WO2012169843A2 - 비수 전해액 및 이를 이용한 리튬 이차전지 - Google Patents
비수 전해액 및 이를 이용한 리튬 이차전지 Download PDFInfo
- Publication number
- WO2012169843A2 WO2012169843A2 PCT/KR2012/004570 KR2012004570W WO2012169843A2 WO 2012169843 A2 WO2012169843 A2 WO 2012169843A2 KR 2012004570 W KR2012004570 W KR 2012004570W WO 2012169843 A2 WO2012169843 A2 WO 2012169843A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- lithium secondary
- carbonate
- secondary battery
- nonaqueous electrolyte
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/523—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a non-aqueous electrolyte lithium secondary battery containing an ester compound having a branched alkyl group and a lithium secondary battery using the same.
- Lithium secondary batteries are the batteries that can best meet these demands, and research on these is being actively conducted.
- lithium secondary batteries developed in the early 1990s are nonaqueous materials in which lithium salts are dissolved in an appropriate amount of lithium salt in an anode made of carbon material, a cathode containing lithium containing oxide, and a mixed organic solvent capable of occluding and releasing lithium ions. It consists of electrolyte solution.
- the average discharge voltage of the lithium secondary battery is about 3.6 ⁇ 3.7V, one of the advantages is that the discharge voltage is higher than other alkaline batteries, nickel-cadmium batteries and the like.
- an electrochemically stable electrolyte composition is required in the charge and discharge voltage range of 0 to 4.2 V.
- a mixed solvent in which cyclic carbonate compounds such as ethylene carbonate and propylene carbonate and linear carbonate compounds such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate are appropriately mixed is used as a solvent of the electrolyte solution.
- LiPF 6 , LiBF 4 , LiClO 4 , and the like are commonly used as lithium salts as electrolytes, which act as a source of lithium ions in the battery to enable operation of the lithium battery.
- lithium ions derived from a cathode active material such as lithium metal oxide move to an anode active material such as graphite and are inserted between the layers of the anode active material.
- anode active material such as graphite
- the electrolyte and the carbon constituting the anode active material react on the surface of the anode active material such as graphite to generate compounds such as Li 2 CO 3 , Li 2 O, and LiOH.
- SEI Solid Electrolyte Interface
- the SEI layer acts as an ion tunnel and passes only lithium ions.
- the SEI layer is an effect of such an ion tunnel, and prevents the structure of the anode from being destroyed by inserting an organic solvent molecule having a large molecular weight moving with lithium ions in the electrolyte between the layers of the anode active material. Therefore, by preventing contact between the electrolyte solution and the anode active material, decomposition of the electrolyte solution does not occur, and the amount of lithium ions in the electrolyte solution is reversibly maintained to maintain stable charge and discharge.
- the SEI layer is unstable, so the problem of increasing the internal pressure of the battery is more prominent.
- ethylene carbonate has a high freezing point of 37 to 39 ° C. and a solid state at room temperature, ionic conductivity at low temperatures is low, and thus a lithium battery using a non-aqueous solvent containing a large amount of ethylene carbonate has a low low temperature conductivity.
- the problem to be solved by the present invention is to solve the above-mentioned problems of the prior art, to provide a non-aqueous electrolyte lithium secondary battery and a lithium secondary battery using the same improved the normal temperature and high temperature cycle.
- the non-aqueous electrolyte solution further comprises an ester compound represented by the following formula (1), the content of the ester compound provides a non-aqueous electrolyte solution for lithium secondary batteries 50 to 90% by volume relative to the total volume of the organic solvent and ester compound. do:
- R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, wherein at least one of R 1 and R 2 is a substituted or unsubstituted branched carbon group having 3 to 10 carbon atoms It is an alkyl group.
- Another aspect of the present invention provides a lithium secondary battery having an anode, a cathode, and a nonaqueous electrolyte, wherein the nonaqueous electrolyte is a nonaqueous electrolyte for the lithium secondary battery.
- a lithium secondary battery having a non-aqueous electrolyte containing a branched alkyl group ester compound at room temperature and compared with a lithium secondary battery having a non-aqueous electrolyte containing only a linear alkyl group ester compound
- a lithium secondary battery having a non-aqueous electrolyte containing only a linear alkyl group ester compound Repeated hundreds of charge and discharge cycles at high temperature can realize the life characteristics and stability of the improved secondary battery, the battery capacity is reduced and the thickness of the battery is remarkably small.
- Fig. 1 is a graph showing the results of measuring the ionic conductivity of mixed solvents while changing the fraction of esters for ethylene carbonate (EC) and fluoroethylene carbonate in the mixed solvent.
- Figure 2 is a graph showing the room temperature life characteristics of the lithium secondary battery prepared in Examples 2-1 to 2-2, and Comparative Examples 2-1 to 2-3.
- Figure 4 is a graph showing the room temperature life characteristics of the lithium secondary battery prepared in Examples 2-1 to 2-2, and Comparative Example 2-1.
- Example 5 is a graph showing the high temperature life characteristics of the lithium secondary batteries prepared in Examples 2-1 to 2-2, Comparative Example 2-1 and Comparative Example 2-7.
- FIG. 6 is a graph showing the high temperature life characteristics of the lithium secondary batteries prepared in Examples 2-5 to 2-6, Comparative Examples 2-8 and Comparative Examples 2-9.
- Example 7 is a graph illustrating life characteristics and thickness changes of the lithium secondary batteries prepared in Examples 2-1 to 2-2 and Comparative Example 2-1.
- Example 10 is a graph showing the life characteristics of the lithium secondary battery prepared in Example 4-3 and Comparative Example 4-2.
- 11 is a graph showing the life characteristics of the lithium secondary battery prepared in Examples 4-4 to 4-5 and Comparative Examples 4-3 to 4-4.
- the non-aqueous electrolyte lithium secondary battery comprising an electrolyte salt and an organic solvent according to an aspect of the present invention further comprises an ester compound represented by the following formula (1), the content of the ester compound of the organic solvent and ester compound 50 to 90% by volume relative to total volume:
- R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, wherein at least one of R 1 and R 2 is a substituted or unsubstituted branched carbon group having 3 to 10 carbon atoms It is an alkyl group.
- the anode As the charging and discharging cycles of the secondary battery in which the nonaqueous electrolyte is injected are repeated, the anode also has a rapid shrinkage expansion, and when the SEI layer collapses due to the expansion of the anode during charging, a new SEI layer is formed by decomposition of the electrolyte. As a result, the electrolyte is gradually depleted, and as a result, lithium ions present in the electrolyte are consumed and the capacity of the battery decreases as the cycle progresses. Depletion of electrolyte mainly occurs in cyclic carbonate in solvents. For example, when the electrolyte is analyzed by disassembling the battery at the point where the life span decreases during the life test, all of the fluoroethylene carbonate (FEC) used as the cyclic carbonate is consumed. It could be known.
- FEC fluoroethylene carbonate
- the ester compound according to an aspect of the present invention has a substituted or unsubstituted branched alkyl group having 3 to 10 carbon atoms in an essentially bonded state with at least one of oxygen and carbonyl groups of the ester group, and a linear alkyl group Compared with the ester compound containing only bay, it is easy to generate radicals. Therefore, the ester compound having the branched alkyl group generates radicals instead of the cyclic carbonates, thereby inhibiting decomposition of the cyclic carbonates in the electrolyte solution, which makes it possible to maintain the capacity of the battery for a long time.
- R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 8 carbon atoms, wherein at least one of R 1 and R 2 is a substituted or unsubstituted branched alkyl group having 3 to 8 carbon atoms Can be.
- R 1 and R 2 are each independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, wherein at least one of R 1 and R 2 is a substituted or unsubstituted isoalkyl group having 3 to 8 carbon atoms, substituted Or an unsubstituted sec-alkyl group having 4 to 8 carbon atoms or a substituted or unsubstituted tert-alkyl group having 4 to 8 carbon atoms.
- R 1 is a methyl group, ethyl group, or propyl group
- R 2 is isopropyl group, isobutyl group, isopentyl group, isohexyl group, sec-butyl group, sec-pentyl group, tert-butyl Group, or tert-pentyl group.
- R 1 is isopropyl group, isobutyl group, isopentyl group, isohexyl group, sec-butyl group, sec-pentyl group, tert-butyl group, or tert-pentyl group
- R 2 is a methyl group, It may be an ethyl group or a propyl group.
- R 1 and R 2 may each independently be an isopropyl group, isobutyl group, isopentyl group, isohexyl group, sec-butyl group, sec-pentyl group, tert-butyl group, or tert-pentyl group.
- Non-limiting examples of such ester compounds are isobutyl propionate, isobutyl butyrate, isoamyl propionate, ethyl 2-methylbutyrate, ethyl isovalerate, ethyl isobutyrate, methyl 2-methylbutyrate, methyl iso And at least one selected from the group consisting of valerate, methyl isobutyrate, propyl 2-methylbutyrate, propyl isovalerate, and propyl isobutyrate.
- the content of the ester compound may be 50 to 90% by volume, or 60 to 80% by volume based on the total volume of the nonaqueous solvent and the ester compound.
- FIG. 1 is a graph showing the results of measuring the ionic conductivity of a mixed solvent of these cyclic carbonates and esters while changing the fraction of esters for ethylene carbonate (EC) or fluoroethylene carbonate mainly used as cyclic carbonates. .
- 1 M of LiPF 6 was added as the electrolyte salt.
- the content of ester may be 50 to 90% by volume, or 60 to 80% by volume.
- R 1 and R 2 may be substituted.
- at least one hydrogen atom included in the alkyl group of R 1 and R 2 may be a halogen atom, cyano group, hydroxy group, nitro group, amino group ( -NH 2 , -NH (R), -N (R ') (R''),R' and R "are independently of each other an alkyl group having 1 to 10 carbon atoms), an alkyl group having 1 to 12 carbon atoms, 1 to carbon atoms And optionally substituted with a halogenated alkyl group of 12, an alkenyl group of 2 to 12 carbon atoms, an alkynyl group of 2 to 12 carbon atoms, and an aryl group of 6 to 12 carbon atoms.
- the electrolyte salt contained in the nonaqueous electrolyte solution according to one aspect of the present invention is a lithium salt.
- the lithium salt may be used without limitation those conventionally used in the lithium secondary battery electrolyte.
- the anion of the lithium salt is F - , Cl - , Br - , I - , NO 3 - , N (CN) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 )
- organic solvent included in the nonaqueous electrolyte described above those conventionally used in the lithium secondary battery electrolyte may be used without limitation, and for example, ethers, esters, amides, linear carbonates, and cyclic carbonates may be used alone or in combination of two or more. It can be mixed and used.
- carbonate compounds which are typically cyclic carbonates, linear carbonates, or mixtures thereof may be included.
- cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate and any one selected from the group consisting of halides thereof or mixtures of two or more thereof.
- the halide of the cyclic carbonate may be a compound represented by the following formula (2).
- R 3 , R 4 , R 5 , and R 6 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, wherein at least one of R 3 , R 4 , R 5 , and R 6 Hydrogen is substituted with halogen.
- the halogen include chlorine and fluorine.
- halide of the cyclic carbonate examples include fluoroethylene carbonate (FEC), 1, 2-difluoroethylene carbonate, chloroethylene carbonate, 1, 2-dichloroethylene carbonate, and the like. no.
- linear carbonate compound examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate. Any one selected or a mixture of two or more thereof may be representatively used, but is not limited thereto.
- ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are high viscosity organic solvents and have a high dielectric constant, which may dissociate lithium salts in the electrolyte more effectively.
- ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, are high viscosity organic solvents and have a high dielectric constant, which may dissociate lithium salts in the electrolyte more effectively.
- any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, and ethylpropyl ether, or a mixture of two or more thereof may be used. It is not limited to this.
- esters in the organic solvent include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone and One or a mixture of two or more selected from the group consisting of ⁇ -caprolactone may be used, but is not limited thereto.
- the non-aqueous electrolyte lithium secondary battery according to an aspect of the present invention may further include a conventionally known additive for forming the SEI layer in a range not departing from the object of the present invention.
- a conventionally known additive for forming the SEI layer usable in the present invention cyclic sulfite, saturated sultone, unsaturated sultone, acyclic sulfone, and the like may be used alone or in combination of two or more, but is not limited thereto.
- vinylene carbonate and vinylethylene carbonate may also be used as additives for forming an SEI layer for improving battery life.
- the cyclic sulfites include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethyl ethylene sulfite, 4,5-diethyl ethylene sulfite, propylene sulfite, 4,5-dimethyl propylene sulfide Pite, 4,5-diethyl propylene sulfite, 4,6-dimethyl propylene sulfite, 4,6-diethyl propylene sulfite, 1,3-butylene glycol sulfite, and the like.
- 1,3-propane sultone, 1,4-butane sultone, and the like, and unsaturated sultone include ethene sultone, 1,3-propene sultone, 1,4-butene sultone, 1-methyl-1,3-prop Pen sulfone etc. are mentioned, As acyclic sulfone, divinyl sulfone, dimethyl sulfone, diethyl sulfone, methyl ethyl sulfone, methyl vinyl sulfone, etc. are mentioned.
- the additive for forming the SEI layer may be included in an appropriate content according to the specific type of the additive, for example, may be included in 0.01 to 10 parts by weight relative to 100 parts by weight of the nonaqueous electrolyte.
- the nonaqueous electrolyte may be used as an electrolyte of a lithium secondary battery in the form of a gel polymer electrolyte impregnated with a liquid electrolyte or a polymer per se.
- the electrolyte salt is mixed with the nonaqueous solvent, and the content of the ester compound represented by Chemical Formula 1 is from 50 to about the total volume of the organic solvent and the ester compound. It can be obtained by adding and dissolving to 90% by volume.
- the compound added to the nonaqueous solvent used and electrolyte solution can be refine
- air or carbon dioxide in the nonaqueous electrolyte for example, it is possible to further improve battery characteristics such as suppression of gas generation due to decomposition of the electrolyte and long-term cycle characteristics and charge storage characteristics.
- an electrolyte solution in which carbon dioxide is dissolved in a nonaqueous electrolyte solution can be used.
- the amount of carbon dioxide dissolved may be at least 0.001% by weight, or at least 0.05% by weight, or at least 0.2% by weight relative to the weight of the nonaqueous electrolyte, and may be dissolved in the nonaqueous electrolyte until the carbon dioxide is saturated.
- the nonaqueous electrolyte is A lithium secondary battery, which is a nonaqueous electrolyte for lithium secondary batteries described above, is provided:
- Cathode, anode, and separator constituting the electrode assembly may be used all those conventionally used in the manufacture of a lithium secondary battery.
- the cathode has a structure in which a cathode layer including a cathode active material, a conductive material, and a binder is supported on one or both surfaces of a current collector.
- the lithium-containing transition metal oxide may be coated with a metal or metal oxide such as aluminum (Al).
- a metal or metal oxide such as aluminum (Al).
- sulfide, selenide, halide, and the like may also be used.
- the conductive material is not particularly limited as long as it is an electronic conductive material that does not cause chemical change in the electrochemical device.
- carbon black, graphite, carbon fiber, carbon nanotubes, metal powder, conductive metal oxide, organic conductive materials, and the like can be used, and currently commercially available products as acetylene black series (Chevron Chemical) Chevron Chemical Company or Gulf Oil Company, etc., Ketjen Black EC series (Armak Company), Vulcan XC-72 (Cabot Company) (Cabot Company) and Super P (MMM).
- acetylene black, carbon black, graphite, etc. are mentioned.
- the anode has a structure in which an anode layer including an anode active material and a binder is supported on one side or both sides of a current collector.
- anode active material a carbon material, a lithium metal, a metal compound, and a mixture thereof, which may normally occlude and release lithium ions, may be used.
- both low crystalline carbon and high crystalline carbon may be used.
- Soft crystalline carbon and hard carbon are typical low crystalline carbon
- high crystalline carbon is natural graphite, Kish graphite, pyrolytic carbon, liquid crystal pitch-based carbon fiber.
- High temperature calcined carbon such as (mesophase pitch based carbon fiber), meso-carbon microbeads, Mesophase pitches and petroleum or coal tar pitch derived cokes.
- metal compounds metal elements such as Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba, etc.
- the compound containing 1 or more types is mentioned.
- These metal compounds may be used in any form, such as alloys, alloys, oxides (SiO, TiO 2 , SnO 2, etc.), nitrides, sulfides, borides, and lithium.
- the alloy can be high capacity.
- one or more elements selected from Si, Ge, and Sn may be contained, and one or more elements selected from Si and Sn may further increase the capacity of the battery.
- anode active material a mixture of a metal compound and a carbon material may be used, wherein the weight ratio of the metal compound to the carbon material is 1:99 to 40:60, or 3:97 to 33:67, or 5:95 to 20 May be: 80.
- the weight ratio of the metal compound to the carbon material satisfies the above range, the electrical conductivity decreases due to the use of the metal compound alone and the crack generation of the active material due to volume expansion is minimized, and the capacity of the anode active material is improved to improve the capacity of the metal compound and carbon. It is possible to provide excellent electrochemical properties to the electrochemical device to which a mixture of materials is applied.
- the binders used for the cathode and the anode have a function of retaining the cathode active material and the anode active material in the current collector and connecting the active materials, and a binder commonly used may be used without limitation.
- PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
- PVDF-co-HFP vinylidene fluoride-hexafluoropropylene copolymer
- polyacrylonitrile polyacrylonitrile
- polymethylmethacrylate polymethylmethacrylate
- SBR butadiene rubber
- CMC carboxymethyl cellulose
- the current collectors used for the cathode and the anode are metals of high conductivity, and metals to which the slurry of the active material can easily adhere can be used as long as they are not reactive in the voltage range of the battery.
- a non-limiting example of a cathode current collector is a foil prepared by aluminum, nickel or a combination thereof
- a non-limiting example of an anode current collector is copper, gold, nickel or a copper alloy or a combination thereof.
- the current collector may be used by stacking substrates made of the materials.
- the cathode and the anode are kneaded using an active material, a conductive agent, a binder, and a high boiling point solvent to form an electrode mixture, and then the mixture is applied to a copper foil of a current collector, dried, and press-molded, then about 50 ° C to 250 ° C. It may be produced by heat treatment under vacuum at a temperature of about 2 hours.
- the thickness of the electrode layer of the cathode may be 30 to 120 ⁇ m, or 50 to 100 ⁇ m
- the thickness of the electrode layer of the anode may be 1 to 100 ⁇ m, or 3 to 70 ⁇ m.
- the separator may be a conventional porous polymer film conventionally used as a separator, such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer.
- the porous polymer film made of the polyolefin-based polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a non-woven fabric made of high melting glass fiber, polyethylene terephthalate fiber, or the like may be used. It doesn't happen.
- the lithium secondary battery of the present invention is not limited in appearance, but may be cylindrical, square, pouch type, or coin type using a can.
- Fluoroethylene carbonate (FEC) and isobutyl propionate were mixed at 20% by volume and 80% by volume, and LiPF 6 was dissolved therein at a concentration of 1 M to prepare a nonaqueous electrolyte.
- a nonaqueous electrolyte was prepared in the same manner as in Example 1-1, except that isoamyl propionate was used instead of isobutyl propionate.
- FEC fluoroethylene carbonate
- isobutyl propionate 30% by volume and 70% by volume of fluoroethylene carbonate (FEC) and isobutyl propionate are mixed, with respect to 100 parts by weight of 100 parts by weight of the total of fluoroethylene carbonate (FEC) and isobutyl propionate.
- 3 parts by weight of -propene-sultone and 3 parts by weight of 1,3-propane sultone were added, and LiPF 6 was dissolved to a concentration of 1 M to prepare a nonaqueous electrolyte.
- a nonaqueous electrolyte was prepared in the same manner as in Example 1-5, except that isoamyl propionate was used instead of isobutyl propionate.
- a non-aqueous electrolyte was prepared in the same manner as in Example 1-1, except that n-butyl propionate was used instead of isobutyl propionate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 1-1, except that n-pentyl propionate was used instead of isobutyl propionate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 1-1, except that n-hexyl propionate was used instead of isobutyl propionate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 1-1, except that ethyl propionate was used instead of isobutyl propionate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 1-5, except that n-butyl propionate was used instead of isobutyl propionate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 1-5, except that ethyl propionate was used instead of isobutyl propionate.
- a nonaqueous electrolyte was prepared by mixing fluoroethylene carbonate (FEC) and isoamyl propionate at 60% by volume and 40% by volume, and dissolving LiPF 6 at a concentration of 1M.
- FEC fluoroethylene carbonate
- isoamyl propionate 60% by volume and 40% by volume
- Fluoroethylene carbonate (FEC), dimethyl carbonate (DMC), and isoamyl propionate are mixed at 30% by volume, 30% by volume, and 40% by volume, and LiPF 6 is dissolved therein to a 1 M concentration to prepare a nonaqueous electrolyte.
- FEC Fluoroethylene carbonate
- DMC dimethyl carbonate
- isoamyl propionate is mixed at 30% by volume, 30% by volume, and 40% by volume, and LiPF 6 is dissolved therein to a 1 M concentration to prepare a nonaqueous electrolyte.
- An electrode was prepared using LiCoO 2 as a cathode and Si oxide (10 wt.% SiO, 90 wt.% Graphite, prepared using a non-aqueous binder) as an anode, and then the non-aqueous material prepared in Example 1-1.
- a lithium secondary battery was manufactured by a conventional method of injecting an electrolyte solution.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1 except for using the nonaqueous electrolyte prepared in Example 1-2.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Example 1-3.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Example 1-4.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except that artificial graphite was used as the anode, and the electrolyte prepared in Example 1-5 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except that artificial graphite was used as the anode, and the electrolyte prepared in Example 1-6 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Comparative Example 1-1.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Comparative Example 1-2.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1 except for using the nonaqueous electrolyte prepared in Comparative Example 1-3.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Comparative Example 1-4.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1 except for using the nonaqueous electrolyte prepared in Comparative Example 1-5.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Comparative Example 1-6.
- a lithium secondary battery was manufactured in the same manner as in Example 2-1, except for using the nonaqueous electrolyte prepared in Comparative Example 1-7.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 2-1, except that artificial graphite was used as the anode and the electrolyte prepared in Comparative Example 1-8 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 2-1, except that artificial graphite was used as the anode and the electrolyte prepared in Comparative Example 1-9 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 2-1, except that the electrolyte prepared in Comparative Example 1-10 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 2-1, except that the electrolyte prepared in Comparative Example 1-11 was used as the electrolyte.
- the lithium secondary batteries (battery capacity 950 mAh) prepared in Examples 2-1 to 2-2 and Comparative Examples 2-1 to 2-3 were charged at 23 ° C. with a constant current of 0.5 C until they reached 4.35 V, and then 4.35. Charging was terminated when the battery was charged at a constant voltage of V and the charging current reached 50 mA. Thereafter, it was left for 10 minutes and discharged until it reached 2.5V with a constant current of 0.5C. After 500 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 2.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the previously manufactured batteries means a current of 0.95A.
- the lithium secondary batteries (battery capacity 950 mAh) prepared in Examples 2-3 to 2-4 and Comparative Examples 2-4 to 2-6 were charged at 23 ° C. with a constant current of 0.5 C until they reached 4.35 V, and then 4.35 Charging was terminated when the battery was charged at a constant voltage of V and the charging current reached 50 mA. Thereafter, it was left for 10 minutes and discharged until it reached 2.5V with a constant current of 0.5C. After 700 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 3.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the previously manufactured batteries means a current of 0.95A.
- the lithium secondary batteries (battery capacity 950 mAh) prepared in Examples 2-1 to 2-2 and Comparative Example 2-1 were charged at 23 ° C. with a constant current of 1.0 C until they reached 4.35 V, and then at a constant voltage of 4.35 V. Charging was terminated when the charging current reached 50 mA. Thereafter, it was left for 10 minutes and then discharged until it reached 2.5V with a constant current of 1.0C.
- the battery capacity was measured after 400 cycles of charge and discharge, and is shown in FIG. 4.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the previously manufactured batteries means a current of 0.95A.
- the lithium secondary batteries (battery capacity 950 mAh) prepared in Examples 2-1 to 2-2, Comparative Example 2-1, and Comparative Example 2-7 were charged at 45 ° C. at a constant current of 1.0 C until they reached 4.35 V. Charging was terminated when the battery was charged at a constant voltage of 4.35V and the charging current reached 50mA. Thereafter, it was left for 10 minutes and then discharged until it reached 2.5V with a constant current of 1.0C. After 400 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 5.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the previously manufactured batteries means a current of 0.95A.
- Lithium secondary batteries (battery capacity 5.5 mAh) prepared in Examples 2-5 to 2-6, Comparative Examples 2-8 and Comparative Examples 2-9 were charged at 55 ° C. at a constant current of 0.7 C to 4.35 V, After charging at a constant voltage of 4.35V, the charging was terminated when the charging current became 0.275mA. Thereafter, it was left for 10 minutes and discharged until it became 3.0V with a constant current of 0.5C. After 200 cycles of the above charging and discharging, the battery capacity was measured and shown in FIG. 6.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the cells manufactured previously means a current of 5.5 mA.
- the upper graph shows the capacity change of the battery and the lower graph shows the thickness change.
- Fluoroethylene carbonate (FEC) and ethyl 2-methylbutyrate were mixed at 20% by volume and 80% by volume, and LiPF 6 was dissolved therein at a concentration of 1M, to prepare a nonaqueous electrolyte.
- a nonaqueous electrolyte was prepared in the same manner as in Example 3-1, except that ethyl isovalerate was used instead of ethyl 2-methylbutyrate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 3-1, except that ethyl isobutyrate was used instead of ethyl 2-methylbutyrate.
- Fluoroethylene carbonate (FEC) and ethyl 2-methylbutyrate are mixed at 30% and 70% by volume, with respect to 100 parts by weight based on the total of 100 parts by weight of fluoroethylene carbonate (FEC) and ethyl 2-methylbutyrate. 3 parts by weight of -propene-sultone and 3 parts by weight of 1,3-propane sultone were added, and LiPF 6 was dissolved to a concentration of 1 M to prepare a nonaqueous electrolyte.
- a non-aqueous electrolyte was prepared in the same manner as in Example 3-4, except that ethyl isovalerate was used instead of ethyl 2-methylbutyrate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 3-1, except that ethyl valerate was used instead of ethyl 2-methylbutyrate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 3-1, except that ethyl butyrate was used instead of ethyl 2-methylbutyrate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 3-4, except that ethyl valerate was used instead of ethyl 2-methylbutyrate.
- a nonaqueous electrolyte was prepared in the same manner as in Example 3-4, except that ethyl butyrate was used instead of ethyl 2-methylbutyrate.
- Fluoroethylene carbonate (FEC) and ethyl 2-methylbutyrate were mixed at 60% by volume and 40% by volume, and LiPF 6 was dissolved therein at a concentration of 1M to prepare a nonaqueous electrolyte.
- Fluoroethylene carbonate (FEC), dimethyl carbonate (DMC), and ethyl 2-methylbutyrate were mixed at 30% by volume, 30% by volume, and 40% by volume, and then dissolved LiPF 6 to a concentration of 1M to prepare a nonaqueous electrolyte solution. It was.
- An electrode was prepared using LiCoO 2 as a cathode and Si oxide (10% by weight of SiO, 90% by weight of graphite and prepared using a non-aqueous binder) as a cathode, followed by the non-aqueous solution prepared in Example 3-1.
- a lithium secondary battery was manufactured by a conventional method of injecting an electrolyte solution.
- a lithium secondary battery was manufactured in the same manner as in Example 4-1, except for using the nonaqueous electrolyte prepared in Example 3-2.
- a lithium secondary battery was manufactured in the same manner as in Example 4-1, except for using the nonaqueous electrolyte prepared in Example 3-3.
- a lithium secondary battery was manufactured in the same manner as in Example 4-1, except that artificial graphite was used as the anode and the electrolyte prepared in Example 3-4 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Example 4-1, except that artificial graphite was used as the anode and the electrolyte prepared in Example 3-5 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Example 4-1 except for using the nonaqueous electrolyte prepared in Comparative Example 3-1.
- a lithium secondary battery was manufactured in the same manner as in Example 4-1, except for using the nonaqueous electrolyte prepared in Comparative Example 3-2.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 4-1, except that artificial graphite was used as the anode and the electrolyte prepared in Comparative Example 3-3 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 4-1, except that artificial graphite was used as the anode and the electrolyte prepared in Comparative Example 3-4 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 4-1, except that the electrolyte prepared in Comparative Example 3-5 was used as the electrolyte.
- a lithium secondary battery was manufactured in the same manner as in Comparative Example 4-1, except that the electrolyte prepared in Comparative Example 3-6 was used as the electrolyte.
- the lithium secondary batteries (60 mAh capacity) prepared in Examples 4-1 to 4-2 and Comparative Example 4-1 were charged at 23 ° C. with a constant current of 0.5 C until they reached 4.35 V, and then at a constant voltage of 4.35 V. Charging was terminated when the charging current reached 3.0mA. Thereafter, it was left for 10 minutes and discharged until it reached 2.5V with a constant current of 0.5C. After 200 cycles of charging and discharging, the battery capacity was measured and shown in FIG. 9.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the previously manufactured batteries means a current of 0.06A.
- the lithium secondary battery (battery capacity 950 mAh) prepared in Example 4-3 and Comparative Example 4-2 was charged at 23 ° C. with a constant current of 0.5C until it became 4.35V, and then charged with a constant voltage of 4.35V to charge current Charging was complete
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the batteries manufactured above means a current of 0.95A.
- Lithium secondary batteries (battery capacity 5.5mAh) prepared in Examples 4-4 to 4-5 and Comparative Examples 4-3 to 4-4 were charged at 55 ° C. at a constant current of 0.7 C to 4.35 V, then 4.35. Charging was terminated when the battery was charged at a constant voltage of V and the charging current reached 0.275 mA. Thereafter, it was left for 10 minutes and discharged until it became 3.0V with a constant current of 0.5C. After 100 cycles of the charging and discharging, the discharge capacity was measured and shown in FIG. 11.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the cells manufactured previously means a current of 5.5 mA.
- C represents the charge / discharge current rate and C-rate of the battery represented by ampere (A) and is usually expressed as a ratio to the battery capacity. That is, 1C of the cells manufactured previously means a current of 5.5 mA.
- a lithium secondary battery having an electrolyte solution containing an ester compound in which a branched alkyl group such as ethyl 2-methylbutyrate, ethyl isovalerate, and ethyl isobutyrate is bonded to a carbonyl group has a linear alkyl group. It can be seen that the life time dropping time is considerably slower than that of a lithium secondary battery having an electrolyte solution containing an ester compound bonded to a carbonyl group, thereby showing excellent life characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
분지형 알킬기를 갖는 에스테르 화합물을 포함하는 리튬 이차전지용 비수 전해액 및 이를 이용한 리튬 이차전지가 제시된다.
Description
본 발명은 분지형 알킬기를 갖는 에스테르 화합물을 포함하는 리튬 이차전지용 비수 전해액 및 이를 이용한 리튬 이차전지에 관한 것이다.
본 출원은 2011년 6월 8일에 출원된 한국특허출원 제10-2011-0055197호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2011년 6월 8일에 출원된 한국특허출원 제10-2011-0055198호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
또한, 본 출원은 2012년 6월 8일에 출원된 한국특허출원 제10-2012-0061584호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용 분야가 확대되면서, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다. 리튬 이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 현재 이에 대한 연구가 활발히 진행되고 있다.
현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재로 된 애노드, 리튬 함유 산화물로 된 캐소드 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액으로 구성되어 있다.
리튬 이차전지의 평균 방전 전압은 약 3.6~3.7V로서, 다른 알칼리 전지, 니켈-카드뮴 전지 등에 비하여 방전 전압이 높은 것이 장점 중의 하나이다. 이러한 높은 구동 전압을 내기 위해서는 충방전 전압 영역인 0~4.2V에서 전기화학적으로 안정한 전해액 조성이 필요하다. 이를 위하여, 에틸렌 카보네이트, 프로필렌 카보네이트 등의 환형 카보네이트 화합물 및 디메틸 카보네이트, 에틸메틸 카보네이트, 디에틸카보네이트 등의 선형 카보네이트 화합물이 적절히 혼합된 혼합 용매를 전해액의 용매로 이용한다. 전해액의 용질인 리튬염으로는 통상 LiPF6, LiBF4, LiClO4 등을 사용하는데, 이들은 전지 내에서 리튬 이온의 공급원으로 작용하여 리튬 전지의 작동이 가능하게 한다.
리튬 이차전지의 초기 충전시 리튬 금속 산화물 등의 캐소드 활물질로부터 나온 리튬 이온은 그래파이트 등의 애노드 활물질로 이동하여, 애노드 활물질의 층간에 삽입된다. 이때, 리튬은 반응성이 강하므로 그래파이트 등의 애노드 활물질 표면에서 전해액과 애노드 활물질을 구성하는 탄소가 반응하여 Li2CO3, Li2O, LiOH 등의 화합물을 생성한다. 이들 화합물은 그래파이트 등의 애노드 활물질의 표면에 일종의 SEI(Solid Electrolyte Interface)층을 형성하게 된다.
SEI층은 이온 터널의 역할을 수행하여 리튬 이온 만을 통과시킨다. SEI층은 이러한 이온 터널의 효과로서, 전해액 중에서 리튬 이온과 함께 이동하는 분자량이 큰 유기 용매 분자가 애노드 활물질의 층간에 삽입되어 애노드 구조가 파괴되는 것을 막아준다. 따라서, 전해액과 애노드 활물질의 접촉을 방지함으로써 전해액의 분해가 발생하지 않고, 전해액 중의 리튬 이온의 양이 가역적으로 유지되어 안정적인 충방전이 유지된다.
그러나, 상술한 SEI층 형성 반응 중에 카보네이트계 용매의 분해로부터 발생되는 CO, CO2, CH4, C2H6 등의 기체로 인하여 충전시 전지 두께가 팽창하는 문제가 발생한다. 또한, 만충전 상태에서 고온 방치시 시간이 경과함에 따라서, SEI층이 증가된 전기화학적 에너지와 열에너지에 의해 서서히 붕괴되어, 노출된 애노드 표면과 주위의 전해액이 반응하는 부반응이 지속적으로 일어나게 된다. 이때의 계속적인 기체 발생으로 인하여 전지의 내압이 상승하게 되며, 그 결과 각형 전지와 파우치 전지의 경우, 전지의 두께가 증가하여 핸드폰 및 노트북 등의 셋트에서 문제를 유발한다. 즉, 고온 방치 안전성이 불량하다. 또한, 에틸렌 카보네이트를 다량 포함하는 통상의 리튬 이차전지는 SEI층이 불안정하여 상기한 전지의 내압 상승 문제가 더 두드러진다. 더불어, 에틸렌 카보네이트는 어는점이 37~39℃로 높아서 실온에서 고체 상태이기 때문에 저온에서의 이온 전도도가 낮아서 에틸렌 카보네이트를 다량 함유하는 비수계 용매를 사용하는 리튬 전지는 저온 도전율이 불량한 문제점이 있다.
이와 같은 문제점을 해결하기 위하여, 카보네이트 유기용매의 용매 성분의 조성을 다양하게 변화시키거나 특정 첨가제를 혼합하여 SEI층 형성 반응의 양상을 변화시키려는 연구가 진행되어 왔다. 그러나, 지금까지 알려진 바로는 전지 성능 향상을 위하여 용매 성분을 변화시키거나 특정 화합물을 전해액에 첨가할 경우, 일부 항목의 성능은 향상되지만, 다른 항목의 성능은 감소되는 경우가 많았다.
따라서, 고율 충방전 특성이 우수하면서도 사이클 수명, 저온 방전 특성, 고온 방전 특성이 모두 양호한 리튬 이차전지를 제공할 수 있는 비수 전해액 조성의 개발이 시급하다.
본 발명이 해결하고자 하는 과제는 전술한 종래기술의 문제점을 해결하여, 상온 및 고온 사이클이 개선된 리튬 이차전지용 비수 전해액 및 이를 이용한 리튬 이차전지를 제공하는데 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일 측면은
전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액에 있어서,
상기 비수 전해액이 하기 화학식 1로 표시되는 에스테르계 화합물을 더 포함하고, 상기 에스테르계 화합물의 함량이 상기 유기용매 및 에스테르계 화합물의 총부피에 대하여 50 내지 90 부피%인 리튬 이차전지용 비수 전해액을 제공한다:
[화학식 1]
상기 화학식 1에서, R1 및 R2가 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, 이때, R1 및 R2 중 적어도 하나가 치환 또는 비치환된 탄소수 3 내지 10의 분지형 알킬기이다.
본 발명의 다른 측면은 애노드, 캐소드 및 비수 전해액을 구비하는 리튬 이차전지에 있어서, 상기 비수 전해액이 상기 리튬 이차전지용 비수 전해액인 리튬 이차전지를 제공한다.
본 발명의 일 측면에 따르면, 분지형 알킬기 에스테르계 화합물을 함유하는 비수 전해액을 구비한 리튬 이차전지를 사용함으로써, 직쇄형 알킬기 에스테르계 화합물 만을 함유한 비수 전해액을 구비한 리튬 이차전지에 비하여 상온 및 고온에서 수백회의 충방전 사이클을 반복하여도 전지 용량의 감소 및 전지의 두께의 변화가 현저히 작은 개선된 이차전지의 수명 특성 및 안정성을 구현할 수 있다.
도 1은 혼합 용매에서 에틸렌 카보네이트(EC) 및 플루오로에틸렌 카보네이트에 대한 에스테르의 분율을 변경해 가면서, 혼합 용매의 이온 전도도를 측정한 결과를 도시하는 그래프이다.
도 2는 실시예 2-1 내지 2-2, 및 비교예 2-1 내지 2-3에서 제조된 리튬 이차전지의 상온 수명 특성을 나타낸 그래프이다.
도 3은 실시예 2-3 내지 2-4, 및 비교예 2-4 내지 2-6에서 제조된 리튬 이차전지의 상온 수명 특성을 나타낸 그래프이다.
도 4는 실시예 2-1 내지 2-2, 및 비교예 2-1에서 제조된 리튬 이차전지의 상온 수명 특성을 나타낸 그래프이다.
도 5는 실시예 2-1 내지 2-2, 비교예 2-1 및 비교예 2-7에서 제조된 리튬 이차전지의 고온 수명 특성을 나타낸 그래프이다.
도 6은 실시예 2-5 내지 2-6, 비교예 2-8 및 비교예 2-9에서 제조된 리튬 이차전지의 고온 수명 특성을 나타낸 그래프이다.
도 7은 실시예 2-1 내지 2-2, 및 비교예 2-1에서 제조된 리튬 이차전지의 수명 특성 및 두께 변화를 나타낸 그래프이다.
도 8은 실시예 2-2, 및 비교예 2-10 내지 2-11에서 제조된 리튬 이차전지의 수명 특성 및 두께 변화를 나타낸 그래프이다.
도 9는 실시예 4-1 내지 4-2, 및 비교예 4-1에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 10은 실시예 4-3 및 비교예 4-2에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 11은 실시예 4-4 내지 4-5 및 비교예 4-3 내지 4-4에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
도 12는 실시예 4-4 및 비교예 4-5 내지 4-6에서 제조된 리튬 이차전지의 수명 특성을 나타낸 그래프이다.
이하, 본 발명에 대해 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 일 측면에 따른 전해질 염 및 유기용매를 포함하는 리튬 이차전지용 비수 전해액은 하기 화학식 1로 표시되는 에스테르계 화합물을 더 포함하고, 상기 에스테르계 화합물의 함량이 상기 유기용매 및 에스테르계 화합물의 총부피에 대하여 50 내지 90 부피%이다:
[화학식 1]
상기 화학식 1에서, R1 및 R2가 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, 이때, R1 및 R2 중 적어도 하나가 치환 또는 비치환된 탄소수 3 내지 10의 분지형 알킬기이다.
상기 비수 전해액이 주입된 이차전지의 충전 및 방전 사이클이 반복함에 따라, 애노드도 급격한 수축팽창을 동반하게 되고, 충전시 애노드의 팽창으로 SEI층이 붕괴되면 전해액 분해에 의하여 새로운 SEI층이 생성된다. 이로인해 전해질이 점차 고갈되고, 그 결과, 전해액 내에 존재하는 리튬 이온이 소모되어 사이클이 진행됨에 따라 전지의 용량이 감소하게 된다. 전해질의 고갈은 용매 중에서는 주로 환형 카보네이트에서 일어나게 되며, 그 예로 수명 테스트 중 수명이 급감한 시점에서의 전지를 분해하여 전해액을 분석하여 보면 환형 카보네이트로서 사용하였던 플르오로에틸렌 카보네이트(FEC)가 모두 소모됨을 알 수 있었다.
한편, 본 발명의 일 측면에 따른 상기 에스테르계 화합물은 치환 또는 비치환된 탄소수 3 내지 10의 분지형 알킬기를 에스테르기의 산소 및 카르보닐기 중 적어도 하나와 결합된 상태로 필수적으로 가지고 있고, 직쇄형 알킬기만을 함유한 에스테르계 화합물에 비하여 라디칼을 생성하기가 용이한 특성을 가지게 된다. 따라서, 상기 분지형 알킬기를 갖는 에스테르계 화합물은 환형 카보네이트 대신 라디칼을 생성하여 전해액 중 환형 카보네이트의 분해을 억제하게 되고, 이는 전지의 용량을 장기간 유지하게 할 수 있게 된다.
이때, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬기이고, 이때, R1 및 R2 중 적어도 하나는 치환 또는 비치환된 탄소수 3 내지 8의 분지형 알킬기일 수 있다. 또한, 상기 R1 및 R2는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고, 이때, R1 및 R2 중 적어도 하나는 치환 또는 비치환된 탄소수 3 내지 8의 이소알킬기, 치환 또는 비치환된 탄소수 4 내지 8의 sec-알킬기또는 치환 또는 비치환된 탄소수 4 내지 8의 tert-알킬기일 수 있다.
구체적으로는, 상기 R1은 메틸기, 에틸기, 또는 프로필기이고, 상기 R2는 이소프로필기, 이소부틸기, 이소펜틸기, 이소헥실기, sec-부틸기, sec-펜틸기, tert-부틸기, 또는 tert-펜틸기일 수 있다. 또한, 상기 R1은 이소프로필기, 이소부틸기, 이소펜틸기, 이소헥실기, sec-부틸기, sec-펜틸기, tert-부틸기, 또는 tert-펜틸기이고, 상기 R2는 메틸기, 에틸기, 또는 프로필기일 수 있다. 또한, R1 및 R2가 각각 독립적으로 이소프로필기, 이소부틸기, 이소펜틸기, 이소헥실기, sec-부틸기, sec-펜틸기, tert-부틸기, 또는 tert-펜틸기일 수 있다.
상기 에스테르계 화합물의 비제한적인 예로는 이소부틸 프로피오네이트, 이소부틸 부티레이트, 이소아밀 프로피오네이트로, 에틸 2-메틸부티레이트, 에틸 이소발레레이트, 에틸 이소부티레이트, 메틸 2-메틸부티레이트, 메틸 이소발레레이트, 메틸 이소부티레이트, 프로필 2-메틸부티레이트, 프로필 이소발레레이트, 및 프로필 이소부티레이트이루어진 군으로부터 선택되는 1종 이상을 들 수 있다.
상기 에스테르계 화합물의 함량은 비수 용매 및 에스테르계 화합물의 총부피에 대하여 50 내지 90 부피%, 또는 60 내지 80 부피%일 수 있다.
상기 에스테르계 화합물의 함량이 상기 조건을 만족하는 경우, 이온 전도도가 높기 때문에 여러가지 전지 성능이 원활하게 구현될 수 있다.
이러한 에스테르계 화합물의 함량 범위는 도 1을 참조하여도 도출될 수 있다. 즉, 도 1은 환형 카보네이트로 주로 사용되는 에틸렌 카보네이트(EC)나 플루오로에틸렌 카보네이트에 대한 에스테르의 분율을 변경해 가면서, 이들 환형 카보네이트 및 에스테르의 혼합 용매의 이온 전도도를 측정한 결과를 도시하는 그래프이다. 이때, 전해질 염으로는 LiPF6을 1M 첨가하였다. 도 1을 참조하면, 에스테르의 분율이 너무 낮은 경우에는 혼합 용매의 점도가 높고, 에스테르의 분율이 너무 높은 경우에는 전해질 염의 용해도와 전해액의 유전율이 저하되는 등의 문제가 발생한다. 따라서, 에스테르의 함량은 50 내지 90% 부피, 또는 60 내지 80 부피%일 수 있다.
또한, 전술한 바와 같이 화학식 1에서 R1 및 R2는 치환될 수 있는데, 구체적으로 R1 및 R2의 알킬기에 포함되어 있는 하나 이상의 수소 원자가 할로겐 원자, 시아노기, 히드록시기, 니트로기, 아미노기(-NH2, -NH(R), -N(R')(R''), R'과 R"은 서로 독립적으로 탄소수 1 내지 10의 알킬기임), 탄소수 1 내지 12의 알킬기, 탄소수 1 내지 12의 할로겐화된 알킬기, 탄소수 2 내지 12의 알케닐기, 탄소수 2 내지 12의 알키닐기, 탄소수 6 내지 12의 아릴기로 임의로 치환될 수 있다.
본 발명의 일 측면에 따른 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있다. 예를 들어 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3
-, N(CN)2
-, BF4
-, ClO4
-, PF6
-, (CF3)2PF4
-, (CF3)3PF3
-, (CF3)4PF2
-, (CF3)5PF-, (CF3)6P-, CF3SO3
-, CF3CF2SO3
-, (CF3SO2)2N-, (FSO2)2N-
, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3
-, CF3CO2
-, CH3CO2
-, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택된 어느 하나일 수 있다.
전술한 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
그 중에서 대표적으로는 환형 카보네이트, 선형 카보네이트, 또는 이들의 혼합물인 카보네이트 화합물을 포함할 수 있다.
상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다.
이때, 상기 환형 카보네이트의 할로겐화물은 하기 화학식 2로 표시되는 화합물일 수 있다.
[화학식 2]
상기 화학식 2에서,
R3, R4, R5, 및 R6는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, 이때, R3, R4, R5, 및 R6 중 적어도 하나의 수소는 할로겐으로 치환된다. 이때 할로겐의 예로는 염소, 불소 등이 있다.
상기 환형 카보네이트의 할로겐화물의 예로는, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC), 1, 2-디플루오로에틸렌 카보네이트, 클로로에틸렌 카보네이트, 1, 2-디클로로에틸렌 카보네이트 등이 있으며, 이에 한정되는 것은 아니다.
또한 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 카보네이트계 유기용매 중 환형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 보다 더 잘 해리시킬 수 있으며, 이러한 환형 카보네이트에 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 보다 높은 전기 전도율을 갖는 전해액을 만들 수 있다.
또한, 상기 유기 용매 중 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
그리고 상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 측면에 따른 리튬 이차전지용 비수 전해액은 종래 알려진 SEI층 형성용 첨가제를 본 발명의 목적을 벗어나지 않는 범위에서 더 포함할 수 있다. 본 발명에서 사용가능한 SEI층 형성용 첨가제로는 환형 설파이트, 포화 설톤, 불포화 설톤, 비환형 설폰 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 전술한 환형 카보네이트 중에서 비닐렌 카보네이트, 비닐에틸렌 카보네이트도 전지의 수명 향상을 위한 SEI층 형성용 첨가제로서 사용될 수 있다.
상기 환형 설파이트로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌 설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 포화 설톤으로는 1,3-프로판 설톤, 1,4-부탄 설톤 등을 들 수 있으며, 불포화 설톤으로는 에텐 설톤, 1,3-프로펜 설톤, 1,4-부텐 설톤, 1-메틸-1,3-프로펜 설톤 등을 들 수 있으며, 비환형 설폰으로는 디비닐 설폰, 디메틸 설폰, 디에틸 설폰, 메틸에틸 설폰, 메틸비닐 설폰 등을 들 수 있다.
상기 SEI층 형성용 첨가제는 첨가제의 구체적인 종류에 따라 적절한 함량으로 포함될 수 있으며, 예를 들면 비수 전해액 100 중량부 대비 0.01 중량부 내지 10 중량부로 포함될 수 있다.
상기 비수 전해액은 그 자체로 액체 전해질 또는 고분자에 함침된 겔 폴리머 전해질의 형태로 리튬 이차전지의 전해질로 사용될 수 있다.
본 발명의 일 측면에 따른 비수 전해액은, 상기 비수 용매에 상기 전해질염을 혼합시키고, 또한, 상기 화학식 1로 표시되는 에스테르계 화합물의 함량이 상기 유기용매 및 에스테르계 화합물의 총부피에 대하여 50 내지 90 부피%가 되도록 첨가하여 용해시킴으로써 얻을 수 있다.
이 때, 이용하는 비수 용매 및 전해액에 첨가하는 화합물은 생산성을 현저히 저하시키지 않는 범위 내에서 미리 정제하여, 불순물이 매우 적은 것을 이용할 수 있다.
상기 비수 전해액에는, 예컨대 공기나 이산화탄소를 포함하게 함으로써, 전해액의 분해에 의한 가스 발생의 억제나, 장기에 걸친 사이클 특성이나 충전 보존 특성 등의 전지 특성을 더욱 향상시킬 수 있다.
고온에서의 충방전 특성 향상의 관점에서, 비수 전해액 중에 이산화탄소를 용해시킨 전해액을 이용할 수 있다. 이산화탄소의 용해량은 비수 전해액의 중량에 대하여 0.001중량% 이상, 또는 0.05중량% 이상, 또는 0.2중량% 이상일 수 있고, 비수 전해액에 이산화탄소가 포화 상태로 될 때까지 용해시킬 수 있다.
또한, 본 발명의 일 측면에 따르면, 애노드, 캐소드, 및 상기 캐소드와 애노드 사이에 개재된 세퍼레이터로 이루어진 전극조립체 및 상기 전극 조립체에 주입된 비수 전해액을 구비하는 리튬 이차전지에 있어서, 상기 비수 전해액이 전술한 리튬 이차전지용 비수 전해액인 리튬 이차전지가 제공된다:
상기 전극조립체를 이루는 캐소드, 애노드 및 세퍼레이터는 리튬 이차전지 제조에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
상기 캐소드는 캐소드 활물질, 도전재 및 바인더를 포함하는 캐소드층이 집전체의 일면 또는 양면에 담지된 구조를 갖는다.
상기 캐소드 활물질로는 리튬함유 전이금속 산화물이 바람직하게 사용될 수 있으며, 예를 들면 LixCoO2(0.5<x<1.3), LixNiO2(0.5<x<1.3), LixMnO2(0.5<x<1.3), LixMn2O4(0.5<x<1.3), Lix(NiaCobMnc)O2(0.5<x<1.3, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LixNi1-yCoyO2(0.5<x<1.3, 0<y<1), LixCo1-yMnyO2(0.5<x<1.3, 0≤y<1), LixNi1-yMnyO2(0.5<x<1.3, O≤y<1), Lix(NiaCobMnc)O4(0.5<x<1.3, 0<a<2, 0<b<2, 0<c<2, a+b+c=2), LixMn2-zNizO4(0.5<x<1.3, 0<z<2), LixMn2-zCozO4(0.5<x<1.3, 0<z<2), LixCoPO4(0.5<x<1.3) 및 LixFePO4(0.5<x<1.3)로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으며,
상기 리튬함유 전이금속 산화물은 알루미늄(Al) 등의 금속이나 금속산화물로 코팅될 수도 있다. 또한, 상기 리튬함유 전이금속 산화물(oxide) 외에 황화물(sulfide), 셀렌화물(selenide) 및 할로겐화물(halide) 등도 사용될 수 있다.
상기 도전재로서는 전기화학소자에서 화학변화를 일으키지 않는 전자 전도성 물질이면 특별한 제한이 없다. 일반적으로 카본블랙(carbon black), 흑연, 탄소섬유, 카본 나노튜브, 금속분말, 도전성 금속산화물, 유기 도전재 등을 사용할 수 있고, 현재 도전재로 시판되고 있는 상품으로는 아세틸렌 블랙계열 (쉐브론 케미컬 컴퍼니(Chevron Chemical Company) 또는 걸프 오일 컴퍼니 (Gulf Oil Company) 제품 등), 케트젠블랙 (Ketjen Black) EC 계열(아르막 컴퍼니 (Armak Company) 제품), 불칸 (Vulcan) XC-72(캐보트 컴퍼니(Cabot Company) 제품) 및 수퍼 P (엠엠엠(MMM)사 제품)등이 있다. 예를 들면 아세틸렌블랙, 카본블랙, 흑연 등을 들 수 있다.
상기 애노드는 애노드 활물질 및 바인더를 포함하는 애노드층이 집전체의 일면 또는 양면에 담지된 구조를 갖는다.
상기 애노드 활물질로는 통상적으로 리튬 이온이 흡장 및 방출될 수 있는 탄소재, 리튬금속, 금속 화합물 및 이들의 혼합물을 사용할 수 있다.
구체적으로는 상기 탄소재로는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소(soft carbon) 및 경화탄소(hard carbon)가 대표적이며, 고결정성 탄소로는 천연 흑연, 키시흑연(Kish graphite), 열분해 탄소(pyrolytic carbon), 액정 피치계 탄소섬유(mesophase pitch based carbon fiber), 탄소 미소구체(meso-carbon microbeads), 액정피치(Mesophase pitches) 및 석유와 석탄계 코크스(petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 금속 화합물로는 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, Ba 등의 금속 원소를 1종 이상 함유하는 화합물을 들 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(SiO, TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등, 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다. 그 중에서도, Si, Ge 및 Sn으로부터 선택되는 1종 이상의 원소를 함유할 수 있고, Si 및 Sn으로부터 선택되는 1종 이상의 원소를 포함하는 것이 전지를 더 고용량화할 수 있다.
상기 애노드 활물질로, 금속 화합물 및 탄소재의 혼합물을 사용할 수 있으며, 이때, 금속 화합물 대 탄소재의 중량비는 1:99 내지 40:60, 또는 3:97 내지 33:67, 또는 5:95 내지 20:80일 수 있다. 상기 금속 화합물 대 탄소재의 중량비가 상기 범위를 만족하는 경우, 금속 화합물 단독 사용에 따른 전기전도성 저하 및 부피 팽창에 따른 활물질의 균열 발생을 최소화하고, 애노드 활물질의 용량을 개선하여 이러한 금속 화합물 및 탄소재의 혼합물을 적용한 전기화학소자에 우수한 전기화학적 특성을 제공할 수 있다.
상기 캐소드 및 애노드에 사용되는 바인더는 캐소드 활물질 및 애노드 활물질을 집전체에 유지시키고, 또 활물질들 사이를 이어주는 기능을 갖는 것으로서, 통상적으로 사용되는 바인더가 제한없이 사용될 수 있다.
예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 스티렌-부타디엔 고무 (SBR, styrene butadiene rubber), 카르복시메틸 셀룰로스(CMC, carboxymethyl cellulose) 등의 다양한 종류의 바인더 고분자가 사용될 수 있다.
상기 캐소드 및 애노드에 사용되는 집전체는 전도성이 높은 금속으로, 상기 활물질의 슬러리가 용이하게 접착할 수 있는 금속으로 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 구체적으로 캐소드용 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 애노드용 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다. 또한, 상기 집전체는 상기 물질들로 이루어진 기재들을 적층하여 사용할 수도 있다.
상기 캐소드 및 애노드는, 활물질, 도전제, 바인더, 고비점 용제를 이용해 혼련하여 전극 합제로 한 후, 이 합제를 집전체의 동박 등에 도포하여, 건조, 가압 성형한 후, 50℃ 내지 250℃ 정도의 온도로 2시간 정도 진공 하에서 가열 처리함으로써 각각 제조될 수 있다.
또한, 상기 캐소드의 전극층의 두께(집전체 한 면당)는 30 내지 120㎛, 또는 50 내지 100㎛일 수 있고, 상기 애노드의 전극층의 두께는 1 내지 100㎛, 또는 3 내지 70㎛일 수 있다. 상기 캐소드 및 애노드가 이러한 두께 범위를 만족하는 경우, 전극 재료층에서의 활물질량이 충분히 확보되어, 전지 용량이 작아지는 것을 방지할 수 있고, 사이클 특성이나 레이트 특성이 개선될 수 있다.
또한, 상기 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 리튬 이차전지는 그 외형에 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
비수 전해액의 제조 (1)
실시예 1-1
플루오로에틸렌 카보네이트(FEC) 및 이소부틸 프로피오네이트를 20부피% 및 80부피%로 혼합하고, 여기에 LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
실시예 1-2
이소부틸 프로피오네이트 대신에 이소아밀 프로피오네이트를 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
실시예 1-3
실시예 1-1에서 제조된 비수 전해액 100 중량부에 대하여 비닐렌 카보네이트 3 중량부를 더 첨가하여 비수 전해액을 제조하였다.
실시예 1-4
실시예 1-2에서 제조된 비수 전해액 100 중량부에 대하여 비닐렌 카보네이트 3 중량부를 더 첨가하여 비수 전해액을 제조하였다.
실시예 1-5
플루오로에틸렌 카보네이트(FEC) 및 이소부틸 프로피오네이트를 30부피% 및 70부피%로 혼합하고, 여기에 플루오로에틸렌 카보네이트(FEC) 및 이소부틸 프로피오네이트의 총합 100 중량부에 대하여 1,3-프로펜-설톤 3 중량부, 1,3-프로판 설톤 3 중량부를 첨가하고, LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
실시예 1-6
이소부틸 프로피오네이트 대신에 이소아밀 프로피오네이트를 사용한 점을 제외하고는 실시예 1-5와 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-1
이소부틸 프로피오네이트 대신에 n-부틸 프로피오네이트를 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-2
이소부틸 프로피오네이트 대신에 n-펜틸 프로피오네이트를 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-3
이소부틸 프로피오네이트 대신에 n-헥실 프로피오네이트를 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-4
비교예 1-1에서 제조된 비수 전해액 100 중량부에 대하여 비닐렌 카보네이트 3 중량부를 더 첨가하여 비수 전해액을 제조하였다.
비교예 1-5
비교예 1-2에서 제조된 비수 전해액 100 중량부에 대하여 비닐렌 카보네이트 3 중량부를 더 첨가하여 비수 전해액을 제조하였다.
비교예 1-6
비교예 1-3에서 제조된 비수 전해액 100 중량부에 대하여 비닐렌 카보네이트 3 중량부를 더 첨가하여 비수 전해액을 제조하였다.
비교예 1-7
이소부틸 프로피오네이트 대신에 에틸 프로피오네이트를 사용한 점을 제외하고는 실시예 1-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-8
이소부틸 프로피오네이트 대신에 n-부틸 프로피오네이트를 사용한 점을 제외하고는 실시예 1-5와 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-9
이소부틸 프로피오네이트 대신에 에틸 프로피오네이트를 사용한 점을 제외하고는 실시예 1-5와 동일한 방법으로 비수 전해액을 제조하였다.
비교예 1-10
플루오로에틸렌 카보네이트(FEC) 및 이소아밀 프로피오네이트를 60 부피% 및 40 부피%로 혼합하고, 여기에 LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
비교예 1-11
플루오로에틸렌 카보네이트(FEC), 디메틸 카보네이트(DMC), 및 이소아밀 프로피오네이트를 30부피%, 30부피%, 및 40부피%로 혼합하고, 여기에 LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
리튬 이차전지의 제조 (1)
실시예 2-1
캐소드로 LiCoO2를, 애노드로 Si 산화물(SiO 10 중량%, 그래파이트 90 중량%를 블렌딩하고 비수계 바인더를 사용하여 제조됨)을 사용하여 전극을 제조한 다음, 실시예 1-1에서 제조된 비수 전해액을 주입하는 통상적인 방법으로 리튬 이차전지를 제조하였다.
실시예 2-2
실시예 1-2에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 2-3
실시예 1-3에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 2-4
실시예 1-4에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 2-5
애노드로 인조 흑연을 사용하고, 전해액으로 실시예 1-5에서 제조된 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 2-6
애노드로 인조 흑연을 사용하고, 전해액으로 실시예 1-6에서 제조된 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-1
비교예 1-1에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-2
비교예 1-2에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-3
비교예 1-3에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-4
비교예 1-4에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-5
비교예 1-5에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-6
비교예 1-6에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-7
비교예 1-7에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-8
애노드로 인조 흑연을 사용하고, 전해액으로 비교예 1-8에서 제조된 전해액을 사용한 점을 제외하고는 비교예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-9
애노드로 인조 흑연을 사용하고, 전해액으로 비교예 1-9에서 제조된 전해액을 사용한 점을 제외하고는 비교예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-10
전해액으로 비교예 1-10에서 제조된 전해액을 사용한 점을 제외하고는 비교예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 2-11
전해액으로 비교예 1-11에서 제조된 전해액을 사용한 점을 제외하고는 비교예 2-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
리튬 이차전지의 특성 평가 (1)
상온 수명 특성 (1)
실시예 2-1 내지 2-2, 및 비교예 2-1 내지 2-3에서 제조된 리튬 이차전지 (전지용량 950mAh)를 23℃에서 0.5C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 50mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 2.5V가 될 때까지 방전하였다. 상기 충방전을 500 사이클 행한 후 전지 용량을 측정하여, 도 2에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 0.95A의 전류를 의미한다.
상온 수명 특성 (2)
실시예 2-3 내지 2-4, 및 비교예 2-4 내지 2-6에서 제조된 리튬 이차전지 (전지용량 950mAh)를 23℃에서 0.5C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 50mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 2.5V가 될 때까지 방전하였다. 상기 충방전을 700 사이클 행한 후 전지 용량을 측정하여, 도 3에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 0.95A의 전류를 의미한다.
상온 수명 특성 (3)
실시예 2-1 내지 2-2, 및 비교예 2-1에서 제조된 리튬 이차전지 (전지용량 950mAh)를 23℃에서 1.0C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 50mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 1.0C의 정전류로 2.5V가 될 때까지 방전하였다. 상기 충방전을 400 사이클 행한 후 전지 용량을 측정하여, 도 4에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 0.95A의 전류를 의미한다.
고온 수명 특성 (1)
실시예 2-1 내지 2-2, 비교예 2-1 및 비교예 2-7에서 제조된 리튬 이차전지 (전지용량 950mAh)를 45℃에서 1.0C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 50mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 1.0C의 정전류로 2.5V가 될 때까지 방전하였다. 상기 충방전을 400 사이클 행한 후 전지 용량을 측정하여, 도 5에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 0.95A의 전류를 의미한다.
고온 수명 특성 (2)
실시예 2-5 내지 2-6, 비교예 2-8 및 비교예 2-9에서 제조된 리튬 이차전지 (전지용량 5.5mAh)를 55℃에서 0.7C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.275mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 3.0V가 될 때까지 방전하였다. 상기 충방전을 200 사이클 행한 후 전지 용량을 측정하여, 도 6에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 5.5mA의 전류를 의미한다.
수명 특성 및 두께 변화
실시예 2-1 내지 2-2, 및 비교예 2-1, 2-10, 및 2-11에서 제조된 리튬 이차전지 (전지용량 950mAh)를 23℃에서 0.5C의 정전류로 4.35V가 될 때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 50mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 2.5V가 될 때까지 방전하였다. 상기 충방전을 500 사이클 행한 후 전지의 용량 및 두께 변화를 측정하여, 도 7 및 8에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 0.95A의 전류을 의미한다.
도 7 및 8에서 상단의 그래프는 전지의 용량 변화를, 하단의 그래프는 두께 변화를 나타낸다.
도 2 내지 8을 참조하면, 이소부틸 프로피오네이 및 이소아밀프로피오네이트와 같은 분지형 알킬기를 갖는 에스테르계 화합물을 상기 유기용매 및 에스테르계 화합물의 총부피에 대하여 50 내지 90 부피%로 함유한 전해액을 구비한 리튬 이차전지가 직쇄형 알킬기를 갖는 에스테르계 화합물을 함유하거나 상기 함량 범위를 벗어나는 조건의 전해액을 구비한 리튬 이차전지 보다 상온 및 고온에서 모두 뛰어난 수명 특성을 나타내고, 두께 변화도 극히 작음을 알 수 있다.
비수 전해액의 제조 (2)
실시예 3-1
플루오로에틸렌 카보네이트(FEC) 및 에틸 2-메틸부티레이트를 20부피% 및 80부피%로 혼합하고, 여기에 LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
실시예 3-2
에틸 2-메틸부티레이트 대신에 에틸 이소발레레이트를 사용한 점을 제외하고는 실시예 3-1과 동일한 방법으로 비수 전해액을 제조하였다.
실시예 3-3
에틸 2-메틸부티레이트 대신에 에틸 이소부티레이트를 사용한 점을 제외하고는 실시예 3-1과 동일한 방법으로 비수 전해액을 제조하였다.
실시예 3-4
플루오로에틸렌 카보네이트(FEC) 및 에틸 2-메틸부티레이트를 30부피% 및 70부피%로 혼합하고, 여기에 플루오로에틸렌 카보네이트(FEC) 및 에틸 2-메틸부티레이트의 총합 100 중량부에 대하여 1,3-프로펜-설톤 3 중량부, 1,3-프로판 설톤 3 중량부를 첨가하고, LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
실시예 3-5
에틸 2-메틸부티레이트 대신에 에틸 이소발레레이트를 사용한 점을 제외하고는 실시예 3-4와 동일한 방법으로 비수 전해액을 제조하였다.
비교예 3-1
에틸 2-메틸부티레이트 대신에 에틸 발레레이트를 사용한 점을 제외하고는 실시예 3-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 3-2
에틸 2-메틸부티레이트 대신에 에틸 부티레이트를 사용한 점을 제외하고는 실시예 3-1과 동일한 방법으로 비수 전해액을 제조하였다.
비교예 3-3
에틸 2-메틸부티레이트 대신에 에틸 발레레이트를 사용한 점을 제외하고는 실시예 3-4와 동일한 방법으로 비수 전해액을 제조하였다.
비교예 3-4
에틸 2-메틸부티레이트 대신에 에틸 부티레이트를 사용한 점을 제외하고는 실시예 3-4와 동일한 방법으로 비수 전해액을 제조하였다.
비교예 3-5
플루오로에틸렌 카보네이트(FEC) 및 에틸 2-메틸부티레이트를 60부피% 및 40부피%로 혼합하고, 여기에 LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
비교예 3-6
플루오로에틸렌 카보네이트(FEC), 디메틸 카보네이트(DMC), 에틸 2-메틸부티레이트를 30부피%, 30부피% 및 40부피%로 혼합하고, 여기에 LiPF6을 1M 농도가 되도록 용해시켜서 비수 전해액을 제조하였다.
리튬 이차전지의 제조 (2)
실시예 4-1
캐소드로 LiCoO2를, 애노드로 Si 산화물(SiO 10 중량%, 그래파이트 90 중량%를 블렌딩하고 비수계 바인더를 사용하여 제조됨)을 사용하여 전극을 제조한 다음, 실시예 3-1에서 제조된 비수 전해액을 주입하는 통상적인 방법으로 리튬 이차전지를 제조하였다.
실시예 4-2
실시예 3-2에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 4-3
실시예 3-3에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 4-4
애노드로 인조흑연을 사용하고, 전해액으로 실시예 3-4에서 제조된 전해액을 사용한 점을 제외하고는 실시예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
실시예 4-5
애노드로 인조흑연을 사용하고, 전해액으로 실시예 3-5에서 제조된 전해액을 사용한 점을 제외하고는 실시예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4-1
비교예 3-1에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4-2
비교예 3-2에서 제조된 비수 전해액을 사용한 점을 제외하고는 실시예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4-3
애노드로 인조흑연을 사용하고, 전해액으로 비교예 3-3에서 제조된 전해액을 사용한 점을 제외하고는 비교예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4-4
애노드로 인조흑연을 사용하고, 전해액으로 비교예 3-4에서 제조된 전해액을 사용한 점을 제외하고는 비교예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4-5
전해액으로 비교예 3-5에서 제조된 전해액을 사용한 점을 제외하고는 비교예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
비교예 4-6
전해액으로 비교예 3-6에서 제조된 전해액을 사용한 점을 제외하고는 비교예 4-1과 동일한 방법으로 리튬 이차전지를 제조하였다.
리튬 이차전지의 특성 평가 (2)
수명 특성 (1)
실시예 4-1 내지 4-2, 및 비교예 4-1에서 제조된 리튬 이차전지 (전지용량 60mAh)를 23℃에서 0.5C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 3.0mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 2.5V가 될 때까지 방전하였다. 상기 충방전을 200 사이클 행한 후 전지 용량을 측정하여, 도 9에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 0.06A의 전류을 의미한다.
수명 특성 (2)
실시예 4-3 및 비교예 4-2에서 제조된 리튬 이차전지 (전지용량 950mAh)를 23℃에서 0.5C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 50mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 2.5V가 될 때까지 방전하였다. 상기 충방전을 400 사이클 행한 후 전지 용량을 측정하여, 도 10에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 0.95A의 전류을 의미한다.
수명 특성 (3)
실시예 4-4 내지 4-5 및 비교예 4-3 내지 4-4에서 제조된 리튬 이차전지 (전지용량 5.5mAh)를 55℃에서 0.7C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.275mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 3.0V가 될 때까지 방전하였다. 상기 충방전을 100 사이클 행한 후 방전 용량을 측정하여, 도 11에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 5.5mA의 전류을 의미한다.
수명 특성 (4)
실시예 4-4, 및 비교예 4-5 내지 4-6에서 제조된 리튬 이차전지 (전지용량 5.5mAh)를 55℃에서 0.7C의 정전류로 4.35V가 될때까지 충전하고, 이후 4.35V의 정전압으로 충전하여 충전전류가 0.275mA가 되면 충전을 종료하였다. 이후 10분간 방치한 다음 0.5C의 정전류로 3.0V가 될 때까지 방전하였다. 상기 충방전을 100 사이클 행한 후 방전 용량을 측정하여, 도 12에 나타내었다. 여기서 C는 ampere(A)로 표현되는 전지의 충방전 전류 속도, C-rate 를 나타내는 것으로서 통상 전지용량에 비율로 표시된다. 즉 앞서 제조된 전지들의 1C는 5.5mA의 전류을 의미한다.
도 9 내지 11을 참조하면, 에틸 2-메틸부티레이트, 에틸 이소발레레이트, 에틸 이소부티레이트와 같은 분지형 알킬기가 카르보닐기에 결합된 에스테르계 화합물을 함유한 전해액을 구비한 리튬 이차전지가 직쇄형 알킬기가 카르보닐기에 결합된 에스테르계 화합물을 함유한 전해액을 구비한 리튬 이차전지 보다 수명 급감 시점이 상당히 늦춰진 결과 뛰어난 수명 특성을 나타냄을 알 수 있다.
또한, 도 12를 참조하면, 이러한 분지형 알킬기의 함유량이 50 내지 90 부피%, 특히 60 내지 80 부피%일 때가 이러한 함유량의 범위를 벗어나는 경우에 비해서 리튬 이차전지의 수명 특성이 크게 개선됨을 알 수 있다.
Claims (20)
- 제1항에 있어서,상기 R1 및 R2가 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 8의 알킬기이고, 이때, R1 및 R2 중 적어도 하나가 치환 또는 비치환된 탄소수 3 내지 8의 분지형 알킬기인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제1항에 있어서,상기 R1 및 R2가 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고, 이때, R1 및 R2 중 적어도 하나가 치환 또는 비치환된 탄소수 3 내지 8의 이소알킬기, 치환 또는 비치환된 탄소수 4 내지 8의 sec-알킬기또는 치환 또는 비치환된 탄소수 4 내지 8의 tert-알킬기인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제1항에 있어서,상기 R1이 메틸기, 에틸기, 또는 프로필기이고, 상기 R2가 이소프로필기, 이소부틸기, 이소펜틸기, 이소헥실기, sec-부틸기, sec-펜틸기, tert-부틸기, 또는 tert-펜틸기인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제1항에 있어서,상기 R1이 이소프로필기, 이소부틸기, 이소펜틸기, 이소헥실기, sec-부틸기, sec-펜틸기, tert-부틸기, 또는 tert-펜틸기이고, 상기 R2가 메틸기, 에틸기, 또는 프로필기인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제1항에 있어서,상기 에스테르계 화합물이 이소부틸 프로피오네이트, 이소아밀 프로피오네이트, 이소부틸 부티레이트, 에틸 2-메틸부티레이트, 에틸 이소발레레이트, 에틸 이소부티레이트, 메틸 2-메틸부티레이트, 메틸 이소발레레이트, 메틸 이소부티레이트, 프로필 2-메틸부티레이트, 프로필 이소발레레이트, 및 프로필 이소부티레이트로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제1항에 있어서,상기 전해질 염이 리튬염인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제7항에 있어서,상기 리튬염의 음이온이 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N- , CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제1항에 있어서,상기 유기 용매가 선형 카보네이트, 환형 카보네이트 에테르, 에스테르, 및 아미드로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제9항에 있어서,상기 선형 카보네이트가 디메틸 카보네이트, 디에틸 카보네이트, 디프로필 카보네이트, 에틸메틸 카보네이트, 메틸프로필 카보네이트 및 에틸프로필카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제9항에 있어서,상기 환형 카보네이트가 에틸렌 카보네이트, 프로필렌 카보네이트, 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제12항에 있어서,상기 환형 카보네이트의 할로겐화물이 플로오로에틸렌 카보네이트인 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제9항에 있어서,상기 에테르가 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 제1항에 있어서,상기 비수 전해액이 환형 설파이트, 포화 설톤, 불포화 설톤, 및 비환형 설폰으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 더 포함하는 것을 특징으로 하는 리튬 이차전지용 비수 전해액.
- 애노드, 캐소드, 및 상기 캐소드와 애노드 사이에 개재된 세퍼레이터로 이루어진 전극조립체 및 상기 전극 조립체에 주입된 비수 전해액을 구비하는 리튬 이차전지에 있어서, 상기 비수 전해액이 제1항 내지 제15항 중 어느 한 항의 리튬 이차전지용 비수 전해액인 리튬 이차전지.
- 제16항에 있어서,상기 애노드가 리튬 금속, 탄소재, 금속 화합물 및 이들의 혼합물을 포함하는 애노드 활물질층을 구비한 것을 특징으로 하는 리튬 이차전지.
- 제17항에 있어서,상기 금속 화합물이 Si, Ge, Sn, Pb, P, Sb, Bi, Al, Ga, In, Ti, Mn, Fe, Co, Ni, Cu, Zn, Ag, Mg, Sr, 및 Ba로 이루어진 군으로부터 선택된 1종 이상의 금속 원소를 함유하는 화합물 또는 이들의 혼합물인 것을 특징으로 하는 리튬 이차전지.
- 제16항에 있어서,상기 캐소드가 리튬 함유 산화물을 포함하는 캐소드층을 구비하는 것을 특징으로 하는 리튬 이차전지.
- 제19항에 있어서,상기 리튬 함유 산화물이 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(O≤y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4, LiMn2-zCozO4(0<z<2), LiCoPO4 및 LiFePO4로 이루어진 군에서 선택되는 어느 하나의 리튬 함유 전이금속 산화물 또는 이들 중 2종 이상의 혼합물인 인 것을 특징으로 하는 리튬 이차전지.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12797386.5A EP2720307B1 (en) | 2011-06-08 | 2012-06-08 | Non-aqueous electrolyte and lithium secondary battery using the same |
JP2014514810A JP6198726B2 (ja) | 2011-06-08 | 2012-06-08 | 非水電解液及びそれを用いたリチウム二次電池 |
CN201280027607.8A CN103597648B (zh) | 2011-06-08 | 2012-06-08 | 非水性电解质和使用其的锂二次电池 |
PL12797386T PL2720307T3 (pl) | 2011-06-08 | 2012-06-08 | Niewodny elektrolit i wykorzystująca go litowa bateria akumulatorowa |
US13/866,057 US9455470B2 (en) | 2011-06-08 | 2013-04-19 | Non-aqueous electrolyte and lithium secondary battery using the same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2011-0055197 | 2011-06-08 | ||
KR20110055197 | 2011-06-08 | ||
KR20110055198 | 2011-06-08 | ||
KR10-2011-0055198 | 2011-06-08 | ||
KR10-2012-0061584 | 2012-06-08 | ||
KR1020120061584A KR101249350B1 (ko) | 2011-06-08 | 2012-06-08 | 비수 전해액 및 이를 이용한 리튬 이차전지 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/866,057 Continuation US9455470B2 (en) | 2011-06-08 | 2013-04-19 | Non-aqueous electrolyte and lithium secondary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012169843A2 true WO2012169843A2 (ko) | 2012-12-13 |
WO2012169843A3 WO2012169843A3 (ko) | 2013-04-04 |
Family
ID=47903788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2012/004570 WO2012169843A2 (ko) | 2011-06-08 | 2012-06-08 | 비수 전해액 및 이를 이용한 리튬 이차전지 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9455470B2 (ko) |
EP (1) | EP2720307B1 (ko) |
JP (2) | JP6198726B2 (ko) |
KR (1) | KR101249350B1 (ko) |
CN (1) | CN103597648B (ko) |
PL (1) | PL2720307T3 (ko) |
WO (1) | WO2012169843A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014108254A1 (de) | 2014-06-12 | 2015-12-17 | Karlsruher Institut für Technologie Innovationsmanagement | Elektrolyt, Zelle und Batterie umfassend den Elektrolyt und dessen Verwendung |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2720307B1 (en) * | 2011-06-08 | 2020-04-01 | LG Chem, Ltd. | Non-aqueous electrolyte and lithium secondary battery using the same |
CN103688402B (zh) | 2011-07-14 | 2016-05-11 | 株式会社Lg化学 | 非水电解质溶液和使用其的锂二次电池 |
TWI583039B (zh) * | 2014-09-30 | 2017-05-11 | Lg化學股份有限公司 | 非水性電解質鋰二次電池 |
KR102343690B1 (ko) | 2014-12-31 | 2021-12-29 | 삼성전자주식회사 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
FR3033088B3 (fr) * | 2015-02-24 | 2017-09-01 | Commissariat Energie Atomique | Electrolyte a base d'un solvant ester d'alkyle specifique et son procede de preparation |
KR101937898B1 (ko) * | 2015-10-29 | 2019-01-14 | 주식회사 엘지화학 | 비수 전해액 첨가제, 이를 포함하는 비수전해액 및 이를 구비한 리튬 이차전지 |
CN108206299B (zh) * | 2016-12-19 | 2020-10-09 | 宁德时代新能源科技股份有限公司 | 锂离子电池及其电解液 |
CN109216701B (zh) * | 2017-06-30 | 2020-10-23 | 比亚迪股份有限公司 | 电池电极及其制备方法和全固态电池 |
US20220190389A1 (en) * | 2020-12-11 | 2022-06-16 | Sila Nanotechnologies Inc. | Electrolytes for lithium-ion battery cells with volume-changing anode particles |
US11923501B2 (en) * | 2021-09-30 | 2024-03-05 | Uchicago Argonne, Llc | Solid-state nanofiber polymer multilayer composite electrolytes and cells |
WO2024096701A1 (ko) * | 2022-11-04 | 2024-05-10 | 주식회사 엘지에너지솔루션 | 리튬 이차전지 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5484669A (en) * | 1991-12-27 | 1996-01-16 | Matsushita Electric Industrial Co., Ltd. | Nonaqueous electrolyte secondary batteries |
JP3546158B2 (ja) | 1999-10-01 | 2004-07-21 | 三菱重工業株式会社 | 抄紙機のプレスロール、プレスロールの製造方法およびプレスロール用素ロールの加熱プレス装置 |
JP5117649B2 (ja) * | 2000-04-11 | 2013-01-16 | パナソニック株式会社 | 非水電解質二次電池およびその製造法 |
JP2001297790A (ja) * | 2000-04-11 | 2001-10-26 | Matsushita Electric Ind Co Ltd | 非水電解質二次電池 |
CN1167165C (zh) * | 2000-04-11 | 2004-09-15 | 松下电器产业株式会社 | 非水电解质二次电池及其制造方法 |
JP4632488B2 (ja) | 2000-06-26 | 2011-02-16 | 旭化成ホームズ株式会社 | 壁パネルの加工方法及び加工装置及び壁パネル並びに前記壁パネルを用いた建築物 |
KR100756812B1 (ko) * | 2000-07-17 | 2007-09-07 | 마츠시타 덴끼 산교 가부시키가이샤 | 비수 전기화학 장치 |
CN1215595C (zh) * | 2001-07-10 | 2005-08-17 | 三菱化学株式会社 | 非水系电解液和使用该电解液的蓄电池 |
JP4128807B2 (ja) * | 2002-06-07 | 2008-07-30 | 松下電器産業株式会社 | 非水電解質二次電池およびそれに用いる電解液 |
JP2004047131A (ja) * | 2002-07-08 | 2004-02-12 | Sony Corp | 非水電解質電池 |
JP4313017B2 (ja) * | 2002-10-11 | 2009-08-12 | パナソニック株式会社 | 非水電解液二次電池 |
KR100515332B1 (ko) * | 2003-04-28 | 2005-09-15 | 삼성에스디아이 주식회사 | 리튬 전지용 전해질 및 이를 포함하는 리튬 전지 |
JP2006032301A (ja) * | 2004-07-21 | 2006-02-02 | Sony Corp | 電解質および電池 |
JP5219401B2 (ja) * | 2006-06-14 | 2013-06-26 | 三洋電機株式会社 | 二次電池用非水電解液及びこれを用いた非水電解液二次電池 |
US20070287071A1 (en) * | 2006-06-11 | 2007-12-13 | Sanyo Electric Co., Ltd. | Non-aqueous electrolyte solution for secondary battery and non-aqueous electrolyte secondary battery using the electrolyte solution |
CN101090165A (zh) * | 2006-06-14 | 2007-12-19 | 三洋电机株式会社 | 二次电池用非水电解液及使用了它的非水电解液二次电池 |
EP2160787B1 (en) * | 2007-06-07 | 2014-04-30 | LG Chem, Ltd. | Non-aqueous electrolyte solution for lithium-ion secondary battery and lithium-ion secondary battery including the same |
CN101779325B (zh) * | 2007-08-16 | 2013-11-13 | 株式会社Lg化学 | 非水电解质锂二次电池 |
JP4968182B2 (ja) * | 2008-05-29 | 2012-07-04 | ソニー株式会社 | 巻回電極体及び非水電解質二次電池 |
JP5338151B2 (ja) * | 2008-06-16 | 2013-11-13 | 三菱化学株式会社 | 非水系電解液及び非水系電解液電池 |
CN101640290B (zh) * | 2008-08-01 | 2014-05-07 | 三洋电机株式会社 | 非水电解质二次电池 |
JP2010056076A (ja) * | 2008-08-01 | 2010-03-11 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
EP2652832A1 (en) * | 2010-12-15 | 2013-10-23 | Dow Global Technologies LLC | Battery electrolyte solution containing certain ester-based solvents, and batteries containing such an electrolyte solution |
EP2720307B1 (en) * | 2011-06-08 | 2020-04-01 | LG Chem, Ltd. | Non-aqueous electrolyte and lithium secondary battery using the same |
-
2012
- 2012-06-08 EP EP12797386.5A patent/EP2720307B1/en active Active
- 2012-06-08 KR KR1020120061584A patent/KR101249350B1/ko active IP Right Grant
- 2012-06-08 JP JP2014514810A patent/JP6198726B2/ja active Active
- 2012-06-08 PL PL12797386T patent/PL2720307T3/pl unknown
- 2012-06-08 CN CN201280027607.8A patent/CN103597648B/zh active Active
- 2012-06-08 WO PCT/KR2012/004570 patent/WO2012169843A2/ko active Application Filing
-
2013
- 2013-04-19 US US13/866,057 patent/US9455470B2/en active Active
-
2016
- 2016-01-29 JP JP2016015793A patent/JP6263563B2/ja active Active
Non-Patent Citations (2)
Title |
---|
None |
See also references of EP2720307A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014108254A1 (de) | 2014-06-12 | 2015-12-17 | Karlsruher Institut für Technologie Innovationsmanagement | Elektrolyt, Zelle und Batterie umfassend den Elektrolyt und dessen Verwendung |
Also Published As
Publication number | Publication date |
---|---|
KR101249350B1 (ko) | 2013-04-02 |
EP2720307A2 (en) | 2014-04-16 |
JP6198726B2 (ja) | 2017-09-20 |
JP2014516203A (ja) | 2014-07-07 |
JP6263563B2 (ja) | 2018-01-17 |
US20130230781A1 (en) | 2013-09-05 |
EP2720307B1 (en) | 2020-04-01 |
KR20120136312A (ko) | 2012-12-18 |
PL2720307T3 (pl) | 2020-08-24 |
JP2016146339A (ja) | 2016-08-12 |
CN103597648A (zh) | 2014-02-19 |
US9455470B2 (en) | 2016-09-27 |
CN103597648B (zh) | 2018-01-02 |
EP2720307A4 (en) | 2014-11-12 |
WO2012169843A3 (ko) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012169843A2 (ko) | 비수 전해액 및 이를 이용한 리튬 이차전지 | |
WO2021034141A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2013012248A2 (ko) | 비수 전해액 및 이를 이용한 리튬 이차전지 | |
WO2018135822A1 (ko) | 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지 | |
WO2013012250A2 (ko) | 비수 전해액 및 이를 이용한 리튬 이차전지 | |
WO2019013501A1 (ko) | 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지 | |
WO2021033987A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2019107921A1 (ko) | 젤 폴리머 전해질용 조성물 및 이를 포함하는 젤 폴리머 전해질 및 리튬 이차 전지 | |
WO2019093853A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020149678A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2018106078A1 (ko) | 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지 | |
WO2018093152A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2013009155A2 (ko) | 비수 전해액 및 이를 이용한 리튬 이차전지 | |
WO2019151725A1 (ko) | 고온 저장 특성이 향상된 리튬 이차전지 | |
WO2020036337A1 (ko) | 리튬 이차 전지용 전해질 | |
WO2020036336A1 (ko) | 리튬 이차 전지용 전해질 | |
WO2022092831A1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2022010281A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2021153987A1 (ko) | 음극 활물질, 이를 포함하는 음극 및 이차전지 | |
WO2020153791A1 (ko) | 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2019039903A2 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 | |
WO2018131952A1 (ko) | 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020222469A1 (ko) | 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2022211320A1 (ko) | 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지 | |
WO2019103496A1 (ko) | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12797386 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012797386 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014514810 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |