WO2012165616A1 - オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体 - Google Patents

オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体 Download PDF

Info

Publication number
WO2012165616A1
WO2012165616A1 PCT/JP2012/064276 JP2012064276W WO2012165616A1 WO 2012165616 A1 WO2012165616 A1 WO 2012165616A1 JP 2012064276 W JP2012064276 W JP 2012064276W WO 2012165616 A1 WO2012165616 A1 WO 2012165616A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide derivative
mirna
amo122
present
amo
Prior art date
Application number
PCT/JP2012/064276
Other languages
English (en)
French (fr)
Inventor
松田 彰
真由美 高橋
Original Assignee
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学 filed Critical 国立大学法人北海道大学
Priority to CN201280026823.0A priority Critical patent/CN103649311A/zh
Priority to EP12792620.2A priority patent/EP2716758B1/en
Priority to JP2013518187A priority patent/JP6029147B2/ja
Priority to US14/123,562 priority patent/US9315810B2/en
Publication of WO2012165616A1 publication Critical patent/WO2012165616A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3235Chemical structure of the sugar modified ring structure having the O of the ribose replaced by another atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate

Definitions

  • the present invention relates to an oligonucleotide derivative, a therapeutic pharmaceutical composition containing the oligonucleotide derivative, a diagnostic pharmaceutical composition, and an oligonucleotide derivative for miRNA function suppression.
  • RNA interference RNA interference
  • RNA control method using nucleic acid is based on the formation of Watson-Crick base pairing, and uses a sequence-specific nucleic acid as a target RNA.
  • Such RNA control methods can regulate cell functions by directly controlling RNA.
  • Non-patent Document 1 discloses RNA control methods using nucleic acids.
  • miRNA nucleic acid drugs aimed at suppressing the function of microRNA
  • RNA control method using nucleic acid (1) loss of effect due to degradation by nuclease existing inside and outside of cell, (2) thermal instability of double-stranded conformation, (3) cell and There are problems such as tissue targeting and (4) side effects due to innate immune responses.
  • Non-patent Document 2 2′-O-methyl RNA obtained by methylation at the sugar moiety 2′-position of a nucleic acid has nuclease resistance, thermal stability, and ability to avoid innate immune responses.
  • Non-patent Document 4 4'-thioRNA in which the nucleoside sugar part furanose ring 4'-position oxygen atom is substituted with a sulfur atom has nuclease resistance and thermal stability.
  • Non-Patent Documents 2 and 3 cannot be said to have sufficient stability in the in vivo environment, and still has a problem in terms of the sustained effect.
  • the 4'-thioRNA described in Non-Patent Document 4 has nuclease resistance.
  • the present invention has been made in view of the above circumstances, and has a good effect durability that can withstand in vivo use, and an oligonucleotide derivative having thermal stability, a therapeutic pharmaceutical composition containing the oligonucleotide derivative, and diagnosis
  • An object of the present invention is to provide a pharmaceutical composition and an oligonucleotide derivative for miRNA function suppression.
  • the oligonucleotide derivative according to the first aspect of the present invention has the following general formula: (Wherein B represents adenine, guanine, cytosine or uracil, X represents a sulfur atom or an oxygen atom, and n represents an integer of 6 to 60) (in the general formula, B and X are independently represented in each repeating structural unit.), And in at least one of the repeating structural units represented by the general formula, X is a sulfur atom.
  • X may be a sulfur atom.
  • At least one ligand may be bound to the 5 'end, 3' end, or 5 'end and 3' end of the oligonucleotide derivative.
  • the oligonucleotide derivative may be composed of a sequence complementary to the entire sequence or a partial sequence of miRNA.
  • the miRNA may be miRNA21.
  • the miRNA may be miRNA122.
  • the therapeutic pharmaceutical composition according to the second aspect of the present invention contains the oligonucleotide derivative.
  • the pharmaceutical composition for treatment may suppress the function of miRNA.
  • the diagnostic pharmaceutical composition according to the third aspect of the present invention contains the oligonucleotide derivative.
  • the oligonucleotide derivative for miRNA function suppression according to the fourth aspect of the present invention has the following general formula: (Wherein B represents adenine, guanine, cytosine or uracil, X represents a sulfur atom or an oxygen atom, and n represents an integer of 6 to 60) (in the general formula, B and X are independently represented in each repeating structural unit.), And in at least one of the repeating structural units represented by the general formula, X is a sulfur atom.
  • X may be a sulfur atom.
  • At least one ligand may be bound to the 5 'end, 3' end, or 5 'end and 3' end of the oligonucleotide derivative.
  • the oligonucleotide derivative may be composed of a sequence complementary to the entire sequence or a partial sequence of miRNA.
  • the miRNA may be miRNA21.
  • the miRNA may be miRNA122.
  • the oligonucleotide derivative which has the favorable effect durability which can be endured in-vivo use, and thermal stability, the therapeutic pharmaceutical composition containing an oligonucleotide derivative, the diagnostic pharmaceutical composition, and miRNA function suppression Oligonucleotide derivatives can be provided.
  • the oligonucleotide derivative by this invention consists of a repeating structural unit represented by following General formula (1).
  • the oligonucleotide derivative means that the nucleotide in the oligonucleotide is chemically modified as represented by the following general formula (1).
  • the oligonucleotide derivative according to the present invention includes an oligonucleotide derivative in which at least one nucleotide in the oligonucleotide is chemically modified so as to be represented by the following general formula (1).
  • an oligonucleotide derivative in which at least 50% or more of the nucleotides in the entire length of the oligonucleotide are chemically modified so as to be represented by the following general formula (1) is preferably used.
  • B represents adenine, guanine, cytosine, or uracil.
  • the structural formulas and their abbreviations are shown below.
  • X represents a sulfur atom or an oxygen atom.
  • PS sulfur atom
  • PO oxygen atom
  • n represents the number of repeating structural units represented by the general formula (1), that is, the number of monomers of the oligonucleotide derivative according to the present invention, and is an integer of 6 to 60.
  • B and X are independently represented in each repeating structural unit. That is, repeating structural units having different B and X may be mixed in the oligonucleotide derivative.
  • B is adenine and X is a sulfur atom
  • B is guanine and X is an oxygen atom
  • B may be cytosine
  • X may be an oxygen atom.
  • X is a sulfur atom in at least one of the repeating structural units represented by the general formula (1). That is, the oligonucleotide derivative according to the present invention includes at least one repeating structural unit represented by the general formula (1), in which X is a sulfur atom, that is, PS.
  • X may be a sulfur atom in all the repeating structural units represented by the general formula (1). That is, all of the repeating structural units represented by the general formula (1) contained in the oligonucleotide derivative may be PS.
  • An oligonucleotide derivative comprising PS, that is, phosphorothioate, can be suitably used in the oligonucleotide derivative according to the present invention because it has good effect durability that can withstand in vivo use and thermal stability.
  • the oligonucleotide derivative according to the present invention can be widely used as a nucleic acid (antisense nucleic acid compound) targeting RNA.
  • an antisense nucleic acid compound is an oligonucleotide derivative consisting of a sequence complementary to the entire sequence or a partial sequence of a target RNA, and all or some of the nucleotides in the oligonucleotide are chemically modified. It means what is being done.
  • the oligonucleotide derivative according to the present invention can be used, for example, for direct control of mRNA, functional control of miRNA and the like.
  • an oligonucleotide derivative consisting of a sequence complementary to the entire sequence or a partial sequence of the target mRNA is used.
  • translation is inhibited by the following mechanism.
  • binding of the oligonucleotide derivative according to the present invention to pre-mRNA results in inhibition of cap formation, splice inhibition, cleavage by RNase, inhibition of adenylation, and the like.
  • the oligonucleotide derivative according to the present invention binds to mRNA, resulting in inhibition of ribosome binding (Translational Arrest). Since the oligonucleotide derivative according to the present invention has good sustained effect and thermal stability that can withstand in vivo use, mRNA can be efficiently and directly controlled.
  • the oligonucleotide derivative according to the present invention is used for direct control of mRNA
  • a 6 to 60-mer oligonucleotide derivative is preferably used, and a 15 to 25-mer oligonucleotide derivative is more preferably used. If it is the length of the oligonucleotide derivative which has the effect of this invention, it can select suitably.
  • the present invention includes an embodiment of a method for directly controlling mRNA using the oligonucleotide derivative according to the present invention.
  • oligonucleotide derivative according to the present invention can be suitably used, for example, for miRNA function control.
  • miRNA controls biologically important functions such as cell proliferation and reproductive function, and has relevance to various diseases.
  • physiological functions that are regulated by miRNA differentiation, cell proliferation, fertility, apoptosis, metabolism, hematopoiesis, cardiac development, morphogenesis, insulin secretion, signal transduction, and the like are known.
  • miRNA plays an important role in cell survival, and dysregulation of gene expression due to abnormal expression of miRNA is known to cause diseases such as cancer.
  • miRNAs that are up-regulated and down-regulated in various cancers are shown below (Table 1).
  • miRNA21 (SEQ ID NO: 1) is up-regulated in various cancers such as liver cancer, pancreatic cancer, gastric cancer, breast cancer, and lung cancer (Table 1).
  • miRNA122 is a miRNA that is specifically expressed in the liver, and is known to increase during embryogenesis and control liver development in mice. It has also been found to be involved in the control of cholesterol and lipid metabolism and HCV replication.
  • the oligonucleotide derivative according to the present invention may consist of a sequence complementary to the entire sequence or a partial sequence of miRNA. In this case, it can be used as an antisense nucleic acid (anti-miRNA oligonucleotide; hereinafter referred to as AMO) targeting miRNA.
  • AMO antisense nucleic acid
  • the AMO according to the present invention is composed of a sequence complementary to a partial sequence of miRNA, any sequence can be selected as long as it has the effects of the present invention.
  • an oligonucleotide derivative according to the present invention (hereinafter referred to as AMO according to the present invention) consisting of a sequence complementary to the entire sequence or a partial sequence of miRNA is administered, for example, in vivo, the AMO according to the present invention becomes miRNA in vivo. It forms a double strand, resulting in miRNA function suppression.
  • the AMO according to the present invention has good effect persistence that can withstand in vivo use and thermal stability, and thus enables efficient functional control of miRNA.
  • the AMO according to the present invention can target any kind of miRNA. This is because AMOs having sequences complementary to various miRNAs can be synthesized.
  • the AMO according to the present invention includes, for example, miRNA21, miRNA122, miRNA224, miRNA10b, miRNA221, miRNA222, miRNA20, miRNA18, miRNA23a, miRNA141, miRNA200b, miRNA27a, miRNA342, miRNA26i, miRNA107mRNA204d, miRNAm miRNA181a, miRNA155, miRNA181b, miRNA25, miRNA424, miRNA151, miRNA223, miRNA25, miRNA17-5p, miRNA125b, miRNA106a, miRNA92, miRNA103, miRNA93, miR A100, miRNA106b, miRNA20a, miRNA190, miRNA33, miRNA19a, miRNA140, miRNA123, miRNA188, miRNA154, miRNA217, miRNA101, miRNA196, miRNA134, miRNA132, mi
  • miRNAs that can be targeted by the AMO according to the present invention examples include miRNA that is databased in “miRBase: the microRNA database (http://www.mirbase.org/)”. Any miRNA in which the present invention is effective can be appropriately selected.
  • the function of miRNA means biological functions, such as cell proliferation and a reproductive function, which all the above-mentioned miRNAs have. If it is a function of miRNA in which this invention has an effect, it can choose suitably.
  • the AMO according to the present invention may be composed of a sequence complementary to the entire sequence or a partial sequence of miRNA-21 so as to target miRNA-21.
  • AMO for example, AMO21_SMe_PS
  • a formula of the repeating structural unit of AMO21_SMe_PS is shown below.
  • the AMO according to the present invention may consist of a sequence complementary to the entire sequence or a partial sequence of miRNA-122 so that miRNA-122 is targeted.
  • AMO for example, AMO122_SMe_PS
  • a formula of the repeating structural unit of AMO122_SMe_PS is shown below.
  • the oligonucleotide derivative according to the present invention is used as AMO, 6 to 60-mer AMO is preferably used, 10 to 40-mer AMO is more preferably used, and 15 to 25-mer AMO is more preferably used. If it is the length of the oligonucleotide derivative which has the effect of this invention, it can select suitably.
  • an oligonucleotide derivative consisting of a sequence complementary to the entire sequence or a partial sequence of a target miRNA is further added to an oligonucleotide derivative of 1 to 20 mer (hereinafter referred to as an additional sequence) at the 5 ′ end. It may be bound to the 3 ′ end or both the 5 ′ end and the 3 ′ end.
  • AMO (32mer) having the sequence of SEQ ID NO: 4 targeting miRNA21 has 5mer additional sequences bound to each of the 5 'end and 3' end of AMO21_SMe_PS (22mer). Any additional sequence that exhibits the effects of the present invention can be selected as appropriate.
  • the present invention includes an embodiment of a method for controlling the function of miRNA using the oligonucleotide derivative according to the present invention.
  • the oligonucleotide derivative of the present invention when miRNA122 is targeted, cells are transfected with the oligonucleotide derivative of the present invention to quantify the miRNA122 level in the cell, and untreated cells It can be carried out by confirming that the miRNA122 level is reduced as compared with.
  • the oligonucleotide derivative of the present invention can be administered to a mammal to quantify the miRNA122 level in the liver and confirm that the miRNA122 level is reduced after administration compared to before administration.
  • the oligonucleotide derivative according to the present invention may be a conjugated oligonucleotide derivative to which at least one ligand is bound.
  • the ligand refers to a substance capable of realizing cell targeting, tissue targeting, functional improvement and the like of the oligonucleotide derivative according to the present invention.
  • a ligand in the conjugated oligonucleotide derivative, can be bound to the 5 'end, 3' end, or both the 5 'end and 3' end of the oligonucleotide derivative.
  • a ligand can be bound to the oligonucleotide derivative by a conventional method.
  • a plurality of ligands may be bound to the oligonucleotide derivative.
  • a conjugated oligonucleotide derivative to which 2 to 5 ligands are bound is preferably used, and a conjugated oligonucleotide derivative to which three ligands are bound is more preferably used.
  • three ligands may be bound to the 5 ′ end of the oligonucleotide derivative
  • three ligands may be bound to the 3 ′ end, for example, the 5 ′ end.
  • One ligand and two ligands may be bound to the 3 ′ end. Any number of ligands that exhibit the effects of the present invention can be selected as appropriate.
  • ligands that can be used in the conjugated oligonucleotide derivative according to the present invention include tocopherol, cholesterol, PSMA (prostate specific membrane antigen), polyethylene glycol, vitamin A, folic acid, fatty chain, peptide, transferrin, aptamer, Examples thereof include mannose, GalNAC (N-acetylgalactosamine), anisamide, other low molecular compounds or high molecular compounds that recognize surface antigens, and combinations thereof.
  • a plurality of ligands may be bound, or different types of ligands may be bound in combination. Any ligand can be appropriately selected as long as it exhibits the effects of the present invention.
  • conjugated oligonucleotide derivative examples include, for example, the following conjugated AMO targeting miRNA122.
  • AMO122_SMe_PS_5 ′ Toc SEQ ID NO: 5
  • Tocopherol is bound to the 5 ′ end of AMO122_SMe_PS
  • AMO122_SMe_PS_5′Chol SEQ ID NO: 5
  • Cholesterol is bound to the 5 ′ end of AMO122_SMe_PS (SEQ ID NO: 5 ′)
  • AMO21_SMe_PS_5′PMSA SEQ ID NO: 3): PMSA (prostate membrane antigen) binds to the 5 ′ end of AMO21_SMe_PS
  • the conjugated oligonucleotide derivative according to the present invention realizes cell targeting, tissue targeting, functional improvement, etc. of the oligonucleotide derivative.
  • conjugated oligonucleotide derivatives using tocopherol as a ligand enable liver tissue targeting
  • conjugated oligonucleotide derivatives using PSMA as a ligand enable prostate tissue targeting.
  • blood retention is improved by a conjugated oligonucleotide derivative using polyethylene glycol as a ligand.
  • a conjugated oligonucleotide derivative to which a plurality of ligands are bound for example, by binding a plurality of ligands that bind to a certain receptor, the interaction between the ligand and the receptor can be enhanced, More reliable tissue targeting is possible.
  • tissue targeting and blood retention can be improved at the same time, so more reliable liver tissue targeting Can be realized.
  • the oligonucleotide derivative according to the present invention can be synthesized by, for example, an amidite method using a DNA synthesizer.
  • AMO phosphorothioate
  • 2′-OMe-4′-thio the sugar moiety furanose ring 2′-hydroxyl of the nucleic acid is methylated and the sugar part furanose ring 4′-position oxygen atom is a sulfur atom
  • CPG controlled pore glass
  • ribonucleoside substituted
  • amidite form of 2'-OMe-4'-thioribonucleoside It can be synthesized by sulfiding phosphoric acid with -1,1-dioxide (view cage reagent).
  • conjugated oligonucleotide derivative such as AMO122_SMe_PS_5′Toc
  • AMO122_SMe_PS_5′Toc it can be synthesized in the same manner as described above using an amidite form of ⁇ -tocopherol synthesized from ⁇ -tocopherol.
  • AMO21_SMe_PS_5′PMSA it can be synthesized in the same manner as described above using the 5 'PMSA ligand amidite synthesized from the above.
  • Commercially available products may be used as various CPGs and amidites used in the condensation reaction by the amidite method. Any synthesis method that exhibits the effects of the present invention can be selected as appropriate.
  • the therapeutic pharmaceutical composition containing the oligonucleotide derivative according to the present invention exerts a therapeutic effect through, for example, direct control of mRNA, functional control of miRNA, and the like.
  • miRNA21 When miRNA function is controlled, for example, miRNA21 is up-regulated in various cancers such as liver cancer, pancreatic cancer, gastric cancer, breast cancer, and lung cancer as described above, and therefore, AMO targeting miRNA21 is administered. Thus, the function of miRNA 21 is suppressed in vivo, and it is possible to exert a therapeutic effect on the above cancer.
  • miRNA 122 is involved in HCV replication. Therefore, administration of AMO targeting miRNA 122 suppresses the function of miRNA 122 and exerts a therapeutic effect on hepatitis C. Is possible. If it is an applicable disease in which the present invention is effective, it can be appropriately selected.
  • the oligonucleotide derivative according to the present invention has good effect persistence and thermal stability that can withstand in vivo use, it is possible to efficiently control the function of miRNA and to obtain an effective therapeutic effect. There is.
  • the therapeutic pharmaceutical composition according to the present invention when administered to a mammal, it can be administered, for example, by injection, oral administration, sublingual administration or the like.
  • administration by injection for example, intravenous injection, intraarterial injection, intradermal injection, subcutaneous injection, intramuscular injection, intraperitoneal injection and the like can be performed.
  • the dosage form can be appropriately prepared as an injection, sublingual, tablet, granule, powder, etc.
  • an injection for example, an aqueous injection for injection, a non-aqueous injection, suspension injection Preparations, solid injections and the like.
  • additives such as solubilizers, buffers, isotonic agents, stabilizers, preservatives, soothing agents may be contained.
  • additives such as solubilizers, buffers, isotonic agents, stabilizers, preservatives, soothing agents
  • an oral preparation commonly used excipients, binders, disintegrants, thickeners, dispersants and the like can be appropriately contained.
  • other active ingredients can be appropriately contained in the therapeutic pharmaceutical composition. Any administration method, dosage form, additive, or the like that exhibits the effects of the present invention can be selected as appropriate.
  • the oligonucleotide derivative When the therapeutic pharmaceutical composition according to the present invention is administered to a mammal, for example, the oligonucleotide derivative may be dissolved in a solvent generally used for injections, and the oligonucleotide derivative is embedded in a liposome. The dissolved product may be dissolved in a solvent and administered. Any administration method that exhibits the effects of the present invention can be selected as appropriate.
  • the diagnostic pharmaceutical composition containing the oligonucleotide derivative according to the present invention exhibits a therapeutic effect through, for example, functional control of miRNA.
  • AMO targeting miRNA that is a biomarker for a certain cancer when administered in vivo, if AMO is bound to a tracer that can be detected from outside the body, the AMO binds to the target miRNA, and imaging ( For example, diagnosis of cancer by PET) becomes possible.
  • imaging For example, diagnosis of cancer by PET
  • AMO labeled with some label eg, fluorescent label, radioisotope label, etc.
  • some label eg, fluorescent label, radioisotope label, etc.
  • the target miRNA in tissues, blood and the like can be quantified.
  • miRNA expression analysis can be performed by suppressing the expression of the target miRNA by administering AMO in vivo. If it is a diagnostic use in which the present invention is effective, it can be appropriately selected.
  • the AMO according to the present invention has a good effect persistence that can withstand in vivo use and thermal stability, and thus can stably bind to the target miRNA in vivo and suppress the function of the target miRNA. . For this reason, reliable diagnosis using AMO becomes possible.
  • the administration method, dosage form, additive and the like of the diagnostic pharmaceutical composition according to the present invention are the same as described above.
  • the oligonucleotide derivative for miRNA function suppression of the present invention has the following general formula (1) as described above. (Wherein B represents adenine, guanine, cytosine or uracil, X represents a sulfur atom or an oxygen atom, and n represents an integer of 6 to 60) (the above general formula (1 ), B and X are each independently represented in each repeating structural unit.) In at least one of the repeating structural units represented by the general formula (1), X is a sulfur atom.
  • X may be a sulfur atom in all the repeating structural units represented by the general formula (1) as described above.
  • Such an oligonucleotide derivative for miRNA function suppression composed of PS, that is, phosphorothioate, can be suitably used in the present invention since it has good effect durability and thermal stability that can withstand in vivo use.
  • oligonucleotide derivative for miRNA function suppression of the present invention at least one ligand may be bound to the 5 'end, 3' end, or 5 'end and 3' end, as described above.
  • conjugate-type miRNA function-suppressing oligonucleotide derivatives realize cell targeting, tissue targeting, functional improvement, etc. of the oligonucleotide derivatives.
  • the oligonucleotide derivative for miRNA function suppression of the present invention can suppress the function of miRNA in vivo or in vitro.
  • the oligonucleotide derivative for miRNA function suppression of the present invention can target any kind of miRNA as described above.
  • miRNA function suppression of the oligonucleotide derivative for miRNA function suppression of the present invention when miRNA122 is targeted, cells are transfected with the oligonucleotide derivative for miRNA122 function suppression of the present invention. This can be done by quantifying the miRNA122 level in the cell and confirming that the miRNA122 level is reduced compared to untreated cells.
  • the miRNA122 function-suppressing oligonucleotide derivative of the present invention is administered to a mammal, the miRNA122 level in the liver is quantified, and it is confirmed by confirming that the miRNA122 level is reduced after administration compared to before administration. be able to.
  • the oligonucleotide derivative for miRNA function suppression of the present invention may be composed of a sequence complementary to the entire sequence or a partial sequence of miRNA as described above. In this case, it can be used as AMO targeting miRNA.
  • the oligonucleotide derivative for miRNA function suppression of the present invention is administered, for example, in vivo, the oligonucleotide derivative forms a double strand with miRNA in vivo, and miRNA function suppression is brought about.
  • the miRNA in this case may be miRNA 21 or miRNA 122 as described above.
  • AMO 21 AMO that is completely complementary to miRNA 21
  • AMO that is completely complementary to miRNA 122 is referred to as AMO 122.
  • AMO21_SMe_PO SEQ ID NO: 3)
  • AMO21_SMe_PS SEQ ID NO: 3)
  • Unconjugated AMO122 AMO122_SMe_PO SEQ ID NO: 5)
  • AMO122_SMe_PS SEQ ID NO: 5
  • Conjugate type AMO122 AMO122_SMe_PS_5 ′ Toc (SEQ ID NO: 5) AMO122_SMe_PS_5′Chol (SEQ ID NO: 5) AMO122_SMe_PS_3′Chol (SEQ ID NO: 5) 4).
  • Conjugate type AMO21 AMO21_SMe_PS_5′PMSA (SEQ ID NO: 3) 5.
  • Non-conjugated AMO21 AMO21 (32) _Me SEQ ID NO: 4
  • AMO21_Me_PO SEQ ID NO: 3
  • AMO21_FMe_PO Substitution of 2′-position methoxy group of AMO21_Me_PO with fluorine
  • A. AMO Composed of Me_PO and AMO Composed of SMe_PO Using an ABI 3400 DNA synthesizer (Applied Biosystem), the DNA was synthesized according to the usual DNA solid phase synthesis method.
  • CPG manufactured by Glen Research
  • 2′-OMe nucleoside sugar moiety furanose ring 2′-position hydroxyl group methylated
  • An amidite form of 2′-OMe nucleoside was used.
  • An amidite of 2′-OMe nucleoside was prepared in a 0.1 M acetonitrile solution and used for the condensation reaction.
  • 2′-OMe-4′-thioribonucleoside-supported CPG and 2′-OMe-4′-thioribonucleoside-supported amidite form include 2′-OMe nucleoside-supported CPG and 2′-OMe Each was synthesized from a nucleoside amidite according to a conventional method. An amidite form of 2′-OMe-4′-thioribonucleoside was prepared in a 0.1M acetonitrile solution and used for the condensation reaction.
  • Amidite form of ⁇ -tocopherol was prepared in 0.1M 10% THF / acetonitrile solution, and AMO122_Me_PS_5′Toc and AMO122_SMe_PS_5′Toc were obtained by the same condensation reaction as B described above.
  • the amidite form of ⁇ -tocopherol was synthesized from ⁇ -tocopherol as follows.
  • An amidite form of 5′-Cholesteryl-TEG (triethylene glycol) (manufactured by Glen Research) was prepared in a 10% THF / acetonitrile solution of 0.1M, and AMO122_Me_PS_5′Chol, AMO122_SMe_PS_5′Chol was obtained.
  • AMO122_Me_PS_3′Chol and AMO122_SMe_PS_3′Chol were obtained by the same condensation reaction as B described above using CPG resin (manufactured by Glen Research) carrying 1 ⁇ mol of 3′-Cholesteryl-TEG.
  • Amidites of 5′-PMSA ligand were prepared in a 0.1 M acetonitrile solution, and AMO21_Me_PS_5′PMSA and AMO21_SMe_PS_5′PMSA were obtained by the same condensation reaction as B described above.
  • the amidite form of 5′-PMSA ligand was synthesized from L-lysine as follows.
  • AMO21_FMe_PO and AMO21_SFMe_PO of comparative examples were synthesized in the same manner as A described above according to a conventional method.
  • the crude purification was performed using a buffer, pH 7.0), and the fraction containing AMO having a full-chain length having a DMTr group was recovered, and the solvent was distilled off under reduced pressure. After desalting the residue using Sep-Pak C18 (Waters), hydrochloric acid (pH 2.0) was added and treated at room temperature for 20 minutes to remove the DMTr group at the 5 'end. The reaction solution was neutralized with diluted aqueous ammonia solution, and the solvent was distilled off under reduced pressure.
  • Residues containing conjugated and non-conjugated full chain length AMO were subjected to C18 reverse phase HPLC (J'sphere YMC ODS-M80, 150 ⁇ 4.6 mm, 5-50% acetonitrile in 0.1 N TEAA buffer, pH 7 0.0) and then desalting using Sep-Pak C18 to obtain high-purity AMOs.
  • C18 reverse phase HPLC J'sphere YMC ODS-M80, 150 ⁇ 4.6 mm, 5-50% acetonitrile in 0.1 N TEAA buffer, pH 7 0.0
  • AMO21_Me_PO calculated mass, C 231 H 302 N 82 O 150 P 21 7276.3 (M-H); observed mass, 7273.80.
  • AMO21_SMe_PO calculated mass, C 231 H 302 N 82 O 128 P 21 S 22 7627.80 (M ⁇ H); observed mass, 7626.50.
  • AMO122_Me_PO calculated mass, C 240 H 318 N 85 O 154 P 22 7539.40 (MH); observed mass, 75538.52.
  • AMO122_Me_PS calculated mass, C 240 H 318 N 85 O 132 P 22 S 22 7891.89 (M-H); observed mass, 7886.64.
  • AMO122_SMe_PO calculated mass, C 240 H 318 N 85 O 131 P 22 S 23 7906.87 (M ⁇ H); observed mass, 7906.72.
  • AMO122_SMe_PS calculated mass, C 240 H 318 N 85 O 109 P 22 S 45 8261.36 (M ⁇ H); observed mass, 8261.66.
  • AMO122_SMe_PS_5 ′ Toc calculated mass, C 275 H 378 N 86 O 115 P 23 S 46 8913.75 (M ⁇ H); observed mass, 8916.81.
  • AMO122_Me_PS_5′Col calculated mass, C 281 H 390 N 86 O 140 P 23 S 23 866.36 (M ⁇ H); observed mass, 8661.17.
  • AMO122_SMe_PS_5′Col calculated mass, C 281 H 390 N 86 O 117 P 23 S 46 9030.83 (M ⁇ H); observed mass, 9033.77.
  • AMO122_Me_PS — 3′Chol calculated mass, C 281 H 390 N 86 O 140 P 23 S 23 866.36 (M ⁇ H); observed mass, 8662.04.
  • AMO122_SMe_PS_3′Col calculated mass, C 281 H 390 N 86 O 117 P 23 S 46 9030.83 (M ⁇ H); observed mass, 9032.13.
  • AMO21_Me_PS_5′PSMA calculated mass, C 252 H 338 N 85 O 143 P 22 S 22 8231.99 (MH); observed mass, 82319.99.
  • AMO21_SMe_PS_5′PSMA calculated mass, C 252 H 338 N 85 O 121 P 22 S 44 8585.49 (M ⁇ H); observed mass, 8585.49
  • FIG. 1 shows the sequence and 50% melting temperature (Tm value) of non-conjugated AMO21 (22mer series: SEQ ID NO: 3, 32mer series: SEQ ID NO: 4).
  • Tm value 50% melting temperature
  • unconjugated AMO21 according to the example of the present invention is complementary. It was shown to have a thermally stable duplex formation ability with miRNA21 which is a strand RNA.
  • FIG. 2 shows the sequence and Tm value of unconjugated AMO122 (SEQ ID NO: 5). As a result of measuring the Tm value (measurement conditions are the same as described above), it is shown that the non-conjugated AMO122 according to the example of the present invention has a thermally stable duplex formation ability with the complementary RNA miRNA122. It was done.
  • the pmirGLO vector expresses firefly luciferase (Fluc) and Renilla luciferase (Rluc).
  • AMO assay As shown in FIG. 4, HeLa cells (human cervical cancer cells) for miRNA 21 or Huh-7 cells (cells that highly express miRNA 122) for miRNA 122 are placed in each well of a 96-well plate (LumiNunc 96-well microplate). 10,000 cells were seeded and incubated at 37 ° C. under 5% CO 2 . After 24 hours, AMO and the aforementioned reporter vector (0.1 ⁇ g / well) were co-transfected and incubated using Lipofectamine 2000 (purchased from Invtrogen). At this time, Opti-MEM (purchased from Invitrogen) was used as the medium.
  • the medium was changed to a complete medium (DMEM containing 10% FBS and antibiotics) and incubated again.
  • DMEM fetal bovine serum
  • the cells were lysed using Lysis buffer, and luciferase activity was measured using Dual-Luciferase Reporter Assay System (purchased from Promega).
  • the Fluc / Rluc relative ratio (%) indicates that the value of firefly luciferase activity was corrected with the activity of Renilla luciferase, and the activity of cells administered with mirGLO was defined as 100%. Is the relative value of the activity. Each experiment was performed three times or more, and the average value and the standard deviation were taken.
  • mirGLO is a control to which only a reporter vector is added.
  • mirGLO miR21 Scr is obtained by adding only a reporter vector in which the sequence of 3′UTR is changed. Since miRNA21 cannot bind to 3′UTR, the Fluc / Rluc relative ratio becomes high. mirGLO miR21 has a reporter vector and miRNA21 added thereto, and miRNA21 binds to the 3′UTR, so the Fluc / Rluc relative ratio is low.
  • the concentration of each AMO is 50 nM, 5 nM, and 0.5 nM in order from the left side of the three columns of each AMO.
  • AMO21 (32) _Me, AMO21_Me_PO, AMO21_FMe_PO, and AMO21_SFMe_PO which are comparative examples
  • AMO21 (32) _SMe, AMO21_SMe_PO, and AMO21_SMe_PS showed a higher Fluc / Rluc relative ratio in a dose-dependent manner.
  • AMO21 binds to miRNA21, so that miRNA21 cannot bind to the 3′UTR of the reporter vector, and the Fluc / Rluc relative ratio is increased. From this, it was shown that AMO21 by the Example of this invention suppresses miRNA21.
  • AMO122_Me_PO and AMO122_Me_PS which are comparative examples, AMO122_SMe_PO and AMO122_SMe_PS maintained AMO122 activity well, and AMO122_SMe_PS improved AMO122 activity over time. From this, it was shown that AMO122 by the Example of this invention suppresses miRNA122 continuously.
  • AMO122_Me_PS_5 ′ Toc compared with AMO122_Me_PS_5′Chol, and AMO122_Me_PS_3′Chol, which are comparative examples, AMO122_SMe_PS_5′Toc, AMO122_SMe_PS_5′Col, and AMO122_SMeRlu_Rc_rel was shown to be high, comparable to unconjugated AMO122_SMe_PS. From this, it was shown that the conjugated AMO by the Example of this invention suppresses miRNA like unconjugated AMO.
  • Huh-7 cells were transfected with AMO122_SMe_PS or AMO122_Me_PS as a comparative example, and miRNA122 expression level 48 hours after transfection was quantified by real-time PCR.
  • DMEM Dulbecco's Modified Eagle Medium
  • FBS fetal bovine serum
  • FBS fetal bovine serum
  • DMEM fetal calf serum
  • AMO122_SMe_PS or AMO122_Me_PS was transfected with Lipofectamine 2000 (Invtrogen) according to the attached instructions and incubated at 37 ° C.
  • Opti-MEM Invitrogen was used as the medium.
  • the medium was changed with complete medium (DMEM as described above) and incubated again at 37 ° C.
  • the reverse transcription reaction was performed using 10 ng of the extracted RNA sample.
  • the reverse transcription reaction was performed using TaqMan (registered trademark) Small RNA Assays (Applied biosystems) miRNA122 specific RT-primer and TaqMan (registered trademark) MicroRNA Reverse Transfer Kit (Applied biosystems 16). 30 minutes at 42 ° C, 30 minutes at 42 ° C, 5 minutes at 85 ° C).
  • a LightCycler (registered trademark) 480 Real-Time PCR System (Roche Applied Science) was used at 50 ° C for 2 minutes, 95 ° C for 10 minutes, 95 ° C for 15 seconds and 60 ° C for 1 minute. 40 cycles were performed. At this time, the miRNA122 expression level was normalized using the RNU6B expression level as an internal standard gene.
  • FIG. 13 when the expression level of miRNA122 of “NT” (non-treated cells) is 100, it is expressed as a ratio of the expression level of miRNA122 of each AMO to “NT”.
  • the concentration of each AMO is 5 nM and 25 nM in order from the left side of the two columns of each AMO.
  • AMO122_SMe_PS suppressed the miRNA122 expression level lower.
  • miRNA122 expression level suppression was dose-dependent. From this, it was shown that AMO122 by the Example of this invention suppresses miRNA122 also in the fixed_quantity
  • the oligonucleotide derivative according to the present invention has good effect durability and thermal stability that can be used in vivo, it is possible to efficiently control the function of miRNA.

Abstract

 オリゴヌクレオチド誘導体は、下記一般式(式中、Bはアデニン、グアニン、シトシン又はウラシルを表し、Xは硫黄原子又は酸素原子を表し、nは6~60の整数を表す。)で表される繰り返し構成単位(前記一般式中、B及びXは、それぞれの繰り返し構成単位において独立に表される。)からなり、前記一般式で表される繰り返し構成単位の少なくとも1つにおいてXが硫黄原子である。

Description

オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体
 本発明は、オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体に関する。
 近年、RNA干渉(RNAi)の発見、トランスクリプトーム解析手法の進歩等により、RNAに関する研究が飛躍的に発展している。RNAが生物学的に重要な多くの機能を制御していることが明らかとなり、RNAと癌を含む様々な疾患との関連性が指摘されている。
 RNAの機能制御による疾患の治療に関する研究が盛んに行われ、RNAを標的にした医薬品の開発研究が広く行われるようになってきた。その中でも、核酸によるRNA制御法は、ワトソン-クリック型の塩基対形成を基盤としており、標的とするRNAに配列特異的な核酸を用いたものである。このようなRNA制御法は、直接的にRNAを制御することで、細胞機能の調節を可能とする。
 近年、核酸によるRNA制御法として、アンチセンス法やRNAi法等の方法論が確立されている。また、マイクロRNA(以下、miRNAという)の機能抑制を狙った核酸医薬に関する研究が進んでいる(非特許文献1)。
 核酸によるRNA制御法を応用した核酸医薬においては、(1)細胞内外に存在するヌクレアーゼによる分解に起因する効果消失、(2)二本鎖高次構造の熱的不安定性、(3)細胞及び組織標的化、(4)自然免疫応答による副作用発現等の課題が存在する。
 これらの課題を克服するため、核酸医薬の創薬において、核酸に何らかの化学修飾を施すことで、ヌクレアーゼに対する抵抗性、二本鎖高次構造の熱的安定性、自然免疫応答の回避能等の機能を付与する研究が行われている。核酸の糖部2’位水酸基をメチル化した2’-O-メチルRNAは、ヌクレアーゼ抵抗性、熱的安定性、及び自然免疫応答の回避能を有することが報告されている(非特許文献2,3)。また、ヌクレオシド糖部フラノース環4’位酸素原子を硫黄原子に置換した4’-チオRNAは、ヌクレアーゼ抵抗性及び熱的安定性を有することが報告されている(非特許文献4)。
Robert E.Lanford et al,Science,327,198-201(2010) Cummins L.L.et al,Nucleic Acids Res.23,2019-2024(1995) Judge A.D.et al,Mol.Ther.13,494-505(2006) Hoshika S.,Minakawa N.and Matsuda A.,Nucleic Acids Res.32,3815-3825(2004)
 しかしながら、非特許文献2及び3に記載の2’-O-メチルRNAでは、生体内環境における安定性が十分であるとはいえず、また、効果の持続性という点で課題を残している。また、非特許文献4に記載の4’-チオRNAは、ヌクレアーゼ抵抗性を有するが、核酸医薬として生体内で使用するには、よりヌクレアーゼ抵抗性に優れる修飾RNAの開発が望まれる。
 本発明は、上記事情に鑑みてなされたものであり、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するオリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体を提供することを目的とする。
 上記目的を達成するため、本発明の第1の観点に係るオリゴヌクレオチド誘導体は、下記一般式
Figure JPOXMLDOC01-appb-C000003
(式中、Bはアデニン、グアニン、シトシン又はウラシルを表し、Xは硫黄原子又は酸素原子を表し、nは6~60の整数を表す。)で表される繰り返し構成単位(前記一般式中、B及びXは、それぞれの繰り返し構成単位において独立に表される。)からなり、前記一般式で表される繰り返し構成単位の少なくとも1つにおいてXが硫黄原子である。
 前記一般式で表される繰り返し構成単位の全てにおいて、Xは硫黄原子であってもよい。
 前記オリゴヌクレオチド誘導体の5’末端、3’末端、又は5’末端及び3’末端に少なくとも1つのリガンドが結合していてもよい。
 前記オリゴヌクレオチド誘導体は、miRNAの全配列又は一部配列に相補的な配列からなっていてもよい。
 前記miRNAは、miRNA21であってもよい。
 前記miRNAは、miRNA122であってもよい。
 本発明の第2の観点に係る治療用医薬組成物は、前記オリゴヌクレオチド誘導体を含む。
 前記治療用医薬組成物は、miRNAの機能を抑制してもよい。
 本発明の第3の観点に係る診断用医薬組成物は、前記オリゴヌクレオチド誘導体を含む。
 本発明の第4の観点に係るmiRNA機能抑制用オリゴヌクレオチド誘導体は、下記一般式
Figure JPOXMLDOC01-appb-C000004
(式中、Bはアデニン、グアニン、シトシン又はウラシルを表し、Xは硫黄原子又は酸素原子を表し、nは6~60の整数を表す。)で表される繰り返し構成単位(前記一般式中、B及びXは、それぞれの繰り返し構成単位において独立に表される。)からなり、前記一般式で表される繰り返し構成単位の少なくとも1つにおいてXが硫黄原子である。
 前記一般式で表される繰り返し構成単位の全てにおいて、Xは硫黄原子であってもよい。
 前記オリゴヌクレオチド誘導体の5’末端、3’末端、又は5’末端及び3’末端に少なくとも1つのリガンドが結合していてもよい。
 前記オリゴヌクレオチド誘導体は、miRNAの全配列又は一部配列に相補的な配列からなっていてもよい。
 前記miRNAは、miRNA21であってもよい。
 前記miRNAは、miRNA122であってもよい。
 本発明によれば、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するオリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体を提供することができる。
各非コンジュゲート型AMO21の配列及びTm値を示す図である。 各非コンジュゲート型AMO122の配列及びTm値を示す図である。 各AMOによるmiRNA抑制効果の評価に用いるレポーターベクターを示した図である。 各AMOによるmiRNA抑制効果の評価プロトコールを示した図である。 非コンジュゲート型AMO21によるmiRNA21抑制効果を示したグラフである。 非コンジュゲート型AMO122によるmiRNA122抑制効果(コトランスフェクション24時間後)を示したグラフである。 非コンジュゲート型AMO122によるmiRNA122抑制効果(コトランスフェクション48時間後)を示したグラフである。 非コンジュゲート型AMO122によるmiRNA122抑制効果(コトランスフェクション72時間後)を示したグラフである。 非コンジュゲート型AMO122によるmiRNA122抑制効果の経時変化を示したグラフである。 コンジュゲート型AMO122によるmiRNA122抑制効果(コトランスフェクション24時間後)を示したグラフである。 コンジュゲート型AMO122によるmiRNA122抑制効果(コトランスフェクション48時間後)を示したグラフである。 コンジュゲート型AMO122によるmiRNA122抑制効果(コトランスフェクション72時間後)を示したグラフである。 AMO122_SMe_PSによるmiRNA122抑制効果(トランスフェクション48時間後)を示したグラフである(リアルタイムPCR法)。
 以下、本発明の実施形態について詳細に説明する。
(1.オリゴヌクレオチド誘導体)
 まず、本発明によるオリゴヌクレオチド誘導体の構造について、詳細に説明する。
 本発明によるオリゴヌクレオチド誘導体は、下記一般式(1)で表される繰り返し構成単位からなる。本明細書において、オリゴヌクレオチド誘導体とは、オリゴヌクレオチド中のヌクレオチドが、下記一般式(1)で表されるように化学修飾されていることをいう。なお、本発明によるオリゴヌクレオチド誘導体には、オリゴヌクレオチド中の少なくとも1つのヌクレオチドが下記一般式(1)で表されるように化学修飾されたオリゴヌクレオチド誘導体も含まれる。この場合、オリゴヌクレオチドの全長中少なくとも50%以上のヌクレオチドが下記一般式(1)で表されるように化学修飾されているオリゴヌクレオチド誘導体が、好適に用いられる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)中、Bはアデニン、グアニン、シトシン、又はウラシルを表す。それぞれ構造式とその略記号を下式に示す。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(1)中、Xは硫黄原子又は酸素原子を表す。本明細書において、Xが硫黄原子の場合をPS、Xが酸素原子の場合をPOと称する。PS及びPOは、それぞれ下式で表される。
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)中、nは、上記一般式(1)で表される繰り返し構成単位の数、つまり、本発明によるオリゴヌクレオチド誘導体のモノマー数を表し、6~60の整数である。モノマー数(=n)については、後述する。
 上記一般式(1)中、B及びXは、それぞれの繰り返し構成単位において独立に表される。つまり、オリゴヌクレオチド誘導体中に、B及びXがそれぞれ異なる繰り返し構成単位が混在していてもよい。例えば、オリゴヌクレオチド誘導体中のある1つの繰り返し構成単位においてBはアデニン、Xは硫黄原子であり、同じオリゴヌクレオチド誘導体中の他の繰り返し構成単位においてBはグアニン、Xは酸素原子であり、同じオリゴヌクレオチド誘導体中のさらに他の繰り返し構成単位においてBはシトシン、Xは酸素原子であってもよい。
 本発明によるオリゴヌクレオチド誘導体は、前記一般式(1)で表される繰り返し構成単位の少なくとも1つにおいて、Xが硫黄原子である。つまり、本発明によるオリゴヌクレオチド誘導体は、Xが硫黄原子である前記一般式(1)で表される繰り返し構成単位、すなわちPSを少なくとも1つ含む。
 本発明によるオリゴヌクレオチド誘導体は、前記一般式(1)で表される繰り返し構成単位の全てにおいて、Xが硫黄原子であってもよい。つまり、オリゴヌクレオチド誘導体に含まれる、上記一般式(1)で表される繰り返し構成単位の全てが、PSであってもよい。PSからなるオリゴヌクレオチド誘導体、つまりホスホロチオエートは、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するため、本発明によるオリゴヌクレオチド誘導体において好適に用いることができる。
 次に、本発明によるオリゴヌクレオチド誘導体の機能について、詳細に説明する。
 本発明によるオリゴヌクレオチド誘導体は、RNAを標的とした核酸(アンチセンス核酸化合物)として広く用いることができる。本明細書において、アンチセンス核酸化合物とは、標的とするRNAの全配列又は一部配列に相補的な配列からなるオリゴヌクレオチド誘導体であって、オリゴヌクレオチド中の全て又は一部のヌクレオチドが化学修飾されているものをいう。本発明によるオリゴヌクレオチド誘導体を、例えば、mRNAの直接制御、miRNAの機能制御等に用いることができる。
 本発明によるオリゴヌクレオチド誘導体をmRNAの直接制御に用いる場合、標的となるmRNAの全配列又は一部配列に相補的な配列からなるオリゴヌクレオチド誘導体を使用する。この場合、例えば、以下のようなメカニズムにより翻訳阻害が生じる。例えば、pre-mRNAからmRNAへのスプライシングにおいて、本発明によるオリゴヌクレオチド誘導体がpre-mRNAに結合することにより、Cap形成阻害、スプライス阻害、RNaseによる切断、アデニル化阻害等が生じる。また例えば、mRNAからの翻訳の過程において、本発明によるオリゴヌクレオチド誘導体がmRNAに結合することにより、リボソーム結合阻害(Translational Arrest)が生じる。本発明によるオリゴヌクレオチド誘導体は、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するため、mRNAを効率的に直接制御することができる。
 本発明によるオリゴヌクレオチド誘導体をmRNAの直接制御に用いる場合、6~60merのオリゴヌクレオチド誘導体が好適に用いられ、15~25merのオリゴヌクレオチド誘導体がさらに好適に用いられる。本発明の効果を奏するオリゴヌクレオチド誘導体の長さであれば、適宜選択され得る。なお、本発明には、本発明によるオリゴヌクレオチド誘導体を用いてmRNAを直接制御する方法の態様についても含まれると理解される。
 本発明によるオリゴヌクレオチド誘導体は、例えば、miRNAの機能制御に好適に用いることができる。
 近年、miRNAは、細胞増殖、生殖機能等の生物学的に重要な機能を制御しており、様々な疾患との関連性を有することが指摘されている。miRNAによる調節を受ける生理的機能としては、分化、細胞増殖、稔性、アポトーシス、代謝、造血、心発生、形態形成、インスリン分泌、シグナル伝達等が知られている。このように、miRNAは細胞の生存に重要な役割を果たしており、miRNAの発現異常等による遺伝子発現の調節不全は、癌等の疾患の原因となることが知られている。
 近年、約900種のmiRNAが同定されている。例えば、各種の癌においてアップレギュレーション及びダウンレギュレーションしているmiRNAを下記に示す(表1)。
Figure JPOXMLDOC01-appb-T000008
 例えば、miRNA21(配列番号1)は、肝臓癌、膵臓癌、胃癌、乳癌、肺癌といった多種の癌でアップレギュレーションしている(表1)。
 例えば、miRNA122(配列番号2)は、肝臓に特異的に発現しているmiRNAであり、マウスでは胚形成時に増加し、肝臓の発達を制御することが知られている。また、コレステロール、脂質のメタボリズムの制御やHCVの複製にも関与していることがわかってきた。
 本発明によるオリゴヌクレオチド誘導体は、miRNAの全配列又は一部配列に相補的な配列からなっていてもよい。この場合、miRNAを標的としたアンチセンス核酸(anti-miRNA oligonucleotide;以下、AMOという)として用いることができる。本発明によるAMOがmiRNAの一部配列に相補的な配列からなる場合、本発明の効果を奏する配列であれば、適宜選択され得る。
 miRNAの全配列又は一部配列に相補的な配列からなる、本発明によるオリゴヌクレオチド誘導体(以下、本発明によるAMOという)を、例えば生体内に投与すると、生体内で本発明によるAMOがmiRNAと二本鎖を形成し、miRNAの機能抑制がもたらされる。本発明によるAMOは、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するため、miRNAの効率的な機能制御が可能となる。
 本発明によるAMOは、あらゆる種類のmiRNAを標的とすることができる。各種のmiRNAに相補的な配列を有するAMOを合成することができるからである。本発明によるAMOは、例えば、miRNA21、miRNA122、miRNA224、miRNA10b,miRNA221,miRNA222,miRNA20,miRNA18,miRNA23a,miRNA141,miRNA200b,miRNA27a,miRNA342,miRNA26a,miRNA30d,miRNA26b,miRNA107,miRNA203,miRNA204,miRNA211,miRNA105,miRNA181a,miRNA155,miRNA181b,miRNA25,miRNA424,miRNA151,miRNA223,miRNA25,miRNA17-5p,miRNA125b,miRNA106a,miRNA92,miRNA103,miRNA93,miRNA100,miRNA106b,miRNA20a,miRNA190,miRNA33,miRNA19a,miRNA140,miRNA123,miRNA188,miRNA154,miRNA217,miRNA101,miRNA196,miRNA134,miRNA132,miRNA192,miRNA16,miRNA15,miRNA200a,miRNA200c,miRNA191,miRNA210,miRNA32,miRNA182,miRNA31,miRNA146a等を標的とすることができる。本発明によるAMOが標的とすることができるmiRNAとしては、例えば、「miRBase:the microRNA database(http://www.mirbase.org/)」においてデータベース化されているmiRNAを挙げることができる。本発明が効果を奏するmiRNAであれば、適宜選択され得る。
 なお、本明細書において、miRNAの機能とは、前述のあらゆる種類のmiRNAが有する、細胞増殖、生殖機能等の生物学的な機能をいう。本発明が効果を奏するmiRNAの機能であれば、適宜選択され得る。
 本発明によるAMOは、miRNA-21を標的とするように、miRNA-21の全配列又は一部配列に相補的な配列からなっていてもよい。この場合、配列番号3の配列を有するAMO(例えば、AMO21_SMe_PS)が例示される。AMO21_SMe_PSの繰り返し構成単位の式を以下に示す。
Figure JPOXMLDOC01-appb-C000009
 本発明によるAMOは、miRNA-122を標的とするように、miRNA-122の全配列又は一部配列に相補的な配列からなっていてもよい。この場合、配列番号5の配列を有するAMO(例えば、AMO122_SMe_PS)が例示される。AMO122_SMe_PSの繰り返し構成単位の式を以下に示す。
Figure JPOXMLDOC01-appb-C000010
 本発明によるオリゴヌクレオチド誘導体をAMOとして用いる場合、6~60merのAMOが好適に用いられ、10~40merのAMOがより好適に用いられ、15~25merのAMOがさらにより好適に用いられる。本発明の効果を奏するオリゴヌクレオチド誘導体の長さであれば、適宜選択され得る。
 本発明によるAMOにおいて、標的とするmiRNAの全配列又は一部配列に相補的な配列からなるオリゴヌクレオチド誘導体に、さらに1~20merのオリゴヌクレオチド誘導体(以下、付加的配列という)が、5’末端、3’末端、又は5’末端及び3’末端の両方に結合されていてもよい。例えば、miRNA21を標的とした、配列番号4の配列を有するAMO(32mer)は、AMO21_SMe_PS(22mer)の5’末端及び3’末端の各々に5merの付加的配列が結合している。本発明の効果を奏する付加的配列であれば、適宜選択され得る。
 なお、本発明には、本発明によるオリゴヌクレオチド誘導体を用いてmiRNAの機能を制御する方法の態様についても含まれると理解される。
 本発明のオリゴヌクレオチド誘導体のmiRNA機能抑制の評価については、例えば、miRNA122を標的とする場合、細胞に本発明のオリゴヌクレオチド誘導体をトランスフェクションして細胞内のmiRNA122レベルを定量し、未処理の細胞と比較してmiRNA122レベルが低減していることを確認することで行うことができる。また、例えば、哺乳動物に本発明のオリゴヌクレオチド誘導体を投与して肝臓におけるmiRNA122レベルを定量し、投与前に比べて投与後にmiRNA122レベルが低減していることを確認することで行うことができる。
 次に、本発明によるコンジュゲート型オリゴヌクレオチド誘導体について、詳細に説明する。
 本発明によるオリゴヌクレオチド誘導体は、少なくとも1つのリガンドが結合しているコンジュゲート型オリゴヌクレオチド誘導体であってもよい。本明細書においてリガンドとは、本発明によるオリゴヌクレオチド誘導体の細胞標的化、組織標的化、機能性向上等を実現させることができる物質をいう。
 コンジュゲート型オリゴヌクレオチド誘導体において、オリゴヌクレオチド誘導体の5’末端、3’末端、又は5’末端及び3’末端の両方に、リガンドを結合させることができる。常法により、オリゴヌクレオチド誘導体にリガンドを結合させることができる。
 コンジュゲート型オリゴヌクレオチド誘導体においては、オリゴヌクレオチド誘導体に複数個のリガンドを結合させてもよい。この場合、2~5個のリガンドが結合したコンジュゲート型オリゴヌクレオチド誘導体が好適に用いられ、3個のリガンドが結合したコンジュゲート型オリゴヌクレオチド誘導体がさらに好適に用いられる。リガンドが3個の場合、例えば、オリゴヌクレオチド誘導体の5’末端に3個のリガンドを結合させてもよいし、3’末端に3個のリガンドを結合させてもよいし、例えば、5’末端に1個及び3’末端に2個のリガンドを結合させてもよい。本発明の効果を奏するリガンド数であれば、適宜選択され得る。
 本発明によるコンジュゲート型オリゴヌクレオチド誘導体に用いることができるリガンドの例としては、トコフェロール、コレステロール、PSMA(前立腺特異的膜抗原)、ポリエチレングリコール、ビタミンA、葉酸、脂肪鎖、ペプチド、トランスフェリン、アプタマー、マンノース、GalNAC(N-アセチルガラクトサミン)、アニスアミド、その他表面抗原を認識する低分子化合物若しくは高分子化合物等、又はこれらの組み合わせが挙げられる。複数個のリガンドが結合したコンジュゲート型オリゴヌクレオチド誘導体においては、同じ種類のリガンドを複数個結合させたものであってもよく、異なる種類のリガンドを組み合わせて結合させたものであってもよい。本発明の効果を奏するリガンドであれば、適宜選択され得る。
 本発明によるコンジュゲート型オリゴヌクレオチド誘導体の例としては、例えば、以下のmiRNA122を標的としたコンジュゲート型AMOを挙げることができる。
AMO122_SMe_PS_5’Toc(配列番号5):AMO122_SMe_PSの5’末端にトコフェロールが結合
AMO122_SMe_PS_5’Chol(配列番号5):AMO122_SMe_PSの5’末端にコレステロールが結合
AMO122_SMe_PS_3’Chol(配列番号5):AMO122_SMe_PSの3’末端にコレステロールが結合
AMO21_SMe_PS_5’PMSA(配列番号3):AMO21_SMe_PSの5’末端にPMSA(前立腺膜抗原)が結合)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 本発明によるコンジュゲート型オリゴヌクレオチド誘導体により、オリゴヌクレオチド誘導体の細胞標的化、組織標的化、機能性向上等が実現する。例えば、トコフェロールをリガンドとして用いたコンジュゲート型オリゴヌクレオチド誘導体により、肝組織標的化が可能となり、PSMAをリガンドとして用いたコンジュゲート型オリゴヌクレオチド誘導体により、前立腺組織標的化が可能となる。例えば、ポリエチレングリコールをリガンドとして用いたコンジュゲート型オリゴヌクレオチド誘導体により、血中滞留性が向上する。また、複数個のリガンドが結合したコンジュゲート型オリゴヌクレオチド誘導体の場合、例えば、ある受容体に結合するリガンドを複数結合させることで、リガンドと受容体との間の相互作用を高めることができ、より確実な組織標的化が可能となる。さらに、例えば、トコフェロールとポリエチレングリコールとを組み合わせたリガンドを結合させたコンジュゲート型オリゴヌクレオチド誘導体を用いることで、組織標的化及び血中滞留性向上が同時に可能となるため、より確実な肝組織標的化が実現し得る。
 次に、本発明によるオリゴヌクレオチド誘導体の合成方法について、説明する。
 本発明によるオリゴヌクレオチド誘導体は、例えば、DNA合成機を用いて、アミダイト法により合成することができる。例えばSMe_PSで構成されるAMO(ホスホロチオエート)の場合、2’-OMe-4’-チオ(核酸の糖部フラノース環2’位水酸基がメチル化され、糖部フラノース環4’位酸素原子が硫黄原子に置換されている)リボヌクレオシドが担持されたcontrolled pore glass(CPG)、及び2’-OMe-4’-チオリボヌクレオシドのアミダイト体を用いて、3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド(ビューケージ試薬)によりリン酸を硫化させることにより、合成することができる。コンジュゲート型オリゴヌクレオチド誘導体、例えばAMO122_SMe_PS_5’Tocの場合、α-トコフェロールから合成したα-トコフェロールのアミダイト体を用いて、前述と同様に合成することができ、例えばAMO21_SMe_PS_5’PMSAの場合、L-リシンから合成した5’PMSAのリガンドのアミダイト体を用いて、前述と同様に合成することができる。アミダイト法による縮合反応に用いる各種CPG及びアミダイト体は、市販のものを用いてもよい。なお、本発明の効果を奏する合成方法であれば、適宜選択され得る。
(2.治療用医薬組成物)
 本発明によるオリゴヌクレオチド誘導体を含む治療用医薬組成物は、例えば、mRNAの直接制御、miRNAの機能制御等を介して治療効果を発揮する。
 miRNAの機能制御を介する場合、例えば、miRNA21は、前述の通り、肝臓癌、膵臓癌、胃癌、乳癌、肺癌といった多種の癌でアップレギュレーションしているため、miRNA21を標的としたAMOを投与することにより、生体内でmiRNA21の機能が抑制され、上記の癌に対して治療効果を発揮することが可能である。また、例えば、miRNA122は、前述の通り、HCVの複製に関与しているため、miRNA122を標的としたAMOを投与することにより、miRNA122の機能が抑制され、C型肝炎に対して治療効果を発揮することが可能である。本発明が効果を奏する適用疾患であれば、適宜選択され得る。
 本発明によるオリゴヌクレオチド誘導体は、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するため、miRNAの効率的な機能制御が可能であり、有効な治療効果が得られる可能性がある。
 本発明による治療用医薬組成物を哺乳動物に投与する場合、例えば、注射、経口投与、舌下投与等により投与することができる。注射による投与の場合、例えば、静脈内注射、動脈内注射、皮内注射、皮下注射、筋肉内注射、腹腔内注射等により行うことができる。また剤型については、注射剤、舌下剤、錠剤、顆粒剤、散剤等に適宜調製することができ、注射剤の場合、例えば、注射剤用水性注射剤、非水性注射剤、懸濁性注射剤、固形注射剤等に調製することができる。注射剤の場合、例えば、溶解補助剤、緩衝剤、等張化剤、安定剤、保存剤、無痛化剤といった添加剤を含有させてもよい。経口剤の場合、通常用いられる賦形剤、結合剤、崩壊剤、増粘剤、分散剤等を適宜含有させることができる。さらに、治療用医薬組成物には他の活性成分を適宜含有させることができる。本発明の効果を奏する投与方法、剤型、添加剤等であれば、適宜選択され得る。
 本発明による治療用医薬組成物を哺乳動物に投与する場合、例えば、オリゴヌクレオチド誘導体を、注射剤に一般的に用いられる溶媒に溶解させて投与してもよく、オリゴヌクレオチド誘導体をリポソームに包埋させたものを溶媒に溶解させて投与してもよい。本発明の効果を奏する投与方法であれば、適宜選択され得る。
(3.診断用医薬組成物)
 本発明によるオリゴヌクレオチド誘導体を含む診断用医薬組成物は、例えば、miRNAの機能制御等を介して治療効果を発揮する。
 例えば、ある癌のバイオマーカーであるmiRNAを標的とするAMOを生体内に投与する場合、AMOに体外から検出可能なトレーサーを結合させておくと、標的miRNAにAMOが結合することで、イメージング(例えばPET)による癌の診断が可能となる。また、例えば、生体から採取した組織、血液等に、何らかの標識(例えば、蛍光標識、放射性同位元素標識等)でラベルしたAMOを添加することで、標的miRNAの細胞内発現の確認、機能解析が可能となり、さらには組織、血液等中の標的miRNAの定量を行うこともできる。加えて、例えば、AMOを生体内に投与して標的miRNAの発現を抑えることで、miRNA発現解析を行うことができる。本発明が効果を奏する診断用途であれば、適宜選択され得る。
 本発明によるAMOは、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するため、生体内で安定的に標的miRNAと結合するとともに、標的miRNAの機能を抑制することができる。このため、AMOを用いた確実な診断が可能となる。
 本発明による診断用医薬組成物の投与方法、剤型、添加剤等については、前述と同様である。
(4.miRNA機能抑制用オリゴヌクレオチド誘導体)
 本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体は、前述と同様に、下記一般式(1)
Figure JPOXMLDOC01-appb-C000015
(式中、Bはアデニン、グアニン、シトシン又はウラシルを表し、Xは硫黄原子又は酸素原子を表し、nは6~60の整数を表す。)で表される繰り返し構成単位(上記一般式(1)中、B及びXは、それぞれの繰り返し構成単位において独立に表される。)からなり、上記一般式(1)で表される繰り返し構成単位の少なくとも1つにおいてXが硫黄原子である。また、本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体においては、前述と同様に、上記一般式(1)で表される繰り返し構成単位の全てにおいて、Xは硫黄原子であってもよい。このようなPSからなるmiRNA機能抑制用オリゴヌクレオチド誘導体、つまりホスホロチオエートは、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するため、本発明において好適に用いることができる。
 本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体は、前述と同様に、5’末端、3’末端、又は5’末端及び3’末端に少なくとも1つのリガンドが結合していてもよい。このようなコンジュゲート型のmiRNA機能抑制用オリゴヌクレオチド誘導体により、オリゴヌクレオチド誘導体の細胞標的化、組織標的化、機能性向上等が実現する。
 本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体は、生体内又は生体外におけるmiRNAの機能を抑制させることができる。本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体は、前述と同様に、あらゆる種類のmiRNAを標的とすることができる。
 本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体のmiRNA機能抑制の評価については、前述と同様に、例えば、miRNA122を標的とする場合、細胞に本発明のmiRNA122機能抑制用オリゴヌクレオチド誘導体をトランスフェクションして細胞内のmiRNA122レベルを定量し、未処理の細胞と比較してmiRNA122レベルが低減していることを確認することで行うことができる。また、例えば、哺乳動物に本発明のmiRNA122機能抑制用オリゴヌクレオチド誘導体を投与して肝臓におけるmiRNA122レベルを定量し、投与前に比べて投与後にmiRNA122レベルが低減していることを確認することで行うことができる。
 本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体は、前述と同様に、miRNAの全配列又は一部配列に相補的な配列からなっていてもよい。この場合、miRNAを標的としたAMOとして用いることができる。本発明のmiRNA機能抑制用オリゴヌクレオチド誘導体を、例えば生体内に投与すると、生体内でオリゴヌクレオチド誘導体がmiRNAと二本鎖を形成し、miRNAの機能抑制がもたらされる。また、この場合のmiRNAは、前述と同様に、miRNA21であってもよく、miRNA122であってもよい。
 なお、本発明は上記実施の形態に限定されず、種々の変形及び応用が可能である。
 以下、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。また、特にことわらない限り「%」は質量%を示す。
(AMOの合成)
 以下の方法で、各AMOを合成した。各AMOの名称及び配列番号を下記に示す。なお、以下の実施例において、miRNA21と完全相補的なAMOをAMO21と称し、miRNA122と完全相補的なAMOをAMO122と称する。
1.非コンジュゲート型AMO21
   AMO21(32)_SMe(配列番号4)
   AMO21_SMe_PO(配列番号3)
   AMO21_SMe_PS(配列番号3)
2.非コンジュゲート型AMO122
   AMO122_SMe_PO(配列番号5)
   AMO122_SMe_PS(配列番号5)
3.コンジュゲート型AMO122
   AMO122_SMe_PS_5’Toc(配列番号5)
   AMO122_SMe_PS_5’Chol(配列番号5)
   AMO122_SMe_PS_3’Chol(配列番号5)
4.コンジュゲート型AMO21
   AMO21_SMe_PS_5’PMSA(配列番号3)
5.(比較例)非コンジュゲート型AMO21
   AMO21(32)_Me(配列番号4)
   AMO21_Me_PO(配列番号3)
   AMO21_FMe_PO(AMO21_Me_POの2’位メトキシ基をフッ素に置換)(配列番号3)
   AMO21_SFMe_PO(AMO21_SMe_POの2’位メトキシ基をフッ素に置換)(配列番号3)
6.(比較例)非コンジュゲート型AMO122
   AMO122_Me_PO(配列番号5)
   AMO122_Me_PS(配列番号5)
7.(比較例)コンジュゲート型AMO122
   AMO122_Me_PS_5’Toc(配列番号5)
   AMO122_Me_PS_5’Chol(配列番号5)
   AMO122_Me_PS_3’Chol(配列番号5)
8.(比較例)コンジュゲート型AMO21
   AMO21_Me_PS_5’PMSA(配列番号3)
 非コンジュゲート型AMO21の繰り返し構成単位の式を下記に示す。
Figure JPOXMLDOC01-appb-C000016
 非コンジュゲート型AMO122の繰り返し構成単位の式を下記に示す。
Figure JPOXMLDOC01-appb-C000017
 コンジュゲート型AMO122、及びコンジュゲート型AMO21の構造式及び繰り返し構成単位の式を下記に示す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 比較例に用いる非コンジュゲート型AMO21の繰り返し構成単位の式を下記に示す。
Figure JPOXMLDOC01-appb-C000023
 比較例に用いる非コンジュゲート型AMO122の繰り返し構成単位の式を下記に示す。
Figure JPOXMLDOC01-appb-C000024
 比較例に用いるコンジュゲート型AMO122、及びコンジュゲート型AMO21の構造式及び繰り返し構成単位の式を下記に示す。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
(A.Me_POで構成されたAMO、及びSMe_POで構成されたAMOの合成方法)
 ABI 3400 DNA合成機(Applied Biosysitem社製)を用いて、通常のDNAの固相合成法に従って合成した。
 Me_POで構成されたAMOの縮合反応においては、1μmolの2’-OMe(核酸の糖部フラノース環2’位水酸基がメチル化されている)ヌクレオシドが担持されたCPG(Glen Research社製)、及び2’-OMeヌクレオシドのアミダイト体(Glen Research社製)を用いた。2’-OMeヌクレオシドのアミダイト体を0.1Mのアセトニトリル溶液に調製して縮合反応に用いた。
 SMe_POで構成されたAMOの縮合反応においては、1μmolの2’-OMe-4’-チオ(核酸の糖部フラノース環2’位水酸基がメチル化され、糖部フラノース環4’位酸素原子が硫黄原子に置換されている)リボヌクレオシドが担持されたCPG、及び2’-OMe-4’-チオリボヌクレオシドのアミダイト体を用いた。2’-OMe-4’-チオリボヌクレオシドが担持されたCPG、及び2’-OMe-4’-チオリボヌクレオシドのアミダイト体は、2’-OMeヌクレオシドが担持されたCPG、及び2’-OMeヌクレオシドのアミダイト体から各々常法に従って合成した。2’-OMe-4’-チオリボヌクレオシドのアミダイト体を0.1Mのアセトニトリル溶液に調製して縮合反応に用いた。
 3%TCA(トリクロロ酢酸)により、2’-OMeヌクレオシドが担持されたCPG又は2’-OMe-4’-チオリボヌクレオシドが担持されたCPGのDMTr基を除去後、活性化剤として1H-テトラゾールを用いて、各々を2’-OMeヌクレオシドのアミダイト体又は2’-OMe-4’-チオリボヌクレオシドのアミダイト体に縮合させた。なお、縮合時間は600秒とした。次に、未反応の水酸基に対して無水酢酸を反応させてキャップした後、酸化剤としてヨウ素を用いて水存在下でリン酸を酸化した。このサイクルを繰り返すことにより、固相(CPG)に担持されたAMOを合成した。SMe_POで構成されたAMOの合成スキームを下記に示す。
Figure JPOXMLDOC01-appb-C000030
(B.Me_PSで構成されたAMO,及びSMe_PSで構成されたAMOの合成方法)
 前述のAにおける、酸化剤としてのヨウ素に換えて、3H-1,2-ベンゾジチオール-3-オン-1,1-ジオキシド(ビューケージ試薬)を用いてリン酸を硫化し、前述のAと同様にAMOを合成した。SMe_PSで構成されたAMOの合成スキームを下記に示す。
Figure JPOXMLDOC01-appb-C000031
(C.コンジュゲート型AMOの合成方法)
 α-トコフェロールのアミダイト体を0.1Mの10%THF/アセトニトリル溶液に調製して、前述のBと同様の縮合反応により、AMO122_Me_PS_5’Toc,AMO122_SMe_PS_5’Tocを得た。α-トコフェロールのアミダイト体は、下記の通りα-トコフェロールから合成した。
Figure JPOXMLDOC01-appb-C000032
 5’-Cholesteryl-TEG(トリエチレングリコール)のアミダイト体(Glen Research社製)を0.1Mの10%THF/アセトニトリル溶液に調製して、前述のBと同様の縮合反応により、AMO122_Me_PS_5’Chol,AMO122_SMe_PS_5’Cholを得た。
 1μmolの3’-Cholesteryl-TEGが担持されたCPG樹脂(Glen Research社製)を用いて、前述のBと同様の縮合反応により、AMO122_Me_PS_3’Chol,AMO122_SMe_PS_3’Cholを得た。
 5’-PMSAリガンドのアミダイト体を0.1Mのアセトニトリル溶液に調製して、前述のBと同様の縮合反応により、AMO21_Me_PS_5’PMSA,AMO21_SMe_PS_5’PMSAを得た。5’-PMSAリガンドのアミダイト体は、下記の通りL-リシンから合成した。
Figure JPOXMLDOC01-appb-C000033
(D.AMO21_FMe_PO及びAMO21_SFMe_POの合成方法)
 比較例のAMO21_FMe_PO,AMO21_SFMe_POは、常法に従い、前述のAと同様に合成した。
 合成終了後、AMOが担持されたCPGをバイアルに移し、28%アンモニア水/エタノール(3:1,2mL)を添加して55℃で16時間静置し、AMOの切り出し、脱保護を行った。反応液をガラスフィルターでろ過し、溶媒を減圧下留去した。5’末端にDMTr基を残した状態で合成した非コンジュゲート型のAMOは、C18逆相HPLC(J’sphere YMC ODS-M80,150×4.6mm,5-50% アセトニトリル in 0.1N TEAAバッファー,pH7.0)で粗精製を行い、DMTr基をもつ完全鎖長のAMOを含むフラクションを回収して溶媒を減圧下留去した。Sep-Pak C18(Waters)を用いて残渣の脱塩を行った後、塩酸(pH2.0)を加えて20分間室温で処理して5’末端のDMTr基を除去した。その反応液を希釈したアンモニア水溶液で中和した後、溶媒を減圧下留去した。コンジュゲート型及び非コンジュゲート型の完全鎖長のAMOを含む残渣をC18逆相HPLC(J’sphere YMC ODS-M80,150×4.6mm,5-50% アセトニトリル in 0.1N TEAAバッファー,pH7.0)で精製した後、Sep-Pak C18を用いて脱塩を行うことで、高純度の各AMOを得た。
 精製した各AMOの構造については、MALDI-TOF/MASS spectrometry(ultraflex TOF/TOF,Bruker Daltonics)により解析して、その分子量を求めた。その解析結果を以下に示す。
AMO21_Me_PO:calculated mass,C2313028215021 7276.3(M-H);observed mass,7273.80.
AMO21_SMe_PO:calculated mass,C231302821282122 7627.80(M-H);observed mass,7626.50.
AMO122_Me_PO:calculated mass,C2403188515422 7539.40(M-H);observed mass,7538.52.
AMO122_Me_PS:calculated mass,C240318851322222 7891.89(M-H);observed mass,7886.64.
AMO122_SMe_PO:calculated mass,C240318851312223 7906.87(M-H);observed mass,7906.72.
AMO122_SMe_PS:calculated mass,C240318851092245 8261.36(M-H);observed mass,8261.66.
AMO122_Me_PS_5’Toc:calculated mass,C275378861382323 8543.28(M-H);observed mass,4546.78.
AMO122_SMe_PS_5’Toc:calculated mass,C275378861152346 8913.75(M-H);observed mass,8916.81.
AMO122_Me_PS_5’Chol:calculated mass,C281390861402323 8661.36(M-H);observed mass,8662.17.
AMO122_SMe_PS_5’Chol:calculated mass,C281390861172346 9030.83(M-H);observed mass,9033.77.
AMO122_Me_PS_3’Chol:calculated mass,C281390861402323 8661.36(M-H);observed mass,8662.04.
AMO122_SMe_PS_3’Chol:calculated mass,C281390861172346 9030.83(M-H);observed mass,9032.13.
AMO21_Me_PS_5’PSMA:calculated mass,C252338851432222 8231.99(M-H);observed mass,8231.99.
AMO21_SMe_PS_5’PSMA:calculated mass,C252338851212244 8585.49(M-H);observed mass,8585.49
 図1に、非コンジュゲート型AMO21(22merシリーズ:配列番号3,32merシリーズ:配列番号4)の配列及び50%融解温度(Tm値)を示す。Tm値を測定した結果(測定条件:10 mMリン酸緩衝液(pH7.0),0.1mM EDTA,1mM塩化ナトリウム,3μM strand concentration)、本発明の実施例による非コンジュゲート型AMO21は、相補鎖RNAであるmiRNA21と熱的に安定な二本鎖形成能を有することが示された。
 図2に、非コンジュゲート型AMO122(配列番号5)の配列及びTm値を示す。Tm値を測定した結果(測定条件は前述と同様)、本発明の実施例による非コンジュゲート型AMO122は、相補鎖RNAであるmiRNA122と熱的に安定な二本鎖形成能を有することが示された。
(miRNAのレポーターベクターの構築)
 pmirGLOベクター(Promega社より購入)のホタルルシフェラーゼ遺伝子の3’非翻訳領域部(3’UTR)にmiRNA-21の完全相補の配列(配列番号6)又はmiRNA-122の完全相補の配列(配列番号7)を2つ直列に並べた配列をクローニングして、miRNAのレポーターベクターを構築した(図3)。pmirGLOベクターは、ホタルルシフェラーゼ(Fluc)とウミシイタケルシフェラーゼ(Rluc)を発現する。
(AMOのアッセイ)
 図4に示すように、miRNA21用としてHeLa細胞(ヒト子宮頸癌細胞)、又はmiRNA122用としてHuh-7細胞(miRNA122が高発現している細胞)を96wellプレート(LumiNunc 96well microplate)の各ウェルに10,000細胞ずつ播種して37℃、5%CO下でインキュベーションした。24時間後、AMO及び前述のレポーターベクター(0.1μg/well)をリポフェクタミン2000(Invtrogen社より購入)を用いて、コトランスフェクションしてインキュベーションした。この際、培地にはOpti-MEM(Invitrogen社より購入)を用いた。6時間後、完全培地(10%FBSと抗生物質を含むDMEM)に培地交換して再びインキュベーションした。コトランスフェクション24時間後、48時間後、及び72時間後に、細胞をLysisバッファーを用いて溶解し、Dual-Luciferase Reporter Assay System(Promega社より購入)を用いて、ルシフェラーゼ活性を測定した。Fluc/Rluc相対比(%)(図5~12)は、ホタルルシフェラーゼ活性の値をウミシイタケルシフェラーゼの活性で補正し、mirGLOを投与した細胞の活性を100%としたときの、各AMO投与細胞の活性の相対値である。各実験を3回以上行い、その平均値と標準偏差をとった値とした。
(非コンジュゲート型AMO21活性の評価)
 コトランスフェクション24時間後の結果を図5に示す。mirGLOは、レポーターベクターのみを添加したコントロールである。mirGLO miR21 Scr(スクランブル)は、3’UTRの配列を変えたレポーターベクターのみを添加したものであり、miRNA21が3’UTRに結合できないため、Fluc/Rluc相対比は高くなる。mirGLO miR21は、レポーターベクター及びmiRNA21を添加したものであり、miRNA21が3’UTRに結合するため、Fluc/Rluc相対比は低くなる。また、図5において、各AMOの濃度は、各AMOの3つのカラムの左側から順に、50nM,5nM,0.5nMである。
 比較例であるAMO21(32)_Me、AMO21_Me_PO、AMO21_FMe_PO、及びAMO21_SFMe_POに比して、AMO21(32)_SMe、AMO21_SMe_PO、及びAMO21_SMe_PSでは用量依存的にFluc/Rluc相対比が高いことが示された。これは、本発明の実施例による非コンジュゲート型AMO21がmiRNA21に結合することで、miRNA21がレポーターベクターの3’UTRに結合できず、Fluc/Rluc相対比が高くなったものである。このことから、本発明の実施例によるAMO21は、miRNA21を抑制することが示された。
(非コンジュゲート型AMO122活性の評価)
 コトランスフェクション24時間後の結果を図6に、48時間後の結果を図7に、72時間後の結果を図8に示す。図6~8において、各AMOの濃度は、各AMOの4つのカラムの左側から順に、10nM,5nM,1nM,0.5nMである。
 図6~8において、比較例であるAMO122_Me_PO及びAMO122_Me_PSに比して、AMO122_SMe_PO及びAMO122_SMe_PSでは、用量依存的にFluc/Rluc相対比が高いことが示された。
 また、図9にAMO濃度5nMでの非コンジュゲート型AMO122活性の経時的変化を示す。比較例であるAMO122_Me_PO及びAMO122_Me_PSに比して、AMO122_SMe_PO及びAMO122_SMe_PSでは良好にAMO122活性が維持されており、AMO122_SMe_PSでは、時間の経過とともにAMO122活性が向上した。このことから、本発明の実施例によるAMO122は、miRNA122を持続的に抑制することが示された。
(コンジュゲート型AMO122活性の評価)
 コトランスフェクション24時間後の結果を図10に、48時間後の結果を図11に、72時間後の結果を図12に示す。図10~12において、各AMOの濃度は、各AMOの4つのカラムの左側から順に、10nM,5nM,1nM,0.5nMである。
 図10~12において、比較例であるAMO122_Me_PS_5’Toc、AMO122_Me_PS_5’Chol、及びAMO122_Me_PS_3’Cholに比して、AMO122_SMe_PS_5’Toc、AMO122_SMe_PS_5’Chol、及びAMO122_SMe_PS_3’Cholでは、用量依存的にFluc/Rluc相対比が高いことが示され、それは非コンジュゲート型のAMO122_SMe_PSと同程度であった。このことから、本発明の実施例によるコンジュゲート型AMOは、非コンジュゲート型AMOと同様に、miRNAを抑制することが示された。
(リアルタイムPCR法による分析)
 Huh-7細胞にAMO122_SMe_PS、又は比較例としてAMO122_Me_PSを各々トランスフェクションし、トランスフェクション48時間後のmiRNA122発現レベルを、リアルタイムPCR法により定量した。
 以下、リアルタイムPCRの手順について、説明する。
 Huh-7細胞をダルベッコ変法イーグル培地(DMEM)(Gibco社)(10%ウシ胎児血清(FBS)、100units mL-1ペニシリン、及び100μg mL-1ストレプトマイシン含有)において、37℃、5%CO下で培養した。
 DMEM(Sigma社)(10%FBS(Thermo Fisher Scientific社)、100units mL-1ペニシリン、及び100μg mL-1ストレプトマイシン含有)中で、細胞を6wellプレートの各ウェルに1.5×10細胞ずつ播種した。24時間後、AMO122_SMe_PS又はAMO122_Me_PSを、リポフェクタミン2000(Invtrogen社)を用いて、添付の使用説明書に従ってトランスフェクションし、37℃でインキュベーションした。この際、培地にはOpti-MEM(Invitrogen社)を用いた。トランスフェクション6時間後、完全培地(前述同様のDMEM)で培地交換して、再び37℃でインキュベーションした。トランスフェクション48時間後に、細胞をPBSで洗い、QIAzol Lysis Reagent(QIAGEN社)を加えて細胞を溶解した。miRNeasy Mini Kit(QIAGEN社)を用いて精製し、トータルRNAを抽出した。
 抽出したRNAサンプル10ngを用い、逆転写反応を行った。逆転写反応には、TaqMan(登録商標)Small RNA Assays(Aplied biosystems社)のmiRNA122特異的なRT-プライマー、及びTaqMan(登録商標)MicroRNA Reverse Transciption Kit(Aplied biosystems社)を用いて行った(16℃で30分間、42℃で30分間、85℃で5分間)。
 前述で得られた逆転写反応液1.33μL、TaqMan(登録商標)Small RNA Assays(miRNA122特異的なフォワードプライマー、miRNA122特異的なリバースプライマー、及びmiRNA122特異的なTaqMan(登録商標)MGBプローブを混合させたもの)(Aplied biosystems社)1.0μL、及びTaqMan Universal PCR Master Mix II(Aplied biosystems社)10μLを混合して、リアルタイムPCR法により細胞のmiRNA122発現量を測定した。リアルタイムPCRには、LightCycler(登録商標)480 Real-Time PCR System(Roche Applied Science社)を用い、50℃で2分間、95℃で10分間、そして95℃で15秒間及び60℃で1分間を40サイクル行った。この際、内部標準遺伝子としてのRNU6B発現量をもって、miRNA122発現量を標準化した。
 結果を図13に示す。図13では、「NT」(non-treated:未処理の細胞)のmiRNA122発現量を100とした場合の、「NT」に対する各AMOのmiRNA122発現量の割合で表される。また、各AMOの濃度は、各AMOの2つのカラムの左側から順に、5nM、25nMである。
 比較例であるAMO122_Me_PSに比して、AMO122_SMe_PSでは、より低くmiRNA122発現レベルが抑えられた。また、miRNA122発現レベル抑制は、用量依存的であった。このことから、リアルタイムPCR法よる定量においても、本発明の実施例によるAMO122は、miRNA122を抑制することが示された。
 以上説明したように、本発明によるオリゴヌクレオチド誘導体は、生体内使用に耐え得る良好な効果持続性、及び熱的安定性を有するため、miRNAの効率的な機能制御が可能である。
 なお、本発明は、本発明の広義の精神及び範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明は、2011年6月3日に出願された日本国特許出願2011-125734号に基づく。本明細書中に日本国特許出願2011-125734号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。

Claims (15)

  1.  一般式
    Figure JPOXMLDOC01-appb-C000001
    (式中、Bはアデニン、グアニン、シトシン又はウラシルを表し、Xは硫黄原子又は酸素原子を表し、nは6~60の整数を表す。)で表される繰り返し構成単位(前記一般式中、B及びXは、それぞれの繰り返し構成単位において独立に表される。)からなり、前記一般式で表される繰り返し構成単位の少なくとも1つにおいてXが硫黄原子であるオリゴヌクレオチド誘導体。
  2.  前記一般式で表される繰り返し構成単位の全てにおいて、Xが硫黄原子である、
     ことを特徴とする請求項1に記載のオリゴヌクレオチド誘導体。
  3.  前記オリゴヌクレオチド誘導体の5’末端、3’末端、又は5’末端及び3’末端に少なくとも1つのリガンドが結合している、
     ことを特徴とする請求項1又は2に記載のオリゴヌクレオチド誘導体。
  4.  前記オリゴヌクレオチド誘導体が、miRNAの全配列又は一部配列に相補的な配列からなる、
     ことを特徴とする請求項1乃至3のいずれか1項に記載のオリゴヌクレオチド誘導体。
  5.  前記miRNAが、miRNA21である、
     ことを特徴とする請求項4に記載のオリゴヌクレオチド誘導体。
  6.  前記miRNAが、miRNA122である、
     ことを特徴とする請求項4に記載のオリゴヌクレオチド誘導体。
  7.  請求項1乃至6のいずれか1項に記載のオリゴヌクレオチド誘導体を含む治療用医薬組成物。
  8.  miRNAの機能を抑制する、
     ことを特徴とする請求項7に記載の治療用医薬組成物。
  9.  請求項4乃至6のいずれか1項に記載のオリゴヌクレオチド誘導体を含む診断用医薬組成物。
  10.  一般式
    Figure JPOXMLDOC01-appb-C000002
    (式中、Bはアデニン、グアニン、シトシン又はウラシルを表し、Xは硫黄原子又は酸素原子を表し、nは6~60の整数を表す。)で表される繰り返し構成単位(前記一般式中、B及びXは、それぞれの繰り返し構成単位において独立に表される。)からなり、前記一般式で表される繰り返し構成単位の少なくとも1つにおいてXが硫黄原子であるmiRNA機能抑制用オリゴヌクレオチド誘導体。
  11.  前記一般式で表される繰り返し構成単位の全てにおいて、Xが硫黄原子である、
     ことを特徴とする請求項10に記載のmiRNA機能抑制用オリゴヌクレオチド誘導体。
  12.  前記miRNA機能抑制用オリゴヌクレオチド誘導体の5’末端、3’末端、又は5’末端及び3’末端に少なくとも1つのリガンドが結合している、
     ことを特徴とする請求項10又は11に記載のmiRNA機能抑制用オリゴヌクレオチド誘導体。
  13.  前記miRNA機能抑制用オリゴヌクレオチド誘導体が、miRNAの全配列又は一部配列に相補的な配列からなる、
     ことを特徴とする請求項10乃至12のいずれか1項に記載のmiRNA機能抑制用オリゴヌクレオチド誘導体。
  14.  前記miRNAが、miRNA21である、
     ことを特徴とする請求項13に記載のmiRNA機能抑制用オリゴヌクレオチド誘導体。
  15.  前記miRNAが、miRNA122である、
     ことを特徴とする請求項13に記載のmiRNA機能抑制用オリゴヌクレオチド誘導体。
PCT/JP2012/064276 2011-06-03 2012-06-01 オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体 WO2012165616A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280026823.0A CN103649311A (zh) 2011-06-03 2012-06-01 寡核苷酸衍生物、包含寡核苷酸衍生物的治疗用医药组合物及诊断用医药组合物、以及miRNA机能抑制用寡核苷酸衍生物
EP12792620.2A EP2716758B1 (en) 2011-06-03 2012-06-01 OLIGONUCLEOTIDE DERIVATIVE, OLIGONUCLEOTIDE DERIVATIVE-CONTAINING PHARMACEUTICAL COMPOSITION FOR TREATMENT AND PHARMACEUTICAL COMPOSITION FOR DIAGNOSIS, AND OLIGONUCLEOTIDE DERIVATIVE FOR REGULATION OF miRNA FUNCTION
JP2013518187A JP6029147B2 (ja) 2011-06-03 2012-06-01 miRNA機能抑制用オリゴヌクレオチド誘導体
US14/123,562 US9315810B2 (en) 2011-06-03 2012-06-01 Oligonucleotide derivative, oligonucleotide derivative-containing pharmaceutical composition for treatment and pharmaceutical composition for diagnosis, and oligonucleotide derivative for regulation of miRNA function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011125734 2011-06-03
JP2011-125734 2011-06-03

Publications (1)

Publication Number Publication Date
WO2012165616A1 true WO2012165616A1 (ja) 2012-12-06

Family

ID=47259467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064276 WO2012165616A1 (ja) 2011-06-03 2012-06-01 オリゴヌクレオチド誘導体、オリゴヌクレオチド誘導体を含む治療用医薬組成物及び診断用医薬組成物、並びにmiRNA機能抑制用オリゴヌクレオチド誘導体

Country Status (5)

Country Link
US (1) US9315810B2 (ja)
EP (1) EP2716758B1 (ja)
JP (1) JP6029147B2 (ja)
CN (1) CN103649311A (ja)
WO (1) WO2012165616A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514383A (ja) * 2017-03-22 2020-05-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 修飾オリゴヌクレオチドおよびその治療上の使用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138180A (zh) 2015-06-05 2018-06-08 米拉根医疗股份有限公司 用于治疗皮肤t细胞淋巴瘤(ctcl)的mir-155抑制剂
WO2017131236A1 (ja) * 2016-01-29 2017-08-03 協和発酵キリン株式会社 核酸複合体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125734A (ja) 2011-02-23 2011-06-30 Panasonic Corp コードレスアイロン

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875733B2 (en) * 2003-09-18 2011-01-25 Isis Pharmaceuticals, Inc. Oligomeric compounds comprising 4′-thionucleosides for use in gene modulation
US20070269889A1 (en) * 2004-02-06 2007-11-22 Dharmacon, Inc. Stabilized siRNAs as transfection controls and silencing reagents

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125734A (ja) 2011-02-23 2011-06-30 Panasonic Corp コードレスアイロン

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
BONCI, D.: "MicroRNA-21 as therapeutic target in cancer and cardiovascular disease.", RECENT PAT. CARDIOVASC. DRUG DISCOV., vol. 5, no. 3, November 2010 (2010-11-01), pages 156 - 161, XP055139660 *
BRODERICK, J.A. ET AL.: "MicroRNA therapeutics.", GENE THER., vol. 18, no. 12, 28 April 2011 (2011-04-28), pages 1104 - 1110, XP055139656 *
COMMINS L. L. ET AL., NUCLEIC ACIDS RES., vol. 23, 1995, pages 2019 - 2024
DANDE, P. ET AL.: "Improving RNA interference in mammalian cells by 4'-thio-modified small interfering RNA(siRNA): effect on siRNA activity and nuclease stability when used in combination with 2'-O-alkyl modifications.", J. MED. CHEM., vol. 49, no. 5, February 2006 (2006-02-01), pages 1624 - 1634, XP002611368 *
HOSHIKA S.; MINAKAWA N.; MATSUDA A., NUCLEIC ACIDS RES., vol. 32, 2004, pages 3815 - 3825
JUDGE A. D. ET AL., MOL. THER., vol. 13, 2006, pages 494 - 505
LANFORD, R.E. ET AL.: "Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection.", SCIENCE, vol. 327, no. 5962, 8 January 2010 (2010-01-08), pages 198 - 201, XP002595740 *
MORRISEY, E.E.: "The magic and mystery of miR-21.", J. CLIN. INVEST., vol. 120, no. 11, November 2010 (2010-11-01), pages 3817 - 3819, XP055139659 *
MUSSO, G. ET AL.: "Emerging molecular targets for the treatment of nonalcoholic fatty liver disease.", ANNU. REV. MED., vol. 61, no. 1, February 2010 (2010-02-01), pages 375 - 392, XP055097112 *
ROBERT E. LANFORD ET AL., SCIENCE, vol. 327, 2010, pages 198 - 201
SHAN, Y. ET AL.: "Reciprocal effects of micro- RNA-122 on expression of heme oxygenase-1 and hepatitis C virus genes in human hepatocytes.", GASTROENTEROLOGY, vol. 133, no. 4, October 2007 (2007-10-01), pages 1166 - 1174, XP002532647 *
TAKAHASHI M. ET AL.: "Synthesis and characterization of 2'-modified-4'-thioRNA: a comprehensive comparison of nuclease stability.", NUCLEIC ACIDS RES., vol. 37, no. 4, 16 January 2009 (2009-01-16), pages 1353 - 1362, XP055139654 *
TAKAHASHI, M. ET AL.: "Intracellular stability of 2'-OMe-4'-thioribonucleoside modified siRNA leads to long-term RNAi effect.", NUCLEIC ACIDS RES., vol. 40, no. 12, 12 March 2012 (2012-03-12), pages 5787 - 5793, XP055057672 *
VISONE, R.; CROCE, C., AM J PATHOL., vol. 174, 2009, pages 1131 - 1138

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514383A (ja) * 2017-03-22 2020-05-21 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 修飾オリゴヌクレオチドおよびその治療上の使用

Also Published As

Publication number Publication date
JP6029147B2 (ja) 2016-11-24
EP2716758A1 (en) 2014-04-09
US9315810B2 (en) 2016-04-19
CN103649311A (zh) 2014-03-19
EP2716758A8 (en) 2014-06-25
JPWO2012165616A1 (ja) 2015-02-23
EP2716758A4 (en) 2014-11-26
US20140128347A1 (en) 2014-05-08
EP2716758B1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP7007304B2 (ja) B型肝炎感染症治療用のPAPD5又はPAPD7のmRNA減少用核酸分子
EP2961841B1 (en) Chimeric single-stranded antisense polynucleotides and double-stranded antisense agent
JP2022519019A (ja) オリゴヌクレオチド組成物及びその方法
JP2021502120A (ja) 細胞におけるlpaの発現を抑制するための核酸
EA015570B1 (ru) Фармацевтическая композиция
WO2018003739A1 (ja) 機能的リガンドを含む核酸複合体
WO2019182037A1 (ja) 毒性が低減されたアンチセンスオリゴヌクレオチド
KR20220069103A (ko) 최소 플루오린 함량을 갖는 작은 간섭 rna의 화학적 변형
JP6882735B2 (ja) 構造強化されたmiRNA阻害剤S−TuD
JP6029147B2 (ja) miRNA機能抑制用オリゴヌクレオチド誘導体
JP6492014B2 (ja) 遺伝子発現制御のための人工マッチ型miRNAおよびその用途
JP6934695B2 (ja) 核酸医薬とその使用
JPWO2018051762A1 (ja) 副作用を減じたアンチセンス核酸
JP7306653B2 (ja) 構造強化されたS-TuDを用いた新規がん治療法
CN114901821A (zh) Sept9抑制剂用于治疗乙型肝炎病毒感染的用途
CN114829599A (zh) Scamp3抑制剂用于治疗乙型肝炎病毒感染的用途
WO2021039598A1 (ja) Rna作用抑制剤及びその利用
EP4067489A1 (en) Method for reducing toxicity of antisense nucleic acids
WO2024002046A1 (en) Oligonucleotide delivery enhancing compounds, pharmaceutical compositions and methods using the same
WO2023105898A1 (ja) アンチセンスオリゴヌクレオチド複合体
WO2020262555A1 (ja) 核酸医薬副作用軽減剤、該核酸医薬副作用軽減剤を含む医薬組成物、並びに核酸医薬の副作用惹起性を軽減する方法
EP4353266A1 (en) Ligand-bound nucleic acid complex
RU2797833C1 (ru) Композиции олигонуклеотидов и способы с ними
JP2022120380A (ja) miRNA133-b誘導体及びその利用
WO2019038228A1 (en) OLIGONUCLEOTIDES FOR MODULATION OF TOM1 EXPRESSION

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013518187

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14123562

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012792620

Country of ref document: EP