WO2012165373A1 - 電池パック用ポリカーボネート樹脂組成物及び電池パック - Google Patents

電池パック用ポリカーボネート樹脂組成物及び電池パック Download PDF

Info

Publication number
WO2012165373A1
WO2012165373A1 PCT/JP2012/063627 JP2012063627W WO2012165373A1 WO 2012165373 A1 WO2012165373 A1 WO 2012165373A1 JP 2012063627 W JP2012063627 W JP 2012063627W WO 2012165373 A1 WO2012165373 A1 WO 2012165373A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
polycarbonate resin
battery pack
polycarbonate
Prior art date
Application number
PCT/JP2012/063627
Other languages
English (en)
French (fr)
Inventor
石川 康弘
佑介 青木
隆義 田中
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US14/123,179 priority Critical patent/US20140106208A1/en
Priority to EP12792978.4A priority patent/EP2716713B1/en
Priority to CN201280026467.2A priority patent/CN103562312A/zh
Priority to KR1020137031827A priority patent/KR101870481B1/ko
Publication of WO2012165373A1 publication Critical patent/WO2012165373A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/445Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
    • C08G77/448Block-or graft-polymers containing polysiloxane sequences containing polyester sequences containing polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/524Esters of phosphorous acids, e.g. of H3PO3
    • C08K5/526Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polycarbonate resin composition for a battery pack and a battery pack. More specifically, the present invention relates to a polycarbonate resin composition that provides a battery pack excellent in drop impact strength, flame retardancy, and heat resistance in a low-temperature environment, and a battery pack having the above properties.
  • Polycarbonate resins are excellent in mechanical strength, electrical properties, transparency, and the like, and are widely used as engineering plastics in various fields such as the electrical / electronic equipment field and the automotive field. Furthermore, polycarbonate resin is also used in the case of battery packs used in mobile phones, mobile personal computers, digital cameras, video cameras, electric tools and the like. On the other hand, with recent changes in the UL standards of battery packs, it has become necessary to have a drop impact resistance at ambient temperatures. Therefore, as represented by a battery pack of a video camera or a power tool, a battery pack connected to the outside of the device needs a drop impact strength at a low temperature.
  • Patent Document 1 a resin composition in which a halogen-free phosphate ester flame retardant and polytetrafluoroethylene are blended in a mixture of a polycarbonate and a composite rubber-based graft copolymer having excellent flame retardancy and fluidity (see Patent Document 1) ), A resin composition containing a multilayer structure polymer having an inner core made of a polycarbonate, a metal sulfonate and a diene rubbery polymer and an outer shell made of a vinyl copolymer, which is excellent in flame retardancy and drop impact strength (Refer to Patent Document 2), resin composition excellent in heat resistance and flame retardancy, blended with polycarbonate, ethylene- (meth) acrylic acid copolymer and / or ester compound thereof, and organic alkali metal salt (Patent Document) 3) and the like.
  • Patent Document 2 A resin composition containing a multilayer structure polymer having an inner core made of a polycarbonate, a metal sulfonate and a diene rubbery
  • a battery pack uses a method of bonding an upper case and a lower case by ultrasonic welding (see Patent Document 5).
  • burrs are slightly generated by ultrasonic welding.
  • the burrs cause notches, so battery pack cases having burrs generated by thermoforming or ultrasonic welding of the case are likely to break starting from the generated notches.
  • a battery pack material has been demanded that can withstand an impact even if there is a notch in a low temperature environment and has flame retardancy required for a product.
  • the present invention has been made under such circumstances, and provides a battery pack material having excellent drop impact strength, flame retardancy and heat resistance in a low temperature environment, and a battery pack having the above properties. It is the purpose.
  • the present inventors have found that a polycarbonate-polyorganosiloxane copolymer containing a polyorganosiloxane block composed of a specific structural unit at a predetermined ratio, and other aromatics It is found that a resin composition containing a predetermined amount of a phosphorus-based antioxidant with respect to a polycarbonate-based resin containing a specific proportion of polycarbonate can meet the purpose, and a battery formed using the resin composition It was found that the pack is excellent in drop impact strength, flame retardancy and heat resistance in a low temperature environment. The present invention has been completed based on such findings.
  • this invention provides the following polycarbonate resin composition for battery packs, and a battery pack formed using the same.
  • a polycarbonate-polyorganosiloxane copolymer comprising a structural unit represented by general formula (I) and a structural unit represented by general formula (II), the main chain comprising 2 to 10% by weight of a polyorganosiloxane block 100 parts by mass of a polycarbonate-based resin comprising 5 to 100% by mass of the combined (A-1) and 0 to 95% by mass of an aromatic polycarbonate (A-2) other than (A-1),
  • R 1 and R 2 are each independently an alkyl or alkoxy group having 1 to 6 carbon atoms
  • X is a single bond, an alkylene group having 1 to 8 carbon atoms, an alkylidene group having 2 to 8 carbon atoms, carbon A cycloalkylene group having 5 to 15 carbon atoms, a cycloalkylidene group having 5 to 15 carbon atoms, —S—, —SO—, —SO 2 —, —O— or —CO—
  • R 3 to R 6 are each independently Represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • Y represents an organic residue containing an aliphatic group or an aromatic group.
  • N is an average number of repetitions and represents an integer of 20 to 600, and a and b represent integers of 0 to 4.
  • B 0.01 to 1 part by mass of a phosphorus-based antioxidant, a polycarbonate resin composition for battery packs.
  • 2. The polycarbonate resin composition for battery packs according to 1 above, wherein Y is an organic residue from allylphenol or eugenol. 3.
  • 3. The polycarbonate resin composition for battery packs according to 1 or 2 above, wherein the structural unit represented by the general formula (I) is a structural unit derived from bisphenol A. 4). 4.
  • the present invention it is possible to provide a battery pack material excellent in drop impact strength, flame retardancy and heat resistance in a low temperature environment, and a battery pack having the above properties.
  • the polycarbonate resin composition for battery pack comprises (A) a main chain consisting of a structural unit represented by the following general formula (I) and a structural unit represented by the general formula (II), and a polyorganosiloxane block: Polycarbonate-polyorganosiloxane copolymer [hereinafter sometimes abbreviated as PC-PDMS copolymer. ] (A-1) and a polycarbonate resin composed of an aromatic polycarbonate (A-2) other than (A-1), and (B) a phosphorus antioxidant.
  • the polycarbonate resin composition for a battery pack according to the present invention further comprises (C) an organic sulfonic acid alkali metal salt and / or alkaline earth metal salt, (D) polytetrafluoroethylene particles and organic polymer particles. It is preferable to contain.
  • C an organic sulfonic acid alkali metal salt and / or alkaline earth metal salt
  • D polytetrafluoroethylene particles and organic polymer particles. It is preferable to contain.
  • PC-PDMS copolymer (A-1) The PC-PDMS copolymer used in the present invention contains structural units represented by the above general formulas (I) and (II).
  • the content of the polyorganosiloxane block part having the structural unit of the general formula (II) requires 2 to 10% by mass, preferably 3 to 7% by mass in the PC-PDMS (A-1) copolymer. More preferably, it is 3 to 5% by mass.
  • the content of the block portion is less than 2% by mass, the effect on the notch sensitivity is small, and the effect of improving the drop impact strength is insufficient.
  • the content exceeds 10% by mass the heat resistance is greatly reduced.
  • the chain length of the polyorganosiloxane block portion having the structural unit of the general formula (II) is 20 to 600, preferably 30 to 300, more preferably 50 to 300, and if it is less than 20, the effect on the notch sensitivity is small.
  • the effect of improving the drop impact strength is not sufficient, and if it exceeds 600, the handleability in producing the PC-PDMS copolymer (A-1) becomes difficult and the economy is inferior.
  • the viscosity average molecular weight of the PC-PDMS copolymer (A-1) is large, but if the viscosity average molecular weight is large, the battery pack It becomes difficult to form such a thin member. It is possible to lower the viscosity of the resin composition by raising the molding temperature, but in that case, the molding cycle becomes longer and inferior in economic efficiency. Decreases. Therefore, the viscosity average molecular weight of the PC-PDMS copolymer (A-1) is preferably 15000 to 24000, more preferably 16000 to 22500, and further preferably 17000 to 21000.
  • the viscosity average molecular weight is 15000 or more, the strength of the molded product is sufficient.
  • the viscosity average molecular weight is 24000 or less, the viscosity of the copolymer becomes small, so that the productivity during production is good and the thin-wall molding is also good. .
  • the PC-PDMS copolymer (A-1) includes a dihydric phenol represented by the following general formula (1), a polyorganosiloxane represented by the following general formula (2), phosgene, carbonate, or chloro It is obtained by copolymerizing with formate.
  • R 1 and R 2 , X, a and b are the same as those in the general formula (I).
  • R 3 to R 6 , Y, n Is the same as in the general formula (II)
  • m is 0 or 1
  • Z is halogen, —R 7 OH, —R 7 COOH, —R 7 NH 2 , —COOH or —SH
  • 7 represents a linear, branched or cyclic alkylene group, an aryl-substituted alkylene group, an aryl-substituted alkylene group which may have an alkoxy group on the ring, or an arylene group.
  • the dihydric phenol represented by the general formula (1) used as a raw material for the PC-PDMS copolymer (A-1) is not particularly limited. 2-bis (4-hydroxyphenyl) propane (common name: bisphenol A) is preferred.
  • bisphenol A is used as the dihydric phenol
  • dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4- Hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-) 3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) Bis (hydroxyaryl) alkanes such as propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-
  • the polyorganosiloxane represented by the general formula (2) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, allylphenol, eugenol, isopropenylphenol or the like having a predetermined polymerization degree n. It can be easily produced by hydrosilation reaction at the end of the polyorganosiloxane chain.
  • the phenols are more preferably allylphenol or eugenol.
  • Y in the general formula (II) of the component (A-1) is an organic residue derived from allylphenol or eugenol.
  • R 3 to R 6 are each independently a hydrogen atom, a halogen atom or an alkyl group having 1 to 6 carbon atoms, 6 represents an alkoxy group having 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and n represents an average repeating number of the organosiloxane constituent unit and represents a number of 20 to 600.
  • R 8 represents an alkyl, alkenyl, aryl or aralkyl group, c represents a positive integer, and is usually an integer of 1 to 6.
  • a phenol-modified polyorganosiloxane represented by the general formula (3) is preferable.
  • ⁇ , ⁇ -bis [3- (o-hydroxyphenyl) propyl] polydimethylsiloxane which is one of the compounds represented by the general formula (4), is represented by the general formula (5): ⁇ , ⁇ -bis [3- (4-hydroxy-2-methoxyphenyl) propyl] polydimethylsiloxane, which is one of the compounds shown, is preferred.
  • the phenol-modified polyorganosiloxane can be produced by a known method. As a manufacturing method, the method shown below is mentioned, for example. First, cyclotrisiloxane and disiloxane are reacted in the presence of an acidic catalyst to synthesize ⁇ , ⁇ -dihydrogenorganopolysiloxane. At this time, ⁇ , ⁇ -dihydrogenorganopolysiloxane having a desired average repeating unit can be synthesized by changing the charging ratio of cyclotrisiloxane and disiloxane.
  • this ⁇ , ⁇ -dihydrogenorganopolysiloxane is subjected to an addition reaction with a phenol compound having an unsaturated aliphatic hydrocarbon group such as allylphenol or eugenol, to thereby obtain a desired compound.
  • a phenol compound having an unsaturated aliphatic hydrocarbon group such as allylphenol or eugenol
  • a phenol-modified polyorganosiloxane having an average repeating unit can be produced.
  • the component (A-2), which is an aromatic polycarbonate other than the above (A-1), is a dihydric phenol in the presence of an organic solvent inert to the reaction and an alkaline aqueous solution.
  • Interfacial polymerization method in which a polymerization catalyst such as tertiary amine or quaternary ammonium salt is added and polymerized after reacting with phosgene and phosgene, and mixing of dihydric phenol compound with pyridine or pyridine and inert solvent
  • a polymerization catalyst such as tertiary amine or quaternary ammonium salt
  • dihydric phenol compound with pyridine or pyridine and inert solvent
  • a solution obtained by a conventional method for producing an aromatic polycarbonate, such as a pyridine method, which is dissolved in a solution and directly produced by introducing phosgene can be used.
  • the dihydric phenol compound used in the production of the component (A-2) aromatic polycarbonate is 2,2-bis (4-hydroxyphenyl) propane (common name: bisphenol A), bis (4-hydroxyphenyl). Methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, bis (4-hydroxyphenyl) phenylmethane Bis (4-hydroxyphenyl) diphenylmethane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, bis (4-hydroxyphenyl) naphthylmethane, 1,1-bis (4-hydroxy-3-t -Butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2 , 2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlor
  • a molecular weight regulator In the production of the aromatic polycarbonate component (A-2), a molecular weight regulator, a terminal terminator, and the like may be used as necessary. Any of these can be used as long as they are usually used for polymerization of polycarbonate resin.
  • Specific molecular weight regulators include monohydric phenols such as phenol, on-butylphenol, mn-butylphenol, pn-butylphenol, o-isobutylphenol, m-isobutylphenol, and p-isobutylphenol.
  • monovalent carboxylic acid and derivatives thereof, and monovalent phenol can be used.
  • a branched polycarbonate can be obtained by using a branching agent for the above dihydric phenol compound.
  • the amount of the branching agent added is preferably 0.01 to 3 mol%, more preferably 0.1 to 1.0 mol%, based on the dihydric phenol compound.
  • branching agent examples include 1,1,1-tris (4-hydroxyphenyl) ethane, 4,4 ′-[1- [4- [1- (4-hydroxyphenyl) -1-methylethyl] phenyl ] Ethylidene] bisphenol, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3,5-triisopropylbenzene, 1- [ ⁇ -methyl- ⁇ - (4′-hydroxyphenyl) ethyl]- Examples thereof include compounds having three or more functional groups such as 4- [ ⁇ ′, ⁇ ′-bis (4 ′′ -hydroxyphenyl) ethyl] benzene, phloroglucin, trimellitic acid, and isatin bis (o-cresol).
  • the content of (A-1) is 5 to 100% by mass, preferably 70 to 100% by mass.
  • the content is preferably 50 to 100% by mass
  • the content of (A-2) is 95 to 0% by mass, preferably 30 to 0% by mass, and more preferably 50 to 0% by mass.
  • the content of (A-1) is 5% by mass or more, or the content of (A-2) is 95% by mass or less, the content of the polyorganosiloxane block portion in (A) polycarbonate resin is increased.
  • the content of the polyorganosiloxane block portion having the structural unit of the general formula (II) is preferably 2 to 10% by mass in the (A) polycarbonate-based resin composed of the components (A-1) and (A-2). More preferably, it is 3 to 7% by mass, and still more preferably 3 to 5% by mass. If it is 2% by mass or more, the effect of improving impact strength is sufficient, while if it is 10% by mass or less, sufficient heat resistance is obtained.
  • (B) Phosphorous antioxidant In the polycarbonate resin composition for battery packs of this invention, it is required to contain a phosphorus antioxidant as (B) component.
  • a phosphorus antioxidant used by this invention.
  • Representative examples include tris (nonylphenyl) phosphite, 2-ethylhexidiphenyl phosphite, trimethyl phosphite, triethyl phosphite, tributyl phosphite, trioctyl phosphite, trinonyl phosphite, tridecyl Trialkyl phosphites such as phosphite, trioctadecyl phosphite, distearyl pentaerythryl diphosphite, tris (2-chloroethyl) phosphite, tris (2,3-dichloropropyl) phosphite, and tricyclohe
  • these phosphorus antioxidants may be used alone or in combination of two or more.
  • the content of the phosphorus antioxidant in the polycarbonate resin composition for battery packs is 0.01 to 1 part by mass, preferably 0.02 to 0 parts per 100 parts by mass of the (A) polycarbonate resin. .3 parts by mass, more preferably 0.04 to 0.2 parts by mass.
  • an alkali metal salt and / or alkaline earth metal salt of an organic sulfonic acid (hereinafter referred to as an organic organic sulfonate alkali) (Earth) is also preferably a metal salt).
  • organic organic sulfonic acid include perfluoroalkane sulfonic acid and polystyrene sulfonic acid.
  • organic sulfonic acid alkali (earth) metal salts include organic sulfonic acid alkali metal salts and alkaline earth metal salts having at least one carbon atom.
  • the alkali metal include sodium, potassium, lithium and cesium
  • examples of the alkaline earth metal include magnesium, calcium, strontium and barium. Of these, sodium, potassium and cesium salts are preferred.
  • an alkali metal salt and / or an alkaline earth metal salt of perfluoroalkanesulfonic acid or polystyrenesulfonic acid is preferable.
  • alkali (earth) metal salt of perfluoroalkanesulfonic acid examples include those represented by the following general formula (12). (C d F 2d + 1 SO 3 ) e M (12)
  • d represents an integer of 1 to 10
  • M represents an alkaline metal such as lithium, sodium, potassium and cesium, or an alkaline earth metal such as magnesium, calcium, strontium and barium
  • e represents M The valence of is shown.
  • these metal salts for example, those described in Japanese Patent Publication No. 47-40445 are applicable.
  • examples of perfluoroalkanesulfonic acid include perfluoromethanesulfonic acid, perfluoroethanesulfonic acid, perfluoropropanesulfonic acid, perfluorobutanesulfonic acid, perfluoromethylbutanesulfonic acid, perfluoro Examples include hexanesulfonic acid, perfluoroheptanesulfonic acid, and perfluorooctanesulfonic acid. In particular, these potassium salts are preferably used.
  • alkylsulfonic acid alkylsulfonic acid, benzenesulfonic acid, alkylbenzenesulfonic acid, diphenylsulfonic acid, naphthalenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, 2,4,5-trichlorobenzenesulfonic acid, diphenylsulfone-3-sulfonic acid
  • examples thereof include diphenylsulfone-3,3′-disulfonic acid, naphthalenetrisulfonic acid and their fluorine-substituted products, and alkali metal salts and alkaline earth metal salts of organic sulfonic acids such as polystyrene sulfonic acid.
  • perfluoroalkanesulfonic acid and diphenylsulfonic acid are particularly preferable as the organic sulfonic acid.
  • alkali (earth) metal salt of polystyrene sulfonic acid examples include an alkali (earth) metal salt of a sulfonate group-containing aromatic vinyl resin represented by the following general formula (13).
  • Q represents a sulfonate group
  • R 9 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • s represents an integer of 1 to 5
  • t represents a mole fraction
  • the sulfonate group of Q is an alkali metal salt and / or alkaline earth metal salt of sulfonic acid, and the metals include sodium, potassium, lithium, rubidium, cesium, beryllium, magnesium, calcium, strontium and barium.
  • R 9 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, preferably a hydrogen atom or a methyl group.
  • s is an integer of 1 to 5, and t has a relationship of 0 ⁇ t ⁇ 1. Therefore, the sulfonate group (Q) may include a fully substituted or partially substituted aromatic ring.
  • the content of the alkali (earth) metal salt of (C) the organic sulfonic acid is preferably 0.01 to 0.15 parts by mass, more preferably 0 with respect to 100 parts by mass of the (A) resin mixture. 0.02 to 0.13 parts by mass, and more preferably 0.03 to 0.12 parts by mass. When the content is 0.01 parts by mass or more and 0.15 parts by mass or less, the flame retardancy can be sufficiently improved.
  • a mixed powder comprising polytetrafluoroethylene particles and organic polymer particles is further contained as the component (D).
  • the polytetrafluoroethylene particles in the mixed powder usually have a particle size of 10 ⁇ m or less, preferably 0.05 to 1.0 ⁇ m.
  • the polytetrafluoroethylene particles are prepared, for example, as an aqueous dispersion dispersed in water containing an emulsifier and the like. This aqueous dispersion of polytetrafluoroethylene particles is obtained by emulsion polymerization of a tetrafluoroethylene monomer using a fluorine-containing surfactant.
  • Fluorine-containing olefins such as hexafluoropropylene, chlorotrifluoroethylene, fluoroalkylethylene and perfluoroalkyl vinyl ether as copolymerization components, as long as the properties of polytetrafluoroethylene are not impaired during the emulsion polymerization of polytetrafluoroethylene particles, Fluorine-containing alkyl (meth) acrylates such as perfluoroalkyl (meth) acrylate can be used.
  • the content of the copolymer component is preferably 10% by mass or less with respect to tetrafluoroethylene in the polytetrafluoroethylene particles.
  • Organic polymer particles in the mixed powder are not particularly limited, but (A) from the viewpoint of the dispersibility of the polytetrafluoroethylene particles when blended with the polycarbonate resin, it has an affinity for the polycarbonate resin. It is preferable that it has.
  • monomers for producing organic polymer particles include styrene, p-methylstyrene, o-methylstyrene, p-chlorostyrene, o-chlorostyrene, p-methoxystyrene, o-methoxystyrene.
  • Styrene monomers such as 2,4-dimethylstyrene and ⁇ -methylstyrene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, 2-ethylhexyl acrylate (Meth) acrylic acid alkyl esters such as 2-ethylhexyl methacrylate, dodecyl acrylate, dodecyl methacrylate, tridecyl acrylate, tridecyl methacrylate, octadecyl acrylate, octadecyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, etc.
  • Monomers vinyl cyanide monomers such as acrylonitrile and methacrylonitrile; vinyl ether monomers such as vinyl methyl ether and vinyl ethyl ether; vinyl carboxylate monomers such as vinyl acetate and vinyl butyrate; ethylene; Examples thereof include olefin monomers such as propylene and isobutylene; diene monomers such as butadiene, isoprene and dimethylbutadiene.
  • a (meth) acrylic acid alkyl ester monomer refers to both an acrylic acid alkyl ester monomer and a methacrylic acid alkyl ester monomer.
  • organic polymer particles By polymerizing these monomers, organic polymer particles can be obtained.
  • the said monomer can be used 1 type or in mixture of 2 or more types.
  • the organic polymer particles particles made of a (meth) acrylic acid alkyl ester copolymer are preferable.
  • the organic polymer particles are prepared, for example, as an aqueous dispersion of organic polymer particles.
  • the method for producing the aqueous dispersion of organic polymer particles is not particularly limited, and examples thereof include an emulsion polymerization method using an ionic emulsifier and a soap-free emulsion polymerization method using an ionic polymerization initiator.
  • the ionic emulsifier any of an anionic emulsifier, a cationic emulsifier and an amphoteric ionic emulsifier can be used.
  • a nonionic emulsifier can also be used together with these ionic emulsifiers.
  • anionic emulsifiers fatty acid salts, higher alcohol sulfates, liquid fatty oil sulfates, sulfates of aliphatic amines and amides, aliphatic alcohol phosphates, sulfonates of dibasic fatty acid esters And fatty acid amide sulfonates, alkyl allyl sulfonates, and naphthalene sulfonates of formalin condensates.
  • the cationic emulsifier include aliphatic amine salts, quaternary ammonium salts, and alkylpyridinium salts.
  • amphoteric emulsifiers include alkyl betaines.
  • anionic properties such as persulfate (for example, potassium persulfate or ammonium persulfate), azobis (isobutyronitrile sulfonate), 4,4′-azobis (4-cyanovaleric acid), etc.
  • Polymerization initiator 2,2′-azobis (amidinopropane) dihydrochloride, 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride, 2,2 ′ -Cationic polymerization initiators such as azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobisisobutyramide dihydrate.
  • the particle diameter d of the organic polymer particles in the present invention is not particularly limited. From the viewpoint of the stability of the aggregated state with the polytetrafluoroethylene particles, the particle diameter d of the polytetrafluoroethylene particles is as follows. A range of formulas is preferred. 0.1D ⁇ d ⁇ 10D
  • the mixed powder composed of the polytetrafluoroethylene particles (D) and organic polymer particles (D) is prepared, for example, by mixing an aqueous dispersion of the polytetrafluoroethylene particles and an aqueous dispersion of organic polymer particles. Thereafter, it is obtained by pulverization by the method described later.
  • This mixed powder includes aggregated particles in which polytetrafluoroethylene particles and organic polymer particles are aggregated due to a difference in surface charge, and individual particles that remain without being aggregated. Agglomerated particles have a structure in which polytetrafluoroethylene particles and organic polymer particles are integrated, but there are various morphologies depending on the mixing ratio and particle diameter of both particles.
  • a nonionic emulsifier may be adsorbed on the surface of the polytetrafluoroethylene particles and / or organic polymer particles before mixing.
  • the nonionic emulsifier is not particularly limited, and examples thereof include polyoxyethylene alkyl ether, polyoxyethylene alkyl allyl ether, dialkylphenoxypoly (ethyleneoxy) ethanol, polyvinyl alcohol, polyacrylic acid and alkyl cellulose.
  • the aqueous dispersion mixed as described above is poured into hot water in which a metal salt such as calcium chloride or magnesium sulfate is dissolved, salted out, solidified, and then dried or spray-dried. can do.
  • a metal salt such as calcium chloride or magnesium sulfate
  • a monomer having an ethylenically unsaturated bond can be emulsion-polymerized and powdered by coagulation or spray drying.
  • Examples of the ethylenically unsaturated monomer that is emulsion-polymerized in the mixed aqueous dispersion include styrene, p-methylstyrene, o-methylstyrene, p-chlorostyrene, o-chlorostyrene, p-methoxystyrene, and o-methoxy.
  • Styrene monomers such as styrene, 2,4-dimethylstyrene, ⁇ -methylstyrene; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, acrylic acid-2- (Meth) acrylic acid alkyl ester monomers such as ethylhexyl, methacrylic acid-2-ethylhexyl, dodecyl acrylate, dodecyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate; vinyl cyanides such as acrylonitrile and methacrylonitrile Monomer; Vinyl Vinyl ether monomers such as ether and vinyl ethyl ether; vinyl carboxylate monomers such as vinyl acetate and vinyl butyrate; olefin monomers such as ethylene, propylene and isobutylene; buta
  • the content of polytetrafluoroethylene in the mixed powder is usually 0.1 to 90 from the viewpoint of flame retardancy due to the anti-dripping effect of the obtained resin composition, appearance of the molded product, weld strength, and the like.
  • % By mass preferably 30 to 90% by mass, more preferably 40 to 90% by mass.
  • the content of the mixed powder composed of (D) polytetrafluoroethylene particles and organic polymer particles in the polycarbonate resin composition for battery packs of the present invention is usually 0 with respect to 100 parts by mass of (A) polycarbonate resin. 0.1 to 1 part by mass, preferably 0.1 to 0.9 part by mass, more preferably 0.2 to 0.8 part by mass.
  • the content of the mixed powder is 0.1 part by mass or more, drip performance is good and flame retardancy can be achieved.
  • it is 1 mass part or less the ratio of the organic polymer in a composition does not increase too much, and a flame retardance can be achieved.
  • additive components in addition to the components (A) to (D) described above, as long as the effects of the present invention are not impaired, they are added to conventional polycarbonate resin compositions as necessary.
  • Various known additive components can be contained. Examples of such additional components include reinforcing materials, fillers, hindered amine light stabilizers, antioxidants other than phosphorous, ultraviolet absorbers, antistatic agents, lubricants, mold release agents, dyes, pigments, and other difficulties. Examples include flame retardants and impact resistance improving elastomers.
  • the content of these other additive components is usually 0 to 1 part by mass, preferably 0.01 to 0.5 part by mass, with respect to 100 parts by mass of the (A) polycarbonate resin.
  • the polycarbonate resin composition for battery packs of the present invention does not substantially contain any of an organic halogen flame retardant and an organic phosphate ester flame retardant. For this reason, there is no fear of generation of harmful gas, contamination of the molding machine, burning of the resin, and deterioration of heat resistance.
  • the polycarbonate resin composition for electronic packs of the present invention comprises the components (A) [(A-1) and (A-2)], (B), the component (C) and (D) used as necessary. ) Component, and various optional components can be prepared by blending at a predetermined ratio and kneading. In this case, blending and kneading are premixed with commonly used equipment such as a ribbon blender, a drum tumbler, etc., and then a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a multi screw screw.
  • the heating temperature at the time of kneading is usually appropriately selected within the range of 240 to 300 ° C.
  • the components other than the polycarbonate-based resin can be added in advance as a master batch with melt-kneading with the polycarbonate-based resin.
  • the polycarbonate resin composition of the present invention uses the above-mentioned melt-kneading molding machine, or using the obtained pellets as a raw material, an injection molding method, an injection compression molding method, an extrusion molding method, a blow molding method, a press molding method, a vacuum
  • Various molded products can be manufactured by a molding method, a foam molding method, or the like.
  • a pellet-shaped molding raw material can be produced by the melt kneading method, and then the pellet can be used suitably for production of an injection molded product by injection molding or injection compression molding.
  • a gas injection molding method for preventing the appearance of sink marks or for reducing the weight can be adopted.
  • the battery pack of the present invention is formed using the polycarbonate resin composition described above.
  • an upper case and a lower case are suitable.
  • devices incorporating a battery as a power source such as a mobile phone, a notebook computer, a portable player for CD (Compact Disc) and MD (Mini Disc) playback, are used in many fields.
  • multifunctionality and miniaturization of devices have progressed, and devices with higher portability have increased. As a result, the frequency of use of the equipment increases and the demand for battery packs is large.
  • a battery pack that is thinner and smaller in size with the main body is required.
  • the battery pack used in these devices is configured by housing a battery, a protective circuit board, and the like between a plastic upper case and a lower case.
  • a method of joining the upper case and the lower case by ultrasonic welding is generally used, but a slight burr is generated during the ultrasonic welding. Since this burr portion causes notch generation, a battery pack case having a burr generated by thermoforming or ultrasonic welding of the case is easily broken starting from the generated notch portion. Therefore, there is a demand for a battery pack material that has a flame resistance and heat resistance required for a product even if there is a notch in a low temperature environment. Therefore, the polycarbonate resin composition for battery packs of the present invention, which is excellent in drop impact strength, flame retardancy and heat resistance in a low temperature environment, is used for forming the upper case and the lower case of the battery pack.
  • Ni-Cd (nickel-cadmium) batteries, Ni-MH (nickel metal hydride) batteries, Li-ion (lithium ion) batteries, etc. have been used as the batteries housed in the battery pack.
  • a polymer lithium secondary battery using a polymer as an electrolyte is often used.
  • a merit of using a polymer as an electrolyte a thin shape is possible and a degree of freedom in shape is high.
  • PC Composition ⁇ Performance Evaluation I of Polycarbonate Resin Composition (hereinafter occasionally referred to as PC Composition)>
  • the PC composition obtained in each example was granulated at a resin temperature of 280 ° C. using a 40 mm ⁇ single screw extruder with a vent to obtain pellets.
  • the resin temperature was 300 ° C.
  • the obtained pellets were dried at 120 ° C. for 8 hours and then injection molded at a molding temperature of 280 ° C. and a mold temperature of 80 ° C. using an injection molding machine to obtain test pieces. The following measurement was performed using the test piece obtained by pellet or injection molding.
  • Q value flow value [unit: 10 -2 mL / sec]
  • the amount of molten resin (mL / sec) flowing out from a nozzle having a diameter of 1 mm and a length of 10 mm was measured in accordance with JIS K 7210 under a pressure of 280 ° C. and 15.7 MPa.
  • the Q value represents the amount of outflow per unit time, and the higher the value, the better the fluidity.
  • HDT thermal deformation temperature Measurement was performed at a load of 0.45 MPa in accordance with ASTM D648. HDT is a measure of heat resistance.
  • the tubular reactor had a jacket portion, and the temperature of the reaction solution was kept at 40 ° C. or lower by passing cooling water through the jacket.
  • the reaction solution exiting the tubular reactor was continuously introduced into a baffled tank reactor having a capacity of 40 liters equipped with a receding blade, and further 2.8 liters / hr of sodium hydroxide aqueous solution of BPA, 25
  • the reaction was carried out by adding 0.07 liter / hr of a mass% aqueous sodium hydroxide solution, 17 liter / hr of water, and 0.64 liter / hr of an aqueous 1 mass% triethylamine solution.
  • the reaction liquid overflowing from the tank reactor was continuously extracted and allowed to stand to separate and remove the aqueous phase, and the methylene chloride phase was collected.
  • the polycarbonate oligomer thus obtained had a concentration of 329 g / L and a chloroformate group concentration of 0.74 mol / L.
  • a methylene chloride solution of pt-butylphenol (PTBP) 140 g of PTBP dissolved in 2.0 L of methylene chloride
  • a sodium hydroxide aqueous solution of BPA 577 g of NaOH and 2.0 g of sodium dithionite
  • a solution obtained by dissolving 1012 g of BPA in an aqueous solution dissolved in 8.4 L) was added, and a polymerization reaction was carried out for 50 minutes.
  • the methylene chloride solution of the polycarbonate-polydimethylsiloxane copolymer obtained by washing was concentrated and pulverized, and the obtained flakes were dried at 120 ° C. under reduced pressure.
  • the amount of PDMS residue (PDMS copolymerization amount) determined by nuclear magnetic resonance (NMR) of the obtained polycarbonate-polydimethylsiloxane copolymer was 6.0% by mass, measured according to ISO 1628-4 (1999).
  • the performance evaluation I of the PC composition and the performance evaluation II of the PC composition injection molded product described above were performed, and the results are shown in Table 1.
  • the viscosity average molecular weight in Table 1 indicates the viscosity average molecular weight of the polycarbonate resin used.
  • the material of Comparative Example 2 can solve the problem of Comparative Example 1, but is difficult to mold because of poor fluidity.
  • the polycarbonate resin composition for battery packs of the present invention can provide a battery pack excellent in drop impact strength, flame retardancy and heat resistance in a low temperature environment with good moldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 (A)主鎖が一般式(I)で表される構造単位及び一般式(II)で表される構造単位からなり、ポリオルガノシロキサンブロック2~10質量%を含むポリカーボネート-ポリオルガノシロキサン共重合体(A-1)5~100質量%及び(A-1)以外の芳香族ポリカーボネート(A-2)0~95質量%からなるポリカーボネート系樹脂100質量部、 [式中、R1及びR2は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基、Xは単結合、炭素数1~8のアルキレン基等、R3~R6は、それぞれ独立に、水素原子、ハロゲン原子等を示し、Yは脂肪族又は芳香族を含む有機残基を示し、nは20~600の整数を示し、a及びbは0~4の整数を示す。]及び(B)リン系酸化防止剤0.01~1質量部を含む電池パック用ポリカーボネート樹脂組成物、並びに該樹脂組成物を用いて形成されてなる電池パックである。

Description

電池パック用ポリカーボネート樹脂組成物及び電池パック
 本発明は、電池パック用ポリカーボネート樹脂組成物及び電池パックに関する。更に詳しくは、低温環境下における落下衝撃強度と難燃性と耐熱性に優れた電池パックを与えるポリカーボネート樹脂組成物、及び上記性状を有する電池パックに関するものである。
 ポリカーボネート樹脂は、機械的強度、電気的特性、透明性などに優れ、エンジニアリングプラスチックとして、電気・電子機器分野、自動車分野等様々な分野において幅広く利用されている。更に、携帯電話、モバイルパソコン、デジタルカメラ、ビデオカメラ、電動工具などに使われる電池パックの筐体にもポリカーボネート樹脂が利用されている。
 一方、最近になり、電池パックのUL規格の変更に伴い、環境温度での耐落下衝撃強度が必要になってきた。そのため、ビデオカメラや電動工具の電池パックに代表されるように、機器の外部に接続される電池パックについては、低温下での落下衝撃強度が必要となる。
 近年、電池パック材料にはポリカーボネート樹脂や難燃性を高めた難燃ポリカーボネート樹脂が利用されてきた。例えば、難燃性と流動性に優れた、ポリカーボネートと複合ゴム系グラフト共重合体との混合物にハロゲン非含有リン酸エステル系難燃剤及びポリテトラフルオロエチレンを配合した樹脂組成物(特許文献1参照)、難燃性と落下衝撃強度に優れた、ポリカーボネートとスルホン酸金属及びジエン系ゴム状重合体からなる内核とビニル系共重合体からなる最外殻を有する多層構造重合体を配合した樹脂組成物(特許文献2参照)、耐熱性と難燃性に優れた、ポリカーボネート、エチレン-(メタ)アクリル酸共重合体及び/又はそのエステル化合物、有機アルカリ金属塩を配合した樹脂組成物(特許文献3参照)などが開示されている。
 しかし、上述のように使用環境温度下での落下衝撃強度が求められる場合、冬季や寒冷地のような低温環境下における落下衝撃強度が劣るという問題点が生じた。
 一方、薄肉で耐落下衝撃性、流動性及び耐熱性に優れる携帯型電子機器筐体(特許文献4参照)が知られているが、電池パックへの適用は知られていなかった。
 一般に、電池パックは上ケースと下ケースを超音波溶着により接着させる方法が用いられる(特許文献5参照)。この際超音波溶着により僅かながらバリが発生する。一般にバリ部はノッチ発生の原因になるため、ケースの熱成形や超音波溶着により発生するバリを持った電池パックケースは、発生したノッチ部を開始点とした破壊が起こり易くなる。
 そこで、低温環境下でノッチがあっても衝撃に耐えられ、且つ製品に要求される難燃性を有する材料が電池パック材料として求められるようになってきた。
特開平11-21441号公報 特開平11-293103号公報 特開2004-35661号公報 特開2011-21127号公報 特開2006-12657号公報
 本発明は、このような状況下になされたものであり、低温環境下における落下衝撃強度と難燃性と耐熱性に優れた電池パック用材料、及び上記性状を有する電池パックを提供することを目的とするものである。
 本発明者らは、前記目的を達成すべく鋭意研究を重ねた結果、特定の構造単位からなるポリオルガノシロキサンブロックを所定の割合で含むポリカーボネート-ポリオルガノシロキサン共重合体と、それ以外の芳香族ポリカーボネートとを特定の割合で含むポリカーボネート系樹脂に対し、リン系酸化防止剤を所定量含有する樹脂組成物がその目的に適合し得ることを見出すと共に、前記樹脂組成物を用いて形成された電池パックが、低温環境下における落下衝撃強度と難燃性と耐熱性に優れることを見出した。本発明は、かかる知見に基づいて完成したものである。
 すなわち、本発明は、下記の電池パック用ポリカーボネート樹脂組成物及びそれを用いて形成されてなる電池パックを提供するものである。
1.(A)主鎖が一般式(I)で表される構造単位及び一般式(II)で表される構造単位からなり、ポリオルガノシロキサンブロック2~10質量%を含むポリカーボネート-ポリオルガノシロキサン共重合体(A-1)5~100質量%及び(A-1)以外の芳香族ポリカーボネート(A-2)0~95質量%からなるポリカーボネート系樹脂100質量部、
Figure JPOXMLDOC01-appb-C000002
[式中、R1及びR2は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基、Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-、R3~R6は、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基もしくは炭素数6~12のアリール基を示し、Yは脂肪族又は芳香族を含む有機残基を示し、nは平均繰り返し数であって、20~600の整数を示し、a及びbは0~4の整数を示す。]、及び(B)リン系酸化防止剤0.01~1質量部を含む、電池パック用ポリカーボネート樹脂組成物。
2.Yがアリルフェノール又はオイゲノールからの有機残基である上記1に記載の電池パック用ポリカーボネート樹脂組成物。
3.一般式(I)で表される構造単位が、ビスフェノールAから誘導された構造単位である上記1又は2に記載の電池パック用ポリカーボネート樹脂組成物。
4.一般式(II)で表される構造単位中のR3及びR4が共にメチル基である上記1~3のいずれかに記載の電池パック用ポリカーボネート樹脂組成物。
5.更に、(C)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩0.01~0.15質量部、及び/又は(D)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体0.1~1質量部を含む上記1~4のいずれかに記載の電池パック用ポリカーボネート樹脂組成物。
6.上記1~5のいずれかに記載のポリカーボネート樹脂組成物を用いて形成されてなる電池パック。
7.上ケースと下ケースからなる、上記6に記載の電池パック。
 本発明によれば、低温環境下における落下衝撃強度と難燃性と耐熱性に優れた電池パック用材料、及び上記性状を有する電池パックを提供することができる。
本発明のポリカーボネート樹脂組成物射出成形品の性能評価に用いる、該成形品の寸法説明図である。 本発明のポリカーボネート樹脂組成物射出成形品の耐落下衝撃試験に用いる、該成形品の寸法説明図である。 本発明のポリカーボネート樹脂組成物射出成形品の難燃性評価試験における、成形品とバーナーの位置関係を示す説明図である。
 まず、本発明の電池パック用ポリカーボネート樹脂組成物について説明する。
[電池パック用ポリカーボネート樹脂組成物]
 本発明の電池パック用ポリカーボネート樹脂組成物は、(A)主鎖が下記一般式(I)で表される構造単位と一般式(II)で表される構造単位とからなり、ポリオルガノシロキサンブロックを含むポリカーボネート-ポリオルガノシロキサン共重合体[以下、PC-PDMS共重合体と略記することがある。](A-1)及び該(A-1)以外の芳香族ポリカーボネート(A-2)からなるポリカーボネート系樹脂、並びに(B)リン系酸化防止剤を含有する。
Figure JPOXMLDOC01-appb-C000003
[式中、R1~R6、X、Y、n、a及びbは、前記と同じである。]
 本発明の電池パック用ポリカーボネート樹脂組成物は、更に(C)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩、(D)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉末を含有することが好ましい。
 以下、本発明の電池パック用ポリカーボネート樹脂組成物中の各成分について説明する。
〔PC-PDMS共重合体(A-1)〕
 本発明で用いられるPC-PDMS共重合体は、上記一般式(I)及び(II)で表される構造単位を含む。上記一般式(II)の構造単位を有するポリオルガノシロキサンブロック部分の含有量は、PC-PDMS(A-1)共重合体中、2~10質量%を要し、好ましくは3~7質量%、更に好ましくは3~5質量%である。前記ブロック部分の含有量が2質量%未満であると、ノッチ感度に対する効果が小さく、耐落下衝撃強度向上の効果が不充分であり、10質量%を超えると耐熱性の低下が大きくなる。
 上記一般式(II)の構造単位を有するポリオルガノシロキサンブロック部分の鎖長は20~600、好ましくは30~300、更に好ましくは50~300であり、20未満であるとノッチ感度に対する効果が小さく耐落下衝撃強度向上の効果が十分ではなく、600を超えるとPC-PDMS共重合体(A-1)を製造する際の取扱い性が困難になり経済性に劣る。
 また一般に、ノッチ感度を上げ耐落下衝撃性を発現させるためには、PC-PDMS共重合体(A-1)の粘度平均分子量は大きい方が有効であるが、粘度平均分子量が大きくなると電池パックのような薄肉部材の成形が困難になる。
 成形温度を上げることにより、樹脂組成物の粘度を下げることも可能であるが、その場合、成形サイクルが長くなり経済性に劣るほか、温度を上げすぎると樹脂組成物の熱劣化により生産安定性が低下する。
 したがって、PC-PDMS共重合体(A-1)の粘度平均分子量は、好ましくは15000~24000、より好ましくは16000~22500、更に好ましくは17000~21000である。
 粘度平均分子量が15000以上であると成形品の強度が十分であり、24000以下であると共重合体の粘度が小さくなるため製造時の生産性が良好であるほか、薄肉の成形も良好となる。
 PC-PDMS共重合体(A-1)は、下記一般式(1)で表される二価フェノールと、下記一般式(2)で表されるポリオルガノシロキサンと、ホスゲン、炭酸エステル、又はクロロホーメートとを共重合させて得られるものである。
Figure JPOXMLDOC01-appb-C000004
 ここで、一般式(1)中、R1及びR2、X、a及びbは、上記一般式(I)と同じであり、一般式(2)中、R3~R6、Y、nは、上記一般式(II)と同じであり、mは0又は1を示し、Zはハロゲン、-R7OH、-R7COOH、-R7NH2、-COOH又は-SHを示し、R7は直鎖、分岐鎖もしくは環状アルキレン基、アリール置換アルキレン基、環上にアルコキシ基を有してもよいアリール置換アルキレン基、アリーレン基を示す。
 本発明の電池パック用ポリカーボネート樹脂組成物において、PC-PDMS共重合体(A-1)の原料に用いる、一般式(1)で表される二価フェノールとしては、特に限定されないが、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕が好適である。二価フェノールとしてビスフェノールAを用いた場合、一般式(I)において、Xがイソプロピリデン基であり、且つa=b=0のPC-PDMS共重合体となる。
 ビスフェノールA以外の二価フェノールとしては、例えば、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタエン等が挙げられる。
 これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
 一般式(2)で表されるポリオルガノシロキサンは、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、アリルフェノール、オイゲノール、イソプロペニルフェノール等を所定の重合度nを有するポリオルガノシロキサン鎖の末端に、ハイドロシラネーション反応させることにより容易に製造することができる。上記フェノール類は、アリルフェノール又はオイゲノールであることがより好ましい。この場合、(A-1)成分の一般式(II)におけるYがアリルフェノール又はオイゲノール由来の有機残基となる。
 一般式(2)で表されるポリオルガノシロキサンとしては、R3及びR4が共にメチル基であるものが好ましく、例えば、以下の一般式(3)~(11)の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(3)~(11)中、R3~R6は一般式(II)と同様に、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基もしくは炭素数6~12のアリール基を示し、nはオルガノシロキサン構成単位の平均繰り返し数であって20~600の数を示す。また、R8はアルキル、アルケニル、アリール又はアラルキル基を示し、cは正の整数を示し、通常1~6の整数である。
 これらの中でも、重合の容易さの観点においては、一般式(3)に示すフェノール変性ポリオルガノシロキサンが好ましい。また、入手の容易さの観点においては、一般式(4)に示す化合物中の一種であるα,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、一般式(5)に示す化合物中の一種であるα,ω-ビス[3-(4-ヒドロキシ-2-メトキシフェニル)プロピル]ポリジメチルシロキサンが好ましい。
 上記フェノール変性ポリオルガノシロキサンは、公知の方法により製造することができる。製造法としては、例えば、以下に示す方法が挙げられる。
 まず、シクロトリシロキサンとジシロキサンとを酸性触媒存在下で反応させ、α,ω-ジハイドロジェンオルガノポリシロキサンを合成する。このとき、シクロトリシロキサンとジシロキサンとの仕込み比を変えることで所望の平均繰り返し単位を持つα,ω-ジハイドロジェンオルガノポリシロキサンを合成することができる。次いで、ヒドロシリル化反応用触媒の存在下に、このα,ω-ジハイドロジェンオルガノポリシロキサンにアリルフェノールやオイゲノール等の不飽和脂肪族炭化水素基を有するフェノール化合物を付加反応させることで、所望の平均繰り返し単位を有するフェノール変性ポリオルガノシロキサンを製造することができる。
 また、この段階では、低分子量の環状ポリオルガノシロキサンや過剰量の上記フェノール化合物が不純物として残存するために、減圧下で加熱し、これらの低分子化合物を留去することが好ましい。
〔(A-1)以外の芳香族ポリカーボネート(A-2)〕
 本発明の電池パック用ポリカーボネート樹脂組成物において、前記(A-1)以外の芳香族ポリカーボネートである(A-2)成分は、反応に不活性な有機溶媒、アルカリ水溶液の存在下、二価フェノール系化合物及びホスゲンと反応させた後、第三級アミンもしくは第四級アンモニウム塩等の重合触媒を添加して重合させる界面重合法や、二価フェノール系化合物をピリジン又はピリジンと不活性溶媒の混合溶液に溶解し、ホスゲンを導入し直接製造するピリジン法等従来の芳香族ポリカーボネートの製造法により得られるものが使用できる。
 (A-2)成分の芳香族ポリカーボネートの製造に使用される二価フェノール系化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン〔通称:ビスフェノールA〕、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-クロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン等のビス(ヒドロキシアリール)シクロアルカン類、4,4’-ジヒドロキシフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルフェニルエーテル等のジヒドロキシアリールエーテル類、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類、4,4’-ジヒドロキシジフェニル等のジヒドロキシジフェニル類、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のジヒドロキシジアリールフルオレン類、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等のジヒドロキシジアリールアダマンタン類、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、10,10-ビス(4-ヒドロキシフェニル)-9-アントロン、1,5-ビス(4-ヒドロキシフェニルチオ)-2,3-ジオキサペンタエン等が挙げられる。これらの二価フェノールは、単独で又は二種以上を混合して用いてもよい。
 (A-2)成分の芳香族ポリカーボネートの製造にあたっては、必要に応じて、分子量調節剤、末端停止剤等を用いてもよい。これらは、通常、ポリカーボネート樹脂の重合に用いられるものであれば、各種のものを用いることができる。
 具体的な分子量調節剤としては、一価フェノールとして、例えば、フェノール、o-n-ブチルフェノール、m-n-ブチルフェノール、p-n-ブチルフェノール、o-イソブチルフェノール、m-イソブチルフェノール、p-イソブチルフェノール、o-t-ブチルフェノール、m-t-ブチルフェノール、p-t-ブチルフェノール、o-n-ペンチルフェノール、m-n-ペンチルフェノール、p-n-ペンチルフェノール、o-n-ヘキシルフェノール、m-n-ヘキシルフェノール、p-n-ヘキシルフェノール、p-t-オクチルフェノール、o-シクロヘキシルフェノール、m-シクロヘキシルフェノール、p-シクロヘキシルフェノール、o-フェニルフェノール、m-フェニルフェノール、p-フェニルフェノール、o-ノニルフェノール、m-ノニルフェノール、p-ノニルフェノール、o-クミルフェノール、m-クミルフェノール、p-クミルフェノール、o-ナフチルフェノール、m-ナフチルフェノール、p-ナフチルフェノール、2,5-ジ-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、3,5-ジ-t-ブチルフェノール、2,5-ジクミルフェノール、3,5-ジクミルフェノール、p-クレゾール、p-ブロモフェノール、2,4,6-トリブロモフェノール、平均炭素数12~35の直鎖状又は分岐状のアルキル基をオルト位、メタ位又はパラ位に有するモノアルキルフェノール、9-(4-ヒドロキシフェニル)-9-(4-メトキシフェニル)フルオレン、9-(4-ヒドロキシ-3-メチルフェニル)-9-(4-メトキシ-3-メチルフェニル)フルオレン、4-(1-アダマンチル)フェノール等が挙げられる。
 これらの一価フェノールの中では、p-t-ブチルフェノール、p-クミルフェノール、p-フェニルフェノール等が好ましい。また、これらの化合物は、単独で又は二種以上の化合物を併用して用いることができる。
 末端停止剤としては、一価のカルボン酸とその誘導体や、一価のフェノールを用いることができる。例えば、p-tert-ブチル-フェノール、p-フェニルフェノール、p-クミルフェノール、p-パーフルオロノニルフェノール、p-(パーフルオロノニルフェニル)フェノール、p-(パーフルオロキシルフェニル)フェノール、p-tert-パーフルオロブチルフェノール、1-(p-ヒドロキシベンジル)パーフルオロデカン、p-〔2-(1H,1H-パーフルオロトリドデシルオキシ)-1,1,1,3,3,3-ヘキサフルオロプロピル〕フェノール、3,5-ビス(パーフルオロヘキシルオキシカルボニル)フェノール、p-ヒドロキシ安息香酸パーフルオロドデシル、p-(1H,1H-パーフルオロオクチルオキシ)フェノール、2H,2H,9H-パーフルオロノナン酸、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール等が挙げられる。
 更に、上記の二価フェノール系化合物に対して、分岐化剤を用いて、分岐化ポリカーボネートとすることもできる。この分岐化剤の添加量は、上記の二価フェノール系化合物に対して、好ましくは0.01~3モル%、より好ましくは0.1~1.0モル%である。
 分岐化剤としては、例えば、1,1,1-トリス(4-ヒドロキシフェニル)エタン、4,4’-[1-[4-[1-(4-ヒドロキシフェニル)-1-メチルエチル]フェニル]エチリデン]ビスフェノール、α,α’,α”-トリス(4-ヒドロキシフェニル)-1,3,5-トリイソプロピルベンゼン、1-[α-メチル-α-(4’-ヒドロキシフェニル)エチル]-4-[α’,α’-ビス(4”-ヒドロキシフェニル)エチル]ベンゼン、フロログルシン、トリメリット酸、イサチンビス(o-クレゾール)等の官能基を3つ以上有する化合物が挙げられる。
 (A-1)成分及び(A-2)成分からなる(A)ポリカーボネート系樹脂において、(A-1)の含有量は、5~100質量%であり、好ましくは70~100質量%、より好ましくは50~100質量%であり、(A-2)の含有量は、95~0質量%、好ましくは30~0質量%、より好ましくは50~0質量%である。
 (A-1)の含有量が5質量%以上、もしくは(A-2)の含有量が95質量%以下である場合、(A)ポリカーボネート系樹脂中のポリオルガノシロキサンブロック部分の含有量を多くし、低温衝撃強度を向上させるために、(A-1)成分の製造時に、一般式(II)で表される構造単位を含むポリオルガノシロキサンブロック部分の含有量を多くする必要がなく、したがって、(A-1)成分の製造時において、重合工程で反応の均一性が低下することがなく、また重合物の洗浄工程で重合物と洗浄水との分離性が悪化することがないため、(A-1)成分の生産性が良好となる。
 一般式(II)の構造単位を有するポリオルガノシロキサンブロック部分の含有量は、(A-1)成分及び(A-2)成分からなる(A)ポリカーボネート系樹脂中、好ましくは2~10質量%、より好ましくは3~7質量%、更に好ましくは3~5質量%である。2質量%以上であれば耐衝撃強さ向上の効果が十分であり、一方、10質量%以下であれば十分な耐熱性を有する。
〔(B)リン系酸化防止剤〕
 本発明の電池パック用ポリカーボネート樹脂組成物においては、(B)成分としてリン系酸化防止剤を含有することを要する。
 本発明で用いるリン系酸化防止剤としては、特に制限はない。代表的な例としては、トリス(ノニルフェニル)ホスファイト、2-エチルヘキシジフェニルホスファイトの他、トリメチルホスファイト、トリエチルホスファイト、トリブチルホスファイト、トリオクチルホスファイト、トリノニルホスファイト、トリデシルホスファイト、トリオクタデシルホスファイト、ジステアリルペンタエリスチルジホスファイト、トリス(2-クロロエチル)ホスファイト、トリス(2,3-ジクロロプロピル)ホスファイト等のトリアルキルホスファイト、トリシクロヘキシルホスファイト等のトリシクロアルキルホスファイト、トリフェニルホスファイト、トリクレジルホスファイト、トリス(エチルフェニル)ホスファイト、トリス(ブチルフェニル)ホスファイト、トリス(ヒドロキシフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト等のトリアリールホスファイト、トリメチルホスフェイト、トリエチルホスフェイト、トリブチルホスフェイト、トリオクチルホスフェイト、トリデシルホスフェイト、トリオクタデシルホスフェイト、ジステアリルペンタエリスリチルジホスフェイト、トリス(2-クロロエチル)ホスフェイト、トリス(2,3-ジクロロプロピル)ホフェイト等のトリアルキルホスフェイト、トリシクロヘキシ-1-ホスフェイト等のトリシクロアルキルホスフェイト、トリフェニルホスフェイト、トリクレジルホスフェイト、トリス(ノニルフェニル)ホスフェイト、2-エチルフェニルジフェニルホスフェイト等のトリアリールホスフェイトなどが挙げられる。この中では、トリアリールホスファイト及びトリアリールホスフェイトが好適に用いられる。
 本発明においては、これらのリン系酸化防止剤は一種を単独で用いてもよく、二種以上組み合わせて用いてもよい。また、電池パック用ポリカーボネート樹脂組成物中の当該リン系酸化防止剤の含有量は、(A)ポリカーボネート系樹脂100質量部に対して、0.01~1質量部、好ましくは0.02~0.3質量部、更に好ましくは0.04~0.2質量部であることを要する。当該リン系酸化防止剤を上記範囲で含有することにより、充分な酸化防止効果が得られる。
〔(C)有機スルホン酸のアルカリ(土類)金属塩〕
 本発明の電池パック用ポリカーボネート樹脂組成物においては、難燃性を向上させるために、(C)成分として、有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩(以下、有機スルホン酸アルカリ(土類)金属塩、ともいう)を含有することが好ましい。
 有機スルホン酸としては、パーフルオロアルカンスルホン酸やポリスチレンスルホン酸等が挙げられる。
 有機スルホン酸アルカリ(土類)金属塩としては、種々のものが挙げられるが、少なくとも一つの炭素原子を有する有機スルホン酸アルカリ金属塩やアルカリ土類金属塩である。
 アルカリ金属としては、ナトリウム、カリウム、リチウム及びセシウム等が挙げられ、アルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム及びバリウム等が挙げられる。これら中でも、ナトリウム、カリウム及びセシウムの塩が好ましい。
 (C)成分としては、パーフルオロアルカンスルホン酸又はポリスチレンスルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩が好ましい。
 パーフルオロアルカンスルホン酸のアルカリ(土類)金属塩として、下記一般式(12)で表されるものが挙げられる。
   (Cd2d+1SO3eM   ・・・(12)
 式(12)中、dは1~10の整数を示し、Mはリチウム、ナトリウム、カリウム及びセシウム等のアリカリ金属、又はマグネシウム、カルシウム、ストロンチウム及びバリウム等のアルカリ土類金属を示し、eはMの原子価を示す。
 これらの金属塩としては、例えば、特公昭47-40445号公報に記載されているものが該当する。
 一般式(12)において、パーフルオロアルカンスルホン酸としては、例えば、パーフルオロメタンスルホン酸、パーフルオロエタンスルホン酸、パーフルオロプロパンスルホン酸、パーフルオロブタンスルホン酸、パーフルオロメチルブタンスルホン酸、パーフルオロヘキサンスルホン酸、パーフルオロヘプタンスルホン酸及びパーフルオロオクタンスルホン酸等を挙げることができる。特に、これらのカリウム塩が好ましく用いられる。
 その他、アルキルスルホン酸、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、ジフェニルスルホン酸、ナフタレンスルホン酸、2,5-ジクロロベンゼンスルホン酸、2,4,5-トリクロロベンゼンスルホン酸、ジフェニルスルホン-3-スルホン酸、ジフェニルスルホン-3,3’-ジスルホン酸、ナフタレントリスルホン酸及びこれらのフッ素置換体並びにポリスチレンスルホン酸等の有機スルホン酸のアルカリ金属塩やアルカリ土類金属塩等を挙げられる。これらの中でも、特に、有機スルホン酸として、パーフルオロアルカンスルホン酸及びジフェニルスルホン酸が好ましい。
 ポリスチレンスルホン酸のアルカリ(土類)金属塩しては、下記一般式(13)で表されるスルホン酸塩基含有芳香族ビニル系樹脂のアルカリ(土類)金属塩が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(13)中、Qはスルホン酸塩基を示し、R9は水素原子又は炭素数1~10の炭化水素基を示す。sは1~5の整数を示し、tはモル分率を示し、0<t≦1である。
 ここで、Qのスルホン酸塩基は、スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩であり、金属としては、ナトリウム、カリウム、リチウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム及びバリウム等が挙げられる。
 また、R9は、水素原子又は炭素数1~10の炭化水素基であるが、好ましくは水素原子又はメチル基である。
 sは1~5の整数であり、tは、0<t≦1の関係である。そのため、スルホン酸塩基(Q)は、芳香環に対して、全置換したもの、部分置換したものを含んでもよい。
 (C)有機スルホン酸のアルカリ(土類)金属塩の含有量は、(A)樹脂混合物100質量部に対して、0.01~0.15質量部であることが好ましく、より好ましくは0.02~0.13質量部、更に好ましくは0.03~0.12質量部である。0.01質量部以上であって、0.15質量部以下である場合、難燃性を十分に向上させることができる。
〔(D)混合粉体〕
 本発明の電池パック用ポリカーボネート樹脂組成物においては、更に(D)成分として、ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体を含有することが好ましい。
<ポリテトラフルオロエチレン粒子>
 当該混合粉体におけるポリテトラフルオロエチレン粒子は、粒子径が、通常10μm以下であり、好ましくは0.05~1.0μmである。
 ポリテトラフルオロエチレン粒子は、例えば乳化剤等を含んだ水に分散した、水性分散液として調製される。このポリテトラフルオロエチレン粒子の水性分散液は、含フッ素界面活性剤を用い、テトラフルオロエチレンモノマーを乳化重合することにより得られる。
 ポリテトラフルオロエチレン粒子の乳化重合の際、ポリテトラフルオロエチレンの特性を損なわない範囲で、共重合成分としてヘキサフルオロプロピレン、クロロトリフルオロエチレン、フルオロアルキルエチレン及びパーフルオロアルキルビニルエーテル等の含フッ素オレフィン、パーフルオロアルキル(メタ)アクリレート等の含フッ素アルキル(メタ)アクリレートを用いることができる。
 共重合成分の含有量は、好ましくは、ポリテトラフルオロエチレン粒子中のテトラフルオロエチレンに対して10質量%以下である。
<有機系重合体粒子>
 当該混合粉体における有機系重合体粒子としては、特に制限されるものではないが、(A)ポリカーボネート系樹脂に配合する際のポリテトラフルオロエチレン粒子の分散性の観点から、ポリカーボネート樹脂に親和性を有するものであることが好ましい。
 有機系重合体粒子を製造するための単量体の具体例としては、スチレン、p-メチルスチレン、o-メチルスチレン、p-クロルスチレン、o-クロルスチレン、p-メトキシスチレン,o-メトキシスチレン、2,4-ジメチルスチレン、α-メチルスチレン等のスチレン系単量体;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸-2-エチルヘキシル、メタクリル酸-2-エチルヘキシル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸トリデシル、メタクリル酸トリデシル、アクリル酸オクタデシル、メタクリル酸オクタデシル、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル等の(メタ)アクリル酸アルキルエステル系単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル系単量体;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル系単量体;エチレン、プロピレン、イソブチレン等のオレフィン系単量体;ブタジエン、イソプレン、ジメチルブタジエン等のジエン系単量体等を挙げることができる。特に、(メタ)アクリル酸アルキルエステル系単量体の使用が好ましい。なお、(メタ)アクリル酸アルキルエステル系単量体とは、アクリル酸アルキルエステル系及びメタクリル酸アルキルエステル系の両方の単量体を指す。
 これらの単量体を重合することにより、有機系重合体粒子が得られる。上記単量体は、1種又は2種以上混合して用いることができる。有機系重合体粒子としては、(メタ)アクリル酸アルキルエステル系共重合体からなる粒子が好ましい。
 有機系重合体粒子は、例えば有機系重合体粒子の水性分散液として調製される。有機系重合体粒子の水性分散液の製造法は、特に制限はないが、例えば、イオン性乳化剤を用いる乳化重合法、イオン性重合開始剤を用いるソープフリー乳化重合法等を挙げることができる。
 イオン性乳化剤としては、アニオン性乳化剤、カチオン性乳化剤及び両性イオン乳化剤のいずれも用いることができる。又、これらのイオン性乳化剤と共に、ノニオン性乳化剤を併用することもできる。
 アニオン性乳化剤としては、脂肪酸塩類、高級アルコール硫酸エステル塩類、液体脂肪油硫酸エステル塩類、脂肪族アミン及び脂肪族アマイドの硫酸塩類、脂肪族アルコールリン酸エステル塩類、二塩基性脂肪酸エステルのスルホン酸塩類、脂肪酸アミドスルホン酸塩類、アルキルアリルスルホン酸塩類及びホルマリン縮合物のナフタリンスルホン酸塩類等を挙げることができる。
 カチオン性乳化剤としては、脂肪族アミン塩類、第四アンモニウム塩類及びアルキルピリジニウム塩等を挙げることができる。
 両性乳化剤としては、アルキルベタイン等を挙げることができる。
 イオン性重合開始剤としては、過硫酸塩(例えば、過硫酸カリウムや過硫酸アンモニウム)、アゾビス(イソブチロニトリルスルホン酸塩)、4,4’-アゾビス(4-シアノ吉草酸)等のアニオン性重合開始剤、2,2’-アゾビス(アミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビスイソブチルアミド二水和物等のカチオン性重合開始剤を挙げることができる。
 本発明における有機系重合体粒子の粒子径dとしては、特に制限はないが、ポリテトラフルオロエチレン粒子との凝集状態の安定性の観点から、ポリテトラフルオロエチレン粒子の粒子径Dに対して次式の範囲が好ましい。
  0.1D<d<10D
<混合粉体の調製>
 (D)成分のポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体は、例えば、上記ポリテトラフルオロエチレン粒子の水性分散液と、有機系重合体粒子の水性分散液とを混合し、その後後述の方法により粉体化することによって得られる。この混合粉体は、ポリテトラフルオロエチレン粒子と有機系重合体粒子とが表面電荷の違いにより凝集した凝集粒子と、凝集せずに残存したそれぞれの単独粒子を含むものである。
 凝集粒子は、ポリテトラフルオロエチレン粒子と有機系重合体粒子とが一体となった構造を有するが、そのモルフォロジーは両粒子の混合比や粒子径により様々なものがある。即ち、ポリテトラフルオロエチレン粒子の周りを有機系重合体が取り囲んだ形態、その反対に有機系重合体粒子の周りをポリテトラフルオロエチレン粒子が取り囲んだ形態及び1つの粒子に対して数個の粒子が凝集した形態等が存在する。
 上記水性分散液の混合の際の凝集速度を低下させるために、混合前に、ノニオン性乳化剤をポリテトラフルオロエチレン粒子及び/又は有機系重合体粒子の表面上に吸着させておくこともできる。
 ノニオン性乳化剤としては、特に制限はなく、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ジアルキルフェノキシポリ(エチレンオキシ)エタノール、ポリビニルアルコール、ポリアクリル酸及びアルキルセルロース等を挙げることができる。
 そして、上記のようにして混合した水性分散液を、例えば塩化カルシウム、硫酸マグネシウム等の金属塩を溶解した熱水中に投入し、塩析、凝固した後に乾燥、又は、スプレードライにより粉体化することができる。
 また、上記の混合水性分散液中で、エチレン性不飽和結合を有する単量体を乳化重合して、凝固又はスプレードライにより粉体化することもできる。
 混合した水性分散液中で乳化重合させるエチレン性不飽和単量体としては、スチレン、p-メチルスチレン、o-メチルスチレン、p-クロルスチレン、o-クロルスチレン、p-メトキシスチレン,o-メトキシスチレン、2,4-ジメチルスチレン、α-メチルスチレン等のスチレン系単量体;アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸-2-エチルヘキシル、メタクリル酸-2-エチルヘキシル、アクリル酸ドデシル、メタクリル酸ドデシル、アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル、等の(メタ)アクリル酸アルキルエステル系単量体;アクリロニトリル、メタクリロニトリル等のシアン化ビニル系単量体;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル系単量体;酢酸ビニル、酪酸ビニル等のカルボン酸ビニル系単量体;エチレン、プロピレン、イソブチレン等のオレフィン単量体;ブタジエン、イソプレン、プレン、ジメチルブタジエン等のジエン系単量体等を挙げることができる。これらの単量体は、1種又は2種以上混合して用いることができる。
 当該混合粉体中のポリテトラフルオロエチレンの含有量は、得られる樹脂組成物のアンチドリッピング効果による難燃性、及び成形品の外観や、ウェルド強度などの観点から、通常0.1~90質量%であり、好ましくは30~90質量%、より好ましくは40~90質量%である。
 本発明の電池パック用ポリカーボネート樹脂組成物における(D)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体の含有量は、(A)ポリカーボネート系樹脂100質量部に対して、通常0.1~1質量部であり、好ましくは0.1~0.9質量部、より好ましくは0.2~0.8質量部である。
 上記混合粉体の含有量が0.1質量部以上であればドリップ性能が良好であり、難燃性が達成できる。一方、1質量部以下であれば、組成物中の有機系重合体の割合が増加しすぎることがなく、難燃性が達成できる。
〔任意添加成分〕
 本発明の電池パック用ポリカーボネート樹脂組成物においては、上述した(A)~(D)成分以外に、本発明の効果が損なわれない範囲で、必要に応じて、従来ポリカーボネート樹脂組成物に添加される公知の各種添加成分を含有することができる。このような添加成分としては、例えば補強材、充填剤、ヒンダードアミン系光安定剤、リン系以外の酸化防止剤、紫外線吸収剤、帯電防止剤、滑剤、離型剤、染料、顔料、その他の難燃剤や耐衝撃性改良用のエラストマー等が挙げられる。
 これらその他の添加成分の含有量は、(A)ポリカーボネート系樹脂100質量部に対して、通常0~1質量部、好ましくは0.01~0.5質量部である。
 本発明の電池パック用ポリカーボネート系樹脂組成物は、有機ハロゲン系難燃剤及び有機リン酸エステル系難燃剤のいずれをも実質的に含まない。このため、有害ガスの発生、成形機の汚染、樹脂の焼け、耐熱性の低下のおそれがない。
〔電池パック用ポリカーボネート樹脂組成物の調製方法〕
 本発明の電子パック用ポリカーボネート樹脂組成物は、前述した(A)成分[(A-1)及び(A-2)]、(B)成分及び必要に応じて用いられる(C)成分や(D)成分、更には各種任意成分を所定の割合で配合し、混練することにより、調製することができる。
 この際の配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラー等で予備混合して、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機、コニーダ等を用いる方法で行うことができる。
 混練の際の加熱温度は、通常240~300℃の範囲で適宜選択される。
 尚、ポリカーボネート系樹脂以外の含有成分は、予め、ポリカーボネート系樹脂と溶融混練、即ち、マスターバッチとして添加することもできる。
 本発明のポリカーボネート樹脂組成物は、上記の溶融混練成形機を用いるか、あるいは得られたペレットを原料として、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空成形法及び発泡成形法等により各種成形品を製造することができる。
 特に、上記溶融混練方法により、ペレット状の成形原料を製造し、次いで、このペレットを用いて、射出成形、射出圧縮成形による射出成形品の製造に好適に用いることができる。
 尚、射出成形方法としては、外観のヒケ防止のため、又は、軽量化のためのガス注入成形方法を採用することもできる。
 次に、本発明の電池パックについて説明する。
[電池パック]
 本発明の電池パックは、前述したポリカーボネート樹脂組成物を用いて形成してなることを特徴とする。特に上ケースと下ケースとからなるものが好適である。
 近年、携帯電話やノート型パソコン、CD(Compact Disc)やMD(Mini Disc)再生用のポータブルプレーヤーなど、電池を電源として内蔵した機器が多くの分野で用いられている。近年は機器の多機能化、小型化が進み、より携帯性の高い機器が多くなっている。そのため、機器の使用頻度が増すとともに、電池パックの需要が大きいものとなっている。またこれらの機器の小型化に伴い、本体に合わせて電池パックもより薄く、小型であるものが求められている。
 これらの機器に用いられる電池パックは、プラスチック製の上ケースと下ケースとの間に電池及び保護回路基板等を収容することにより構成されている。
 このような電池パックにおいては、一般に上ケースと下ケースを超音波溶着により接合させる方法が用いられているが、この超音波溶着の際に僅かながらバリが発生する。このバリ部はノッチ発生の原因になるためケースの熱成形や超音波溶着により発生するバリを持った電池パックケースは、発生したノッチ部を開始点とした破壊はし易くなる。
 そこで、低温環境下でノッチがあっても衝撃に耐えられ、且つ製品に要求される難燃性や、耐熱性を有する材料が電池パック材料として求められている。
 したがって、当該電池パックの上ケース及び下ケースの形成に、低温環境下における落下衝撃強度と難燃性と耐熱性に優れる本発明の電池パック用ポリカーボネート樹脂組成物が用いられる。
 電池パック内部に収容される電池としては、従来からNi-Cd(ニッケル-カドミウム)電池やNi-MH(ニッケル水素)電池、Li-ion(リチウムイオン)電池などが使用されてきたが、近年は電池の漏液防止を目的として、電解質にポリマーを用いたポリマーリチウム二次電池を用いることが多い。更に、ポリマーを電解質として用いるメリットとして、薄型形状が可能であること、及び形状の自由度が高いことなどが挙げられる。
 次に、本発明を実施例及び比較例により、更に詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各例における特性値は、以下に示す要領に従って求めた。
<PC-PDMS共重合体(A-1)の粘度数>
 ISO1628-4(1999)に準拠して測定した。
<PC-PDMS共重合体(A-1)及び芳香族ポリカーボネート(A-2)の粘度平均分子量>
 これらの粘度平均分子量(Mv)は、ウベローデ型粘度計を用いて、20℃における塩化メチレン溶液の粘度を測定し、これより極限粘度[η]を求め、次式にて算出するものである。
 [η]=1.23×10-5Mv0.83
<ポリカーボネート樹脂組成物(以下、PC組成物と略記することがある。)の性能評価I>
 各例で得られたPC組成物を、ベント付き40mmφの単軸押出機を用いて、樹脂温度280℃で造粒しペレットを得た。尚、比較例2のみ樹脂温度を300℃とした。
 得られたペレットを120℃で8時間乾燥した後、射出成形機を用いて、成形温度280℃、金型温度80℃で射出成形して試験片を得た。ペレット又は射出成形により得られた試験片を用いて、以下の測定を行った。
(1)Q値(流れ値)[単位;10-2mL/sec]
 高架式フローテスターを用い、JIS K 7210に準拠し、280℃、15.7MPaの圧力下にて、直径1mm、長さ10mmのノズルより流出する溶融樹脂量(mL/sec)を測定した。
 Q値は、単位時間当たりの流出量を表しており、数値が高いほど、流動性がよいことを示す。
(2)HDT(熱変形温度)
 ASTM D648に準拠し、荷重0.45MPaで測定した。
 HDTは、耐熱性の目安を示すものである。
<PC組成物射出成形品の性能評価II>
 各例で得られたPC組成物ペレットを用い、下記の条件にて射出成形により図1の寸法説明図に示す電池パックモデル成形品(50mm×88mm、深さ4.5mm、厚さ1.2mm)を得た。尚、比較例2については射出成形を試みたが、300~320℃のシリンダー温度では粘度が高く、充填が不可能となり成形品を得ることができなかった。
 更に、シリンダー温度を380℃まで上げたところ、樹脂組成物の劣化による着色が現れ始めたため成形を中止した。
(成形条件)
 射出成形機:日精樹脂工業株式会社製 電動射出成形機「ES-1000」80トン
 成形機シリンダー温度:300~320℃
 成形サイクル:30秒/cycle
 金型温度:130℃
(1)難燃性評価
 上記で得られた電池パックモデル成形品を用い、UL746Cに準拠し、図3のように成形品とバーナーをセットし燃焼試験を行った。試験炎を1分間隔で、成形品に30秒間の接炎を2回行った後、それぞれの接炎後の燃焼時間を計測した。評価はn=3で行い、◎、○、×は下記の燃焼時間を示すものである。
  ◎:n=3全てが、30秒以内に消炎
  ○:n=3全てが、60秒以内に消炎
  ×:n=3のうちいずれかが、61秒以上
(2)耐落下衝撃性評価
 各例で得られたペレットを用い、下記の条件にて射出成形により図2の寸法説明図に示すようなR=0とR=0.2の二種類のノッチ半径を有する成形品(100mm×20mm、厚さ4.0mm)を得た。
(成形条件)
 射出成形機:株式会社ニイガタマシンテクノ製 電離射出成形機「MD-350W」350トン
 成形機シリンダー温度:280~300℃
 成形サイクル:50秒/cycle
 金型温度:90℃
 得られた成形品を恒温槽に入れ所定の温度(23℃、0℃)に冷却したものを用い、ISO176に準拠してシャルピー衝撃強度を測定した。
製造例1 PC-PDMS共重合体(Si-PC-1)の製造
(1)ポリカーボネートオリゴマー合成
 5.6質量%水酸化ナトリウム水溶液に後から溶解するビスフェノールA(BPA)に対して2000質量ppmの亜二チオン酸ナトリウムを加え、これにBPA濃度が13.5質量%になるようにBPAの水酸化ナトリウム水溶液を調製した。
 このBPAの水酸化ナトリウム水溶液40リットル/hr、塩化メチレン15リットル/hrの流量で、かつホスゲンを4.0kg/hrの流量で内径6mm、管長30mの管型反応機に連続的に通した。
 管型反応器はジャケット部分を有しており、ジャケットに冷却水を通して反応液の温度を40℃以下に保った。
 管型反応器を出た反応液は後退翼を備えた内容積40リットルのバッフル付き槽型反応器へ連続的に導入され、ここに更にBPAの水酸化ナトリウム水溶液2.8リットル/hr、25質量%水酸化ナトリウム水溶液0.07リットル/hr、水17リットル/hr、1質量%トリエチルアミン水溶液を0.64リットル/hr添加して反応を行った。
 槽型反応器から溢れ出る反応液を連続的に抜き出し、静置することで水相を分離除去し、塩化メチレン相を採取した。
 このようにして得られたポリカーボネートオリゴマーは、濃度329g/L、クロロホーメート基濃度0.74mol/Lであった。
(2)PC-PDMS共重合体(Si-PC-1)の合成
 邪魔板、パドル型撹拌翼及び冷却用ジャケットを備えた50L槽型反応器に上記(1)で合成したポリカーボネートオリゴマー溶液15L、塩化メチレン9.0L、ジメチルシロキサン単位の繰返し数が90であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)393g及びトリエチルアミン8.8mLを仕込み、撹拌下でここに6.4質量%水酸化ナトリウム水溶液1389gを加え、10分間ポリカーボネートオリゴマーとアリルフェノール末端変性PDMSの反応を行った。
 この重合液に、p-t-ブチルフェノール(PTBP)の塩化メチレン溶液(PTBP140gを塩化メチレン2.0Lに溶解したもの)、BPAの水酸化ナトリウム水溶液(NaOH577gと亜二チオン酸ナトリウム2.0gを水8.4Lに溶解した水溶液にBPA1012gを溶解させたもの)を添加し50分間重合反応を行った。
 希釈のため塩化メチレン10Lを加え10分間撹拌した後、ポリカーボネートポリジメチルシロキサン共重合体を含む有機相と過剰のBPA及びNaOHを含む水相に分離し、有機相を単離した。
 こうして得られたポリカーボネート-ポリジメチルシロキサン共重合体の塩化メチレン溶液を、その溶液に対して順次、15溶液%の0.03mol/LNaOH水溶液、0.2モル/L塩酸で洗浄し、次いで洗浄後の水相中の電気伝導度が0.01μS/m以下になるまで純水で洗浄を繰り返した。
 洗浄により得られたポリカーボネート-ポリジメチルシロキサン共重合体の塩化メチレン溶液を濃縮・粉砕し、得られたフレークを減圧下120℃で乾燥した。
 得られたポリカーボネート-ポリジメチルシロキサン共重合体の核磁気共鳴(NMR)により求めたPDMS残基量(PDMS共重合量)は6.0質量%、ISO1628-4(1999)に準拠して測定した粘度数は46.9、粘度平均分子量Mv=17400であった。
製造例2 PC-PDMS共重合体(Si-PC-2)の製造
 ジメチルシロキサン単位の繰返し数が90であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)393gの代わりに、ジメチルシロキサン単位の繰返し数が90であるオイゲノール末端変性ポリジメチルシロキサン(PDMS)315gを用い、PTBP量を129gに変更した以外は「Si-PC-1」と同様に実施した。PDMS残基(PDMS共重合量)は4.8質量%、粘度数は49.5、粘度平均分子量Mv=18600であった。
製造例3 PC-PDMS共重合体(Si-PC-3)の製造
 ジメチルシロキサン単位の繰返し数が90であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)393gの代わりに、ジメチルシロキサン単位の繰返し数が153であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)197gを用い、PTBP量を129gに変更した以外は「Si-PC-1」と同様に実施した。PDMS残基量(PDMS共重合量)は2.8質量%、粘度数は49.9、粘度平均分子量Mv=18800であった。
製造例4 PC-PDMS共重合体(Si-PC-4)の製造
 ジメチルシロキサン単位の繰返し数が153であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)197gの代わりに、ジメチルシロキサン単位の繰返し数が300であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)183gを用いた以外は「Si-PC-3」と同様に実施した。PDMS残基量(PDMS共重合量)は2.6質量%、粘度数が49.9、粘度平均分子量Mv=18800であった。
製造例5 PC-PDMS共重合体(Si-PC-5)の製造
 ジメチルシロキサン単位の繰返し数が90であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)393gの代わりに、ジメチルシロキサン単位の繰返し数が38であるアリルフェノール末端変性ポリジメチルシロキサン(PDMS)393gを用いた以外は「Si-PC-1」と同様に実施した。PDMS残基量(PDMS共重合量)は6.0質量%、粘度数が48.0、粘度平均分子量Mv=17900であった。
実施例1~9及び比較例1,2
(A-1)製造例1~5で製造したポリカーボネート-ポリジメチルシロキサン共重合体(PC-PDMS共重合体)
(A-2)FN1900A(商品名、出光興産株式会社製、p-t-ブチルフェノールを末端基に有するBPAポリカーボネート、粘度数51.1、粘度平均分子量Mv=19300)、タフロンFN2200A(商品名、出光興産株式会社製、p-t-ブチルフェノールを末端基に有するBPAポリカーボネート、粘度数55.6、粘度平均分子量Mv=21300)、タフロンFN2500A(商品名、出光興産株式会社製、p-t-ブチルフェノールを末端基に有するBPAポリカーボネート、粘度数62.2、粘度平均分子量Mv=24200)、タフロンFN2600A(商品名、出光興産株式会社製、p-t-ブチルフェノールを末端基に有するBPAポリカーボネート、粘度数64.9、粘度平均分子量Mv=25400)
(B)トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、IRGAFOS168(商品名、チバ・スペシャリティ・ケミカルズ社製)
(C)パーフルオロブタンスルホン酸カリウム、エフトップKFBS(商品名、三菱マテリアル電子化成株式会社製)
(D)アクリル樹脂変性ポリテトラフルオロエチレン、メタブレン A-3800(商品名、三菱レイヨン株式会社製)
 第1表に記載の質量部の通りブレンドし、ベント付き40mmφの単軸押出機を用いて、樹脂温度280℃で造粒ペレットを得た。
 各例で得られたPC組成物ペレットを用い、前述したPC組成物の性能評価I及びPC組成物射出成形品の性能評価IIを実施し、その結果を第1表に示した。なお、第1表中の粘度平均分子量は、用いられたポリカーボネート系樹脂の粘度平均分子量を示すものである。
Figure JPOXMLDOC01-appb-T000007
 第1表から分かるように、比較例1の材料ではノッチR=0の低温下での衝撃強度が低く、低温落下強度に関して電池パックに適していない。また難燃性も不安定である。比較例2の材料では比較例1の課題を解決できるが、流動性が悪いため成形が困難である。
 これに対して、実施例1~9の材料は、ノッチR=0の低温下での衝撃強度が比較例1及び2よりも高く、また、難燃性及び流動性も良好である。
 本発明の電池パック用ポリカーボネート樹脂組成物は、低温環境下における落下衝撃強度と難燃性と耐熱性に優れる電池パックを成形性良く提供することができる。

Claims (7)

  1.  (A)主鎖が一般式(I)で表される構造単位及び一般式(II)で表される構造単位からなり、ポリオルガノシロキサンブロック2~10質量%を含むポリカーボネート-ポリオルガノシロキサン共重合体(A-1)5~100質量%及び(A-1)以外の芳香族ポリカーボネート(A-2)0~95質量%からなるポリカーボネート系樹脂100質量部、
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1及びR2は、それぞれ独立に炭素数1~6のアルキル基又はアルコキシ基、Xは単結合、炭素数1~8のアルキレン基、炭素数2~8のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-又は-CO-、R3~R6は、それぞれ独立に、水素原子、ハロゲン原子又は炭素数1~6のアルキル基、炭素数1~6のアルコキシ基もしくは炭素数6~12のアリール基を示し、Yは脂肪族又は芳香族を含む有機残基を示し、nは平均繰り返し数であって、20~600の整数を示し、a及びbは0~4の整数を示す。]、及び(B)リン系酸化防止剤0.01~1質量部を含む、電池パック用ポリカーボネート樹脂組成物。
  2.  Yがアリルフェノール又はオイゲノールからの有機残基である請求項1に記載の電池パック用ポリカーボネート樹脂組成物。
  3.  一般式(I)で表される構造単位が、ビスフェノールAから誘導された構造単位である請求項1又は2に記載の電池パック用ポリカーボネート樹脂組成物。
  4.  一般式(II)で表される構造単位中のR3及びR4が共にメチル基である請求項1~3のいずれかに記載の電池パック用ポリカーボネート樹脂組成物。
  5.  更に、(C)有機スルホン酸のアルカリ金属塩及び/又はアルカリ土類金属塩0.01~0.15質量部、及び/又は(D)ポリテトラフルオロエチレン粒子及び有機系重合体粒子からなる混合粉体0.1~1質量部を含む請求項1~4のいずれかに記載の電池パック用ポリカーボネート樹脂組成物。
  6.  請求項1~5のいずれかに記載のポリカーボネート樹脂組成物を用いて形成されてなる電池パック。
  7.  上ケースと下ケースからなる、請求項6に記載の電池パック。
PCT/JP2012/063627 2011-05-30 2012-05-28 電池パック用ポリカーボネート樹脂組成物及び電池パック WO2012165373A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/123,179 US20140106208A1 (en) 2011-05-30 2012-05-28 Polycarbonate resin composition for battery pack, and battery pack
EP12792978.4A EP2716713B1 (en) 2011-05-30 2012-05-28 Battery pack made of a polycarbonate resin composition and use of the polycarbonate resin composition for a battery pack
CN201280026467.2A CN103562312A (zh) 2011-05-30 2012-05-28 电池组用聚碳酸酯树脂组合物及电池组
KR1020137031827A KR101870481B1 (ko) 2011-05-30 2012-05-28 전지팩용 폴리카보네이트 수지 조성물 및 전지팩

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-120551 2011-05-30
JP2011120551A JP5852797B2 (ja) 2011-05-30 2011-05-30 電池パック用ポリカーボネート樹脂組成物及び電池パック

Publications (1)

Publication Number Publication Date
WO2012165373A1 true WO2012165373A1 (ja) 2012-12-06

Family

ID=47259229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063627 WO2012165373A1 (ja) 2011-05-30 2012-05-28 電池パック用ポリカーボネート樹脂組成物及び電池パック

Country Status (7)

Country Link
US (1) US20140106208A1 (ja)
EP (1) EP2716713B1 (ja)
JP (1) JP5852797B2 (ja)
KR (1) KR101870481B1 (ja)
CN (1) CN103562312A (ja)
TW (1) TWI600707B (ja)
WO (1) WO2012165373A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029841A1 (ja) * 2013-08-29 2015-03-05 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
CN105189653A (zh) * 2013-04-19 2015-12-23 出光兴产株式会社 聚碳酸酯系树脂组合物及成形体

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6200137B2 (ja) 2012-09-14 2017-09-20 出光興産株式会社 ポリカーボネート系樹脂組成物、及び成形品
US10059832B2 (en) 2013-03-29 2018-08-28 Idemitsu Kosan Co., Ltd. Polyorganosiloxane production method
EP2980123B1 (en) 2013-03-29 2019-05-29 Idemitsu Kosan Co., Ltd Polyorganosiloxane and polycarbonate-polyorganosiloxane copolymer
US9365683B2 (en) * 2013-12-10 2016-06-14 Idemitsu Kosan Co., Ltd. Polycarbonate-polyorganosiloxane copolymer and method for producing same
JP6355951B2 (ja) 2014-03-31 2018-07-11 出光興産株式会社 ポリオルガノシロキサン、ポリカーボネート−ポリオルガノシロキサン共重合体及びその製造方法
KR101687683B1 (ko) 2014-09-05 2016-12-19 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 조성물
JP2016079333A (ja) * 2014-10-20 2016-05-16 出光興産株式会社 リサイクル材を含むポリカーボネート系樹脂組成物及びその成形品
KR20160067714A (ko) 2014-12-04 2016-06-14 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 물품
KR101685665B1 (ko) 2014-12-04 2016-12-12 주식회사 엘지화학 코폴리카보네이트 및 이를 포함하는 조성물
CN107406668B (zh) 2015-03-30 2021-04-23 出光兴产株式会社 聚碳酸酯系树脂组合物及其成型体
CN107429051B (zh) 2015-03-30 2020-09-29 出光兴产株式会社 聚碳酸酯系树脂组合物及其成型体
KR102550274B1 (ko) 2015-06-17 2023-06-30 이데미쓰 고산 가부시키가이샤 폴리카보네이트계 수지 조성물의 제조 방법
CN107709460B (zh) 2015-06-17 2023-08-08 出光兴产株式会社 聚碳酸酯系树脂组合物及其成型体
JP6027211B2 (ja) * 2015-11-10 2016-11-16 出光興産株式会社 ポリカーボネート系樹脂組成物及び成形体
DE112016005898T5 (de) 2015-12-22 2018-09-13 Idemitsu Kosan Co., Ltd. Polycarbonat-Harzzusammensetzung
CN110352210B (zh) * 2017-03-01 2022-03-25 出光兴产株式会社 聚碳酸酯-聚有机硅氧烷共聚物、包含其的聚碳酸酯系树脂组合物及其成形品
EP3730534B1 (en) 2017-12-21 2021-11-10 Teijin Limited Polycarbonate-polydiorganosiloxane copolymer, resin composition of polycarbonate-polydiorganosiloxane copolymer, and production method for resin composition of polycarbonate-polydiorganosiloxane copolymer
CN114316237B (zh) * 2021-07-14 2023-04-21 广州市德力塑化工科技有限公司 一种电容器膜用的三元聚碳酸酯及其制备方法和应用
JPWO2023167020A1 (ja) 2022-03-02 2023-09-07

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740445B1 (ja) 1970-06-18 1972-10-13
JPH1121441A (ja) 1997-05-06 1999-01-26 Idemitsu Petrochem Co Ltd 難燃性ポリカーボネート樹脂組成物及び該組成物を成形してなるハウジング及びバッテリーパック
JPH11293103A (ja) 1998-04-15 1999-10-26 Mitsubishi Eng Plast Corp ポリカーボネート樹脂組成物
JP2004035661A (ja) 2002-07-01 2004-02-05 Idemitsu Petrochem Co Ltd ポリカーボネート樹脂組成物及びそれからなる成形体
JP2006012657A (ja) 2004-06-28 2006-01-12 Sony Corp 二次電池の構造および二次電池パック
JP2011021127A (ja) 2009-07-16 2011-02-03 Idemitsu Kosan Co Ltd 携帯型電子機器筐体
WO2011030772A1 (ja) * 2009-09-14 2011-03-17 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形体
JP2011102364A (ja) * 2009-11-11 2011-05-26 Teijin Chem Ltd 熱可塑性樹脂組成物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4616042A (en) * 1985-06-14 1986-10-07 General Electric Company Low temperature impact modified thermoplastic foam
EP0522751B1 (en) * 1991-07-01 1998-04-01 General Electric Company Polycarbonate-polysiloxane block copolymers
ES2126064T3 (es) * 1993-07-09 1999-03-16 Gen Electric Composiciones de terpolimeros de bloques de siloxano y poliestercarbonato y policarbonatos resistentes al calor.
US6252013B1 (en) * 2000-01-18 2001-06-26 General Electric Company Method for making siloxane copolycarbonates
WO2001072900A1 (fr) * 2000-03-28 2001-10-04 Teijin Chemicals, Ltd. Composition de resine regeneree
JP2004047669A (ja) * 2002-07-11 2004-02-12 Mitsubishi Engineering Plastics Corp 樹脂容器
WO2004076512A2 (en) * 2003-02-21 2004-09-10 General Electric Company Transparent and high-heat polycarbonate-polysiloxane copolymers and transparent blends with polycarbonate and a process for preparing same
DE112004001304T5 (de) * 2003-07-18 2006-10-19 Idemitsu Kosan Co., Ltd. Lichtreflektierende Folie, Verfahren zu deren Herstellung und Formkörper davon
US20050085580A1 (en) * 2003-10-16 2005-04-21 General Electric Company Light-Colored Polycarbonate Compositions and Methods
US7135538B2 (en) * 2003-11-12 2006-11-14 General Electric Company Transparent polycarbonate-polysiloxane copolymer blend, method for the preparation thereof, and article derived therefrom
JP4541029B2 (ja) * 2004-05-20 2010-09-08 出光興産株式会社 遮光性高反射積層シート及びそれを用いてなる熱成形体及び筐体
US20060135737A1 (en) * 2004-12-22 2006-06-22 Davis Gary C Polycarbonates with fluoroalkylene carbonate end groups
WO2007050985A2 (en) * 2005-10-27 2007-05-03 Polnox Corporation Macromolecular antioxidants based on stξrically hindered phenolic phosphites
US8207288B2 (en) * 2007-05-08 2012-06-26 Idemitsu Kosan Co., Ltd. Polycarbonate polymer, coating liquid, and electrophotographic photosensitive body
JP5392717B2 (ja) * 2009-09-18 2014-01-22 東洋鋼鈑株式会社 給油パイプ
EP2562217B1 (en) * 2010-04-20 2017-05-10 Mitsubishi Gas Chemical Company, Inc. Transparent, fire-retardant aromatic polycarbonate resin composition and molded product
JP5706667B2 (ja) * 2010-11-08 2015-04-22 出光興産株式会社 ポリカーボネート系樹脂組成物、成形品、及び太陽光発電用構造部材
US8865342B2 (en) * 2010-11-17 2014-10-21 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and molded article
US8158701B1 (en) * 2011-02-02 2012-04-17 Sabic Innovative Plastics Ip B.V. Non-halogenated flame retardant polycarbonate compostions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4740445B1 (ja) 1970-06-18 1972-10-13
JPH1121441A (ja) 1997-05-06 1999-01-26 Idemitsu Petrochem Co Ltd 難燃性ポリカーボネート樹脂組成物及び該組成物を成形してなるハウジング及びバッテリーパック
JPH11293103A (ja) 1998-04-15 1999-10-26 Mitsubishi Eng Plast Corp ポリカーボネート樹脂組成物
JP2004035661A (ja) 2002-07-01 2004-02-05 Idemitsu Petrochem Co Ltd ポリカーボネート樹脂組成物及びそれからなる成形体
JP2006012657A (ja) 2004-06-28 2006-01-12 Sony Corp 二次電池の構造および二次電池パック
JP2011021127A (ja) 2009-07-16 2011-02-03 Idemitsu Kosan Co Ltd 携帯型電子機器筐体
WO2011030772A1 (ja) * 2009-09-14 2011-03-17 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形体
JP2011102364A (ja) * 2009-11-11 2011-05-26 Teijin Chem Ltd 熱可塑性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716713A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189653A (zh) * 2013-04-19 2015-12-23 出光兴产株式会社 聚碳酸酯系树脂组合物及成形体
US10072134B2 (en) 2013-04-19 2018-09-11 Idemitsu Kosan Co., Ltd. Polycarbonate-type resin composition and molded article
CN105189653B (zh) * 2013-04-19 2019-08-30 出光兴产株式会社 聚碳酸酯系树脂组合物及成形体
WO2015029841A1 (ja) * 2013-08-29 2015-03-05 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
CN105492532A (zh) * 2013-08-29 2016-04-13 出光兴产株式会社 聚碳酸酯树脂组合物及成形体
EP3040380A1 (en) * 2013-08-29 2016-07-06 Idemitsu Kosan Co., Ltd Polycarbonate resin composition and molded article
JPWO2015029841A1 (ja) * 2013-08-29 2017-03-02 出光興産株式会社 ポリカーボネート樹脂組成物及び成形体
EP3040380A4 (en) * 2013-08-29 2017-03-29 Idemitsu Kosan Co., Ltd Polycarbonate resin composition and molded article

Also Published As

Publication number Publication date
EP2716713A4 (en) 2014-11-05
EP2716713B1 (en) 2017-02-22
US20140106208A1 (en) 2014-04-17
TW201247773A (en) 2012-12-01
CN103562312A (zh) 2014-02-05
KR101870481B1 (ko) 2018-06-22
KR20140041510A (ko) 2014-04-04
JP2012246430A (ja) 2012-12-13
TWI600707B (zh) 2017-10-01
JP5852797B2 (ja) 2016-02-03
EP2716713A1 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5852797B2 (ja) 電池パック用ポリカーボネート樹脂組成物及び電池パック
JP5755226B2 (ja) ポリカーボネート系樹脂組成物及びその成形品
US6423766B1 (en) Flame-retardant polycarbonate resin composition and electrical and electronic components made by molding the same
JP6200137B2 (ja) ポリカーボネート系樹脂組成物、及び成形品
JP5988971B2 (ja) ポリカーボネート樹脂組成物及びそれを用いた成形体
JP5877098B2 (ja) ポリカーボネート樹脂組成物及びそれを用いた成形体
US9303119B2 (en) Current breaker case and current breaker using the same
CN108026364B (zh) 阻燃聚碳酸酯组合物、制备及使用其的方法
JP2016160278A (ja) 絶縁熱伝導性ポリカーボネート樹脂組成物
JP6541082B2 (ja) ポリカーボネート系樹脂組成物、及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137031827

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14123179

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012792978

Country of ref document: EP