WO2012172914A1 - 容量制御弁 - Google Patents

容量制御弁 Download PDF

Info

Publication number
WO2012172914A1
WO2012172914A1 PCT/JP2012/062575 JP2012062575W WO2012172914A1 WO 2012172914 A1 WO2012172914 A1 WO 2012172914A1 JP 2012062575 W JP2012062575 W JP 2012062575W WO 2012172914 A1 WO2012172914 A1 WO 2012172914A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
chamber
discharge
pressure
discharge fluid
Prior art date
Application number
PCT/JP2012/062575
Other languages
English (en)
French (fr)
Inventor
康平 福留
英樹 東堂園
雅行 二口
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to EP12800451.2A priority Critical patent/EP2722524B1/en
Priority to KR1020137022471A priority patent/KR101532996B1/ko
Priority to US14/125,284 priority patent/US9523987B2/en
Priority to CN201280023790.4A priority patent/CN103547803B/zh
Priority to JP2013520481A priority patent/JP5907432B2/ja
Publication of WO2012172914A1 publication Critical patent/WO2012172914A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0106Control of flow without auxiliary power the sensing element being a flexible member, e.g. bellows, diaphragm, capsule
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1845Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/363Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor the fluid acting on a piston

Definitions

  • the present invention relates to a capacity control valve that variably controls the capacity or pressure of a working fluid, and more particularly, to a capacity control valve that controls a discharge amount of a variable capacity compressor used in an air conditioning system of an automobile or the like according to a pressure load. .
  • a swash plate type variable capacity compressor used in an air conditioning system of an automobile or the like is connected to a rotating shaft that is rotationally driven by the rotational force of an engine, a swash plate that is variably connected to the rotating shaft, and a swash plate.
  • a piston for compression is provided, and by changing the inclination angle of the swash plate, the stroke of the piston is changed to control the discharge amount of the refrigerant gas.
  • the inclination angle of the swash plate includes the suction pressure of the suction chamber for sucking refrigerant gas, the discharge pressure of the discharge chamber for discharging the refrigerant gas pressurized by the piston, and the control chamber pressure of the control chamber (crank chamber) containing the swash plate.
  • discharge side passages 73, 77, 74 for communicating the discharge chamber and the control chamber, a first valve chamber 82 formed in the middle of the discharge side passage, Suction side passages 71, 72, 74 for communicating the suction chamber and the control chamber, a second valve chamber (working chamber) 83 formed in the middle of the suction side passage, and a discharge side passage disposed in the first valve chamber 82
  • the first valve portion 76 that opens and closes 73, 77, and 74 and the second valve portion 75 that is disposed in the second valve chamber 83 and opens and closes the suction side passages 71, 72, and 74 reciprocate together and simultaneously
  • the valve body 81 is formed so as to open and close in the opposite direction, the third valve chamber 84 (capacity chamber) 84 formed near the control chamber in the middle of the suction side passages 71, 72, 74, and the third valve chamber As it is placed and exerts an urging force in the direction of expansion (expansion),
  • a solenoid S that exerts an electromagnetic driving force on the valve body 81, and the like.
  • the capacity control valve 70 allows the discharge chamber and the control chamber to communicate with each other when it is necessary to change the control chamber pressure without providing a clutch mechanism in the variable capacity compressor during capacity control.
  • the pressure in the control chamber (control chamber pressure) Pc can be adjusted. Specifically, as shown by the broken line in FIG. 6, when the cooling load increases during cooling, the electromagnetic driving force increases and the force acts so that the opening degree of the first valve portion 76 decreases (FIG. 6).
  • valve opening connecting portion 79 and the valve seat body (engaging portion) 80 are separated.
  • the solenoid S is turned on and the valve body 81 starts to be activated, the suction side passage is opened and the suction chamber and the control chamber are communicated with each other.
  • the swash plate type variable capacity compressor provided with the capacity control valve 70 is called a so-called external control system in which the suction pressure is controlled by an external signal, but the operability of the valve body 81 is good. Therefore, when the electromagnetic driving force is reduced and the first valve portion 76 is opened, the valve opening speed is high, the amount of refrigerant flowing into the crank chamber increases rapidly, and the pressure increase sensitivity of the pressure in the crank chamber tends to increase. (See broken line in FIG. 6). When the pressure increase sensitivity of the pressure in the crank chamber is excessively increased, the discharge capacity is excessively decreased, the operation of the valve body 81 becomes unstable, and an unstable phenomenon such as so-called hunting may be caused.
  • the present invention has been made in order to solve the above-described problems of the prior art, and as shown by the solid line in FIG. 6, the operability during the opening operation of the valve body during the capacity control is moderated.
  • the purpose of the present invention is to provide a capacity control valve that prevents an excessive increase in the pressure increase sensitivity of the pressure in the crank chamber due to a sudden increase in the amount of refrigerant flowing into the crank chamber, and the valve body operation is stable. It is.
  • the capacity control valve of the present invention is firstly, A discharge-side passage that connects a discharge chamber that discharges fluid and a control chamber that controls the discharge amount of fluid; A first valve chamber formed in the middle of the discharge side passage; A suction-side passage communicating the suction chamber for sucking fluid and the control chamber; A second valve chamber formed in the middle of the suction side passage; The first valve chamber integrally includes a first valve portion that opens and closes the discharge-side passage and the second valve chamber that opens and closes the suction-side passage in the second valve chamber.
  • a valve body that opens and closes in a direction;
  • a third valve chamber formed closer to the control chamber than the second valve chamber in the middle of the suction side passage;
  • a pressure-sensitive body that is disposed in the third valve chamber and exerts a biasing force in a direction to open the first valve portion by its extension and contracts with an increase in ambient pressure;
  • An adapter provided at the free end of the pressure sensitive body in the expansion and contraction direction and having an annular seating surface;
  • a third valve portion having a tapered engagement surface that moves integrally with the valve body in the third valve chamber and opens and closes the suction-side passage by engagement and disengagement with the seat surface of the adapter;
  • a solenoid that exerts an electromagnetic driving force in a direction to close the first valve portion with respect to the valve body with a pulse width modulation method signal of a constant frequency;
  • a discharge fluid receiving portion larger than the diameter of the valve hole communicating the first valve chamber and the third valve chamber is provided on the outer peripheral portion of the third valve portion.
  • the capacity control valve according to the present invention is secondly characterized in that, in the first feature, a surface of the discharge fluid receiving portion that receives the discharge fluid is provided in a plane perpendicular to the flow direction of the discharge fluid. Yes.
  • the surface of the discharge fluid receiving portion that receives the discharge fluid is a plane that forms an acute angle upstream from the surface orthogonal to the flow direction of the discharge fluid. It is characterized by being provided in a shape or a curved surface.
  • the discharge fluid receiving portion is formed by providing a flange on the outer peripheral portion of the third valve portion. It is characterized by.
  • the outer diameter of the discharge fluid receiving portion is 1.2 to 1.7 times the diameter of the valve hole. It is characterized by being set.
  • the capacity control valve according to any one of the first to fifth features wherein the surface receiving the pressure of the discharge fluid of the discharge fluid receiving portion and the surface on the body side facing the surface. The clearance is characterized by being set to 2.1 to 2.5 times the maximum stroke of the valve body when the valve is closed.
  • the present invention has the following excellent effects. (1) When the first valve portion is opened, the discharge fluid receiving portion receives the pressure of the discharge fluid, so that the operability during the opening operation of the valve body is moderate, and the amount of refrigerant flowing into the crank chamber is drastically reduced. Therefore, an excessive increase in the pressure increase sensitivity of the pressure in the crank chamber due to a large increase can be prevented, and a capacity control valve with stable valve body operation can be obtained. Therefore, in the air conditioning control by the vehicle air conditioner using the swash plate type variable capacity compressor equipped with the capacity control valve of the present invention, the temperature fluctuation in the passenger compartment, the adverse effect on the air conditioning control, the torque fluctuation of the compressor And adverse effects on the engine can be prevented. Moreover, since the engagement surface with the seat surface of the adapter of a 3rd valve part has a taper shape, engagement and detachment
  • the surface receiving the discharge fluid of the discharge fluid receiving portion is provided in a plane perpendicular to the flow direction of the discharge fluid, the pressure of the discharge fluid can be efficiently received.
  • the surface of the discharge fluid receiving portion that receives the discharge fluid is provided in a planar or curved surface with an acute angle upstream from the surface orthogonal to the flow direction of the discharge fluid, so that a larger amount of discharge fluid can be obtained. Can receive pressure.
  • the discharge fluid receiving portion is formed by providing a flange on the outer peripheral portion of the third valve portion, the discharge fluid receiving portion can be light and easy to manufacture.
  • the clearance between the surface of the discharge fluid receiving portion that receives the pressure of the discharged fluid and the surface of the body facing the surface is set to 2.1 to 2.5 times the maximum stroke of the valve body.
  • FIG. 1 It is a schematic block diagram which shows the swash plate type variable capacity compressor provided with the capacity
  • the swash plate type variable capacity compressor M communicates a discharge chamber 11, a control chamber (also referred to as a crank chamber) 12, a suction chamber 13, a plurality of cylinders 14, a cylinder 14 and the discharge chamber 11.
  • the suction side A casing 10 that defines a communication passage 17 as a passage, a rotary shaft 20 that protrudes from the inside of the control chamber (crank chamber) 12 to the outside, and is rotatable.
  • a swash plate 21 that is rotated at the same time and is variably connected to the rotary shaft 20, a plurality of pistons 22 that are reciprocally fitted in each cylinder 14, and a swash plate 21 and each piston 22.
  • the swash plate type variable capacity compressor M is provided with a communication path 18 that directly communicates the control chamber (crank chamber) 12 and the suction chamber 13, and a fixed orifice 19 is provided in the communication path 18. ing.
  • a cooling circuit is connected to the discharge port 11c and the suction port 13c in the swash plate type variable capacity compressor M.
  • the cooling circuit includes a condenser (condenser) 25, an expansion valve 26, an evaporator (evaporation). 27) are arranged in sequence.
  • the capacity control valve V urges the body 30 formed of a metal material or a resin material, the valve body 40 disposed in a reciprocating manner in the body 30, and the valve body 40 in one direction.
  • a pressure-sensitive body 50 and a solenoid 60 that is connected to the body 30 and applies an electromagnetic driving force to the valve body 40 are provided.
  • the solenoid 60 includes a casing 62 connected to the body 30, a sleeve 63 having one end closed, a cylindrical fixed iron core 64 disposed inside the casing 62 and the sleeve 63, and reciprocating motion inside the fixed iron core 64. Further, the front end of the drive rod 65 is connected to the valve body 40 to form the communication path 44, the movable iron core 66 fixed to the other end of the drive rod 65, and the first valve portion 41 is movable in the opening direction.
  • a coil spring 67 for urging the iron core 66, an exciting coil 68 wound around a bobbin on the outside of the sleeve 63, and the like are provided.
  • the body 30 is formed in the middle of the communication passages 31, 32, 33 functioning as the discharge side passage, the communication passages 33, 34 functioning as the suction side passage together with the communication passage 44 of the valve body 40 described later, and the discharge side passage.
  • a closing member 39 that defines a third valve chamber 38 and constitutes a part of the body 30 is attached to the body 30 by screwing.
  • the communication passage 33 and the third valve chamber 38 are formed so as to also serve as a part of the discharge side passage and the suction side passage, and the communication passage 32 allows the first valve chamber 35 and the third valve chamber 38 to communicate with each other.
  • a valve hole is formed through which the valve body 40 is inserted (the valve body 40 is passed while ensuring a gap through which fluid flows).
  • the communication paths 31, 33, and 34 are formed in a plurality (for example, four at intervals of 90 degrees) in a radial arrangement in the circumferential direction.
  • a seat surface 35 a on which a first valve portion 41 of a valve body 40 described later is seated is formed at the edge of the communication passage (valve hole) 32, and the second valve chamber 36 is formed.
  • the seat surface 36a on which the second valve portion 42 of the valve body 40 described later is seated is formed at the end of the fixed iron core 64 described later.
  • the valve body 40 is formed in a substantially cylindrical shape, with a first valve portion 41 on one end side, a second valve portion 42 on the other end side, and a second valve portion 42 sandwiching the first valve portion 41 by retrofitting on the opposite side.
  • the connected third valve portion 43 includes a communication passage 44 that penetrates from the second valve portion 42 to the third valve portion 43 in the axial direction thereof and functions as a suction side passage.
  • the third valve portion 43 has a shape that is expanded from the state of being reduced in diameter toward the third valve chamber 38 from the first valve chamber 35, and the diameter of the reduced diameter portion 43 a is a communication passage (valve hole) 32.
  • a tapered engagement surface 43c is formed on the third valve chamber 38 side so as to face an adapter 53 described later.
  • the pressure-sensitive body 50 includes a bellows 51, an adapter 53, and the like.
  • One end of the bellows 51 is fixed to the closing member 39, and an adapter 53 is held at the other end (free end).
  • the adapter 53 has a hollow cylindrical portion 53a having a substantially U-shaped cross section with the tip engaged with the third valve portion 43, and the third valve is provided at the tip of the hollow cylindrical portion 53a.
  • An annular seat surface 53b that engages and disengages is provided opposite to the tapered engagement surface 43c of the portion 43.
  • the pressure-sensitive body 50 is disposed in the third valve chamber 38 and exerts an urging force in a direction to open the first valve portion 41 due to its expansion (expansion) and the surroundings (the third valve chamber 38 and the valve body 40). And the pressure applied to the first valve portion 41 is weakened.
  • FIG. 3 is a cross-sectional view showing the main part of the capacity control valve according to the present embodiment, in which FIG. 3 (a) shows a state when the valve is opened, and FIG. 3 (b) shows a first state when the valve is closed.
  • the three-valve part and the discharge fluid receiving part vicinity are shown.
  • a discharge fluid receiving portion 45 for receiving the pressure of the discharge fluid is provided on the outer peripheral portion of the enlarged diameter portion 43b of the third valve portion 43 and is larger than the diameter of the valve hole 32 communicating the first valve chamber and the third valve chamber. It is provided with a diameter.
  • the discharge fluid receiving part 45 may be provided integrally with the third valve part 43 or may be provided separately. In FIG.
  • the surface 45a for receiving the pressure of the discharge fluid of the discharge fluid receiving portion 45 is provided in a planar shape orthogonal to the flow direction of the discharge fluid.
  • the first valve portion 41 is separated from the seating surface 35a, the valve hole 32 is opened, and the discharge fluid (discharge pressure Pd) indicated by the arrow passes through the valve hole 32 into the third valve chamber 38. It is for receiving the pressure of the discharged fluid when flowing in.
  • a force in a direction for closing the first valve portion 41 acts on the valve body 40.
  • the valve body 40 is always provided with the first valve portion 41.
  • the force in the direction to close the valve acts.
  • the tapered engagement surface 43 c of the third valve portion 43 that engages with the seating surface 53 b of the adapter 53 is formed from the bottom surface to the outer periphery of the discharge fluid receiving portion 45.
  • the outer diameter a of the discharge fluid receiving portion 45 is 1.2 to 1.7 times the diameter b of the communication passage (valve hole) 32 in order to secure an area for receiving the pressure of the discharge fluid. It is desirable to set. In this case, needless to say, a space where the discharged fluid flows is secured between the outer peripheral portion of the discharged fluid receiving portion 45 and the inner peripheral surface of the third valve chamber 38. Further, the clearance c between the surface 45a receiving the pressure of the discharged fluid of the discharged fluid receiving portion 45 and the surface 45b on the body 30 side facing the surface 45a ensures the flow rate of the discharged fluid so that the valve body is closed when the valve is closed. It is desirable to set it to 2.1 to 2.5 times the maximum stroke of 40.
  • FIG. 4 is a view showing a modified example of the third valve portion and the discharge fluid receiving portion.
  • the surface 45a of the discharge fluid receiving portion 45 that receives the discharge fluid has an acute angle upstream from the surface orthogonal to the flow direction of the discharge fluid, and is flat (solid line) or curved ( (Two-dot chain line). In this case, more pressure of the discharged fluid can be received. If the surface 45a that receives the pressure of the discharged fluid has a shape inclined at an acute angle upstream of the discharged fluid as shown in FIG. 4A, the surface 45a that receives the pressure and the surface 45b on the body 30 side The clearance c is based on the narrowest part.
  • FIG. 4 the surface 45a of the discharge fluid receiving portion 45 that receives the discharge fluid has an acute angle upstream from the surface orthogonal to the flow direction of the discharge fluid, and is flat (solid line) or curved ( (Two-dot chain line). In this case, more pressure of the discharged fluid can be received. If the
  • the discharge fluid receiving portion 45 is formed by integrally providing a flange 46 on the outer periphery of the third valve portion 43.
  • the tapered engagement surface 43 c of the third valve portion 43 that engages with the seating surface 53 b of the adapter 53 is formed only up to a position that engages with a surface extending vertically downward from the lower surface of the inner peripheral portion of the flange 46.
  • weight reduction of the 3rd valve part 43 and the discharge fluid receiving part 45 is achieved.
  • the flange 46 is formed separately and is fixed to the outer periphery of the third valve portion 43 by welding or the like, the third valve portion 43 can be easily manufactured.
  • the discharge fluid receiving portion 45 by providing a discharge fluid receiving portion 45 having a diameter larger than the diameter of the valve hole 32 in the enlarged diameter portion 43b of the third valve portion 43, the discharge fluid receiving portion 45 can be used in a region on the way from closing to opening.
  • a force in the direction of closing the first valve portion 41 is applied to the valve body 40.
  • the discharge fluid receiving portion 45 receives the pressure of the discharge fluid, so that the operability during the opening operation of the valve body 40 becomes moderate and flows into the crank chamber.
  • the pressure receiving area at the effective diameter of the pressure sensitive body 50 (bellows 51) is Ab
  • the pressure receiving area at the seal diameter of the third valve portion 43 is Ar1
  • the first valve portion 41 has The pressure receiving area at the seal diameter is As
  • the pressure receiving area at the seal diameter of the second valve portion 42 is Ar2
  • the biasing force of the pressure sensing body 50 is Fb
  • the biasing force of the coil spring 67 is Fs
  • the discharged refrigerant gas is supplied from the condenser 25 to the evaporator 27 via the expansion valve 26, and returns to the suction chamber 13 while performing a refrigeration cycle.
  • the discharge amount of the refrigerant gas is determined by the stroke of the piston 22, and the stroke of the piston 22 is determined by the inclination angle of the swash plate 21 controlled by the pressure in the control chamber 12 (control chamber pressure Pc).
  • control chamber pressure Pc control chamber pressure
  • the solenoid 60 (coil 68) is energized with a predetermined current value (I), and the movable iron core 66 and the drive rod 65 resist the urging force of the pressure sensing body 50 and the coil spring 67.
  • the first valve portion 41 is seated on the seat surface 35a and closes the communication passages (discharge side passages) 31, 32, and the second valve portion 42 is separated from the seat surface 36a and is connected to the communication passage (suction side passage) 34, The valve body 40 moves to a position where 44 is opened.
  • the electromagnetic drive force biasing force
  • the position of the valve body 40 is appropriately adjusted by the electromagnetic driving force, and the valve opening amount of the first valve portion 41 and the valve opening amount of the second valve portion 42 are controlled so that a desired discharge amount is obtained.
  • the discharge fluid discharge pressure Pd
  • the discharge fluid receiving portion 45 of the third valve portion 43 receives the pressure of the discharge fluid, and the valve body 40 A force in a direction to close the first valve portion 41 acts on the valve.
  • the operability during the opening operation of the valve body 40 becomes gradual, and an excessive increase in pressure boosting sensitivity of the pressure in the crank chamber due to a sudden increase in the amount of refrigerant flowing into the crank chamber is prevented.
  • a capacity control valve with stable operation can be obtained. Therefore, in the air conditioning control by the vehicle air conditioner using the swash plate type variable capacity compressor equipped with the capacity control valve of the present invention, the temperature fluctuation in the passenger compartment, the adverse effect on the air conditioning control, the torque fluctuation of the compressor And adverse effects on the engine can be prevented.
  • the solenoid 60 (coil 68) is de-energized, and the movable iron core 66 and the drive rod 65 are retracted by the urging force of the coil spring 67 and stopped at the rest position.
  • the first valve portion 41 is separated from the seat surface 35a to open the communication passages (discharge side passages) 31, 32, and the second valve portion 42 is seated on the seat surface 36a to close the communication passages (suction side passages) 34, 44.
  • the valve body 40 moves to a position where the state is reached.
  • the discharge fluid discharge pressure Pd
  • the control chamber 12 via the communication passages (discharge side passages) 31, 32, 33.
  • the inclination angle of the swash plate 21 is controlled to be the smallest, and the stroke of the piston 22 is minimized. As a result, the refrigerant gas discharge amount is minimized.
  • discharge pressure Pd discharge pressure
  • discharge fluid receiving portion 45 of the third valve portion 43 discharges. Due to the pressure of the fluid, a force in the direction of closing the first valve portion 41 acts on the valve body 40, so that the operability during the opening operation of the valve body 40 becomes moderate, and the refrigerant flowing into the crank chamber An excessive increase in the pressure increase sensitivity of the pressure in the crank chamber due to a sudden increase in the amount is prevented, and a capacity control valve in which the operation of the valve body 40 is stable can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

【課題】 容量制御時における弁体の開動作時の作動性を緩やかなものとすることを目的とする。 【解決手段】容量制御弁において、第3弁部の外周部に第1弁室と第3弁室とを連通する弁孔の径より大きい吐出流体受け部を設けることにより、第1弁部が開弁する際、吐出流体受け部が吐出流体の圧力を受けるため、弁体の開動作時の作動性が緩やかなものとなり、クランク室に流入する冷媒量の急激な増加によるクランク室内の圧力の昇圧感度の過剰な増大が防止され、弁体の動作が安定な容量制御弁を得ることができる。

Description

容量制御弁
 本発明は、作動流体の容量又は圧力を可変制御する容量制御弁に関し、特に、自動車等の空調システムに用いられる容量可変型圧縮機等の吐出量を圧力負荷に応じて制御する容量制御弁に関する。 
 自動車等の空調システムに用いられる斜板式容量可変型圧縮機は、エンジンの回転力により回転駆動される回転軸、回転軸に対して傾斜角度を可変に連結された斜板、斜板に連結された圧縮用のピストン等を備え、斜板の傾斜角度を変化させることにより、ピストンのストロークを変化させて冷媒ガスの吐出量を制御するものである。 
 この斜板の傾斜角度は、冷媒ガスを吸入する吸入室の吸入圧力、ピストンにより加圧した冷媒ガスを吐出する吐出室の吐出圧力、斜板を収容した制御室(クランク室)の制御室圧力を利用しつつ、電磁力により開閉駆動される容量制御弁を用いて、制御室内の圧力を適宜制御し、ピストンの両面に作用する圧力のバランス状態を調整することで連続的に変化させ得るようになっている。 
 このような容量制御弁としては、図5に示すように、吐出室と制御室とを連通させる吐出側通路73、77、74、該吐出側通路の途中に形成された第1弁室82、吸入室と制御室とを連通させる吸入側通路71、72、74、吸入側通路の途中に形成された第2弁室(作動室)83、第1弁室82内に配置されて吐出側通路73、77、74を開閉する第1弁部76と第2弁室83内に配置されて吸入側通路71、72、74を開閉する第2弁部75とが一体的に往復動すると同時にお互いに逆向きに開閉動作を行うように形成された弁体81、吸入側通路71、72、74の途中において制御室寄りに形成された第3弁室(容量室)84、第3弁室内に配置されて伸長(膨張)する方向に付勢力を及ぼすと共に周囲の圧力増加に伴って収縮する感圧体(ベローズ)78、感圧体の伸縮方向の自由端に設けられ環状の座面を有する弁座体(係合部)80、第3弁室84にて弁体81と一体的に移動すると共に弁座体80との係合及び離脱により吸入側通路を開閉し得る第3弁部(開弁連結部)79、弁体81に電磁駆動力を及ぼすソレノイドS等を備えたものが知られている(以下、「従来技術」という。例えば、特許文献1参照。)。 
 そして、この容量制御弁70では、容量制御時において容量可変型圧縮機にクラッチ機構を設けなくても、制御室圧力を変更する必要が生じた場合には、吐出室と制御室とを連通させて制御室内の圧力(制御室圧力)Pcを調整できるようにしたものである。 
 具体的には、図6の破線で示すように、冷房の際に、冷房負荷が大きくなると、電磁駆動力が大きくなり、第1弁部76の開度が小さくなるように力が働く(図6の左下の一点鎖線参照。)。第1弁部76の開度が小さくなると、クランク室に流入する冷媒量が減少し、クランク室内の圧力が減少して、斜板の傾き(駆動軸に垂直な面に対してなす角度)が大きくなる。一方、冷房負荷が小さい場合には、電磁駆動力が小さくなり、第1弁部76の開度が大きくなるように力が働き(図6の右上の二点鎖線参照。)、クランク室に流入する冷媒量が増加し、クランク室内の圧力が増加して、斜板の傾きが小さくなる。 
 また、容量可変型圧縮機が停止状態において制御室圧力Pcが上昇した場合には、第3弁部(開弁連結部)79と弁座体(係合部)80とが離脱されるようになっており、その状態でソレノイドSがオンとされて弁体81が起動し始めると、吸入側通路を開放し、吸入室と制御室とを連通させるような構成となっている。 
 上記の容量制御弁70を備えた斜板式容量可変型圧縮機は、外部信号により吸入圧力を制御する、いわゆる外部制御方式と呼ばれているものであるが、弁体81の作動性が良好なため、電磁駆動力を小さくして第1弁部76を開く際、開弁速度が大きく、クランク室に流入する冷媒量が急激に増加し、クランク室内の圧力の昇圧感度も増大する傾向となる(図6の破線参照。)。クランク室内の圧力の昇圧感度が過剰に増大すると、吐出容量が過剰に減少し、弁体81の動作が不安定となって、いわゆるハンチングのような不安定な現象を起こす場合が見られる。この傾向は、弁体81の作動性が良好なものほど、発生しやすくなっており、ハンチング現象が発生すると、この斜板式容量可変型圧縮機を用いた車両用空調装置による空調制御において、車室内の温度変動が発生し、空調制御に悪影響があるばかりでなく、圧縮機のトルク変動を引き起こし、エンジンにも悪影響を及ぼすおそれがある。 
国際公開第2006/090760号
 本発明は、上記従来技術の有する問題点を解決するためになされたものであって、図6の実線で示すように、容量制御時における弁体の開動作時の作動性を緩やかなものとすることにより、クランク室に流入する冷媒量の急激な増加によるクランク室内の圧力の昇圧感度の過剰な増大を防止し、弁体の動作が安定な容量制御弁を提供することを目的とするものである。 
 上記目的を達成するため本発明の容量制御弁は、第1に、 
 流体を吐出する吐出室と流体の吐出量を制御する制御室とを連通させる吐出側通路と、 
 前記吐出側通路の途中に形成された第1弁室と、 
 流体を吸入する吸入室と前記制御室とを連通させる吸入側通路と、 
 前記吸入側通路の途中に形成された第2弁室と、 
 前記第1弁室にて前記吐出側通路を開閉する第1弁部及び前記第2弁室にて前記吸入側通路を開閉する第2弁部を一体的に有しその往復動によりお互いに逆向きの開閉動作を行う弁体と、 
 前記吸入側通路の途中において前記第2弁室よりも前記制御室寄りに形成された第3弁室と、 
 前記第3弁室内に配置されてその伸長により前記第1弁部を開弁させる方向に付勢力を及ぼすと共に周囲の圧力増加に伴って収縮する感圧体と、 
 前記感圧体の伸縮方向の自由端に設けられて環状の座面を有するアダプタと、 
 前記第3弁室にて前記弁体と一体的に移動すると共に前記アダプタの座面との係合及び離脱により前記吸入側通路を開閉するテーパ状の係合面を有する第3弁部と、 
 一定周波数のパルス幅変調方式信号にて前記弁体に対して前記第1弁部を閉弁させる方向に電磁駆動力を及ぼすソレノイドを備え、 
 前記第3弁部の外周部に第1弁室と第3弁室とを連通する弁孔の径より大きい吐出流体受け部を設けることを特徴としている。 
  また、本発明の容量制御弁は、第2に、第1の特徴において、前記吐出流体受け部の吐出流体を受ける面は吐出流体の流れ方向と直交して平面状に設けられることを特徴としている。 
 また、本発明の容量制御弁は、第3に、第1の特徴において、前記吐出流体受け部の吐出流体を受ける面は吐出流体の流れ方向と直交する面より上流側に鋭角をなして平面状又は曲面状に設けられることを特徴としている。 
  また、本発明の容量制御弁は、第4に、第1ないし第3のいずれかの特徴において、 前記吐出流体受け部が前記第3弁部の外周部に鍔を設けることにより形成されることを特徴としている。 
 また、本発明の容量制御弁は、第5に、第1ないし第4のいずれかの特徴において、前記吐出流体受け部の外径は、弁孔の径の1.2~1.7倍に設定されていることを特徴としている。 
 また、本発明の容量制御弁は、第6に、第1ないし第5のいずれかの特徴において、吐出流体受け部の吐出流体の圧力を受ける面と該面と対向するボデー側の面とのクリアランスは、閉弁時において弁体の最大ストロークの2.1~2.5倍に設定されていることを特徴としている。 
 本発明は、以下のような優れた効果を奏する。 
(1)第1弁部が開弁する際、吐出流体受け部が吐出流体の圧力を受けるため、弁体の開動作時の作動性が緩やかなものとなり、クランク室に流入する冷媒量の急激な増加によるクランク室内の圧力の昇圧感度の過剰な増大を防止され、弁体の動作が安定な容量制御弁を得ることができる。そのため、本発明の容量制御弁を装着した斜板式容量可変型圧縮機を用いた車両用空調装置による空調制御においては、車室内の温度変動の発生、空調制御への悪影響、圧縮機のトルク変動、及び、エンジンへの悪影響などを防止することができる。 
 また、第3弁部のアダプタの座面との係合面がテーパ状を有しているため、第3弁部とアダプタとの係合及び離脱を確実かつ容易に行うことができる。 
(2)前記吐出流体受け部の吐出流体を受ける面が吐出流体の流れ方向と直交して平面状に設けられていることにより、効率的に吐出流体の圧力を受けることができる。また、前記吐出流体受け部の吐出流体を受ける面が吐出流体の流れ方向と直交する面より上流側に鋭角をなして平面状又は曲面状に設けられていることにより、より多くの吐出流体の圧力を受けることができる。さらに、前記吐出流体受け部が前記第3弁部の外周部に鍔を設けて形成されることにより、吐出流体受け部が軽量かつ製造容易にできる。 
(3)吐出流体受け部の外径が弁孔の径の1.2~1.7倍に設定されていることにより、より確実に容量制御時における第1弁部の跳ね返り現象を防止できる。 
(4)吐出流体受け部の吐出流体の圧力を受ける面と該面と対向するボデー側の面とのクリアランスが、弁体の最大ストロークの2.1~2.5倍に設定されていることにより、吐出室と制御室とを連通させる吐出側通路における吐出流体の流量を確保することができる。 
本発明に係る容量制御弁を備えた斜板式容量可変型圧縮機を示す概略構成図である。 本発明に係る容量制御弁の実施形態を示す正面断面図である。 実施形態の容量制御弁の要部断面図であって、(a)は開弁時の状態を、(b)は閉弁時の第3弁部及び吐出流体受け部付近を示している。 第3弁部及び吐出流体受け部の変形例を示した図である。 従来技術の容量制御弁を示す正面断面図である。 従来技術の弁体及び本発明の弁体の開弁時における動作特性を説明する説明図である。
 本発明に係る容量制御弁を実施するための形態を図面を参照しながら詳細に説明するが、本発明はこれに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加えうるものである。 
 斜板式容量可変型圧縮機Mは、図1に示すように、吐出室11、制御室(クランク室とも称す)12、吸入室13、複数のシリンダ14、シリンダ14と吐出室11とを連通させ吐出弁11aにより開閉されるポート11b、シリンダ14と吸入室13とを連通させ吸入弁13aにより開閉されるポート13b、外部の冷却回路に接続される吐出ポート11c及び吸入ポート13c、吐出室11と制御室12とを連通させる吐出側通路としての連通路15、前述の吐出側通路としての役割及び制御室12と吸入室13とを連通させる吸入側通路としての役割を兼ねる連通路16、吸入側通路としての連通路17等を画定するケーシング10、制御室(クランク室)12内から外部に突出して回動自在に設けられた回転軸20、回転軸20と一体的に回転すると共に回転軸20に対して傾斜角度を可変に連結された斜板21、各々のシリンダ14内に往復動自在に嵌合された複数のピストン22、斜板21と各々のピストン22を連結する複数の連結部材23、回転軸20に取り付けられた被動プーリ24、ケーシング10に組み込まれた本発明の容量制御弁V等を備えている。 
 また、斜板式容量可変型圧縮機Mには、制御室(クランク室)12と吸入室13とを直接連通する連通路18が設けられており、該連通路18には固定オリフィス19が設けられている。 
 さらに、この斜板式容量可変型圧縮機Mには、吐出ポート11c及び吸入ポート13cに対して冷却回路が接続され、この冷却回路には、コンデンサ(凝縮器)25、膨張弁26、エバポレータ(蒸発器)27が順次に配列して設けられている。 
 容量制御弁Vは、図2に示すように、金属材料又は樹脂材料により形成されたボデー30、ボデー30内に往復動自在に配置された弁体40、弁体40を一方向に付勢する感圧体50、ボデー30に接続されて弁体40に電磁駆動力を及ぼすソレノイド60等を備えている。 
 ソレノイド60は、ボデー30に連結されるケーシング62、一端部が閉じたスリーブ63、ケーシング62及びスリーブ63の内側に配置された円筒状の固定鉄芯64、固定鉄芯64の内側において往復動自在にかつその先端が弁体40に連結されて連通路44を形成する駆動ロッド65、駆動ロッド65の他端側に固着された可動鉄芯66、第1弁部41を開弁させる方向に可動鉄芯66を付勢するコイルスプリング67、スリーブ63の外側にボビンを介して巻回された励磁用のコイル68等を備えている。 
 ボデー30は、吐出側通路として機能する連通路31、32、33、後述する弁体40の連通路44と共に吸入側通路として機能する連通路33、34、吐出側通路の途中に形成された第1弁室35、吸入側通路の途中に形成された第2弁室36、弁体40をガイドするガイド通路37、吐出側通路及び吸入側通路の制御室12寄りに形成された第3弁室38等を備えている。また、ボデー30には、第3弁室38を画定すると共にボデー30の一部を構成する閉塞部材39が螺合により取り付けられている。 
 すなわち、連通路33及び第3弁室38は、吐出側通路及び吸入側通路の一部を兼ねるように形成され、連通路32は、第1弁室35と第3弁室38とを連通させると共に弁体40を挿通させる(流体が流れる隙間を確保しつつ弁体40を通す)弁孔を形成している。なお、連通路31、33、34は、それぞれ周方向に放射状に配列して複数(例えば、90度の間隔をおいて4個)形成されている。 
 そして、第1弁室35において、連通路(弁孔)32の縁部には、後述する弁体40の第1弁部41が着座する座面35aが形成され、又、第2弁室36において、後述する固定鉄芯64の端部には、後述する弁体40の第2弁部42が着座する座面36aが形成されている。 
 弁体40は、略円筒状に形成されて一端側に第1弁部41、他端側に第2弁部42、第1弁部41を挟んで第2弁部42と反対側に後付けにより連結された第3弁部43、その軸線方向において第2弁部42から第3弁部43まで貫通し吸入側通路として機能する連通路44等を備えている。 
 第3弁部43は、第1弁室35から第3弁室38に向かって縮径した状態から末広がりに拡径された形状をしており、縮径部43aが連通路(弁孔)32に挿通されると共に、拡径部43bにおいて第3弁室38側に後述するアダプタ53と対向するテーパ状の係合面43cが形成されている。 
 図2において、感圧体50は、ベローズ51及びアダプタ53等を備えている。ベローズ51は、その一端が閉塞部材39に固定され、その他端(自由端)にアダプタ53を保持している。 
 アダプタ53は、図3に示すように、第3弁部43に先端が係合する断面が略コ字状をした中空円筒形部53aを有し、中空円筒形部53aの先端に第3弁部43のテーパ状の係合面43cと対向して係合及び離脱する環状の座面53bを備えている。 
 感圧体50は、第3弁室38内に配置されて、その伸長(膨張)により第1弁部41を開弁させる方向に付勢力を及ぼすと共に周囲(第3弁室38及び弁体40の連通路44内)の圧力増加に伴って収縮して第1弁部41に及ぼす付勢力を弱めるように作動する。 
 図3は、本実施形態に係る容量制御弁の要部を示す断面図であって、図3(a)は開弁時の状態を示しており、図3(b)は閉弁時の第3弁部及び吐出流体受け部付近を示している。 
 第3弁部43の拡径部43bの外周部には吐出流体の圧力を受けるための吐出流体受け部45が第1弁室と第3弁室とを連通する弁孔32の径より大きい外径を有して設けられている。吐出流体受け部45は、第3弁部43と一体に設けられても、別体に設けられてもよい。図3(a)では、吐出流体受け部45の吐出流体の圧力を受ける面45aは吐出流体の流れ方向に直交して平面状に設けられている。この吐出流体受け部45は、第1弁部41が座面35aから離れて弁孔32が開放され、矢印で示す吐出流体(吐出圧力Pd)が弁孔32を経て第3弁室38内に流入する際、吐出流体の圧力を受けるためのものである。吐出流体受け部45により吐出流体の圧力を受けた場合、弁体40には第1弁部41を閉弁させる方向の力が作用する。 
 したがって、第1弁部41が座面35aから離れて連通路(弁孔)32を開放されている状態(図3(a)の状態)では、常に、弁体40には第1弁部41を閉弁させる方向の力が作用することになる。 
 本例では、アダプタ53の座面53bと係合する第3弁部43のテーパ状の係合面43cは底面から吐出流体受け部45の外周まで形成されている。 
 図3(b)において、吐出流体受け部45の外径aは、吐出流体の圧力を受ける面積を確保するため、連通路(弁孔)32の径bの1.2~1.7倍に設定されるのが望ましい。この場合、吐出流体受け部45の外周部と第3弁室38の内周面との間には吐出流体の流れるスペースが確保されていることはいうまでもない。また、吐出流体受け部45の吐出流体の圧力を受ける面45aと該面45aと対向するボデー30側の面45bとのクリアランスcは、吐出流体の流量を確保するため、閉弁時において弁体40の最大ストロークの2.1~2.5倍に設定されるのが望ましい。 
 図4は、第3弁部及び吐出流体受け部の変形例を示した図である。 
  図4(a)に示すように、吐出流体を受ける前記吐出流体受け部45の面45aは吐出流体の流れ方向と直交する面より上流側に鋭角をなして平面状(実線)又は曲面状(2点鎖線)に設けられてもよい。この場合には、吐出流体の圧力をより多く受けることができる。 
 なお、吐出流体の圧力を受ける面45aが図4(a)で示すように吐出流体の上流側に鋭角に傾斜した形状である場合、該圧力を受ける面45aとボデー30側の面45bとのクリアランスcは最も狭い部分が基準とされる。 
 図4(b)には、第3弁部43の外周に鍔46を一体に設けて吐出流体受け部45を形成する例が示されている。この場合、アダプタ53の座面53bと係合する第3弁部43のテーパ状の係合面43cは、鍔46の内周部下面から垂直下方に延びる面と係合する位置までしか形成されておらず、第3弁部43及び吐出流体受け部45の軽量化が図られている。また、鍔46を別体に形成して第3弁部43の外周に溶接等により固着するようにすれば、第3弁部43の製造が容易になる。 
 本発明は、第3弁部43の拡径部43bに弁孔32の径より大きな径の吐出流体受け部45を設けることにより、閉から開に向かう途中の領域において、吐出流体受け部45で吐出流体の圧力を受け、弁体40に第1弁部41を閉弁させる方向の力を作用させるようにしたものである。このように、第1弁部41が開弁する際、吐出流体受け部45が吐出流体の圧力を受けるため、弁体40の開動作時の作動性が緩やかなものとなり、クランク室に流入する冷媒量の急激な増加によるクランク室内の圧力の昇圧感度の過剰な増大が防止され、弁体40の動作が安定な容量制御弁を得ることができる。そのため、本発明の容量制御弁を装着した斜板式容量可変型圧縮機を用いた車両用空調装置による空調制御においては、車室内の温度変動の発生、空調制御への悪影響、圧縮機のトルク変動、及び、エンジンへの悪影響などを防止することができる。 
 上記構成において、図3に示すように、感圧体50(ベローズ51)の有効径での受圧面積をAb、第3弁部43のシール径での受圧面積をAr1、第1弁部41のシール径での受圧面積をAs、第2弁部42のシール径での受圧面積をAr2、感圧体50の付勢力をFb、コイルスプリング67の付勢力をFs、ソレノイド60の電磁駆動力による付勢力をFsol、吐出室11の吐出圧力をPd、吸入室13の吸入圧力をPs、制御室(クランク室)12の制御室圧力をPcとするとき、弁体40に作用する力の釣り合い関係式は、 
Pc・(Ab-Ar1)+Pc・(Ar1-As)+Ps・Ar1+Ps・(Ar2-Ar1)+Pd・(As-Ar2)=Fb+Fs-Fsol 
となる。 
 次に、この容量制御弁Vを備えた斜板式容量可変型圧縮機Mが、自動車の空調システムに適用された場合の動作について説明する。 
 先ず、エンジンの回転駆動力により、伝達ベルト(不図示)及び被動プーリ24を介して回転軸20が回転すると、回転軸20と一体となって斜板21が回転する。斜板21が回転すると、斜板21の傾斜角度に応じたストロークでピストン22がシリンダ14内を往復動し、吸入室13からシリンダ14内に吸入された冷媒ガスが、ピストン22により圧縮されて吐出室11に吐出される。そして、吐出された冷媒ガスは、コンデンサ25から膨張弁26を介してエバポレータ27に供給され、冷凍サイクルを行いながら吸入室13に戻るようになっている。 
 ここで、冷媒ガスの吐出量は、ピストン22のストロークにより決定され、ピストン22のストロークは、制御室12内の圧力(制御室圧力Pc)により制御される斜板21の傾斜角度によって決定される。 
 ピストン22の圧縮の際、ピストン22とシリンダ14間のクリアランスからのブローバイガスが制御室12へ常時流れ込み、制御室12の圧力Pcを上昇させようとする。しかし、固定オリフィス19が設けられているため、連通路(吸入側通路)33、44、34が閉じているときでも、制御室12から吸入室に一定量の放圧が行われ、制御室12内の圧力を適正に維持することができる。 
 最大吐出量の運転状態では、ソレノイド60(コイル68)が所定電流値(I)で通電されて、可動鉄芯66及び駆動ロッド65は、感圧体50及びコイルスプリング67の付勢力に抗して、第1弁部41が座面35aに着座して連通路(吐出側通路)31,32を閉塞し、第2弁部42が座面36aから離れて連通路(吸入側通路)34,44を開放した状態となる位置に弁体40が移動する。 
 また、通常制御時(最大容量運転と最小容量運転の間)では、ソレノイド60(コイル67)への通電の大きさを適宜制御して電磁駆動力(付勢力)を変化させる。すなわち、電磁駆動力で弁体40の位置を適宜調整して、所望の吐出量となるように第1弁部41の開弁量と第2弁部42の開弁量が制御される。この状態では、吐出流体(吐出圧力Pd)が弁孔32を経て第3弁室38内に流入する際、第3弁部43の吐出流体受け部45が吐出流体の圧力を受け、弁体40には第1弁部41を閉弁させる方向の力が作用する。このため、弁体40の開動作時の作動性が緩やかなものとなり、クランク室に流入する冷媒量の急激な増加によるクランク室内の圧力の昇圧感度の過剰な増大が防止され、弁体40の動作が安定な容量制御弁を得ることができる。そのため、本発明の容量制御弁を装着した斜板式容量可変型圧縮機を用いた車両用空調装置による空調制御においては、車室内の温度変動の発生、空調制御への悪影響、圧縮機のトルク変動、及び、エンジンへの悪影響などを防止することができる。 
 また、最小容量の運転状態では、ソレノイド60(コイル68)は非通電とされて、可動鉄芯66及び駆動ロッド65は、コイルスプリング67の付勢力により後退して休止位置に停止すると共に、第1弁部41が座面35aから離れて連通路(吐出側通路)31、32を開放し、第2弁部42が座面36aに着座して連通路(吸入側通路)34,44を閉塞した状態となる位置に弁体40が移動する。これにより、吐出流体(吐出圧力Pd)が連通路(吐出側通路)31,32,33を経て制御室12内に供給される。そして、斜板21の傾斜角度は最も小さくなるように制御され、ピストン22のストロークを最小にする。その結果、冷媒ガスの吐出量は最小になる。 
 この状態では、吐出流体(吐出圧力Pd)が弁孔32を経て第3弁室38内に流入する際、第3弁部43の吐出流体受け部45が吐出流体の圧力を受け、弁体40には第1弁部41を閉弁させる方向の力が作用するが、弁体40はコイルスプリング67の付勢力によりその状態を維持する。 
 上記のように、通常制御時の運転状態において、吐出流体(吐出圧力Pd)が弁孔32を経て第3弁室38内に流入する際、第3弁部43の吐出流体受け部45が吐出流体の圧力を受け、弁体40には第1弁部41を閉弁させる方向の力が作用するため、弁体40の開動作時の作動性が緩やかなものとなり、クランク室に流入する冷媒量の急激な増加によるクランク室内の圧力の昇圧感度の過剰な増大が防止され、弁体40の動作が安定な容量制御弁を得ることができる。 
 10    ケーシング 
 11    吐出室 
 12    制御室(クランク室) 
 13    吸入室 
 14    シリンダ 
 15    連通路 
 16    連通路 
 17    連通路 
 18    連通路 
 19    固定オリフィス 
 20    回転軸 
 21    斜板 
 22    ピストン 
 23    連結部材 
 24    被動プーリ 
 25    コンデンサ(凝縮器) 
 26    膨張弁 
 27    エバポレータ(蒸発器) 
 30    ボデー 
 31及び32 連通路(吐出側通路)  
 32    連通路(弁孔)  
 33    連通路(制御室側通路) 
 34    連通路(吸入側通路) 
 35    第1弁室 
 35a   座面  
 36    第2弁室 
 36a   座面 
 37    ガイド通路 
 38    第3弁室 
 39    閉塞部材 
 40    弁体 
 41    第1弁部 
 42    第2弁部 
 43    第3弁部 
 43a   第3弁部の縮径部 
 43b   第3弁部の拡径部 
 43c   第3弁部の係合面 
 44    連通路 
 45    吐出流体受け部 
 45a   吐出流体受け部の吐出流体の圧力を受ける面 
 45b   吐出流体受け部の吐出流体の圧力を受ける面と対向するボデー側の面 
 46    鍔 
 50    感圧体 
 51    ベローズ 
 53    アダプタ 
 53a   中空円筒形部 
 53b   座面 
 60    ソレノイド 
 62    ケーシング 
 63    スリーブ 
 64    固定鉄芯 
 65    駆動ロッド 
 66    可動鉄芯 
 67    コイルスプリング 
 68    励磁用のコイル 
 M     斜板式容量可変型圧縮機 
 V     容量制御弁 
 Pd    吐出圧力 
 Ps    吸入圧力 
 Pc    制御室圧力 

Claims (6)

  1.  流体を吐出する吐出室と流体の吐出量を制御する制御室とを連通させる吐出側通路と、
     前記吐出側通路の途中に形成された第1弁室と、
     流体を吸入する吸入室と前記制御室とを連通させる吸入側通路と、
     前記吸入側通路の途中に形成された第2弁室と、
     前記第1弁室にて前記吐出側通路を開閉する第1弁部及び前記第2弁室にて前記吸入側通路を開閉する第2弁部を一体的に有しその往復動によりお互いに逆向きの開閉動作を行う弁体と、
     前記吸入側通路の途中において前記第2弁室よりも前記制御室寄りに形成された第3弁室と、
     前記第3弁室内に配置されてその伸長により前記第1弁部を開弁させる方向に付勢力を及ぼすと共に周囲の圧力増加に伴って収縮する感圧体と、
     前記感圧体の伸縮方向の自由端に設けられて環状の座面を有するアダプタと、
     前記第3弁室にて前記弁体と一体的に移動すると共に前記アダプタの座面との係合及び離脱により前記吸入側通路を開閉するテーパ状の係合面を有する第3弁部と、
     一定周波数のパルス幅変調方式信号にて前記弁体に対して前記第1弁部を閉弁させる方向に電磁駆動力を及ぼすソレノイドを備え、
     前記第3弁部の外周部に第1弁室と第3弁室とを連通する弁孔の径より大きい吐出流体受け部を設けることを特徴とする容量制御弁。
  2.  前記吐出流体受け部の吐出流体を受ける面は吐出流体の流れ方向と直交して平面状に設けられることを特徴とする請求項1記載の容量制御弁。 
  3.  前記吐出流体受け部の吐出流体を受ける面は吐出流体の流れ方向と直交する面より上流側に鋭角をなして平面状又は曲面状に設けられることを特徴とする請求項1記載の容量制御弁。 
  4.  前記吐出流体受け部が前記第3弁部の外周部に鍔を設けることにより形成されることを特徴とする請求項1ないし3のいずれか1項に記載の容量制御弁。 
  5.  前記吐出流体受け部の外径は、弁孔の径の1.2~1.7倍に設定されていることを特徴とする請求項1ないし4のいずれか1項に記載の容量制御弁。 
  6.  吐出流体受け部の吐出流体の圧力を受ける面と該面と対向するボデー側の面とのクリアランスは、閉弁時において弁体の最大ストロークの2.1~2.5倍に設定されていることを特徴とする請求項1ないし5のいずれか1項に記載の容量制御弁。 
PCT/JP2012/062575 2011-06-15 2012-05-17 容量制御弁 WO2012172914A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12800451.2A EP2722524B1 (en) 2011-06-15 2012-05-17 Capacity control valve
KR1020137022471A KR101532996B1 (ko) 2011-06-15 2012-05-17 용량 제어 밸브
US14/125,284 US9523987B2 (en) 2011-06-15 2012-05-17 Capacity control valve
CN201280023790.4A CN103547803B (zh) 2011-06-15 2012-05-17 容量控制阀
JP2013520481A JP5907432B2 (ja) 2011-06-15 2012-05-17 容量制御弁

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011132757 2011-06-15
JP2011-132757 2011-06-15

Publications (1)

Publication Number Publication Date
WO2012172914A1 true WO2012172914A1 (ja) 2012-12-20

Family

ID=47356908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062575 WO2012172914A1 (ja) 2011-06-15 2012-05-17 容量制御弁

Country Status (6)

Country Link
US (1) US9523987B2 (ja)
EP (1) EP2722524B1 (ja)
JP (1) JP5907432B2 (ja)
KR (1) KR101532996B1 (ja)
CN (1) CN103547803B (ja)
WO (1) WO2012172914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952741A4 (en) * 2013-01-31 2016-09-21 Eagle Ind Co Ltd VALVE FOR CAPACITY CONTROL

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068628A1 (en) * 2012-05-24 2015-03-12 Eagle Industry Co., Ltd. Capacity control valve
EP3239570B1 (en) * 2014-12-25 2020-05-13 Eagle Industry Co., Ltd. Volume control valve
JP6500183B2 (ja) * 2015-04-02 2019-04-17 株式会社テージーケー 可変容量圧縮機用制御弁
US11603832B2 (en) 2017-01-26 2023-03-14 Eagle Industry Co., Ltd. Capacity control valve having a throttle valve portion with a communication hole
CN110234874B (zh) * 2017-02-18 2020-11-13 伊格尔工业股份有限公司 容量控制阀
CN114687984A (zh) 2017-11-15 2022-07-01 伊格尔工业股份有限公司 容量控制阀
EP3719364B1 (en) * 2017-11-30 2023-11-15 Eagle Industry Co., Ltd. Capacity control valve and control method for capacity control valve
EP3722603B1 (en) 2017-12-08 2024-02-07 Eagle Industry Co., Ltd. Capacity control valve and method for controlling same
US11542929B2 (en) 2017-12-14 2023-01-03 Eagle Industry Co., Ltd. Capacity control valve and method for controlling capacity control valve
US11242940B2 (en) * 2017-12-27 2022-02-08 Eagle Industry Co., Ltd. Capacity control valve
JP7171616B2 (ja) 2017-12-27 2022-11-15 イーグル工業株式会社 容量制御弁及び容量制御弁の制御方法
US11486376B2 (en) 2017-12-27 2022-11-01 Eagle Industry Co., Ltd. Capacity control valve and method for controlling same
CN108278235B (zh) * 2018-01-18 2023-07-14 广东机电职业技术学院 一种带液控定位的液压容积限制装置
WO2019142931A1 (ja) 2018-01-22 2019-07-25 イーグル工業株式会社 容量制御弁
US11994120B2 (en) 2018-07-12 2024-05-28 Eagle Industry Co., Ltd. Capacity control valve
CN112534136A (zh) 2018-08-08 2021-03-19 伊格尔工业股份有限公司 容量控制阀
EP3835576B1 (en) * 2018-08-08 2024-03-27 Eagle Industry Co., Ltd. Capacity control valve
US11635152B2 (en) 2018-11-26 2023-04-25 Eagle Industry Co., Ltd. Capacity control valve
JP7391486B2 (ja) * 2019-03-01 2023-12-05 イーグル工業株式会社 容量制御弁
JP7438643B2 (ja) 2019-04-03 2024-02-27 イーグル工業株式会社 容量制御弁
EP3951169A4 (en) * 2019-04-04 2022-11-30 Eagle Industry Co., Ltd. CAPACITY CONTROL VALVE
EP3961075A4 (en) * 2019-04-24 2023-01-04 Eagle Industry Co., Ltd. CAPACITY REGULATING VALVE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322086A (ja) * 2002-02-04 2003-11-14 Eagle Ind Co Ltd 容量制御弁
WO2006090760A1 (ja) 2005-02-24 2006-08-31 Kabushiki Kaisha Toyota Jidoshokki 容量制御弁
JP2007064028A (ja) * 2005-08-29 2007-03-15 Sanden Corp 可変容量圧縮機
WO2007119380A1 (ja) * 2006-03-15 2007-10-25 Eagle Industry Co., Ltd. 容量制御弁

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2943934B2 (ja) * 1990-03-20 1999-08-30 サンデン株式会社 容量可変型斜板式圧縮機
KR100340606B1 (ko) * 1999-09-10 2002-06-15 이시카와 타다시 용량 가변형 압축기의 제어밸브
JP2002021720A (ja) * 2000-07-06 2002-01-23 Toyota Industries Corp 容量可変型圧縮機の制御弁
JP3942851B2 (ja) * 2001-07-31 2007-07-11 株式会社テージーケー 容量制御弁
EP1783410B1 (en) * 2004-07-16 2011-01-12 Eagle Industry Co., Ltd. Solenoid-controlled valve
JP4516892B2 (ja) * 2005-06-08 2010-08-04 イーグル工業株式会社 容量可変型圧縮機の容量制御弁
JP2008297974A (ja) * 2007-05-31 2008-12-11 Fuji Koki Corp 可変容量型圧縮機用制御弁
JP5222447B2 (ja) * 2008-06-11 2013-06-26 サンデン株式会社 可変容量圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322086A (ja) * 2002-02-04 2003-11-14 Eagle Ind Co Ltd 容量制御弁
WO2006090760A1 (ja) 2005-02-24 2006-08-31 Kabushiki Kaisha Toyota Jidoshokki 容量制御弁
JP2007064028A (ja) * 2005-08-29 2007-03-15 Sanden Corp 可変容量圧縮機
WO2007119380A1 (ja) * 2006-03-15 2007-10-25 Eagle Industry Co., Ltd. 容量制御弁

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722524A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952741A4 (en) * 2013-01-31 2016-09-21 Eagle Ind Co Ltd VALVE FOR CAPACITY CONTROL
EP3404262A1 (en) * 2013-01-31 2018-11-21 Eagle Industry Co., Ltd. Capacity control valve

Also Published As

Publication number Publication date
EP2722524A1 (en) 2014-04-23
CN103547803A (zh) 2014-01-29
CN103547803B (zh) 2017-03-01
JPWO2012172914A1 (ja) 2015-02-23
US9523987B2 (en) 2016-12-20
KR101532996B1 (ko) 2015-07-01
EP2722524B1 (en) 2016-10-26
JP5907432B2 (ja) 2016-04-26
EP2722524A4 (en) 2015-06-24
KR20130118968A (ko) 2013-10-30
US20140099214A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP5907432B2 (ja) 容量制御弁
JP5557901B2 (ja) 容量制御弁
KR101319566B1 (ko) 용량 제어 밸브
JP5871281B2 (ja) 容量制御弁
JP4700048B2 (ja) 容量制御弁
CN110114573B (zh) 容量控制阀
JP6091503B2 (ja) 容量制御弁
JP6224011B2 (ja) 容量制御弁
WO2013105411A1 (ja) ソレノイドバルブ
JP2016020682A (ja) 可変容量圧縮機用制御弁
US11401922B2 (en) Displacement control valve
JP2015224619A (ja) 可変容量圧縮機用制御弁
JP6340501B2 (ja) 可変容量圧縮機用制御弁
WO2020116436A1 (ja) 容量制御弁
JP2016014334A (ja) 可変容量圧縮機用制御弁
JP2008175130A (ja) 可変容量圧縮機用制御弁
JP2007303291A (ja) 可変容量圧縮機用制御弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800451

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012800451

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012800451

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013520481

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137022471

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14125284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE