WO2012176618A1 - 水の浄化方法 - Google Patents

水の浄化方法 Download PDF

Info

Publication number
WO2012176618A1
WO2012176618A1 PCT/JP2012/064498 JP2012064498W WO2012176618A1 WO 2012176618 A1 WO2012176618 A1 WO 2012176618A1 JP 2012064498 W JP2012064498 W JP 2012064498W WO 2012176618 A1 WO2012176618 A1 WO 2012176618A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
adsorbent
purifying
activated carbon
iron
Prior art date
Application number
PCT/JP2012/064498
Other languages
English (en)
French (fr)
Inventor
西見 大成
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012176618A1 publication Critical patent/WO2012176618A1/ja
Priority to US14/133,956 priority Critical patent/US20140175015A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0281Sulfates of compounds other than those provided for in B01J20/045
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/12Nature of the water, waste water, sewage or sludge to be treated from the silicate or ceramic industries, e.g. waste waters from cement or glass factories
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/152Water filtration

Definitions

  • the present invention relates to a contaminated water purification technique and relates to a method for efficiently purifying water.
  • the 21st century is called the water age, and water shortages, water pollution, water conflicts, etc. are recognized as major problems.
  • the World Water Development Report, published on March 5, 2003 warns that a serious water shortage will occur in the middle of this century and that the affected population will reach 7 billion people in 60 countries in the worst case. ing.
  • harmful substances that pollute well water and river water are not limited to inorganic compounds such as arsenic.
  • Organic compounds such as insecticides, pesticides, pigments and dyes dissolved in water are also known to cause environmental pollution and health hazards.
  • Non-patent Document 2 As a method for removing harmful substances in water without using electricity, “coagulation and flocculation” using an inorganic flocculant and a polymer flocculant is known (Non-patent Document 2).
  • Patent Documents 1 and 2 Several types of water purifiers used in the coagulation sedimentation method have been proposed (Patent Documents 1 and 2), and are actually used in developing countries (Non-Patent Document 3).
  • Patent Document 3 it is difficult to obtain a sufficient effect with respect to the removal of water-soluble organic compounds by the coagulation precipitation method alone.
  • Non-patent Document 4 In order to remove water-soluble organic compounds and the like in water, it is known that it is effective to use an adsorbent such as activated carbon, and is practically used in sewage treatment plants (Non-patent Document 4). .
  • the adsorbent is usually in the form of particles or fibers, and after the adsorption operation is completed, the adsorbent and water are easily separated.
  • these adsorbents have a small surface area per unit volume, it is difficult to adsorb in a short time and with high efficiency.
  • the adsorbent is used in the form of fine powder, the surface area per unit volume increases, so that efficient adsorption is possible in a short time, but it is difficult to separate the adsorbent and water. have.
  • Patent Document 3 discloses a water purification method characterized in that after an adsorbent containing a rare earth compound and wastewater containing selenium are brought into contact with each other, a flocculant is further added to cause aggregation.
  • this method is based on the premise that a relatively large amount of rare earth compound, which is an expensive rare metal, is used, and thus it is difficult to obtain drinking water at low cost and with this method.
  • Patent Document 4 discloses an acidic agent such as polyaluminum chloride, aluminum oxide, iron sulfate, and ferric chloride, an alkaline agent such as slaked lime, calcium carbonate, magnesium carbonate, sodium carbonate, oyster shell pulverized product, and artificial zeolite.
  • An adsorption / flocculation type wastewater treatment agent configured to treat wastewater with a porous adsorbent such as natural zeolite, silicon dioxide, activated carbon and the like, and a flocculant such as a polymer flocculant and foamed glass is disclosed. Yes.
  • this method is intended to purify high-concentration contaminated water such as cement lye and ceramics factory effluent to a level where it can be discharged using large-scale equipment. It is difficult to get.
  • Patent Document 5 discloses a water treatment flocculant obtained by adhering an aluminum flocculant to a carbon-based material in a range of 0.05 to 1 in a weight ratio of aluminum flocculant / carbon-based material. ing.
  • this method uses an aluminum-based flocculant that is not so high in cohesiveness and that produces a precipitate only in a narrow pH range, it is not easy to remove the precipitate and can be applied only in a narrow pH range. Therefore, it is difficult to obtain drinking water at a low cost, simply and in a short time.
  • the present inventor disperses a fine powder adsorbent in water and adsorbs a water-soluble harmful compound, and then coagulates and precipitates the adsorbent by the action of the iron-based inorganic flocculant, so that the harmful compound by the adsorbent alone Removal performance, harmful compound removal performance with iron-based inorganic flocculant alone, and harmful compounds in water more efficiently and in a shorter time without using power than when both are removed. As a result, the present invention has been completed.
  • Means for solving the above problems are as follows. [1] Adding an adsorbent having an average particle diameter of 100 nm to 500 ⁇ m, an iron flocculant, and a purifier containing an alkaline substance to water having a pollutant concentration of 1 ⁇ g / L to 10 g / L.
  • Adsorbing at least some of the contaminants in the water to the adsorbent Precipitating the adsorbent adsorbed with the pollutant by the action of water-insoluble iron hydroxide produced by the reaction of the iron-based flocculant and the alkaline substance, and removing the precipitate from the water;
  • a method for purifying water containing The method for purifying water, wherein the amount of the purifier added to 1 L of water is 0.01 g or more and 20 g or less.
  • the method for purifying water according to [1], wherein the ratio of the adsorbent to the total mass of the purifier is 40% by mass or more and 95% by mass or less.
  • the adsorbent includes at least one of zeolite, layered silicate, cation exchange resin, and chelate resin, and is an adsorbent that adsorbs at least a cationic compound in water.
  • the water purification method according to any one of [5].
  • the adsorbent contains at least one of hydrotalcite, Schwertmannite, and anion exchange resin, and is an adsorbent that adsorbs at least an anionic compound in water.
  • One of the water purification methods One of the water purification methods.
  • the adsorbent includes at least one of hydroxyapatite, alumina, and zirconia, and is an adsorbent that adsorbs at least fluorine in water. Purification method.
  • the adsorbent contains at least one of activated carbon, alumina, hydrotalcite, and Schwertmannite, and adsorbs at least arsenic in water. Either water purification method.
  • the adsorbent contains at least one of activated carbon, zeolite, iron hydroxide, hydrotalcite, and bentonite, and is an adsorbent that adsorbs at least hexavalent chromium in water.
  • the water purification method according to any one of [9].
  • the adsorbent contains at least one of zeolite, hydrotalcite, boehmite, apatite, and a cyclodextrin-containing polymer crosslinked product, and is an adsorbent that adsorbs at least iodine in water.
  • the method for purifying water according to any one of [10].
  • the adsorbent contains at least one of activated carbon, zeolite, mordenite, vermiculite, ferrocyanide, and manganese oxide, and is an adsorbent that adsorbs at least cesium in water.
  • the water purification method according to any one of [11].
  • the adsorbent contains at least one of activated carbon, zeolite, polyantimonic acid, vermiculite, ferrocyanide, and montmorillonite, and is an adsorbent that adsorbs at least strontium in water.
  • the water purifying method according to any one of [12] to [12].
  • the present invention it is possible to provide a method for purifying contaminated water easily and efficiently.
  • the method of the present invention is useful not only as a method for purifying contaminated water and obtaining living water or drinking water in a developed country, but also as a method for treating waste water from factories or power plants.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • an adsorbent having an average particle size of 100 nm to 500 ⁇ m, an iron flocculant, and a cleaning agent containing an alkaline substance are added to water having a pollutant concentration of 1 ⁇ g / L to 10 g / L.
  • a method for purifying water containing The amount of the purifier added to 1 L of water is 0.01 g or more and 20 g or less,
  • the present invention relates to a water purification method.
  • the adsorption performance can be improved and the adsorption efficiency of contaminants from water can be improved.
  • the particulate adsorbent itself is removed from water. It becomes difficult.
  • the use of a particulate adsorbent having an average particle size within a predetermined range increases the adsorption efficiency of pollutants, and the coexistence of an iron-based flocculant and an alkaline substance results in the reaction between them.
  • the adsorbent adsorbed with contaminants can be aggregated and settled.
  • the sediment in which the adsorbent is agglomerated can be easily removed by a normal operation such as filtration.
  • contaminated water containing various pollutants is purified inexpensively, easily, and in a short time (high efficiency) to obtain water whose contamination concentration is reduced to the extent that it can be used as drinking water. be able to.
  • the contaminated water of the factory etc. containing various pollutants can be purified, and it can be made the state by which the contamination density
  • the weight of the contaminant in 1 L of water before treatment is preferably 1 ⁇ g or more and 10 g or less, more preferably less than 10 g, more preferably 5 ⁇ g or more and 1 g or less. Is more preferably 10 ⁇ g or more and 0.1 g or less.
  • Water containing pollutants exceeding this concentration range does not use electricity and is difficult to purify into water that is inexpensive, simple, and suitable for beverages in a short time.
  • the pollutants can be removed by the purification method of the present invention to the extent that they are used as domestic water or drinking water without further purification treatment. .
  • Examples of the water having a pollutant concentration in the above range include well water, river water, lake water, and the like containing low-concentration pollutants, and the method of the present invention is suitable as a purification method for these.
  • contaminated water containing higher concentrations of pollutants such as wastewater from barns, human waste, septic tank sludge, landfill leachate, plating wastewater, mine wastewater, oily water, pulp mill wastewater, cement wastewater, and semiconductor manufacturing You may utilize this invention for purification
  • an adsorbent having an average particle size in a predetermined range, an iron-based flocculant, and a cleaning agent containing an alkaline substance are used.
  • the amount of the purification agent added to the contaminated water is small, it is difficult to effectively remove the contaminant.
  • the amount of the purification agent is large, it is possible to effectively remove the pollutant, but a large amount of sediment containing the pollutant (hereinafter sometimes referred to as “sludge”) is generated. There is a problem.
  • the amount of the purifier added to 1 L of water containing a contaminant is preferably 0.01 g or more and 20 g or less, more preferably less than 20 g, and more preferably 0.05 g or more and 5 g or less. Preferably, it is 0.1 g or more and 1 g or less.
  • One of the features of the present invention is that a fine particle adsorbent having an average particle diameter in a predetermined range is used.
  • a fine particle adsorbent having a small average particle diameter is used, the adsorption performance is improved, but it is difficult to remove the adsorbent itself from water.
  • the water-insoluble iron hydroxide generated by these reactions causes the adsorbent adsorbed by the pollutant to agglomerate and settle by the action of its own weight. Yes.
  • the sediment surrounded by the flocculant and having a large particle size is easily removed from the water by a normal filtration operation or the like.
  • the ratio of the iron-based flocculant to the adsorbent is small, effective aggregation does not occur, and it becomes difficult to recover the purified water.
  • the ratio of the iron-based flocculant to the adsorbent is large, the adsorbent can be effectively settled and removed, but there is a drawback that a large amount of sludge containing contaminants is generated. Therefore, the ratio of the adsorbent to the total mass of the purifying agent according to the present invention, that is, the adsorbent, the iron-based flocculant, and the alkaline water purification agent is preferably 40% by mass or more and 95% by mass or less. 50 mass% or more and 92.5 mass% or less is more preferable, and 60 mass% or more and 90 mass% or less is further more preferable.
  • the contaminants in the contaminated water are removed while adsorbed on the adsorbent.
  • the contaminants in the water remain as they are with the iron-based flocculant as long as the effects of the present invention are not impaired. It may be surrounded by water-insoluble iron hydroxide generated by reaction with an alkaline substance and settled, and may be removed from water as a sediment containing no adsorbent. Further, the adsorbent that has adsorbed the pollutant may not be partly settled as long as the effect of the present invention is not impaired, and may be removed together with the sediment by subsequent processing such as filtration.
  • Examples of adsorbents that can be used in the present invention include inorganic compounds, organic compounds, and metal complexes.
  • Examples of inorganic compounds that can be used as the adsorbent in the present invention include activated carbon, zeolite, alumina, zirconia, manganese oxide, magnesium aluminate, polyantimonic acid, layered silicate, boehmite, apatite, hydroxyapatite, hydrotalcite. , And Schwertmannite.
  • Examples of organic compounds that can be used as the adsorbent in the present invention include cation exchange resins, anion exchange resins, chelate exchange resins, and the like.
  • an adsorbent may be used individually by 1 type, and may use multiple types together.
  • the particle size of the adsorbent is preferably 10 nm or more and 500 ⁇ m or less, more preferably less than 500 ⁇ m, further preferably 50 nm or more and 100 ⁇ m or less, and 75 nm or more and 50 ⁇ m or less. More preferably, it is 100 nm or more and 15 ⁇ m or less. If the particle size of the adsorbent is smaller than this range, it is difficult to agglomerate and settle the adsorbent particles due to the action of the aggregating agent. Since it becomes difficult to disperse to the whole, it becomes difficult to adsorb the substance to be adsorbed in a short time and effectively.
  • the adsorbent is preferably a porous body having pores on the surface. It is defined by IUPAC that the pore size is classified into micropores having a diameter of 2 nm or less, mesopores having a diameter of 2 to 50 nm, and macropores having a diameter of 50 nm or more.
  • the adsorbent preferably has micropores. From the viewpoint of removing adsorbed substances of various sizes, in the present invention, it is preferable to use an adsorbent having micropores and an adsorbent having mesopores, and an adsorbent having micropores and an adsorbent having mesopores. And an adsorbent having macropores are more preferably used in combination.
  • activated carbon may be used as the adsorbent.
  • Activated carbon includes vegetable matter (wood, cellulose, sawdust, charcoal, coconut shell charcoal, bare ash, etc.), coal (peat, lignite, lignite coal, bituminous coal, anthracite, tar, etc.), petroleum quality (oil residue) , Sulfuric sludge, oil carbon, etc.), pulp waste liquid, synthetic resin, etc., carbonized and gas activated (calcium chloride, magnesium chloride, zinc chloride, phosphoric acid, sulfuric acid, sodium hydroxide, potassium hydroxide, etc.) as necessary Can be used.
  • a layered silicate may be used as the adsorbent.
  • Layered silicates include saponite, saconite, stevensite, hectorite, margarite, talc, phlogopite, chrysotile, chlorite, vermiculite, kaolinite, muscovite, zansophyllite, dickite, nacrite, pyrophyllite, montmorillonite ,
  • Pentetrasilic mica sodium teniolite, antigolite, halloysite, and the like can be used.
  • layered silicates that can be used in the present invention include Laponite XLG (synthetic hectorite analogue manufactured by LaPorte, UK), Laponite RD (synthetic hectorite analogue manufactured by LaPorte, UK), Thermabis ( Synthetic hectorite analogues from Henkel, Germany), Smecton SA-1 (saponite analogues from Kunimine Industries Co., Ltd.), Bengel (natural montmorillonite sold by Toyoshun Yoko Co., Ltd.), Kunipia F (Kunimine Industries) Natural montmorillonite sold by Co., Ltd.), Bee Gum (natural hectorite manufactured by Vanderbilt, USA), Daimonite (synthetic swellable mica manufactured by Topy Industries, Ltd.), Somasif (ME-100, manufactured by Coop Chemical Co. Synthetic swelling mica), SWN (synthetic smectite manufactured by Coop Chemical Co.
  • zeolite may be used as the adsorbent.
  • natural and synthetic zeolites can be used.
  • the natural zeolite it is possible to use analcin, chabazite, clinoptilolite, erionite, faujasite, mordenite, philipsite and the like.
  • a cation exchange resin may be used as the adsorbent.
  • Cation exchange resins include weak acid cation exchange resins obtained by hydrolysis of acrylic acid or methacrylic acid ester polymers cross-linked with divinylbenzene, and strong acid cation exchanges obtained by sulfonating styrene-divinylbenzene copolymers. Resins can be used.
  • an anion exchange resin may be used as the adsorbent.
  • the anion exchange resin include an anion exchange resin in which any one of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium is bonded to an aromatic ring of a styrene-divinylbenzene copolymer. Can be used.
  • the amino group bonded to the anion exchange resin becomes a primary amino group, a secondary amino group, a tertiary amino group, or a quaternary ammonium salt, the basicity of the anion exchange resin is become stronger.
  • a chelate resin may be used as the adsorbent.
  • the chelating resin it is possible to use a resin into which a functional group such as iminodiacetic acid, iminodipropionic acid, polyamine, aminophosphoric acid, isothiouronium, dithiocarbamic acid, or glucamine has been introduced.
  • chelate resins usable in the present invention include Diaion (Mitsubishi Chemical Corporation) CR10, CR11, CR20, etc., Amberlite (Rohm and Haas Japan Co., Ltd.) IRC718, etc., Dowex (Dow) -Chemical Japan Co., Ltd., Duolite (Sumitomo Chemical Co., Ltd.) CS-346, ES-467 and the like.
  • the adsorption efficiency can be improved by using two or more fine particles having different porosities as the adsorbent.
  • Two or more kinds of adsorbents having excellent adsorptivity to different substances may be used in combination with or in place of the combination.
  • With only one kind of adsorbent not all adsorbed substances in the contaminated water are universal, but using a plurality of kinds in combination makes it possible to remove more types of adsorbed substances in the contaminated water.
  • Each adsorbent has different adsorption specificity depending on the type. For example, when the substance to be adsorbed is an organic compound, it is effective to select at least one of activated carbon and zeolite as an adsorbent, and it is effective to select activated carbon.
  • the adsorbed substance is a cationic compound
  • it is effective to select at least one of zeolite, layered silicate, cation exchange resin, and chelate resin as an adsorbent, preferably zeolite. It is effective to select at least one of layered silicates.
  • the adsorbed substance is an anionic compound
  • it is effective to select at least one of hydrotalcite, suitstmannite, and anion exchange resin as an adsorbent, and preferably hydrotalcite It is effective to select at least one of sites and Schwertmannite.
  • the adsorbed substance is fluorine
  • it is effective to select at least one of hydroxyapatite, alumina, and zirconia as the adsorbent, and it is preferable to select alumina.
  • the adsorbed substance is arsenic, it is effective to select at least one of activated carbon, alumina, hydrotalcite, and Schwertmannite as an adsorbent, and preferably hydrotalcite and Schwert It is effective to select at least one of manites as an adsorbent.
  • the adsorbed substance is hexavalent chromium
  • it is effective to select at least one of activated carbon, zeolite, iron hydroxide, hydrotalcite, and bentonite as an adsorbent, It is effective to select at least one of iron and hydrotalcite as the adsorbent.
  • the adsorbed substance When the adsorbed substance is iodine, it is effective to select at least one of activated carbon, zeolite, hydrotalcite, boehmite, apatite, and cyclodextrin-containing crosslinked polymer as an adsorbent, preferably It is effective to select zeolite as the adsorbent.
  • the adsorbed substance When the adsorbed substance is cesium, it is effective to select at least one of activated carbon, zeolite, mordenite, vermiculite, ferric ferrocyanide, and manganese oxide as an adsorbent. It is effective to select at least one of mordenite and ferric ferrocyanide as the adsorbent.
  • the adsorbed substance is strontium, it is effective to select at least one of activated carbon, zeolite, polyantimonic acid, vermiculite, ferric ferrocyanide, and montmorillonite as an adsorbent. It is effective to select at least one of iron ferrocyanide as an adsorbent.
  • the method of the present invention is used to obtain drinking water from well water, river water, lake water, and the like containing low-concentration pollutants at low cost, in a simple manner, and in a short time, there are a plurality of contaminations in these waters. Since it is highly possible that the substance is dissolved, it is possible to remove more pollutants in a single operation. Therefore, any of organic compounds, cationic compounds, anionic compounds, fluorine, arsenic, and hexavalent chromium can be used as the adsorbent. It is preferable to use a combination of two types of adsorbents, more preferably a combination of three types of adsorbents, and even more preferably a combination of four types of adsorbents.
  • the method of the present invention is used to remove these radioactive compounds from seawater, cooling water, tap water, etc., in which trace amounts of radioactive isotopes of iodine, cesium and strontium are dissolved. It is preferable to use two kinds of an adsorbent of iodine and an adsorbent of cesium, and it is more preferred to use three kinds of adsorbent of iodine, an adsorbent of cesium, and an adsorbent of strontium in combination.
  • the iron-based flocculant usable in the present invention is not particularly limited, and any iron-based flocculant capable of producing insoluble iron hydroxide by reaction with an alkaline substance can be used.
  • preferred iron-based flocculants include ferric sulfate, ferric chloride, polyferric sulfate, and ferrous sulfate. It is more preferable to use either ferric sulfate or ferric chloride. Two or more kinds may be used in combination.
  • an iron-based flocculant By using an iron-based flocculant, it is possible to obtain a precipitate with a higher density and excellent cohesiveness than when using an aluminum-based flocculant generally used as a flocculant for water purification. And compared with the case where an aluminum type flocculant is used, it becomes possible to produce
  • alkaline substance that reacts with the iron-based flocculant to produce insoluble iron hydroxide.
  • alkaline substances that can be used in the present invention include sodium carbonate, sodium hydroxide, sodium bicarbonate and the like. Two or more kinds may be used in combination.
  • Alkaline substances containing calcium ions such as slaked lime (calcium hydroxide) can be used, but a large amount of calcium ions remain in the purified water. Since such water is not necessarily suitable as drinking water, it is preferable to use an alkaline substance containing sodium ions in the present invention.
  • Calcium hydroxide is not preferable for application to the present invention aiming at purifying water in a short time from the viewpoint of low solubility in water and long time for dissolution.
  • the purifier preferably contains the iron-based flocculant and the alkaline substance in a mass ratio of 3: 1 to 1: 3, and preferably 2: 1 to 1: 2. More preferably.
  • the preferred range varies depending on the material used, and is not limited to the above range.
  • the form of the iron-based flocculant and the alkaline substance there is no particular limitation on the form of the iron-based flocculant and the alkaline substance. Depending on the addition method to be described later, it can be used in powder or liquid form.
  • a water-soluble polymer may be added to contaminated water together with the purification agent or separately from the purification agent.
  • the water-soluble polymer functions as a polymer flocculant, the fine precipitate of iron hydroxide is cross-linked, the size of the metal hydroxide agglomerates is increased (flocculation), the precipitate formation time is shortened, and the filterability is improved.
  • any of a nonionic water-soluble polymer, a cationic water-soluble polymer, and an anionic water-soluble polymer can be used. These water-soluble polymers may be used alone or in combination of two or more.
  • nonionic water-soluble polymer polyvinyl alcohol or a derivative thereof, starch or a derivative thereof, polyvinyl pyrrolidone or a derivative thereof, a cellulose derivative such as carboxymethylcellulose or hydroxymethylcellulose, polyacrylamide or a derivative thereof, polymethacrylamide or a derivative thereof Gelatin, casein and the like can be used.
  • cationic water-soluble polymer chitosan, cationized polyvinyl alcohol, cationized starch, cationized polyacrylamide, cationized polymethacrylamide, polyamide polyurea, polyethyleneimine, allylamine or a copolymer thereof, epichlorohydrin- Dialkylamine addition polymer, polymer of diallylalkylamine or a salt thereof, polymer of diallyldialkylammonium salt, diallylamine or a salt thereof and sulfur dioxide copolymer, diallyldialkylammonium salt-sulfur dioxide copolymer, diallyldialkylammonium Copolymer of salt and diallylamine or a salt or derivative thereof, polymer of quaternary salt of dialkylaminoethyl acrylate, polymer of quaternary salt of dialkylaminoethyl methacrylate Diallyl dialkyl ammonium salts - acrylamide copoly
  • anionic water-soluble polymer polystyrene sulfonic acid, polyalginic acid, carboxymethyl cellulose, carboxymethyl dextran, polyacrylic acid, polyacrylamide partial hydrolyzate, maleic acid copolymer, lignin sulfonic acid and derivatives thereof. It is possible to use water-soluble proteins and derivatives such as oxyorganic acid, alkylallylsulfonic acid, gelatin and glue. These anionic water-soluble polymers can also be used as the corresponding metal salts.
  • water-soluble polymer examples include polyacrylamide and derivatives thereof, partial hydrolysates of polyacrylamide, chitosan, carboxymethyl cellulose, gelatin, and polyacrylic acid, and polyacrylamide and derivatives thereof and partial hydrolysates of polyacrylamide Is included.
  • the molecular weight of the water-soluble polymer is preferably 50,000 or more, more preferably 100,000 or more, still more preferably 1,000,000 or more, and even more preferably 10 million or more.
  • the amount of unreacted monomer remaining is small. That is, when a synthetic polymer is used in the present invention, the amount of residual monomer in water after the treatment based on the present invention is preferably 5.0 ⁇ g / L or less, and is 1.0 ⁇ g / L or less. Is more preferable, and it is still more preferable that it is 0.5 microgram / L or less.
  • the water-soluble polymer may be added to water as a powder, or may be added to water as an aqueous solution. In the aspect of adding as a powder, it may be added in advance with a purifying agent.
  • an oxidizing agent may be added to the contaminated water together with the cleaning agent or separately from the cleaning agent.
  • an oxidizing agent By using an oxidizing agent, it becomes possible to sterilize microorganisms in water and oxidatively decompose water-soluble organic compounds.
  • the oxidizing agent that can be used in the present invention include potassium permanganate, sodium persulfate, ammonium persulfate, chlorine, chlorine dioxide, sodium hypochlorite, calcium hypochlorite, sodium perchlorate, potassium perchlorate, ozone, Examples include hydrogen peroxide and sodium percarbonate.
  • the oxidizing agent is preferably potassium permanganate, sodium hypochlorite, calcium hypochlorite, or sodium percarbonate. These oxidizing agents may be used alone or in combination of two or more.
  • the form of the oxidizing agent is not particularly limited. It can be added to water as a powder, as an aqueous solution, or as a gas. In the aspect of adding as a powder, it may be added in advance with a purifying agent. When using an oxidizing agent as a powder, it is preferable to use either calcium perchlorate or sodium percarbonate, and it is more preferable to use calcium perchlorate. It is preferable to add ozone and chlorine, which are gases at room temperature, to water as a gas.
  • Addition method 1 An adsorbent, an iron-based flocculant in a powder state, and an alkaline substance in a powder state are added simultaneously.
  • Addition method 2 After an adsorbent is added and dispersed throughout the water, a powdered iron-based flocculant and a powdered alkaline substance are added.
  • Addition method 3 An adsorbent is added and dispersed in the entire water, and then a liquid iron-based flocculant and a liquid alkaline substance are added.
  • Addition method 4 After an adsorbent is added and dispersed throughout the water, a liquid iron-based flocculant and a powdery alkaline substance are added.
  • the addition method 1 is preferable from the viewpoint that all of the adsorbent, the iron-based flocculant, and the alkaline substance can be packaged in one bag and the addition operation is simple.
  • the adsorbent is added as the first step, the adsorbed substance is sufficiently adsorbed, and then the iron-based flocculant and alkali are used as the second step.
  • Addition method 2 to addition method 4 are preferred.
  • the particle size of the iron-based flocculant and the alkaline substance is preferably 10 nm or more and 500 ⁇ m or less, which is the same as that of the adsorbent, more preferably less than 500 ⁇ m, and 50 nm. It is more preferably 100 ⁇ m or less, further preferably 75 nm or more and 50 ⁇ m or less, and further preferably 100 nm or more and 15 ⁇ m or less.
  • the adsorbent when effective purification of water is performed with a small amount of adsorbent used, as described above, the adsorbent is added as the first step to sufficiently adsorb the substance to be adsorbed, and then the iron is used as the second step. It is preferable to add a system flocculant and an alkali. As a result of various studies, the inventors have found that dispersing the adsorbent in the presence of a water-soluble polymer is effective for uniform dispersion of the adsorbent in a short time.
  • the water-soluble polymer when used in the present invention, the water-soluble polymer is added as the first step, the adsorbent is added as the second step, and the adsorbed substance is sufficiently adsorbed, and then the iron is used as the third step. It is preferable to add a system flocculant and an alkali.
  • the pollutants in the contaminated water are adsorbed on the adsorbent, and insoluble iron hydroxide generated by the reaction between the iron-based flocculant and the alkaline substance passes around the adsorbent. Surrounds and forms aggregates.
  • the size of the aggregate is about 0.5 mm to 5 mm in average particle size. The larger the size of the aggregate, the easier the removal from the water and the better the sedimentation efficiency.
  • the stirring time of water is preferably 2 minutes or more, more preferably 2 minutes 30 seconds or more, still more preferably 5 minutes or more, and even more preferably 10 minutes or more.
  • the size of the aggregates produced varies depending on the stirring time, and the largest aggregate can be formed by stirring for 10 minutes or more, which facilitates filtration.
  • sludge is preferably filtered using cloth or sand, and more preferably filtered using cloth.
  • Sludge may be removed and the purified water may be further processed. It is also possible to irradiate the treated water with UV. This operation makes it possible to sterilize microorganisms present in the water.
  • the pH of the treated water may be adjusted according to the intended use. For example, since pH preferable as drinking water is 5.0 or more and 9.0 or less, the water which can be utilized as drinking water can be obtained by making pH of the water after processing into the said range. In order to use as drinking water, it is more preferable to adjust pH to 5.8 or more and 8.6 or less, and it is still more preferable to use 6.5 or more and 7.5 or less.
  • the method of the present invention can be used for the production of drinking water.
  • contaminants can be removed to the extent that they can be used as drinking water without using electricity, so that it is particularly useful for obtaining drinking water in emerging countries where it is difficult to use electricity. is there.
  • it is particularly useful for obtaining drinking water not only in emerging countries but also in cases where the water supply system is destroyed at the time of a disaster such as an earthquake or in areas where water supply such as mountain climbing or camping is not complete.
  • the method of the present invention can also be used to remove these radioactive compounds from seawater, cooling water, tap water, etc., in which a small amount of radioactive isotopes of iodine, cesium and strontium are dissolved.
  • a small amount of radioactive isotopes of iodine, cesium and strontium are dissolved.
  • purifying seawater in which trace amounts of radioactive isotopes of iodine, cesium, and strontium are dissolved removing sodium chloride, magnesium chloride, magnesium sulfate, calcium sulfate, potassium chloride, etc. that are originally dissolved in seawater itself It is not always necessary, and it is preferable to selectively remove iodine, cesium, strontium and the like containing a radioisotope.
  • Example 1 Preparation of mixed flocculants 00-03 Mixed flocculants 00-03 having the compositions shown in the following table were prepared.
  • Methylene blue (MB) was selected as the water-soluble compound, and the above-mentioned mixed flocculant 01 and any one of activated carbons A to D (adsorbents) were combined in the combinations shown in the following table. They were used in combination, and the removal performance of methylene blue from the aqueous solution was examined.
  • Sample 03 and sample 04 using activated carbon A or B having an average particle diameter of 100 ⁇ m or less as an adsorbent according to the present invention use activated carbon C or D having an average particle diameter of 100 ⁇ m or more as an adsorbent. Compared with sample 05 and sample 06, it was confirmed that methylene blue was removed in an extremely short time, and the effect of the present invention was proved.
  • mixed flocculant 00 was put in 500 mL of deionized water and mixed for 10 minutes, but no precipitate was formed.
  • 207 mg of mixed flocculant 01 was placed in 500 mL of deionized water and stirred for 5 minutes. As a result, a brown precipitate and a colorless and transparent supernatant were obtained.
  • an alkaline substance is essential.
  • Example 2 Effect of inorganic flocculant
  • any one of the above mixed flocculants 01 to 03 and any one of activated carbons A to D (adsorbents) were used in combination. The removal performance was examined respectively.
  • target aqueous solutions 500 mL of an aqueous solution of pH 6.9 and pH 8.5 containing 600 ppm of methylene blue was prepared.
  • the adsorbent addition amount is 250 mg
  • 208.3 mg of flocculant 01 is used in sample 08 and sample 11
  • 206.3 mg of flocculant 02 is used in sample 09 and sample 12
  • flocculant 03 was added at 172.5 mg, respectively.
  • the adsorbent and each mixed flocculant were simultaneously added to each target aqueous solution and then stirred for 10 minutes. Precipitation of iron hydroxide containing activated carbon (sample 9, sample 10, sample 11, sample 12) or aluminum hydroxide containing activated carbon (sample 10, sample 14) occurred. For each sample, after 60 minutes, the precipitate was filtered off using a cotton cloth, and the concentration of methylene blue was calculated from the absorbance of the obtained filtrate. The results obtained are shown in the table below.
  • Sample 07 and sample 11 containing only activated carbon A having an average particle size of 10 ⁇ m and no flocculant were dispersed throughout the system 60 minutes after the addition, and even by filtration using cotton cloth, Activated carbon was dispersed in the filtrate, and it was impossible to measure the concentration of methylene blue.
  • Example 3 Arsenic Removal Performance
  • Arsenic (trivalent) was selected as a water-soluble compound, and the above-mentioned mixed flocculant 01 and activated carbon A were used in combination in the combinations shown in the table below. The removal performance was examined respectively.
  • Sample 17 to which only mixed flocculant 01 was added also showed excellent arsenic removal performance, but by adding sample 18 containing mixed flocculant 01 and activated carbon A, which is an example of the present invention, It was confirmed that perfect removal was possible, and the effect of the present invention was proved.
  • Example 4 Relationship between stirring time and settling property
  • the above mixed flocculant 01 and activated carbon A were used in combination, and the relationship between the stirring time and the settling property of methylene blue from the aqueous solution was examined.
  • a target aqueous solution 500 mL of water having a pH of 6.9 and containing 500 ppm of methylene blue was prepared.
  • 207 mg of the mixed flocculant 01 and 250 mg of the adsorbent (activated carbon A) were added at the same time, and then stirred for each of the stirring times shown in the following table to prepare a sample.
  • Example 5 Effect of inorganic flocculant After adding 250 mg of activated carbon A to 500 mL of an aqueous solution containing 500 ppm of methylene blue and having a pH of 6.9, a predetermined amount of the mixed flocculant 02 shown in the table below is obtained.
  • the aqueous solutions of ferric sulfate, sodium carbonate, and polyacrylamide B were added separately and then stirred for 10 minutes.
  • the degree of dispersion of activated carbon 60 minutes after the stirring was stopped was visually observed and evaluated according to the following criteria.
  • X Activated carbon is completely dispersed. The obtained results are shown in the following table.
  • Example 6 Removal performance of iodine from water Iodine was selected as a water-soluble compound, and the removal performance of iodine from an aqueous solution when a flocculant and an adsorbent were combined was examined. To 500 mL of water containing 1000 ⁇ L of 0.05 mol iodine solution, 207 mg of mixed flocculant 02 and 250 mg of adsorbent were simultaneously added and stirred for 10 minutes. Precipitation of iron hydroxide containing activated carbon occurred. The iodine concentration in the supernatant was calculated from the absorbance of the diluted solution. The results obtained are shown in the table below.
  • Example 7 Iodine removal performance from 3.5% NaCl aqueous solution An experiment similar to Example 6 was performed, except that a 3.5% NaCl aqueous solution was used instead of water, and the iodine concentration before and after the treatment was confirmed. . The results obtained are shown in the table below.
  • Example 8 Removal performance of cesium from water Cesium was selected as a water-soluble compound, and the removal performance of iodine from an aqueous solution when a mixed flocculant and an adsorbent were combined was examined. To 500 mL of an aqueous solution containing cesium carbonate, 207 mg of the mixed flocculant 02 and 250 mg of mordenite having a particle diameter of 2 ⁇ m were simultaneously added and stirred for 10 minutes. Precipitation of iron hydroxide containing mordenite occurred. The concentration of cesium in the supernatant was measured by analyzing the sample diluted 10,000 times by ICP-MS. The results obtained are shown in the table below.
  • the sample 41 using the adsorbent having an average particle diameter of 100 ⁇ m or less according to the present invention was confirmed to effectively remove cesium, and the effect of the present invention was proved.
  • the present invention it is possible to provide a method for purifying contaminated water easily and efficiently.
  • the method of the present invention is useful not only as a method for purifying contaminated water and obtaining living water or drinking water in a developed country, but also as a method for treating waste water from factories or power plants.

Abstract

 汚染物質濃度が1μg/L以上10g/L以下である水に、平均粒径が100nm以上且つ500μm以下の粒径を有する吸着剤、鉄系凝集剤、及びアルカリ性物質を含む浄化剤を添加すること、水中の汚染物質の少なくとも一部を吸着剤に吸着させること、汚染物質が吸着した吸着剤を鉄系凝集剤によって沈降させること、及び沈降物を水から除去すること、を含む水の浄化方法であって、水1Lに対する前記浄化剤の添加量が0.01g以上20g以下であることを特徴とする、水の浄化方法は、簡易且つ効率的に汚染水を浄化する方法である。

Description

水の浄化方法
 本発明は、汚染水の浄化技術に関し、効率よく水を浄化する方法に関する。
 21世紀は水の時代と呼ばれ、水不足・水汚染・水紛争などが大きな問題として認識されている。2003年3月5日に発表された「世界水発展報告書」は、今世紀半ばには深刻な水不足が発生し、影響を受ける人口は、最悪の場合、60カ国70億人に達すると警告している。
 水に関する問題は今世紀半ばの問題であるのみならず、現在進行している社会問題でもある。多くの新興国では、必ずしも安全な水が供給されているわけではない。例えば無機化合物であるヒ素の飲料水中における濃度は10ppb以下であることが望ましいことがWHO飲料水ガイドラインに記載されているが(非特許文献1)、バングラディシュ、インド、カンボジア等の井戸水には、この基準値よりもはるかに多くのヒ素が溶解している場合があり、地元住民に深刻な健康被害をもたしていることが報告されている。天然由来のフッ素、工場由来の6価クロム等が井戸水に混入することもまた、地元住民に深刻な健康被害をもたしている。
 新興国において、井戸水や河川水を汚染している有害物質は、ヒ素等の無機化合物に限定されるわけではない。水中に溶解した殺虫剤・農薬・色素・染料のような有機化合物もまた、環境汚染や健康被害の原因物質であることが知られている。
 安全な水の供給に関する問題は、新興国に限定されるわけではない。原子力発電所由来の放射性化合物に汚染された水から、ヨウ素、セシウム、ストロンチウム等の放射性同位体を効率的に除去する技術の構築は、現代の日本においても切望されている。
 この様に、有害な無機化合物や有機化合物を水中から除去するための技術を開発することは、社会的に極めて大きな課題となっている。この課題を解決するための1つの手段は、逆浸透膜による浄水システムを利用することである。しかし逆浸透膜システムは高価であり、かつ電力を必要とするため、電力利用が容易ではない新興国の農村部などでの使用は困難である。それゆえ、電気が使用できない地域にも適用可能な、安価且つ電気を必要としない、水中の無機物および有機物を除去可能な技術の開発が望まれている。
 電気を使用しないで水中の有害な物質を除去する方法としては、無機凝集剤と高分子凝集剤を用いた「凝集沈殿法(Coagulation and Flocculation)」が知られている(非特許文献2)。凝集沈殿法に利用される水浄化剤として、いくつかのタイプが提案されており(特許文献1,2)、実際に、発展途上国で使用されている(非特許文献3)。しかし、凝集沈殿法単独では、水溶性有機化合物等の除去に関しては、十分な効果を得ることは困難である。
 水中の水溶性有機化合物等を除去するためには、活性炭のような吸着剤を使用することが有効であることが知られており、下水処理場等で実用されている(非特許文献4)。吸着剤は通常、粒状あるいは繊維状のものが使用され、吸着操作が終わった後に、吸着剤と水の分離が容易に行われる。一方、これらの吸着剤は、単位体積あたりの表面積が少ないため、短時間かつ高効率の吸着は困難である。吸着剤を微粉末状で用いた場合、単位体積あたりの表面積が大きくなるため、短時間で効率的な吸着が可能となるものの、吸着剤と水の分離が困難になる、という操作上の欠点を有している。
 凝集剤と吸着剤とを併用する水の浄化方法についても報告されている。特許文献3には、希土類化合物を含む吸着剤とセレンを含有する排水を接触させた後に、更に凝集剤を投入して凝集させることを特徴とする浄水方法が開示されている。しかし本手法では、高価なレアメタルである希土類化合物を比較的大量に使用することが前提となっているため、本手法により安価かつ簡便に飲料水を得ることは困難である。
 特許文献4には、ポリ塩化アルミニウム、酸化アルミニウム、硫酸鉄、塩化第二鉄等の酸性薬剤と、消石灰、炭酸カルシウム、炭酸マグネシウム、炭酸ナトリウム、牡蠣殻の粉砕物等のアルカリ性薬剤と、人工ゼオライト、天然ゼオライト、二酸化珪素、活性炭等の多孔質性の吸着剤と、高分子凝集剤、発泡ガラス等の凝集剤で、廃水を処理する構成とした吸着・凝集方式の廃水処理剤が開示されている。しかし本手法は、セメント灰汁やセラミックス工場排液等の高濃度汚染水を、大掛かりな設備を用いて、放流可能な程度まで浄化することを目的としているため、本手法により安価かつ簡便に飲料水を得ることは困難である。
 特許文献5には、炭素系物質にアルミニウム系凝集剤を、アルミ系凝集剤/炭素系物質の重量比で0.05~1の範囲に混合被着してなる水処理用凝集剤が開示されている。しかし本手法は、凝集性がそれほど高くなく、しかも、狭いpH範囲でしか沈殿を生成しないアルミニウム系凝集剤を使用しているため、沈殿の除去が容易でなく、また狭いpH範囲でしか適用できないため、安価、簡便、かつ短時間に飲料水を得ることは困難である。
米国特許第6827874号明細書 特許第4490795号公報 特開2007-326077号公報 特開2009-248006号公報 特開平7-328322号公報
"Guidelines for Drinking-Water Quality, Volume 1, 3rd ed", World Health Organization (2006). "The NALCO Water Handbook, Second Edition", F. N. Kemmer, ed., McGraw-Hill (1988). Ivan Amato, Chem. Eng. News, vol.84 (16), pp 39-40 (2006) "Activated Carbon Adsorption for Wastewater Treatment", J. R. Perrich. ed., CRC Press (1981).
 上記した通り、従来は、電気を使用できない条件下において、種々の汚染物質を含む比較的汚染度の低い水から、安価、簡便、かつ短時間に飲料水を得ることは困難であったため、新たな水の浄化法が望まれていた。
 即ち、本発明の課題の一つは、電気を使用できない条件下において、比較的低濃度の汚染物質を含む井戸水、河川水、湖沼水等から、安価、簡便、かつ高効率(短時間)で浄化し、飲料水を得る技術を提供することである。
 本発明の他の課題は、ヨウ素やセシウムやストロンチウムの放射性同位体を微量に溶解している海水、冷却水、水道水等から、これらの放射性化合物を除去し得る技術を提供することである。
 本発明者は、微粉末状の吸着剤を水中に分散させ水溶性有害化合物を吸着させた後、鉄系無機凝集剤の作用により吸着剤を凝集沈降させることで、吸着剤単独での有害化合物除去性能、鉄系無機凝集剤単独での有害化合物除去性能、および両者の有害化合物除去性能を単純に足し合わせた場合よりも、効率的かつ短時間に、電力を使用することなく水中の有害化合物を除去可能であることを見出し、本発明を完成するに至った。
 前記課題を解決するための手段は、以下の通りである。
[1] 汚染物質濃度が1μg/L以上10g/L以下である水に、平均粒径が100nm以上且つ500μm以下の吸着剤、鉄系凝集剤、及びアルカリ性物質を含む浄化剤を添加すること、
水中の汚染物質の少なくとも一部を吸着剤に吸着させること、
汚染物質が吸着した吸着剤を、鉄系凝集剤及びアルカリ性物質の反応によって生じた水不溶性水酸化鉄の作用によって沈降させること、及び
沈降物を水から除去すること、
を含む水の浄化方法であって、
水1Lに対する前記浄化剤の添加量が0.01g以上20g以下であることを特徴とする、水の浄化方法。
[2] 前記浄化剤の全質量における前記吸着剤の割合が、40質量%以上95質量%以下である、[1]の水の浄化方法。
[3] 前記浄化剤とともに、又は前記浄化剤とは別に、水溶性ポリマーを添加する、[1]又は[2]の水の浄化方法。
[4] 沈降物を布あるいは砂で濾過することより、水から除去する、[1]~[3]のいずれかの水の浄化方法。
[5] 前記吸着剤が、活性炭及びゼオライトのいずれかを少なくとも含み、水中の有機化合物が少なくとも吸着する吸着剤である、[1]~[4]のいずれかの水の浄化方法。
[6] 前記吸着剤が、ゼオライト、層状ケイ酸塩、カチオン交換性樹脂、及びキレート樹脂のいずれか少なくとも1種を含み、水中のカチオン性化合物が少なくとも吸着する吸着剤である、[1]~[5]のいずれかの水の浄化方法。
[7] 前記吸着剤が、ハイドロタルサイト、シュベルトマナイト、及びアニオン交換性樹脂のいずれか少なくとも1種を含み、水中のアニオン性化合物が少なくとも吸着する吸着剤である、[1]~[6]のいずれかの水の浄化方法。
[8] 前記吸着剤が、ヒドロキシアパタイト、アルミナ、及びジルコニアのいずれか少なくも1種を含み、水中のフッ素が少なくとも吸着する吸着剤である、[1]~[7]のいずれかの水の浄化方法。
[9] 前記吸着剤が、活性炭、アルミナ、ハイドロタルサイト、及びシュベルトマナイトのいずれか少なくも1種を含み、水中のヒ素が少なくとも吸着する吸着剤である、[1]~[8]のいずれかの水の浄化方法。
[10] 前記吸着剤が、活性炭、ゼオライト、水酸化鉄、ハイドロタルサイト、及びベントナイトのいずれか少なくも1種を含み、水中の6価クロムが少なくとも吸着する吸着剤である、[1]~[9]のいずれか水の浄化方法。
[11] 前記吸着剤が、ゼオライト、ハイドロタルサイト、ベーマイト、アパタイト、及びシクロデキストリン含有ポリマー架橋体のいずれか少なくも1種を含み、水中のヨウ素が少なくとも吸着する吸着剤である、[1]~[10]のいずれかの水の浄化方法。
[12] 前記吸着剤が、活性炭、ゼオライト、モルデナイト、バーミキュライト、フェロシアン化鉄、及び酸化マンガンのいずれか少なくも1種を含み、水中のセシウムが少なくとも吸着する吸着剤である、[1]~[11]のいずれかの水の浄化方法。
[13] 前記吸着剤が、活性炭、ゼオライト、ポリアンチモン酸、バーミキュライト、フェロシアン化鉄、及びモンモリロナイトのいずれか少なくも1種を含み、水中のストロンチウムが少なくとも吸着する吸着剤である、[1]~[12]のいずれかの水の浄化方法。
[14] 2種類以上の吸着剤を併用することを特徴とする、[1]~[13]のいずれかの水の浄化方法。
[15] 前記鉄系凝集剤が、硫酸第二鉄、塩化第二鉄、ポリ硫酸第二鉄、及び硫酸第一鉄のいずれか少なくとも1種を含有する、[1]~[14]のいずれかの水の浄化方法。
[16] 前記鉄系凝集剤及び前記アルカリ性物質がそれぞれ、平均粒径が100nm以上かつ500μm以下の粉末である、[1]~[15]のいずれかの水の浄化方法。
[17] 前記浄化剤とともに、又は前記浄化剤とは別に、酸化剤を添加する、[1]~[16]のいずれかの水の浄化方法。
[18] 前記沈降物を除去した後、水のpHを5.0以上9.0以下に調整することを含む、[1]~[17]のいずれかの水の浄化方法。
[19] 浄化された水を飲料水として用いる、[1~[18]のいずれかの水の浄化方法。
 本発明によれば、簡易且つ効率的に汚染水を浄化する方法を提供することができる。本発明の方法は、後進国において、汚染水を浄化し、生活水や飲料水を得るための方法として有用であるのみならず、工場や発電所からの排水処理の方法としても有用である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明は、汚染物質濃度が1μg/L以上10g/L以下である水に、平均粒径が100nm以上且つ500μm以下の吸着剤、鉄系凝集剤、及びアルカリ性物質を含む浄化剤を添加すること、
水中の汚染物質の少なくとも一部を吸着剤に吸着させること、
汚染物質が吸着した吸着剤を、鉄系凝集剤及びアルカリ性物質の反応によって生じた水不溶性水酸化鉄の作用によって沈降させること、及び
沈降物を水から除去すること、
を含む水の浄化方法であって、
水1Lに対する前記浄化剤の添加量が0.01g以上20g以下であることを特徴とする、
水の浄化方法に関する。
 小粒径の吸着剤を用いることにより、吸着性能を向上させることができ、水からの汚染物質の吸着効率を改善することができるが、一方で、微粒子状の吸着剤自体を水から除去するのが困難になる。本発明では、平均粒径が所定の範囲の微粒子状の吸着剤を用いることにより、汚染物質の吸着効率を高めるとともに、鉄系凝集剤とアルカリ性物質とを共存させることにより、それらの反応から生じる水不溶性の水酸化鉄の作用によって、汚染物質が吸着した吸着剤を凝集・沈降させることができる。吸着剤が凝集した沈降物は、ろ過等の通常の作業により容易に除去することができる。従って、本発明によれば、種々の汚染物質を含む汚染水を、安価、簡便、かつ短時間(高効率)に浄化し、飲料水として使用可能な程度まで汚染濃度が低減された水を得ることができる。また、本発明によれば、種々の汚染物質を含む工場等の汚染水を浄化して、排水可能な程度まで汚染濃度が低減された状態にすることができる。
 本発明の方法の対象になる汚染水は、処理前の水1L中における汚染物質の重量は1μg以上10g以下であることが好ましく、10g未満であることがより好ましく、5μg以上1g以下であることがより好ましく、10μg以上0.1g以下であることが更に好ましい。この濃度範囲を超える汚染物質を含む水は、電気を使用せず、安価、簡便、かつ短時間に飲料に適した水へと浄化することが困難である。一方、この濃度範囲内の汚染物質を含む水であれば、本発明の浄化方法により、更なる浄化処理を行わずに、生活用水や飲料水として使用する程度まで、汚染物質を除去可能である。
 汚染物質の濃度が前記範囲の水としては、例えば、低濃度の汚染物質を含む井戸水、河川水、湖沼水等が挙げられ、本発明の方法は、これらを対象とする浄化方法として適する。勿論、より高濃度の汚染物質を含む汚染水、例えば、畜舎からの廃液、し尿、浄化槽汚泥、ゴミ埋め立て滲出汚水、めっき排液、鉱山排液、油濁水、パルプ工場排水、セメント排水、半導体製造工場からのフッ酸含有洗浄液等の浄化に、本発明を利用してもよい。その場合は、本発明の浄化方法を実施する前に、他の方法、例えば、より大きな粒径の吸着剤を用いた浄化作業等を1回以上行い、汚染物質濃度を上記範囲にした後に、本発明の浄化方法を実施するのが好ましい。
 本発明では、平均粒径が所定の範囲の吸着剤、鉄系凝集剤、及びアルカリ性物質を含む浄化剤を使用する。汚染水に対する浄化剤の添加量が少ない場合、汚染物質の効果的な除去が困難である。一方、浄化剤の添加量が多い場合、汚染物質の効果的な除去が可能となるが、汚染物質を含有した沈降物(以下、「スラッジ」という場合がある)が大量に生成してしまうという問題点がある。それゆえ本発明において汚染物質を含む水1Lに対する浄化剤の添加量は0.01g以上20g以下であることが好ましく、20g未満であることがより好ましく、0.05g以上5g以下であることがより好ましく、0.1g以上1g以下であることが更に好ましい。
 本発明の特徴の一つは、平均粒径が所定の範囲の微粒子状の吸着剤を用いることにある。平均粒径が小さい微粒子状の吸着剤を用いると、吸着性能は改善するが、一方で吸着剤自体を水から除去するのが困難になる。本発明では、鉄系凝集剤とアルカリ性物質とを共存させることで、これらの反応により生じる水不溶性の水酸化鉄によって、汚染物質が吸着した吸着剤を凝集させ、その自重の作用により沈降させている。凝集剤によって取り囲まれ、大粒径化した沈降物は、通常のろ過作業等により、容易に水から除去される。吸着剤に対する鉄系凝集剤の割合が少ないと効果的な凝集が起こらず、浄化された水の回収が困難となる。一方、吸着剤に対する鉄系凝集剤の割合が多い場合は、吸着剤の効果的な沈降除去が可能となるものの、汚染物質を含有したスラッジが大量に生成してしまうという欠点がある。それゆえ、本発明に係わる浄化剤、即ち、吸着剤、鉄系凝集剤、及びアルカリ性からなる浄水剤、の合計質量に対する吸着剤の割合は、40質量%以上95質量%以下であることが好ましく、50質量%以上92.5質量%以下であることがより好ましく、60質量%以上90質量%以下であることがさらに好ましい。
 なお、本発明において、汚染水中の汚染物質は、吸着剤に吸着された状態で除去されるが、本発明の効果を損なわない範囲で、例えば、水中の汚染物質がそのまま、鉄系凝集剤とアルカリ性物質との反応により生じる水不溶性の水酸化鉄に取り囲まれて沈降し、吸着剤を含まない沈降物として水から除去されてもよい。また、汚染物質を吸着した吸着剤についても、本発明の効果を損なわない範囲で、その一部は沈降せず、その後の、ろ過等の処理によって、沈降物とともに除去されてもよい。
 本発明に使用可能な吸着剤の例には、無機化合物、有機化合物、及び金属錯体のいずれも含まれる。本発明において吸着剤として使用可能な無機化合物の例には、活性炭、ゼオライト、アルミナ、ジルコニア、酸化マンガン、アルミン酸マグネシウム、ポリアンチモン酸、層状ケイ酸塩、ベーマイト、アパタイト、ヒドロキシアパタイト、ハイドロタルサイト、及びシュベルトマナイト等が含まれる。本発明において吸着剤として使用可能な有機化合物の例には、陽イオン交換樹脂、陰イオン交換樹脂、及びキレート交換樹脂等が含まれる。本発明において吸着剤として使用可能な金属錯体の例には、フェロシアン化鉄、硫酸マグネシウムマンガン、ポルフィリン金属錯体、フタロシアニン金属錯体、シッフ(Schiff)塩基金属錯体、イミノジ酢酸金属錯体、及び多孔性金属錯体等が含まれる。本発明において吸着剤は、一種を単独で用いてもよく、また、複数種を併用してもよい。
 本発明において吸着剤の粒径は、10nm以上かつ500μm以下であることが好ましく、500μm未満であることがより好ましく、50nm以上100μm以下であることがさらに好ましく、75nm以上かつ50μm以下であることがよりさらに好ましく、100nm以上かつ15μm以下であることが特に好ましい。吸着剤の粒子径がこの範囲よりも小さい場合、吸着剤粒子を、前記凝集剤の作用により凝集沈降させることが困難であり、吸着剤の粒子径がこの範囲以上である場合、吸着剤を水全体へと分散させることが困難になるため、被吸着物質を短時間かつ効果的に吸着することが困難となる。
 吸着剤は、表面に細孔を有する多孔質体であるのが好ましい。細孔のサイズは、直径2nm以下のマイクロ孔、直径2~50nmのメソ孔、直径50nm以上マクロ孔に分類されることがIUPACにより定義されている。本発明において吸着剤は、マイクロ孔を有することが好ましい。多様なサイズの被吸着物質除去の観点から、本発明においては、マイクロ孔を有する吸着剤とメソ孔を有する吸着剤を併用することが好ましく、マイクロ孔を有する吸着剤とメソ孔を有する吸着剤とマクロ孔を有する吸着剤とを併用することがより好ましい。
 本発明では、吸着剤として活性炭を使用してもよい。活性炭としては、植物質(木材、セルロース、のこくず、木炭、椰子殻炭、素灰等)、石炭質(泥炭、亜炭、褐炭炭、瀝青炭、無煙炭、タール等)、石油質(石油残査、硫酸スラッジ、オイルカーボン等)、パルプ廃液、合成樹脂などを炭化し、必要に応じてガス賦活(塩化カルシウム、塩化マグネシウム、塩化亜鉛、リン酸、硫酸、水酸化ナトリウム、水酸化カリウム等)したものを使用することが可能である。
 本発明では、吸着剤として、層状ケイ酸塩を使用してもよい。層状ケイ酸塩としては、サポナイト、ソーコナイト、スチブンサイト、ヘクトライト、マーガライト、タルク、金雲母、クリソタイル、緑泥石、バーミキュライト、カオリナイト、白雲母、ザンソフィライト、ディッカイト、ナクライト、パイロフィライト、モンモリロナイト、バイデライト、ノントロナイト、テトラシリリックマイカ、ナトリウムテニオライト、アンチゴライト、ハロイサイト等を使用することが可能である。本発明において使用可能な層状ケイ酸塩の市販品としては、ラポナイトXLG(英国、ラポート社製の合成ヘクトライト類似物質)、ラポナイトRD(英国、ラポート社製の合成ヘクトライト類似物質)、サーマビス(独国、ヘンケル社製の合成ヘクトライト類似物質)、スメクトンSA-1(クニミネ工業(株)製のサポナイト類似物質)、ベンゲル((株)豊順洋行販売の天然モンモリロナイト)、クニピアF(クニミネ工業(株)販売の天然モンモリロナイト)、ビーガム(米国、バンダービルト社製の天然ヘクトライト)、ダイモナイト(トピー工業(株)製の合成膨潤性雲母)、ソマシフ(ME-100、コープケミカル(株)製の合成膨潤性雲母)、SWN(コープケミカル(株)製の合成スメクタイト)、SWF(コープケミカル(株)製合成スメクタイト)等を挙げることが可能である。
 本発明では、吸着剤として、ゼオライトを使用してもよい。ゼオライトとしては、天然および合成品のゼオライトを使用することが可能である。本発明において天然のゼオライトとしては、アナルシン、チャバサイト、クリノプチロライト、エリオナイト、フォジャサイト、モルデナイト、フィリップサイト等を用いることが可能である。本発明において合成ゼオライトとしては、A型ゼオライト、X型ゼオライト、Y型ゼオライト等を用いることが可能である。
 本発明では、吸着剤として、陽イオン交換樹脂を使用してもよい。陽イオン交換樹脂としては、ジビニルベンゼンで架橋したアクリル酸エステル又はメタクリル酸エステルのポリマーを加水分解して得られる弱酸性陽イオン交換樹脂、スチレン-ジビニルベンゼンのコポリマーをスルホン化した強酸性陽イオン交換樹脂、等を使用することが可能である。
 本発明では、吸着剤として、陰イオン交換樹脂を使用してもよい。陰イオン交換樹脂としては、スチレン-ジビニルベンゼンのコポリマーの芳香環に、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウムのいずれか結合した陰イオン交換樹脂等を使用することが可能である。陰イオン交換樹脂に結合しているアミノ基が、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩となるのに伴い、陰イオン交換樹脂の塩基性は強くなる。
 本発明では、吸着剤として、キレート樹脂を使用してもよい。キレート樹脂としては、イミノジ酢酸、イミノジプロピオン酸、ポリアミン、アミノリン酸、イソチオウロニウム、ジチオカルバミン酸、グルカミン等の官能基が導入されたもの等を使用することが可能である。本発明において使用可能な市販のキレート樹脂としては、ダイヤイオン(三菱化学(株))CR10、CR11、CR20等、アンバーライト(ローム・アンド・ハース・ジャパン(株))IRC718等、ダウエックス(ダウ・ケミカル日本(株))、デュオライト(住友化学(株))CS-346、ES-467等を挙げることが可能である。
 本発明では、上記した通り、吸着剤として多孔性が互いに異なる2以上の微粒子を用いることにより吸着効率を改善することができる。当該併用とともに、又はそれに代えて、互いに異なる物質に対する吸着性に優れる吸着剤を2種以上併用してもよい。1種のみの吸着剤では、汚染水中の全ての被吸着物質に万能と言うわけではないが、複数種を併用することで、汚染水中のより多くの種類の被吸着物質を除去可能となる。
 吸着剤は、種類によってそれぞれ、吸着特異性が異なる。
 例えば、被吸着物質が有機化合物である場合、活性炭及びゼオライトのいずれか少なくも1種を吸着剤として選択することが有効であり、好ましくは活性炭を選択することが有効である。
 また、被吸着物質がカチオン性化合物である場合、ゼオライト、層状ケイ酸塩、カチオン交換性樹脂、及びキレート樹脂のいずれか少なくも1種を吸着剤として選択することが有効であり、好ましくはゼオライト、及び層状ケイ酸塩の少なくとも1種を選択することが有効である。
 また、被吸着物質がアニオン性化合物である場合、ハイドロタルサイト、シュベルトマナイト、及びアニオン交換性樹脂のいずれか少なくも1種を吸着剤として選択することが有効であり、好ましくは、ハイドロタルサイト、及びシュベルトマナイトの少なくとも1種を選択することが有効である。
 また、被吸着物質がフッ素である場合、ヒドロキシアパタイト、アルミナ、及びジルコニアのいずれか少なくも1種を吸着剤として選択することが有効であり、好ましくは、アルミナを選択することが有効である。
 また、被吸着物質がヒ素である場合、活性炭、アルミナ、ハイドロタルサイト、及びシュベルトマナイトのいずれか少なくとも1種を吸着剤として選択することが有効であり、好ましくは、ハイドロタルサイト、及びシュベルトマナイトのいずれか少なくとも1種を吸着剤として選択することが有効である。
 また、被吸着物質が6価クロムである場合、活性炭、ゼオライト、水酸化鉄、ハイドロタルサイト、及びベントナイトのいずれか少なくとも1種を吸着剤として選択することが有効であり、好ましくは、水酸化鉄、及びハイドロタルサイトのいずれか少なくとも1種を吸着剤として選択することが有効である。
 また、被吸着物質がヨウ素である場合、活性炭、ゼオライト、ハイドロタルサイト、ベーマイト、アパタイト、及びシクロデキストリン含有ポリマー架橋体のいずれか少なくとも1種を吸着剤として選択することが有効であり、好ましくは、ゼオライトを吸着剤として選択することが有効である。
 また、被吸着物質がセシウムである場合、活性炭、ゼオライト、モルデナイト、バーミキュライト、フェロシアン化鉄、及び酸化マンガンのいずれか少なくも1種を吸着剤として選択することが有効であり、好ましくは、ゼオライト、モルデナイト、及びフェロシアン化鉄のいずれか少なくとも1種を吸着剤として選択することが有効である。
 また、被吸着物質がストロンチウムである場合、活性炭、ゼオライト、ポリアンチモン酸、バーミキュライト、フェロシアン化鉄、及びモンモリロナイトのいずれか少なくとも1種を吸着剤として選択することが有効であり、好ましくは、ゼオライト、及びフェロシアン化鉄の少なくとも1種を吸着剤として選択することが有効である。
 本発明の方法を、低濃度の汚染物質を含む井戸水、河川水、湖沼水等から、安価、簡便、かつ短時間に飲料水を得るために利用する態様では、これらの水中には複数の汚染物質が溶解している可能性が高いため、1回の操作でより多くの汚染物質を取り除くため、吸着剤として、有機化合物、カチオン性化合物、アニオン性化合物、フッ素、ヒ素、6価クロムのいずれかに対する吸着剤を2種類組み合わせて使用することが好ましく、吸着剤3種類を組み合わせて使用することがより好ましく、吸着剤4種類を組み合わせて使用することが更に好ましい。
 本発明の方法を、ヨウ素やセシウムやストロンチウムの放射性同位体を微量に溶解している海水、冷却水、水道水等から、これらの放射性化合物を除去するために利用する態様では、吸着剤としては、ヨウ素の吸着剤とセシウムの吸着剤の2種類を併用することが好ましく、ヨウ素の吸着剤とセシウムの吸着剤とストロンチウムの吸着剤の3種類を併用することが更に好ましい。
 本発明に使用可能な鉄系凝集剤としては、特に制限はなく、アルカリ性物質との反応によって不溶性の水酸化鉄を生成し得る鉄系凝集剤をいずれも使用することができる。好ましい鉄系凝集剤の例には、硫酸第二鉄、塩化第二鉄、ポリ硫酸第二鉄、及び硫酸第一鉄が含まれる。硫酸第二鉄、及び塩化第二鉄のいずれかを用いることが更に好ましい。2種以上を併用してもよい。
 鉄系凝集剤を用いることで、浄水用の凝集剤として一般的に用いられるアルミニウム系凝集剤を使用する場合と比較して、より高密度で凝集性に優れた沈殿を得ることが可能であり、且つアルミニウム系凝集剤を使用する場合と比較して、より広いpH範囲で沈殿を生成させることが可能となる。
 本発明において、前記鉄系凝集剤と反応して、不溶性の水酸化鉄を生成するアルカリ性物質についても特に制限はない。本発明に使用可能なアルカリ性物質の例には、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム等が含まれる。2種以上を併用してもよい。消石灰(水酸化カルシウム)等のカルシウムイオンを含むアルカリ性物質を用いることもできるが、浄化された水中に大量のカルシウムイオンが残存してしまう。このような水は飲料水としては必ずしも適していないため、本発明においては、ナトリウムイオンを含むアルカリ性物質を用いることが好ましい。水酸化カルシウムは、水に対する溶解度が低く溶解に時間がかかる、という観点からも、短時間で水を浄化することを目的とする本発明への適用には好ましくない。
 前記浄化剤は、前記鉄系凝集剤及び前記アルカリ性物質を、質量比で3:1~1:3の範囲で含有しているのが好ましく、2:1~1:2の範囲で含有しているのがより好ましい。但し、使用する材料によって好ましい範囲も変動するので、前記範囲に限定されるものではない。
 また、前記鉄系凝集剤及び前記アルカリ性物質の形態については特に制限はない。後述する添加方法に応じて、粉末状又は液体状で用いることができる。
 本発明では、前記浄化剤とともに、又は前記浄化剤とは別に、水溶性ポリマーを汚染水に添加してもよい。水溶性ポリマーが高分子凝集剤として機能し、水酸化鉄の微細沈殿が架橋され、金属水酸化物の凝集体サイズが大きくなり(Flocculation)、沈殿生成時間の短縮、ろ過性の向上が達成される。
 水溶性ポリマーとしては、ノニオン性水溶性ポリマー、カチオン性水溶性ポリマー、アニオン性水溶性ポリマーのいずれも用いることが可能である。これらの水溶性ポリマーは、単独で用いてもよく、また複数種を併用してもよい。
 本発明において、ノニオン性水溶性ポリマーとして、ポリビニルアルコール又はその誘導体、澱粉またはその誘導体、ポリビニルピロリドン又はその誘導体、カルボキシメチルセルロース、ヒドロキシメチルセルロース等のセルロース誘導体、ポリアクリルアミド又はその誘導体、ポリメタクリルアミド又はその誘導体、ゼラチン、カゼイン等を使用することが可能である。
 本発明において、カチオン性水溶性ポリマーとして、キトサン、カチオン化ポリビニルアルコール、カチオン化澱粉、カチオン化ポリアクリルアミド、カチオン化ポリメタクリルアミド、ポリアミドポリウレア、ポリエチレンイミン、アリルアミン又はその塩の共重合体、エピクロルヒドリン-ジアルキルアミン付加重合体、ジアリルアルキルアミン又はその塩の重合体、ジアリルジアルキルアンモニウム塩の重合体、ジアリルアミン又はその塩と二酸化イオウ共重合体、ジリルジアルキルアンモニウム塩-二酸化イオウ共重合体、ジアリルジアルキルアンモニウム塩とジアリルアミン又はその塩もしくは誘導体との共重合体、ジアルキルアミノエチルアクリレート4級塩の重合体、ジアルキルアミノエチルメタクリレート4級塩の重合体、ジアリルジアルキルアンモニウム塩-アクリルアミド共重合体、アミン-カルボン酸共重合体、等を使用することが可能である。
 本発明において、アニオン性水溶性ポリマーとして、ポリスチレンスルホン酸、ポリアルギン酸、カルボキシメチルセルロース、カルボキシメチルデキストラン、ポリアクリル酸、ポリアクリルアミドの部分加水分解物、マレイン酸共重合物、リグニンスルホン酸及びその誘導体、オキシ有機酸、アルキルアリルスルホン酸、ゼラチン・ニカワ等の水溶性タンパク質及び誘導体、等を使用することが可能である。これらのアニオン性水溶性ポリマーは、対応する金属塩として使用することも可能である。
 前記水溶性ポリマーの好ましい例には、ポリアクリルアミドおよびその誘導体、ポリアクリルアミドの部分加水分解物、キトサン、カルボキシメチルセルロース、ゼラチン、ポリアクリル酸が好ましく、ポリアクリルアミドおよびその誘導体、ポリアクリルアミドの部分加水分解物が含まれる。
 前記水溶性ポリマーの分子量は5万以上であることが好ましく、10万以上であることがより好ましく、100万以上であることが更に好ましく、1000万以上であることがよりさらに好ましい。
 前記水溶性ポリマーとして合成ポリマーを使用する場合、未反応のモノマーの残存量が少ないことが好ましい。すなわち、本発明において合成ポリマーを用いた場合、本発明に基づく処理を行った後の水中における残存モノマー量は、5.0μg/L以下であることが好ましく、1.0μg/L以下であることがより好ましく、0.5μg/L以下であることが更に好ましい。
 なお、本発明において、水溶性ポリマーは、粉末として水に添加してもよく、また、水溶液として水に添加してもよい。粉末として添加する態様では、あらかじめ浄化剤と混合して添加してもよい。
 本発明では、前記浄化剤とともに、又は前記浄化剤とは別に、酸化剤を汚染水に添加してもよい。酸化剤を使用することで、水中の微生物の殺菌や水溶性有機化合物の酸化分解が可能となる。本発明において使用可能な酸化剤としては、過マンガン酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、塩素、二酸化塩素、次亜塩素ナトリウム、次亜塩素カルシウム、過塩素酸ナトリウム、過塩素酸カリウム、オゾン、過酸化水素、過炭酸ナトリウム、等が挙げられる。前記酸化剤は、好ましくは、過マンガン酸カリウム、次亜塩素ナトリウム、次亜塩素カルシウム、過炭酸ナトリウムのいずれかである。これらの酸化剤は、単独で用いてもよく、また複数種を併用してもよい。
 前記酸化剤の形態については特に制限はない。粉末として、水溶液として、又は気体として、水に添加することができる。粉末として添加する態様では、あらかじめ浄化剤と混合して添加してもよい。酸化剤を粉末として使用する場合、過塩素酸カルシウム、過炭酸ナトリウムのいずれかを用いることが好ましく、過塩素酸カルシウムを用いることがより好ましい。室温で気体であるオゾンや塩素は、気体として水に添加することが好ましい。
 本発明において、前記浄化剤を構成する3成分をあらかじめ混合して添加してもよいし、それぞれ別々に添加してもよい。以下に、可能な添加の態様を列挙する。
 添加方法1:吸着剤、粉末状態の鉄系凝集剤、及び粉末状態のアルカリ性物質を、同時に添加する。
 添加方法2:吸着剤を添加し、水全体に分散させた後、粉末状態の鉄系凝集剤、及び粉末状態のアルカリ性物質を添加する。
 添加方法3:吸着剤を添加し、水全体に分散させた後、液体状態の鉄系凝集剤、及び液体状態のアルカリ性物質を添加する。
 添加方法4:吸着剤を添加し、水全体に分散させた後、液体状態の鉄系凝集剤、及び粉末状態のアルカリ性物質を添加する。
 吸着剤、鉄系凝集剤、及びアルカリ性物質の全てを一袋に包装することができ、且つ添加操作が単純であるという観点からは、添加方法1が好ましい。一方、少ない吸着剤使用量で効果的な吸着を行うという観点からは、第1ステップとして吸着剤を添加し、被吸着物質を十分に吸着させた後、第2ステップとして鉄系凝集剤とアルカリを添加する、添加方法2~添加方法4が好ましい。
 添加方法1により水の浄化を行う場合、吸着剤、鉄系凝集剤、アルカリ性物質の粒径がほぼ等しい場合に、粉末状態における効果的な均一混合が達成される。粉末状態で均一混合された吸着剤、鉄系凝集剤、アルカリ性物質を同時に水に添加することで、各成分の局所的な濃度分布を生じさせない状態での混合が可能となる。このことにより、系全体での均一な沈殿生成が達成され、被吸着物質の効率的な除去が可能となる。それゆえ本態様では、鉄系凝集剤、およびアルカリ性物質の粒径は、吸着剤と同様の粒径である、10nm以上かつ500μm以下であることが好ましく、500μm未満であるのがより好ましく、50nm以上100μm以下であることがより好ましく、75nm以上かつ50μm以下であることがさらに好ましく、100nm以上かつ15μm以下であることがよりさらに好ましい。
 本発明において、少ない吸着剤使用量で効果的な水の浄化を行う場合、上記した通り、第1ステップとして吸着剤を添加し、被吸着物質を十分に吸着させた後、第2ステップとして鉄系凝集剤とアルカリを添加することが好ましい。発明者は種々の検討の結果、水溶性ポリマー存在下で吸着剤を分散させることが、吸着剤の短時間での均一分散にとって有効であることを見出した。それゆえ本発明において水溶性ポリマーを使用する場合、第1ステップとして水溶性ポリマーを添加し、第2ステップとして吸着剤を添加し、被吸着物質を十分に吸着させた後、第3ステップとして鉄系凝集剤とアルカリを添加することが好ましい。
 汚染水に、吸着剤が添加されると、汚染水中の汚染物質が吸着剤に吸着するとともに、鉄系凝集剤とアルカリ性物質との反応によって生成した不溶性の水酸化鉄が、吸着剤の周りを取り囲み、凝集体を形成する。該凝集体の大きさは、平均粒径0.5mm~5mm程度になる。凝集体の大きさが大きいほうが、水からの除去が容易になり、また沈降効率も向上する。大きな凝集体を形成させるためには、上記浄化剤を添加した後、水を攪拌することが望ましい。本発明において水の攪拌時間は、好ましくは2分間以上であり、より好ましくは2分30秒間以上であり、さらに好ましくは5分間以上であり、よりさらに好ましくは10分間以上である。攪拌時間により生じた凝集体の大きさが異なり、10分間以上の攪拌により最も大きな凝集体を形成することが可能となり、ろ過が容易となる。
 水中の凝集体は、自重により沈降し、汚染物質を含有したスラッジとなって、容器の下部に沈殿する。上澄みの水とスラッジとは、特別な装置を使用することなく、安価且つ簡便に分離可能である。例えば、スラッジは、布あるいは砂を用いて濾別されることが好ましく、布を用いて濾別されることがより好ましい。
 スラッジを除去し、浄化された水に、さらに処理を施してもよい。
 処理後の水に、UV照射することも可能である。この操作により、水中に存在する微生物の殺菌が可能となる。
 また、処理後の水を、用途に応じて、pHを調整してもよい。例えば、飲料水として好ましいpHは、5.0以上9.0以下であるので、処理後の水のpHを前記範囲にすることで、飲料水として利用可能な水を得ることができる。飲料水として利用するためには、pHを5.8以上8.6以下に調整することがより好ましく、6.5以上7.5以下にすることが更に好ましい。
 本発明の方法は、飲料水の製造に利用可能である。本発明の方法によれば、電気を使用することなく、飲料水として利用可能な程度まで汚染物質を除去可能であるので、電気の使用が困難な新興国において飲料水を得るのに特に有用である。さらに、新興国においてのみならず、地震等の災害時に上水道システムが破壊された場合、又は登山やキャンプ等の上水道が完備されていない地域において、飲料水を得るためにも特に有用である。
 また、本発明の方法は、ヨウ素やセシウムやストロンチウムの放射性同位体を微量に溶解している海水、冷却水、水道水等から、これらの放射性化合物を除去することにも利用可能なである。ヨウ素やセシウムやストロンチウムの放射性同位体を微量に溶解している海水を浄化する場合、海水自身に元々溶解している塩化ナトリウム、塩化マグネシウム、硫酸マグネシウム、硫酸カルシウム、塩化カリウム等を除去することは必ずしも必要ではなく、放射性同位体を含むヨウ素、セシウム、ストロンチウム等を選択的に除去することが好ましい。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
1.実施例1
(1)混合凝集剤00~03の準備
 下記表に記載の組成の混合凝集剤00~03をそれぞれ準備した。
Figure JPOXMLDOC01-appb-T000001
(2)吸着剤の準備
 下記表に記載の平均粒径を有する活性炭A~Dをそれぞれ準備し、吸着剤として使用した。なお、平均粒径は、光学顕微鏡あるいは透過型電子顕微鏡によりその形態を観察し、球相当径の平均値から求めた
Figure JPOXMLDOC01-appb-T000002
(3)メチレンブルー(MB)に対する除去性能評価
 水溶性化合物としてメチレンブルー(MB)を選択し、下記表に記載の組み合わせで、上記混合凝集剤01と、活性炭A~D(吸着剤)のいずれかとを組み合わせて使用し、水溶液からのメチレンブルーの除去性能をそれぞれ検討した。
 具体的には、600ppmのメチレンブルーを含む水溶液500mLに対し、混合凝集剤 207mg、及び吸着剤 250mgを同時に添加し、10分間攪拌した。活性炭を含む水酸化鉄の沈殿が生じた。各サンプルについて、攪拌終了から5分後、60分後、及び24時間後に、上澄み液を採取し、その吸光度から、メチレンブルーの濃度を算出した。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000003
                  
 本発明である、平均粒子径が100μm以下の活性炭A又はBを吸着剤として使用しているサンプル03およびサンプル04は、平均粒子径が100μm以上の活性炭C又はDを吸着剤として使用しているサンプル05およびサンプル06と比較して、極めて短時間にメチレンブルーの除去が行われることが確認され、本発明の効果が証明された。
 なお、107mgの混合凝集剤00を脱イオン水500mLに入れ、10分間混合したが、沈殿は生成しなかった。一方、207mgの混合凝集剤01を脱イオン水500mLに入れ、5分間攪拌した結果、茶褐色の沈殿と無色透明の上澄みが得られた。凝集剤としての主成分である水酸化鉄の沈殿を得るためには、アルカリ性物質の添加が必須であることが証明された。
2.実施例2:無機凝集剤の効果
 下記表に記載の組み合わせで、上記混合凝集剤01~03のいずれかと、活性炭A~D(吸着剤)のいずれかとを組み合わせて使用し、水溶液からのメチレンブルーの除去性能をそれぞれ検討した。対象水溶液として、600ppmのメチレンブルーを含むpH6.9およびpH8.5の水溶液500mLをそれぞれ準備した。いずれのサンプルについても吸着剤の添加量は250mgとし、混合凝集剤については、サンプル08及びサンプル11では、凝集剤01を206.3mg;サンプル09及びサンプル12では、凝集剤02を206.3mg;サンプル10及びサンプル13では、凝集剤03を172.5mg;それぞれ添加した。
 各対象水溶液に対して、吸着剤と各混合凝集剤とを同時に添加した後、10分間攪拌した。活性炭を含む水酸化鉄(サンプル9、サンプル10、サンプル11、サンプル12)、あるいは、活性炭を含む水酸化アルミニウム(サンプル10、サンプル14)の沈殿が生じた。各サンプルについて、60分後に、木綿布を用いて沈殿を濾別し、得られた濾液の吸光度から、メチレンブルーの濃度を算出した。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000004
 平均粒径10μmである活性炭Aのみを含み、凝集剤を全く含まないサンプル07およびサンプル11は、添加後60分では活性炭Aが系全体に分散しており、木綿布を用いた濾過によっても、濾液中に活性炭が分散しており、メチレンブルーの濃度測定は不可能であった。これに対し、本発明の実施例である、塩化第二鉄を含む混合凝集剤01と活性炭Aとを組み合わせたサンプル08及びサンプル12、硫酸第二鉄を含む混合凝集剤02と活性炭Aとを組み合わせたサンプル09及びサンプル13はいずれも、処理の60分後にはメチレンブルーが活性炭に完全に吸着された後に沈殿し、生じた沈殿が木綿布によって完全に濾別され、メチレンブルーは濾液中に全く存在しないことが確認された。即ち、本発明の効果が証明された。
 一方、硫酸アルミニウムを含む混合凝集剤03と活性炭Aとを組み合わせた比較例では、pHが6.9の場合はメチレンブルーの完全な除去が達成されるものの、pHが8.5の場合には水酸化アルミニウムによる凝集沈降が不十分であり、一部の活性炭が分散した状態で残ってしまった。それゆえ木綿布を用いて濾過を行った場合、分散した活性炭が濾液中に残存してしまうことが証明された。
3.実施例3:ヒ素の除去性能
 水溶性化合物としてヒ素(3価)を選択し、下記表に記載の組み合わせで、上記混合凝集剤01と、活性炭Aとを組み合わせて使用し、水溶液からのヒ素の除去性能をそれぞれ検討した。
 具体的には、250ppbのヒ素を含む水溶液500mLに対し、混合凝集剤01 207mg、及び活性体A(吸着剤) 250mgを同時に添加し、10分間攪拌した。吸着剤を含む水酸化鉄の沈殿が生じた。各サンプルについて、攪拌終了から10分後に、上澄み液を採取し、その原子吸光分析から、ヒ素濃度を算出した。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000005
 混合凝集剤01のみを添加したサンプル17でも、優れたヒ素除去性能を示したが、本発明の実施例である、混合凝集剤01と活性炭Aとを含むサンプル18を添加することにより、ヒ素の完璧な除去が可能であることが確認され、本発明の効果が証明された。
4.実施例4:攪拌時間と沈降性の関係
 上記混合凝集剤01と、活性炭Aとを組み合わせて使用し、攪拌時間と、水溶液からのメチレンブルーの沈降性との関係をそれぞれ検討した。対象水溶液として、500ppmのメチレンブルーを含む、pH6.9である500mLの水を準備した。この水溶液に対して、混合凝集剤01の207mgと、吸着剤(活性炭A)の250mgとを同時に添加した後、下記表に記載の攪拌時間でそれぞれ攪拌して、サンプルを調製した。
 各サンプルについて、攪拌停止から5分後、60分後、24時間後に、吸着剤の分散の程度を目視で観察し、以下の基準で評価した。
◎:上澄みは完全に無色透明。
○:大部分の活性炭は沈降しているが、一部分の活性炭は分散している。
△:大部分の活性炭は分散しているが、一部分の活性炭が沈降している。
×:活性炭が完全に分散している。
 結果を、下記表に示す。
Figure JPOXMLDOC01-appb-T000006
 吸着剤を効果的に沈降させるためには、攪拌時間を長くすることが効果的であることが証明された。攪拌を2分間以上行えば、沈降速度を顕著に高めることができ、2分30秒間以上行えば、沈降速度はほぼ上限値に達することが理解できる。
5.実施例5:無機凝集剤の効果
 500ppmのメチレンブルーを含む、pH6.9である水溶液500mLに対し、250mgの活性炭Aを添加した後、下記表に記載の所定の量の混合凝集剤02となる様に、硫酸第二鉄、炭酸ナトリウム、及びポリアクリルアミドBの水溶液を、別々に添加し、その後、10分間攪拌した。攪拌停止から60分後における活性炭の分散の程度を目視で観察し、下記の基準で評価した。
◎:上澄みは完全に無色透明。
○:大部分の活性炭は沈降しているが、一部分の活性炭は分散している。
△:大部分の活性炭は分散しているが、一部分の活性炭が沈降している。
×:活性炭が完全に分散している。
 得られた結果を、下記表に示す。
Figure JPOXMLDOC01-appb-T000007
 活性炭Aの質量比が40%以下であるサンプル26は、メチレンブルーが完全に除去された無色透明の上澄みが得られているが、大量のスラッジが生成している。一方、活性炭Aの質量比が95%以上であるサンプル31~33は、活性炭Aが完全に水に分散しており、除去することが困難である。これに対し、活性炭Aの質量比が40%以上95%以下であるサンプル27~30は、ほぼすべての活性炭が沈降凝集していることが確認され、特に活性炭Aの質量比が60%以上90%以下であるサンプル28及びサンプル29では、メチレンブルーが完全に除去された無色透明の上澄みが得られ、且つスラッジの生成量もそれほど多くないことが確認され、本発明の効果が証明された。
6.実施例6:水中からのヨウ素の除去性能
 水溶性化合物としてヨウ素を選択し、凝集剤と吸着剤とを組み合わせた場合の、水溶液からのヨウ素の除去性能に関して検討した。
 0.05molのヨウ素溶液1000μLを含む水500mLに対し、混合凝集剤02 207mg、吸着剤 250mgを同時に添加し、10分間攪拌した。活性炭を含む水酸化鉄の沈殿が生じた。上澄み中のヨウ素濃度を、希釈溶液の濃度の吸光度から算出した。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000008
 本発明である、平均粒子径が100μm以下の吸着剤(活性炭A)を使用しているサンプル35のみ、極めて効果的なヨウ素の除去が行われることが確認され、本発明の効果が証明された。
7.実施例7:3.5%NaCl水溶液からのヨウ素の除去性能
 水の代わりに3.5%NaCl水溶液を用いた以外は、実施例6と同様の実験を行い、処理前後のヨウ素濃度を確認した。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000009
 海水と同程度の塩濃度である、3.5%NaCl水溶液中に溶解しているヨウ素溶液を用いた場合にも、本発明である平均粒子径が100μm以下の吸着剤を使用しているサンプル38のみ、極めて効果的なヨウ素の除去が可能であることが確認され、本発明の効果が証明された
8.実施例8:水中からのセシウムの除去性能
 水溶性化合物としてセシウムを選択し、混合凝集剤と吸着剤とを組み合わせた場合の、水溶液からのヨウ素の除去性能に関して検討した。
 炭酸セシウムを含む水溶液500mLに対し、混合凝集剤02 207mg、及び粒径2μmのモルデナイト 250mgを同時に添加し、10分間攪拌した。モルデナイトを含む水酸化鉄の沈殿が生じた。上澄み中のセシウム濃度を、1万倍希釈したサンプルのICP-MSによる分析により測定した。得られた結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000010
 本発明である、平均粒子径が100μm以下の吸着剤を使用しているサンプル41は、効果的なセシウムの除去が行われることが確認され、本発明の効果が証明された。
 本発明によれば、簡易且つ効率的に汚染水を浄化する方法を提供することができる。本発明の方法は、後進国において、汚染水を浄化し、生活水や飲料水を得るための方法として有用であるのみならず、工場や発電所からの排水処理の方法としても有用である。

Claims (19)

  1. 汚染物質濃度が1μg/L以上10g/L以下である水に、平均粒径が100nm以上且つ500μm以下の吸着剤、鉄系凝集剤、及びアルカリ性物質を含む浄化剤を添加すること、
    水中の汚染物質の少なくとも一部を吸着剤に吸着させること、
    汚染物質が吸着した吸着剤を、鉄系凝集剤及びアルカリ性物質の反応によって生じた水不溶性水酸化鉄の作用によって沈降させること、及び
    沈降物を水から除去すること、
    を含む水の浄化方法であって、
    水1Lに対する前記浄化剤の添加量が0.01g以上20g以下であることを特徴とする、水の浄化方法。
  2. 前記浄化剤の全質量における前記吸着剤の割合が、40質量%以上95質量%以下である、請求項1に記載の水の浄化方法。
  3. 前記浄化剤とともに、又は前記浄化剤とは別に、水溶性ポリマーを添加する、請求項1又は2に記載の水の浄化方法。
  4. 沈降物を布あるいは砂で濾過することより、水から除去する、請求項1~3のいずれか1項に記載の水の浄化方法。
  5. 前記吸着剤が、活性炭及びゼオライトのいずれかを少なくとも含み、水中の有機化合物が少なくとも吸着する吸着剤である、請求項1~4のいずれか1項に記載の水の浄化方法。
  6. 前記吸着剤が、ゼオライト、層状ケイ酸塩、カチオン交換性樹脂、及びキレート樹脂のいずれか少なくとも1種を含み、水中のカチオン性化合物が少なくとも吸着する吸着剤である、請求項1~5のいずれか1項に記載の水の浄化方法。
  7. 前記吸着剤が、ハイドロタルサイト、シュベルトマナイト、及びアニオン交換性樹脂のいずれか少なくとも1種を含み、水中のアニオン性化合物が少なくとも吸着する吸着剤である、請求項1~6のいずれか1項に記載の水の浄化方法。
  8. 前記吸着剤が、ヒドロキシアパタイト、アルミナ、及びジルコニアのいずれか少なくも1種を含み、水中のフッ素が少なくとも吸着する吸着剤である、請求項1~7のいずれか1項に記載の水の浄化方法。
  9. 前記吸着剤が、活性炭、アルミナ、ハイドロタルサイト、及びシュベルトマナイトのいずれか少なくも1種を含み、水中のヒ素が少なくとも吸着する吸着剤である、請求項1~8のいずれか1項に記載の水の浄化方法。
  10. 前記吸着剤が、活性炭、ゼオライト、水酸化鉄、ハイドロタルサイト、及びベントナイトのいずれか少なくも1種を含み、水中の6価クロムが少なくとも吸着する吸着剤である、請求項1~9のいずれか1項に記載の水の浄化方法。
  11. 前記吸着剤が、ゼオライト、ハイドロタルサイト、ベーマイト、アパタイト、及びシクロデキストリン含有ポリマー架橋体のいずれか少なくも1種を含み、水中のヨウ素が少なくとも吸着する吸着剤である、請求項1~10のいずれか1項に記載の水の浄化方法。
  12. 前記吸着剤が、活性炭、ゼオライト、モルデナイト、バーミキュライト、フェロシアン化鉄、及び酸化マンガンのいずれか少なくも1種を含み、水中のセシウムが少なくとも吸着する吸着剤である、請求項1~11のいずれか1項に記載の水の浄化方法。
  13. 前記吸着剤が、活性炭、ゼオライト、ポリアンチモン酸、バーミキュライト、フェロシアン化鉄、及びモンモリロナイトのいずれか少なくも1種を含み、水中のストロンチウムが少なくとも吸着する吸着剤である、請求項1~12のいずれか1項に記載の水の浄化方法。
  14. 2種類以上の吸着剤を併用することを特徴とする、請求項1~13のいずれか1項に記載の水の浄化方法。
  15. 前記鉄系凝集剤が、硫酸第二鉄、塩化第二鉄、ポリ硫酸第二鉄、及び硫酸第一鉄のいずれか少なくとも1種を含有する、請求項1~14のいずれか1項に記載の水の浄化方法。
  16. 前記鉄系凝集剤及び前記アルカリ性物質がそれぞれ、平均粒径が100nm以上かつ500μm以下の粉末である、請求項1~15のいずれか1項に記載の水の浄化方法。
  17. 前記浄化剤とともに、又は前記浄化剤とは別に、酸化剤を添加する、請求項1~16のいずれか1項に記載の水の浄化方法。
  18. 前記沈降物を除去した後、水のpHを5.0以上9.0以下に調整することを含む、請求項1~17のいずれか1項に記載の水の浄化方法。
  19. 浄化された水を飲料水として用いる、請求項1~18のいずれか1項に記載の水の浄化方法。
PCT/JP2012/064498 2011-06-20 2012-06-06 水の浄化方法 WO2012176618A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/133,956 US20140175015A1 (en) 2011-06-20 2013-12-19 Water purification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-136206 2011-06-20
JP2011136206A JP2013000696A (ja) 2011-06-20 2011-06-20 水の浄化方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/133,956 Continuation US20140175015A1 (en) 2011-06-20 2013-12-19 Water purification method

Publications (1)

Publication Number Publication Date
WO2012176618A1 true WO2012176618A1 (ja) 2012-12-27

Family

ID=47422458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064498 WO2012176618A1 (ja) 2011-06-20 2012-06-06 水の浄化方法

Country Status (3)

Country Link
US (1) US20140175015A1 (ja)
JP (1) JP2013000696A (ja)
WO (1) WO2012176618A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910402A (zh) * 2014-01-10 2014-07-09 周立祥 一种颗粒状施氏矿物及其制备方法和应用
CN103922451A (zh) * 2014-04-23 2014-07-16 武汉理工大学 环保型聚硅酸改性蒙脱石复合自来水絮凝剂
CN105110395A (zh) * 2015-09-30 2015-12-02 宁波保税区韬鸿化工科技有限公司 一种水处理剂及其制备方法
CN107686139A (zh) * 2017-10-12 2018-02-13 中节能六合天融环保科技有限公司 一种水处理复合药剂及其制备方法和应用
CN108473339A (zh) * 2016-05-17 2018-08-31 环球油品公司 从污染水中优先去除阴离子
CN109607908A (zh) * 2018-11-13 2019-04-12 长沙埃比林环保科技有限公司 一种含铬废水的处理方法
CN109607726A (zh) * 2018-11-29 2019-04-12 浙江正洁环境科技有限公司 一种降解含磷阻燃剂废水的方法
CN111135796A (zh) * 2020-01-09 2020-05-12 常熟理工学院 一种强效地质聚合除氟剂及其制备方法和应用
CN114405484A (zh) * 2022-01-07 2022-04-29 中国地质大学(北京) 一种可磁分离的改性赤泥吸附剂及其应用
CN114920307A (zh) * 2022-05-05 2022-08-19 安徽农业大学 一种农业污水处理剂及其制备方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885161B2 (ja) * 2012-03-29 2016-03-15 国立研究開発法人日本原子力研究開発機構 黒雲母を用いた希土類元素の濃縮方法
US20140291246A1 (en) 2013-03-16 2014-10-02 Chemica Technologies, Inc. Selective Adsorbent Fabric for Water Purification
JP6053006B2 (ja) * 2013-03-25 2016-12-27 鹿島建設株式会社 凝集剤組成物及び汚染水の処理方法
JP6218136B2 (ja) * 2013-07-18 2017-10-25 国立大学法人島根大学 放射線遮蔽能を有するヨウ素捕集材料
RU2552548C1 (ru) * 2013-12-03 2015-06-10 Закрытое акционерное общество "НПО ЭКОХИМ" Способ получения средства для очистки воды, средство и способ очистки воды
JP5751685B1 (ja) * 2014-06-17 2015-07-22 独立行政法人国立高等専門学校機構 フッ素吸着材及びその製造方法
KR101551233B1 (ko) * 2014-09-16 2015-09-10 한국원자력연구원 원전 중대사고 시 발생하는 방사성 폐액 처리방법
JP2017064653A (ja) * 2015-09-30 2017-04-06 ステラキューブ株式会社 ヒ素を含有する濁水を浄化するための凝集組成物及び浄化方法
JP6651113B2 (ja) * 2015-12-18 2020-02-19 国立大学法人茨城大学 放射性物質の除染方法及びその除染システム
CN106430396B (zh) * 2016-09-21 2019-06-07 大连理工大学 一种选择性纳米吸附剂和氧族桥联铁絮凝剂制备方法及其协同净水应用
CN106430364A (zh) * 2016-11-25 2017-02-22 防城港市水利水电勘测设计院 一种净水剂
JP6846656B2 (ja) * 2016-12-14 2021-03-24 パナソニックIpマネジメント株式会社 水処理装置
CN106747482B (zh) * 2017-01-24 2019-10-08 福州大学 一种利用垃圾渗滤液制备减薄型陶瓷添加剂的方法
JP6944154B2 (ja) * 2017-02-02 2021-10-06 株式会社片山化学工業研究所 海生生物の付着防止方法およびそれに用いる付着防止剤
CN107010812A (zh) * 2017-05-23 2017-08-04 北京尚水清源水处理技术有限公司 一种环糊精改性纳米球污泥调理剂及其制备方法
CN108975420A (zh) * 2017-06-05 2018-12-11 艺康美国股份有限公司 化学需氧量(cod)去除粉末混合物
CN107117669B (zh) * 2017-06-16 2020-08-14 上海永泉化工科技有限公司 一种富营养化水处理剂及其制备方法
CN107117776B (zh) * 2017-06-22 2020-07-03 哈尔滨理工大学 一种活化过一硫酸盐产生自由基处理垃圾渗滤液的方法
CN109422381B (zh) * 2017-08-31 2022-06-24 宝山钢铁股份有限公司 一种去除冷轧反渗透浓水溶解性有机碳和总铬的处理工艺
US20200199786A1 (en) 2017-09-08 2020-06-25 Kuraray Co., Ltd. Fibers based on poly(vinyl alcohol)
CN107651724A (zh) * 2017-10-23 2018-02-02 周瑛 印染污水净化剂
US11851350B1 (en) * 2017-10-25 2023-12-26 National Technology & Engineering Solutions Of Sandia, Llc Double charge composite materials for contaminant removal and methods of making the same
KR102095858B1 (ko) * 2017-12-26 2020-04-02 한국과학기술원 세슘과 스트론튬을 동시에 제거하는 층상점토광물 기반 흡착제 및 그 제조방법
CN108276523B (zh) * 2018-03-09 2020-05-29 西北民族大学 改性环糊精及其制备方法和应用
CN108483713B (zh) * 2018-04-09 2021-05-18 南乙环境工程技术(上海)有限公司 同时去除电解抛光废水中总锌和总铅的处理工艺及系统
CN108554373A (zh) * 2018-05-25 2018-09-21 黄智慧 一种水滑石基除氟吸附剂的制备方法
CN108751372B (zh) * 2018-07-09 2021-10-08 苏州晏荣煜科技发展有限公司 一种二氧化硅气凝胶掺杂钙沸石水处理剂及其制备方法
CN109019747A (zh) * 2018-09-10 2018-12-18 芜湖新达园林绿化集团有限公司 一种高效混凝吸附剂及其制备方法和应用
CN109265108B (zh) * 2018-11-02 2020-12-01 嘉华特种水泥股份有限公司 一种净水生态混凝土及其制备方法
US11383998B1 (en) * 2019-04-10 2022-07-12 Wayne W. Spani Advanced liquid treatment and oxidation method and system
CN110252261A (zh) * 2019-06-21 2019-09-20 南京信息工程大学 一种树脂基纳米羟基磷灰石复合材料、制备方法及在氟污染水体处理中的应用
CN110282825B (zh) * 2019-06-27 2021-11-23 湖南现代环境科技股份有限公司 一种垃圾渗滤液处理方法及系统
CN110449126A (zh) * 2019-08-20 2019-11-15 江西省水产技术推广站 一种净化、活化水产养殖水质的吸附剂及制备方法和应用
CN111186933A (zh) * 2020-01-08 2020-05-22 南京农业大学 一种从酸性矿山废水中快速形成海胆状施氏矿物的化学方法
CN113582305B (zh) * 2020-04-30 2022-11-18 宝山钢铁股份有限公司 一种改性脱硫灰混凝剂的制备方法及应用
CN111659341A (zh) * 2020-06-19 2020-09-15 西安交通大学 一种季膦盐改性高庙子膨润土及其制备方法与应用
CN114505045B (zh) * 2020-11-17 2023-11-28 核工业北京化工冶金研究院 一种酸性废水中氟的净化方法
JP2022104694A (ja) * 2020-12-29 2022-07-11 ユニ・チャーム株式会社 複合吸収体及び衛生用品
CN112876041B (zh) * 2021-01-22 2022-09-23 中国石油大学(北京) 一种含油污泥的处理方法
CN113351153B (zh) * 2021-05-24 2022-08-09 桂林理工大学 一种MgFe-LDO-MnO2复合材料的制备方法及其应用
CN113428965A (zh) * 2021-06-07 2021-09-24 中南大学 一种具有活化和钝化功能的珊瑚状施氏矿物的制备及应用
CN113716810A (zh) * 2021-09-14 2021-11-30 杭州职业技术学院 除磷脱氮一体化a2o工艺
CN113735281B (zh) * 2021-09-15 2023-03-31 海南天禹环保工程有限公司 一种可降解污水处理用生物絮凝剂及其制备方法
CN113772760B (zh) * 2021-09-23 2022-12-27 安徽华业香料股份有限公司 一种用于香料生产过程中的水处理剂及其制备方法
CN114477398A (zh) * 2022-01-29 2022-05-13 武汉大学 一种gcs复配材料强化黑臭水体混凝脱氮的方法
CN114477406B (zh) * 2022-03-07 2023-04-07 山东环瑞生态科技有限公司 一种固体除氟药剂及其应用
CN114873649B (zh) * 2022-04-26 2023-06-23 广州大学 一种用于修复砷污染土壤的纳米施氏矿物合成方法
CN114789039B (zh) * 2022-05-10 2024-03-15 苏州中材非金属矿工业设计研究院有限公司 一种矿物型除磷剂及其制备方法
CN115057552B (zh) * 2022-06-23 2023-06-02 先导薄膜材料有限公司 一种低浓度硝酸铵废水浓缩方法
CN115672257A (zh) * 2022-11-08 2023-02-03 江西省润穹环保科技有限公司 一种用于油水分离的吸附剂的制备方法
JP7295324B1 (ja) 2022-11-30 2023-06-20 株式会社合同資源 フッ化物イオンとリン酸イオンの選択除去性を持つ無機系凝集剤によるヨウ素成分含有水溶液の製造方法
CN115925078A (zh) * 2022-12-29 2023-04-07 咸阳师范学院 一种污水中重金属离子的处理方法
KR102638051B1 (ko) * 2023-01-03 2024-02-21 윤종혁 파우더형 일라이트를 이용한 방사능 오염수 제염 방법 및 제염 성능 측정 방법
KR102637078B1 (ko) * 2023-01-09 2024-02-15 윤종혁 일라이트를 이용한 방사능 오염수 제염 장치
CN117623426B (zh) * 2024-01-25 2024-04-12 山东道简环保科技有限公司 一种污水处理药剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218494A (ja) * 1989-02-18 1990-08-31 Hikari Seiko Kk 高bod,cod廃液の浄化処理法
JP2004081939A (ja) * 2002-08-23 2004-03-18 Japan Organo Co Ltd 濃縮ブロー水の処理方法
WO2006082997A1 (ja) * 2005-02-02 2006-08-10 Kurita Water Industries Ltd. 溶解性cod成分除去剤、水処理方法及び水処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218494A (ja) * 1989-02-18 1990-08-31 Hikari Seiko Kk 高bod,cod廃液の浄化処理法
JP2004081939A (ja) * 2002-08-23 2004-03-18 Japan Organo Co Ltd 濃縮ブロー水の処理方法
WO2006082997A1 (ja) * 2005-02-02 2006-08-10 Kurita Water Industries Ltd. 溶解性cod成分除去剤、水処理方法及び水処理装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910402A (zh) * 2014-01-10 2014-07-09 周立祥 一种颗粒状施氏矿物及其制备方法和应用
CN103922451A (zh) * 2014-04-23 2014-07-16 武汉理工大学 环保型聚硅酸改性蒙脱石复合自来水絮凝剂
CN105110395A (zh) * 2015-09-30 2015-12-02 宁波保税区韬鸿化工科技有限公司 一种水处理剂及其制备方法
CN108473339A (zh) * 2016-05-17 2018-08-31 环球油品公司 从污染水中优先去除阴离子
CN107686139A (zh) * 2017-10-12 2018-02-13 中节能六合天融环保科技有限公司 一种水处理复合药剂及其制备方法和应用
CN109607908A (zh) * 2018-11-13 2019-04-12 长沙埃比林环保科技有限公司 一种含铬废水的处理方法
CN109607726A (zh) * 2018-11-29 2019-04-12 浙江正洁环境科技有限公司 一种降解含磷阻燃剂废水的方法
CN111135796A (zh) * 2020-01-09 2020-05-12 常熟理工学院 一种强效地质聚合除氟剂及其制备方法和应用
CN111135796B (zh) * 2020-01-09 2022-02-11 常熟理工学院 一种强效地质聚合除氟剂及其制备方法和应用
CN114405484A (zh) * 2022-01-07 2022-04-29 中国地质大学(北京) 一种可磁分离的改性赤泥吸附剂及其应用
CN114920307A (zh) * 2022-05-05 2022-08-19 安徽农业大学 一种农业污水处理剂及其制备方法

Also Published As

Publication number Publication date
US20140175015A1 (en) 2014-06-26
JP2013000696A (ja) 2013-01-07

Similar Documents

Publication Publication Date Title
WO2012176618A1 (ja) 水の浄化方法
Han et al. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants
Srinivasan Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water
Ghorpade et al. Water treatment sludge for removal of heavy metals from electroplating wastewater
Barathi et al. Impact of fluoride in potable water–An outlook on the existing defluoridation strategies and the road ahead
Prashantha Kumar et al. Nanoscale materials as sorbents for nitrate and phosphate removal from water
Zhang et al. Highly efficient and rapid fluoride scavenger using an acid/base tolerant zirconium phosphate nanoflake: behavior and mechanism
Chuah et al. Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview
CN101743205B (zh) 水纯化组合物和方法
Sun et al. Adsorption of Pb2+ and Cd2+ onto Spirulina platensis harvested by polyacrylamide in single and binary solution systems
Ghosh et al. Removal of mercury from industrial effluents by adsorption and advanced oxidation processes: a comprehensive review
Shrivastava et al. Comparative study of defluoridation technologies in India
Yang et al. The approaches and prospects for natural organic matter-derived disinfection byproducts control by carbon-based materials in water disinfection progresses
Thakur et al. Removal of heavy metals using bentonite clay and inorganic coagulants
Giannakas et al. Chitosan/bentonite nanocomposites for wastewater treatment: a review
Yan et al. Selective removal of organic phosphonates via coupling hyper-cross-linked resin with nanoconfined hydrated oxides
WO2012141897A2 (en) Non-metal-containing oxyanion removal from waters using rare earths
Yadav et al. An overview of effluent treatment for the removal of pollutant dyes
JP2003093804A (ja) 汚濁廃水および汚泥の浄化処理剤
Bhattacharya Application of nanostructured materials in fluoride removal from contaminated groundwater
RU2725315C1 (ru) Способ очистки воды от соединений мышьяка
De Esparza Removal of arsenic from drinking water and soil bioremediation
Malsawmdawngzela et al. Facile synthesis and implications of novel hydrophobic materials: Newer insights of pharmaceuticals removal
CN108017219B (zh) 一种高氟水处理设备
Alasmari et al. Bio-Filtration as a Solution for the Detrimental Health Effect of Excess Fluoride in Drinking Water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802762

Country of ref document: EP

Kind code of ref document: A1