WO2012171146A1 - 包含新型减反射层的薄膜太阳能电池及其制造方法 - Google Patents

包含新型减反射层的薄膜太阳能电池及其制造方法 Download PDF

Info

Publication number
WO2012171146A1
WO2012171146A1 PCT/CN2011/001221 CN2011001221W WO2012171146A1 WO 2012171146 A1 WO2012171146 A1 WO 2012171146A1 CN 2011001221 W CN2011001221 W CN 2011001221W WO 2012171146 A1 WO2012171146 A1 WO 2012171146A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
layer
solar cell
film solar
silicon
Prior art date
Application number
PCT/CN2011/001221
Other languages
English (en)
French (fr)
Inventor
王永谦
乔琦
张光春
施正荣
Original Assignee
无锡尚德太阳能电力有限公司
尚德太阳能电力有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡尚德太阳能电力有限公司, 尚德太阳能电力有限公司 filed Critical 无锡尚德太阳能电力有限公司
Publication of WO2012171146A1 publication Critical patent/WO2012171146A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a thin film solar cell, and more particularly to a thin film solar cell having enhanced anti-reflection properties and a method of fabricating the same.
  • a typical silicon thin film solar cell is usually a battery with a PIN structure, the window layer is boron-doped P-type amorphous silicon carbide, and then an undoped intrinsic layer is deposited, and a phosphorus-doped N-type amorphous layer is deposited. Silicon, and plated with L electrodes.
  • Amorphous silicon cells are generally formed by PECVD (plasma enhanced chemical vapor deposition) method to decompose and decompose high-purity silanes and other gases. This process can be continuously applied in multiple vacuums during the production process. Completed in the deposition chamber for mass production. Due to the low deposition decomposition temperature, the film can be deposited on glass, stainless steel plate, ceramic plate, flexible plastic sheet, easy to be produced in a large area, and the cost is low.
  • PECVD plasma enhanced chemical vapor deposition
  • the thin film solar cell 10 includes a glass substrate 100, a transparent conductive oxide (TCO) layer 110, an active layer 130, and a zinc (ZnO) layer 140. And a metal electrode 150, wherein the active layer 130 is composed of a P-type amorphous silicon carbide (Pa-SiC: H) layer 130A, an intrinsic amorphous silicon (Ia-Si: H) layer 130B, and an N-type amorphous silicon (Na- Si:H) layer 130C,
  • Pa-SiC: H P-type amorphous silicon carbide
  • Ia-Si: H intrinsic amorphous silicon
  • Na- Si:H N-type amorphous silicon
  • the refractive index difference between the TCO layer 110 and the amorphous silicon active layer 130 is large (the former is about 1.9 and the latter is about 3.5), it is incident from the glass substrate 100. A substantial portion of the external light is reflected back, causing reflection losses, typically at the TCO layer 110 and the amorphous silicon active layer 130.
  • the interface reflection loss can be as high as about 8,8%. This reflection restricts the further improvement of the conversion efficiency of the thin film solar cell.
  • a solution is to form a suede structure on the surface of the TCO layer 110 and its characteristic size is a sub-wavelength scale, thereby reducing the gradient of the refractive index change near the interface to achieve a certain anti-reaction effect.
  • the effect of this mode is limited, and the industry has proposed a scheme for further reducing the reflection loss by inserting a Ti0 2 anti-reflection layer 120A between the TCO layer 110 and the Pa-SiC:H layer 130A, since Ti0 2 is in the subsequent film.
  • the hydrogen plasma atmosphere in the deposition process is easily reduced to metal and fails. Therefore, it is generally necessary to deposit a thin ZnO layer 120B on the surface of the Ti0 2 layer 120A to protect it.
  • the Ti0 2 -ZnO composite layer is composed.
  • the reflectivity of the anti-reflective layer 120 will increase with the increase of the thickness of ZnO, and the too thin ZnO can not achieve effective protection purposes, so how to meet the requirements of both at the same time becomes a dilemma. Summary of the invention
  • One object of the present invention is to provide a thin film solar cell which has excellent anti-reflection effects and is free from the above-mentioned selection dilemma.
  • a thin film solar cell comprising:
  • the anti-reflection layer is composed of gasified ⁇ Nb x O y .
  • the thickness of the antireflection layer ranges from 50 to 60 nm.
  • the silicon thin film active layer is composed of one or a combination of the following materials: amorphous silicon a-Si: H, amorphous silicon germanium a-SiGe: H microcrystal Silicon pc-Si:H and nanocrystalline silicon nc-Si:H.
  • the above thin film solar cell further comprising:
  • the surface of the transparent conductive layer is a pile surface.
  • Still another object of the present invention is to provide a method of manufacturing a thin film solar cell which has an excellent anti-reflection effect and is free from the aforementioned selection dilemma.
  • a method of manufacturing a thin film solar cell comprising the following steps:
  • the anti-reflection layer is composed of yttrium oxide Nb x O y ,
  • the gasification enthalpy in the above method for manufacturing a thin film solar cell, the gasification enthalpy
  • Nb x O y is prepared by a radio frequency magnetron sputtering method under a mixed atmosphere of gas and gas.
  • the thickness of the antireflection layer ranges from 50 to 60 nm.
  • the silicon thin film active layer is composed of one or a combination of the following materials: amorphous silicon a-Si: H, amorphous silicon germanium a-SiGe: H, microcrystalline silicon pc-Si:H and nanocrystalline silicon nc-Si:H, in a preferred embodiment of the invention, a ruthenium oxide Nb x O y film layer is used instead of the Ti0 2 -ZnO composite house as an antireflection layer , while achieving good anti-reflection effect, it also simplifies the manufacturing process and reduces the cost.
  • Figure 2 is a schematic view of a thin film solar cell according to an embodiment of the present invention.
  • Figure 3 is a reflected light diagram showing both the TCO layer and the active layer of the silicon film The reflected light measured at the interface between the insertion and the non-insertion of Nb 2 O s .
  • JV current density-voltage
  • Figure 5 is a schematic illustration of a method of fabricating a thin film solar cell in accordance with one embodiment of the present invention. detailed description
  • a thin film solar cell refers to a device that converts solar energy into electrical energy and has a dimension in the thickness direction that is much smaller than a dimension in a planar direction, which may also be referred to as a solar thin film battery.
  • a thin film solar cell A laminate structure formed on a substrate, the laminate structure mainly comprising a front electrode, a back electrode, and an active layer (for example, a PIN structure) sandwiched therebetween, in order to refract between the active layer and the electrode
  • the rate change is relatively flat, and an antireflection layer is interposed between them to lower the reflectance and improve the conversion efficiency.
  • the silicon film refers to a semiconductor film containing silicon, which may be, for example, one of the following materials or Their combined composition: amorphous silicon a-Si: H, amorphous silicon germanium a-SiGe: H, microcrystalline silicon c-Si: H and nanocrystalline silicon nc-Si: H,
  • FIG. 2 is a schematic view of a thin film solar cell according to an embodiment of the present invention.
  • the thin film solar cell 20 includes a glass substrate 200, a transparent conductive germanide (TCO) layer 210 formed on the glass substrate 200, and formed on the TCO layer 210. 1221
  • a silicon thin film formed on the anti-reflection layer 220 including a P-type amorphous silicon carbide layer 230A, an intrinsic amorphous silicon layer 230B, and an N-type amorphous silicon layer 230C
  • a ZnO layer 240 formed on the active layer 230 and a metal electrode 250 formed on the ZnO layer for example, composed of aluminum, silver, an alloy thereof, or the like.
  • a five-IL bismuth (Nb 2 O s ) having a refractive index of about 2.5 is used as the material of the anti-reflection layer 220, and in the Nb 2 O s layer.
  • the ZnO protective film is not covered, that is, the Ti 2 2 -ZnO composite layer is replaced by the Nb 2 O s layer as the anti-reflection layer, so that the thin film solar cell has good center wavelength at 550 nm absorbed by the active layer of the silicon thin film.
  • the effect of the anti-reflection, preferably, the thickness of the Nb 2 O s layer may be between 50-60 nm.
  • a suede structure with a scale close to the sub-wavelength may be formed on the surface of the TCO layer 210.
  • FIG. 3 is a reflection spectrum diagram showing the insertion at the interface between the TCO layer (thickness of about 750 ⁇ m) and the active layer of silicon thin film (thickness of about 300 nm).
  • the reflectance spectrum measured without inserting Nb 2 O s was measured from the side of the glass substrate, and the Nb 2 O s layer was prepared by RF magnetron sputtering in a mixed atmosphere of Ar and 02 .
  • the thickness is about 55nm.
  • the reflectance in the spectral range of 350-1200 nm is decreased, especially at 550-600 nm. In the wavelength range, the reflectance drops to 5.3%.
  • Such a low reflectance value indicates that the reflection loss at this time is substantially derived from the reflection contribution of the glass substrate 200 and the TCO layer 210 and the interface between the glass substrate 200 and the air. Inserting the Nb 2 O s layer between the TCO layer 210 and the silicon thin film active layer 230 achieves a good anti-reflection effect.
  • Nb 2 O s layer as an anti-reflective layer also improves the electrical performance of thin film solar cells.
  • Figure 4 is a current density-voltage (JV) graph showing the single-junction amorphous silicon measured at the interface between the TCO layer and the active layer of the silicon thin film at the interface with and without the Nb 2 O s layer. JV curve of thin film solar cells.
  • the basic structure of the single junction amorphous silicon battery is glass substrate / TCO / Pa - SiC: H / Ia-Si: H/Na-Si: H/ZnO: Ga/Al, the thickness of each layer is about 3.2mm / 750nm / 15nm / 260nm / 25nm / 100nm / 200nm, the glass substrate is ordinary float glass, the area is about It is 2 (16.4cmxl6.4cm) 269cm, cell aperture area of 100cm 2 (lOcmxlOcm).
  • FIG. 5 is a schematic view of a method for fabricating a thin film solar cell according to an embodiment of the present invention.
  • the process of the manufacturing method is described by taking a thin film solar cell having the structure shown in FIG. 2 as an example.
  • a conductive layer 210 composed of a transparent conductive germanide (TCO) is deposited on the glass substrate 200 as a front electrode.
  • TCO transparent conductive germanide
  • a thickness can be prepared by etching after sputtering. a 750 nm suede ZnO front electrode,
  • step 520 forming an antireflection layer made of Nb 2 O s 210,220 on the conductive layer, for example, can be prepared by using RF magnetron sputtering Nb 2 O s layer in a mixed atmosphere of Ar and 0 2 of The thickness of this layer is about 55nm.
  • Nb 2 0 5 is only a specific example of ruthenium oxide, and actually, a gasification ruthenium material having other chemical ratios can be used as needed.
  • a silicon thin film active layer 230 having a PIN junction structure and a P-type amorphous silicon carbide layer is formed on the anti-reflection layer 220, for example, by a PECVD (Plasma Enhanced Chemical Vapor Deposition) method.
  • PECVD Pulsma Enhanced Chemical Vapor Deposition
  • 230A, an intrinsic amorphous silicon layer 230B and an N-type amorphous silicon layer 230C the PIN layer thickness is about 15 nm, 260 nm, and 25 nm, respectively.
  • a zinc telluride layer is formed on the silicon thin film active layer 230. 24 0.
  • a metal germanium electrode 250 is formed on the zinc telluride layer 240.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

提供一种具有增强的减反射性能的薄膜太阳能电池及其制造方法,其中薄膜太阳能电池包括:衬底;形成于衬底上的透明导电层;形成于透明导电层上的减反射层;以及形成于减反射层上的硅薄膜有源层,其中减反射层由氧化铌NbxOy构成。由于釆用氧化铌NbxOy层替代TiO2-ZnO叠层作为减反射层,因此在实现良好的减反射效果的同时,还简化了制造工艺,降低了成本。

Description

包舍新型减反射层的薄膜太阳能电池及其制造方法 技术领域
本发明涉及薄膜太阳能电池,特别涉及具有增强的减反射性能的 薄膜太阳能电池及其制造方法. 背景技术
基于晶体硅 (单晶硅和多晶硅)的太阳能电池尽管随着技术进步和 市场扩大使其成本不断下降, 但由于材料和工艺的限制, 晶体硅太阳 能电池进一步降低成本的空间相当有限,因此薄膜太阳能电池益发得 到世界各国的重枧,薄膜太阳能电池的一个重要优点是适合制造与建 筑结合的光伏发电组件 (BIP V)。
目前,较成熟且已经大批量生产的薄膜太阳能电池是基于非晶硅 系的薄膜太阳能电池, 与晶体硅太阳能电池相比, 其在高温下的光伏 输出特性更好, 实际榆出功率更大.
典型的硅薄膜太阳能电池通常为具有 PIN结构的电池,窗口层为 掺硼的 P型非晶碳化硅,接着沉积一居未掺杂的本征层,再沉积一层 掺磷的 N型非晶硅, 并镀 L电极.非晶硅电池一般釆用 PECVD (等离 子增强型化学气相沉积)方法使高纯硅烷等气体分解沉积而成. 此种 制作工艺, 可以在生产过程中连续在多个真空沉积室内完成, 以实现 大批量生产. 由于沉积分解温度低, 可在玻璃、 不锈钢板、 陶瓷板、 柔性塑料片上沉积薄膜, 易于大面积化生产, 成本较低,
图 1为一种典型的薄膜太阳能电池的示意图. 参见图 1, 该薄膜 太阳能电池 10包含玻璃村底 100、 透明导电氧化物 (TCO )层 110、 有源层 130、 化锌 (ZnO )层 140以及金属电极 150, 其中有源层 130由 P型非晶碳化硅(P-a-SiC:H )层 130A、本征非晶硅( I-a-Si:H ) 层 130B和 N型非晶硅(N-a-Si:H )层 130C构成,
在上述结构的硅薄膜太阳能电池中, 由于 TCO层 110与非晶硅 有源层 130之间的折射率相差较大(前者为 1.9左右而后者为 3.5左 右), 因此从玻璃衬底 100入射的外部光线中有相当部分又被反射回 去,从而造成反射损失,典型地,在 TCO层 110与非晶硅有源层 130
I 之间的界面为平面的情况下, 界面反射损失可高达 8,8%左右, 这种 反射制约了薄膜太阳能电池的转换效率的进一步提升.
针对这种情况, 一种解决方式是在 TCO层 110的表面形成绒面 构造并且其特征尺寸为亚波长尺度,由此使得界面附近的折射率变化 梯度减小, 达到一定的减反作用. 但是这种方式的效果有限, 为此业 界提出了通过在 TCO层 110与 P-a-SiC:H层 130A之间插入一层 Ti02 减反射层 120A以进一步减少反射损失的方案,由于 Ti02在随后的薄 膜沉积过程中的氢等离子体气氛中容易被还原为金属而失效,所以一 般还需在 Ti02层 120A的表面沉积一层薄的 ZnO层 120B起保护作 用 .但是, Ti02-ZnO复合层构成的减反射层 120的反射率将随着 ZnO 厚度的增加而增大, 而过薄的 ZnO又无法达到有效的保护目的, 因 此如何同时满足二者的要求就成为一个两难的选择。 发明内容
本发明的目的之一是提供一种薄膜太阳能电池,其具有出色的减 反射效果并且摆脱了上述选择困境.
本发明的上述目的通过下列技术方案实现:
一种薄膜太阳能电池, 包括:
衬底;
形成于所述衬底上的透明导电层;
形成于所述透明导电层上的减反射层; 以及
形成于所述减反射层上的硅薄膜有源层,
所述减反射层由氣化铌 NbxOy构成 .
优选地, 所述氡化铌 NbxOy的化学配比是 x=2, y=5.
优选地, 在上述薄膜太阳能电池中, 所述减反射层的厚度范围为 50-60nm.
优选地, 在上述薄膜太阳能电池中, 所述硅薄膜有源层由下列材 料中的一种或它们的組合组成: 非晶硅 a-Si:H、 非晶硅锗 a-SiGe:H 微晶硅 pc-Si:H和纳晶硅 nc-Si:H.
优选地, 在上述薄膜太阳能电池中, 进一步包括:
形成于所述硅薄膜有源层上的氧化锌膜; 以及
形成于所述氧化锌层上的金属背电极. 11 001221
优选地, 在上述薄膜太阳能电池中, 所述透明导电层的表面为绒 面。
本发明的还有一个目的是提供一种薄膜太阳能电池的制造方法, 其制造的薄膜太阳能电池具有出色的减反射效果并且摆脱了前述的 选择困境.
本发明的上述目的通过下列技术方案实现:
一种薄膜太阳能电池的制造方法, 包括下列步騍:
提供村底;
在所述衬底上形成透明导电层;
在所述透明导电层上形成减反射层; 以及
在所述减反射层上形成硅薄膜有源层,
所述减反射层由氧化铌 NbxOy构成,
优选地, 在上述薄膜太阳能电池的制造方法中, 所迷氣化铌
NbxOy通过在氣气和氣气的混合气氛下的射频磁控溅射方法制备. 优选地, 在上述薄膜太阳能电池的制造方法中, 所述氟化铌 NbxOy的化学配比是 x=2, y=5.
优选地, 在上述薄膜太阳能电池的制造方法中, 所述减反射层的 厚度范围为 50-60nm。
优选地, 在上述薄膜太阳能电池的制造方法中, 所述硅薄膜有源 层由下列材料中的一种或它们的組合组成: 非晶硅 a-Si:H、 非晶硅锗 a-SiGe:H、 微晶硅 pc-Si:H和纳晶硅 nc-Si:H, 在本发明的较佳实施例中, 采用氧化铌 NbxOy膜层替代 Ti02-ZnO复合屋作为减反射层, 在实现良好的减反射效果的同时, 还简化了制造工艺, 降低了成本. 附图说明
从结合附图的以下详细说明中,将会使本发明的上述和其它目的 及优点更加完全清楚,其中,相同或相似的单元采用相同的标号表示 · 图 1为一种典型的薄膜太阳能电池的示意图.
图 2为按照本发明一个实施例的薄膜太阳能电池的示意图.
图 3为反射光讲图, 其同时示出了在 TCO层与硅薄膜有源层之 间的界面处插入与不插入 Nb2Os时测得的反射光诸.
图 4为电流密度 -电压 (J-V ) 曲线图, 其同时示出了在 TCO层 与硅薄膜有源层之间的界面处插入与不插入 Nb2Os层时测得的单结 非晶硅薄膜太阳能电池的 J-V曲线.
图 5 为按照本发明一个实施例的薄膜太阳能电池制造方法的示 意图。 具体实施方式
在本发明中,薄膜太阳能电池指的是一种将太阳能转换为电能并 且沿厚度方向的尺寸远远小于沿平面方向的尺寸的器件,其亦可称为 太阳能薄膜电池.一般地, 薄膜太阳能电池具有形成于衬底上的叠层 结构, 该叠层结构主要包含前电极、 背电极以及被夹在它们之间的有 源层 (例如 PIN 结构) , 为了使有源层与电极之间的折射率变化比 较平緩, 在它们之间插入减反射层以降低反射率, 提高转换效率. 在本发明中, 硅薄膜指的是包含硅元素的半导体薄膜, 该薄膜可 由例如下列材料中的一种或它们的组合組成: 非晶硅 a-Si:H、 非晶硅 锗 a-SiGe:H、 微晶硅 c-Si:H和纳晶硅 nc-Si:H,
为了节省篇幅,本说明书将仅描述薄膜太阳能电池结构和制造工 艺中与本发明较为相关的部分, 对于本领域内的技术人员来说, 省略 描述的部分都是易于理解的,并且这样的省略并不会对本发明的实施 带来困难.
在本发明中, 除非另有说明, "在…上" 和 "在…下" 的表述既 被用来表示两个单元之间直接接触的情形,也被用来表示两个单元之 间还存在其它单元的情形.
另外, 为了便于示意, 附图所示的薄膜太阳能电池中的各层的厚 度并未按照它们的实际比例绘制,因此不应将附图所示各层的尺寸以 及相互比例关系视为是对本发明保护范围的限定, 下面根据表示本发明实施方式的附困具体描述本发明的实施例. 图 2为按照本发明一个实施例的薄膜太阳能电池的示意图.
如图 2所示,薄膜太阳能电池 20包含玻璃衬底 200、在玻璃衬底 200上形成的透明导电氡化物(TCO )层 210、在 TCO层 210上形成 1221
的减反射层 220、在减反射层 220上形成的由硅薄膜构成的有源层 230 (包括 P型非晶碳化硅层 230A、 本征非晶硅层 230B、 N型非晶硅层 230C )、在有源层 230上形成的 ZnO层 240以及在 ZnO层上形成的 金属电极 250 (例如由铝、 银及其合金等构成) .
与常规的 TiOrZnO复合层减反射技术不同, 在本实施例中, 采 用折射率约为 2.5的五 IL化二铌( Nb2Os )作为减反射层 220的材料, 并且在 Nb2Os层上未覆盖 ZnO保护膜, 也就是说, 这里用 Nb2Os层 替代了 Ti02-ZnO复合层作为减反射层, 为使薄膜太阳能电池在硅薄 膜有源层吸收的中心波长 550nm处具有良好的减反效果, 优选地, Nb2Os层的厚度可以介于 50-60nm之间.
在本实施例中,为了进一步提高减反射性能,可以在 TCO层 210 表面形成尺度与亚波长接近的绒面结构.
值得指出的是,虽然在这里采用氡原子与铌原子的化学配比为 5: 2的五氡化二铌作为减反射层的材料,但是在本发明的其它实施例中, 可以根据需要, 采用具有其它化学配比的氧化铌材料. 图 3为反射光 谱图, 其同时示出了在 TCO层 (厚度约为 750iim ) 与硅薄膜有源层 (厚度约为 300nm )之间的界面处插入与不插入 Nb2Os时测得的反射 光谱, 测量是从玻璃村底这一側进行的, Nb2Os层是在 Ar和 02的混 合气氛中采用射频磁控溅射方法制备的, 厚度约为 55nm.
由图 3可见, 当在 TCO层 210与硅薄膜有源层 220之间插入 Nb2Os层之后, 在 350-1200mn的光谱范围内的反射率均有所下降, 特别是在 550-600nm的波长范围内, 反射率下降到 5.3%, 如此低的 反射率值表明此时的反射损失基本上来自于玻璃村底 200与 TCO层 210以及玻璃衬底 200与空气的界面处的反射贡献, 可见在 TCO层 210 与硅薄膜有源层 230之间插入 Nb2Os层达到了良好的减反射效 果.
除了光学性能以外,釆用 Nb2Os层作为减反射层还改善了薄膜太 阳能电池的电气性能.
图 4为电流密度 -电压 ( J-V ) 曲线图, 其同时示出了在 TCO层 与硅薄膜有源层之间的界面处插入与不插入 Nb2Os层时测得的单结 非晶硅薄膜太阳能电池的 J-V曲线.
该单结非晶硅电池的基本结构为玻璃衬底 /TCO/P-a-SiC:H/ I-a-Si:H/N-a-Si:H/ZnO:Ga/Al , 各层厚度依次约为 3.2mm/750nm /15nm/260nm/25nm/100nm/200nm , 玻璃衬底为普通浮法玻璃, 面积 约为 269cm2 ( 16.4cmxl6.4cm ) , 电池孔径面积为 100cm2 ( lOcmxlOcm ) .
由图 4可见, 当在 TCO层 210与硅薄膜有源层 220之间插入 Nb205层之后, 得益于 TCO层与硅薄膜有源层之间界面的反射损失 的减少, 短路(电压为 0时) 电流密度提高了 0.60mA/cm2, 虽然薄 膜太阳能电池由于串联电阻增大了大约 13%而导致填充因子从 74.58%下降到 72.02%, 但是电池孔径面积的初始效率仍然从 9.13% 增大至 9.32%. 图 5 为按照本发明一个实施例的薄膜太阳能电池制造方法的示 意图.
为方便阐述,这里以具有图 2所示结构的薄膜太阳能电池为例来 描述制造方法的流程.
如图 5所示, 在步骤 510中, 在玻璃村底 200上沉积一层由透明 导电氡化物(TCO )組成的导电层 210作为前电极, 例如可以采用溅 射后刻蚀的方法制备厚度约为 750nm的绒面 ZnO前电极,
接着, 在步骤 520中, 在导电层 210上形成由 Nb2Os构成的减反 射层 220,例如可以通过在 Ar和 02的混合气氛中采用射频磁控溅射 方法制备 Nb2Os层, 该层的厚度约为 55nm.
同样, 在本发明中 Nb205只是氧化铌的一个特定实例, 实际上可 以根据需要, 采用具有其它化学配比的氣化铌材料.
随后, 在步骤 530中, 例如通过 PECVD (等离子增强型化学气相 沉积)方法在减反射层 220上形成硅薄膜有源层 230, 该有源层具有 PIN结结构, 由 P型非晶碳化硅层 230A、 本征非晶硅层 230B和 N 型非晶硅层 230C构成, PIN层厚度分别约为 15nm、 260nm和 25nm, 在步猓 540中, 在硅薄膜有源层 230上形成氡化锌层 240· 最后, 在步猓 550中, 在氡化锌层 240上形成金属膂电极 250· 由于可以在不背离本发明基本精神的情况下,以各种形式实施本 发明, 因此上面描述的具体实施方式仅是说明性的而不是限制性的, 本发明的范围由所附权利要求定义,对上面描述方式所作的各种变化 或变动都属于所附权利要求的保护范围.

Claims

权 利 要 求
1、 一种薄膜太阳能电池, 包括:
村底;
形成于所述村底上的透明导电层;
形成于所述透明导电层上的减反射层; 以及
形成于所述减反射层上的硅薄膜有源层,
其特征在于, 所述减反射层由氣化铌 NbxOy构成.
2、 如权利要求 1所述的薄膜太阳能电池, 其特征在于, 所述氧 化铌 NbxOy的化学配比是 x=2, y=5。
3、 如权利要求 1所述的薄膜太阳能电池, 其特征在于, 所述减 反射层的厚度范围为 50-60 nm。
4、 如权利要求 1所述的薄膜太阳能电池, 其特征在于, 所述硅 薄膜有源层由下列材料中的一种或它们的組合组成: 非晶硅 a-Si:H、 非晶硅锗 a-SiGe:H、 微晶硅 pc-Si:H和纳晶硅 nc-Si:H.
5、 如权利要求 1所述的薄膜太阳能电池, 其特征在于, 进一步 包括:
形成于所述硅薄膜有源层上的氡化锌膜; 以及
形成于所述氧化锌层上的金属背电极,
6、 如权利要求 1所述的薄膜太阳能电池, 其特征在于, 所述透 明导电层的表面为绒面.
7、 一种薄膜太阳能电池的制造方法, 包括下列步猓:
提供衬底;
在所述衬底上形成透明导电层;
在所述透明导电层上形成减反射层; 以及
在所述减反射层上形成硅薄膜有源层, 其特征在于, 所述减反射层由氧化铌 NbxOy构成.
8、 如权利要求 7所述的薄膜太阳能电池的制造方法, 其特征在 于,所述氡化铌 NbxOy通过在氳气和氧气的混合气氛下的射频磁控溅 射方法制备.
9、 如权利要求 7所述的薄膜太阳能电池的制造方法, 其特征在 于, 所述氧化铌 NbxOy的化学配比是 x-2, y=5.
10、 如权利要求 7所述的薄膜太阳能电池的制造方法, 其特征在 于, 所述减反射层的厚度范围为 50-60nm.
11、 如权利要求 7所述的薄膜太阳能电池的制造方法, 其特征在 于, 所述硅薄膜有源层由下列材料中的一种或它们的組合组成: 非晶 硅 a-Si:H、 非晶硅锗 a-SiGe:H、 微晶硅 c-Si:H和纳晶硅 nc-Si:H.
PCT/CN2011/001221 2011-06-13 2011-07-26 包含新型减反射层的薄膜太阳能电池及其制造方法 WO2012171146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110157018.9 2011-06-13
CN2011101570189A CN102832261A (zh) 2011-06-13 2011-06-13 包含新型减反射层的薄膜太阳能电池及其制造方法

Publications (1)

Publication Number Publication Date
WO2012171146A1 true WO2012171146A1 (zh) 2012-12-20

Family

ID=47335315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001221 WO2012171146A1 (zh) 2011-06-13 2011-07-26 包含新型减反射层的薄膜太阳能电池及其制造方法

Country Status (2)

Country Link
CN (1) CN102832261A (zh)
WO (1) WO2012171146A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938429A (zh) * 2012-12-21 2013-02-20 国电光伏(江苏)有限公司 一种减反射异质结太阳能电池及其制备方法
CN104600130A (zh) * 2015-01-13 2015-05-06 福建铂阳精工设备有限公司 一种硅基薄膜太阳能电池及其制备方法
CN107742653A (zh) * 2017-10-17 2018-02-27 江阴艾能赛瑞能源科技有限公司 一种用于建筑物屋顶的太阳能电池组件
CN114335352A (zh) * 2021-12-24 2022-04-12 华侨大学 一种减小金属电极反射损耗的有机太阳能电池及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949463A (en) * 1973-02-13 1976-04-13 Communications Satellite Corporation (Comsat) Method of applying an anti-reflective coating to a solar cell
US4514582A (en) * 1982-09-17 1985-04-30 Exxon Research And Engineering Co. Optical absorption enhancement in amorphous silicon deposited on rough substrate
JP2005244073A (ja) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology 太陽電池及び太陽電池の製造方法
CN101648777A (zh) * 2009-07-31 2010-02-17 佳晶光电(厦门)有限公司 一种高透过率tp玻璃及其制造方法
CN101836300A (zh) * 2007-10-29 2010-09-15 Tg太阳能株式会社 太阳能电池的制造方法
WO2011032878A2 (en) * 2009-09-18 2011-03-24 Oerlikon Solar Ag, Truebbach Method for manufacturing a thin-film, silicon based solar cell device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101246916A (zh) * 2007-02-14 2008-08-20 北京行者多媒体科技有限公司 减少氢化硅薄膜光伏器件内反射的方法
CN201440423U (zh) * 2009-02-23 2010-04-21 福建钧石能源有限公司 薄膜光伏器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949463A (en) * 1973-02-13 1976-04-13 Communications Satellite Corporation (Comsat) Method of applying an anti-reflective coating to a solar cell
US4514582A (en) * 1982-09-17 1985-04-30 Exxon Research And Engineering Co. Optical absorption enhancement in amorphous silicon deposited on rough substrate
JP2005244073A (ja) * 2004-02-27 2005-09-08 National Institute Of Advanced Industrial & Technology 太陽電池及び太陽電池の製造方法
CN101836300A (zh) * 2007-10-29 2010-09-15 Tg太阳能株式会社 太阳能电池的制造方法
CN101648777A (zh) * 2009-07-31 2010-02-17 佳晶光电(厦门)有限公司 一种高透过率tp玻璃及其制造方法
WO2011032878A2 (en) * 2009-09-18 2011-03-24 Oerlikon Solar Ag, Truebbach Method for manufacturing a thin-film, silicon based solar cell device

Also Published As

Publication number Publication date
CN102832261A (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
JP4257332B2 (ja) シリコン系薄膜太陽電池
JP2001308354A (ja) 積層型太陽電池
TWI463682B (zh) 異質接面太陽能電池
TW201021229A (en) Solar cell having reflective structure
CN110970562A (zh) 一种钙钛矿/晶硅叠层太阳能电池及其制备方法
JP2003142709A (ja) 積層型太陽電池およびその製造方法
JP2008270562A (ja) 多接合型太陽電池
WO2022247570A1 (zh) 一种异质结太阳电池及其制备方法
TW201234619A (en) Thin film silicon solar cell in multi-junction configuration on textured glass
WO2012171146A1 (zh) 包含新型减反射层的薄膜太阳能电池及其制造方法
JP4789131B2 (ja) 太陽電池及び太陽電池の製造方法
CN103078001A (zh) 硅基薄膜叠层太阳能电池的制造方法
CN102938430B (zh) 包含中间层的柔性衬底硅基多结叠层太阳电池及其制造方法
CN216213500U (zh) 一种新型异质结晶硅电池
CN215771167U (zh) 一种太阳能电池片及光伏组件
CN202977429U (zh) 一种太阳能电池及减反射膜
JP5469298B2 (ja) 光電変換装置用透明導電膜、及びその製造方法
CN104025307A (zh) 薄膜太阳能电池中的中间反射结构
JP5542038B2 (ja) 薄膜太陽電池およびその製造方法、薄膜太陽電池モジュール
JP5405923B2 (ja) 光電変換素子及びその製造方法
CN219350238U (zh) 光伏电池
CN221239628U (zh) 一种高性能hbc太阳能电池结构
JP2014168012A (ja) 光電変換装置およびその製造方法
US20120305053A1 (en) Solar cell and manufacturing method thereof
CN112234115B (zh) 一种高效背钝化层的晶硅太阳能电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11867781

Country of ref document: EP

Kind code of ref document: A1