WO2012169393A1 - 反射防止膜、光学系、及び光学機器 - Google Patents

反射防止膜、光学系、及び光学機器 Download PDF

Info

Publication number
WO2012169393A1
WO2012169393A1 PCT/JP2012/063854 JP2012063854W WO2012169393A1 WO 2012169393 A1 WO2012169393 A1 WO 2012169393A1 JP 2012063854 W JP2012063854 W JP 2012063854W WO 2012169393 A1 WO2012169393 A1 WO 2012169393A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
antireflection film
reflectance
wavelength range
Prior art date
Application number
PCT/JP2012/063854
Other languages
English (en)
French (fr)
Inventor
小山匡考
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201280004020.5A priority Critical patent/CN103250075B/zh
Priority to EP12796000.3A priority patent/EP2720071B8/en
Publication of WO2012169393A1 publication Critical patent/WO2012169393A1/ja
Priority to US13/950,519 priority patent/US9423529B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to an antireflection film, an optical system having the antireflection film, and an optical apparatus having the optical system.
  • the multiphoton absorption microscope uses a higher order of the laser, for example, the second order for the purpose of obtaining a high output as the excitation light. That is, for visible light excitation, the wavelength of the laser is infrared light. Therefore, in the multiphoton absorption microscope, the optical system needs to transmit observation fluorescence (visible light) and near-infrared light for an excitation laser that generates fluorescence. Therefore, an antireflection film that transmits near infrared light from visible light has been required.
  • the excitation light requires light having a wavelength approximately twice the fluorescence observation wavelength. In fluorescence observation, the wavelength used for observation is determined by the reagent used. Since the wavelength used is about 500 nm, it is sufficient to transmit wavelengths up to the near infrared (about 1000 nm).
  • Patent Document 1 proposes an antireflection film only in the near infrared region that does not contain visible light. Further, since light in the near infrared region is often blocked when visible light is required, an antireflection film that transmits visible light and reflects in the near infrared region is proposed as in Patent Document 2. With respect to the antireflection film in the visible light to near infrared region, Patent Document 3 discloses an antireflection film that transmits in the wavelength range of 400 nm to 1100 nm.
  • the wavelengths that can be used in fluorescence observation are becoming possible over the entire visible light range by developing new reagents according to the object to be observed.
  • an optical system capable of transmitting visible light (400 nm to 680 nm) and excitation laser light (800 nm to 1350 nm) is required.
  • a wavelength range of 400 nm to 1350 nm, that is, a transmission band approximately twice that of visible light is required.
  • FIG. 26 is a diagram showing a schematic configuration of a conventional multiphoton absorption microscope.
  • the short pulse laser light oscillated by the laser light source 501 is reflected by the multilayer filter 502 and irradiated to the observation object S placed on the observation table 503.
  • the excitation light generated in the observation object S by this laser light irradiation passes through the multilayer filter 502 and can be observed by the observer B.
  • the pulse width does not increase in the reflection band including the wavelength of the short pulse laser beam, and in the visible region, the excitation light generated in the observation target S is transmitted for observation. Is required.
  • an antireflection film having a wavelength range of 400 nm to 1350 nm is required for an objective lens for observation.
  • the antireflection film described in Non-Patent Document 1 and Patent Document 1 can transmit only one of visible light and near-infrared light.
  • the antireflection film described in Patent Document 3 has insufficient transmission band width, the reflectance is 7% at a wavelength of 1350 nm, and the reflectance is 16% at a wavelength of 1600 nm. Does not play the role of a membrane.
  • the present invention has been made in view of the above, and an object thereof is to provide an antireflection film having a band from visible light to the near infrared region (wavelength range of 400 nm to 1350 nm).
  • the antireflection film according to the present invention has a high refractive index material having a refractive index nH of 1.95 to 2.32 and a refractive index nL of 1.35 to 1.2. 46 having a low-refractive-index substance alternately laminated, a reflectance in a wavelength range of 400 nm to 680 nm is 1.5% or less, and a reflectance in a wavelength range of 680 nm to 1350 nm is 2 0.0% or less.
  • the first, third, fifth, seventh, ninth, and eleventh layers are high refractive index layers in order from the substrate side on which the laminate is formed.
  • the second, fourth, sixth, eighth, tenth, and twelfth layers are low refractive index layers, and the optical film thickness, which is the product of the refractive index and the physical film thickness d, in each layer of the laminate is It is preferable to satisfy each formula.
  • the high refractive index material is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , HfO 2 , or a mixture thereof with La and Zr
  • the low refractive index material is SiO 2 , MgF. 2 or a mixture thereof.
  • the refractive index of the substrate is preferably in the range of 1.48 to 1.8.
  • the optical system according to the present invention is characterized by including two or more substrates on which any of the above-described antireflection films according to the present invention is formed.
  • the optical apparatus according to the present invention is characterized by having the above-described optical system according to the present invention.
  • the antireflection film according to the present invention can form an optical system that transmits visible light and excitation light having a wavelength that is approximately twice that of visible light, whereby fluorescence observation can be performed over the entire visible light region. It has the effect of becoming.
  • 6 is a table showing a layer configuration of an antireflection film according to Example 1, Example 2, and Example 3.
  • 6 is a graph showing the reflectance characteristics of the antireflection film according to Example 1. It is a table
  • FIG. 6 is a graph showing the reflectance characteristics of an antireflection film according to Example 2.
  • 6 is a graph showing the reflectance characteristics of an antireflection film according to Example 3.
  • 10 is a table showing a layer configuration of an antireflection film according to Example 4, Example 5, and Example 6.
  • Example 6 is a graph showing the reflectance characteristics of an antireflection film according to Example 4.
  • 10 is a table showing the average reflectance and the maximum reflectance of an antireflection film according to Example 4, Example 5, and Example 6.
  • 10 is a graph showing the reflectance characteristics of an antireflection film according to Example 5.
  • 10 is a graph showing the reflectance characteristics of an antireflection film according to Example 6.
  • 10 is a table showing a layer configuration of an antireflection film according to Example 7, Example 8, and Example 9.
  • 12 is a graph showing the reflectance characteristics of an antireflection film according to Example 7. It is a table
  • 10 is a graph showing the reflectance characteristics of an antireflection film according to Example 8.
  • 10 is a graph showing the reflectance characteristics of an antireflection film according to Example 9.
  • 10 is a table showing a layer configuration of an antireflection film according to Example 10.
  • 10 is a graph showing the reflectance characteristics of an antireflection film according to Example 10.
  • 10 is a table showing the average reflectance and the maximum reflectance of the antireflection films according to Example 10, Example 11, Example 12, and Example 13.
  • 10 is a table showing a layer configuration of an antireflection film according to Example 11.
  • 10 is a graph showing the reflectance characteristics of an antireflection film according to Example 11.
  • 10 is a table showing a layer configuration of an antireflection film according to Example 12.
  • 14 is a graph showing the reflectance characteristics of an antireflection film according to Example 12.
  • 14 is a table showing a layer configuration of an antireflection film according to Example 13;
  • 14 is a graph showing the reflectance characteristics of an antireflection film according to Example 13. It is a figure which shows schematic structure of the conventional multiphoton absorption microscope.
  • FIG. 1 is a diagram showing a schematic configuration of a multiphoton absorption microscope according to an embodiment of the optical apparatus of the present invention.
  • the short pulse laser light oscillated by the laser light source 101 is reflected by the multilayer filter 102 and observed through the optical system 110 on which the antireflection film in this embodiment is formed.
  • the observation object S placed on the table 103 is irradiated.
  • the excitation light generated in the observation object S by the laser light irradiation passes through the multilayer filter 102 and can be observed by the observer B.
  • the antireflection film according to the present embodiment is characterized in that the reflectance in the wavelength range of 400 nm to 680 nm is 1.5% or less, and the reflectance in the wavelength range of 680 nm to 1350 nm is 2.0% or less. .
  • an optical system that transmits visible light and excitation light having a wavelength that is approximately twice that of visible light can be assembled, so that fluorescence observation can be performed over the entire visible light range.
  • the reflectance is preferably 1.5% or less, and 1% or less. More preferably.
  • the antireflection effect is preferably 5% or less, more preferably 2% or less, and further preferably 1.5% or less.
  • a high refractive index material having a refractive index nH of 1.95 to 2.32 and a low refractive index material having a refractive index nL of 1.35 to 1.46 are alternately stacked.
  • the first, third, fifth, seventh, ninth, and eleventh layers are high refractive index layers in order from the substrate side on which the stacked body is formed.
  • the fourth, sixth, eighth, tenth and twelfth layers are low refractive index layers, and the optical film thickness, which is the product of the refractive index and the physical film thickness d, in each layer of the laminate is as follows. It is preferable to satisfy the formula.
  • the high refractive index material is TiO 2 , Nb 2 O 5 , Ta 2 O 5 , HfO 2 , or a mixture thereof with La and Zr
  • the low refractive index material is SiO 2 , MgF 2 or a mixture thereof is preferable.
  • the refractive index of the substrate is preferably in the range of 1.48 to 1.8.
  • the optical system according to the present embodiment is characterized by including two or more substrates on which any of the above-described antireflection films according to the present embodiment is formed.
  • the optical apparatus according to this embodiment is characterized by having the optical system according to the above-described embodiment.
  • the high refractive index material and the low refractive index material do not have to be one kind each, and for example, the second and fourth layers may be different low refractive index materials.
  • the film forming method there are no limitations on methods such as vacuum deposition, assist by IAD or plasma, sputtering, ion beam sputtering, spin coating, and dipping.
  • the antireflection film according to this embodiment is desirably used for an objective lens for a microscope, but can also be applied to lenses such as cameras, glasses, and telescopes, prisms, and filters, for example.
  • the optical apparatus according to the present embodiment is, for example, these optical apparatuses, and the optical system according to the present embodiment is, for example, an optical system included in these optical apparatuses.
  • FIG. 2 is a table showing the layer configuration of the antireflection film according to Example 1, Example 2, and Example 3.
  • FIG. 3 is a graph showing the reflectance characteristics of the antireflection film according to Example 1.
  • FIG. 4 is a table showing the average reflectance and the maximum reflectance of the antireflection films according to Example 1, Example 2, and Example 3.
  • FIG. 5 is a graph showing the reflectance characteristics of the antireflection film according to Example 2.
  • FIG. 6 is a graph showing the reflectance characteristics of the antireflection film according to Example 3.
  • FIG. 2 shows the optical film thickness of each layer.
  • the cases where the refractive index n of the substrate is 1.48, 1.45, and 1.54 are indicated by a broken line, a dotted line, and a solid line, respectively.
  • the cases where the refractive index n of the substrate is 1.60, 1.54, and 1.64 are indicated by a broken line, a dotted line, and a solid line, respectively.
  • the cases where the refractive index n of the substrate is 1.70, 1.65, and 1.80 are indicated by a broken line, a dotted line, and a solid line, respectively.
  • the average reflectance and the maximum reflectance are shown for the substrates shown in FIG. 3, FIG. 5, and FIG.
  • HfO 2 as a high refractive index material is disposed in the first, third, fifth, seventh, ninth, and eleventh layers in order from the substrate side, and SiO 2 as a low refractive index material is Are arranged in order from the second, fourth, sixth, eighth and tenth layers, and MgF 2 as a low refractive index substance is arranged in the twelfth layer (outermost layer).
  • the optical film thickness that is the product of the refractive indexes nH and nL and the physical film thickness d satisfies the following expressions.
  • Example 1 As shown in FIGS. 3 and 4, the antireflection film of Example 1 has a reflectance of 1.5 and a wavelength of 400 nm to 680 nm on any substrate having a refractive index of 1.45 to 1.54. %, The reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the maximum reflectance when formed on a substrate having a refractive index of 1.48, the maximum reflectance is 0.93% and the average is 0.78% in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectance is 1.33%, and the average is 1.15%.
  • the maximum reflectance When formed on a substrate having a refractive index of 1.45, the maximum reflectance is 1.09% and the average is 0.78% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.3 in the wavelength range of 680 nm to 1350 nm. 39%, average 1.19%.
  • the maximum reflectance is 1.11% and the average is 0.83% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1 in the wavelength range of 680 nm to 1350 nm. .57%, average 1.11%.
  • the antireflection film of Example 2 has a reflectance of 1.5% in the wavelength range of 400 nm to 680 nm on any substrate in the refractive index range of 1.54 to 1.64.
  • the reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the maximum reflectance when formed on a substrate having a refractive index of 1.60, the maximum reflectance is 0.98% and the average is 0.82% in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectance is 1.59%, and the average is 1.20%.
  • the maximum reflectance When formed on a substrate having a refractive index of 1.54, the maximum reflectance is 1.24% and the average is 0.82% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.2 in the wavelength range of 680 nm to 1350 nm. 66%, average 1.30%.
  • the maximum reflectance is 1.23% and the average is 0.87% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1 in the wavelength range of 680 nm to 1350 nm. .58%, average 1.15%.
  • Example 3 As shown in FIGS. 4 and 6, the antireflection film of Example 3 has a reflectance of 1.5 in the wavelength range of 400 nm to 680 nm on any substrate in the refractive index range of 1.65 to 1.80. %, The reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the reflectance when formed on a substrate having a refractive index of 1.70, the reflectance is 1.02% at maximum and the average is 0.85% in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectance is 1.73%, and the average is 1.25%.
  • the maximum reflectance When formed on a substrate with a refractive index of 1.65, the maximum reflectance is 1.07% and the average is 0.86% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.7 in the wavelength range of 680 nm to 1350 nm. 73%, average 1.22%.
  • the maximum reflectance is 1.45% and the average is 0.93% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1 in the wavelength range of 680 nm to 1350 nm. .84%, average 1.17%.
  • FIG. 7 is a table showing the layer configuration of the antireflection film according to Example 4, Example 5, and Example 6.
  • FIG. 8 is a graph showing the reflectance characteristics of the antireflection film according to Example 4.
  • FIG. 9 is a table showing the average reflectance and the maximum reflectance of the antireflection films according to Example 4, Example 5, and Example 6.
  • FIG. 10 is a graph showing the reflectance characteristics of the antireflection film according to Example 5.
  • FIG. 11 is a graph showing the reflectance characteristics of the antireflection film according to Example 6.
  • FIG. 7 shows the optical film thickness of each layer.
  • the cases where the refractive index n of the substrate is 1.48, 1.45, and 1.54 are indicated by a broken line, a dotted line, and a solid line, respectively.
  • the case where the refractive index n of the substrate is 1.60, 1.54, and 1.64 is indicated by a broken line, a dotted line, and a solid line, respectively.
  • the cases where the refractive index n of the substrate is 1.70, 1.65, and 1.80 are indicated by a broken line, a dotted line, and a solid line, respectively.
  • the average reflectance and the maximum reflectance are shown for the substrates shown in FIG. 8, FIG. 10, and FIG.
  • TiO 2 as a high refractive index material is disposed in the first, third, fifth, seventh, ninth, and eleventh layers in order from the substrate side, and MgF 2 as a low refractive index material is In order from the second, fourth, sixth, eighth, tenth and twelfth layers.
  • the optical film thickness that is the product of the refractive indexes nH and nL and the physical film thickness d satisfies the following expressions.
  • Example 4 As shown in FIGS. 8 and 9, the antireflection film of Example 4 has a reflectance of 1.5 in the wavelength range of 400 nm to 680 nm on any substrate in the refractive index range of 1.45 to 1.54. %, The reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the maximum reflectance when formed on a substrate having a refractive index of 1.48, the maximum reflectance is 1.04% and the average is 0.69% in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectance is 1.47%, and the average is 1.05%.
  • the maximum reflectance When formed on a substrate having a refractive index of 1.45, the maximum reflectance is 1.17% and the average is 0.69% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.9% in the wavelength range of 680 nm to 1350 nm. 65%, average 1.12%.
  • the reflectance when formed on a substrate having a refractive index of 1.54, the reflectance is 1.23% at maximum in the wavelength range of 400 nm to 680 nm and the average is 0.75%, and the reflectance is 1 at maximum in the wavelength range of 680 nm to 1350 nm. 0.33%, average 0.97%.
  • Example 5 As shown in FIGS. 9 and 10, the antireflection film of Example 5 has a reflectance of 1.5% in the wavelength range of 400 nm to 680 nm on any substrate in the refractive index range of 1.54 to 1.64.
  • the reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the maximum reflectance when formed on a substrate having a refractive index of 1.60, the maximum reflectance is 0.98% and the average is 0.72% in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectivity is 1.33%, and the average is 1.05%.
  • the maximum reflectance When formed on a substrate having a refractive index of 1.54, the maximum reflectance is 1.29% and the average is 0.71% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.1 in the wavelength range of 680 nm to 1350 nm. 60%, average 1.16%.
  • the maximum reflectance is 1.12% and the average is 0.76% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1 in the wavelength range of 680 nm to 1350 nm. .32%, average 1.00%.
  • Example 6 As shown in FIGS. 9 and 11, the antireflection film of Example 6 has a reflectance of 1.5 in the wavelength range of 400 nm to 680 nm on any substrate in the refractive index range of 1.65 to 1.80. %, The reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the maximum reflectance when formed on a substrate having a refractive index of 1.70, the maximum reflectance is 0.92 and the average is 0.71% in the wavelength range of 400 nm to 680 nm, and the wavelength range is 680 nm. At ⁇ 1350 nm, the maximum reflectivity is 1.26%, and the average is 1.05%. Further, when formed on a substrate having a refractive index of 1.65, the maximum reflectance is 1.22% and the average is 0.70% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.2 in the wavelength range of 680 nm to 1350 nm. 54%, average 1.15%.
  • the reflectance when formed on a substrate having a refractive index of 1.80, the reflectance is 1.30% at the maximum in the wavelength range of 400 nm to 680 nm and the average is 0.83%, and the reflectance is 1 at the maximum in the wavelength range of 680 nm to 1350 nm. .57%, average 0.99%.
  • FIG. 12 is a table showing the layer configuration of the antireflection film according to Example 7, Example 8, and Example 9.
  • FIG. 13 is a graph showing the reflectance characteristics of the antireflection film according to Example 7.
  • FIG. 14 is a table showing the average reflectance and the maximum reflectance of the antireflection films according to Example 7, Example 8, and Example 9.
  • FIG. 15 is a graph showing the reflectance characteristics of the antireflection film according to Example 8.
  • FIG. 16 is a graph showing the reflectance characteristics of the antireflection film according to Example 9.
  • FIG. 12 the optical film thickness of each layer is shown.
  • FIG. 13 the cases where the refractive index n of the substrate is 1.48, 1.45, 1.54 are indicated by a broken line, a dotted line, and a solid line, respectively.
  • FIG. 15 the cases where the refractive index n of the substrate is 1.60, 1.54, and 1.64 are indicated by a broken line, a dotted line, and a solid line, respectively.
  • the case where the refractive index n of the substrate is 1.70, 1.65, and 1.80 is indicated by a broken line, a dotted line, and a solid line, respectively.
  • FIG. 14 the average reflectance and the maximum reflectance are shown for the substrates shown in FIG. 13, FIG. 15, and FIG.
  • Ta 2 O 5 as a high refractive index material is disposed in the first, third, fifth, seventh, ninth and eleventh layers in order from the substrate side, and SiO 2 as a low refractive index material is: In order from the substrate side, they are arranged in the second, fourth, sixth, eighth and tenth layers, and MgF 2 as a low refractive index substance is arranged in the twelfth layer.
  • the optical film thickness that is the product of the refractive indexes nH and nL and the physical film thickness d satisfies the following expressions.
  • Example 7 As shown in FIGS. 13 and 14, the antireflection film of Example 7 has a reflectance of 1.5 and a wavelength of 400 nm to 680 nm on any substrate having a refractive index of 1.45 to 1.54. %, The reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the maximum reflectance when formed on a substrate having a refractive index of 1.48, the maximum reflectance is 0.97% and the average is 0.75% in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectance is 1.13% and the average is 0.92%.
  • the maximum reflectance When formed on a substrate having a refractive index of 1.45, the maximum reflectance is 0.98% and the average is 0.73% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.3% in the wavelength range of 680 nm to 1350 nm. 35%, average 0.97%.
  • the maximum reflectance is 1.31% and the average is 0.83% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1 in the wavelength range of 680 nm to 1350 nm. .23%, average 0.87%.
  • Example 8 As shown in FIGS. 14 and 15, the antireflection film of Example 8 has a reflectance of 1.5% in the wavelength range of 400 nm to 680 nm on any substrate in the refractive index range of 1.54 to 1.64.
  • the reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the reflectance when formed on a substrate having a refractive index of 1.60, the reflectance is 1.11% at the maximum and 0.82% on the average in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectance is 1.23%, and the average is 1.01%.
  • the maximum reflectance When formed on a substrate having a refractive index of 1.54, the maximum reflectance is 1.22% and the average is 0.81% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.2 in the wavelength range of 680 nm to 1350 nm. 63%, average 1.10%.
  • the maximum reflectance is 1.15% and the average is 0.87% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1 in the wavelength range of 680 nm to 1350 nm. .39%, average 0.99%.
  • Example 9 As shown in FIGS. 14 and 16, the antireflection film of Example 9 has a reflectance of 1.5 in the wavelength range of 400 nm to 680 nm on any substrate in the refractive index range of 1.65 to 1.80. %, The reflectance is 2.0% or less in the wavelength range of 680 nm to 1350 nm.
  • the reflectance when formed on a substrate having a refractive index of 1.70, the reflectance is a maximum of 1.01% and an average of 0.75% in the wavelength range of 400 nm to 680 nm. From 680 nm to 1350 nm, the maximum reflectance is 1.12%, and the average is 1.0.91%.
  • the maximum reflectance When formed on a substrate having a refractive index of 1.65, the maximum reflectance is 1.11% and the average is 0.74% in the wavelength range of 400 nm to 680 nm, and the maximum reflectance is 1.4 in the wavelength range of 680 nm to 1350 nm. 52%, average 0.99%.
  • the reflectance when formed on a substrate having a refractive index of 1.80, the reflectance is 1.28% at the maximum and 0.87% on the average in the wavelength range of 400 nm to 680 nm, and the reflectance is 1 at the maximum in the wavelength range of 680 nm to 1350 nm. 49%, average 0.88%.
  • FIG. 17 is a table showing the layer configuration of the antireflection film according to Example 10.
  • FIG. 18 is a graph showing the reflectance characteristics of the antireflection film according to Example 10.
  • FIG. 19 is a table showing the average reflectance and the maximum reflectance of the antireflection films according to Example 10, Example 11, Example 12, and Example 13.
  • FIG. 20 is a table showing the layer configuration of the antireflection film according to Example 11.
  • FIG. 21 is a graph showing the reflectance characteristics of the antireflection film according to Example 11.
  • FIG. 22 is a table showing the layer configuration of the antireflection film according to Example 12.
  • FIG. 23 is a graph showing the reflectance characteristics of the antireflection film according to Example 12.
  • FIG. 24 is a table showing the layer configuration of the antireflection film according to Example 13.
  • FIG. 25 is a graph showing the reflectance characteristics of the antireflection film according to Example 13.
  • FIGS. 17, 20, 22, and 24 the optical film thickness of each layer is shown.
  • FIG. 19 the average reflectance and the maximum reflectance are shown for Examples 10 to 13.
  • the optical film thickness that is the product of the refractive indexes nH and nL and the physical film thickness d satisfies the following expressions.
  • Ta 2 O 5 as a high refractive index material is disposed in the first, third, fifth, seventh, ninth and eleventh layers in order from the substrate side, and SiO 2 as a low refractive index material is: In order from the substrate side, they are arranged in the second, fourth, sixth, eighth and tenth layers, and MgF 2 as a low refractive index substance is arranged in the twelfth layer (outermost layer).
  • the antireflection film of Example 10 has a maximum reflectance of 1.26% and an average of 0.93% in the wavelength range of 400 nm to 680 nm, which is 1.5% or less. From 680 nm to 1350 nm, the maximum reflectance is 0.97%, the average is 0.75%, and the spectral characteristics are 2.0% or less.
  • HfO 2 as a high refractive index material is disposed in the first, third, fifth, seventh, ninth, and eleventh layers in order from the substrate side, and SiO 2 as a low refractive index material is Are arranged in order from the second, fourth, sixth, eighth and tenth layers, and MgF 2 as a low refractive index substance is arranged in the twelfth layer (outermost layer).
  • the antireflection film of Example 11 has a maximum reflectance of 1.39% and an average of 0.93% in the wavelength range of 400 nm to 680 nm, which is 1.5% or less. From 680 nm to 1350 nm, the maximum reflectance is 1.16%, the average is 0.79%, and the spectral characteristics are 2.0% or less.
  • TiO 2 as a high refractive index material is disposed in the first, third, fifth, seventh, ninth, and eleventh layers in order from the substrate side, and MgF 2 as a low refractive index material is Are arranged in order from the second, fourth, sixth, eighth, tenth and twelfth layers (outermost layer).
  • the antireflection film of Example 12 has a maximum reflectance of 1.30% and an average of 0.93% and 1.5% or less in the wavelength range of 400 nm to 680 nm. In the range of 680 nm to 1350 nm, the maximum reflectance is 0.93%, the average is 0.74%, and the spectral characteristics are 2.0% or less.
  • the optical component and the optical component are used for the purpose of increasing the degree of adhesion with the surface of the optical component or increasing the water repellency, anti-fogging property, and durability of the outermost layer of the optical component with the antireflection film.
  • Another layer may be provided between one layer and / or outside the twelfth layer within a range that does not significantly affect the optical characteristics.
  • Ta 2 O 5 as a high refractive index material is disposed in the first, third, fifth, seventh, ninth, and eleventh layers in order from the substrate side, and SiO 2 as a low refractive index material. 2 is arranged in the second, fourth, sixth, eighth, tenth and thirteenth layers in order from the substrate side, and MgF 2 as a low refractive index substance is arranged in the twelfth layer.
  • the antireflection film of Example 13 has a maximum reflectance of 1.26% and an average of 0.93% in the wavelength range of 400 nm to 680 nm, which is 1.5% or less. From 680 nm to 1350 nm, the maximum reflectance is 0.97%, the average is 0.75%, and the spectral characteristics are 2.0% or less.
  • the antireflection film according to the present invention is useful for a multiphoton microscope in which an objective lens needs an antireflection film having a wavelength range from visible light to the near infrared region.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 可視光から近赤外域までの帯域を持つ反射防止膜を提供する。 屈折率nHが1.95~2.32の高屈折率物質と屈折率nLが1.35~1.46の低屈折率物質を交互に積層させた12層の積層体を有し、波長範囲400nm~680nmの反射率が1.5%以下であり、かつ、波長範囲680nm~1350nmの反射率が2.0%以下である。この積層体が形成される基板側から順に、第1、第3、第5、第7、第9、及び第11層が高屈折率層であり、第2、第4、第6、第8、第10、及び第12層が低屈折率層であり、積層体の各層において、屈折率と物理膜厚dの積である光学膜厚が、所定の式を満足する。

Description

反射防止膜、光学系、及び光学機器
 本発明は、反射防止膜、この反射防止膜を有する光学系、及び、この光学系を有する光学機器に関するものである。
 近年、医療、化学分野において、観察対象に蛍光たんぱく質を含む試薬を投与し、ある一定の波長の光を当てると、試薬から別の波長の光が蛍光され、細胞等の観察を行うことができる蛍光顕微鏡の用途が拡大している。その一つとして、多光子吸収顕微鏡がある。
 多光子吸収顕微鏡は、励起光として高出力を得る目的からレーザの高次、例えば2次を用いる。すなわち、可視光励起に対して、レーザの波長は赤外光となる。
 よって、多光子吸収顕微鏡において光学系は、観察用の蛍光(可視光)と、蛍光を発生させる励起レーザ用の近赤外光と、を透過させる必要がある。そのため、可視光から近赤外を透過させる反射防止膜が必要とされてきた。励起光には蛍光観察波長の約2倍の波長の光が必要になる。蛍光観察では使用される試薬によって観察に使われる波長が決定する。使用される波長はおおよそ500nm前後であるので、近赤外(約1000nm)までの波長を透過すれば良い。
 一般的に知られている反射防止膜は可視光(波長範囲400nm~680nm)を透過させるもので非特許文献1に3層での反射防止膜の設計が記載されている。特許文献1では可視光を含まない近赤外域のみの反射防止膜が提案されている。また、可視光が必要な場合には近赤外域の光は遮断されることが多いため、特許文献2のように可視光透過、近赤外域反射という反射防止膜が提案されている。可視光~近赤外域の反射防止膜では特許文献3において波長範囲400nm~1100nmまで透過する反射防止膜が得られている。
特開2005-275294号公報 特開平9-325211号公報 特開2005-338366号公報
H.A.Macleod著「光学薄膜」日刊工業新聞社出版、1989年12月、P.129~130
 しかし、蛍光観察で使用できる波長は、被観察物に応じた新試薬の開発により可視光全域にわたり可能になりつつある。可視光すべてでの蛍光観察を行うためには、可視光(400nm~680nm)と励起用レーザ光(800nm~1350nm)を透過できる光学系が必要となる。つまり、波長範囲400nm~1350nmという範囲、すなわち可視光の約2倍の透過帯域が必要となる。
 図26は、従来の多光子吸収顕微鏡の概略構成を示す図である。
 図26に示す多光子吸収顕微鏡においては、レーザ光源501で発振させた短パルスレーザ光を多層膜フィルタ502で反射させ、観察台503上に置いた観察対象Sに照射する。このレーザ光の照射によって観察対象Sで発生した励起光は、多層膜フィルタ502を透過して観察者Bによる観察が可能となる。多層膜フィルタ502の特性としては、短パルスレーザ光の波長を含む反射帯域においてはパルス幅が広げることがなく、可視領域においては、観察対象Sで発生した励起光を観察のために透過させることが求められる。
 図26に示す多光子吸収顕微鏡では、観察を行うための対物レンズに波長範囲400nm~1350nmの反射防止膜が必要となる。また、観察を行いやすくするための周辺アプリケーションを含めると波長1600nmまでの光を透過できることが望ましい。しかし、非特許文献1や特許文献1に記載されている反射防止膜では、可視光か近赤外域かのどちらか一方の光しか透過させることができない。また、特許文献3に記載されている反射防止膜では透過帯域の幅が足りず、波長1350nmで反射率7%、波長1600nmでは反射率16%と、レンズや基板以上の反射率となり、反射防止膜の役目を果たしていない。
 本発明は、上記に鑑みてなされたものであって、可視光から近赤外域(波長範囲400nm~1350nm)までの帯域を持つ反射防止膜を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る反射防止膜は、屈折率nHが1.95~2.32の高屈折率物質と屈折率nLが1.35~1.46の低屈折率物質を交互に積層させた12層の積層体を有し、波長範囲400nm~680nmの反射率が1.5%以下であり、かつ、波長範囲680nm~1350nmの反射率が2.0%以下であることを特徴としている。
 本発明に係る反射防止膜においては、この積層体が形成される基板側から順に、第1、第3、第5、第7、第9、及び第11層が高屈折率層であり、第2、第4、第6、第8、第10、及び第12層が低屈折率層であり、積層体の各層において、屈折率と物理膜厚dの積である光学膜厚が、次の各式を満足することが好ましい。
 第1層  0.11<nHd<0.25、
 第2層  0.33<nLd<0.72、
 第3層  0.33<nHd<0.60、
 第4層  0.23<nLd<0.54、
 第5層  0.63<nHd<0.88、
 第6層  0.08<nLd<0.22、
 第7層  1.23<nHd<2.29、
 第8層  0.06<nLd<0.15、
 第9層  0.59<nHd<0.94、
 第10層 0.34<nLd<0.44、
 第11層 0.23<nHd<0.42、
 第12層 1.15<nLd<1.27
 本発明に係る反射防止膜において、高屈折率物質はTiO、Nb、Ta、HfO、又はそれらとLa、Zrの混合物であり、低屈折率物質はSiO、MgF、又はそれらの混合物であることが好ましい。
 本発明に係る反射防止膜において、基板の屈折率は1.48~1.8の範囲内にあることが好ましい。
 本発明に係る光学系は、上述の本発明に係る反射防止膜のいずれかが形成された基板を2枚以上備えたことを特徴としている。
 本発明に係る光学機器は、上述の本発明に係る光学系を有することを特徴としている。
 本発明に係る反射防止膜は、可視光と、その約2倍の波長の励起光と、を透過する光学系を組むことができ、それにより、可視光全域に渡り蛍光観察を行うことができるようになる、という効果を奏する。
本発明の実施形態に係る多光子吸収顕微鏡の概略構成を示す図である。 実施例1、実施例2、及び実施例3に係る反射防止膜の層構成を示す表である。 実施例1に係る反射防止膜の反射率特性を示すグラフである。 実施例1、実施例2、及び実施例3に係る反射防止膜の平均反射率及び最大反射率を示す表である。 実施例2に係る反射防止膜の反射率特性を示すグラフである。 実施例3に係る反射防止膜の反射率特性を示すグラフである。 実施例4、実施例5、及び実施例6に係る反射防止膜の層構成を示す表である。 実施例4に係る反射防止膜の反射率特性を示すグラフである。 実施例4、実施例5、及び実施例6に係る反射防止膜の平均反射率及び最大反射率を示す表である。 実施例5に係る反射防止膜の反射率特性を示すグラフである。 実施例6に係る反射防止膜の反射率特性を示すグラフである。 実施例7、実施例8、及び実施例9に係る反射防止膜の層構成を示す表である。 実施例7に係る反射防止膜の反射率特性を示すグラフである。 実施例7、実施例8、及び実施例9に係る反射防止膜の平均反射率及び最大反射率を示す表である。 実施例8に係る反射防止膜の反射率特性を示すグラフである。 実施例9に係る反射防止膜の反射率特性を示すグラフである。 実施例10に係る反射防止膜の層構成を示す表である。 実施例10に係る反射防止膜の反射率特性を示すグラフである。 実施例10、実施例11、実施例12、及び実施例13に係る反射防止膜の平均反射率及び最大反射率を示す表である。 実施例11に係る反射防止膜の層構成を示す表である。 実施例11に係る反射防止膜の反射率特性を示すグラフである。 実施例12に係る反射防止膜の層構成を示す表である。 実施例12に係る反射防止膜の反射率特性を示すグラフである。 実施例13に係る反射防止膜の層構成を示す表である。 実施例13に係る反射防止膜の反射率特性を示すグラフである。 従来の多光子吸収顕微鏡の概略構成を示す図である。
 以下に、本発明に係る反射防止膜、光学系、及び光学機器の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
 図1は、本発明の光学機器の実施形態に係る多光子吸収顕微鏡の概略構成を示す図である。
 図1に示す多光子吸収顕微鏡においては、レーザ光源101で発振させた短パルスレーザ光を多層膜フィルタ102で反射させ、本実施形態における反射防止膜が形成された光学系110を介して、観察台103上に置いた観察対象Sに照射する。このレーザ光の照射によって観察対象Sで発生した励起光は、多層膜フィルタ102を透過して観察者Bによる観察が可能となる。
 つづいて、本実施形態に係る反射防止膜の構成・作用・効果について説明する。 本実施形態に係る反射防止膜は、波長範囲400nm~680nmの反射率が1.5%以下であり、かつ、波長範囲680nm~1350nmの反射率が2.0%以下であることを特徴としている。
 これにより、可視光と、その約2倍の波長の励起光と、を透過する光学系を組むことができ、それにより、可視光全域に渡り蛍光観察を行うことができるようになる。
 ここで、可視域(波長範囲400nm~680nm)で発生する励起光は強度が微弱であるため、できるだけ透過光のロスを少なくするには、反射率1.5%以下が好ましく、1%以下とすることがさらに好ましい。
 一方、励起光として使用する、波長範囲680nm~1350nmのレーザは強度が非常に強いため、反射防止効果は5%以下が好ましく、より好ましくは2%以下、さらに好ましくは1.5%以下がよい。
 本実施形態に係る反射防止膜においては、屈折率nHが1.95~2.32の高屈折率物質と屈折率nLが1.35~1.46の低屈折率物質を交互に積層させた12層の積層体を有し、この積層体が形成される基板側から順に、第1、第3、第5、第7、第9、及び第11層が高屈折率層であり、第2、第4、第6、第8、第10、及び第12層が低屈折率層であり、積層体の各層において、屈折率と物理膜厚dの積である光学膜厚が、次の各式を満足することが好ましい。
 第1層  0.11<nHd<0.25、
 第2層  0.33<nLd<0.72、
 第3層  0.33<nHd<0.60、
 第4層  0.23<nLd<0.54、
 第5層  0.63<nHd<0.88、
 第6層  0.08<nLd<0.22、
 第7層  1.23<nHd<2.29、
 第8層  0.06<nLd<0.15、
 第9層  0.59<nHd<0.94、
 第10層 0.34<nLd<0.44、
 第11層 0.23<nHd<0.42、
 第12層 1.15<nLd<1.27
 本実施形態に係る反射防止膜において、高屈折率物質はTiO、Nb、Ta、HfO、又はそれらとLa、Zrの混合物であり、低屈折率物質はSiO、MgF、又はそれらの混合物であることが好ましい。
 本実施形態に係る反射防止膜において、基板の屈折率は1.48~1.8の範囲内にあることが好ましい。
 本実施形態に係る光学系は、上述の本実施形態に係る反射防止膜のいずれかが形成された基板を2枚以上備えたことを特徴としている。
 本実施形態に係る光学機器は、上述の本実施形態に係る光学系を有することを特徴としている。
 高屈折率物質と低屈折率物質はそれぞれ1種類である必要はなく、例えば、2層目と4層目が互いに異なる低屈折率物質であっても良い。成膜方法においても、真空蒸着、IADやプラズマによるアシスト、スパッタリング、イオンビームスパッタ、スピンコート、ディッピングと手法は限定しない。
 本実施形態に係る反射防止膜は、顕微鏡用の対物レンズに用いることが望ましいが、例えば、カメラ、眼鏡、望遠鏡等のレンズ、プリズム、フィルタにも適用することができる。本実施形態に係る光学機器は、例えば、これらの光学機器であり、本実施形態に係る光学系は、例えば、これらの光学機器が有する光学系である。
(実施例1~3)
 図2は、実施例1、実施例2、及び実施例3に係る反射防止膜の層構成を示す表である。図3は、実施例1に係る反射防止膜の反射率特性を示すグラフである。図4は、実施例1、実施例2、及び実施例3に係る反射防止膜の平均反射率及び最大反射率を示す表である。図5は、実施例2に係る反射防止膜の反射率特性を示すグラフである。図6は、実施例3に係る反射防止膜の反射率特性を示すグラフである。
 図2においては、各層の光学膜厚を示している。図3においては、基板の屈折率nが1.48、1.45、1.54である場合を、破線、点線、実線でそれぞれ示している。図5においては、基板の屈折率nが1.60、1.54、1.64である場合を、破線、点線、実線でそれぞれ示している。図6においては、基板の屈折率nが1.70、1.65、1.80である場合を、破線、点線、実線でそれぞれ示している。図4においては、図3、図5、図6に示す基板について、平均反射率及び最大反射率を示している。
 実施例1~3の反射防止膜は、図2に示すように、基板上に、高屈折率物質としてのHfO(屈折率nH=1.99)と、低屈折率物質としてのSiO(屈折率nL=1.45)及びMgF(屈折率nL=1.38)と、を交互に積層させた12層の積層体である。高屈折率物質としてのHfOは、基板側から順に、第1、第3、第5、第7、第9、及び第11層に配置され、低屈折率物質としてのSiOは、基板側から順に、第2、第4、第6、第8、及び第10層に配置され、低屈折率物質としてのMgFは第12層(最表層)に配置されている。
 ここで、積層体の各層において、屈折率nH、nLと物理膜厚dの積である光学膜厚が、次の各式を満足している。この光学膜厚は、設計波長550nmにおける、設計波長/4=1.00とした値である。
 第1層  0.11<nHd<0.25、
 第2層  0.33<nLd<0.72、
 第3層  0.33<nHd<0.60、
 第4層  0.23<nLd<0.54、
 第5層  0.63<nHd<0.88、
 第6層  0.08<nLd<0.22、
 第7層  1.23<nHd<2.29、
 第8層  0.06<nLd<0.15、
 第9層  0.59<nHd<0.94、
 第10層 0.34<nLd<0.44、
 第11層 0.23<nHd<0.42、
 第12層 1.15<nLd<1.27
(実施例1)
 図3、図4に示すように、実施例1の反射防止膜は、屈折率1.45~1.54までの範囲のいずれの基板上においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図4に示すように、屈折率1.48の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大0.93%、平均0.78%であり、波長範囲680nm~1350nmで反射率は最大1.33%、平均1.15%である。
 また、屈折率1.45の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.09%、平均0.78%であり、波長範囲680nm~1350nmで反射率は最大1.39%、平均1.19%である。
 さらにまた、屈折率1.54の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.11%、平均0.83%であり、波長範囲680nm~1350nmで反射率は最大1.57%、平均1.11%である。
(実施例2)
 図4、図5に示すように、実施例2の反射防止膜は、屈折率1.54~1.64までの範囲のいずれの基板においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図4に示すように、屈折率1.60の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大0.98%、平均0.82%であり、波長範囲680nm~1350nmで反射率は最大1.59%、平均1.20%である。
 また、屈折率1.54の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.24%、平均0.82%であり、波長範囲680nm~1350nmで反射率は最大1.66%、平均1.30%である。
 さらにまた、屈折率1.64の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.23%、平均0.87%であり、波長範囲680nm~1350nmで反射率は最大1.58%、平均1.15%である。
(実施例3)
 図4、図6に示すように、実施例3の反射防止膜は、屈折率1.65~1.80までの範囲のいずれの基板上においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図4に示すように、屈折率1.70の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.02%、平均0.85%であり、波長範囲680nm~1350nmで反射率は最大1.73%、平均1.25%である。
 また、屈折率1.65の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.07%、平均0.86%であり、波長範囲680nm~1350nmで反射率は最大1.73%、平均1.22%である。
 さらにまた、屈折率1.80の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.45%、平均0.93%であり、波長範囲680nm~1350nmで反射率は最大1.84%、平均1.17%である。
(実施例4~6)
 図7は、実施例4、実施例5、及び実施例6に係る反射防止膜の層構成を示す表である。図8は、実施例4に係る反射防止膜の反射率特性を示すグラフである。図9は、実施例4、実施例5、及び実施例6に係る反射防止膜の平均反射率及び最大反射率を示す表である。図10は、実施例5に係る反射防止膜の反射率特性を示すグラフである。図11は、実施例6に係る反射防止膜の反射率特性を示すグラフである。
 図7においては、各層の光学膜厚を示している。図8においては、基板の屈折率nが1.48、1.45、1.54である場合を、破線、点線、実線でそれぞれ示している。図10においては、基板の屈折率nが1.60、1.54、1.64である場合を、破線、点線、実線でそれぞれ示している。図11においては、基板の屈折率nが1.70、1.65、1.80である場合を、破線、点線、実線でそれぞれ示している。図9においては、図8、図10、図11に示す基板について、平均反射率及び最大反射率を示している。
 実施例4~6の反射防止膜は、図7に示すように、基板上に、高屈折率物質としてのTiO(nH=屈折率2.22)と、低屈折率物質としてのMgF(屈折率nL=1.38)を交互に積層させた12層の積層体である。高屈折率物質としてのTiOは、基板側から順に、第1、第3、第5、第7、第9、及び第11層に配置され、低屈折率物質としてのMgFは、基板側から順に、第2、第4、第6、第8、第10、及び第12層に配置されている。
 ここで、積層体の各層において、屈折率nH、nLと物理膜厚dの積である光学膜厚が、次の各式を満足している。この光学膜厚は、設計波長550nmにおける、設計波長/4=1.00とした値である。
 第1層  0.11<nHd<0.25、
 第2層  0.33<nLd<0.72、
 第3層  0.33<nHd<0.60、
 第4層  0.23<nLd<0.54、
 第5層  0.63<nHd<0.88、
 第6層  0.08<nLd<0.22、
 第7層  1.23<nHd<2.29、
 第8層  0.06<nLd<0.15、
 第9層  0.59<nHd<0.94、
 第10層 0.34<nLd<0.44、
 第11層 0.23<nHd<0.42、
 第12層 1.15<nLd<1.27
(実施例4)
 図8、図9に示すように、実施例4の反射防止膜は、屈折率1.45~1.54までの範囲のいずれの基板上においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図9に示すように、屈折率1.48の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.04%、平均0.69%であり、波長範囲680nm~1350nmで反射率は最大1.47%、平均1.05%である。
 また、屈折率1.45の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.17%、平均0.69%であり、波長範囲680nm~1350nmで反射率は最大1.65%、平均1.12%である。
 さらにまた、屈折率1.54の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.23%、平均0.75%であり、波長範囲680nm~1350nmで反射率は最大1.33%、平均0.97%である。
(実施例5)
 図9、図10に示すように、実施例5の反射防止膜は、屈折率1.54~1.64までの範囲のいずれの基板においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図9に示すように、屈折率1.60の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大0.98%、平均0.72%であり、波長範囲680nm~1350nmで反射率は最大1.33%、平均1.05%である。
 また、屈折率1.54の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.29%、平均0.71%であり、波長範囲680nm~1350nmで反射率は最大1.60%、平均1.16%である。
 さらにまた、屈折率1.64の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.12%、平均0.76%であり、波長範囲680nm~1350nmで反射率は最大1.32%、平均1.00%である。
(実施例6)
 図9、図11に示すように、実施例6の反射防止膜は、屈折率1.65~1.80までの範囲のいずれの基板上においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図9に示すように、屈折率1.70の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大0.92、平均0.71%であり、波長範囲680nm~1350nmで反射率は最大1.26%、平均1.05%である。
 また、屈折率1.65の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.22%、平均0.70%であり、波長範囲680nm~1350nmで反射率は最大1.54%、平均1.15%である。
 さらにまた、屈折率1.80の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.30%、平均0.83%であり、波長範囲680nm~1350nmで反射率は最大1.57%、平均0.99%である。
(実施例7~9)
 図12は、実施例7、実施例8、及び実施例9に係る反射防止膜の層構成を示す表である。図13は、実施例7に係る反射防止膜の反射率特性を示すグラフである。図14は、実施例7、実施例8、及び実施例9に係る反射防止膜の平均反射率及び最大反射率を示す表である。図15は、実施例8に係る反射防止膜の反射率特性を示すグラフである。図16は、実施例9に係る反射防止膜の反射率特性を示すグラフである。
 図12においては、各層の光学膜厚を示している。
 図13においては、基板の屈折率nが1.48、1.45、1.54である場合を、破線、点線、実線でそれぞれ示している。図15においては、基板の屈折率nが1.60、1.54、1.64である場合を、破線、点線、実線でそれぞれ示している。図16においては、基板の屈折率nが1.70、1.65、1.80である場合を、破線、点線、実線でそれぞれ示している。図14においては、図13、図15、図16に示す基板について、平均反射率及び最大反射率を示している。
 実施例7~9の反射防止膜は、図12に示すように、基板上に、高屈折率物質としてのTa(nH=屈折率2.22)と、低屈折率物質としてのSiO(屈折率nL=1.45)及びMgF(屈折率nL=1.38)と、を交互に積層させた12層の積層体である。高屈折率物質としてのTaは、基板側から順に、第1、第3、第5、第7、第9、及び第11層に配置され、低屈折率物質としてのSiOは、基板側から順に、第2、第4、第6、第8、及び第10層に配置され、低屈折率物質としてのMgFは第12層に配置されている。
 ここで、積層体の各層において、屈折率nH、nLと物理膜厚dの積である光学膜厚が、次の各式を満足している。この光学膜厚は、設計波長550nmにおける、設計波長/4=1.00とした値である。
 第1層  0.11<nHd<0.25、
 第2層  0.33<nLd<0.72、
 第3層  0.33<nHd<0.60、
 第4層  0.23<nLd<0.54、
 第5層  0.63<nHd<0.88、
 第6層  0.08<nLd<0.22、
 第7層  1.23<nHd<2.29、
 第8層  0.06<nLd<0.15、
 第9層  0.59<nHd<0.94、
 第10層 0.34<nLd<0.44、
 第11層 0.23<nHd<0.42、
 第12層 1.15<nLd<1.27
(実施例7)
 図13、図14に示すように、実施例7の反射防止膜は、屈折率1.45~1.54までの範囲のいずれの基板上においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図14に示すように、屈折率1.48の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大0.97%、平均0.75%であり、波長範囲680nm~1350nmで反射率は最大1.13%、平均0.92%である。
 また、屈折率1.45の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大0.98%、平均0.73%であり、波長範囲680nm~1350nmで反射率は最大1.35%、平均0.97%である。
 さらにまた、屈折率1.54の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.31%、平均0.83%であり、波長範囲680nm~1350nmで反射率は最大1.23%、平均0.87%である。
(実施例8)
 図14、図15に示すように、実施例8の反射防止膜は、屈折率1.54~1.64までの範囲のいずれの基板においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図14に示すように、屈折率1.60の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.11%、平均0.82%であり、波長範囲680nm~1350nmで反射率は最大1.23%、平均1.01%である。
 また、屈折率1.54の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.22%、平均0.81%であり、波長範囲680nm~1350nmで反射率は最大1.63%、平均1.10%である。
 さらにまた、屈折率1.64の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.15%、平均0.87%であり、波長範囲680nm~1350nmで反射率は最大1.39%、平均0.99%である。
(実施例9)
 図14、図16に示すように、実施例9の反射防止膜は、屈折率1.65~1.80までの範囲のいずれの基板上においても、波長範囲400nm~680nmで反射率1.5%以下、波長範囲680nm~1350nmで反射率2.0%以下となっている。
 具体的には、図14に示すように、屈折率1.70の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.01%、平均0.75%であり、波長範囲680nm~1350nmで反射率は最大1.12%、平均1.0.91%である。
 また、屈折率1.65の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.11%、平均0.74%であり、波長範囲680nm~1350nmで反射率は最大1.52%、平均0.99%である。
 さらにまた、屈折率1.80の基板上に形成した場合、波長範囲400nm~680nmで反射率は最大1.28%、平均0.87%であり、波長範囲680nm~1350nmで反射率は最大1.49%、平均0.88%である。
(実施例10~13)
 図17は、実施例10に係る反射防止膜の層構成を示す表である。図18は、実施例10に係る反射防止膜の反射率特性を示すグラフである。図19は、実施例10、実施例11、実施例12、及び実施例13に係る反射防止膜の平均反射率及び最大反射率を示す表である。図20は、実施例11に係る反射防止膜の層構成を示す表である。図21は、実施例11に係る反射防止膜の反射率特性を示すグラフである。図22は、実施例12に係る反射防止膜の層構成を示す表である。図23は、実施例12に係る反射防止膜の反射率特性を示すグラフである。図24は、実施例13に係る反射防止膜の層構成を示す表である。図25は、実施例13に係る反射防止膜の反射率特性を示すグラフである。
 図17、図20、図22、及び図24においては、各層の光学膜厚を示している。
 図19においては、実施例10~13について、平均反射率及び最大反射率を示している。
 ここで、積層体の各層において、屈折率nH、nLと物理膜厚dの積である光学膜厚が、次の各式を満足している。この光学膜厚は、設計波長550nmにおける、設計波長/4=1.00とした値である。
 第1層  0.11<nHd<0.25、
 第2層  0.33<nLd<0.72、
 第3層  0.33<nHd<0.60、
 第4層  0.23<nLd<0.54、
 第5層  0.63<nHd<0.88、
 第6層  0.08<nLd<0.22、
 第7層  1.23<nHd<2.29、
 第8層  0.06<nLd<0.15、
 第9層  0.59<nHd<0.94、
 第10層 0.34<nLd<0.44、
 第11層 0.23<nHd<0.42、
 第12層 1.15<nLd<1.27
(実施例10)
 実施例10の反射防止膜は、図17に示すように、屈折率1.49の基板上に、高屈折率物質としてのTa(nH=屈折率2.22)と、低屈折率物質としてのSiO(屈折率nL=1.45)及びMgF(屈折率nL=1.38)と、を交互に積層させた12層の積層体である。高屈折率物質としてのTaは、基板側から順に、第1、第3、第5、第7、第9、及び第11層に配置され、低屈折率物質としてのSiOは、基板側から順に、第2、第4、第6、第8、及び第10層に配置され、低屈折率物質としてのMgFは第12層(最表層)に配置されている。
 図18、図19に示すように、実施例10の反射防止膜は、波長範囲400nm~680nmでは反射率が最大1.26%、平均0.93%であり1.5%以下となり、波長範囲680nm~1350nmでは反射率が最大0.97%、平均0.75%であり2.0%以下の分光特性を示す。
(実施例11)
 実施例11の反射防止膜は、図20に示すように、屈折率1.57の基板上に、高屈折率物質としてのHfO(屈折率nH=1.99)と、低屈折率物質としてのSiO(屈折率nL=1.45)及びMgF(屈折率nL=1.38)と、を交互に積層させた12層の積層体である。高屈折率物質としてのHfOは、基板側から順に、第1、第3、第5、第7、第9、及び第11層に配置され、低屈折率物質としてのSiOは、基板側から順に、第2、第4、第6、第8、及び第10層に配置され、低屈折率物質としてのMgFは第12層(最表層)に配置されている。
 図19、図21に示すように、実施例11の反射防止膜は、波長範囲400nm~680nmでは反射率が最大1.39%、平均0.93%であり1.5%以下となり、波長範囲680nm~1350nmでは反射率が最大1.16%、平均0.79%であり2.0%以下の分光特性を示す。
(実施例12)
 実施例12の反射防止膜は、図22に示すように、屈折率1.57の基板上に、高屈折率物質としてのTiO(屈折率nH=2.32)と、低屈折率物質としてのMgF(屈折率nL=1.38)と、を交互に積層させた12層の積層体である。高屈折率物質としてのTiOは、基板側から順に、第1、第3、第5、第7、第9、及び第11層に配置され、低屈折率物質としてのMgFは、基板側から順に、第2、第4、第6、第8、第10、及び第12層(最表層)に配置されている。
 図19、図23に示すように、実施例12の反射防止膜は、波長範囲400nm~680nmでは反射率が最大1.30%、平均0.93%であって1.5%以下となり、波長範囲680nm~1350nmでは反射率が最大0.93%、平均0.74%であり2.0%以下の分光特性を示す。
(実施例13)
 上述の実施例において、光学部品の表面との密着度を高めたり、反射防止膜を施した光学部品の最表層の撥水性・防曇性・耐久性を高めるなどの目的で、光学部品と第1層との間、及び/又は、第12層のさらに外側に、光学特性に大きな影響を与えない範囲内で、別の層を付与してもよい。
 この例として、実施例13の反射防止膜は、実施例10と同様の層材料を備えた積層体において、第12層の外側にSiOのオーバーコートを行っている。
 すなわち、実施例13の反射防止膜は、図24に示すように、屈折率1.49の基板上に、高屈折率物質としてのTa(屈折率nH=2.22)と、低屈折率物質としてのSiO(屈折率nL=1.45)及びMgF(屈折率nL=1.38)と、を交互に積層させた12層の積層体の最表層上に、第13層としてSiOが積層されている。ここで、高屈折率物質としてのTaは、基板側から順に、第1、第3、第5、第7、第9、及び第11層に配置され、低屈折率物質としてのSiOは、基板側から順に、第2、第4、第6、第8、第10、及び第13層に配置され、低屈折率物質としてのMgFは第12層に配置されている。
 図19、図25に示すように、実施例13の反射防止膜は、波長範囲400nm~680nmでは反射率が最大1.26%、平均0.93%であり1.5%以下となり、波長範囲680nm~1350nmでは反射率が最大0.97%、平均0.75%であり2.0%以下の分光特性を示す。
 以上のように、本発明に係る反射防止膜は、対物レンズに可視光から近赤外域までの波長範囲の反射防止膜が必要となる多光子顕微鏡に有用である。
 101 レーザ光源
 102 多層膜フィルタ
 103 観察台
 110 光学系
 S   観察対象

Claims (6)

  1.  屈折率nHが1.95~2.32の高屈折率物質と屈折率nLが1.35~1.46の低屈折率物質を交互に積層させた12層の積層体を有し、
     波長範囲400nm~680nmの反射率が1.5%以下であり、かつ、波長範囲680nm~1350nmの反射率が2.0%以下であることを特徴とする反射防止膜。
  2.  前記積層体が形成される基板側から順に、第1、第3、第5、第7、第9、及び第11層が高屈折率層であり、第2、第4、第6、第8、第10、及び第12層が低屈折率層であり、
     前記積層体の各層において、屈折率と物理膜厚dの積である光学膜厚が、次の各式を満足することを特徴とする請求項1に記載の反射防止膜。
     第1層  0.11<nHd<0.25、
     第2層  0.33<nLd<0.72、
     第3層  0.33<nHd<0.60、
     第4層  0.23<nLd<0.54、
     第5層  0.63<nHd<0.88、
     第6層  0.08<nLd<0.22、
     第7層  1.23<nHd<2.29、
     第8層  0.06<nLd<0.15、
     第9層  0.59<nHd<0.94、
     第10層 0.34<nLd<0.44、
     第11層 0.23<nHd<0.42、
     第12層 1.15<nLd<1.27
  3.  前記高屈折率物質はTiO、Nb、Ta、HfO、又はそれらとLa、Zrの混合物であり、前記低屈折率物質はSiO、MgF、又はそれらの混合物であることを特徴とする請求項1に記載の反射防止膜。
  4.  前記基板の屈折率は1.48~1.8の範囲内にあることを特徴とする請求項1に記載の反射防止膜。
  5.  請求項1から請求項4のいずれか1項に記載の反射防止膜が形成された前記基板を2枚以上備えたことを特徴とする光学系。
  6.  請求項5に記載の光学系を有することを特徴とする光学機器。
PCT/JP2012/063854 2011-06-10 2012-05-30 反射防止膜、光学系、及び光学機器 WO2012169393A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280004020.5A CN103250075B (zh) 2011-06-10 2012-05-30 反射防止膜、光学系统和光学设备
EP12796000.3A EP2720071B8 (en) 2011-06-10 2012-05-30 Antireflection coating, optical system, and optical instrument
US13/950,519 US9423529B2 (en) 2011-06-10 2013-07-25 Antireflection coating, optical system, and optical instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-130083 2011-06-10
JP2011130083A JP5893271B2 (ja) 2011-06-10 2011-06-10 反射防止膜、光学系、及び光学機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/950,519 Continuation US9423529B2 (en) 2011-06-10 2013-07-25 Antireflection coating, optical system, and optical instrument

Publications (1)

Publication Number Publication Date
WO2012169393A1 true WO2012169393A1 (ja) 2012-12-13

Family

ID=47295959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063854 WO2012169393A1 (ja) 2011-06-10 2012-05-30 反射防止膜、光学系、及び光学機器

Country Status (5)

Country Link
US (1) US9423529B2 (ja)
EP (1) EP2720071B8 (ja)
JP (1) JP5893271B2 (ja)
CN (1) CN103250075B (ja)
WO (1) WO2012169393A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257677A (ja) * 2010-06-11 2011-12-22 Konica Minolta Opto Inc 光学素子とその製造方法
EP2857871A4 (en) * 2012-05-30 2016-03-09 Olympus Corp ANTI-REFLEXIBLE LAYER, OPTICAL SYSTEM, OPTICAL DEVICE AND METHOD FOR FORMING AN ANTI-REFRACTIVE LAYER
JP2021026163A (ja) * 2019-08-08 2021-02-22 Hoya株式会社 反射防止膜付き光学部材及びその製造方法
JP7493918B2 (ja) 2019-08-08 2024-06-03 Hoya株式会社 反射防止膜付き光学部材及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108871B2 (ja) * 2013-02-25 2017-04-05 オリンパス株式会社 反射防止膜、光学系、及び光学機器
JP6124711B2 (ja) * 2013-07-03 2017-05-10 キヤノン株式会社 反射防止膜及びそれを有する光学素子並びに光学系
JP6451057B2 (ja) * 2014-02-04 2019-01-16 東海光学株式会社 可視域反射防止近赤外域透過抑制光学製品並びに眼鏡レンズ及び眼鏡
WO2016035710A1 (ja) * 2014-09-02 2016-03-10 コニカミノルタ株式会社 プリズムユニット及びプロジェクター
JP2016061792A (ja) * 2014-09-12 2016-04-25 東海光学株式会社 光学製品及びレンズ用フィルタ
JP6881172B2 (ja) * 2017-09-13 2021-06-02 Agc株式会社 反射防止膜付透明基体、およびそれを用いた表示装置
JP6853769B2 (ja) * 2017-11-29 2021-03-31 オリンパス株式会社 偏波分離素子、光学系及び光学機器
EP3627194A1 (en) * 2018-09-20 2020-03-25 Essilor International An optical device with reduced reflection in deep red, near infrared and visible ranges
US10890700B2 (en) 2018-09-24 2021-01-12 Apple Inc. Electronic devices having infrared-transparent antireflection coatings
KR102243076B1 (ko) * 2020-10-07 2021-04-21 최준석 시력 보정 패턴이 적용된 렌즈 및 제조방법
US20220413194A1 (en) * 2021-06-29 2022-12-29 Himax Technologies Limited Diffractive optical element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325211A (ja) 1996-04-01 1997-12-16 Toray Ind Inc 光学フィルター
JP2004163549A (ja) * 2002-11-11 2004-06-10 Pentax Corp 反射防止膜
JP2005275294A (ja) 2004-03-26 2005-10-06 Cimeo Precision Co Ltd 光学素子
JP2005338366A (ja) 2004-05-26 2005-12-08 Olympus Corp 反射防止膜及び光学部品
JP2006349775A (ja) * 2005-06-13 2006-12-28 Seiko Epson Corp 光学素子および光学装置
JP2008158145A (ja) * 2006-12-22 2008-07-10 Epson Toyocom Corp 反射防止膜及びその反射防止膜を備えた光学物品
JP2008233622A (ja) * 2007-03-22 2008-10-02 Fujinon Corp 反射防止膜、光学素子および光学系

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU741691C (en) * 1997-05-16 2004-08-12 Hoya Kabushiki Kaisha Plastic optical component having a reflection prevention film and mechanism for making reflection prevention film thickness uniform
JP2003215309A (ja) * 2001-04-17 2003-07-30 Sony Corp 反射防止フィルム及び反射防止層付きプラスチック基板
GB2465607A (en) * 2008-11-25 2010-05-26 St Microelectronics CMOS imager structures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325211A (ja) 1996-04-01 1997-12-16 Toray Ind Inc 光学フィルター
JP2004163549A (ja) * 2002-11-11 2004-06-10 Pentax Corp 反射防止膜
JP2005275294A (ja) 2004-03-26 2005-10-06 Cimeo Precision Co Ltd 光学素子
JP2005338366A (ja) 2004-05-26 2005-12-08 Olympus Corp 反射防止膜及び光学部品
JP2006349775A (ja) * 2005-06-13 2006-12-28 Seiko Epson Corp 光学素子および光学装置
JP2008158145A (ja) * 2006-12-22 2008-07-10 Epson Toyocom Corp 反射防止膜及びその反射防止膜を備えた光学物品
JP2008233622A (ja) * 2007-03-22 2008-10-02 Fujinon Corp 反射防止膜、光学素子および光学系

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. A. MACLEOD: "Thin Film Optical Filters", December 1989, NIKKAN KOGYO SHINBUNSHA SHUPPAN, pages: 129 - 130
See also references of EP2720071A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257677A (ja) * 2010-06-11 2011-12-22 Konica Minolta Opto Inc 光学素子とその製造方法
EP2857871A4 (en) * 2012-05-30 2016-03-09 Olympus Corp ANTI-REFLEXIBLE LAYER, OPTICAL SYSTEM, OPTICAL DEVICE AND METHOD FOR FORMING AN ANTI-REFRACTIVE LAYER
JP2021026163A (ja) * 2019-08-08 2021-02-22 Hoya株式会社 反射防止膜付き光学部材及びその製造方法
JP7493918B2 (ja) 2019-08-08 2024-06-03 Hoya株式会社 反射防止膜付き光学部材及びその製造方法

Also Published As

Publication number Publication date
EP2720071B1 (en) 2017-10-18
US9423529B2 (en) 2016-08-23
US20130308196A1 (en) 2013-11-21
JP5893271B2 (ja) 2016-03-23
CN103250075B (zh) 2015-09-16
EP2720071B8 (en) 2017-11-29
JP2012255984A (ja) 2012-12-27
CN103250075A (zh) 2013-08-14
EP2720071A4 (en) 2015-03-04
EP2720071A1 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5893271B2 (ja) 反射防止膜、光学系、及び光学機器
JP6202785B2 (ja) 反射防止膜、光学系、光学機器、及び反射防止膜の成膜方法
ES2714508T3 (es) Lente oftálmica que comprende una base de material polimérico con un recubrimiento con una estructura multicapa interferencial antireflejante, antiiridiscente y con filtro IR
JP6530765B2 (ja) 眼鏡レンズおよび眼鏡
JP4190773B2 (ja) 反射防止膜と光学レンズ及び光学レンズユニット
US20080239496A1 (en) Optical filter
KR20110086552A (ko) 가변 투과 복합 간섭 필터
US9423622B2 (en) Glass block dichroic beamsplitters
WO2018110017A1 (ja) 光学製品
JP4171362B2 (ja) 反射防止膜付き透明基板
JP6108871B2 (ja) 反射防止膜、光学系、及び光学機器
JP2005165249A (ja) 反射防止膜及びこれを備える光学レンズ並びに光学レンズユニット
JP5888124B2 (ja) 多層膜フィルタ、及び多層膜フィルタの製造方法
JP2003043202A (ja) 反射防止膜及び光学部品
Kumar et al. Design and development of an optical reflective notch filter using the ion assisted deposition technique with stepwise modulated thickness for avionics applications
JP6982951B2 (ja) 赤外線用機能性膜付シリコン基板
TW201346345A (zh) 紫外截止濾光片及鏡頭模組
JP2002277606A (ja) 反射防止膜及び光学素子
JP4455022B2 (ja) 反射防止膜および対物レンズ
US20160252662A1 (en) Reflector and microscope
JP7332359B2 (ja) 反射防止膜
JP2008299244A (ja) 長波長帯域カット多層膜及び赤外カット多層膜、それらを有する光学素子及び光学フィルター、並びにそれらを利用した医療用内視鏡
JP2017009703A (ja) 多層膜を用いた光学素子および光学機器
TWI571657B (zh) Blu-ray filter elements
CN117192659A (zh) 一种改善光致变色片变色性能的膜层

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012796000

Country of ref document: EP