WO2016035710A1 - プリズムユニット及びプロジェクター - Google Patents

プリズムユニット及びプロジェクター Download PDF

Info

Publication number
WO2016035710A1
WO2016035710A1 PCT/JP2015/074435 JP2015074435W WO2016035710A1 WO 2016035710 A1 WO2016035710 A1 WO 2016035710A1 JP 2015074435 W JP2015074435 W JP 2015074435W WO 2016035710 A1 WO2016035710 A1 WO 2016035710A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
layer
adhesive
sio
fixing member
Prior art date
Application number
PCT/JP2015/074435
Other languages
English (en)
French (fr)
Inventor
洋 平澤
大典 芳賀
浩滋 高原
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2016035710A1 publication Critical patent/WO2016035710A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a prism unit and a projector, for example, a prism unit having a structure in which an image display element (liquid crystal panel, digital micromirror device, etc.) and a prism (color separation / synthesis prism, etc.) are integrated. And a projector including the prism unit.
  • a prism unit having a structure in which an image display element (liquid crystal panel, digital micromirror device, etc.) and a prism (color separation / synthesis prism, etc.) are integrated.
  • a projector including the prism unit.
  • JP 2006-3826 A Japanese Patent Laid-Open No. 10-31425
  • the prism surface to which the adhesive is applied is usually provided with an antireflection coating so that light coming from the image display element is not reflected.
  • an antireflection coating In order to effectively suppress reflection with the antireflection coating, it is preferable to form the outermost surface of the antireflection coating with a fluorine compound (fluorine-based coating) having the lowest refractive index among generally usable coating materials. .
  • fluorine compound fluorine-based coating
  • adhesion cannot be performed well or the adhesive force varies. If an anti-reflection coating is not applied to the part to which the adhesive is applied, it is possible to obtain a stable adhesive force.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a prism unit having a strong and stable adhesive force on a coated prism surface while maintaining high optical performance, and the prism unit.
  • an object thereof is to provide a prism unit having a strong and stable adhesive force on a coated prism surface while maintaining high optical performance, and the prism unit.
  • a prism unit according to a first aspect of the present invention is a prism unit having a structure in which a prism is provided on the surface of the prism and the prism is fixed with an adhesive via the coat.
  • the outermost surface of the coat is composed of an SiO 2 layer.
  • the prism unit of the second invention is a prism unit having a structure in which an image display element and a prism are integrated by a fixing member, The image display element is directly or indirectly fixed to the fixing member, A coating is provided on the surface of the prism, The outermost surface of the coat consists of a SiO 2 layer, The prism and the fixing member are fixed by an adhesive provided between the SiO 2 layer and the fixing member.
  • the prism unit according to a third aspect is characterized in that, in the first or second aspect, the coating is an anti-reflection coating, and an MgF 2 layer is provided so as to be in contact with the back surface of the SiO 2 layer.
  • a prism unit according to a fourth invention is characterized in that, in any one of the first to third inventions, the thickness of the SiO 2 layer is 5 to 30 nm.
  • the prism unit according to a fifth aspect of the present invention is the prism unit according to any one of the first to fourth aspects, wherein the SiO 2 layer is provided in an adhesive range by the adhesive or in the entire range of the coat. To do.
  • a prism unit according to a sixth invention is characterized in that, in any one of the first to fifth inventions, a primer is provided between the SiO 2 layer and the adhesive.
  • a projector according to a seventh aspect is characterized by including the prism unit according to any one of the first to sixth aspects.
  • the outermost surface of the coat is composed of the SiO 2 layer, it is possible to realize a prism unit having a strong and strong adhesive force on the coated prism surface while maintaining high optical performance.
  • a strong and stable adhesive effect can be obtained.
  • the positional relationship between the prism and the image display element can be maintained with high accuracy and stability, it is possible to perform high-quality image projection by providing the prism unit in the projector.
  • the SiO 2 layer in the bonding range of the adhesive or the entire range of the coat, it becomes possible to cope with the change of the bonding position due to the difference in model without changing the coat holder.
  • the disassembled perspective view which shows embodiment of the prism unit of FIG. FIG. 4 is a sectional view taken along line S-S ′ of FIG. 3.
  • the expanded sectional view which shows one form (comparative example) for the comparison of a prism unit typically.
  • the expanded sectional view which shows typically one Embodiment (Example) of a prism unit.
  • FIG. 1 shows an embodiment of a projector PJ in which a holding mechanism for the image display element 4 is mounted on the prism unit PU.
  • a projector PJ shown in FIG. 1 includes a light source 1, an illumination optical system 2, a prism 3, an image display element 4, a projection lens 5, and the like. That is, the image display element 4 that displays an image, the light source 1, the illumination optical system 2 that guides the light from the light source 1 to the image display element 4, and the image displayed on the image display element 4 are enlarged and projected onto the screen.
  • a projection lens 5 is a projection lens 5.
  • the illumination optical system 2 includes a rod integrator, a relay optical system, a folding mirror, and the like.
  • the prism 3 includes a TIR prism that separates illumination light and projection light, and RGB (red, green, blue) colors. And a color prism (color separation / combination prism) for separating and synthesizing.
  • the image display element 4 is an image modulation element (for example, a digital micromirror device) that modulates light to generate an image, and the projection lens 5 enlarges the image displayed on the image display element 4 on the screen surface.
  • the projector is configured to project (AX: optical axis). That is, the image light formed by the image display element 4 is projected toward the screen surface by the projection lens 5.
  • the prism unit PU is a unit in which three image display elements 4 corresponding to each color of RGB and the prism 3 are integrated, and for the integration, a holding mechanism for holding each image display element 4 in the prism 3.
  • Three sets of HK are used.
  • Each holding mechanism HK is fixed to the prism 3 with an adhesive by a first fixing member A1 (FIG. 3), fixed to the first fixing member A1 with a screw 9, and the image display element 4 is indirectly fixed.
  • the second fixing member B1 (FIGS. 2 and 3) is provided on the upper side and the lower side of the prism 3.
  • screw holes Ah provided in the first fixing member A1 and through holes Bh provided in the second fixing member B1 are used for fixing with the screws 9. .
  • the prism 3 is a joined part of a plurality of glass prisms, and a first fixing member A1 that is a mechanical part is fixed to the glass surface of the color prism portion with an adhesive (FIG. 3).
  • the image display element 4 is fixed to the third fixing member C1 with an adhesive (FIGS. 2 and 3), and the third fixing member C1 is fixed to the second fixing member B1 with the fastener 11 through the pin 10 ( 2 and 3). That is, the fastener 11 fixes the pin 10 of the second fixing member B1 and the third fixing member C1 with the UV adhesive.
  • the image display element 4 is fixed to the second fixing member B1 indirectly through the third fixing member C1, but for simplicity, the image display element 4 is bonded to the second fixing member B1. It may be fixed directly with.
  • the holding mechanism HK of the image display element 4 includes the first fixing member A1 (FIG. 3) to which the prism 3 is attached with an adhesive and the third fixing member to which the image display element 4 is attached with an adhesive.
  • C1 (FIGS. 2 and 3) and a second fixing member B1 (FIGS. 2 and 3) fixed to the first and third fixing members A1 and C1 with screws 9 and fasteners 11, respectively.
  • C1 (FIGS. 2 and 3)
  • B1 FIGS. 2 and 3
  • the alignment of the images of each color becomes important. Even if the alignment is performed accurately, shrinkage of the adhesive or the like occurs during fixing, and the adhesive is often fixed and fixed at a shifted position. If all the parts connecting the prism 3 and the image display element 4 are fixed with an adhesive, the positional relationship between the prism 3 and the image display element 4 cannot be finely adjusted later.
  • the second fixing member B ⁇ b> 1 is used as a component that connects the prism 3 and the image display element 4 with screws 9 and fasteners 11. Further, even if the image display element 4 has a problem and needs to be replaced, the image display element 4 can be removed together with the third fixing member C1 so that the replacement can be easily performed.
  • FIG. 4 shows a cross-sectional structure of the principal part of the prism unit PU (cross-sectional structure taken along line S-S ′ in FIG. 3).
  • the prism unit PU has a structure in which the image display element 4 is indirectly fixed to the first fixing member A1, and the image display element 4 and the prism 3 are integrated by the first fixing member A1.
  • the surface of the prism 3 is provided with an antireflection coating AR, and the prism 3 is fixed by an adhesive AD (for example, an epoxy adhesive) through the antireflection coating AR. That is, the prism 3 and the first fixing member A1 are fixed by the adhesive AD provided between the antireflection coating AR and the first fixing member A1.
  • an adhesive AD for example, an epoxy adhesive
  • FIG. 5 schematically shows an embodiment for comparison of the prism unit PU
  • FIG. 6 schematically shows an embodiment of the prism unit PU.
  • the antireflection coating AR0 shown in FIG. 5 corresponds to the antireflection coating AR in FIG. 4, and the outermost surface is composed of an MgF 2 layer Lf (fluorine-based coating).
  • MgF 2 layer Lf fluorine-based coating
  • a reduction in adhesive force and variations occur in the adhesive AD that bonds the prism 3 and the first fixing member A1.
  • the adhesive AD fixing the first fixing member A1 includes the mass of the substrate (third fixing member C1) of the image display element 4, vibration during operation / transportation, drop impact during transportation, and transportation. Sometimes it is necessary to endure the impact when the prism unit PU is hit. For this reason, an adhesive force that can withstand a considerable load is required for the adhesive AD. For example, if the adhesive is fixed on the fluorine-based coat with an epoxy adhesive, the first fixing member is caused by a variation in the adhesive force. There arises a problem that A1 peels off.
  • the antireflection coating AR1 (corresponding to the antireflection coating AR in FIG. 4) shown in FIG. 6 has an outermost surface composed of an SiO 2 layer (silicon dioxide coating) Ls, and the SiO 2 layer Ls
  • the prism 3 and the first fixing member A1 are fixed by an adhesive AD provided between the first fixing member A1.
  • the outermost surface of the antireflection coating AR1 is composed of the SiO 2 layer Ls, it is possible to realize a prism unit PU having a strong and stable adhesive force on the coated prism surface while maintaining high optical performance (antireflection performance). it can.
  • the SiO 2 layer Ls is provided on the surface of the antireflection coating AR0.
  • the MgF 2 layer (magnesium fluoride coat) Lf is provided in contact with the back surface of the SiO 2 layer Ls.
  • the antireflection coating AR1 is formed by forming the SiO 2 layer Ls on the conventional antireflection coating AR0 whose outermost surface is composed of the MgF 2 layer Lf, the coating characteristics change. That is, a decrease in the antireflection effect of the antireflection coating AR1, a decrease in brightness of the projector PJ, a change in chromaticity value, and the like are caused. Therefore, the film thicknesses of the MgF 2 layer Lf and the SiO 2 layer Ls are finely adjusted so that the same coating characteristics as the antireflection coating AR0 can be obtained with the antireflection coating AR1 (that is, before and after the formation of the SiO 2 layer Ls).
  • the film thickness of the MgF 2 layer Lf and the like it is preferable to control the film thickness of the MgF 2 layer Lf and the like.
  • the MgF 2 layer Lf is formed so as to have a thin film thickness, and then the SiO 2 layer Ls is formed to have a balanced two-layer structure as the low refractive index layer.
  • the two-layer structure of the low refractive index layer having the outermost surface composed of the SiO 2 layer Ls has a high adhesive effect as described above even when it is used in a prism unit having a dielectric multilayer film other than the antireflection coating AR1. And optical performance can be obtained.
  • the film thickness of the SiO 2 layer Ls is preferably 5 to 30 nm. If the film thickness of the SiO 2 layer Ls is less than 5 nm, it becomes difficult to control the film thickness when forming the SiO 2 layer Ls, and the film thickness becomes unstable, so that thick and thin areas are formed in the SiO 2 layer Ls. It becomes easy to be done. When the film thickness of the SiO 2 layer Ls exceeds 30 nm, it tends to cause a decrease in optical characteristics (for example, an increase in reflectance as an antireflection film). Therefore, if the film thickness of the SiO 2 layer Ls is set to 5 to 30 nm, it is possible to achieve a high balance between high optical performance and strong and stable adhesion on the prism surface.
  • the SiO 2 layer Ls is preferably provided in the adhesion range by the adhesive AD or the entire range of the antireflection coating AR1.
  • the SiO 2 layer Ls is preferably provided in the adhesion range of the adhesive AD or in the entire range of the antireflection coating AR1.
  • a primer Pr for example, a silane coupling agent
  • the adhesive AD is directly applied to the outermost SiO 2 layer Ls, the adhesive force is improved to some extent, but the actual product of the antireflection coating AR may require further adhesive force. Therefore, it is preferable to apply the adhesive AD after applying a primer Pr on the SiO 2 layer Ls, with primers Pr between the adhesive AD and SiO 2 layer Ls, more strong and stable adhesion Can be obtained.
  • Table 1 shows a prism unit PU having a reflection preventing coating AR0 on the surface of a glass prism 3 (substrate material: BK7) (Comparative Example, FIG. 5) and a prism unit PU having an reflection preventing coating AR1 (Example, FIG. Each film configuration of 6) is shown.
  • the outermost surface of the coat consists of an MgF 2 layer (fourth layer), and in the example, the outermost surface of the coat consists of an SiO 2 layer (fifth layer).
  • the film thickness of the coat is 15 ⁇ m (target value at the time of coating), and in the embodiment, the film thickness of the MgF 2 layer Lf is adjusted with the addition of the SiO 2 layer Ls.
  • Table 2 shows the measurement results (T-type peeling) of the adhesive strength of the comparative example and the example with and without the primer Pr.
  • Adhesive AD used was MILBOND Type2 (epoxy adhesive, manufacturer: Summers optical)
  • Adhesive AD thickness was 0.4mm (manufacturer recommended value)
  • primer Pr used was Olga Chicks PC-620 (manufacturer: Matsumoto Fine Chemical) ).
  • the antireflection coating AR1 with the SiO 2 layer Ls is more effective than the antireflection coating AR0 without the SiO 2 layer Ls (Comparative Example, FIG. 5) for each of those with and without the primer Pr. It can be seen that the example, FIG.
  • the spectral reflectance of an Example and a comparative example is shown. From the graph of FIG. 7, the reflectance characteristics of the antireflection coating AR0 without the SiO 2 layer Ls (Comparative Example, FIG. 5) and the antireflection coating AR1 with the SiO 2 layer Ls (Example, FIG. 6) are almost the same. It can be seen that the same antireflection effect can be obtained without change.

Abstract

 プリズムユニットは、プリズムの表面にコートを有し、そのコートを介してプリズムが接着剤で固定された構造を有するプリズムユニットであって、コートの最表面がSiO2層からなっている。

Description

プリズムユニット及びプロジェクター
 本発明はプリズムユニット及びプロジェクターに関するものであり、例えば、画像表示素子(液晶パネル,デジタル・マイクロミラー・デバイス等)とプリズム(色分解合成プリズム等)とが一体化された構造を有するプリズムユニットと、そのプリズムユニットを備えたプロジェクターと、に関するものである。
 近年、液晶パネルやデジタル・マイクロミラー・デバイス等の画像表示素子で形成された画像光をスクリーンに投射することによって、スクリーン上に拡大画像を投射するプロジェクターが普及してきている。そのプロジェクターに内蔵されている画像表示素子と色分解・色合成用のプリズムとの一体化には、接着剤が用いられることが多い。例えば、画像表示素子が固定された部材をプリズムに接着した場合(例えば、特許文献1参照。)、接着力にバラツキがあると、熱や衝撃等の負荷を受けたときに部材が剥がれてしまうことがある。そのように接着力にバラツキが生じる原因の1つとして、プリズム表面に設けられた反射防止コートが挙げられる(例えば、特許文献2参照。)。
特開2006-3826号公報 特開平10-31425号公報
 接着剤が塗布されるプリズム表面には、画像表示素子から来る光が反射しないように、反射防止コートが通常施される。反射防止コートで効果的に反射を抑えるには、一般的に使用できるコート材料の中で一番屈折率の低いフッ素化合物(フッ素系コート)で、反射防止コートの最表面を構成するのが好ましい。しかし、反射防止コートの表面がフッ素系コートからなる場合、うまく接着できなかったり接着力にバラツキが生じたりしてしまうのが一般的である。接着剤が塗布される部分に反射防止コートを施さなければ、安定した接着力を得ることは可能である。しかし、そのようにすると部材の形状が変わるたびに接着位置や接着面積が変わってしまうため、コートホルダーを機種ごとに作製する必要が生じて費用かかかってしまう。したがって、プリズム全面に反射防止コートを施すことができれば、コートホルダーを機種ごとに作製する必要がなくなるため、コスト面のメリットがある。
 本発明はこのような状況に鑑みてなされたものであって、その目的は、高い光学性能を保持しながら、コートされたプリズム表面での接着力が強く安定したプリズムユニットと、それを備えたプロジェクターを提供することにある。
 上記目的を達成するために、第1の発明のプリズムユニットは、プリズムの表面にコートを有し、そのコートを介して前記プリズムが接着剤で固定された構造を有するプリズムユニットであって、
 前記コートの最表面がSiO2層からなることを特徴とする。
 第2の発明のプリズムユニットは、画像表示素子とプリズムとが固定部材で一体化された構造を有するプリズムユニットであって、
 前記固定部材には前記画像表示素子が直接的又は間接的に固定されており、
 前記プリズムの表面にはコートが設けられており、
 前記コートの最表面がSiO2層からなり、
 前記SiO2層と前記固定部材との間に設けられた接着剤で前記プリズムと前記固定部材とが固定されていることを特徴とする。
 第3の発明のプリズムユニットは、上記第1又は第2の発明において、前記コートが反射防止コートであり、前記SiO2層の裏面に接するようにしてMgF2層が設けられていることを特徴とする。
 第4の発明のプリズムユニットは、上記第1~第3のいずれか1つの発明において、前記SiO2層の膜厚が5~30nmであることを特徴とする。
 第5の発明のプリズムユニットは、上記第1~第4のいずれか1つの発明において、前記SiO2層が、前記接着剤による接着範囲又は前記コートの全範囲に設けられていることを特徴とする。
 第6の発明のプリズムユニットは、上記第1~第5のいずれか1つの発明において、前記SiO2層と前記接着剤との間にプライマーが設けられていることを特徴とする。
 第7の発明のプロジェクターは、上記第1~第6のいずれか1つの発明に係るプリズムユニットを備えたことを特徴とする。
 本発明によれば、コートの最表面がSiO2層からなっているため、高い光学性能を保持しながら、コートされたプリズム表面での接着力が強く安定したプリズムユニットを実現することができる。例えば、プリズム同士を接着剤で固定したり、プリズムと固定部材(メカ部材等)とを接着剤で固定したりした場合に、強く安定した接着効果を得ることができる。その結果、プリズムと画像表示素子との位置関係を高精度かつ安定的に保持することができるため、そのプリズムユニットをプロジェクターに備えることにより、高品質の画像投影を行うことが可能となる。また、SiO2層を接着剤による接着範囲又はコートの全範囲に設けることにより、機種の違いによる接着位置の変更をコートホルダーの変更無しで対応することが可能となる。
プリズムユニットを搭載したプロジェクターの一実施の形態を示す概略構成図。 プリズムユニットの一実施の形態を示す斜視図。 図2のプリズムユニットの実施の形態を示す分解斜視図。 図3のS-S’線断面図。 プリズムユニットの比較のための一形態(比較例)を模式的に示す拡大断面図。 プリズムユニットの一実施の形態(実施例)を模式的に示す拡大断面図。 実施例と比較例の分光反射率を示すグラフ。
 以下、本発明を実施したプリズムユニット,プロジェクター等を、図面を参照しつつ説明する。なお、実施の形態,比較のための形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。
 図1に、プリズムユニットPUに画像表示素子4の保持機構を搭載したプロジェクターPJの一実施の形態を示す。図1に示すプロジェクターPJは、光源1,照明光学系2,プリズム3,画像表示素子4,投射レンズ5等を備えている。つまり、画像を表示する画像表示素子4と、光源1と、その光源1からの光を画像表示素子4に導く照明光学系2と、画像表示素子4に表示された画像をスクリーンに拡大投影する投射レンズ5と、を備えている。
 光源1(例えば、キセノンランプ等の白色光源,レーザー光源)から出射した光は、照明光学系2及びプリズム3で画像表示素子4に導かれて、画像表示素子4では画像光が形成される。照明光学系2は、ロッドインテグレータ,リレー光学系,折り返しミラー等で構成されており、プリズム3は、照明光と投影光との分離を行うTIRプリズムと、RGB(赤,緑,青)の各色の分離合成を行うカラープリズム(色分解合成プリズ)と、で構成されている。画像表示素子4は、光を変調して画像を生成する画像変調素子(例えば、デジタル・マイクロミラー・デバイス)であり、投射レンズ5は、画像表示素子4に表示された画像をスクリーン面に拡大投影する構成になっている(AX:光軸)。つまり、画像表示素子4で形成された画像光は、投射レンズ5でスクリーン面に向けて投射される。
 図2及び図3に、プリズムユニットPUの一実施の形態を示す。プリズムユニットPUは、RGBの各色に対応した3つの画像表示素子4とプリズム3とが一体化されたものであり、その一体化には各画像表示素子4をプリズム3に保持するための保持機構HKが3セット用いられている。各保持機構HKは、プリズム3に接着剤で固定される第1固定部材A1(図3)と、第1固定部材A1にネジ9で固定され、かつ、画像表示素子4が間接的に固定される第2固定部材B1(図2,図3)と、をプリズム3の上側及び下側に有している。なお、ネジ9での固定には、図3に示すように、第1固定部材A1に設けられているネジ穴Ahと、第2固定部材B1に設けられている貫通穴Bhと、が用いられる。
 プリズム3は複数のガラスプリズムの接合部品であり、そのカラープリズム部分のガラス面にメカ部品である第1固定部材A1が接着剤で固定される(図3)。画像表示素子4は第3固定部材C1に接着剤で固定され(図2,図3)、第3固定部材C1は第2固定部材B1に対し、そのピン10を通して留め具11で固定される(図2,図3)。つまり、留め具11は第2固定部材B1のピン10と第3固定部材C1とをUV接着剤で固着させている。ここでは、第2固定部材B1に対する画像表示素子4の固定が第3固定部材C1を介して間接的に行われるが、簡易的には第2固定部材B1に対して画像表示素子4を接着剤で直接固定してもよい。
 画像表示素子4の保持機構HKは、上述したように、プリズム3が接着剤で貼り付けられる第1固定部材A1(図3)と、画像表示素子4が接着剤で貼り付けられる第3固定部材C1(図2,図3)と、第1,第3固定部材A1,C1に対してそれぞれネジ9,留め具11で固定される第2固定部材B1(図2,図3)と、で構成されている。このように第2固定部材B1を介してネジ固定を行うことにより、以下に説明するようにプリズム3と画像表示素子4との相対位置調整等を容易に行うことが可能となる。
 プリズムユニットPUにおいて、色分離された各色に対応する画像を重ねて1枚の絵にする際には、各色の像の位置合わせが重要になる。正確に位置合わせを行っても、固定の際に接着剤の収縮等が生じてしまい、ズレた位置で接着固定されてしまうことがよくある。もし、プリズム3と画像表示素子4とを繋ぐ部品がすべて接着剤で固定されていたら、プリズム3と画像表示素子4との位置関係を後で微調整することができなくなる。
 そこで、プリズム3を第1固定部材A1に接着固定し、画像表示素子4を第3固定部材C1に接着固定した後でも、プリズム3と画像表示素子4との位置関係を微調整することができるようにするため、プリズム3と画像表示素子4とをネジ9,留め具11で繋ぐ部品として第2固定部材B1を用いている。また、画像表示素子4に不具合が生じて交換が必要になった場合でも、その交換を容易に行うことができるようにするため、画像表示素子4は第3固定部材C1と共に取り外し可能としている。
 図4に、プリズムユニットPUの要部断面構造(図3のS-S’線断面構造)を示す。このプリズムユニットPUは、前述したように、第1固定部材A1に画像表示素子4が間接的に固定されて、画像表示素子4とプリズム3とが第1固定部材A1で一体化された構造を有している。プリズム3の表面には反射防止コートARが設けられており、その反射防止コートARを介してプリズム3が接着剤AD(例えば、エポキシ接着剤)で固定された構造を有している。つまり、反射防止コートARと第1固定部材A1との間に設けられた接着剤ADで、プリズム3と第1固定部材A1とが固定されている。
 図4のP部拡大図として、図5にプリズムユニットPUの比較のための一形態を模式的に示し、図6にプリズムユニットPUの一実施の形態を模式的に示す。図5に示す反射防止コートAR0は、図4中の反射防止コートARに相当するものであって、最表面がMgF2層Lf(フッ素系コート)で構成されている。反射防止コートARで効果的に反射を抑えるには、一般的に使用できるコート材料のうち最も屈折率の低いフッ素化合物で、反射防止コートARの最表面を構成するのが好ましい。しかし、そのような構成にすると、プリズム3と第1固定部材A1とを接着している接着剤ADにおいて接着力の低下やバラツキが発生することになる。
 第1固定部材A1を固定している接着剤ADは、画像表示素子4の基板(第3固定部材C1)等の質量、装置稼働時・輸送時の振動、輸送時の落下衝撃、さらには輸送時にプリズムユニットPUをぶつけてしまったときの衝撃等に耐える必要がある。このため、相当な負荷に耐えるだけの接着力が接着剤ADには必要になるが、例えば、フッ素系コートの上にエポキシ接着剤で固定を行うと、接着力のバラツキ等により第1固定部材A1が剥がれ落ちるといった問題が発生する。
 それに対し、図6に示す反射防止コートAR1(図4中の反射防止コートARに相当する。)は、最表面がSiO2層(二酸化ケイ素コート)Lsで構成されており、SiO2層Lsと第1固定部材A1との間に設けられた接着剤ADでプリズム3と第1固定部材A1とが固定されている。反射防止コートAR1の最表面をSiO2層Lsで構成すると、高い光学性能(反射防止性能)を保持しながら、コートされたプリズム表面での接着力が強く安定したプリズムユニットPUを実現することができる。このようにプリズム3と第1固定部材A1(メカ部材等)とを接着剤ADで固定する場合に限らず、例えば、プリズム同士を接着剤ADで固定する場合でも、強く安定した接着効果を得ることができる。結果として、プリズム3と画像表示素子4等との位置関係を高精度かつ安定的に保持することができるため、そのプリズムユニットPUをプロジェクターPJに備えることにより、高品質の画像投影を行うことが可能となる。
 SiO2層Lsは、図6に示すように、反射防止コートAR0の表面に設けられている。このように、SiO2層Lsの裏面に接するようにしてMgF2層(フッ化マグネシウムコート)Lfが設けられていることが好ましい。反射防止コートAR1の最表面をSiO2層Lsで構成することにより、強く安定した接着効果を得ることができ、その一層下にMgF2層Lfを配置することにより、反射防止コートAR1の光学性能(反射防止効果)を高く保持することができる。つまり、接着効果と反射防止効果との両立が可能となる。
 ただし、最表面がMgF2層Lfで構成された従来の反射防止コートAR0の上にSiO2層Lsを形成することにより反射防止コートAR1を構成すると、コート特性は変化してしまう。つまり、反射防止コートAR1の反射防止効果の低下,プロジェクターPJの明るさ低下,色度値の変化等を招くことになる。このため、MgF2層LfとSiO2層Lsの膜厚を微調整して、反射防止コートAR0と同等のコート特性が反射防止コートAR1で得られるように(つまり、SiO2層Lsの形成前後でコート特性が変わらないように)、MgF2層Lf等の膜厚をコントロールすることが好ましい。例えば、MgF2層Lfを膜厚が薄くなるように形成してからSiO2層Lsを形成し、低屈折率層としてバランスのとれた2層構造にすることが好ましい。なお、最表面がSiO2層Lsで構成された低屈折率層の2層構造は、反射防止コートAR1以外の誘電体多層膜を有するプリズムユニットに採用した場合でも、上記と同様、高い接着効果及び光学性能を得ることができる。
 SiO2層Lsの膜厚は5~30nmであることが好ましい。SiO2層Lsの膜厚が5nm未満になると、SiO2層Lsを形成する際の膜厚制御が難しくなって膜厚が安定しなくなり、SiO2層Lsに膜厚の厚いところと薄いところが形成されやすくなる。SiO2層Lsの膜厚が30nmを越えると、光学特性の低下(例えば、反射防止膜としての反射率増大等)を招きやすくなる。したがって、SiO2層Lsの膜厚を5~30nmにすれば、高い光学性能とプリズム表面での強く安定した接着力とをバランス良く達成することが可能となる。
 SiO2層Lsは、接着剤ADによる接着範囲又は反射防止コートAR1の全範囲に設けられていることが好ましい。SiO2層Lsを接着剤ADによる接着範囲又は反射防止コートAR1の全範囲に設けることにより、機種の違いによる接着位置の変更をコートホルダーの変更無しで対応することが可能となる。
 SiO2層Lsと接着剤ADとの間にプライマーPr(例えば、シランカップリング剤)が設けられていることが好ましい。最表面のSiO2層Lsに接着剤ADを直接塗布した場合でも、ある程度接着力は向上するが、反射防止コートARの実製品では更なる接着力が必要になることがある。このため、SiO2層Lsの上にプライマーPrを塗布してから接着剤ADを塗布することが好ましく、SiO2層Lsと接着剤ADとの間のプライマーPrにより、より一層強く安定した接着力を得ることが可能となる。
 以下、本発明に係るプリズムユニットの構成等を、実施例及び比較例を挙げて更に具体的に説明する。
 表1に、ガラス製のプリズム3(基板材料:BK7)の表面に、反射防止コートAR0を有するプリズムユニットPU(比較例,図5)と反射防止コートAR1を有するプリズムユニットPU(実施例,図6)の各膜構成を示す。比較例(現行コート)ではコートの最表面がMgF2層(4層目)からなっており、実施例ではコートの最表面がSiO2層(5層目)からなっている。いずれもコートの膜厚は15μm(コート時のねらい値)であり、実施例ではSiO2層Lsの追加に伴ってMgF2層Lfが膜厚調整されている。
 表2に、比較例と実施例の接着力の測定結果(T型剥離)を、プライマーPrの有るものと無いものについて示す。使用した接着剤ADはMILBOND Type2(エポキシ接着剤,メーカー:Summers optical)、接着剤ADの厚さは0.4mm(メーカー推奨値)、使用したプライマーPrはオルガチックスPC-620(メーカー:マツモトファインケミカル)である。表2の測定結果から、プライマーPrの有るものと無いもののそれぞれについて、SiO2層Lsの無い反射防止コートAR0(比較例,図5)よりも、SiO2層Lsの有る反射防止コートAR1(実施例,図6)の方が、高い接着力が得られることが分かる。
 図7のグラフに、実施例と比較例の分光反射率を示す。図7のグラフから、SiO2層Lsの無い反射防止コートAR0(比較例,図5)と、SiO2層Lsの有る反射防止コートAR1(実施例,図6)と、で反射率特性はほとんど変わらず、同等の反射防止効果が得られることが分かる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 PJ  プロジェクター
 PU  プリズムユニット
 HK  保持機構
 1  光源
 2  照明光学系
 3  プリズム
 4  画像表示素子
 5  投射レンズ
 9  ネジ
 10  ピン
 11  留め具
 Ah  ネジ穴
 Bh  貫通穴
 AD  接着剤
 AR,AR0,AR1  反射防止コート
 Ls  SiO2
 Lf  MgF2
 A1  第1固定部材(固定部材)
 B1  第2固定部材
 C1  第3固定部材

Claims (7)

  1.  プリズムの表面にコートを有し、そのコートを介して前記プリズムが接着剤で固定された構造を有するプリズムユニットであって、
     前記コートの最表面がSiO2層からなることを特徴とするプリズムユニット。
  2.  画像表示素子とプリズムとが固定部材で一体化された構造を有するプリズムユニットであって、
     前記固定部材には前記画像表示素子が直接的又は間接的に固定されており、
     前記プリズムの表面にはコートが設けられており、
     前記コートの最表面がSiO2層からなり、
     前記SiO2層と前記固定部材との間に設けられた接着剤で前記プリズムと前記固定部材とが固定されていることを特徴とするプリズムユニット。
  3.  前記コートが反射防止コートであり、前記SiO2層の裏面に接するようにしてMgF2層が設けられていることを特徴とする請求項1又は2記載のプリズムユニット。
  4.  前記SiO2層の膜厚が5~30nmであることを特徴とする請求項1~3のいずれか1項に記載のプリズムユニット。
  5.  前記SiO2層が、前記接着剤による接着範囲又は前記コートの全範囲に設けられていることを特徴とする請求項1~4のいずれか1項に記載のプリズムユニット。
  6.  前記SiO2層と前記接着剤との間にプライマーが設けられていることを特徴とする請求項1~5のいずれか1項に記載のプリズムユニット。
  7.  請求項1~6のいずれか1項に記載のプリズムユニットを備えたことを特徴とするプロジェクター。
PCT/JP2015/074435 2014-09-02 2015-08-28 プリズムユニット及びプロジェクター WO2016035710A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-178137 2014-09-02
JP2014178137 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016035710A1 true WO2016035710A1 (ja) 2016-03-10

Family

ID=55439773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074435 WO2016035710A1 (ja) 2014-09-02 2015-08-28 プリズムユニット及びプロジェクター

Country Status (1)

Country Link
WO (1) WO2016035710A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181610A (ja) * 2016-03-29 2017-10-05 日本精機株式会社 表示装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63379A (ja) * 1986-06-20 1988-01-05 Canon Inc 光学素子の製造方法
JP2002296414A (ja) * 2001-01-25 2002-10-09 Canon Inc 光学素子、それを用いた液晶プロジェクター及びカメラ
JP2006154388A (ja) * 2004-11-30 2006-06-15 Epson Toyocom Corp 光学デバイス及びその製造方法
JP2006284656A (ja) * 2005-03-31 2006-10-19 Fujinon Corp 光反射防止光学系および撮像光学系
JP2007102111A (ja) * 2005-10-07 2007-04-19 Victor Co Of Japan Ltd 光学多層膜および光学多層膜製造方法
JP2007286430A (ja) * 2006-04-18 2007-11-01 Sony Corp 複合光学素子及び投影光学装置
JP2008233622A (ja) * 2007-03-22 2008-10-02 Fujinon Corp 反射防止膜、光学素子および光学系
JP2012255984A (ja) * 2011-06-10 2012-12-27 Olympus Corp 反射防止膜、光学系、及び光学機器
JP2013156523A (ja) * 2012-01-31 2013-08-15 Topcon Corp 基板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63379A (ja) * 1986-06-20 1988-01-05 Canon Inc 光学素子の製造方法
JP2002296414A (ja) * 2001-01-25 2002-10-09 Canon Inc 光学素子、それを用いた液晶プロジェクター及びカメラ
JP2006154388A (ja) * 2004-11-30 2006-06-15 Epson Toyocom Corp 光学デバイス及びその製造方法
JP2006284656A (ja) * 2005-03-31 2006-10-19 Fujinon Corp 光反射防止光学系および撮像光学系
JP2007102111A (ja) * 2005-10-07 2007-04-19 Victor Co Of Japan Ltd 光学多層膜および光学多層膜製造方法
JP2007286430A (ja) * 2006-04-18 2007-11-01 Sony Corp 複合光学素子及び投影光学装置
JP2008233622A (ja) * 2007-03-22 2008-10-02 Fujinon Corp 反射防止膜、光学素子および光学系
JP2012255984A (ja) * 2011-06-10 2012-12-27 Olympus Corp 反射防止膜、光学系、及び光学機器
JP2013156523A (ja) * 2012-01-31 2013-08-15 Topcon Corp 基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181610A (ja) * 2016-03-29 2017-10-05 日本精機株式会社 表示装置

Similar Documents

Publication Publication Date Title
US10674125B2 (en) Projector and wavelength conversion device
US8104898B2 (en) Projection apparatus
WO2015172536A1 (zh) 直线型dlp微型投影机
US20170127026A1 (en) Projector and wavelength conversion device
US8985784B2 (en) Light source module and micro projector using the same
US9523908B2 (en) Image projection apparatus and image projection method
US10630945B2 (en) Projection device and light engine module
JP6233419B2 (ja) 3板式光学システム及びプロジェクター
JP6394595B2 (ja) プリズムユニットの製造方法及びプロジェクター
JP2009199020A (ja) 画像作成装置、プロジェクタ、プロジェクションシステム、画像作成装置の製造方法
JP3646597B2 (ja) 投写型画像表示装置
JP2010217746A (ja) 投射型表示装置
WO2016035710A1 (ja) プリズムユニット及びプロジェクター
JP2012098366A (ja) 光学ユニット及び画像投影装置
US8861078B2 (en) Light source adjusting device and projection system comprising the same
US10088743B2 (en) Polarization conversion element and projector
US7271961B2 (en) Cross dichroic prism and projection display apparatus equipped with cross dichroic prism
US20080259290A1 (en) Projection apparatus
TW200938883A (en) Projection display system and x-cube prism and manufacturing method thereof
JP6398513B2 (ja) プリズムユニット及びプロジェクター
JP2012237832A (ja) 光学装置
JP2004102115A (ja) 光学変換素子及びプロジェクタ
JP2009128568A (ja) 偏光変換素子及びプロジェクタ
JP4806467B2 (ja) 投写型映像表示装置
JP6528835B2 (ja) 光学システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15838575

Country of ref document: EP

Kind code of ref document: A1