WO2012176266A1 - 固体電解質微粒子の製造方法 - Google Patents

固体電解質微粒子の製造方法 Download PDF

Info

Publication number
WO2012176266A1
WO2012176266A1 PCT/JP2011/064056 JP2011064056W WO2012176266A1 WO 2012176266 A1 WO2012176266 A1 WO 2012176266A1 JP 2011064056 W JP2011064056 W JP 2011064056W WO 2012176266 A1 WO2012176266 A1 WO 2012176266A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solvent
poor solvent
fine particles
mass
Prior art date
Application number
PCT/JP2011/064056
Other languages
English (en)
French (fr)
Inventor
井上 裕之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/127,695 priority Critical patent/US20140315098A1/en
Priority to CN201180071575.7A priority patent/CN103597546A/zh
Priority to JP2013521347A priority patent/JP5842918B2/ja
Priority to PCT/JP2011/064056 priority patent/WO2012176266A1/ja
Publication of WO2012176266A1 publication Critical patent/WO2012176266A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/68Aluminium compounds containing sulfur
    • C01F7/70Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing solid electrolyte fine particles that can be used, for example, in an all-solid battery and can stably produce solid electrolyte fine particles having a fine particle diameter.
  • lithium batteries currently on the market use an electrolyte containing a flammable organic solvent, it is possible to install safety devices that suppress the temperature rise during short circuits and to improve the structure and materials to prevent short circuits. Necessary.
  • a lithium battery in which the electrolyte is changed to a solid electrolyte layer to make the battery completely solid does not use a flammable organic solvent in the battery, so the safety device can be simplified, and manufacturing costs and productivity can be reduced. It is considered excellent.
  • Patent Document 1 discloses a method for forming a solid electrolyte material using mechanical milling using metal lithium, elemental sulfur, elemental phosphorus or the like as a raw material.
  • Patent Document 2 discloses a method of forming a solid electrolyte material by reacting a lithium component, a sulfur component, simple phosphorus, etc. in an organic solvent. Further, it is disclosed that a solid electrolyte material formed in an organic solvent is precipitated by injecting a solvent having a low solubility of the solid electrolyte material.
  • the particle diameter of the obtained solid electrolyte material is limited to about 1 ⁇ m, and it is difficult to make the particle diameter smaller.
  • a method for controlling the particle diameter of the obtained solid electrolyte material has not been established, and a solid having a fine particle diameter is not established. There is a problem that it is difficult to stably manufacture the electrolyte material.
  • the present invention has been made in view of the above circumstances, and a main object of the present invention is to provide a method for producing solid electrolyte fine particles capable of stably producing solid electrolyte fine particles having a minute particle diameter.
  • the present inventor has paid attention to the conditions for precipitating a solid electrolyte material dissolved in a solvent having a high solubility of the solid electrolyte material (good solvent) using a poor solvent, and earnestly
  • the mass ratio of the poor solvent and the mass ratio of the solid electrolyte solution dropped into the poor solvent was found to correlate with the particle size of the precipitated solid electrolyte fine particles, and the mass ratio described above was obtained. It has been found that the solid electrolyte fine particles having a desired particle diameter can be stably precipitated by keeping the value within a predetermined range, and the present invention has been completed.
  • the mass ratio m: n of the mass m of the solid electrolyte solution and the mass n of the poor solvent is such that the solid electrolyte fine particles
  • a method for producing solid electrolyte fine particles wherein the solid electrolyte solution is mixed in the poor solvent so that the ratio of the mass n of the poor solvent is higher than the mass ratio of precipitation.
  • fine particles are obtained by mixing the solid electrolyte layer solution in the poor solvent so that the ratio of the mass n of the poor solvent is higher than the mass ratio described above in the precipitation step. It becomes possible to stably produce solid electrolyte fine particles having a diameter.
  • the solid electrolyte material is preferably a sulfide solid electrolyte material. This is because the sulfide solid electrolyte material has high Li ion conductivity, and a high output battery can be obtained when used in the solid electrolyte layer or electrode active material layer of an all-solid battery.
  • the relative dielectric constant difference between the relative permittivity of the good solvent and the relative permittivity of the poor solvent is preferably 30 or less. This is because the compatibility of the good solvent and the poor solvent can be made higher, so that solid electrolyte fine particles having a finer particle diameter can be produced.
  • the method for producing solid electrolyte fine particles of the present invention includes a preparation step of preparing a solid electrolyte solution by dissolving the solid electrolyte material in a good solvent, and the solubility of the solid electrolyte solution in the solid electrolyte material is lower than that of the good solvent.
  • the mass ratio m: n of the mass m of the solid electrolyte solution and the mass n of the poor solvent is
  • the solid electrolyte solution is mixed in the poor solvent so that the ratio of the mass n of the poor solvent is higher than the mass ratio at which the solid electrolyte fine particles are deposited.
  • the good solvent refers to a solvent capable of dissolving the solid electrolyte material. More specifically, the solvent may be any solvent that can dissolve the solid electrolyte material even in a small amount at the temperature of the solvent during the preparation step and the precipitation step, and more specifically, the mass of the solid electrolyte material dissolved in 100 g of the solvent ( A solubility is 0.1 g or more.
  • the poor solvent refers to a solvent in which the solubility of the solid electrolyte material is smaller than the solubility of the good solvent described above. More specifically, it refers to a solvent in which the mass (solubility) of the solid electrolyte material dissolved in 100 g of the solvent is 0 g at the temperature of the solvent during the precipitation step.
  • mass ratio at which solid electrolyte fine particles are deposited means that when a solid electrolyte solution of mass m is mixed in a poor solvent of mass n, the solid electrolyte material deposited is a particulate solid electrolyte. It refers to the mass ratio that makes fine particles. Further, the solid electrolyte fine particles in the present invention refer to those having a particle size smaller than the particle size of the raw solid electrolyte material before being dissolved in a good solvent in the preparation step.
  • FIGS. 1A to 1D are process diagrams showing an example of the method for producing solid electrolyte fine particles of the present invention.
  • the method for producing the solid electrolyte fine particles 5 of the present invention comprises preparing the solid electrolyte solution 3 by dissolving the solid electrolyte material 1 in the good solvent 2 (FIG. 1 (a)) (FIG. 1 (b)), The solid electrolyte solution 3 is mixed in the poor solvent 4 (FIG. 1 (c)), and the solid electrolyte fine particles 5 are precipitated (FIG. 1 (d)).
  • the mass ratio m: n between the mass m of the solid electrolyte solution 3 and the mass n of the poor solvent 4 is higher than the mass ratio at which the solid electrolyte fine particles 5 are deposited.
  • the solid electrolyte solution 3 is mixed in the poor solvent 4.
  • the solid electrolyte fine particles 5 are precipitated in the mixed solvent (2 + 4) of the good solvent 2 and the poor solvent 4.
  • the solid electrolyte fine particles having a minute particle diameter can be precipitated.
  • precipitation of the solid electrolyte fine particles occurs because the solubility of the solid electrolyte material decreases in the solid electrolyte solution mixed in the poor solvent.
  • the larger the mass of the solid electrolyte solution mixed in the poor solvent the larger the solid electrolyte solution dispersed in the poor solvent.
  • the present invention is characterized in that it has been found that the mass ratio m: n correlates with the particle diameter of the precipitated solid electrolyte fine particles. That is, according to the present invention, in the precipitation step, the solid electrolyte layer solution is mixed in the poor solvent so that the mass ratio of the poor solvent is higher than the mass ratio described above in the mass ratio m: n. It becomes possible to stably produce solid electrolyte fine particles having a particle size.
  • each process of the manufacturing method of the solid electrolyte fine particle of this invention is demonstrated.
  • the preparation step in the present invention is a step of preparing a solid electrolyte solution by dissolving a solid electrolyte material in a good solvent.
  • the solid electrolyte material used in this step is not particularly limited as long as it has ion conductivity, and can be the same as that used for a solid electrolyte layer of a general all-solid battery.
  • a sulfide solid electrolyte material, an oxide solid electrolyte material, etc. can be mentioned, and among them, a sulfide solid electrolyte material is preferable. This is because the sulfide solid electrolyte material has high Li ion conductivity, and when used in an all solid state battery, a high output battery can be obtained.
  • the sulfide solid electrolyte material usually contains a metal element (M) that becomes conductive ions and sulfur (S).
  • M metal element
  • S sulfur
  • the sulfide solid electrolyte material preferably contains Li, A (A is at least one selected from the group consisting of P, Si, Ge, Al, and B) and S.
  • A is preferably P (phosphorus).
  • the sulfide solid electrolyte material may contain halogens such as Cl, Br, and I. It is because ion conductivity improves by containing a halogen.
  • the sulfide solid electrolyte material may contain O.
  • Examples of the sulfide solid electrolyte material having Li ion conductivity include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 5 —LiI, Li 2 S—P 2 S 5 —Li 2 O, Li 2 S—P 2 S 5 —Li 2 O—LiI, Li 2 S—SiS 2 , Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —LiBr, Li 2 S—SiS 2 —LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -Z m S n ( provided that , M, n are positive numbers, Z is any one of Ge, Zn, and Ga.), Li 2 S—GeS 2 , Li 2 S—SiS 2 —Li 3 PO 4 , Li 2
  • the sulfide solid electrolyte material if it is made by using the raw material composition containing Li 2 S and P 2 S 5, the proportion of Li 2 S to the total of Li 2 S and P 2 S 5 is For example, it is preferably in the range of 70 mol% to 80 mol%, more preferably in the range of 72 mol% to 78 mol%, and still more preferably in the range of 74 mol% to 76 mol%. This is because a sulfide solid electrolyte material having an ortho composition or a composition in the vicinity thereof can be obtained, and a sulfide solid electrolyte material having high chemical stability can be obtained.
  • ortho generally refers to one having the highest degree of hydration among oxo acids obtained by hydrating the same oxide.
  • the crystal composition in which Li 2 S is added most in the sulfide is called the ortho composition.
  • Li 2 S—P 2 S 5 system Li 3 PS 4 corresponds to the ortho composition.
  • P 2 S 5 in the raw material composition, even when using the Al 2 S 3, or B 2 S 3, a preferred range is the same.
  • Li 3 AlS 3 corresponds to the ortho composition
  • Li 3 BS 3 corresponds to the ortho composition.
  • the sulfide solid electrolyte material if it is made by using the raw material composition containing Li 2 S and SiS 2, the ratio of Li 2 S to the total of Li 2 S and SiS 2, for example 60 mol% ⁇ It is preferably within the range of 72 mol%, more preferably within the range of 62 mol% to 70 mol%, and even more preferably within the range of 64 mol% to 68 mol%. This is because a sulfide solid electrolyte material having an ortho composition or a composition in the vicinity thereof can be obtained, and a sulfide solid electrolyte material having high chemical stability can be obtained. In the Li 2 S—SiS 2 system, Li 4 SiS 4 corresponds to the ortho composition.
  • the preferred range is the same when GeS 2 is used instead of SiS 2 in the raw material composition.
  • Li 4 GeS 4 corresponds to the ortho composition.
  • the ratio of LiX is, for example, in the range of 1 mol% to 60 mol%. Preferably, it is in the range of 5 mol% to 50 mol%, more preferably in the range of 10 mol% to 40 mol%.
  • the sulfide solid electrolyte material may be sulfide glass, crystallized sulfide glass, or a crystalline material obtained by a solid phase method.
  • the sulfide glass can be obtained, for example, by performing mechanical milling (ball mill or the like) on the raw material composition.
  • Crystallized sulfide glass can be obtained, for example, by subjecting sulfide glass to a heat treatment at a temperature equal to or higher than the crystallization temperature.
  • the sulfide solid electrolyte material is a Li ion conductor
  • the Li ion conductivity at room temperature is preferably 1 ⁇ 10 ⁇ 5 S / cm or more, for example, and preferably 1 ⁇ 10 ⁇ 4 S / cm or more. More preferably.
  • an average particle diameter (D 50 ) of the solid electrolyte material before being dissolved in the good solvent (raw material) it is possible to obtain solid electrolyte fine particles having a particle diameter smaller than that of the solid electrolyte material in the precipitation step described later. If it is, it will not specifically limit.
  • the solid electrolyte material is a sulfide solid electrolyte material, it is preferably 1 ⁇ m or more, particularly 2 ⁇ m to 100 ⁇ m, particularly 2 ⁇ m to 40 ⁇ m.
  • the average particle size of the solid electrolyte material (D 50) can be determined, for example, by a particle size distribution meter.
  • the solid electrolyte material can be dissolved, and more specifically, as long as the solubility of the solid electrolyte material is within the above-described range and does not deteriorate the solid electrolyte material. It is not limited.
  • the relative permittivity of the good solvent can dissolve the solid electrolyte material, and in the precipitation step described later, the solid electrolyte fine particles can be precipitated by mixing the solid electrolyte solution in the poor solvent. If it is a grade which becomes, it will not specifically limit.
  • the “relative dielectric constant of the solvent” in the present invention is the one described in the Chemical Society of Japan, “Chemical Handbook Basics II”, 4th revised edition, pages 499-501 published by Maruzen Co., Ltd. Can do. Further, the relative dielectric constant of the solvent can be determined by the following measurement method.
  • a relative dielectric constant by filling a solvent to be measured between two electrode plates and applying a voltage at a high frequency to measure a current value. More specifically, for example, it can be measured by using a dielectric constant meter manufactured by Nippon Lucas.
  • aprotic polar organic solvents examples include lactam compounds such as N-methyl-2-pyrrolidone (NMP), amide compounds such as dimethylformamide, urea compounds such as tetramethylurea, etc. NMP is preferred.
  • the solid electrolyte solution obtained by this step is not particularly limited as long as it contains a desired amount of the solid electrolyte material in the above-mentioned good solvent, but is preferably a saturated solution. This is because the solid electrolyte fine particles can be suitably deposited in the precipitation step described later.
  • the temperature of the good solvent in the adjusting step is not particularly limited as long as a desired amount of the solid electrolyte material can be dissolved in the good solvent and the solid electrolyte material is not deteriorated. Specifically, it is preferably 200 ° C. or lower, particularly 60 ° C. or lower.
  • the lower limit value can be a temperature at which the solvent is in a liquid state (melting point of the solvent). This is because the solid electrolyte material can be suitably dissolved by setting the temperature of the good solvent within the above range.
  • the precipitation step in the present invention is a step in which the solid electrolyte solution is mixed in a poor solvent in which the solubility of the solid electrolyte material is lower than that of the good solvent to precipitate solid electrolyte fine particles, and the mass of the solid electrolyte solution
  • the solid electrolyte solution is mixed with the poor solvent so that the mass ratio m: n of the poor solvent to m and the mass ratio of the poor solvent is higher than the mass ratio at which the solid electrolyte fine particles are deposited. It is characterized by being mixed in.
  • the poor solvent used in this step is not particularly limited as long as the solubility of the solid electrolyte material is lower than that of the good solvent, and more specifically, the solubility of the solid electrolyte material is within the above-described range. It is more preferable that the compatibility is high. This is because the higher the compatibility of the good solvent and the poor solvent, the smaller the particle diameter of the precipitated solid electrolyte fine particles.
  • the reason why the particle diameter of the solid electrolyte fine particles can be made smaller as the compatibility between the good solvent and the poor solvent is higher is not clear, but is estimated as follows.
  • the solid electrolyte solution mixed in the poor solvent is presumed to be dispersed in a granular form, but as the compatibility of the good solvent and the poor solvent increases, the granular solid electrolyte solution becomes smaller. It is possible. Therefore, since the content of the solid electrolyte material in the small granular solid electrolyte solution is small, it is presumed that the particle diameter of the precipitated solid electrolyte fine particles becomes small.
  • the relative permittivity difference between the relative permittivity of the good solvent and the relative permittivity of the poor solvent in the present invention is not particularly limited as long as the solid electrolyte fine particles having a desired particle diameter can be deposited. It is preferably 30 or less, particularly 28 or less. If the relative permittivity difference exceeds the above range, the compatibility of the good solvent and the poor solvent is not sufficient, and it may be difficult to precipitate the solid electrolyte material itself from the solid electrolyte solution. is there.
  • the lower limit value of the relative dielectric constant difference can be about 10.
  • the relative permittivity of the poor solvent used in the present invention is not particularly limited as long as the relative permittivity difference with the relative permittivity of the good solvent can be within the above-described range.
  • the relative permittivity of the poor solvent is preferably 2 or more, particularly 4 or more.
  • Such a poor solvent include toluene, cyclopentyl methyl ether, butyl acrylate, and the like.
  • the poor solvent mentioned above and the poor solvent (incompatible solvent) which does not show compatibility with a good solvent.
  • the incompatible solvent include heptane when the good solvent is the solvent described above.
  • the mass ratio m: n between the mass m of the solid electrolyte solution and the mass n of the poor solvent is particularly a mass ratio such that the proportion of the mass n of the poor solvent is higher than the mass ratio at which the solid electrolyte fine particles are deposited. It is not limited.
  • the mass m of the solid electrolyte solution is the total amount of the solid electrolyte solution mixed in the poor solvent.
  • the mass ratio m: n is appropriately adjusted in consideration of the type of the solid electrolyte material, the combination of the good solvent and the poor solvent, the concentration of the solid electrolyte solution, the particle diameter of the desired solid electrolyte fine particles, and the like. .
  • the temperature of the solid electrolyte solution in the precipitation step can be the same as the temperature of the good solvent in the preparation step described above. Further, the temperature of the poor solvent in the precipitation step is not particularly limited as long as the solid electrolyte fine particles can be precipitated and the solid electrolyte fine particles are not deteriorated. In this step, the temperature is preferably the same as that of the solid electrolyte solution. This is because the solid electrolyte fine particles can be deposited more stably.
  • any method can be used as long as the solid electrolyte solution can be uniformly mixed in a poor solvent and solid electrolyte fine particles having a desired particle diameter can be deposited.
  • a method of continuously injecting the whole amount of the solid electrolyte solution while stirring the poor solvent a method of dropping the solid electrolyte solution in a plurality of times while stirring the poor solvent, etc.
  • a method of dropping the solid electrolyte solution can be suitably used. This is because the particle diameter of the obtained solid electrolyte fine particles can be made more uniform by using the above-described method.
  • the production method of the solid electrolyte fine particles of the present invention is not particularly limited as long as it is a production method having the preparation step and the precipitation step described above, and other necessary steps can be appropriately selected and added. . Examples of such steps include a step of washing the obtained solid electrolyte fine particles, a step of drying the solid electrolyte fine particles, and the like.
  • Solid electrolyte fine particles In the present invention, by adjusting various conditions such as a solid electrolyte material, a combination of a good solvent and a poor solvent, a concentration of the solid electrolyte solution, and a mass ratio m: n, a desired fine particle diameter can be obtained. It becomes possible to obtain the solid electrolyte fine particles.
  • the average particle diameter (D 50 ) of the solid electrolyte fine particles when used in the solid electrolyte layer of an all-solid battery, the solid electrolyte layer can be a thin film and has high adhesion to the active material layer. There is no particular limitation as long as it can be made possible.
  • the solid electrolyte fine particles are sulfide solid electrolyte fine particles, it is preferably 1.63 ⁇ m or less, and more preferably in the range of 0.05 ⁇ m to 1 ⁇ m.
  • the solid electrolyte fine particles obtained by the production method of the present invention can be used for any application requiring ion conductivity, but among them, those used for all-solid batteries are preferable.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • the poor solvent is compatible with NMP.
  • the good solvent 25 ° C.
  • solid electrolyte solution 25 ° C.
  • poor solvent 25 ° C.
  • Li 2 S and P 2 S 5 were quantitatively mixed and mechanically milled to obtain Li 3 PS 4 as a sulfide solid electrolyte material.
  • the obtained sulfide solid electrolyte material had a particle size of about 25 ⁇ m.
  • a solid electrolyte solution was prepared by dissolving 1% by weight of the above-mentioned sulfide solid electrolyte material in NMP (relative dielectric constant: 32).
  • the mass ratio m: n between the mass m of the solid electrolyte solution and the mass n of the poor solvent is 1:10. It was dripped so that sulfide solid electrolyte fine particles were deposited.
  • Example 2 Sulfide solid electrolyte fine particles were deposited in the same manner as in Example 1 except that cyclopentyl methyl ether (relative dielectric constant: 4.7) was used as the poor solvent.
  • Example 3 Sulfide solid electrolyte fine particles were deposited in the same manner as in Example 1 except that butyl acrylate (relative dielectric constant: 5.0) was used as the poor solvent.
  • Example 4 As a poor solvent, sulfide was used in the same manner as in Example 1 except that a mixed solvent in which 10% by weight of 2-ethylhexanol (relative dielectric constant: 7.7) was added to heptane (relative dielectric constant: 1.9) was used. Solid electrolyte fine particles were deposited. Heptane is a solvent that is not compatible with NMP.
  • Example 5 A solid electrolyte solution was dropped into heptane in the same manner as in Example 1 except that heptane (relative dielectric constant: 1.9) was used as a poor solvent, to precipitate a sulfide solid electrolyte.
  • the obtained sulfide solid electrolyte fine particles had a particle size of 5 ⁇ m or more.
  • solid electrolyte fine particles having a small particle diameter can be obtained by dropping the solid electrolyte solution into a poor solvent by adjusting the mass ratio m: n to a predetermined amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本発明は微小な粒子径を有する固体電解質微粒子を安定的に製造することが可能な固体電解質微粒子の製造方法を提供することを主目的とする。 本発明においては、固体電解質材料を良溶媒中に溶解させて固体電解質溶液を調製する調製工程と、上記固体電解質溶液を上記固体電解質材料の溶解度が上記良溶媒よりも低い貧溶媒中に混合させて固体電解質微粒子を析出させる析出工程と、を有し、上記析出工程では、上記固体電解質溶液の質量mと上記貧溶媒の質量nとの質量比m:nが、上記固体電解質微粒子が析出する質量比以上に上記貧溶媒の質量nの割合が高くなるように、上記固体電解質溶液を上記貧溶媒中に混合させることを特徴とする固体電解質微粒子の製造方法を提供することにより、上記課題を解決する。

Description

固体電解質微粒子の製造方法
 本発明は、例えば全固体電池に用いられ、微小な粒子径を有する固体電解質微粒子を安定的に製造することが可能な固体電解質微粒子の製造方法に関する。
 近年におけるパソコン、ビデオカメラおよび携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界等においても、電気自動車用あるいはハイブリッド自動車用の高出力かつ高容量の電池の開発が進められている。現在、種々の電池の中でも、エネルギー密度が高いという観点から、リチウム電池が注目を浴びている。
 現在市販されているリチウム電池は、可燃性の有機溶媒を含む電解液が使用されているため、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善が必要となる。これに対し、電解液を固体電解質層に変えて、電池を全固体化したリチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
 全固体電池に用いられる固体電解質材料の製造方法として、特許文献1には、金属リチウム、単体硫黄、単体リン等を原料とし、メカニカルミリングを用いて固体電解質材料を形成する方法が開示されている。また、特許文献2には、リチウム成分、硫黄成分、単体リン等を有機溶媒中で反応させることにより固体電解質材料を形成する方法が開示されている。また、有機溶媒中で形成された固体電解質材料については、上記固体電解質材料の溶解度の低い溶媒を注入することで析出させることが開示されている。
特開2003-208919号公報 国際公開第2004/093099号パンフレット
 ところで、全固体電池の分野においては、電池の高容量化のために、より薄膜の固体電解質層が求められている。また、電池性能の向上のために、活物質層および固体電解質層の接触面積を増加させることが求められている。したがって、薄膜で、かつ活物質層等との接触面積の大きい固体電解質層を形成するため、固体電解質材料については粒子径の小さいものが求められている。
 しかしながら、従来のメカニカルミリングを用いた固体電解質材料の製造方法においては、得られる固体電解質材料の粒子径としては1μm程度が限界であり、より小さい粒子径とすることは困難であるという問題がある。一方、特許文献2に示すような有機溶媒を用いた固体電解質材料の製造方法においては、得られる固体電解質材料の粒子径を制御する方法については確立されておらず、微小な粒子径を有する固体電解質材料を安定的に製造することが困難であるという問題がある。
 本発明は、上記実情に鑑みてなされたものであり、微小な粒子径を有する固体電解質微粒子を安定的に製造することが可能な固体電解質微粒子の製造方法を提供することを主目的とする。
 本発明者は、上記目的を達成するために、固体電解質材料の溶解度の高い溶媒(良溶媒)中に溶解されている固体電解質材料を貧溶媒を用いて析出させる際の条件に着目し、鋭意研究を行った結果、貧溶媒の質量、および貧溶媒中に滴下される固体電解質溶液の質量の質量比と、析出する固体電解質微粒子の粒子径とが相関することを知見として得、上記質量比を所定の範囲内とすることで所望の粒子径を有する固体電解質微粒子を安定的に析出させることが可能であることを見出し、本発明を完成させるに至ったのである。
 すなわち、本発明においては、固体電解質材料を良溶媒中に溶解させて固体電解質溶液を調製する調製工程と、上記固体電解質溶液を上記固体電解質材料の溶解度が上記良溶媒よりも低い貧溶媒中に混合させて固体電解質微粒子を析出させる析出工程と、を有し、上記析出工程では、上記固体電解質溶液の質量mと上記貧溶媒の質量nとの質量比m:nが、上記固体電解質微粒子が析出する質量比以上に上記貧溶媒の質量nの割合が高くなるように、上記固体電解質溶液を上記貧溶媒中に混合させることを特徴とする固体電解質微粒子の製造方法を提供する。
 本発明によれば、析出工程において質量比m:nを上述した質量比以上に貧溶媒の質量nの割合が高くなるように固体電解質層溶液を貧溶媒中に混合させることにより、微小な粒子径を有する固体電解質微粒子を安定的に製造することが可能となる。
 上記発明においては、上記固体電解質材料が硫化物固体電解質材料であることが好ましい。硫化物固体電解質材料はLiイオン伝導性が高く、全固体電池の固体電解質層、または電極活物質層に用いた場合に高出力な電池を得ることができるからである。
 上記発明においては、上記良溶媒の比誘電率と上記貧溶媒の比誘電率との比誘電率差が、30以下であることが好ましい。良溶媒および貧溶媒の相溶性をより高いものとすることができることから、より微小な粒子径を有する固体電解質微粒子を製造することが可能となるからである。
 本発明においては、微小な粒子径を有する固体電解質微粒子を安定的に製造することが可能な固体電解質微粒子の製造方法を提供することができるという効果を奏する。
本発明の固体電解質微粒子の製造方法の一例を示す工程図である。
 以下、本発明の固体電解質微粒子の製造方法について説明する。
 本発明の固体電解質微粒子の製造方法は、固体電解質材料を良溶媒中に溶解させて固体電解質溶液を調製する調製工程と、上記固体電解質溶液を上記固体電解質材料の溶解度が上記良溶媒よりも低い貧溶媒中に混合させて固体電解質微粒子を析出させる析出工程と、を有し、上記析出工程では、上記固体電解質溶液の質量mと上記貧溶媒の質量nとの質量比m:nが、上記固体電解質微粒子が析出する質量比以上に上記貧溶媒の質量nの割合が高くなるように、上記固体電解質溶液を上記貧溶媒中に混合させることを特徴とする製造方法である。
 なお、本発明において、良溶媒とは、固体電解質材料を溶解することが可能な溶媒を指す。より具体的には、調製工程および析出工程中の溶媒の温度において、少量でも固体電解質材料が溶解可能な溶媒であればよく、さらに具体的には溶媒100g中に溶解する固体電解質材料の質量(溶解度)が、0.1g以上である溶媒を指す。
 一方、貧溶媒とは、固体電解質材料の溶解度が上述した良溶媒の溶解度よりも小さい溶媒を指す。より具体的には、析出工程中の溶媒の温度において、溶媒100g中に溶解する固体電解質材料の質量(溶解度)が、0gである溶媒を指す。
 また、本発明において、「固体電解質微粒子が析出する質量比」とは、質量nの貧溶媒中に質量mの固体電解質溶液を混合させた場合に、析出する固体電解質材料が微粒子状の固体電解質微粒子となるような質量比を指す。また、本発明における固体電解質微粒子とは、調製工程において良溶媒中に溶解させる前の原材料の固体電解質材料の粒子径よりも粒子径が小さいものを指す。
 ここで、本発明の固体電解質微粒子の製造方法について図を用いて説明する。図1(a)~(d)は本発明の固体電解質微粒子の製造方法の一例を示す工程図である。本発明の固体電解質微粒子5の製造方法は、固体電解質材料1を良溶媒2中に溶解させて(図1(a))固体電解質溶液3を調製する(図1(b))調製工程と、固体電解質溶液3を貧溶媒4中に混合させて(図1(c))固体電解質微粒子5を析出させる(図1(d))析出工程と、を有する製造方法である。また、析出工程では、固体電解質溶液3の質量mと貧溶媒4の質量nとの質量比m:nが、固体電解質微粒子5が析出する質量比以上に貧溶媒4の質量nの割合が高くなるように、固体電解質溶液3を貧溶媒4中に混合させることを特徴とする。また析出工程においては、良溶媒2および貧溶媒4の混合溶媒(2+4)中に固体電解質微粒子5が析出する。
 ここで、本発明において、固体電解質溶液の質量mと貧溶媒の質量nとの質量比m:nを上述のように調整することにより、微小な粒子径を有する固体電解質微粒子を析出させることが可能となる理由については明らかではないが、次のように推測される。すなわち、固体電解質微粒子の析出は、貧溶媒中に混合された固体電解質溶液において固体電解質材料の溶解度が低下するために起こるものである。この際、貧溶媒中に混合される固体電解質溶液の質量が大きいほど、貧溶媒中に固体電解質溶液が大きな粒状で分散するものと推測される。また、このように大きな粒状の固体電解質溶液においては固体電解質材料の含有量が多いことから、析出する際に、粒状の固体電解質溶液中の固体電解質材料同士が凝集し、大きな粒子径で析出するものと推測される。一方、貧溶媒中に混合される固体電解質溶液の質量が小さいほど、貧溶媒中に固体電解質溶液が小さな粒状で分散するものと推測される。また、このように小さい粒状の固体電解質溶液においては、固体電解質材料の含有量が少ないことから、析出する際に小さい粒子径で析出するものと推測される。
 本発明は、上記質量比m:nと、析出する固体電解質微粒子の粒子径とは相関することを見出した点に特徴を有するものである。すなわち、本発明によれば、析出工程において質量比m:nを上述した質量比以上に貧溶媒の質量の割合が高くなるように固体電解質層溶液を貧溶媒中に混合させることにより、微小な粒子径を有する固体電解質微粒子を安定的に製造することが可能となる。
 以下、本発明の固体電解質微粒子の製造方法の各工程について説明する。
1.調製工程
 本発明における調製工程は、固体電解質材料を良溶媒中に溶解させて、固体電解質溶液を調製する工程である。
 本工程に用いられる固体電解質材料としては、イオン伝導性を有するものであれば特に限定されず、一般的な全固体電池の固体電解質層に用いられるものと同様とすることができる。具体的には、硫化物固体電解質材料、酸化物固体電解質材料等を挙げることができ、なかでも硫化物固体電解質材料であることが好ましい。硫化物固体電解質材料はLiイオン伝導性が高く、全固体電池に用いた場合に高出力な電池を得ることができるからである。
 硫化物固体電解質材料は、通常は、伝導するイオンとなる金属元素(M)と、硫黄(S)とを含有する。上記Mとしては、例えばLi、Na、K、Mg、Ca等を挙げることができ、中でもLiが好ましい。特に、硫化物固体電解質材料は、Li、A(Aは、P、Si、Ge、Al、Bからなる群から選択される少なくとも一種である)、Sを含有することが好ましい。さらに、上記AはP(リン)であることが好ましい。さらに、硫化物固体電解質材料は、Cl、Br、I等のハロゲンを含有していても良い。ハロゲンを含有することにより、イオン伝導性が向上するからである。また、硫化物固体電解質材料はOを含有していても良い。
 Liイオン伝導性を有する硫化物固体電解質材料としては、例えば、LiS-P、LiS-P-LiI、LiS-P-LiO、LiS-P-LiO-LiI、LiS-SiS、LiS-SiS-LiI、LiS-SiS-LiBr、LiS-SiS-LiCl、LiS-SiS-B-LiI、LiS-SiS-P-LiI、LiS-B、LiS-P-Z(ただし、m、nは正の数。Zは、Ge、Zn、Gaのいずれか。)、LiS-GeS、LiS-SiS-LiPO、LiS-SiS-LiMO(ただし、x、yは正の数。Mは、P、Si、Ge、B、Al、Ga、Inのいずれか。)等を挙げることができる。なお、上記「LiS-P」の記載は、LiSおよびPを含む原料組成物を用いてなる硫化物固体電解質材料を意味し、他の記載についても同様である。
 また、硫化物固体電解質材料が、LiSおよびPを含有する原料組成物を用いてなるものである場合、LiSおよびPの合計に対するLiSの割合は、例えば70mol%~80mol%の範囲内であることが好ましく、72mol%~78mol%の範囲内であることがより好ましく、74mol%~76mol%の範囲内であることがさらに好ましい。オルト組成またはその近傍の組成を有する硫化物固体電解質材料とすることができ、化学的安定性の高い硫化物固体電解質材料とすることができるからである。ここで、オルトとは、一般的に、同じ酸化物を水和して得られるオキソ酸の中で、最も水和度の高いものをいう。本発明においては、硫化物で最もLiSが付加している結晶組成をオルト組成という。LiS-P系ではLiPSがオルト組成に該当する。LiS-P系の硫化物固体電解質材料の場合、オルト組成を得るLiSおよびPの割合は、モル基準で、LiS:P=75:25である。なお、上記原料組成物におけるPの代わりに、AlまたはBを用いる場合も、好ましい範囲は同様である。LiS-Al系ではLiAlSがオルト組成に該当し、LiS-B系ではLiBSがオルト組成に該当する。
 また、硫化物固体電解質材料が、LiSおよびSiSを含有する原料組成物を用いてなるものである場合、LiSおよびSiSの合計に対するLiSの割合は、例えば60mol%~72mol%の範囲内であることが好ましく、62mol%~70mol%の範囲内であることがより好ましく、64mol%~68mol%の範囲内であることがさらに好ましい。オルト組成またはその近傍の組成を有する硫化物固体電解質材料とすることができ、化学的安定性の高い硫化物固体電解質材料とすることができるからである。LiS-SiS系ではLiSiSがオルト組成に該当する。LiS-SiS系の硫化物固体電解質材料の場合、オルト組成を得るLiSおよびSiSの割合は、モル基準で、LiS:SiS=66.6:33.3である。なお、上記原料組成物におけるSiSの代わりに、GeSを用いる場合も、好ましい範囲は同様である。LiS-GeS系ではLiGeSがオルト組成に該当する。
 また、硫化物固体電解質材料が、LiX(X=Cl、Br、I)を含有する原料組成物を用いてなるものである場合、LiXの割合は、例えば1mol%~60mol%の範囲内であることが好ましく、5mol%~50mol%の範囲内であることがより好ましく、10mol%~40mol%の範囲内であることがさらに好ましい。
 また、硫化物固体電解質材料は、硫化物ガラスであっても良く、結晶化硫化物ガラスであっても良く、固相法により得られる結晶質材料であっても良い。なお、硫化物ガラスは、例えば原料組成物に対してメカニカルミリング(ボールミル等)を行うことにより得ることができる。また、結晶化硫化物ガラスは、例えば硫化物ガラスを結晶化温度以上の温度で熱処理を行うことにより得ることができる。また、硫化物固体電解質材料がLiイオン伝導体である場合、常温におけるLiイオン伝導度は、例えば1×10-5S/cm以上であることが好ましく、1×10-4S/cm以上であることがより好ましい。
 良溶媒中に溶解させる前(原材料)の固体電解質材料の平均粒子径(D50)としては、後述する析出工程において固体電解質材料よりも粒子径の小さい固体電解質微粒子を得ることが可能となる程度であれば特に限定されない。具体的には、固体電解質材料が硫化物固体電解質材料である場合、1μm以上、なかでも2μm~100μmの範囲内、特に2μm~40μmの範囲内であることが好ましい。なお、固体電解質材料の平均粒径(D50)については、例えば粒度分布計により決定することができる。
 本工程に用いられる良溶媒としては、固体電解質材料を溶解することができ、より具体的には固体電解質材料の溶解度が上述した範囲内であり、かつ固体電解質材料を劣化させないものであれば特に限定されない。
 また、良溶媒の比誘電率としては、固体電解質材料を溶解することが可能であり、後述する析出工程において、貧溶媒中に固体電解質溶液を混合させることで固体電解質微粒子を析出させることが可能となる程度であれば特に限定されない。
 なお、本発明における「溶媒の比誘電率」は日本化学会編、「化学便覧基礎編II」、改訂4版、丸善株式会社発行の499頁~501頁に記載されているものを採用することができる。
 また、上記溶媒の比誘電率については、以下の測定方法によって求めることも可能である。すなわち、2枚の電極板の間に測定する溶媒を満たし、電圧を高周波で印加して電流値を計測することにより、比誘電率を導出することが可能となる。より具体的には、例えば日本ルフト製の誘電率計を用いることに測定することができる。
 このような良溶媒としては、具体的には、非プロトン性の極性有機溶媒を挙げることができる。なお、非プロトン性の極性有機溶媒としては、N-メチル-2-ピロリドン(NMP)等のラクタム化合物、ジメチルホルムアミド等のアミド化合物、テトラメチル尿素等の尿素化合物等を挙げることができ、なかでもNMPであることが好ましい。
 本工程により得られる固体電解質溶液としては、上述した良溶媒中に固体電解質材料を所望量含有するものであれば特に限定されないが、飽和溶液であることが好ましい。後述する析出工程で、固体電解質微粒子を好適に析出させることが可能となるからである。
 また、調整工程における良溶媒の温度としては、良溶媒中に所望量の固体電解質材料を溶解することができ、かつ固体電解質材料を劣化させない程度であれば特に限定されない。具体的には、200℃以下、特に60℃以下であることが好ましい。なお、下限値は溶媒が液体状態である温度(溶媒の融点)とすることができる。良溶媒の温度を上記範囲内とすることにより、固体電解質材料を好適に溶解することが可能となるからである。
2.析出工程
 本発明における析出工程は、上記固体電解質溶液を上記固体電解質材料の溶解度が上記良溶媒よりも低い貧溶媒中に混合させて固体電解質微粒子を析出させる工程であり、上記固体電解質溶液の質量mと上記貧溶媒の質量nとの質量比m:nが、上記固体電解質微粒子が析出する質量比以上に上記貧溶媒の質量nの割合が高くなるように、上記固体電解質溶液を上記貧溶媒中に混合させることを特徴とする。
 本工程に用いられる貧溶媒としては、上記固体電解質材料の溶解度が上記良溶媒よりも低く、より具体的には固体電解質材料の溶解度が上述した範囲内であれば特に限定されないが、良溶媒との相溶性が高いものであることがより好ましい。良溶媒および貧溶媒の相溶性が高いものである程、析出する固体電解質微粒子の粒子径を小さいものとすることが可能となるからである。
 ここで、良溶媒および貧溶媒の相溶性が高いものである程、固体電解質微粒子の粒子径を小さいものとすることができる理由については明らかではないが、次のように推測される。上述したように、貧溶媒中に混合された固体電解質溶液は粒状で分散するものと推測されるが、良溶媒および貧溶媒の相溶性が高くなるほど、粒状の固体電解質溶液はより小さなものとなることが考えられる。したがって、小さな粒状の固体電解質溶液における固体電解質材料の含有量は少ないため、析出する固体電解質微粒子の粒子径が小さくなることが推測される。
 ここで、良溶媒と貧溶媒との相溶性については、各溶媒の比誘電率が近いほど、その相溶性は大きなものとなる。本発明における良溶媒の比誘電率と貧溶媒の比誘電率との比誘電率差としては、所望の粒子径を有する固体電解質微粒子を析出させることが可能な程度であれば特に限定されないが、30以下、特に28以下であることが好ましい。上記比誘電率差が上記範囲を超える場合は、良溶媒および貧溶媒の相溶性が十分ではないことから、固体電解質溶液から固体電解質材料自体を析出させることが困難となる可能性があるからである。なお、上記比誘電率差の下限値としては、10程度とすることができる。
 また、本発明に用いられる貧溶媒の比誘電率としては、良溶媒の比誘電率との比誘電率差を上述した範囲内とすることが可能であれば特に限定されないが、固体電解質材料が硫化物固体電解質材料であり、良溶媒が上述した非プロトン性の極性有機溶媒である場合は、貧溶媒の比誘電率が2以上、なかでも4以上であることが好ましい。
 このような貧溶媒としては、具体的には、トルエン、シクロペンチルメチルエーテル、アクリル酸ブチル等を挙げることができる。
 また、本工程においては、上述した貧溶媒と、良溶媒との相溶性を示さない貧溶媒(非相溶性溶媒)とを混合させて用いてもよい。
 上記非相溶性溶媒としては、良溶媒が上述した溶媒である場合は、ヘプタン等を挙げることができる。
 固体電解質溶液の質量mと貧溶媒の質量nとの質量比m:nとしては、固体電解質微粒子が析出する質量比以上に貧溶媒の質量nの割合が高くなるような質量比であれば特に限定されない。なお、固体電解質溶液の質量mとは、貧溶媒中に混合される固体電解質溶液の全量である。上記質量比m:nについては、固体電解質材料の種類、良溶媒および貧溶媒の組み合わせ、固体電解質溶液の濃度、所望の固体電解質微粒子の粒子径等を考慮して、適宜調整されるものである。
 本発明において好ましい質量比m:nとしては、固体電解質溶液が硫化物固体電解質材料および上述した具体的な良溶媒の飽和溶液であり、かつ貧溶媒が上述した具体的な貧溶媒である場合、1:1以上(mが1に対してnが1以上となるような比率)であることが好ましく、特に1:10以上(mが1に対してnが10以上となるような比率)であることが好ましい。固体電解質溶液の質量が貧溶媒の質量に対して大きすぎる場合は、得られる固体電解質微粒子の粒子径を十分に小さなものとすることが困難となる可能性があるからである。また、固体電解質溶液の質量が貧溶媒の質量に対して小さすぎる場合は、貧溶媒が過剰となることから、製造コストが高くなる可能性があるからである。
 析出工程における固体電解質溶液の温度としては、上述した調製工程における良溶媒の温度と同様とすることができる。
 また、析出工程における貧溶媒の温度としては、固体電解質微粒子を析出させることが可能であり、かつ、固体電解質微粒子を劣化させない程度であれば特に限定されない。本工程においては、なかでも、固体電解質溶液の温度と同様の温度であることが好ましい。固体電解質微粒子をより安定的に析出させることが可能となるからである。
 本工程における固体電解質溶液の混合方法としては、貧溶媒中に固体電解質溶液を均一に混合させることが可能であり、所望の粒子径を有する固体電解質微粒子を析出させることが可能な方法であれば特に限定されない。例えば、貧溶媒を撹拌させながら固体電解質溶液の全量を連続的に注入する方法、貧溶媒を撹拌させながら固体電解質溶液を複数回に分けて少量ずつ滴下する方法等を挙げることができ、なかでも固体電解質溶液を滴下する方法を好適に用いることができる。上述の方法を用いることにより、得られる固体電解質微粒子の粒子径をより均一なものとすることが可能となるからである。
3.その他の工程
 本発明の固体電解質微粒子の製造方法は、上述した調製工程、および析出工程を有する製造方法であれば特に限定されず、他にも必要な工程を適宜選択して追加することができる。このような工程としては、例えば得られた固体電解質微粒子を洗浄する工程、上記固体電解質微粒子を乾燥させる工程等を挙げることができる。
4.固体電解質微粒子
 本発明においては、固体電解質材料、良溶媒および貧溶媒の組み合わせ、固体電解質溶液の濃度、および質量比m:n等の種々の条件を調整することにより、所望の微小な粒子径を有する固体電解質微粒子を得ることが可能となる。
 上記固体電解質微粒子の平均粒子径(D50)としては、全固体電池の固体電解質層に用いた際に、固体電解質層を薄膜なものとすることができ、活物質層との密着性の高いものとすることが可能なものとすることができれば、特に限定されない。例えば、固体電解質微粒子が、硫化物固体電解質微粒子である場合は、1.63μm以下、なかでも、0.05μm~1μmの範囲内であることが好ましい。
 本発明の製造方法により得られる固体電解質微粒子は、イオン伝導性を必要とする任意の用途に用いることができるが、中でも、全固体電池に用いられるものであることが好ましい。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に実施例を示して本発明をさらに具体的に説明する。
 なお、以下の記載において特に言及しない場合は、貧溶媒はNMPに対して相溶性を有するものである。
 また、以下の実施例1~5の硫化物固体電解質微粒子の作製工程における良溶媒、固体電解質溶液、および貧溶媒の温度については、良溶媒(25℃)固体電解質溶液(25℃)貧溶媒(25℃)の条件下で行った。
[実施例1]
 LiSとPを定量比混合し、メカニカルミリングすることで硫化物固体電解質材料としてLiPSを得た。得られた硫化物固体電解質材料の粒子径は約25μmであった。
 NMP(比誘電率:32)中に上述の硫化物固体電解質材料を1w%溶解させた固体電解質溶液を調製した。
 次に、得られた固体電解質溶液を貧溶媒としてトルエン(比誘電率:2.3)中に、固体電解質溶液の質量mおよび貧溶媒の質量nとの質量比m:nが1:10となるように滴下して、硫化物固体電解質微粒子を析出させた。
[実施例2]
 貧溶媒としてシクロペンチルメチルエーテル(比誘電率:4.7)を用いたこと以外は実施例1と同様にして、硫化物固体電解質微粒子を析出させた。
[実施例3]
 貧溶媒としてアクリル酸ブチル(比誘電率:5.0)を用いたこと以外は実施例1と同様にして、硫化物固体電解質微粒子を析出させた。
[実施例4]
 貧溶媒として、ヘプタン(比誘電率:1.9)中に2-エチルヘキサノール(比誘電率:7.7)10w%加えた混合溶媒を用いたこと以外は実施例1と同様にして硫化物固体電解質微粒子を析出させた。なお、ヘプタンはNMPとの相溶性を有さない溶媒である。
[実施例5]
 貧溶媒としてヘプタン(比誘電率:1.9)を用いたこと以外は実施例1と同様に、固体電解質溶液をヘプタン中に滴下し、硫化物固体電解質を析出させた。なお、得られた硫化物固体電解質微粒子は粒子径は5μm以上となった。
[評価]
 実施例1~5で得られた硫化物固体電解質微粒子の走査型電子顕微鏡(SEM、日本電子製)を用いて観察し、粒子径(D50)(平均粒子径)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 質量比m:nを所定の量に調整することにより、固体電解質溶液を貧溶媒中に滴下することにより、粒子径の小さな固体電解質微粒子を得られることを確認できた。
 1 … 固体電解質材料
 2 … 良溶媒
 3 … 固体電解質溶液
 4 … 貧溶媒
 5 … 固体電解質微粒子

Claims (3)

  1.  固体電解質材料を良溶媒中に溶解させて固体電解質溶液を調製する調製工程と、
     前記固体電解質溶液を前記固体電解質材料の溶解度が前記良溶媒よりも低い貧溶媒中に混合させて固体電解質微粒子を析出させる析出工程と、
    を有し、
     前記析出工程では、前記固体電解質溶液の質量mと前記貧溶媒の質量nとの質量比m:nが、前記固体電解質微粒子が析出する質量比以上に前記貧溶媒の質量nの割合が高くなるように、前記固体電解質溶液を前記貧溶媒中に混合させることを特徴とする固体電解質微粒子の製造方法。
  2.  前記固体電解質材料が硫化物固体電解質材料であることを特徴とする請求の範囲第1項に記載の固体電解質微粒子の製造方法。
  3.  前記良溶媒の比誘電率と前記貧溶媒の比誘電率との比誘電率差が、30以下であることを特徴とする請求の範囲第1項または第2項に記載の固体電解質微粒子の製造方法。
PCT/JP2011/064056 2011-06-20 2011-06-20 固体電解質微粒子の製造方法 WO2012176266A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/127,695 US20140315098A1 (en) 2011-06-20 2011-06-20 Solid electrolyte microparticle production method
CN201180071575.7A CN103597546A (zh) 2011-06-20 2011-06-20 固体电解质微粒的制造方法
JP2013521347A JP5842918B2 (ja) 2011-06-20 2011-06-20 固体電解質微粒子の製造方法
PCT/JP2011/064056 WO2012176266A1 (ja) 2011-06-20 2011-06-20 固体電解質微粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064056 WO2012176266A1 (ja) 2011-06-20 2011-06-20 固体電解質微粒子の製造方法

Publications (1)

Publication Number Publication Date
WO2012176266A1 true WO2012176266A1 (ja) 2012-12-27

Family

ID=47422148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064056 WO2012176266A1 (ja) 2011-06-20 2011-06-20 固体電解質微粒子の製造方法

Country Status (4)

Country Link
US (1) US20140315098A1 (ja)
JP (1) JP5842918B2 (ja)
CN (1) CN103597546A (ja)
WO (1) WO2012176266A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191899A (ja) * 2013-03-26 2014-10-06 Osaka Prefecture Univ 全固体リチウム二次電池の固体電解質を含む層の形成用溶液、全固体リチウム二次電池及びその製造方法
JP2017018872A (ja) * 2015-07-08 2017-01-26 トヨタ自動車株式会社 粒子の製造方法
JP2017100069A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 粒子の製造方法
WO2017209233A1 (ja) * 2016-06-03 2017-12-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2018037229A (ja) * 2016-08-30 2018-03-08 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP2018106974A (ja) * 2016-12-27 2018-07-05 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池、電極活物質粒子の製造方法およびリチウムイオン二次電池の製造方法
JP2018106945A (ja) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
JP2018154547A (ja) * 2016-11-28 2018-10-04 トヨタ自動車株式会社 複合化粒子の製造方法
JP2019169459A (ja) * 2017-09-06 2019-10-03 出光興産株式会社 固体電解質の製造方法
JP2021043452A (ja) * 2016-10-20 2021-03-18 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 量子ドット分散体、これを含む自発光感光性樹脂組成物、これを利用して製造されたカラーフィルターおよび画像表示装置
WO2022215519A1 (ja) * 2021-04-07 2022-10-13 三菱瓦斯化学株式会社 固体電解質粉末の製造方法および全固体電池の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160172706A1 (en) * 2014-12-10 2016-06-16 GM Global Technology Operations LLC Electrolyte and electrode structure
KR101930992B1 (ko) 2016-02-15 2018-12-19 한양대학교 산학협력단 황화물계 고체 전해질의 제조방법, 이로부터 제조된 황화물계 고체 전해질 및 이를 포함하는 전고체 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093099A1 (ja) * 2003-04-15 2004-10-28 Idemitsu Kosan Co., Ltd. リチウムイオン導電性固体電解質の製造方法及びそれを用いた全固体型二次電池
JP2007294436A (ja) * 2006-03-28 2007-11-08 Fujifilm Corp 固体電解質、膜電極接合体および燃料電池
JP2008027890A (ja) * 2006-06-23 2008-02-07 Fujifilm Corp 固体電解質、電極膜接合体、および燃料電池
JP2009170412A (ja) * 2007-12-18 2009-07-30 Sumitomo Chemical Co Ltd 高分子電解質の精製方法
JP2009187933A (ja) * 2008-01-08 2009-08-20 Sumitomo Chemical Co Ltd 高分子電解質の精製方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051511A1 (ja) * 2003-11-28 2005-06-09 Mitsubishi Chemical Corporation 有機化合物微粒子の製造方法
JP4813767B2 (ja) * 2004-02-12 2011-11-09 出光興産株式会社 リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
CN101511915A (zh) * 2006-07-04 2009-08-19 住友化学株式会社 高分子电解质乳液的制备方法
US20120028128A1 (en) * 2009-03-18 2012-02-02 Santoku Corporation All-solid-state lithium battery
JP5376158B2 (ja) * 2009-10-16 2013-12-25 住友電気工業株式会社 硫化物固体電解質の製造方法、および複合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093099A1 (ja) * 2003-04-15 2004-10-28 Idemitsu Kosan Co., Ltd. リチウムイオン導電性固体電解質の製造方法及びそれを用いた全固体型二次電池
JP2007294436A (ja) * 2006-03-28 2007-11-08 Fujifilm Corp 固体電解質、膜電極接合体および燃料電池
JP2008027890A (ja) * 2006-06-23 2008-02-07 Fujifilm Corp 固体電解質、電極膜接合体、および燃料電池
JP2009170412A (ja) * 2007-12-18 2009-07-30 Sumitomo Chemical Co Ltd 高分子電解質の精製方法
JP2009187933A (ja) * 2008-01-08 2009-08-20 Sumitomo Chemical Co Ltd 高分子電解質の精製方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191899A (ja) * 2013-03-26 2014-10-06 Osaka Prefecture Univ 全固体リチウム二次電池の固体電解質を含む層の形成用溶液、全固体リチウム二次電池及びその製造方法
JP2017018872A (ja) * 2015-07-08 2017-01-26 トヨタ自動車株式会社 粒子の製造方法
JP2017100069A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 粒子の製造方法
CN109478685A (zh) * 2016-06-03 2019-03-15 富士胶片株式会社 固体电解质组合物、以及含固体电解质的片材、全固态二次电池、电极片及它们的制造方法
WO2017209233A1 (ja) * 2016-06-03 2017-12-07 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JPWO2017209233A1 (ja) * 2016-06-03 2019-03-28 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池ならびに固体電解質含有シート、全固体二次電池用電極シートおよび全固体二次電池の製造方法
JP2018037229A (ja) * 2016-08-30 2018-03-08 富士フイルム株式会社 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JP7039673B2 (ja) 2016-10-20 2022-03-22 東友ファインケム株式会社 量子ドット分散体、これを含む自発光感光性樹脂組成物、これを利用して製造されたカラーフィルターおよび画像表示装置
JP2021043452A (ja) * 2016-10-20 2021-03-18 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 量子ドット分散体、これを含む自発光感光性樹脂組成物、これを利用して製造されたカラーフィルターおよび画像表示装置
JP2018154547A (ja) * 2016-11-28 2018-10-04 トヨタ自動車株式会社 複合化粒子の製造方法
KR20180076334A (ko) * 2016-12-27 2018-07-05 도요타 지도샤(주) 황화물 고체 전해질 재료의 제조 방법
KR102031531B1 (ko) * 2016-12-27 2019-10-14 도요타 지도샤(주) 황화물 고체 전해질 재료의 제조 방법
US10784012B2 (en) 2016-12-27 2020-09-22 Toyota Jidosha Kabushiki Kaisha Method of producing sulfide solid electrolyte material
JP2018106945A (ja) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
JP2018106974A (ja) * 2016-12-27 2018-07-05 三星電子株式会社Samsung Electronics Co.,Ltd. リチウムイオン二次電池、電極活物質粒子の製造方法およびリチウムイオン二次電池の製造方法
JP2019169459A (ja) * 2017-09-06 2019-10-03 出光興産株式会社 固体電解質の製造方法
JP7071899B2 (ja) 2017-09-06 2022-05-19 出光興産株式会社 固体電解質の製造方法
WO2022215519A1 (ja) * 2021-04-07 2022-10-13 三菱瓦斯化学株式会社 固体電解質粉末の製造方法および全固体電池の製造方法

Also Published As

Publication number Publication date
JP5842918B2 (ja) 2016-01-13
CN103597546A (zh) 2014-02-19
JPWO2012176266A1 (ja) 2015-02-23
US20140315098A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5842918B2 (ja) 固体電解質微粒子の製造方法
Hayashi et al. Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries
JP6721669B2 (ja) 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、全固体二次電池用電極シートおよび全固体二次電池の製造方法
Li et al. Lithium ion cell performance enhancement using aqueous LiFePO4 cathode dispersions and polyethyleneimine dispersant
CN109390622B (zh) 锂固体电池
Abrha et al. Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery
JP5459198B2 (ja) 硫化物固体電解質材料、全固体電池、硫化物固体電解質材料の製造方法、固体電解質層の製造方法
KR100450109B1 (ko) 비수계 이차전지와 그 제조법
TWI623136B (zh) 用於可充電固態鋰離子電池組的陰極材料
CN103098266B (zh) 锂二次电池用负极活性材料和具有该负极活性材料的锂二次电池
WO2015125800A1 (ja) 固体電解質組成物およびその製造方法、これを用いた電池用電極シートおよび全固体二次電池
JP2019033053A (ja) リチウム固体電池、およびリチウム固体電池の製造方法
KR20170044060A (ko) 나트륨 이온 이차전지용 정극 활물질 및 그 제조방법
WO2012132934A1 (ja) 非水電解質二次電池及びその製造方法
JP2009211910A (ja) 全固体リチウム二次電池
JP6124062B2 (ja) 蓄電デバイス用正極材料、およびその製造方法
Zhang et al. Functional polyethylene separator with impurity entrapment and faster Li+ ions transfer for superior lithium-ion batteries
Xu et al. Sub-zero temperature electrolytes for lithium-sulfur batteries: Functional mechanisms, challenges and perspectives
Ye et al. Water-Based Fabrication of a Li| Li7La3Zr2O12| LiFePO4 Solid-State Battery─ Toward Green Battery Production
TW201639780A (zh) 磷酸錳鋰奈米粒子及其製造方法、碳被覆磷酸錳鋰奈米粒子、碳被覆磷酸錳鋰奈米粒子造粒體及鋰離子電池
CN104241595A (zh) 具有绝缘涂层的电极、其制造方法及含有该电极的锂电池
US20220209293A1 (en) Gel electrolytes for electrochemical devices, fabricating methods and applications of same
JP2012252833A (ja) 全固体電池用積層体
CN107093730A (zh) 预锂化锡基负极材料及其制备方法与应用
WO2013062032A1 (ja) リチウムイオン二次電池正極材料粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14127695

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11868420

Country of ref document: EP

Kind code of ref document: A1