WO2012176559A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2012176559A1
WO2012176559A1 PCT/JP2012/062413 JP2012062413W WO2012176559A1 WO 2012176559 A1 WO2012176559 A1 WO 2012176559A1 JP 2012062413 W JP2012062413 W JP 2012062413W WO 2012176559 A1 WO2012176559 A1 WO 2012176559A1
Authority
WO
WIPO (PCT)
Prior art keywords
slip
control device
oil pump
frictional heat
heat generation
Prior art date
Application number
PCT/JP2012/062413
Other languages
English (en)
French (fr)
Inventor
敬一 立脇
若山 英史
直弘 山田
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2013521501A priority Critical patent/JP5669941B2/ja
Publication of WO2012176559A1 publication Critical patent/WO2012176559A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6618Protecting CVTs against overload by limiting clutch capacity, e.g. torque fuse
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2312/00Driving activities
    • F16H2312/14Going to, or coming from standby operation, e.g. for engine start-stop operation at traffic lights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine

Definitions

  • the present invention relates to a vehicle control device.
  • JP2004-301230A discloses a technique for increasing the clamping pressure of a continuously variable transmission when slippage occurs in the continuously variable transmission.
  • the heat generation amount is based on the slip amount and the pulley thrust. If the slip amount is large, the heat generation amount is large even if the pulley thrust is small. On the other hand, even if the slip amount is small, the heat generation amount increases if the pulley thrust is large.
  • the increase in the amount of heat generated due to the increase in the thrust of the pulley is not taken into account.By increasing the thrust of the pulley, the contact portion between the pulley and the belt becomes overheated, and There is a problem that the belt may be welded or the pulley or the belt may be deteriorated due to the welding.
  • the present invention was invented to solve such problems, and aims to suppress the welding between the pulley and the belt and the deterioration caused by the welding of the pulley or the belt.
  • a vehicle control device is arranged between a drive source and a drive wheel, and includes a pulley on the drive source side, a pulley on the drive wheel side, and power wound between two pulleys.
  • a vehicle control apparatus for controlling a vehicle including a variator having a transmission member, wherein slip detection means for detecting slip between the pulley and the power transmission member in the variator, and when the slip occurs, the power transmission member and the pulley And a clamping force control means for making the clamping force of the power transmission member larger than the clamping force of the power transmission member when slip is detected based on the amount of frictional heat generated between the two.
  • the power transmission when the gripping force of the power transmission member is detected based on the amount of frictional heat generated between the power transmission member and the pulley is detected.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of the controller of the first embodiment.
  • FIG. 3 is a flowchart for detecting the belt slip state of the first embodiment.
  • FIG. 4 is a flowchart for outputting a drive signal of the electric oil pump according to the first embodiment.
  • FIG. 5 is a map for calculating the second discharge pressure of the electric oil pump according to the first embodiment.
  • FIG. 6 is a time chart in the first embodiment.
  • FIG. 7 is a schematic configuration diagram of a controller according to the second embodiment.
  • FIG. 8 is a flowchart for detecting the belt slip state of the second embodiment.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to a first embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of the controller of the first embodiment.
  • FIG. 3 is a flowchart for detecting the belt slip state of the first embodiment.
  • FIG. 4
  • FIG. 9 is a flowchart for outputting a drive signal of the electric oil pump according to the second embodiment.
  • FIG. 10 is a map for explaining the second discharge pressure of the electric oil pump according to the second embodiment.
  • FIG. 11 is a flowchart for outputting a control signal for controlling the start of the engine of the second embodiment.
  • FIG. 12 is a time chart in the second embodiment.
  • FIG. 13 is a flowchart for detecting the belt slip state of the third embodiment.
  • FIG. 14 is a flowchart for outputting a control signal for controlling start of the engine of the third embodiment.
  • FIG. 15 is a time chart in the third embodiment.
  • FIG. 16 is a flowchart for detecting the belt slip state of the fourth embodiment.
  • FIG. 17 is a flowchart for outputting a control signal for controlling start of the engine according to the fourth embodiment.
  • FIG. 18 is a time chart in the fourth embodiment.
  • FIG. 19 is a schematic configuration diagram of a vehicle according to the fifth embodiment.
  • FIG. 20 is a schematic configuration diagram of a controller according to the fifth embodiment.
  • FIG. 21 is a flowchart for outputting a control signal for controlling the pressure regulating valve of the fifth embodiment.
  • FIG. 22 is a time chart in the fifth embodiment.
  • FIG. 23 is a schematic configuration diagram of a vehicle according to a sixth embodiment.
  • FIG. 24 is a flowchart for outputting a control signal for controlling the pressure regulating valve of the sixth embodiment.
  • FIG. 25 is a time chart in the sixth embodiment.
  • the “transmission ratio” of a transmission mechanism is a value obtained by dividing the input rotational speed of the transmission mechanism by the output rotational speed of the transmission mechanism.
  • the “lowest speed ratio” is the maximum speed ratio at which the speed ratio of the speed change mechanism is used when the vehicle starts.
  • “Highest speed ratio” is the minimum speed ratio of the speed change mechanism.
  • FIG. 1 is a schematic configuration diagram of a vehicle having a vehicle control device according to an embodiment of the present invention.
  • This vehicle includes an engine 1 as a drive source, and the output rotation of the engine 1 is a torque converter 2 with a lockup clutch, a first gear train 3, a continuously variable transmission (hereinafter simply referred to as “transmission 4”), and a first. It is transmitted to the drive wheels 7 through the two gear trains 5 and the final reduction gear 6.
  • the second gear train 5 is provided with a parking mechanism 8 that mechanically locks the output shaft of the transmission 4 at the time of parking.
  • the transmission 4 includes a mechanical oil pump 10 m that receives rotation of the engine 1 and is driven by using a part of the power of the engine 1, and an electric oil pump 10 e that is driven by receiving power supply from the battery 13.
  • the electric oil pump 10e includes an oil pump main body, an electric motor and a motor driver that rotationally drive the oil pump main body, and can control the operation load to an arbitrary load or in multiple stages.
  • the transmission 4 is provided with a hydraulic control circuit 11 that regulates the hydraulic pressure (hereinafter referred to as “line pressure PL”) from the mechanical oil pump 10 m or the electric oil pump 10 e and supplies it to each part of the transmission 4. It has been.
  • the transmission 4 includes a belt-type continuously variable transmission mechanism (hereinafter referred to as “variator 20”) and an auxiliary transmission mechanism 30 provided in series with the variator 20.
  • “Provided in series” means that the variator 20 and the auxiliary transmission mechanism 30 are provided in series in the power transmission path from the engine 1 to the drive wheels 7.
  • the auxiliary transmission mechanism 30 may be directly connected to the output shaft of the variator 20 as in this example, or may be connected via another transmission or power transmission mechanism (for example, a gear train). Alternatively, the auxiliary transmission mechanism 30 may be connected to the front stage (input shaft side) of the variator 20.
  • the variator 20 includes a primary pulley 21, a secondary pulley 22, and a V belt 23 wound around the pulleys 21 and 22.
  • the pulleys 21 and 22 are arranged with the fixed conical plates 21a and 22a and the sheave surfaces facing the fixed conical plates 21a and 22a, respectively, and form V grooves between the fixed conical plates 21a and 22a.
  • Movable conical plates 21b and 22b, and hydraulic cylinders 23a and 23b provided on the rear surfaces of the movable conical plates 21b and 22b to displace the movable conical plates 21b and 22b in the axial direction are provided.
  • the hydraulic pressure supplied to the hydraulic cylinders 23a and 23b is adjusted, the width of the V groove changes, the contact radius between the V belt 23 and each pulley 21 and 22 changes, and the transmission ratio of the variator 20 changes steplessly. .
  • the primary pulley 21 and the secondary pulley 22 are provided so that the pressure receiving area of the primary pulley 21 is larger than the pressure receiving area of the secondary pulley 22.
  • the auxiliary transmission mechanism 30 is a transmission mechanism having two forward speeds and one reverse speed.
  • the sub-transmission mechanism 30 is connected to a Ravigneaux type planetary gear mechanism 31 in which two planetary gear carriers are connected, and a plurality of friction elements connected to a plurality of rotating elements constituting the Ravigneaux type planetary gear mechanism 31 to change their linkage state.
  • Fastening elements Low brake 32, High clutch 33, Rev brake 34
  • the gear position of the auxiliary transmission mechanism 30 is changed.
  • the gear position of the subtransmission mechanism 30 is the first speed. If the high clutch 33 is engaged and the low brake 32 and the rev brake 34 are released, the speed stage of the subtransmission mechanism 30 becomes the second speed having a smaller speed ratio than the first speed. Further, if the Rev brake 34 is engaged and the Low brake 32 and the High clutch 33 are released, the shift speed of the subtransmission mechanism 30 is reverse.
  • Each frictional engagement element is provided on the power transmission path at the front stage or the rear stage of the variator 20.
  • the transmission of the transmission 4 is enabled, and all the frictional fastening elements are released. Then, the power transmission of the transmission 4 is disabled.
  • the hydraulic control circuit 11 includes a plurality of flow paths and a plurality of hydraulic control valves.
  • the hydraulic control circuit 11 controls a plurality of hydraulic control valves on the basis of the shift control signal from the controller 12 to switch the hydraulic pressure supply path, and at the same time, obtains the necessary hydraulic pressure from the hydraulic pressure generated by the mechanical oil pump 10m or the electric oil pump 10e. It is prepared and supplied to each part of the transmission 4. As a result, the gear ratio of the variator 20 and the gear position of the subtransmission mechanism 30 are changed, and the transmission 4 is shifted.
  • the controller 12 is a controller that controls the engine 1 and the transmission 4 in an integrated manner. As shown in FIG. 2, the input interface 123, the output interface 124, the input signal calculation unit 121, the belt slip detection unit 122, and the like. The electric oil pump instruction calculation unit 126, the control unit 120, and a bus 125 that connects them to each other.
  • the controller is constituted by a CPU, a ROM, a RAM, and the like, and the function of the controller 12 is exhibited when the CPU reads a program stored in the ROM.
  • a rotational speed sensor 48 for detecting an output signal of the rotational speed sensor 42 for detecting "speed” and an output rotational speed of the transmission 4 ( rotational speed of the secondary pulley 22, hereinafter referred to as "secondary rotational speed”);
  • An output signal of the vehicle speed sensor 43 that detects the vehicle speed VSP, an output signal of the line pressure sensor 44 that detects the line pressure PL, an output signal of the inhibitor switch 45 that detects the position of the select lever, and a brake hydraulic pressure sensor that detects the brake hydraulic pressure 46, the output signal from the G sensor 47, and the position for detecting the position of the primary pulley.
  • Output signals of Rokusensa 50 is input.
  • the input signal calculation unit 121 calculates the input rotation speed of the variator 20 from the output signal of the rotation speed sensor 42, and calculates the output rotation speed of the variator 20 from the output signal of the rotation speed sensor 48.
  • the control unit 120 is connected to the input interface 123, the input signal calculation unit 121, and the like, and controls a vehicle including them.
  • the control unit 120 performs various arithmetic processes on various signals input via the input interface 123 to generate a shift control signal and the like.
  • the generated signal is output to the hydraulic control circuit 11 and the engine via the output interface 124. 1. Output to the electric oil pump 10e.
  • Control part 120 performs coast stop control explained below in order to control fuel consumption.
  • Coast stop control is control that suppresses fuel consumption by automatically stopping the engine 1 (coast stop) while the vehicle is traveling in a low vehicle speed range.
  • the fuel cut control executed when the accelerator is off is common in that the fuel supply to the engine 1 is stopped, but the power transmission path between the engine 1 and the drive wheels 7 is disconnected by releasing the lockup clutch. The difference is that the rotation of the engine 1 is completely stopped.
  • the control unit 120 In executing the coast stop control, the control unit 120 first determines, for example, the following conditions a to d. In other words, these conditions are conditions for determining whether the driver intends to stop.
  • the brake pedal is depressed (brake fluid pressure is a predetermined value or more).
  • the vehicle speed is a predetermined low vehicle speed (for example, 15 km / h) or less.
  • the lockup clutch is released.
  • control part 120 performs coast stop control.
  • the control unit 120 ends the coast stop control and restarts the engine 1 when any of the above conditions a to d is not satisfied during the coast stop control.
  • the electric oil pump 10e When the coast stop control is executed, the electric oil pump 10e generates hydraulic pressure necessary for the Low brake 32, the variator 20, and the like in order to completely stop the rotation of the engine 1.
  • the drive signal of the electric oil pump 10e is output by the electric oil pump instruction calculation unit 126, and the control unit 120 issues an instruction to the driver of the electric oil pump 10e based on the drive signal.
  • a desired hydraulic pressure is supplied from the electric oil pump 10 e, and the V belt 23 is sandwiched between the pulleys 21 and 22 in the variator 20.
  • the belt slip detection unit 122 detects a belt slip state between the V belt 23 and the pulleys 21 and 22 based on the flowchart shown in FIG. 3 when coast stop control is executed.
  • the belt slip detection unit 122 calculates a belt slip speed that is a slip amount in the variator 20.
  • the belt slip detection unit 122 calculates a gear ratio based on the output signal from the stroke sensor 50 that detects the positions of the pulleys 21 and 22, detects the vehicle speed based on the output signal from the vehicle speed sensor 43, and calculates the calculated gear shift.
  • a primary pulley rotational speed (referred to as a first primary rotational speed) and a secondary pulley rotational speed (referred to as a first secondary rotational speed) when belt slip does not occur are calculated from the ratio and the vehicle speed.
  • the belt slip detection unit 122 detects an actual primary rotation speed (referred to as a second primary rotation speed) based on an output signal from the rotation speed sensor 42, and based on an output signal from the rotation speed sensor 48. An actual secondary rotation speed (referred to as a second secondary rotation speed) is detected. Then, the belt slip detection unit 122 compares the first primary rotation speed and the second primary rotation speed, and compares the first secondary rotation speed and the second secondary rotation speed. Then, as a result of the comparison, if the deviation occurs at the primary rotation speed or the secondary rotation speed, the belt slip detection unit 122 sets the deviation of the rotation speed at which the deviation occurs as the belt slip speed. When there is no deviation at each rotational speed, the belt slip speed is zero.
  • step S101 the belt slip detection unit 122 determines whether belt slip occurs. Specifically, the belt slip detection unit 122 determines whether the belt slip speed is zero. The belt slip detection unit 122 determines that no belt slip has occurred when the belt slip speed is zero, and proceeds to step S102. If the belt slip speed is not zero, the belt slip has occurred. And the process proceeds to step S103.
  • step S102 the belt slip detector 122 outputs the first signal because no belt slip has occurred.
  • step S103 the belt slip detection unit 122 outputs a second signal because belt slip has occurred.
  • step S104 the belt slip detection unit 122 calculates the belt slip speed in the same manner as in step S100.
  • step S105 the belt slip detection unit 122 determines whether the belt slip has converged. Specifically, the belt slip detection part 122 determines whether the belt slip speed calculated by step S104 is zero. The belt slip detection unit 122 determines that the belt slip has converged when the belt slip speed is zero, and proceeds to step S102, and determines that the belt slip has not converged when the belt slip speed is not zero. Returning to step S103, the above control is repeated.
  • the belt slip detection unit 122 determines whether the belt slip speed calculated in step S104 is lower than the first predetermined value. If the belt slip speed is lower than the first predetermined value, the belt slip converges. You may determine that you did.
  • the first predetermined value is a value that can be determined that the belt slip in the variator 20 has converged, and is a preset value.
  • the belt slip detection unit 122 repeatedly performs the above control while the coast stop control is being executed, and outputs a signal indicating the state of the variator 20.
  • the electric oil pump instruction calculation unit 126 When the coast stop control is executed, the electric oil pump instruction calculation unit 126 outputs a drive signal for the electric oil pump 10e based on the flowchart shown in FIG.
  • step S200 the electric oil pump instruction calculation unit 126 determines whether or not the first signal is output from the belt slip detection unit 122. When the first signal is output, the electric oil pump instruction calculation unit 126 proceeds to step S201 because no belt slip has occurred, and the second signal is output instead of the first signal. Since belt slip has occurred, the process proceeds to step S202.
  • step S201 the electric oil pump instruction calculation unit 126 calculates a first drive signal corresponding to the first discharge pressure of the electric oil pump 10e.
  • the first discharge pressure is a discharge pressure set when belt slip does not occur, and is set in advance.
  • step S202 the electric oil pump instruction calculation unit 126 calculates the second discharge pressure of the electric oil pump 10e with respect to the belt slip speed calculated by the belt slip detection unit 122 based on the map shown in FIG.
  • the second discharge pressure is a pressure at which welding due to frictional heat generation or deterioration due to welding does not occur between the V belt 23 and the pulleys 21 and 22 with respect to the belt sliding speed.
  • FIG. 5 is a diagram showing the relationship between the belt slip speed and the discharge pressure of the electric oil pump 10e, and the upper limit frictional heat value is indicated by a solid line.
  • the amount of frictional heat generated between the V belt 23 and the pulleys 21 and 22 can be obtained by the product of the belt slip speed and the thrust of the pulleys 21 and 22, that is, the clamping force of the V belt 23.
  • the clamping force of the pulleys 21 and 22 can be obtained from the discharge pressure of the electric oil pump 10e.
  • the frictional heat generated between the pulleys 21 and 22 and the V-belt 23 increases, the pulleys 21 and 22 and the V-belt 23 are welded so that power transmission becomes impossible.
  • the upper limit frictional heat generation amount is an upper limit value of the frictional heat generation amount at which power transmission is not disabled due to welding between the pulleys 21 and 22 and the V belt 23.
  • the upper limit frictional heat generation amount is defined by the belt sliding speed and the clamping force of the V belt 23.
  • the upper limit frictional heat generation amount may not be the upper limit value of the frictional heat generation amount, but may be a value having a predetermined margin.
  • the second discharge pressure is calculated based on the belt slip speed so as not to exceed the upper limit frictional heat generation amount. In the present embodiment, the second discharge pressure is calculated so that the frictional heat generation amount becomes the upper limit frictional heat generation amount.
  • step S203 the electric oil pump instruction calculation unit 126 outputs a second drive signal corresponding to the second discharge pressure.
  • the electric oil pump instruction calculation unit 126 repeatedly performs the above control while the coast stop control is being executed, and outputs a drive signal for the electric oil pump 10e. By driving the electric oil pump 10e based on the output drive signal, a discharge pressure corresponding to the drive signal can be obtained. Then, the pulleys 21 and 22 hold the V-belt 23 by the discharge pressure of the electric oil pump 10e.
  • the brake pedal is depressed, the secondary rotational speed decreases rapidly, and belt slippage occurs. Therefore, the discharge pressure of the electric oil pump 10e becomes the second discharge pressure according to the belt slip speed. As a result, the clamping force of the V-belt 23 increases, the primary rotational speed gradually decreases, and the belt slip speed decreases. Further, as the belt slip speed decreases, the upper limit frictional heat generation amount increases as shown in FIG. 5, and therefore the second discharge pressure of the electric oil pump 10e gradually increases.
  • the discharge pressure of the electric oil pump 10e is set as the first discharge pressure.
  • the electric oil pump 10e is based on the amount of frictional heat generated between the V belt 23 and the pulleys 21 and 22. Is made larger than the discharge pressure when the belt slip is detected, and the holding force of the V belt by the pulleys 21 and 22 is increased. Thereby, it is possible to suppress deterioration due to welding due to frictional heat generation between the V belt 23 and the pulleys 21 and 22 and deterioration due to welding of the V belt 23 or the pulleys 21 and 22.
  • the V belt 23 and the pulleys 21, 22 caused by the frictional heat generation. Deterioration caused by welding with the V belt 23 or the pulleys 21 and 22 can be suppressed.
  • the belt slip can be quickly converged by setting the discharge pressure of the electric oil pump 10e according to the decreasing belt slip speed.
  • the belt slip is converged by using the electric oil pump 10e that can control the discharge pressure more easily than the mechanical oil pump 10m, so that the V-belt 23 is pinched accurately so that the frictional heat generation amount does not exceed the upper limit frictional heat generation amount. can do.
  • the discharge pressure of the electric oil pump 10e is set based on the map shown in FIG. 5, but the discharge pressure of the electric oil pump 10e for reducing the belt slip speed is set separately. It may be determined whether the frictional heat generation amount exceeds the upper limit frictional heat generation amount when the V-belt 23 is sandwiched by the discharge pressure. Then, when the frictional heat generation amount exceeds the upper limit frictional heat generation amount, the discharge pressure of the electric oil pump 10e may be set anew so as not to exceed the upper limit frictional heat generation amount. Also by this, it is possible to suppress deterioration due to welding of the V belt 23 and the pulleys 21 and 22 due to frictional heat generation and welding of the V belt 23 or the pulleys 21 and 22.
  • FIG. 7 shows a schematic configuration diagram of the controller 12 of the present embodiment.
  • the controller 12 includes an engine start determination unit 160 in addition to the configuration of the first embodiment. In the following, a description will be given centering on differences from the first embodiment.
  • the belt slip detection unit 122 detects the belt slip state based on the flowchart shown in FIG. 8 when coast stop control is executed.
  • step S300 the belt slip detector 122 calculates the amount of change in input torque to the pulleys 21 and 22 per unit time.
  • the amount of change in input torque is calculated based on, for example, an output signal from the accelerator opening sensor 41 or an output signal from the brake fluid pressure sensor 46.
  • step S301 the belt slip detection unit 122 determines whether belt slip has occurred. Specifically, the belt slip detection unit 122 compares the change amount of the input torque with the second predetermined value. The belt slip detection unit 122 determines that no belt slip has occurred when the change amount of the input torque is smaller than the second predetermined value, and proceeds to step S302, where the change amount of the input torque is equal to or greater than the second predetermined value. If it is, it is determined that belt slip has occurred, and the process proceeds to step S303.
  • the second predetermined value is a value that can be determined that belt slip has occurred in the variator 20, and is a preset value. The amount of change in input torque becomes large when, for example, the accelerator pedal or the brake pedal is suddenly depressed, or when the vehicle is traveling on a rough road.
  • step S302 the belt slip detector 122 outputs the first signal because no belt slip has occurred.
  • step S303 the belt slip detector 122 outputs a second signal because belt slip has occurred.
  • the belt slip detection unit 122 calculates a belt slip speed.
  • the belt slip detection unit 122 detects the vehicle speed based on the output signal from the vehicle speed sensor 43, and calculates the belt slip speed at the calculated vehicle speed.
  • the belt slip speed is set in advance according to the vehicle speed based on experimental results and calculation results. For example, the belt slip speed is the maximum belt slip speed that can occur at the detected vehicle speed.
  • the belt slip speed is calculated based on the vehicle speed, but the torque change amount may be taken into consideration. As the amount of torque change increases, the belt slip speed increases.
  • step S305 the belt slip detection unit 122 determines whether the belt slip has converged. Specifically, the belt slip detection unit 122 previously sets a first predetermined time until the belt slip converges with respect to the belt slip speed calculated in step S304 based on experimental results and calculation results, and step S304. It is determined whether or not the first predetermined time has elapsed since the belt slip speed was calculated by. When the first predetermined time has elapsed, the belt slip detection unit 122 proceeds to step S302. The first predetermined time becomes longer as the belt slip speed calculated in step S304 is larger.
  • the belt slip detection unit 122 repeatedly performs the above control while the coast stop control is being executed, and outputs a signal indicating the state of the variator 20.
  • the electric oil pump instruction calculation unit 126 When the coast stop control is executed, the electric oil pump instruction calculation unit 126 outputs a drive signal for the electric oil pump 10e based on the flowchart shown in FIG.
  • step S400 the electric oil pump instruction calculation unit 126 determines whether or not the first signal is output from the belt slip detection unit 122. When the first signal is output, the electric oil pump instruction calculation unit 126 proceeds to step S401 because no belt slip has occurred, and the second signal is output instead of the first signal. Since belt slip has occurred, the process proceeds to step S402.
  • step S401 the electric oil pump instruction calculation unit 126 outputs a first drive signal corresponding to the first discharge pressure of the electric oil pump 10e.
  • step S402 the electric oil pump instruction calculation unit 126 calculates the second discharge pressure of the electric oil pump 10e with respect to the belt slip speed.
  • the electric oil pump instruction calculation unit 126 generates an upper limit frictional heat with respect to the belt slip speed calculated in step S304 based on the map shown in FIG. 10 (this belt slip speed is A in FIG. 10).
  • An initial second discharge pressure as a quantity is calculated.
  • the electric oil pump instruction calculation unit 126 calculates a second discharge pressure at which the increase amount per unit time is a predetermined amount from the initial second discharge pressure.
  • the predetermined amount is an increase amount so that the frictional heat generation amount does not exceed the upper limit frictional heat generation amount.
  • the change in the second discharge pressure when the belt slip speed calculated in step S304 is low (speed A in FIG. 10) is indicated by a broken line in FIG. 10, and the belt slip speed calculated in step S304 is large (in FIG. 10).
  • the change in the second discharge pressure in the case where the belt slip speed is B.) is indicated by a one-dot chain line. These lines are tangent lines of the upper limit frictional heat generation amount at the belt slip speed calculated in step S304.
  • the predetermined amount increases. That is, when the belt slip speed calculated in step S304 decreases, the amount of increase in the discharge pressure of the electric oil pump 10e increases.
  • step S403 the electric oil pump instruction calculation unit 126 outputs a second drive signal corresponding to the second discharge pressure.
  • the electric oil pump instruction calculation unit 126 repeatedly performs the above control while the coast stop control is being executed, and outputs a drive signal for the electric oil pump 10e.
  • a discharge pressure corresponding to the drive signal is obtained.
  • the engine start determination unit 160 When the coast stop control is executed, the engine start determination unit 160 outputs a control signal for controlling the start of the engine 1 based on the flowchart shown in FIG.
  • step S500 the engine start determination unit 160 determines whether the first signal is output. When the first signal is output, the engine start determination unit 160 proceeds to step S501 because no belt slip has occurred, and when the second signal is output instead of the first signal. Since belt slip has occurred, the process proceeds to step S502.
  • step S501 the engine start determination unit 160 outputs a first engine control signal because no belt slip has occurred.
  • the first engine control signal is a signal that permits starting of the engine 1.
  • step S502 the engine start determination unit 160 outputs a second engine control signal because belt slip has occurred.
  • the second engine control signal is a signal that prohibits starting of the engine 1.
  • the engine start determination unit 160 repeats the above control and outputs a control signal for the engine 1 while the coast stop control is being executed.
  • the engine 1 is controlled based on the output first engine control signal or second engine control signal.
  • the brake pedal is depressed, the secondary rotational speed decreases rapidly, and belt slippage occurs. Therefore, the discharge pressure of the electric oil pump 10e is set as the second discharge pressure according to the belt slip speed. As a result, the primary rotational speed gradually decreases. Further, the second discharge pressure of the electric oil pump 10e increases by a predetermined amount per unit time. Further, the second engine control signal is output and the engine 1 is prohibited from starting. Therefore, even when there is a request for starting the engine 1 at time t2, the engine 1 does not start.
  • the discharge pressure of the electric oil pump 10e is set to the first discharge pressure, the first engine control signal is output, the start prohibition of the engine 1 is released, and the engine 1 is started.
  • the engine rotational speed and the supply hydraulic pressure when starting of the engine 1 is not prohibited without using the present embodiment are indicated by broken lines.
  • the engine 1 starts at time t2, so that the hydraulic pressure supplied to the variator 20 suddenly increases despite the high belt slip speed, and the pulleys 21 and 22 and the V belt 23 The amount of heat generated by friction between the pulleys 21 and 22 increases, and the pulleys 21 and 22 or the V-belt 23 may deteriorate due to welding.
  • the belt slip speed is estimated, and based on the estimated belt slip speed, the amount of frictional heat generated between the pulleys 21 and 22 and the V belt 23 is the upper limit frictional heat generation.
  • the discharge pressure of the electric oil pump 10e set based on the belt slip speed when it is estimated that belt slip occurs is increased by a predetermined amount per unit time so that the frictional heat generation amount does not exceed the upper limit frictional heat generation amount.
  • the mechanical oil pump 10m is also started.
  • the engine 1 starts, the engine speed increases, the hydraulic pressure supplied to the variator 20 increases, the amount of frictional heat generated between the pulleys 21 and 22 and the V-belt 23 increases, and exceeds the upper limit frictional heat generation amount. There is a fear. Therefore, when belt slip occurs during coast stop control, the engine 1 is prohibited from starting, and the engine 1 is started after the belt slip has converged. Accordingly, it is possible to suppress deterioration due to welding between the V belt 23 and the pulleys 21 and 22 due to frictional heat generation, or welding of the V belt 23 or the pulleys 21 and 22.
  • the control of this embodiment can be realized with a simple configuration.
  • the time until the engine 1 is started is lengthened, thereby welding the V belt 23 and the pulleys 21 and 22 due to frictional heat generation, or the V belt 23, or Deterioration caused by welding of the pulleys 21 and 22 can be accurately suppressed.
  • the belt slip detection unit 122 detects a belt slip state based on the flowchart shown in FIG.
  • step S600 to step S604 Since the control from step S600 to step S604 is the same as the control from step S300 to step S304 of the second embodiment, description thereof is omitted here.
  • step S605 the belt slip detection unit 122 determines whether or not the belt slip speed is equal to or less than an allowable value for allowing the engine 1 to start. Specifically, the belt slip detection unit 122 calculates the second predetermined time until the belt slip speed is reduced to the engine startable speed with respect to the belt slip speed calculated in step S604 based on experimental results and calculation results in advance. It is determined whether or not the second predetermined time has elapsed after the belt slip speed is calculated in step S604. When the second predetermined time has elapsed, the belt slip detection unit 122 proceeds to step S606.
  • the allowable value is the frictional heat generated between the V belt 23 and the pulleys 21 and 22 even when the engine 1 is started and oil is discharged from the mechanical oil pump 10 m and the discharge pressure of the mechanical oil pump 10 m is supplied to the variator 20.
  • the belt sliding speed is such that the amount does not exceed the upper limit frictional heating value.
  • step S606 the belt slip detection unit 122 outputs a third signal indicating that the belt slip speed is equal to or less than an allowable value for allowing the engine 1 to start.
  • step S607 the belt slip detection unit 122 determines whether the belt slip has converged. If the belt slip has converged, the belt slip detection unit 122 proceeds to step S602.
  • the belt slip detection unit 122 repeatedly performs the above control while the coast stop control is being executed, and outputs a signal indicating the state of the variator 20.
  • the engine start determination unit 160 When the coast stop control is executed, the engine start determination unit 160 outputs a control signal for controlling the start of the engine 1 based on the flowchart shown in FIG.
  • step S700 the engine start determination unit 160 determines whether the second signal is output.
  • the engine start determination unit 160 proceeds to step S701 when the second signal is output, and proceeds to step S702 when the first signal or the third signal is output.
  • step S701 the engine start determination unit 160 outputs a second engine control signal because belt slip has occurred and the belt slip speed is not less than the allowable value.
  • step S702 the engine start determination unit 160 outputs a first engine control signal because no belt slip has occurred or the belt slip speed is less than or equal to an allowable value.
  • the engine start determination unit 160 repeats the above control and outputs a control signal for the engine 1 while the coast stop control is being executed.
  • the engine 1 is controlled based on the output first engine control signal or second engine control signal.
  • the brake pedal is depressed, the secondary rotational speed decreases rapidly, and belt slippage occurs. Therefore, the discharge pressure of the electric oil pump 10e is set as the second discharge pressure according to the belt slip speed. As a result, the primary rotational speed gradually decreases. Further, the second discharge pressure of the electric oil pump 10e increases by a predetermined amount per unit time. Further, the second engine control signal is output and the engine 1 is prohibited from starting. Therefore, even when there is a request for starting the engine 1 at time t2, the engine 1 does not start.
  • the belt slip detection part 122 of 4th Embodiment detects a belt slip state based on the flowchart shown in FIG.
  • step S800 to step S804 is the same as the control from step S300 to step S304 in the second embodiment, description thereof is omitted here.
  • step S805 the belt slip detection unit 122 determines whether convergence of the belt slip is delayed.
  • the belt slip convergence delay occurs when the electric oil pump 10e fails and a desired discharge pressure is not discharged from the electric oil pump 10e.
  • the belt slip detection unit 122 is configured such that the line pressure detected by the signal from the line pressure sensor 44 is lower than the line pressure detected in the normal case, or the primary rotational speed detected by the signal from the rotational speed sensor 42. It is determined that the belt slip convergence delay has occurred when the decrease amount is smaller than the normal decrease amount.
  • the normal line pressure and the like are set in advance.
  • the belt slip detection unit 122 proceeds to step S806 when the belt slip convergence delay occurs, and proceeds to step S807 when the belt slip convergence delay does not occur.
  • step S806 the belt slip detection unit 122 outputs a fourth signal indicating that a convergence delay of the belt slip has occurred.
  • step S807 the belt slip detection unit 122 determines whether the belt slip has converged. If the belt slip has converged, the belt slip detection unit 122 proceeds to step S802.
  • the belt slip detection unit 122 repeatedly performs the above control while the coast stop control is being executed, and outputs a signal indicating the state of the variator 20.
  • the engine start determination unit 160 When the coast stop control is executed, the engine start determination unit 160 outputs a control signal for controlling the start of the engine 1 based on the flowchart shown in FIG.
  • step S900 the engine start determination unit 160 determines whether or not the second signal is output.
  • the engine start determination unit 160 proceeds to step S901 when the second signal is output, and proceeds to step S902 when the first signal or the fourth signal is output.
  • step S901 the engine start determination unit 160 outputs a second engine control signal because belt slip has occurred.
  • step S902 the engine start determination unit 160 outputs a second engine control signal because no belt slip has occurred or a belt slip convergence delay has occurred.
  • the engine start determination unit 160 repeats the above control and outputs a control signal for the engine 1 while the coast stop control is being executed.
  • the engine 1 is controlled based on the output first engine control signal or second engine control signal.
  • the brake pedal is depressed, the secondary rotational speed decreases rapidly, and belt slippage occurs. Therefore, the discharge pressure of the electric oil pump 10e is controlled to become the second discharge pressure according to the belt slip speed.
  • the hydraulic pressure supplied to the variator 20 does not increase, and the reduction amount of the primary rotation speed is small. Note that the second engine control signal is output and starting of the engine 1 is prohibited. Therefore, even when there is a request for starting the engine 1 at time t2, the engine 1 does not start.
  • the first engine control signal is output and the engine 1 is started.
  • the discharge pressure of the mechanical oil pump 10m increases as the engine speed increases, the hydraulic pressure supplied to the variator 20 increases, and the belt slip converges.
  • the engine 1 is started when the convergence of the belt slip is delayed.
  • the discharge pressure that becomes the upper limit frictional heat generation amount with respect to the belt slip speed is the electric oil pump 10e.
  • the engine 1 may be started when it is larger than the maximum discharge pressure.
  • the engine 1 When the oil pressure is supplied to the variator 20 by the electric oil pump 10e and the frictional heat generation amount due to the discharge pressure of the electric oil pump 10e is smaller than the upper limit frictional heat generation amount, the engine 1 is started. Even when the rotational speed of the engine 1 is low, the discharge pressure of the mechanical oil pump 10m is larger than the maximum discharge pressure of the electric oil pump 10e. Therefore, by starting the engine 1, the hydraulic pressure supplied to the variator 20 can be increased, and the belt slip can be quickly converged. Thereby, for example, even when the electric oil pump 10e fails and the hydraulic pressure cannot be supplied from the electric oil pump 10e to the variator 20, the belt slip is converged and the V belt 23 and the pulleys 21 and 22 are welded by frictional heat generation. Alternatively, deterioration due to welding of the V belt 23 or the pulleys 21 and 22 can be suppressed.
  • FIG. 19 shows a schematic configuration diagram of a vehicle according to the fifth embodiment.
  • the vehicle according to the present embodiment does not include the stroke sensor 50 according to the first embodiment, and includes a pressure regulating valve 51 between the discharge oil passage of the mechanical oil pump 10e and the variator 20.
  • FIG. 20 shows the configuration of the controller 12 of this embodiment.
  • the controller 12 of this embodiment includes a pulley hydraulic pressure instruction calculation unit 170 in addition to the configuration of the first embodiment.
  • the pulley oil pressure instruction calculation unit 170 When the coast stop control is executed, the pulley oil pressure instruction calculation unit 170 outputs a signal for controlling the pressure regulating valve 51 based on the flowchart shown in FIG.
  • step S1000 the pulley hydraulic pressure instruction calculation unit 170 determines whether the first signal is output. When the first signal is output, the pulley hydraulic pressure instruction calculation unit 170 determines that belt slip has not occurred, and proceeds to step S1001 to output the second signal instead of the first signal. If it is determined that the belt slip has occurred, the process proceeds to step S1002.
  • step S1001 the pulley hydraulic pressure instruction calculation unit 170 outputs the first valve control signal because no belt slip has occurred.
  • the first valve control signal adjusts the hydraulic pressure discharged from the mechanical oil pump 10 m to a hydraulic pressure corresponding to the operating state, and supplies the adjusted hydraulic pressure to the hydraulic control circuit 11. It is a signal for controlling.
  • step S1002 the pulley hydraulic pressure instruction calculation unit 170 outputs a second valve control signal because belt slip has occurred.
  • the second valve control signal is a signal for controlling the opening degree of the pressure regulating valve 51 so that the hydraulic pressure discharged from the mechanical oil pump 10 m is not supplied to the hydraulic pressure control circuit 11.
  • the pulley hydraulic pressure instruction calculation unit 170 repeatedly performs the above control while the coast stop control is being executed, and outputs a control signal for the pressure regulating valve 51.
  • the pressure regulating valve 51 is controlled based on the output first valve control signal or second valve control signal.
  • the brake pedal is depressed, the secondary rotational speed is rapidly reduced, and belt slippage occurs. Therefore, the discharge pressure of the electric oil pump 10e becomes the second discharge pressure according to the belt slip speed. As a result, the primary rotational speed gradually decreases. Further, the second discharge pressure of the electric oil pump 10e increases by a predetermined amount per unit time. Further, the second valve control signal is output with the occurrence of belt slip as a trigger, and the pressure regulating valve 51 is controlled to an opening degree corresponding to the second valve control signal.
  • the discharge pressure of the electric oil pump 10e is set as the first discharge pressure. Further, the first valve control signal is output, and the pressure regulating valve 51 is controlled to the opening degree corresponding to the first valve control signal. Therefore, the hydraulic pressure supplied to the variator 20 increases according to the discharge pressure of the mechanical oil pump 10m.
  • the pressure regulating valve 51 When the belt slip occurs, the pressure regulating valve 51 is opened so that hydraulic pressure is not supplied to the variator 20 from the mechanical oil pump 10m. Therefore, there is a restart request of the engine 1 after the belt slip occurs, and even if the engine 1 is restarted, the oil is discharged by the pressure regulating valve 51 as the engine 1 is started and the engine 1 is started. Oil pressure is not supplied to the variator 20 from the oil pump 10m. As a result, even if the engine 1 is started, it is possible to suppress an increase in the amount of frictional heat generated between the V belt 23 and the pulleys 21 and 22 due to the hydraulic pressure discharged from the mechanical oil pump 10m.
  • FIG. 23 shows a schematic configuration diagram of a vehicle according to the sixth embodiment.
  • the vehicle of this embodiment is different in the pressure regulating valve 52 compared to the fifth embodiment.
  • the pressure regulating valve 52 When the pressure regulating valve 52 is opened, a part of the oil discharged from the mechanical oil pump 10 m is discharged without being supplied to the variator 20. That is, the pressure regulating valve 52 is a valve that cannot completely discharge the oil discharged from the mechanical oil pump 10m even if the pressure regulating valve 52 is completely opened.
  • the belt slip detection unit 122 detects the state of the variator 20 based on the flowchart shown in FIG. 13 of the third embodiment.
  • the engine start determination unit 160 When the coast stop control is executed, the engine start determination unit 160 outputs a control signal for controlling the start of the engine 1 based on the flowchart shown in FIG. 14 of the third embodiment.
  • the pulley hydraulic pressure instruction calculation unit 170 When the coast stop control is executed, the pulley hydraulic pressure instruction calculation unit 170 outputs a signal for controlling the pressure regulating valve 52 based on the flowchart shown in FIG.
  • step S1100 the pulley hydraulic pressure instruction calculation unit 170 determines whether the second signal is output.
  • the pulley hydraulic pressure instruction calculation unit 170 proceeds to step S1101 when the second signal is output, and proceeds to step S1102 when the first signal or the third signal is output.
  • step S1101 the pulley hydraulic pressure instruction calculation unit 170 outputs a second valve control signal because belt slip has occurred and the belt slip speed is not below the allowable value.
  • the second valve control signal is a signal for opening the pressure regulating valve 52 completely.
  • the allowable value in the present embodiment is that the pressure regulating valve 52 is completely open, and even if a part of the oil discharged from the mechanical oil pump 10m is supplied to the variator 20, the pulleys 21 and 22 and the belt 23
  • the belt sliding speed is such that the amount of frictional heat generated does not exceed the upper limit frictional heat generation amount.
  • step S1102 the pulley hydraulic pressure instruction calculation unit 170 outputs the first valve control signal because the belt slip does not occur or the belt slip speed is equal to or less than the allowable value even when the belt slip occurs.
  • the first valve control signal adjusts the hydraulic pressure discharged from the mechanical oil pump 10 m to a hydraulic pressure corresponding to the operating state, and supplies the adjusted hydraulic pressure to the hydraulic control circuit 11. It is a signal for controlling the opening degree.
  • the pulley hydraulic pressure instruction calculation unit 170 repeats the above control and outputs a control signal for the pressure regulating valve 52 while the coast stop control is being executed.
  • the pressure regulating valve 52 is controlled based on the output first valve control signal or second valve control signal.
  • the brake pedal is depressed, the secondary rotational speed decreases rapidly, and belt slippage occurs. Therefore, the discharge pressure of the electric oil pump 10e becomes the second discharge pressure. As a result, the primary rotational speed gradually decreases. Further, the second engine control signal is output and the engine 1 is prohibited from starting. Therefore, even when there is a request for starting the engine 1 at time t2, the engine 1 does not start.
  • the first engine control signal is output and the engine 1 is started. Further, the second valve control signal is output, and the pressure regulating valve 52 is opened.
  • the hydraulic pressure supplied from the mechanical oil pump 10m to the variator 20 is low, so that the amount of frictional heat generated between the V belt 23 and the pulleys 21 and 22 is suppressed.
  • the pressure regulating valve 52 When the engine 1 is started while the belt slips, the pressure regulating valve 52 is opened and a part of the oil supplied from the mechanical oil pump 10m is discharged, so that the V belt 23 and the pulleys 21 and 22 are discharged. Is caused by welding of the V belt 23 and the pulleys 21 and 22 or welding of the V belt 23 or the pulleys 21 and 22 due to frictional heating. It is possible to suppress deterioration.
  • the pressure regulating valve 52 is used, but a pressure regulator valve may be used. From the viewpoint of fail-safe, the pressure regulator valve can supply a predetermined hydraulic pressure to the hydraulic control circuit 11 even if the spool in the pressure regulator valve sticks at a position where the amount of oil discharged becomes maximum. Therefore, by using a pressure regulator valve, the present embodiment can be realized without using a new valve.
  • “detection of the belt slip state” includes a state in which slip is actually generated between the V belt 23 and the pulleys 21 and 22 and a state in which slip is predicted to occur.
  • the brake pedal is depressed is described as an example of the occurrence of belt slip, but the requirement for occurrence of belt slip is not limited to this.
  • the torque fluctuation from the driving wheel 7 to the variator 20 or the change in the amount of depression of the accelerator pedal occurs when the torque fluctuation from the engine 1 to the variator 20 occurs when traveling on a rough road, the above control is executed. May be.
  • the V-belt 23 is used as the power transmission member, but the present invention is not limited to this, and for example, a chain may be used as the power transmission member.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 バリエータを備えた車両を制御する車両の制御装置であって、バリエータにおけるプーリとVベルトとのスリップを検知するスリップ検知手段と、スリップが生じると、動力伝達部材とプーリとの間で発生する摩擦発熱量に基づいて、動力伝達部材の挟持力をスリップが検知された時の動力伝達部材の挟持力よりも大きくする挟持力制御手段とを備える。

Description

車両の制御装置
 本発明は車両の制御装置に関するものである。
 従来、無段変速機で滑りが生じた場合に、無段変速機の挟圧力を増大させるものがJP2004-301230Aに開示されている。
 無段変速機のプーリとベルトとの間でスリップが生じると、プーリとベルトとの間における発熱量が大きくなり、プーリとベルトとの接触部が過熱状態となり、プーリまたはベルトの耐久性が低下する。
 発熱量は、スリップ量とプーリの推力とに基づいており、スリップ量が大きいとプーリの推力が小さくても発熱量は大きくなる。一方、スリップ量が小さくてもプーリの推力が大きいと発熱量は大きくなる。
 従って、プーリとベルトとの間におけるスリップを抑制するためには、スリップ量とプーリの推力とを考慮する必要がある。
 しかし、上記発明では、プーリの推力が増大することによる発熱量の増加について考慮されておらず、プーリの推力を増大させることで、プーリとベルトとの接触部が過熱状態となり、プーリとベルトとが溶着するおそれ、プーリまたはベルトが溶着に起因して劣化するおそれがある、といった問題点がある。
 本発明はこのような問題点を解決するために発明されたもので、プーリとベルトとの溶着、プーリまたはベルトの溶着に起因する劣化を抑制することを目的とする。
 本発明のある態様に係る車両の制御装置は、駆動源と駆動輪との間に配置され、駆動源側のプーリと、駆動輪側のプーリと、2つのプーリの間に巻き掛けられた動力伝達部材とを有するバリエータを備えた車両を制御する車両の制御装置であって、バリエータにおけるプーリと動力伝達部材とのスリップを検知するスリップ検知手段と、スリップが生じると、動力伝達部材とプーリとの間で発生する摩擦発熱量に基づいて、動力伝達部材の挟持力をスリップが検知された時の動力伝達部材の挟持力よりも大きくする挟持力制御手段とを備える。
 この態様によると、動力伝達部材とプーリとの間でスリップが発生すると、動力伝達部材とプーリとの間の摩擦発熱量に基づいて動力伝達部材の挟持力をスリップが検知された時の動力伝達部材の挟持力よりも大きくすることで、動力伝達部材とプーリとの間の摩擦発熱による動力伝達部材とプーリとの溶着、動力伝達部材またはプーリの溶着に起因する劣化を抑制することができる。
図1は本発明の第1実施形態の車両の概略構成図である。 図2は第1実施形態のコントローラの概略構成図である。 図3は第1実施形態のベルト滑り状態を検知するためのフローチャートである。 図4は第1実施形態の電動オイルポンプの駆動信号を出力するためのフローチャートである。 図5は第1実施形態の電動オイルポンプの第2吐出圧を算出するためのマップである。 図6は第1実施形態におけるタイムチャートである。 図7は第2実施形態のコントローラの概略構成図である。 図8は第2実施形態のベルト滑り状態を検知するためのフローチャートである。 図9は第2実施形態の電動オイルポンプの駆動信号を出力するためのフローチャートである。 図10は第2実施形態の電動オイルポンプの第2吐出圧を説明するためのマップである。 図11は第2実施形態のエンジンの始動を制御する制御信号を出力するためのフローチャートである。 図12は第2実施形態におけるタイムチャートである。 図13は第3実施形態のベルト滑り状態を検知するためのフローチャートである。 図14は第3実施形態のエンジンの始動を制御する制御信号を出力するためのフローチャートである。 図15は第3実施形態におけるタイムチャートである。 図16は第4実施形態のベルト滑り状態を検知するためのフローチャートである。 図17は第4実施形態のエンジンの始動を制御する制御信号を出力するためのフローチャートである。 図18は第4実施形態におけるタイムチャートである。 図19は第5実施形態の車両の概略構成図である。 図20は第5実施形態のコントローラの概略構成図である。 図21は第5実施形態の調圧バルブを制御する制御信号を出力するためのフローチャートである。 図22は第5実施形態におけるタイムチャートである。 図23は第6実施形態の車両の概略構成図である。 図24は第6実施形態の調圧バルブを制御する制御信号を出力するためのフローチャートである。 図25は第6実施形態におけるタイムチャートである。
 以下、添付図面を参照しながら本発明の実施形態について説明する。なお、以下の説明において、ある変速機構の「変速比」は、当該変速機構の入力回転速度を当該変速機構の出力回転速度で割って得られる値である。また、「最Low変速比」は当該変速機構の変速比が車両の発進時などに使用される最大変速比である。「最High変速比」は当該変速機構の最小変速比である。
 図1は本発明の実施形態に係る車両の制御装置を有する車両の概略構成図である。この車両は駆動源としてエンジン1を備え、エンジン1の出力回転は、ロックアップクラッチ付きトルクコンバータ2、第1ギヤ列3、無段変速機(以下、単に「変速機4」という。)、第2ギヤ列5、終減速装置6を介して駆動輪7へと伝達される。第2ギヤ列5には駐車時に変速機4の出力軸を機械的に回転不能にロックするパーキング機構8が設けられている。
 変速機4には、エンジン1の回転が入力されエンジン1の動力の一部を利用して駆動されるメカオイルポンプ10mと、バッテリ13から電力供給を受けて駆動される電動オイルポンプ10eとが設けられている。電動オイルポンプ10eは、オイルポンプ本体と、これを回転駆動する電気モータ及びモータドライバとで構成され、運転負荷を任意の負荷に、あるいは、多段階に制御することができる。また、変速機4には、メカオイルポンプ10mあるいは電動オイルポンプ10eからの油圧(以下、「ライン圧PL」という。)を調圧して変速機4の各部位に供給する油圧制御回路11が設けられている。
 変速機4は、ベルト式無段変速機構(以下、「バリエータ20」という。)と、バリエータ20に直列に設けられる副変速機構30とを備える。「直列に設けられる」とはエンジン1から駆動輪7に至るまでの動力伝達経路においてバリエータ20と副変速機構30が直列に設けられるという意味である。副変速機構30は、この例のようにバリエータ20の出力軸に直接接続されていてもよいし、その他の変速ないし動力伝達機構(例えば、ギヤ列)を介して接続されていてもよい。あるいは、副変速機構30はバリエータ20の前段(入力軸側)に接続されていてもよい。
 バリエータ20は、プライマリプーリ21と、セカンダリプーリ22と、プーリ21、22の間に掛け回されるVベルト23とを備える。プーリ21、22は、それぞれ固定円錐板21a、22aと、この固定円錐板21a、22aに対してシーブ面を対向させた状態で配置され固定円錐板21a、22aとの間にV溝を形成する可動円錐板21b、22bと、この可動円錐板21b、22bの背面に設けられて可動円錐板21b、22bを軸方向に変位させる油圧シリンダ23a、23bとを備える。油圧シリンダ23a、23bに供給される油圧を調整すると、V溝の幅が変化してVベルト23と各プーリ21、22との接触半径が変化し、バリエータ20の変速比が無段階に変化する。
 プライマリプーリ21の油圧シリンダ23aに供給される油圧が小さい場合でもトルク容量が大きくなるように、プライマリプーリ21の油圧シリンダ23aの受圧面積は大きくすることが望ましい。プライマリプーリ21とセカンダリプーリ22とは、プライマリプーリ21の受圧面積がセカンダリプーリ22の受圧面積よりも大きくなるよう設けられている。
 副変速機構30は前進2段・後進1段の変速機構である。副変速機構30は、2つの遊星歯車のキャリアを連結したラビニョウ型遊星歯車機構31と、ラビニョウ型遊星歯車機構31を構成する複数の回転要素に接続され、それらの連係状態を変更する複数の摩擦締結要素(Lowブレーキ32、Highクラッチ33、Revブレーキ34)とを備える。各摩擦締結要素32~34への供給油圧を調整し、各摩擦締結要素32~34の締結・解放状態を変更すると、副変速機構30の変速段が変更される。
 例えば、Lowブレーキ32を締結し、Highクラッチ33とRevブレーキ34を解放すれば副変速機構30の変速段は1速となる。Highクラッチ33を締結し、Lowブレーキ32とRevブレーキ34を解放すれば副変速機構30の変速段は1速よりも変速比が小さな2速となる。また、Revブレーキ34を締結し、Lowブレーキ32とHighクラッチ33を解放すれば副変速機構30の変速段は後進となる。
 各摩擦締結要素は、動力伝達経路上、バリエータ20の前段又は後段に設けられ、いずれかの摩擦締結要素が締結されると変速機4の動力伝達を可能にし、全ての摩擦締結要素が解放されると変速機4の動力伝達を不能にする。
 油圧制御回路11は複数の流路、複数の油圧制御弁で構成される。油圧制御回路11は、コントローラ12からの変速制御信号に基づき、複数の油圧制御弁を制御して油圧の供給経路を切り換えるとともにメカオイルポンプ10m又は電動オイルポンプ10eで発生した油圧から必要な油圧を調製し、これを変速機4の各部位に供給する。これにより、バリエータ20の変速比、副変速機構30の変速段が変更され、変速機4の変速が行われる。
 コントローラ12は、エンジン1及び変速機4を統合的に制御するコントローラであり、図2に示すように、入力インターフェース123と、出力インターフェース124と、入力信号演算部121と、ベルト滑り検知部122と、電動オイルポンプ指示演算部126と、制御部120と、これらを相互に接続するバス125とから構成される。コントローラは、CPU、ROM、RAMなどによって構成され、CPUがROMに格納されたプログラムを読み出すことで、コントローラ12の機能が発揮される。
 入力インターフェース123には、アクセルペダルの操作量であるアクセル開度APOを検出するアクセル開度センサ41の出力信号、変速機4の入力回転速度(=プライマリプーリ21の回転速度、以下、「プライマリ回転速度」という。)を検出する回転速度センサ42の出力信号、変速機4の出力回転速度(=セカンダリプーリ22の回転速度、以下、「セカンダリ回転速度」という。)を検出する回転速度センサ48、車速VSPを検出する車速センサ43の出力信号、ライン圧PLを検出するライン圧センサ44の出力信号、セレクトレバーの位置を検出するインヒビタスイッチ45の出力信号、ブレーキ液圧を検出するブレーキ液圧センサ46の出力信号、Gセンサ47からの出力信号、プライマリプーリの位置を検出するストロークセンサ50の出力信号等が入力される。
 入力信号演算部121は、回転速度センサ42の出力信号からバリエータ20の入力回転速度を算出し、回転速度センサ48の出力信号からバリエータ20の出力回転速度を算出する。
 制御部120は、入力インターフェース123、入力信号演算部121などと接続しており、これらを含んだ車両を制御する。制御部120は、入力インターフェース123を介して入力される各種信号に対して各種演算処理を施して、変速制御信号などを生成し、生成した信号を出力インターフェース124を介して油圧制御回路11、エンジン1、電動オイルポンプ10eに出力する。
 制御部120は、燃料消費量を抑制するために、以下に説明するコーストストップ制御を行う。
 コーストストップ制御は、低車速域で車両が走行している間、エンジン1を自動的に停止(コーストストップ)させて燃料消費量を抑制する制御である。アクセルオフ時に実行される燃料カット制御とは、エンジン1への燃料供給が停止される点で共通するが、ロックアップクラッチを解放してエンジン1と駆動輪7との間の動力伝達経路を絶ち、エンジン1の回転を完全に停止させる点において相違する。
 コーストストップ制御を実行するにあたっては、制御部120は、まず、例えば以下に示す条件a~d等を判断する。これらの条件は、言い換えれば、運転者に停車意図があるかを判断するための条件である。
 a:アクセルペダルから足が離されている(アクセル開度APO=0)。
 b:ブレーキペダルが踏み込まれている(ブレーキ液圧が所定値以上)。
 c:車速が所定の低車速(例えば、15km/h)以下である。
 d:ロックアップクラッチが解放されている。
 そして、これらのコーストストップ条件を全て満たす場合に、制御部120はコーストストップ制御を実行する。
 制御部120は、コーストストップ制御中に上記した条件a~d等のいずれかが満たされなくなると、コーストストップ制御を終了し、エンジン1を再始動させる。
 コーストストップ制御が実行されると、エンジン1の回転が完全に停止するために、Lowブレーキ32、バリエータ20などに必要な油圧を電動オイルポンプ10eによって発生させる。電動オイルポンプ10eの駆動信号は、電動オイルポンプ指示演算部126によって出力され、制御部120は、駆動信号に基づいて電動オイルポンプ10eのドライバに指示を出す。これにより、電動オイルポンプ10eから所望の油圧が供給され、バリエータ20においてはプーリ21、22によってVベルト23を挟持する。
 以下において、コーストストップ制御が実行される場合の電動オイルポンプ10eの制御について詳しく説明する。
 ベルト滑り検知部122は、コーストストップ制御が実行される場合に、図3に示すフローチャートに基づいて、Vベルト23とプーリ21、22との間のベルト滑り状態を検知する。
 ステップS100では、ベルト滑り検知部122は、バリエータ20におけるスリップ量であるベルト滑り速度を算出する。ベルト滑り検知部122は、プーリ21、22の位置を検出するストロークセンサ50からの出力信号に基づいて変速比を算出し、車速センサ43からの出力信号に基づいて車速を検出し、算出した変速比と車速とからベルト滑りが生じていない場合のプライマリプーリ回転速度(第1プライマリ回転速度とする。)と、セカンダリプーリ回転速度(第1セカンダリ回転速度とする。)を算出する。
 また、ベルト滑り検知部122は、回転速度センサ42からの出力信号に基づいて実際のプライマリ回転速度(第2プライマリ回転速度とする。)を検出し、回転速度センサ48からの出力信号に基づいて実際のセカンダリ回転速度(第2セカンダリ回転速度とする。)を検出する。そして、ベルト滑り検知部122は、第1プライマリ回転速度と第2プライマリ回転速度と比較し、第1セカンダリ回転速度と第2セカンダリ回転速度とを比較する。そして、ベルト滑り検知部122は、比較した結果、プライマリ回転速度、またはセカンダリ回転速度でずれが生じている場合には、ずれが生じている回転速度の偏差をベルト滑り速度とする。各回転速度でずれが生じていない場合には、ベルト滑り速度はゼロである。
 ステップS101では、ベルト滑り検知部122は、ベルト滑りが発生するかどうか判定する。具体的には、ベルト滑り検知部122は、ベルト滑り速度がゼロであるかどうか判定する。ベルト滑り検知部122は、ベルト滑り速度がゼロの場合にはベルト滑りが発生していないと判定し、ステップS102へ進み、ベルト滑り速度がゼロではない場合には、ベルト滑りが発生していると判定し、ステップS103へ進む。
 ステップS102では、ベルト滑り検知部122は、ベルト滑りが発生していないので、第1の信号を出力する。
 ステップS103では、ベルト滑り検知部122は、ベルト滑りが発生しているので、第2の信号を出力する。
 ステップS104では、ベルト滑り検知部122は、ステップS100と同様にベルト滑り速度を算出する。
 ステップS105では、ベルト滑り検知部122は、ベルト滑りが収束したかどうか判定する。具体的には、ベルト滑り検知部122は、ステップS104によって算出したベルト滑り速度がゼロであるかどうか判定する。ベルト滑り検知部122は、ベルト滑り速度がゼロの場合にはベルト滑りが収束したと判定し、ステップS102へ進み、ベルト滑り速度がゼロではない場合にはベルト滑りが収束していないと判定し、ステップS103へ戻り上記制御を繰り返す。
 なお、ベルト滑り検知部122は、ステップS104によって算出したベルト滑り速度が、第1所定値よりも小さいかどうか判定し、ベルト滑り速度が第1所定値よりも小さい場合には、ベルト滑りが収束したと判定してもよい。第1所定値は、バリエータ20におけるベルト滑りが収束していると判定可能な値であり、予め設定された値である。
 ベルト滑り検知部122は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、バリエータ20の状態を示す信号を出力する。
 電動オイルポンプ指示演算部126は、コーストストップ制御が実行される場合に、図4に示すフローチャートに基づいて、電動オイルポンプ10eの駆動信号を出力する。
 ステップS200では、電動オイルポンプ指示演算部126は、ベルト滑り検知部122から第1の信号が出力されているかどうか判定する。電動オイルポンプ指示演算部126は、第1の信号が出力されている場合にはベルト滑りが発生していないのでステップS201へ進み、第1の信号ではなく第2の信号が出力されている場合にはベルト滑りが発生しているのでステップS202へ進む。
 ステップS201では、電動オイルポンプ指示演算部126は、電動オイルポンプ10eの第1吐出圧に対応する第1駆動信号を算出する。第1吐出圧は、ベルト滑りが発生しない場合に設定される吐出圧であり、予め設定されている。
 ステップS202では、電動オイルポンプ指示演算部126は、図5に示すマップに基づいてベルト滑り検知部122によって算出したベルト滑り速度に対する電動オイルポンプ10eの第2吐出圧を算出する。第2吐出圧は、ベルト滑り速度に対してVベルト23とプーリ21、22との間で摩擦発熱による溶着、または溶着による劣化が生じない圧である。図5は、ベルト滑り速度と電動オイルポンプ10eの吐出圧との関係を示す図であり、上限摩擦発熱量を実線で示している。Vベルト23とプーリ21、22との間における摩擦発熱量は、ベルト滑り速度とプーリ21、22の推力、つまりVベルト23の挟持力との積によって求めることができる。電動オイルポンプ10eから供給される油圧によってVベルト23を挟持する場合には、プーリ21、22の挟持力は電動オイルポンプ10eの吐出圧から求めることができる。プーリ21、22とVベルト23との間で発生する摩擦発熱が増大するとプーリ21、22とVベルト23とが溶着し、動力伝達不能となる。上限摩擦発熱量は、プーリ21、22とVベルト23との間で溶着により動力伝達不能とならない摩擦発熱量の上限値である。上限摩擦発熱量は、ベルト滑り速度とVベルト23の挟持力とによって規定される。なお、上限摩擦発熱量は、摩擦発熱量の上限値とはせずに、所定の余裕代を持った値としてもよい。図5において上限摩擦発熱量よりも上側の領域では摩擦発熱によってプーリ21、22とVベルト23とが溶着、Vベルト23またはプーリ21、22で溶着に起因する劣化が生じる。第2吐出圧は、上限摩擦発熱量を超えないようにベルト滑り速度に基づいて算出される。本実施形態においては、第2吐出圧は、摩擦発熱量が上限摩擦発熱量となるように算出される。
 ステップS203では、電動オイルポンプ指示演算部126は、第2吐出圧に対応する第2駆動信号を出力する。
 電動オイルポンプ指示演算部126は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、電動オイルポンプ10eの駆動信号を出力する。出力された駆動信号に基づいて電動オイルポンプ10eを駆動することで、駆動信号に対応する吐出圧が得られる。そして、電動オイルポンプ10eの吐出圧によってプーリ21、22がVベルト23を挟持する。
 次に、本実施形態における電動オイルポンプ10eの吐出圧などの変化を図6のタイムチャートを用いて説明する。
 時間t0において、コーストストップ制御が開始されると、エンジン1への燃料噴射が停止するので、エンジン回転速度が低下する。また、コーストストップ制御中にエンジン回転速度が低下すると、メカオイルポンプ10mの吐出圧も低下する。そのため電動オイルポンプ10eが駆動される。ここではベルト滑りは発生しておらず、電動オイルポンプ10eの吐出圧は第1吐出圧となる。バリエータ20に供給される油圧は、供給源がメカオイルポンプ10mから電動オイルポンプ10eへ変わるので、徐々に減少し、その後電動オイルポンプ10eの第1吐出圧によって供給される油圧に保持される。
 時間t1において、ブレーキペダルが踏み込まれ、セカンダリ回転速度が急激に減少し、ベルト滑りが発生する。そのため、電動オイルポンプ10eの吐出圧はベルト滑り速度に応じて第2吐出圧となる。これによって、Vベルト23の挟持力が大きくなり、プライマリ回転速度が徐々に減少し、ベルト滑り速度が小さくなる。また、ベルト滑り速度が小さくなることで、図5に示すように上限摩擦発熱量が大きくなるので、電動オイルポンプ10eの第2吐出圧は次第に大きくなる。
 時間t2において、ベルト滑りが収束すると、電動オイルポンプ10eの吐出圧を第1吐出圧とする。
 本発明の第1実施形態の効果について説明する。
 コーストストップ制御中に、Vベルト23とプーリ21、22との間でベルト滑りが発生した場合に、Vベルト23とプーリ21、22との間で発生する摩擦発熱量に基づいて電動オイルポンプ10eの吐出圧をベルト滑りが検知された時の吐出圧よりも大きくし、プーリ21、22によるVベルトの挟持力を大きくする。これにより、Vベルト23とプーリ21、22との間の摩擦発熱による溶着、Vベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 ベルト滑り速度を検出し、ベルト滑り速度に基づいて摩擦発熱量が上限摩擦発熱量を超えないように電動オイルポンプ10eの吐出圧を大きくすることで、摩擦発熱によるVベルト23とプーリ21、22との溶着、Vベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 摩擦発熱量が上限摩擦発熱量となるように電動オイルポンプ10eの吐出圧を設定することで、摩擦発熱によるVベルト23とプーリ21、22との溶着、Vベルト23、またはプーリ21、22の溶着に起因する劣化を抑制し、ベルト滑りを素早く収束させることができる。
 減少するベルト滑り速度に応じて、電動オイルポンプ10eの吐出圧を設定することで、ベルト滑りを素早く収束させることができる。
 メカオイルポンプ10mと比較して吐出圧の制御が容易な電動オイルポンプ10eを用いてベルト滑りを収束させることで、摩擦発熱量が上限摩擦発熱量を超えないように正確にVベルト23を挟持することができる。
 本実施形態では、図5に示すマップに基づいて電動オイルポンプ10eの吐出圧を設定しているが、ベルト滑り速度を減少するための電動オイルポンプ10eの吐出圧を別途設定しておき、この吐出圧によってVベルト23を挟持した場合に摩擦発熱量が上限摩擦発熱量を超えるかどうか判定してもよい。そして、摩擦発熱量が上限摩擦発熱量を超える場合に、上限摩擦発熱量を超えないような電動オイルポンプ10eの吐出圧を改めて設定してもよい。これによっても、摩擦発熱によるVベルト23とプーリ21、22との溶着、Vベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 次に本発明の第2実施形態について説明する。
 第2実施形態の車両は、第1実施形態のストロークセンサ50を備えていない。本実施形態のコントローラ12の概略構成図を図7に示す。
 コントローラ12は、第1実施形態の構成に加えてエンジン始動判定部160を備える。以下において、第1実施形態と異なる箇所を中心に説明する。
 ベルト滑り検知部122は、コーストストップ制御が実行される場合に、図8に示すフローチャートに基づいて、ベルト滑り状態を検知する。
 ステップS300では、ベルト滑り検知部122は、単位時間当たりのプーリ21、22への入力トルクの変化量を算出する。入力トルクの変化量は、例えばアクセル開度センサ41からの出力信号、またはブレーキ液圧センサ46からの出力信号に基づいて算出される。
 ステップS301では、ベルト滑り検知部122は、ベルト滑りが発生しているかどうか判定する。具体的には、ベルト滑り検知部122は、入力トルクの変化量と第2所定値とを比較する。ベルト滑り検知部122は、入力トルクの変化量が第2所定値よりも小さい場合にはベルト滑りが発生していないと判定し、ステップS302へ進み、入力トルクの変化量が第2所定値以上である場合にはベルト滑りが発生していると判定し、ステップS303へ進む。第2所定値は、バリエータ20でベルト滑りが発生していると判定可能な値であり、予め設定された値である。入力トルクの変化量は、例えばアクセルペダル、またはブレーキペダルの急激な踏み込みがあった場合、車両が悪路を走行している場合に大きくなる。
 ステップS302では、ベルト滑り検知部122は、ベルト滑りが発生していないので第1の信号を出力する。
 ステップS303では、ベルト滑り検知部122は、ベルト滑りが発生しているので第2の信号を出力する。
 ステップS304では、ベルト滑り検知部122は、ベルト滑り速度を算出する。ベルト滑り検知部122は、車速センサ43からの出力信号に基づいて車速を検出し、算出した車速におけるベルト滑り速度を算出する。ベルト滑り速度は、予め実験結果や計算結果によって車速に応じて設定されている。例えばベルト滑り速度は、検出された車速で生じ得る最大ベルト滑り速度である。本実施形態では、車速に基づいてベルト滑り速度を算出したが、トルク変化量を考慮しても良い。トルク変化量が大きくなると、ベルト滑り速度は大きくなる。
 ステップS305では、ベルト滑り検知部122は、ベルト滑りが収束したかどうか判定する。具体的には、ベルト滑り検知部122は、ステップS304によって算出されたベルト滑り速度に対してベルト滑りが収束するまでの第1所定時間を予め実験結果や計算結果に基づいて設定し、ステップS304によってベルト滑り速度が算出されてから、第1所定時間が経過したかどうか判定する。ベルト滑り検知部122は、第1所定時間が経過するとステップS302へ進む。第1所定時間は、ステップS304によって算出されたベルト滑り速度が大きいほど長くなる。
 ベルト滑り検知部122は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、バリエータ20の状態を示す信号を出力する。
 電動オイルポンプ指示演算部126は、コーストストップ制御が実行される場合に、図9に示すフローチャートに基づいて電動オイルポンプ10eの駆動信号を出力する。
 ステップS400では、電動オイルポンプ指示演算部126は、ベルト滑り検知部122から第1の信号が出力されているかどうか判定する。電動オイルポンプ指示演算部126は、第1の信号が出力されている場合にはベルト滑りが発生していないのでステップS401へ進み、第1の信号ではなく第2の信号が出力されている場合にはベルト滑りが発生しているのでステップS402へ進む。
 ステップS401では、電動オイルポンプ指示演算部126は、電動オイルポンプ10eの第1吐出圧に対応する第1駆動信号を出力する。
 ステップS402では、電動オイルポンプ指示演算部126は、ベルト滑り速度に対する電動オイルポンプ10eの第2吐出圧を算出する。電動オイルポンプ指示演算部126は、まず、図10に示すマップに基づいて、ステップS304によって算出されたベルト滑り速度(図10中でこのベルト滑り速度をAとする。)に対して上限摩擦発熱量となる初期第2吐出圧を算出する。その後、電動オイルポンプ指示演算部126は、初期第2吐出圧から、単位時間当たりの増加量が所定量となる第2吐出圧を算出する。所定量は、摩擦発熱量が上限摩擦発熱量を超えない増加量である。ステップS304によって算出されたベルト滑り速度が小さい(図10中速度A)場合の第2吐出圧の変化を図10において破線で示し、ステップS304によって算出されたベルト滑り速度が大きい(図10中でこのベルト滑り速度をBとする。)場合の第2吐出圧の変化を一点鎖線で示す。これらの線は、ステップS304によって算出されたベルト滑り速度における上限摩擦発熱量の接線である。図10に示すように、ステップS304によって算出されたベルト滑り速度が小さくなると、所定量が大きくなる。すなわち、ステップS304によって算出されたベルト滑り速度が小さくなると、電動オイルポンプ10eの吐出圧の増加量が大きくなる。その結果、Vベルト23とプーリ21、22との溶着、Vベルト23またはプーリ21、22の溶着に起因する劣化を抑制しつつ、短い時間でVベルト23の挟持力を大きくすることができ、ベルト滑りを素早く収束させることができる。
 ステップS403では、電動オイルポンプ指示演算部126は、第2吐出圧に対応する第2駆動信号を出力する。
 電動オイルポンプ指示演算部126は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、電動オイルポンプ10eの駆動信号を出力する。出力された駆動信号に基づいて電動オイルポンプ10eが駆動することで、駆動信号に対応する吐出圧が得られる。
 エンジン始動判定部160は、コーストストップ制御が実行される場合に、図11に示すフローチャートに基づいてエンジン1の始動を制御する制御信号を出力する。
 ステップS500では、エンジン始動判定部160は、第1の信号が出力されているかどうか判定する。エンジン始動判定部160は、第1の信号が出力されている場合には、ベルト滑りが発生していないのでステップS501へ進み、第1の信号ではなく第2の信号が出力されている場合にはベルト滑りが発生しているのでステップS502へ進む。
 ステップS501では、エンジン始動判定部160は、ベルト滑りが発生していないので、第1エンジン制御信号を出力する。第1エンジン制御信号は、エンジン1の始動を許可する信号である。
 ステップS502では、エンジン始動判定部160は、ベルト滑りが発生しているので、第2エンジン制御信号を出力する。第2エンジン制御信号は、エンジン1の始動を禁止する信号である。
 エンジン始動判定部160は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、エンジン1の制御信号を出力する。出力された第1エンジン制御信号または第2エンジン制御信号に基づいてエンジン1が制御される。
 本実施形態における電動オイルポンプ10eの吐出圧などの変化を図12のタイムチャートを用いて説明する。
 時間t0において、コーストストップ制御が開始されると、エンジン回転速度が減少する。また、コーストストップ制御が開始されると電動オイルポンプ10eが駆動する。ここではベルト滑りは発生しておらず、電動オイルポンプ10eの吐出圧は第1吐出圧となる。バリエータ20に供給される油圧は、徐々に減少し、その後電動オイルポンプ10eの第1吐出圧によって供給される油圧に保持される。
 時間t1において、ブレーキペダルが踏み込まれ、セカンダリ回転速度が急激に減少し、ベルト滑りが発生する。そのため、ベルト滑り速度に応じて電動オイルポンプ10eの吐出圧を第2吐出圧とする。これによって、プライマリ回転速度が徐々に減少する。また、電動オイルポンプ10eの第2吐出圧は単位時間当たり所定量増加する。また、第2エンジン制御信号が出力され、エンジン1の始動が禁止される。そのため、時間t2においてエンジン1の始動要求があった場合でも、エンジン1は始動しない。
 時間t3において、ベルト滑りが収束すると、電動オイルポンプ10eの吐出圧を第1吐出圧とし、第1エンジン制御信号が出力され、エンジン1の始動禁止が解除され、エンジン1が始動する。
 図12において、本実施形態を用いずにエンジン1の始動を禁止しない場合のエンジン回転速度、供給油圧を破線で示す。本実施形態を用いない場合には、時間t2においてエンジン1が始動するので、ベルト滑り速度が大きいにも関わらずバリエータ20への供給油圧が急激に大きくなり、プーリ21、22とVベルト23との間で発生する摩擦発熱量が増大し、Vベルト23とプーリ21、22とが溶着する、プーリ21、22またはVベルト23が溶着に起因して劣化するおそれがある。
 これに対して、本実施形態では、ベルト滑りが収束されるまでエンジン1の始動が禁止されるので、エンジン1の始動に伴いバリエータ20への供給油圧が急激に大きくなってもプーリ21、22とVベルト23との間で発生する摩擦発熱量を抑制し、Vベルト23とプーリ21、22との溶着、プーリ21、22またはVベルト23で溶着に起因する劣化が生じることを抑制することができる。
 本発明の第2実施形態の効果について説明する。
 ストロークセンサを有していない場合でも、ベルト滑り速度を推定し、推定された時のベルト滑り速度に基づいて、プーリ21、22とVベルト23との間で発生する摩擦発熱量が上限摩擦発熱量を超えないように電動オイルポンプ10eの吐出圧を設定することで、摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 ベルト滑りが発生すると推定された時のベルト滑り速度に基づいて設定された電動オイルポンプ10eの吐出圧を摩擦発熱量が上限摩擦発熱量を超えないように単位時間当たり所定量で増加させる。これにより、摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制し、ベルト滑りを素早く収束させることができる。
 所定量をベルト滑りが発生すると推定された時のベルト滑り速度が小さいほど大きくする。これによって、摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制し、ベルト滑りを素早く収束させることができる。
 コーストストップ制御を終了し、エンジン1が始動するとメカオイルポンプ10mも始動する。エンジン1が始動するとエンジン回転速度が吹け上がり、バリエータ20に供給される油圧が大きくなり、プーリ21、22とVベルト23との間で発生する摩擦発熱量が大きくなり、上限摩擦発熱量を超えるおそれがある。そのため、コーストストップ制御中にベルト滑りが発生する場合には、エンジン1の始動を禁止し、ベルト滑りが収束した後にエンジン1を始動する。これにより、摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 ベルト滑りが検知されてからの時間に基づいてエンジン1を始動することで、簡易な構成によって本実施形態の制御を実現することができる。
 ベルト滑りが検知された時のベルト滑り速度が大きいほど、エンジン1を始動するまでの時間を長くすることで、摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を正確に抑制することができる。
 次に本発明の第3実施形態について説明する。
 以下において、第2実施形態と異なる箇所を中心に説明する。ベルト滑り検知部122は、図13に示すフローチャートに基づいて、ベルト滑り状態を検知する。
 ステップS600からステップS604までの制御は、第2実施形態のステップS300からステップS304までの制御と同じ制御なのでここでの説明は省略する。
 ステップS605では、ベルト滑り検知部122は、ベルト滑り速度がエンジン1の始動を許可する許容値以下となったかどうか判定する。具体的には、ベルト滑り検知部122は、ステップS604によって算出されたベルト滑り速度に対してベルト滑り速度がエンジン始動可能速度まで低下するまでの第2所定時間を予め実験結果や計算結果に基づいて設定し、ステップS604によってベルト滑り速度が算出されてから、第2所定時間が経過したかどうか判定する。ベルト滑り検知部122は、第2所定時間が経過するとステップS606へ進む。許容値は、エンジン1を始動させてメカオイルポンプ10mから油が吐出され、メカオイルポンプ10mの吐出圧がバリエータ20に供給されてもVベルト23とプーリ21、22と間で発生する摩擦発熱量が上限摩擦発熱量を超えないベルト滑り速度である。
 ステップS606では、ベルト滑り検知部122は、ベルト滑り速度がエンジン1の始動を許可する許容値以下となったことを示す第3の信号を出力する。
 ステップS607では、ベルト滑り検知部122は、ベルト滑りが収束したかどうか判定する。ベルト滑り検知部122は、ベルト滑りが収束した場合には、ステップS602へ進む。
 ベルト滑り検知部122は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、バリエータ20の状態を示す信号を出力する。
 エンジン始動判定部160は、コーストストップ制御が実行される場合に、図14に示すフローチャートに基づいてエンジン1の始動を制御する制御信号を出力する。
 ステップS700では、エンジン始動判定部160は、第2の信号が出力されているかどうか判定する。エンジン始動判定部160は、第2の信号が出力されている場合には、ステップS701へ進み、第1の信号または第3の信号が出力されている場合にはステップS702へ進む。
 ステップS701では、エンジン始動判定部160は、ベルト滑りが発生し、かつベルト滑り速度が許容値以下となっていないので、第2エンジン制御信号を出力する。
 ステップS702では、エンジン始動判定部160は、ベルト滑りが発生していない、またはベルト滑り速度が許容値以下となっているので、第1エンジン制御信号を出力する。
 エンジン始動判定部160は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、エンジン1の制御信号を出力する。出力された第1エンジン制御信号または第2エンジン制御信号に基づいてエンジン1が制御される。
 本実施形態における電動オイルポンプ10eの吐出圧などの変化を図15のタイムチャートを用いて説明する。
 時間t0において、コーストストップ制御が開始されると、エンジン回転速度が減少する。また、コーストストップ制御が開始されると電動オイルポンプ10eが駆動する。ここではベルト滑りは発生しておらず、電動オイルポンプ10eは第1吐出圧を吐出する。バリエータ20に供給される油圧は、徐々に減少し、その後電動オイルポンプ10eの第1吐出圧によって供給される油圧に保持される。
 時間t1において、ブレーキペダルが踏み込まれ、セカンダリ回転速度が急激に減少し、ベルト滑りが発生する。そのため、ベルト滑り速度に応じて電動オイルポンプ10eの吐出圧を第2吐出圧とする。これによって、プライマリ回転速度が徐々に減少する。また、電動オイルポンプ10eの第2吐出圧は単位時間当たり所定量で増加する。また、第2エンジン制御信号が出力され、エンジン1の始動が禁止される。そのため、時間t2においてエンジン1の始動要求があった場合でも、エンジン1は始動しない。
 時間t3において、ベルト滑り速度が許容値になると、メカオイルポンプ10mの吐出圧をバリエータ20に供給しても、Vベルト23とプーリ21、22との間で発生する摩擦発熱量が上限摩擦発熱量を超えないので、エンジン1を始動する。
 本発明の第3実施形態の効果について説明する。
 エンジン1の始動に伴うメカオイルポンプ10mの吐出圧をバリエータ20に供給しても、Vベルト23とプーリ21、22との間で発生する摩擦発熱量が上限摩擦発熱量を超えないベルト滑り速度である場合には、エンジン1を始動させる。これにより、摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制しつつ、ベルト滑りが収束するよりも早くエンジン1を始動させることができるため、エンジン1による駆動力を素早く発生させ、車両の走行性を向上することができる。
 次に本発明の第4実施形態について説明する。
 以下において、第2実施形態と異なる箇所を中心に説明する。第4実施形態のベルト滑り検知部122は、図16に示すフローチャートに基づいて、ベルト滑り状態を検知する。
 ステップS800からステップS804までの制御は、第2実施形態のステップS300からステップS304までの制御と同じ制御なので、ここでの説明は省略する。
 ステップS805では、ベルト滑り検知部122は、ベルト滑りの収束が遅延しているかどうか判定する。ベルト滑りの収束遅延は、電動オイルポンプ10eが故障し、電動オイルポンプ10eから所望の吐出圧が吐出されていない場合などに生じる。ベルト滑り検知部122は、例えばライン圧センサ44からの信号によって検出されるライン圧が通常の場合に検出されるライン圧よりも低い、または回転速度センサ42からの信号によって検出されるプライマリ回転速度の減少量が通常の場合の減少量よりも小さい場合にベルト滑りの収束遅延が生じていると判定する。なお、通常時のライン圧などは予め設定されている。ベルト滑り検知部122は、ベルト滑りの収束遅延が発生している場合にはステップS806へ進み、ベルト滑りの収束遅延が発生していない場合にはステップS807へ進む。
 ステップS806では、ベルト滑り検知部122は、ベルト滑りの収束遅延が発生していることを示す第4の信号を出力する。
 ステップS807では、ベルト滑り検知部122は、ベルト滑りが収束したかどうか判定する。ベルト滑り検知部122は、ベルト滑りが収束した場合には、ステップS802へ進む。
 ベルト滑り検知部122は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、バリエータ20の状態を示す信号を出力する。
 エンジン始動判定部160は、コーストストップ制御が実行される場合に、図17に示すフローチャートに基づいてエンジン1の始動を制御する制御信号を出力する。
 ステップS900では、エンジン始動判定部160は、第2の信号が出力されているかどうか判定する。エンジン始動判定部160は、第2の信号が出力されている場合には、ステップS901へ進み、第1の信号または第4の信号が出力されている場合にはステップS902へ進む。
 ステップS901では、エンジン始動判定部160は、ベルト滑りが発生しているので、第2エンジン制御信号を出力する。
 ステップS902では、エンジン始動判定部160は、ベルト滑りが発生していない、またはベルト滑りの収束遅延が発生しているので、第2エンジン制御信号を出力する。
 エンジン始動判定部160は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、エンジン1の制御信号を出力する。出力された第1エンジン制御信号または第2エンジン制御信号に基づいてエンジン1が制御される。
 本実施形態における電動オイルポンプ10eの吐出圧などの変化を図18のタイムチャートを用いて説明する。ここでは、電動オイルポンプ10eが故障し、第1吐出圧以上の吐出圧を吐出できないものとする。
 時間t0において、コーストストップ制御が開始されると、エンジン回転速度が減少する。また、コーストストップ制御が開始されると電動オイルポンプ10eが駆動する。ここではベルト滑りは発生しておらず、電動オイルポンプ10eは第1吐出圧を吐出する。バリエータ20に供給される油圧は、徐々に減少し、その後電動オイルポンプ10eの第1吐出圧によって供給される油圧に保持される。
 時間t1において、ブレーキペダルが踏み込まれ、セカンダリ回転速度が急激に減少し、ベルト滑りが発生する。そのため、ベルト滑り速度に応じて電動オイルポンプ10eの吐出圧が第2吐出圧となるように制御される。しかし、電動オイルポンプ10eが故障しており、電動オイルポンプ10eが第2吐出圧を吐出することができないので、バリエータ20に供給される油圧が大きくならず、プライマリ回転速度の減少量は小さい。なお、第2エンジン制御信号が出力され、エンジン1の始動は禁止されている。そのため、時間t2においてエンジン1の始動要求があった場合でも、エンジン1は始動しない。
 時間t3において、ベルト滑りの収束が遅延していると判定されると、第1エンジン制御信号が出力され、エンジン1が始動する。これにより、メカオイルポンプ10mの吐出圧がエンジン回転速度の上昇と共に大きくなり、バリエータ20に供給される油圧が大きくなり、ベルト滑りが収束する。
 本実施形態では、ベルト滑りの収束が遅延している場合に、エンジン1を始動させたが、これに限られず、ベルト滑り速度に対して上限摩擦発熱量となる吐出圧が電動オイルポンプ10eの最大吐出圧よりも大きい場合に、エンジン1を始動させてもよい。
 本発明の第4実施形態の効果について説明する。
 電動オイルポンプ10eによって油圧をバリエータ20に供給しており、電動オイルポンプ10eの吐出圧による摩擦発熱量が、上限摩擦発熱量よりも小さい場合には、エンジン1を始動させる。エンジン1の回転速度が低い場合であってもメカオイルポンプ10mの吐出圧は、電動オイルポンプ10eの最大吐出圧よりも大きい。そのため、エンジン1を始動させることで、バリエータ20に供給する油圧を大きくすることができ、ベルト滑りを素早く収束させることができる。これによって、例えば電動オイルポンプ10eが故障し、電動オイルポンプ10eから油圧をバリエータ20に供給することができない場合でも、ベルト滑りを収束させて摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 次に本発明の第5実施形態について説明する。
 第5実施形態の車両の概略構成図を図19に示す。
 本実施形態の車両は、第1実施形態のストロークセンサ50を備えておらず、メカオイルポンプ10eの吐出油路とバリエータ20との間に、調圧バルブ51を備える。
 調圧バルブ51が開くと、メカオイルポンプ10mから吐出された全ての油は油圧制御回路11に供給されずに排出され、調圧バルブ51が閉じると、メカオイルポンプ10mから吐出された油は油圧制御回路11に供給される。つまり、調圧バルブ51が開くと、メカオイルポンプ10mからバリエータ20に油圧は供給されず、調圧バルブ51が閉じると、メカオイルポンプ10mからバリエータ20に油圧が供給される。
 本実施形態のコントローラ12の構成を図20に示す。
 本実施形態のコントローラ12は、第1実施形態の構成に加えて、プーリ油圧指示演算部170を備える。
 プーリ油圧指示演算部170は、コーストストップ制御が実行される場合に、図21に示すフローチャートに基づいて、調圧バルブ51を制御する信号を出力する。
 ステップS1000では、プーリ油圧指示演算部170は、第1の信号が出力されているかどうか判定する。プーリ油圧指示演算部170は、第1の信号が出力されている場合にはベルト滑りが発生していないと判定し、ステップS1001へ進み、第1の信号ではなく第2の信号が出力されている場合にはベルト滑りが発生していると判定し、ステップS1002へ進む。
 ステップS1001では、プーリ油圧指示演算部170は、ベルト滑りが発生していないので、第1バルブ制御信号を出力する。第1バルブ制御信号は、メカオイルポンプ10mから吐出された油圧を運転状態に応じた油圧へと調圧し、調圧された油圧を油圧制御回路11に供給するように調圧バルブ51の開度を制御するための信号である。
 ステップS1002では、プーリ油圧指示演算部170は、ベルト滑りが発生しているので、第2バルブ制御信号を出力する。第2バルブ制御信号は、メカオイルポンプ10mから吐出された油圧が全て油圧制御回路11に供給されないよう調圧バルブ51の開度を制御するための信号である。
 プーリ油圧指示演算部170は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、調圧バルブ51の制御信号を出力する。出力された第1バルブ制御信号または第2バルブ制御信号に基づいて調圧バルブ51が制御される。
 本実施形態における電動オイルポンプ10eの吐出圧などの変化を図22のタイムチャートを用いて説明する。
 時間t0において、コーストストップ制御が開始されると、エンジン回転速度が減少する。また、コーストストップ制御が開始されると電動オイルポンプ10eが駆動する。ここではベルト滑りは発生しておらず、電動オイルポンプ10eは第1吐出圧を吐出する。バリエータ20に供給される油圧は、徐々に減少し、その後電動オイルポンプ10eの第1吐出圧によって供給される油圧に保持される。
 時間t1において、ブレーキペダルが踏み込まれ、セカンダリ回転速度が急激に低下し、ベルト滑りが発生する。そのため、ベルト滑り速度に応じて電動オイルポンプ10eの吐出圧は第2吐出圧となる。これによって、プライマリ回転速度が徐々に低下する。また、電動オイルポンプ10eの第2吐出圧は単位時間当たり所定量増加する。さらに、ベルト滑りの発生をトリガとして第2バルブ制御信号が出力され、調圧バルブ51が第2バルブ制御信号に応じた開度に制御される。
 時間t2において、エンジン1の始動要求があると、エンジン1が始動する。そのため、エンジン回転速度の上昇に伴ってメカオイルポンプ10mの吐出圧が上昇するが、調圧バルブ51が開いているので、メカオイルポンプ10mからバリエータ20に油圧は供給されない。
 時間t3において、ベルト滑りが収束すると、電動オイルポンプ10eの吐出圧を第1吐出圧とする。また、第1バルブ制御信号が出力され、調圧バルブ51が第1バルブ制御信号に応じた開度に制御される。そのため、バリエータ20に供給される油圧は、メカオイルポンプ10mの吐出圧に従って大きくなる。
 本発明の第5実施形態の効果について説明する。
 ベルト滑りが発生すると、調圧バルブ51を開き、メカオイルポンプ10mからバリエータ20に油圧が供給されないようにする。そのためベルト滑りが発生した後に、エンジン1の再始動要求があり、エンジン1を再始動させても、エンジン1の始動とともに油が調圧バルブ51によって排出されて、エンジン1が始動してもメカオイルポンプ10mからバリエータ20に油圧が供給されない。これにより、エンジン1が始動してもメカオイルポンプ10mから吐出される油圧によってVベルト23とプーリ21、22との間で発生する摩擦発熱量が大きくなることを抑制することができ、運転者からのエンジン1の再始動要求を満たすと共に摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 次に本発明の第6実施形態について説明する。
 第6実施形態の車両の概略構成図を図23に示す。
 本実施形態の車両は、第5実施形態と比較して調圧バルブ52が異なっている。
 調圧バルブ52が開くと、メカオイルポンプ10mから吐出された油の一部はバリエータ20に供給されずに排出される。即ち、調圧バルブ52は、調圧バルブ52を完全に開いてもメカオイルポンプ10mの吐出された油を完全に排出することができないバルブである。
 ベルト滑り検知部122は、コーストストップ制御が実行される場合に、第3実施形態の図13に示すフローチャートに基づいて、バリエータ20の状態を検知する。
 エンジン始動判定部160は、コーストストップ制御が実行される場合に、第3実施形態の図14に示すフローチャートに基づいてエンジン1の始動を制御する制御信号を出力する。
 プーリ油圧指示演算部170は、コーストストップ制御が実行される場合に、図24に示すフローチャートに基づいて、調圧バルブ52を制御する信号を出力する。
 ステップS1100では、プーリ油圧指示演算部170は、第2の信号が出力されているかどうか判定する。プーリ油圧指示演算部170は、第2の信号が出力されている場合には、ステップS1101へ進み、第1の信号、または第3の信号が出力されている場合にはステップS1102へ進む。
 ステップS1101では、プーリ油圧指示演算部170は、ベルト滑りが発生し、かつベルト滑り速度が許容値以下となっていないので、第2バルブ制御信号を出力する。ここで第2バルブ制御信号は、調圧バルブ52を完全に開かせるための信号である。本実施形態における許容値は、調圧バルブ52が完全に開いた状態となり、メカオイルポンプ10mから吐出された油の一部がバリエータ20に供給されても、プーリ21、22とベルト23との間の摩擦発熱量が上限摩擦発熱量を超えないベルト滑り速度である。
 ステップS1102では、プーリ油圧指示演算部170は、ベルト滑りが発生していない、またはベルト滑りが発生していてもベルト滑り速度が許容値以下となっているので、第1バルブ制御信号を出力する。ここで、第1バルブ制御信号は、メカオイルポンプ10mから吐出された油圧を運転状態に応じた油圧へと調圧し、調圧された油圧を油圧制御回路11に供給するよう調圧バルブ52の開度を制御するための信号である。
 プーリ油圧指示演算部170は、コーストストップ制御が実行されている間は、上記制御を繰り返し行い、調圧バルブ52の制御信号を出力する。出力された第1バルブ制御信号または第2バルブ制御信号に基づいて調圧バルブ52が制御される。
 本実施形態における電動オイルポンプ10eの吐出圧などの変化を図25のタイムチャートを用いて説明する。
 時間t0において、コーストストップ制御が開始されると、エンジン回転速度が減少する。また、コーストストップ制御が開始されると電動オイルポンプ10eが駆動する。ここではベルト滑りは発生しておらず、電動オイルポンプ10eは第1吐出圧を吐出する。バリエータ20に供給される油圧は、徐々に減少し、その後電動オイルポンプ10eの第1吐出圧によって供給される油圧に保持される。
 時間t1において、ブレーキペダルが踏み込まれ、セカンダリ回転速度が急激に減少し、ベルト滑りが発生する。そのため、電動オイルポンプ10eの吐出圧は第2吐出圧となる。これによって、プライマリ回転速度が徐々に減少する。また、第2エンジン制御信号が出力され、エンジン1の始動が禁止される。そのため、時間t2において、エンジン1の始動要求があった場合でも、エンジン1は始動しない。
 時間t3において、ベルト滑り速度が許容値以下となると、第1エンジン制御信号が出力され、エンジン1が始動する。また、第2バルブ制御信号が出力され、調圧バルブ52が開く。これにより、エンジン1が始動しても、メカオイルポンプ10mからバリエータ20に供給される油圧が低いので、Vベルト23とプーリ21、22との間で発生する摩擦発熱量が抑制される。
 時間t4において、ベルト滑りが収束すると、第1バルブ制御信号が出力され、調圧バルブ52が閉じる。そのため、バリエータ20に供給される油圧はメカオイルポンプ10mの吐出圧に従って大きくなる。
 本発明の第6実施形態の効果について説明する。
 ベルト滑りが発生している間にエンジン1を始動する場合に、調圧バルブ52を開いてメカオイルポンプ10mから供給される油の一部を排出することで、Vベルト23とプーリ21、22との間で発生する摩擦発熱量が上限摩擦発熱量を超えることを防止し、摩擦発熱によるVベルト23とプーリ21、22との溶着、またはVベルト23、またはプーリ21、22の溶着に起因する劣化を抑制することができる。
 本実施形態では、調圧バルブ52を用いたが、プレッシャーレギュレータ弁を用いても良い。プレッシャーレギュレータ弁は、フェールセーフの観点から、プレッシャーレギュレータ弁内のスプールが油の排出量が最大となる位置でスティックしても、油圧制御回路11に所定の油圧を供給できるようになっている。そのためプレッシャーレギュレータ弁を用いることで、新たなバルブを用いずに本実施形態を実現することができる。
 上記実施形態における「ベルト滑り状態の検知」とはVベルト23とプーリ21、22との間で実際に滑りが発生している状態、および滑りが発生することが予測される状態を含むものである。
 また、上記実施形態では、ベルト滑りが発生する一例としてブレーキペダルが踏み込まれた場合について説明したが、ベルト滑りの発生要件はこれに限られることはない。例えば悪路を走行している場合などの駆動輪7からバリエータ20へのトルク変動や、アクセルペダルの踏み込み量の変化などによるエンジン1からバリエータ20へのトルク変動が生じた場合に上記制御を実行してもよい。
 上記実施形態では、動力伝達部材としてVベルト23を用いて説明したが、これに限られず、例えば動力伝達部材としてチェーンを用いてもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年6月23日に日本国特許庁に出願された特願2011-139099に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (16)

  1.  駆動源と駆動輪との間に配置され、前記駆動源側のプーリと、前記駆動輪側のプーリと、2つの前記プーリの間に巻き掛けられた動力伝達部材とを有するバリエータを備えた車両を制御する車両の制御装置であって、
     前記バリエータにおける前記プーリと前記動力伝達部材とのスリップを検知するスリップ検知手段と、
     前記スリップが生じると、前記ベルトと前記プーリとの間で発生する摩擦発熱量に基づいて、前記動力伝達部材の挟持力を前記スリップが検知された時の前記動力伝達部材の挟持力よりも大きくする挟持力制御手段とを備える車両の制御装置。
  2.  請求項1に記載の車両の制御装置であって、
     前記スリップ検知手段は、前記バリエータにおけるスリップ量を検出し、
     前記挟持力制御手段は、前記摩擦発熱量が前記スリップ量と前記動力伝達部材の挟持力とに基づいて規定される上限摩擦発熱量を超えないように前記動力伝達部材の挟持力を大きくする車両の制御装置。
  3.  請求項1に記載の車両の制御装置であって、
     前記バリエータにおけるスリップ量を減少させる前記動力伝達部材の挟持力を算出する挟持力算出手段と、
     前記挟持力算出手段によって算出した前記動力伝達部材の挟持力で前記動力伝達部材を挟持した場合に前記動力伝達部材と前記プーリとの間で発生する摩擦発熱量が前記動力伝達部材、前記プーリのうち少なくともいずれか一つを劣化させない上限摩擦発熱量を超えるかどうか判定する判定手段とを備え、
     前記スリップ検知手段は、前記スリップ量を検出し、
     前記挟持力制御手段は、前記判定手段により前記摩擦発熱量が前記上限摩擦発熱量を超えると判定される場合には、前記摩擦発熱量が前記上限摩擦発熱量を超えないように前記動力伝達部材の挟持力を大きくする車両の制御装置。
  4.  請求項2または3に記載の車両の制御装置であって、
     前記挟持力制御手段は、前記スリップ量に基づいて前記摩擦発熱量が前記上限摩擦発熱量となるように前記動力伝達部材の挟持力を大きくする車両の制御装置。
  5.  請求項4に記載の車両の制御装置であって、
     前記挟持力制御手段は、前記スリップ量が減少するに従って前記摩擦発熱量が前記上限摩擦発熱量となるように前記動力伝達部材の挟持力を大きくする車両の制御装置。
  6.  請求項1に記載の車両の制御装置であって、
     前記スリップ検知手段は、前記バリエータにおけるスリップ量を推定し、
     前記挟持力制御手段は、前記スリップが発生すると判定された時の前記スリップ量に基づいて前記摩擦発熱量が前記動力伝達部材、前記プーリのうち少なくともいずれか一つを劣化させない上限摩擦発熱量となるように前記動力伝達部材の挟持力を大きくする車両の制御装置。
  7.  請求項6に記載の車両の制御装置であって、
     前記挟持力制御手段は、前記スリップが発生すると判定された時の前記スリップ量に基づいて設定した前記動力伝達部材の挟持力から、前記摩擦発熱量が前記上限摩擦発熱量を超えないように前記動力伝達部材の挟持力を単位時間当たり所定量増加させる車両の制御装置。
  8.  請求項7に記載の車両の制御装置であって、
     前記所定量は、前記スリップが発生すると判定された時の前記スリップ量が小さいほど大きい車両の制御装置。
  9.  請求項1から8のいずれか一つに記載の車両の制御装置であって、
     前記駆動源によって駆動される機械式オイルポンプと、
     前記車両走行中に前記駆動源を停止させるコーストストップ条件が成立すると、前記駆動源を停止させるコーストストップ制御を実行するコーストストップ制御手段と、
     前記コーストストップ制御中に前記動力伝達部材の挟持力を発生させる電動オイルポンプと、
     コーストストップ終了条件が成立すると、前記駆動源を始動させる始動手段とを備える車両の制御装置。
  10.  請求項9に記載の車両の制御装置であって、
     前記始動手段は、前記コーストストップ制御中に前記スリップが発生すると前記駆動源の始動を禁止し、前記スリップが収束した場合に前記駆動源を始動させる車両の制御装置。
  11.  請求項9に記載の車両の制御装置であって、
     前記始動手段は、前記コーストストップ制御中に前記スリップが発生すると前記駆動源の始動を禁止し、前記機械式オイルポンプによって前記動力伝達部材の挟持力を発生させても前記摩擦発熱量が前記上限摩擦発熱量を超えない場合に前記駆動源を始動させる車両の制御装置。
  12.  請求項9から11のいずれか一つに記載の車両の制御装置であって、
     前記始動手段は、前記スリップが発生すると判定された時からの経過時間に基づいて前記駆動源を始動させる車両の制御装置。
  13.  請求項12に記載の車両の制御装置であって、
     前記始動手段は、前記スリップが発生すると判定された時のスリップ量が大きいほど前記駆動源を始動させるまでの時間を長くする車両の制御装置。
  14.  請求項9に記載の車両の制御装置であって、
     前記始動手段は、前記コーストストップ制御中に前記スリップが発生すると前記駆動源の始動を禁止し、前記電動オイルポンプによって前記動力伝達部材の挟持力を発生させても前記摩擦発熱量が前記上限摩擦発熱量を超えない場合には、前記駆動源を始動させる車両の制御装置。
  15.  請求項9に記載の車両の制御装置であって、
     前記機械式オイルポンプと前記バリエータとの間に、前記機械式オイルポンプから吐出される油を前記バリエータに供給せずに排出する排出手段と、
     前記コーストストップ制御中に前記スリップが発生し、かつ前記駆動源が始動する場合に、前記駆動源が始動してから前記スリップが収束するまでの間、前記機械式オイルポンプから前記バリエータに前記油が供給されないように前記排出手段を制御する排出制御手段とを備える車両の制御装置。
  16.  請求項9に記載の車両の制御装置であって、
     前記機械式オイルポンプと前記バリエータとの間に、前記機械式オイルポンプから吐出される油の一部を前記バリエータに供給せずに排出する排出手段と、
     前記スリップが収束する前に前記始動手段によって前記駆動源を始動させる場合に前記機械式オイルポンプから吐出される前記油の一部を排出するように前記排出手段を制御する排出制御手段とを備える車両の制御装置。
PCT/JP2012/062413 2011-06-23 2012-05-15 車両の制御装置 WO2012176559A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013521501A JP5669941B2 (ja) 2011-06-23 2012-05-15 車両の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011139099 2011-06-23
JP2011-139099 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012176559A1 true WO2012176559A1 (ja) 2012-12-27

Family

ID=47422403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062413 WO2012176559A1 (ja) 2011-06-23 2012-05-15 車両の制御装置

Country Status (2)

Country Link
JP (1) JP5669941B2 (ja)
WO (1) WO2012176559A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126030A (ja) * 2012-12-27 2014-07-07 Jatco Ltd コーストストップ車両
WO2017043458A1 (ja) * 2015-09-09 2017-03-16 ジヤトコ株式会社 車両用無段変速機構の制御装置および制御方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193074A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2001012593A (ja) * 1999-06-16 2001-01-16 Luk Lamellen & Kupplungsbau Gmbh 相互の摩擦接触によって運動を伝達する2つの構成部材間のスリップを決定する方法
JP2001227606A (ja) * 2000-02-18 2001-08-24 Fuji Heavy Ind Ltd 電動オイルポンプを有する自動車用ベルト式無段変速装置
JP2003329126A (ja) * 2002-03-05 2003-11-19 Toyota Motor Corp 無段変速機の制御装置
JP2004036715A (ja) * 2002-07-02 2004-02-05 Toyota Central Res & Dev Lab Inc ベルト挟圧力決定装置、ベルト速度推定装置、ベルト滑り率推定装置及びベルト滑り検出装置
JP2007292238A (ja) * 2006-04-26 2007-11-08 Toyota Motor Corp ベルト式無段変速機の制御装置
JP2010065824A (ja) * 2008-09-12 2010-03-25 Toyota Motor Corp 無段変速機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193074A (ja) * 1998-12-25 2000-07-14 Nissan Motor Co Ltd ベルト式無段変速機の制御装置
JP2001012593A (ja) * 1999-06-16 2001-01-16 Luk Lamellen & Kupplungsbau Gmbh 相互の摩擦接触によって運動を伝達する2つの構成部材間のスリップを決定する方法
JP2001227606A (ja) * 2000-02-18 2001-08-24 Fuji Heavy Ind Ltd 電動オイルポンプを有する自動車用ベルト式無段変速装置
JP2003329126A (ja) * 2002-03-05 2003-11-19 Toyota Motor Corp 無段変速機の制御装置
JP2004036715A (ja) * 2002-07-02 2004-02-05 Toyota Central Res & Dev Lab Inc ベルト挟圧力決定装置、ベルト速度推定装置、ベルト滑り率推定装置及びベルト滑り検出装置
JP2007292238A (ja) * 2006-04-26 2007-11-08 Toyota Motor Corp ベルト式無段変速機の制御装置
JP2010065824A (ja) * 2008-09-12 2010-03-25 Toyota Motor Corp 無段変速機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014126030A (ja) * 2012-12-27 2014-07-07 Jatco Ltd コーストストップ車両
WO2017043458A1 (ja) * 2015-09-09 2017-03-16 ジヤトコ株式会社 車両用無段変速機構の制御装置および制御方法
KR20180035848A (ko) * 2015-09-09 2018-04-06 쟈트코 가부시키가이샤 차량용 무단 변속 기구의 제어 장치 및 제어 방법
JPWO2017043458A1 (ja) * 2015-09-09 2018-06-07 ジヤトコ株式会社 車両用無段変速機構の制御装置および制御方法
EP3348870A4 (en) * 2015-09-09 2018-10-10 Jatco Ltd Control device and control method for continuously variable transmission mechanism for vehicle
KR102000891B1 (ko) 2015-09-09 2019-07-16 쟈트코 가부시키가이샤 차량용 무단 변속 기구의 제어 장치 및 제어 방법

Also Published As

Publication number Publication date
JPWO2012176559A1 (ja) 2015-02-23
JP5669941B2 (ja) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5712296B2 (ja) コーストストップ車両、及びその制御方法
JP5548599B2 (ja) コーストストップ車両およびその制御方法
JP5542607B2 (ja) コーストストップ車両及びコーストストップ方法
JP5750162B2 (ja) 車両制御装置、及びその制御方法
JP5790670B2 (ja) 車両の制御装置
JP6476025B2 (ja) 車両制御装置、及びその制御方法
JP2013122168A (ja) 車両制御装置および車両の制御方法
JP2009002451A (ja) ロックアップクラッチの制御装置
JP5728575B2 (ja) コーストストップ車両、及びその制御方法
KR101929107B1 (ko) 자동 변속기의 제어 장치 및 제어 방법
WO2017051678A1 (ja) 車両のセーリングストップ制御方法及び制御装置
KR20170042656A (ko) 차량 제어 장치 및 차량의 제어 방법
JP2016161023A (ja) 車両の制御装置
JP5669941B2 (ja) 車両の制御装置
JP6071066B2 (ja) エンジン自動停止車両の制御装置
WO2014112308A1 (ja) 変速機の制御装置
JP6568754B2 (ja) 車両用駆動装置及び車両用駆動装置の制御方法
CN114096746A (zh) 车辆的控制装置及车辆的控制方法
JP6468110B2 (ja) 車両用駆動装置及び車両用駆動装置の制御方法
JP5782176B2 (ja) 無段変速機の変速制御装置及び変速制御方法
JP6124828B2 (ja) 車両用変速機の制御装置
JP7223134B2 (ja) 車両の制御装置及び車両の制御方法
WO2015194206A1 (ja) 自動変速機の油圧制御装置、及びその制御方法
JP6660122B2 (ja) 車両の制御装置、及び車両の制御方法
JP2013160278A (ja) 車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802272

Country of ref document: EP

Kind code of ref document: A1