルの培養プレート(140675、nunc、サーモフィッシャーサイエンティフィック株式会社)に播種された。細胞培養は、37°C、5%CO及び飽和水蒸気雰囲気下で21日間行われた。培地交換が、培養5日目、9日目、13日目及び17日目に行われた。前記細胞は、フィーダー細胞なしで培養された。
 (5)細胞数及び細胞表面マーカーの解析
 前記末梢血単核球の細胞数は、培養開始時から21日目までの間に血球計算盤を用いて生細胞数を計測することにより決定された。前記細胞の細胞表面マーカーは、抗CD3抗体(317308、BioLegend Japan 株式会社)、抗CD16抗体(556618、BD Pharmingen、日本ベクトン・ディッキンソン株式会社)、抗CD56抗体(304607、318321、BioLegend Japan 株式会社)、抗CD69抗体(310905、BioLegend Japan 株式会社)、抗KIR3DL1/KIR3DL2抗体(130-095-205、ミルテニーバイオテク株式会社)、抗KIR2DL3抗体(FAB2014P、R&D SYSTEMS社、コスモ・バイオ株式会社)、抗KIR2DL1/KIR2DS1抗体(339505、BioLegend Japan 株式会社)、抗KIR2DL5抗体(341303、BioLegend Japan 株式会社)、抗NKp46抗体(331907、BioLegend Japan 株式会社)、抗NKp30抗体(325207、BioLegend Japan 株式会社)、及び、抗NKG2D抗体(320805、BioLegend Japan 株式会社)を用いて、フロー・サイトメトリー法で解析された。
 2.結果
 (1)健常者のNK細胞の増幅
 図1Aは、CD3陽性細胞の除去前に、CD3及びCD56に対する抗体で2重染色し、フロー・サイトメトリー法で測定した実験結果である。図1Bは、CD3陽性細胞の除去後に、CD3及びCD56に対する抗体で2重染色しフロー・サイトメトリー法で測定した実験結果である。「CD3陽性細胞の構成比率」では、フロー・サイトメトリー法により計測された、各実験群の全培養細胞中のCD3陽性細胞の割合が百分率で表される。CD3陽性細胞の構成比率(%)は、CD3陽性細胞の除去前には69.37%であり、CD3陽性細胞の除去後には0.68%であった。これらの結果から明らかなとおり、CD3陽性細胞は単核球懸濁液から顕著に除去された。
 図2Aは、健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の細胞数それぞれの増殖曲線である。図2Bは、健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の細胞数の平均増殖曲線である。5人の健常者から採取された末梢血1mLあたりのCD3陰性細胞の細胞数が、培養開始時、5日間培養後、9日間培養後、13日間培養後、17日間培養後及び21日間培養後に測定された。各実験条件の標準偏差は、同一条件で5回繰り返した実験結果の測定値から算出された。CD3陰性細胞は、培養開始時から21日目後まで増加し続けた。増加速度が13日目までは上昇し続け、13日目後には低下した。CD3陰性細胞は、培養開始時の約5×10個から21日間培養後の約700×10個に増加した。
 図3Aは、健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の増幅倍率それぞれの増殖曲線である。図3Bは、健常者5人の末梢血中の単核球から分離されたCD3陰性細胞の増幅倍率の平均増殖曲線である。前記増幅倍率は、5日間培養後、9日間培養後、13日間培養後、17日間培養後及び21日間培養後のCD3陰性細胞の細胞数を、培養開始時のCD3陰性細胞の細胞数で除算した商として算出された。各実験条件の標準偏差は、同一条件で5回繰り返した実験結果の測定値から算出された。CD3陰性細胞の増幅倍率は、培養開始時から21日目まで増大し続けた。前記増幅倍率は13日目までは顕著に増大し続け、21日間培養後には約150倍に増大した。
 図4Aは、健常者5人の末梢血中の単核球から分離されたNK細胞(CD3陰性/CD56陽性)の増幅倍率それぞれの増殖曲線である。図4Bは、健常者5人の末梢血中の単核球から分離されたNK細胞(CD3陰性/CD56陽性)の増幅倍率の平均増殖曲線である。図4A及び図4Bでは、CD3陰性細胞が、CD3及びCD56に対する抗体で2重染色しフロー・サイトメトリー法で解析された。前記増幅倍率は、7日間培養後、14日間培養後及び21日間培養後のNK細胞の細胞数を、培養開始時のNK細胞の細胞数で除算した商として算出された。各実験条件の標準偏差は、同一条件で5回繰り返した実験結果の測定値から算出された。NK細胞の増幅倍率は、培養開始時から21日目まで増大し続けた。前記増幅倍率は14日目までは顕著に増大し続け、21日間培養後には約400倍に増大した。
 図5Aは、健常者5人から分離されたNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率の経時的な変化をフロー・サイトメトリー法で測定した実験結果である。図5Bは、健常者5人から分離されたNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率の平均値の経時的な変化をフロー・サイトメトリー法で測定し、平均化した実験結果である。図5A及び図5Bでは、CD3陰性細胞が、CD3及びCD56に対する抗体で2重染色しフロー・サイトメトリー法で解析された。「NK細胞の構成比率」では、フロー・サイトメトリー法により計測された、各実験群の全培養細胞中のNK細胞の割合が百分率で表される。グラフの縦軸は培養細胞全体に対するNK細胞(CD3陰性/CD56陽性)の構成比率(%)で、横軸は培養日数である。各実験条件の標準偏差は、同一条件で5回繰り返した実験結果の測定値から算出された。NK細胞の構成比率は、培養開始時から21日目まで増大し続けた。前記NK細胞の構成比率は14日目までは顕著に増大し続け、14日間培養後には約90%に増大した。本発明は、NK細胞を選択的かつ経時的に増幅することが示された。
 (2)患者のNK細胞の増幅
 図6Aは、進行癌(口腔癌、胆嚢癌及び胆管癌)の患者3人から分離されたNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率の経時的な変化をフロー・サイトメトリー法で測定した実験結果である。図6Bは、進行癌(口腔癌、胆嚢癌及び胆管癌)の患者3人から分離されたNK細胞(CD3陰性/CD56陽性)の増幅倍率の平均増殖曲線である。「NK細胞の構成比率」では、フロー・サイトメトリー法により計測された、各実験群の全培養細胞中のNK細胞の割合が百分率で表される。図6Aのグラフでは、縦軸は培養細胞全体に対するNK細胞(CD3陰性/CD56陽性)の構成比率(%)で、横軸は培養日数である。「NK細胞の増幅倍率」では、増幅後のNK細胞の細胞数を増幅前に末梢血単核球中に存在したNK細胞の細胞数で除算した結果が表される。図6Bのグラフでは、縦軸はNK細胞の増幅倍率で、横軸は培養日数である。各実験条件の標準偏差は、同一条件で3回繰り返した実験結果の測定値から算出された。図6Aに示されるとおり、NK細胞の構成比率は、培養開始時から14日目まで顕著に増大し続け、14日間培養後には約85%に増大した。また、図6Bに示されるとおり、NK細胞の増幅倍率は、培養開始時から14日目まで顕著に増大し続け、14日間培養後には約140倍に増大した。21日間培養後には、CD3陽性細胞が増殖したために、NK細胞の構成比率が低下した。しかし、前記CD3陽性細胞の増殖は、NK細胞の増幅にはほとんど影響しなかった。以上の結果から、進行癌(口腔癌、胆嚢癌及び胆管癌)の患者から分離されたNK細胞は、経時的に増幅することが示された。また、本発明は、癌、感染症等に罹患した患者から分離されたNK細胞を経時的に増幅できることが示唆された。
 (3)NK細胞の分化マーカーの発現
 図7、9及び11に、各細胞表面マーカーのフロー・サイトメトリー解析結果を比較したグラフを示す。また、図8及び10に、CD69及びCD16のフロー・サイトメトリー解析結果を比較した平均蛍光強度(MFI)の測定値のグラフを示す。各実験条件の標準偏差は、同一条件で3回繰り返した実験結果の測定値から算出された。図7ないし11から明らかなとおり、本発明の方法で増幅された細胞は、増幅前の細胞と比較して、CD69、KIR2DL3、KIR2DL1/KIR2DS1、KIR2DL5、NKp30、及び、NKG2Dを強く発現していた。特に、前記増幅された細胞では、CD69の発現は、約100%であった。これらの図から明らかなとおり、本発明の方法で調製された細胞は、NK細胞としての分化マーカーを発現することが示された。また、前記NK細胞は、高い細胞傷害活性を備えていることが示唆された。
 本実施例の実験結果から、CD3陽性細胞、すなわちT細胞を除去したうえで前記KBM培地で培養することにより、ほぼNK細胞だけを選択的かつ効率的に増幅できることが示された。大量のNK細胞が、健常者だけでなく、癌、感染症等に罹患した患者から調製できることが示唆された。また、本発明の方法は、末梢血由来のNK細胞だけでなく、他の組織・器官由来の細胞、特に臍帯血由来のNK細胞を顕著に増幅できることが示唆された。
 NK細胞の増幅(2)
 1.材料及び方法
 NK細胞は実施例1で説明された方法に従って健常者から調製された。2500IU/mLのIL-2(AF-200-02-2、PeproTech、東洋紡績株式会社)と、5%自家血清とを添加したCellGro SCGM(2001、セルジェニックス、岩井化学薬品株式会社)(以下、「CellGro培地」という。)が細胞培養用培地として調製された。前記NK細胞は、実施例1で説明された方法に従って前記KBM培地及び前記CellGro培地で増幅された。
 2.結果
 図12は、KBM培地と、CellGro培地とで培養されたNK細胞の増幅倍率の増殖曲線である。前記増幅倍率は、7日間培養後、14日間培養後及び21日間培養後のNK細胞の細胞数を、培養開始時のNK細胞の細胞数で除算した商として算出された。各実験条件の標準偏差は、同一条件で2回繰り返した実験結果の測定値から算出された。NK細胞の増幅倍率は、KBM培地及びCellGro培地で、培養開始時から21日目まで増大し続けた。21日間培養後、前記増幅倍率は、KBM培地では約670倍であり、CellGro培地では約140倍であった。
 本実施例の実験結果から、NK細胞は、前記KBM培地と、前記CellGro培地とで十分に増幅することが示された。したがって、NK細胞は、細胞培養用培地のタイプにかかわらず、2500IU/mLないし2813IU/mLのIL-2を含む培地で増幅できることが示唆された。
 増幅されたNK細胞の細胞傷害活性
 1.材料及び方法
 (1)細胞傷害活性の定量
 NK細胞が、実施例1で説明された方法に従って調製され、エフェクター細胞として用いられた。K562細胞(慢性骨髄性白血病細胞)が当業者に周知の方法で調製され、標的細胞として用いられた。増幅されたNK細胞と、増幅されていないNK細胞(以下、「非増幅NK細胞」という。)との細胞傷害活性が、当業者に周知の方法で定量された。簡潔には、前記標的細胞は、3-3’-ジオクタデシロキサカルボシアニン(D4292、シグマ アルドリッチ ジャパン株式会社)(終濃度:0.01mM)を添加したRPMI-1640培地で10分間培養することによって標識された。前記標的細胞は、標識後、PBS(-)及び無血清IMDM培地を用いて3回洗浄された。前記エフェクター細胞と、前記標的細胞とは、丸底の96ウェルの培養プレートに播種され、無血清IMDM培地で2時間共培養された。エフェクター細胞と標的細胞との比(E:T比)は、3対1、2対1、1対1、1対5、及び、1対10に調製された。細胞傷害活性(%)は、抗MHCクラスI抗体(311409、BioLegend Japan 株式会社)及び7-アミノ-アクチノマイシンD(A9400、シグマ アルドリッチ ジャパン株式会社)を用いてフロー・サイトメトリー法によって定量された。
 (2)NK細胞の分化マーカーの発現
 NK細胞は、実施例1で説明された方法に従って増幅された。培養開始時、3日間培養後、7日間培養後、14日間培養後及び21日間培養後に、前記NK細胞と、前記K562細胞とは、2対1のE:T比で2時間共培養された。その後、前記NK細胞におけるCD107a陽性細胞の構成比率が、抗CD107a抗体(328606、BioLegend Japan 株式会社)を用いてフロー・サイトメトリー法で解析された。
 2.結果
 (1)細胞傷害活性の定量
 図13は、本発明の方法で増幅された末梢血由来NK細胞のK562に対する細胞傷害活性を調べた実験結果を示すグラフである。縦軸は細胞傷害活性(単位:%)である。白色棒は非増幅NK細胞の細胞傷害活性を示し、黒色棒は増幅されたNK細胞の細胞傷害活性を示す。横軸は、増幅されたNK細胞又は非増幅NK細胞と、K562細胞とのE:T比である。E:T比が3対1であるとき、前記細胞傷害活性は、非増幅NK細胞では約30%であり、増幅されたNK細胞では約110%であった。E:T比が2対1であるとき、前記細胞傷害活性は、非増幅NK細胞では約20%であり、増幅されたNK細胞では約107%であった。E:T比が1対1であるとき、前記細胞傷害活性は、非増幅NK細胞では約10%であり、増幅されたNK細胞では約100%であった。E:T比が、1対5及び1対10であるとき、増幅されたNK細胞の前記細胞傷害活性は、それぞれ、約25%及び約15%であった。
 (2)NK細胞の分化マーカーの発現
 図14は、健常者から分離されたCD107a陽性細胞の培養細胞全体に対する構成比率の経時的な変化をフロー・サイトメトリー法で測定した実験結果である。各実験条件の標準偏差は、同一条件で5回繰り返した実験結果の測定値から算出された。「CD107a陽性細胞の構成比率」では、フロー・サイトメトリー法により計測された、各実験群の全培養細胞中のCD107a陽性細胞の割合が百分率で表される。図14のグラフでは、縦軸は培養細胞全体に対するCD107a陽性細胞の構成比率(%)で、横軸は培養日数である。CD107a陽性細胞の構成比率は、培養開始時から3日目までに約35%まで増大され、前記構成比率は、21日目でも維持された。
 本実施例の実験結果から、本発明によって増幅されたNK細胞は、高い細胞傷害活性を有していることが示された。したがって、本発明は、フィーダー細胞、外来分子をトランスフェクションしたNK細胞等を用いることなく、細胞傷害活性が高いNK細胞を選択的かつ効率的に増幅できることが示された。また、NK細胞が、末梢血由来の細胞だけでなく、他の組織・器官由来の細胞、特に臍帯血由来の細胞から増幅されたときにも、細胞傷害活性が高いことが示唆された。
 NK細胞の増幅(3)(CD3陽性細胞の繰り返し除去)
 実施例1ないし3の実験後、さらにNK細胞の増幅実験を重ねるなかで、CD3陽性細胞が非選択的に増大し、CD3陽性細胞の培養細胞全体に対する構成比率が本実施例の結果のように30%を超える場合があるとの知見が得られた。このCD3陽性細胞の非選択的な増大の頻度は、進行癌の患者よりアフェレーシス法で採取された末梢血単核球細胞を利用してNK細胞を増幅した実験のうち約30%であった(データは示されない。)。そこで、NK細胞を選択的に増幅するために、CD3陽性細胞を除去するステップを繰り返すことが試みられた。
 1.材料及び方法
 実施例1で説明された方法に従って、NK細胞は増幅され、細胞数及び細胞表面マーカーが解析された。単核球懸濁液は進行癌(口腔癌、胆嚢癌及び胆管癌)の患者から調製された。CD3陽性細胞の除去が、1回又は2回実施された。CD3陰性細胞は前記KBM培地で14日間培養された。
 2.結果
 図15は、CD3陽性細胞の1回除去及び2回除去後のNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率を示す棒グラフである。各実験条件の誤差棒は同一条件で3回繰り返した実験結果の測定値の標準誤差を示す。NK細胞、CD3陽性細胞及び他の細胞の構成比率では、フロー・サイトメトリー法により計測された、各実験群の全培養細胞中のNK細胞、CD3陽性細胞及び他の細胞の割合それぞれが百分率で表される。グラフの縦軸は培養細胞全体に対するNK細胞、CD3陽性細胞及び他の細胞の構成比率(%)であり、横軸はCD3陽性細胞の除去回数である。NK細胞の培養細胞全体に対する構成比率(%)は、CD3陽性細胞の1回除去では約50%であり、CD3陽性細胞の2回除去では約65%であった。
 本実施例の実験結果から、CD3陽性細胞の繰り返し除去はCD3陽性細胞の培養細胞全体に対する構成比率を低下させ、NK細胞の培養細胞全体に対する構成比率を増大できることが示された。しかし、前記CD3陽性細胞の繰り返し除去はNK細胞を選択的に増幅するのに十分とはいえない。そこで、前記CD3陽性細胞の繰り返し除去以外の他の処理を併用することが試みられた。
 NK細胞の増幅(4)(CD3陽性細胞及びCD34陽性細胞の除去)
 1.材料及び方法
 実施例1で説明された方法に従って、NK細胞は増幅され、細胞数及び細胞表面マーカーが解析された。単核球懸濁液は進行癌(口腔癌、胆嚢癌及び胆管癌)の患者から調製された。CD3陽性細胞の除去後、造血前駆細胞が除去された。前記造血前駆細胞の除去は、CD34を細胞表面に発現する細胞(CD34陽性細胞)を、ビオチン化抗CD34抗体(343523、BioLegend Japan 株式会社)と、磁気ビーズ(Dynabeads biotin binder、110-47、ライフテクノロジーズジャパン株式会社)とを用いて行われた。簡潔には、前記CD34陽性細胞と、前記ビオチン化抗CD34抗体とが反応された。その後、遠心分離が行われ、上清が除去され、前記抗体が結合した細胞の懸濁液が調製された。前記磁気ビーズは、0.1%BSAが添加されたPBSで1回洗浄後、細胞10個あたり50μLが前記懸濁液に添加された。前記磁気ビーズを含む懸濁液は、4°Cで30分間ローテーターにて攪拌された。前記磁気ビーズは磁石によって前記懸濁液から分離され、CD34陽性細胞が除去された。前記懸濁液中の残りの細胞(以下、「CD3及びCD34陰性細胞」という。)は前記KBM培地で14日間培養された。フロー・サイトメトリー法での計測では、抗CD34抗体(343505、BioLegend Japan 株式会社)が追加的に用いられた。
 2.結果
 図16Aは、増幅前のCD3陰性細胞と、CD3及びCD34陰性細胞とにおけるCD34陽性細胞の構成比率を示す棒グラフである。図16Bは、増幅前のCD3陰性細胞と、CD3及びCD34陰性細胞とにおけるCD3陽性細胞の構成比率を示す棒グラフである。各実験条件の誤差棒は同一条件で3回繰り返した実験結果の測定値の標準誤差を示す。CD34陽性細胞及びCD3陽性細胞の構成比率では、フロー・サイトメトリー法により計測された、各実験群の全細胞中のCD34陽性細胞及びCD3陽性細胞の割合が百分率で表される。グラフの縦軸は細胞全体に対する増幅前のCD34陽性細胞及びCD3陽性細胞の構成比率(%)である。グラフの横軸は、増幅用の各実験群の細胞タイプを示す。増幅前のCD34陽性細胞の構成比率(%)は、CD3陰性細胞では約0.15%であり、CD3及びCD34陰性細胞では約0.02%であった。増幅前のCD3陽性細胞の構成比率(%)は、CD3陰性細胞では約0.15%であり、CD3及びCD34陰性細胞では約0.25%であった。
 図17は、増幅後のCD3陰性細胞と、CD3及びCD34陰性細胞とにおけるNK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率を示す棒グラフである。各実験条件の誤差棒は同一条件で3回繰り返した実験結果の測定値の標準誤差を示す。NK細胞、CD3陽性細胞及び他の細胞の構成比率では、フロー・サイトメトリー法により計測された、各実験群の全培養細胞中のNK細胞、CD3陽性細胞及び他の細胞の割合それぞれが百分率で表される。グラフの縦軸は培養細胞全体に対するNK細胞、CD3陽性細胞及び他の細胞の構成比率(%)である。グラフの横軸は、増幅に用いた各実験群の細胞タイプを示す。増幅後のNK細胞の培養細胞全体に対する構成比率(%)は、CD3陰性細胞では約60%であり、CD3及びCD34陰性細胞では約90%であった。
 本実施例の実験結果から、NK細胞(CD3陰性/CD56陽性)の培養細胞全体に対する構成比率は、CD3陽性細胞及びCD34陽性細胞を除去することによって顕著に増大することが示された。また、NK細胞がアフェレーシス法で採取された末梢血単核球細胞を利用して増幅されるときであっても、NK細胞は、CD3陽性細胞及びCD34陽性細胞を除去することによって高純度で増幅できることが示された。
 結論
 以上の実験結果から明らかなとおり、末梢血由来の単核球からCD3陽性細胞(T細胞)を除去することによって、NK細胞を大量に調製することができた。また本発明の方法で増幅された細胞は、本実施例の実験結果で明らかにされたとおり、非常に高い細胞傷害活性を有した。さらに、末梢血由来の単核球からCD3陽性細胞(T細胞)及びCD34陽性細胞(造血前駆細胞)を除去することによって、NK細胞を高純度で調製することができた。
 現在報告されているNK細胞の増幅方法では、NK細胞の細胞傷害活性が低いことが知られている。例えば、Terunuma、H.らのNK細胞の増幅成績は、健常者の末梢血由来のNK細胞に関して、純度81.2%、増幅倍率130倍、細胞傷害活性66%(E:T=3:1)だった(特許文献1)。Tanaka,J.らのNK細胞の増幅成績は、健常者の末梢血単核球細胞に関して、純度73.4%、増幅倍率6268倍、細胞傷害活性約55%(E:T=1:1)だった(特許文献2)。Carlens,S.らのNK細胞の増幅成績は、ミエローマ患者の末梢血由来のNK細胞に関して、純度55%、増幅倍率193倍、細胞傷害活性45%(E:T=1:1)だった(非特許文献4)。Alici、E.らのNK細胞の増幅成績は、ミエローマ患者の末梢血由来のNK細胞に関して、純度65%、増幅倍率1625倍、細胞傷害活性約10%(E:T=1:1)だった(非特許文献5)。Fujisaki,H.らのNK細胞の増幅成績は、健常者の末梢血由来のNK細胞に関して、遺伝的に改変された腫瘍細胞がフィーダー細胞として用いられるとき、純度96.8%、増幅倍率277倍、細胞傷害活性の最大値約90%(E:T=1:1)だった(非特許文献6)。これに対して、本発明のNK細胞の増幅成績は、健常者の末梢血由来のNK細胞に関して、純度約90%、増幅倍率400倍、細胞傷害活性約100%(E:T=1:1)だった。従来技術では、K562細胞に対するNK細胞の細胞傷害活性は、遺伝的に改変された腫瘍細胞がフィーダー細胞として用いられるとき、最大値で約90%(E:T=1:1)であり、フィーダー細胞を用いないとき、66%(E:T=3:1)であった。しかし、本発明のNK細胞はフィーダー細胞なしで増幅され、K562細胞に対する細胞傷害活性がほぼ100%(E:T=1:1)であった。したがって、本発明は、NK細胞の細胞傷害活性が高く、フィーダー細胞が最終産物に混入するリスクがないため、従来技術と比較して顕著に優れている。よって、本発明は、高い細胞傷害活性を有するNK細胞を、採取された血球細胞から高純度で大量に調製するのに有用である。
 

Claims (11)

  1.  NK細胞を含む細胞集団を調製するステップと、
     前記NK細胞を含む細胞集団からT細胞を除去するステップと、
     前記T細胞が除去された残りの細胞を、2500IU/mLないし2813IU/mLのIL-2を含む培地で培養するステップとを含むことを特徴とする、NK細胞の増幅方法。
  2.  前記NK細胞を含む細胞集団から前記T細胞を除去するステップは、CD3陽性細胞を除去するステップによって達成されることを特徴とする、請求項1に記載のNK細胞の増幅方法。
  3.  前記NK細胞を含む細胞集団から造血前駆細胞を除去するステップを含むことを特徴とする、請求項1又は2に記載のNK細胞の増幅方法。
  4.  前記NK細胞を含む細胞集団から前記造血前駆細胞を除去するステップは、CD34陽性細胞を除去するステップによって達成されることを特徴とする、請求項3に記載のNK細胞の増幅方法。
  5.  前記培地は、自家血清、AB型血清、及び/又は、血清アルブミンを含むことを特徴とする、請求項1ないし4のいずれか1つに記載のNK細胞の増幅方法。
  6.  前記NK細胞を含む細胞集団を調製するステップは、被験者から採取された血球細胞から単核球を分離するステップによって達成されることを特徴とする、請求項1ないし5のいずれか1つに記載のNK細胞の増幅方法。
  7.  前記血球細胞は、末梢血、臍帯血、骨髄及び/又はリンパ節から採取されることを特徴とする、請求項6に記載のNK細胞の増幅方法。
  8.  前記血球細胞は末梢血からアフェレーシス法により採取されることを特徴とする、請求項7に記載のNK細胞の増幅方法。
  9.  前記NK細胞を含む細胞集団は、胚性幹細胞、成体幹細胞及び人工多能性幹(iPS)細胞からなるグループから選択されるいずれかの幹細胞由来の造血幹細胞と、臍帯血由来の造血幹細胞と、末梢血由来の造血幹細胞と、骨髄血由来の造血幹細胞と、臍帯血単核球と、末梢血単核球とからなる群から選択される少なくとも1種類の細胞から調製されることを特徴とする、請求項1ないし5のいずれか1つに記載の方法。
  10.  請求項1ないし9のいずれか1つに記載の増幅方法によって調製されるNK細胞を含むことを特徴とする、細胞療法のための医薬品組成物。
  11.  感染症及び/又は癌を治療するために用いられることを特徴とする、請求項10に記載の医薬品組成物。
     
PCT/JP2012/065718 2011-06-24 2012-06-20 Nk細胞の増幅方法 WO2012176796A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US14/129,143 US9404083B2 (en) 2011-06-24 2012-06-20 Method for amplifying NK cells
CN201280031188.5A CN103620022B (zh) 2011-06-24 2012-06-20 Nk细胞的扩增方法
CA2840161A CA2840161C (en) 2011-06-24 2012-06-20 Method for amplifying nk cells
AU2012274478A AU2012274478B2 (en) 2011-06-24 2012-06-20 Method for amplifying NK cells
EP12801859.5A EP2725100B1 (en) 2011-06-24 2012-06-20 Method for amplifying nk cells
KR1020147001579A KR101963920B1 (ko) 2011-06-24 2012-06-20 Nk 세포의 증폭 방법
HK14103574.2A HK1190432A1 (en) 2011-06-24 2014-04-14 Method for amplifying nk cells nk

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-140725 2011-06-24
JP2011140725 2011-06-24
JP2012-021972 2012-02-03
JP2012021972A JP5572863B2 (ja) 2011-06-24 2012-02-03 Nk細胞の増幅方法

Publications (1)

Publication Number Publication Date
WO2012176796A1 true WO2012176796A1 (ja) 2012-12-27

Family

ID=47422628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065718 WO2012176796A1 (ja) 2011-06-24 2012-06-20 Nk細胞の増幅方法

Country Status (10)

Country Link
US (1) US9404083B2 (ja)
EP (1) EP2725100B1 (ja)
JP (1) JP5572863B2 (ja)
KR (1) KR101963920B1 (ja)
CN (1) CN103620022B (ja)
AU (1) AU2012274478B2 (ja)
CA (1) CA2840161C (ja)
HK (1) HK1190432A1 (ja)
MY (1) MY161389A (ja)
WO (1) WO2012176796A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207900A1 (ja) * 2017-05-12 2018-11-15 米満 吉和 高活性nk細胞、およびその利用
JP2019137696A (ja) * 2019-05-20 2019-08-22 米満 吉和 高活性nk細胞、およびその利用

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511039B1 (ja) * 2013-05-22 2014-06-04 国立大学法人九州大学 Nk細胞の調製方法
JP6164650B2 (ja) * 2014-01-20 2017-07-19 国立大学法人九州大学 Nk細胞の調製方法
EP3114215B1 (en) * 2014-03-07 2021-04-14 Emercell SAS Pooled nk cells from ombilical cord blood and their uses for the treatment of cancer and chronic infectious disease
KR101697473B1 (ko) 2014-11-26 2017-01-18 주식회사 녹십자랩셀 T 세포를 이용한 자연살해세포의 배양방법
WO2016122014A1 (ko) * 2015-01-27 2016-08-04 한국생명공학연구원 자연살해세포의 대량생산 방법 및 상기 방법으로 수득된 자연살해세포의 항암제로서의 용도
CN106222141B (zh) * 2016-10-17 2018-10-19 湖南丰晖生物科技有限公司 Nk细胞培养液和细胞培养方法
WO2019152663A1 (en) * 2018-02-01 2019-08-08 Nkmax Co., Ltd. Method of producing natural killer cells and composition for treating cancer
BR112020015512A2 (pt) 2018-02-01 2021-01-26 Nkmax Co., Ltd. método de produção de células exterminadoras naturais e composição para tratamento de câncer
JP6543375B1 (ja) 2018-03-27 2019-07-10 株式会社ガイアバイオメディシン ケモカインレセプターと細胞接着分子を発現するcd3陰性細胞の集団、およびその利用
CN110628714B (zh) * 2018-06-21 2023-03-28 精准生技股份有限公司 用于体外扩增自然杀手细胞及自然杀手t细胞的无血清细胞培养液
CN109161527A (zh) * 2018-09-25 2019-01-08 深圳市五零生命科技有限公司 一种高效的nk细胞扩增方法
CN113383069A (zh) * 2018-11-14 2021-09-10 Gc细胞治疗 使用转化的t细胞培养脐带血来源的自然杀伤细胞的方法
JP6838750B2 (ja) * 2019-01-21 2021-03-03 株式会社ガイアバイオメディシン Nk細胞を含む細胞集団の製造方法
WO2020152661A1 (ja) 2019-01-21 2020-07-30 株式会社ガイアバイオメディシン Nk細胞を含む細胞集団の製造方法
KR102234394B1 (ko) * 2019-03-08 2021-03-31 신지섭 타가면역세포배양방법, 그 방법으로 얻어진 면역세포배양액 및 이를 포함하는 면역세포치료제
KR102216710B1 (ko) * 2019-03-27 2021-02-17 신지섭 Nk세포배양배지용 첨가조성물, 상기 첨가조성물을 이용한 nk세포배양방법 및 상기 배양방법으로 얻어진 피부트러블개선용 화장료조성물
CN111154721B (zh) * 2020-01-14 2023-10-17 深圳格泰赛尔生物科技有限公司 Nk细胞扩增方法
US20230040477A1 (en) * 2020-01-19 2023-02-09 Board Of Regents, The University Of Texas System T-cell death associated gene 8 (tdag8) modulation to enhance cellular cancer therapies
AR124414A1 (es) 2020-12-18 2023-03-22 Century Therapeutics Inc Sistema de receptor de antígeno quimérico con especificidad de receptor adaptable
WO2023081813A1 (en) 2021-11-05 2023-05-11 St. Jude Children's Research Hospital, Inc. Zip cytokine receptors
WO2023240182A1 (en) 2022-06-08 2023-12-14 St. Jude Children's Research Hospital, Inc. Disruption of kdm4a in t cells to enhance immunotherapy
WO2024059787A1 (en) 2022-09-16 2024-03-21 St. Jude Children's Research Hospital, Inc. Disruption of asxl1 in t cells to enhance immunotherapy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103901A2 (en) * 2006-03-06 2007-09-13 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Autologous natural killer cells and lymphodepleting chemotherapy for the treatment of cancer
JP2007297292A (ja) 2006-04-28 2007-11-15 Kyorin Pharmaceut Co Ltd 1−アルコキシイソキノリン誘導体又はその水和物の製造方法
WO2008153150A1 (ja) * 2007-06-15 2008-12-18 Medinet Co., Ltd. Nk細胞を含む細胞集団の培養方法及び当該細胞集団の利用
WO2010013947A2 (ko) * 2008-07-29 2010-02-04 주식회사 녹십자 자연살해세포의 증식방법
WO2011030851A1 (ja) * 2009-09-11 2011-03-17 タカラバイオ株式会社 ナチュラルキラー細胞の製造方法
JP2011517944A (ja) * 2008-04-09 2011-06-23 マックスサイト インコーポレーティッド 新規に単離された細胞の治療組成物の操作および送達
JP2011140504A (ja) 2006-08-28 2011-07-21 Hisamitsu Pharmaceut Co Inc 爪用貼付剤
JP2011239701A (ja) * 2010-05-14 2011-12-01 Tella Inc 樹状細胞の培養方法
JP2013006793A (ja) 2011-06-24 2013-01-10 Tella Inc Nk細胞を増幅するための組成物及び方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030068306A1 (en) * 2001-09-14 2003-04-10 Dilber Mehmet Sirac Medium
US7544355B2 (en) * 2002-03-13 2009-06-09 Universita Degli Studi Di Perugia Methods and compositions for allogeneic transplantation
JP2006514024A (ja) 2002-12-23 2006-04-27 イネイト・ファーマ Nk細胞の増殖に対する効果を有する医薬組成物及びそれを使用する方法
US7435596B2 (en) 2004-11-04 2008-10-14 St. Jude Children's Research Hospital, Inc. Modified cell line and method for expansion of NK cell
US20090104170A1 (en) * 2004-11-02 2009-04-23 Richard William Wyatt Childs Compositions and methods for treating hyperproliferative disorders
JP4275680B2 (ja) 2006-04-28 2009-06-10 裕 照沼 リンパ球の活性・増殖に係る培養方法
CA2660518A1 (en) 2006-08-23 2008-02-28 Binex Co., Ltd. Manufacturing method of activated lymphocytes for immunotherapy
KR20210022148A (ko) * 2007-09-28 2021-03-02 안트로제네시스 코포레이션 인간 태반 관류액 및 인간 태반-유래 중간체 천연 킬러 세포를 사용한 종양 억제 방법
PT2411507T (pt) * 2009-03-26 2020-01-09 Cellprotect Nordic Pharmaceuticals Ab Expansão de células nk
ES2627910T3 (es) 2009-12-29 2017-08-01 Gamida-Cell Ltd. Métodos para potenciar la proliferación y la actividad de células destructoras naturales
KR101039843B1 (ko) 2010-08-30 2011-06-09 주식회사 엔케이바이오 자기활성화 림프구 배양용 배지 조성물 및 이를 이용한 자기활성화 림프구 배양방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007103901A2 (en) * 2006-03-06 2007-09-13 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Autologous natural killer cells and lymphodepleting chemotherapy for the treatment of cancer
JP2007297292A (ja) 2006-04-28 2007-11-15 Kyorin Pharmaceut Co Ltd 1−アルコキシイソキノリン誘導体又はその水和物の製造方法
JP2011140504A (ja) 2006-08-28 2011-07-21 Hisamitsu Pharmaceut Co Inc 爪用貼付剤
WO2008153150A1 (ja) * 2007-06-15 2008-12-18 Medinet Co., Ltd. Nk細胞を含む細胞集団の培養方法及び当該細胞集団の利用
JP2011517944A (ja) * 2008-04-09 2011-06-23 マックスサイト インコーポレーティッド 新規に単離された細胞の治療組成物の操作および送達
WO2010013947A2 (ko) * 2008-07-29 2010-02-04 주식회사 녹십자 자연살해세포의 증식방법
WO2011030851A1 (ja) * 2009-09-11 2011-03-17 タカラバイオ株式会社 ナチュラルキラー細胞の製造方法
JP2011239701A (ja) * 2010-05-14 2011-12-01 Tella Inc 樹状細胞の培養方法
JP2013006793A (ja) 2011-06-24 2013-01-10 Tella Inc Nk細胞を増幅するための組成物及び方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Research Ethics Committee of Departments", MEDICAL FACILITIES OF KYUSHU UNIVERSITY, 31 March 2011 (2011-03-31)
ALICI, E. ET AL., BLOOD, vol. 111, 2008, pages 3155
CARLENS, S. ET AL., HUM. IMMUNOL., vol. 62, 2001, pages 1092
CHO, D.; CAMPANA, D., KOREAN J. LAB. MED., 2009, pages 29 - 89
FUJISAKI, H. ET AL., CANCER RES., vol. 69, 2009, pages 4010
KOHJIN BIO CO., LTD.: "KBM501 Soshiki Baiyo Kanren Baichi no Kaihatsu", HANBAI, 28 July 2010 (2010-07-28), XP055139607, Retrieved from the Internet <URL:http://web.archive.org/web/20100728100847/http://www.kohjin-bio.co.jp/products/?id=1269767360-072037> [retrieved on 20120911] *
MALE,V. ET AL.: "Immature NK Cells, Capable of Producing IL-22, Are Present in Human Uterine Mucosa", JOURNAL OF IMMUNOLOGY, vol. 185, no. 7, 2010, pages 3913 - 3918, XP055139608 *
MILLERS ET AL., BLOOD, vol. 105, 2005, pages 3051
RUBNITZ ET AL., J. CLIN. ONCOL., vol. 28, 2010, pages 955
See also references of EP2725100A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207900A1 (ja) * 2017-05-12 2018-11-15 米満 吉和 高活性nk細胞、およびその利用
JP2018193303A (ja) * 2017-05-12 2018-12-06 米満 吉和 高活性nk細胞、およびその利用
US11723924B2 (en) 2017-05-12 2023-08-15 Yoshikazu Yonemitsu Highly active NK cell and use thereof
TWI846668B (zh) * 2017-05-12 2024-07-01 米満吉和 高活性nk細胞及其利用
JP2019137696A (ja) * 2019-05-20 2019-08-22 米満 吉和 高活性nk細胞、およびその利用

Also Published As

Publication number Publication date
US9404083B2 (en) 2016-08-02
AU2012274478A1 (en) 2014-02-20
AU2012274478A8 (en) 2016-07-28
JP2013027385A (ja) 2013-02-07
MY161389A (en) 2017-04-14
CN103620022A (zh) 2014-03-05
KR20140051263A (ko) 2014-04-30
CN103620022B (zh) 2015-09-30
CA2840161A1 (en) 2012-12-27
AU2012274478B2 (en) 2017-03-30
US20140120072A1 (en) 2014-05-01
JP5572863B2 (ja) 2014-08-20
EP2725100A4 (en) 2015-01-07
CA2840161C (en) 2019-02-12
KR101963920B1 (ko) 2019-03-29
EP2725100B1 (en) 2019-09-04
HK1190432A1 (en) 2014-07-04
EP2725100A1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5572863B2 (ja) Nk細胞の増幅方法
JP5989016B2 (ja) Nk細胞の増幅方法
JP5511039B1 (ja) Nk細胞の調製方法
KR102534472B1 (ko) 케모카인 리셉터와 세포 접착 분자를 발현하는 cd3 음성 세포의 집단, 및 그 이용 그리고 그 제조 방법
US20230355676A1 (en) Highly active nk cell and use thereof
JP6164650B2 (ja) Nk細胞の調製方法
TWI757709B (zh) 含有nk細胞之細胞集團之製造方法
JP6697611B2 (ja) 高活性nk細胞、およびその利用
JP2020108405A (ja) 高活性nk細胞、およびその利用
JP2011239701A (ja) 樹状細胞の培養方法
JP6426767B2 (ja) 樹状細胞の培養方法
JP2023153286A (ja) Nk細胞を含む細胞集団の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12801859

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2840161

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14129143

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147001579

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012274478

Country of ref document: AU

Date of ref document: 20120620

Kind code of ref document: A