WO2012165187A1 - 試料処理装置、試料処理方法、およびこれらに使用する反応容器 - Google Patents

試料処理装置、試料処理方法、およびこれらに使用する反応容器 Download PDF

Info

Publication number
WO2012165187A1
WO2012165187A1 PCT/JP2012/062891 JP2012062891W WO2012165187A1 WO 2012165187 A1 WO2012165187 A1 WO 2012165187A1 JP 2012062891 W JP2012062891 W JP 2012062891W WO 2012165187 A1 WO2012165187 A1 WO 2012165187A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem
reaction vessel
cover
reaction
magnetic
Prior art date
Application number
PCT/JP2012/062891
Other languages
English (en)
French (fr)
Inventor
宗郎 前嶋
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to DE112012002014.6T priority Critical patent/DE112012002014B4/de
Priority to CN201280026705.XA priority patent/CN103562727B/zh
Priority to US14/122,325 priority patent/US8906304B2/en
Publication of WO2012165187A1 publication Critical patent/WO2012165187A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1006Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
    • C12N15/1013Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by using magnetic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0332Component parts; Auxiliary operations characterised by the magnetic circuit using permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/284Magnetic plugs and dipsticks with associated cleaning means, e.g. retractable non-magnetic sleeve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/286Magnetic plugs and dipsticks disposed at the inner circumference of a recipient, e.g. magnetic drain bolt
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0099Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor comprising robots or similar manipulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/026Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1081Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane
    • G01N35/109Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices characterised by the means for relatively moving the transfer device and the containers in an horizontal plane with two horizontal degrees of freedom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/28Parts being easily removable for cleaning purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/103General features of the devices using disposable tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices
    • G01N35/1067Multiple transfer devices for transfer to or from containers having different spacing

Definitions

  • the present invention relates to a sample processing apparatus and a sample processing method for extracting a biological molecule such as a nucleic acid or protein from a biological sample containing cells, bacteria, viruses, etc., or in addition to separating and purifying it. Furthermore, it is related with the reaction container used for these sample processing apparatuses and sample processing methods.
  • PCR Polymerase® Chain Reaction
  • SDA Strand-Displacement-Amplification
  • 3SR Self-Sustained-Sequence-Replication
  • TMA Transcription-Mediated-Amplification
  • Q ⁇ -Replicase-Amplification method LAMP (Loop)
  • nucleic acid amplification methods such as -mediated (isothermal) amplification)
  • the application range of nucleic acid testing is expanding. Therefore, the need for techniques for extracting, separating, and purifying nucleic acids from biological samples more rapidly and simply will increase.
  • a phenol / chloroform extraction method is known as a method for extracting, separating and purifying nucleic acids such as DNA and RNA from biological samples.
  • this method has a heavy burden on the operator because of the use of an organic solvent and complicated operation. Therefore, in order to solve this problem, as a method for extracting, separating and purifying nucleic acid from a biological sample, a method utilizing the property of binding nucleic acid to silica or glass fiber in the presence of a chaotropic agent (for example, non-patent) Document 1) was proposed, and an apparatus for automatically performing nucleic acid extraction was also developed (for example, Patent Documents 1 and 2).
  • a chaotropic agent for example, non-patent
  • the flow of nucleic acid extraction, separation, and purification that is usually performed in an automatic apparatus is as follows (1) to (6).
  • Patent Document 1 is a so-called batch process in which a plurality of samples are processed simultaneously when processing a plurality of samples, and does not continuously process samples provided randomly.
  • the automated device described in Patent Document 2 is described as “installing a plurality of sets of extraction devices in the apparatus main body” when processing a plurality of samples, and a vertical movement mechanism of a plurality of arms; A large number of drive units such as a movement mechanism for a plurality of arm positions are required.
  • Patent Document 2 also states that a plurality of sample containers can be mounted at the same time, but clearly states that they can be processed at the same time, and batch processing that performs the same operation by sharing the drive units of a plurality of extraction devices. In this case, too, a randomly provided specimen cannot be processed at any time.
  • An object of the present invention is to batch process biological samples (for example, specimens) in an apparatus for reacting a biological sample with a reagent to perform a series of processing, or to perform random processing at random and continuous processing as needed.
  • Another object of the present invention is to provide a sample processing apparatus, a sample processing method, and a reaction vessel used for these.
  • sample processing apparatus 1 That is, a sample is provided with a reaction container in which a series of processes are performed by reacting a biological sample with a reagent, and the reaction container is provided with a plurality of processing units arranged to perform the series of processes.
  • a reaction vessel set part capable of juxtaposing a plurality of the reaction vessels;
  • a reaction vessel moving mechanism for moving the reaction vessel set in the reaction vessel set unit independently in the arrangement direction of the processing unit for each reaction vessel;
  • a plurality of stems used for the series of processes in cooperation with the reaction vessel are arranged to be movable up and down above the reaction vessel set portion corresponding to each reaction vessel, and these stems are arranged in the reaction vessel.
  • a stem mechanism arranged in a direction crossing the moving direction of the containers and arranged at a pitch according to the pitch between the processing parts of the reaction containers juxtaposed in the reaction container set part, A stem vertical movement mechanism for moving the stem mechanism up and down;
  • the reaction container moving mechanism and the stem vertical movement mechanism are interlocked, and when the corresponding processing unit of each reaction container comes directly under the stem mechanism according to the processing procedure,
  • a control unit that performs control of a tool to be mounted (for example, a magnetic chip and its cover) entering and exiting the processing unit; It is characterized by providing.
  • the reaction vessel is for extracting at least a biological molecule from the biological sample using a reagent and magnetic beads, and as the processing unit, A reaction part to which the biological sample, a reagent for biological molecule extraction, a magnetic bead for biological molecule adsorption are supplied; and A magnetic chip storage unit for storing a magnetic chip used for recovering the magnetic beads adsorbed with biological molecules to be attached to and detached from the stem; A cover storage section for storing the cover of the magnetic chip to be attached to and detached from the stem; A washing unit containing a washing liquid for washing the magnetic beads adsorbing the biological molecules; An elution part for receiving the washed magnetic beads and eluting the biological molecules from the surface of the magnetic beads; Is provided.
  • the stem mechanism is an integral stem mechanism in which a plurality of the stems are integrally supported to be vertically movable,
  • the stem vertical movement mechanism has a mechanism for periodically moving the integrated stem mechanism up and down by one drive source according to a control signal from the control unit,
  • the reaction container moving mechanism is controlled by the control unit so that a plurality of the processing units come directly below the stem vertical moving mechanism according to the processing order in accordance with the periodic vertical movement of the stem vertical moving mechanism. Is done.
  • the reaction vessel moving mechanism is a mechanism for moving the reaction vessel set in the reaction vessel setting unit in a linear direction, or the reaction vessel set in the reaction vessel setting unit is centered on one axis. It is a mechanism for moving the lens in the rotation direction.
  • the magnetic tip and the cover are open at the base end opposite to the tip, the inside diameter of the opening is larger than the magnetic tip, and a flange is provided at the periphery of each opening.
  • Part The stem is provided with a different outer diameter portion for attaching and detaching the magnetic tip and the cover through each opening from the stem tip side to the stem middle portion,
  • An attachment / detachment mechanism for engaging and disengaging is provided.
  • the attachment / detachment mechanism is composed of an upper pressing plate and a lower pressing plate provided facing the upper part of the opening of the processing unit, and these pressing plates are adapted to the outer diameters of the magnetic chip and the cover. And a notch having a different curvature for receiving the eccentric movement is provided, These notches are arranged in the moving direction of the reaction vessel, and the openings of the notches are also directed in the moving direction of the reaction vessel.
  • the reaction container includes a reaction container in which a series of processes relating to at least extraction of biological molecules from a biological sample is performed using a reagent and magnetic beads,
  • the processing unit at least, A reaction part to which a biological sample, a reagent for biological molecule extraction, a magnetic bead for biological molecule adsorption are supplied;
  • a magnetic chip storage unit for storing a magnetic chip used for recovering the magnetic beads adsorbed with biological molecules to be attached to and detached from the stem;
  • Proposed is a sample processing apparatus 2 including a cover storage portion for storing the cover of the magnetic chip to be attached to and detached from the stem.
  • the sample processing apparatus (2) is used for the series of processing,
  • the reaction vessel is set in the reaction vessel setting unit as needed, and each reaction vessel is moved by the reaction vessel moving mechanism so that the corresponding processing unit comes directly under the integrated stem according to the series of processes.
  • a process of independently controlling movement When the processing unit comes directly below the integrated stem mechanism, the step of controlling the magnetic chip or the cover attached to the corresponding stem to enter and exit the processing unit; It is characterized by including. (Ancillary aspects)
  • the sample method of the present invention includes the following optional embodiments.
  • the stem mechanism is configured to periodically move up and down in conjunction with the movement control of the reaction vessel, and to provide a predetermined stop period when the stem mechanism is at the top dead center or the bottom dead center.
  • the attachment / detachment mechanism includes an upper presser plate and a lower presser plate that are provided facing the upper part of the opening of the processing unit, and these presser plates are adapted to the outer diameters of the magnetic chip and the cover.
  • reaction vessel There is a notch that accepts eccentric movement, These notches are arranged in the direction of movement of the reaction vessel, and the openings of the notches are also directed in the direction of movement of the reaction vessel,
  • the step of independently controlling the movement of the reaction vessel by the reaction vessel moving mechanism includes the eccentric movement for detaching the magnetic chip or the cover from the corresponding processing unit in addition to the movement between the processing units. Including the control to be performed. (Reaction vessel) Furthermore, the following is proposed as a reaction vessel used in the sample processing apparatus and method described above.
  • a reaction vessel used to extract biological molecules from a biological sample using a reagent and magnetic beads has a box shape and is arranged so that the series of processing is performed on the box-shaped body.
  • a reaction vessel provided with a plurality of wells
  • As the well at least, A reaction well supplied with a biological sample, a reagent for biological molecule extraction, a magnetic bead for biological molecule adsorption; A magnetic chip storage well for storing a magnetic chip used for recovering the magnetic beads adsorbed with biological molecules to be attached to and detached from the stem; and A cover storage well for storing the cover of the magnetic chip to be attached to and detached from the stem, Further, when the magnetic chip or the cover is selectively inserted into any one of these wells, the magnetic chip or the cover is moved eccentrically with respect to the well via the reaction container.
  • the attachment / detachment mechanism includes an upper presser plate and a lower presser plate that are provided facing the upper part of the opening of the processing unit, and these presser plates are adapted to the outer diameters of the magnetic chip and the cover. There is a notch that accepts eccentric movement, These notches are provided so as to coincide with the well arrangement direction, and the openings of these notches are also directed in the well arrangement direction. (Ancillary aspects)
  • the reaction container according to the present invention optionally includes the following aspects.
  • the upper pressing plate and the lower pressing plate are shared by the magnetic chip and the cover, and each pressing plate has a curvature corresponding to the outer diameter of the magnetic chip and a curvature corresponding to the outer diameter of the cover.
  • the notch element which has these is formed in a composite.
  • the upper pressing plate and the lower pressing plate are separately arranged for the magnetic chip and the cover, and the upper pressing plate and the lower pressing plate for the magnetic chip are arranged on the outer side of the magnetic chip.
  • a notch having a curvature corresponding to the diameter is formed, and a notch having a curvature corresponding to the outer diameter of the cover is formed on the upper pressing plate and the lower pressing plate for the cover.
  • a biological sample is batch-processed in a series of processes (for example, processes for extracting, separating and purifying biological molecules such as nucleic acids and proteins) by reacting a biological sample with a reagent. It is possible to provide a sample processing apparatus, a sample processing method, and a reaction vessel used for these which can be processed or can be randomly input and continuously processed as needed.
  • FIG. 1 It is a perspective view which shows typically the structural example of the sample processing apparatus which concerns on this invention.
  • FIG. 1 it is sectional drawing which looked at the set part of the reaction container from the x-axis direction.
  • FIG. 1 it is sectional drawing which looked at a part of set part of the reaction container from the y-axis direction.
  • FIG. 1 it is a top view of the reaction container group which shows an example of an arrangement
  • FIG. 1 it is a top view of the reaction container group which shows the other example when a reaction container is set to the setting part of a reaction container at any time, and is moved independently.
  • FIG. 6A It is a figure which shows an example of the stem of the sample processing apparatus which concerns on this invention, a magnetic chip, and a cover. It is a figure which shows an example when a magnetic chip
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the raise process from which the stem with which the cover was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which a reaction container moves to a y-axis direction so that a reaction well may come directly under the stem with which the cover was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the stem with which the cover was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the stem with which the cover was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which a reaction container moves to a y-axis direction so that a cover storage well may come right under the stem with which the cover was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the stem with which the cover was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the stem with which the cover was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the reaction vessel moves (eccentric) in the y-axis direction after the stem attached with the cover descends to the cover storage well and reaches the bottom dead center.
  • it is a cross-sectional schematic diagram which shows the process in which a stem detaches and raises a cover.
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which a reaction container moves to a y-axis direction so that a magnetic chip storage well may come right under a stem.
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which a stem falls to a magnetic chip storage well.
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the reaction container moves to a y-axis direction.
  • it is a cross-sectional schematic diagram which shows the process in which the stem with which the magnetic chip was mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the stem equipped with the magnetic chip and the cover raises.
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which a reaction container moves to a y-axis direction so that a reaction well may come directly under the stem with which the magnetic chip and the cover were mounted
  • sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the stem equipped with the magnetic chip and the cover descends to the reaction well.
  • the sample processing method of a present Example it is a cross-sectional schematic diagram which shows the process in which the stem equipped with the magnetic chip and the cover collects magnetic beads.
  • FIG. 1 schematically shows a configuration example of a sample processing apparatus according to the present invention.
  • the sample processing apparatus includes a mounting table 101, a sample rack 102 that can store a sample container filled with a biological sample to be processed, a reagent rack 103 that can store a plurality of reagent bottles, and a chip that stores a plurality of disposable chips.
  • a rack 104 a waste container 117 for discarding waste, a nozzle mechanism 105 disposed at a position facing one surface of the mounting table 101 so as to be movable in the x-axis, y-axis, and z-axis directions, and a nozzle mechanism 105, a drive control unit 109 that controls the movement, aspiration, and discharge of the 105, a reaction vessel 110 that performs a series of processes for extracting, separating, and purifying biological molecules from a biological sample, and cooperating with the reaction vessel 110
  • the integrated stem mechanism 111 used for performing the series of processes, the reaction vessel setting unit 120 in which a plurality of reaction vessels 110 can be juxtaposed, and the reaction vessel setting unit 12
  • Reaction container moving mechanism (reaction container mounting stage 201, movable element 202, screw rod 203, servo motor (actuator) in FIG. 2A) that translates (reciprocally moves) the reaction container 110 set in the chamber independently for each reaction container. 116).
  • the biological sample in the text is not particularly limited, but (1) biological samples such as blood, plasma, tissue fragments, body fluids and urine collected from animals including humans, and (2) animal cells and plant cells. And cells such as insect cells, (3) microorganisms such as bacteria, fungi and algae, and (4) viruses (including virus-infected cells).
  • the biological sample includes a culture solution in which these cells, microorganisms and viruses are cultured, and a suspension in which these cells, microorganisms and viruses are suspended.
  • these biological samples contain biological molecules that are subject to separation and extraction and purification by a sample processing apparatus.
  • the biological molecule means nucleic acids such as DNA and RNA, proteins such as enzymes and antibodies, and peptide fragments.
  • the sample processing apparatus according to the present invention is not limited to nucleic acids, proteins, and peptide fragments, but is also subject to compounds (organic compounds and low molecular compounds) produced by cells and microorganisms. Including.
  • the sample rack 102 has a box shape that can accommodate a plurality of sample tubes filled with different or identical biological samples.
  • the sample rack 102 is arranged so that a plurality of sample tubes can be dispensed by the nozzle mechanism 105, and the dispensed sample tubes can be taken out of the apparatus and the next sample tube can be set.
  • the reagent rack 103 has a box shape that can accommodate a plurality of reagent bottles. Different reagent bottles can be accommodated in the reagent rack 103 depending on the processing performed on the biological sample.
  • a reagent bottle of a solution containing a chaotropic agent, a reagent bottle of a washing liquid, a reagent bottle of an eluent, and an oil to be dispensed into the reaction container 110 are used.
  • Reagent bottles and the like can be accommodated in the reagent rack 103.
  • the reaction container 110 is a box-shaped container in which wells to be described later are arranged in a row. There are various types of wells. In this embodiment, the cover storage well 501, the magnetic chip storage well 502, the reaction well 503, the cleaning well (# 1) 504, the cleaning well (# 2) are shown in FIG. 5A. ) 505, elution well 506 is illustrated.
  • a plurality of reaction vessels 110 can be collectively set in the sample processing apparatus for the purpose of batch processing, but any number can be set in the sample processing apparatus, and additional sets can be made as necessary. A series of processing can proceed independently at random.
  • the set portion 120 of the reaction vessel 110 includes a mechanism that allows each reaction vessel 110 to independently translate (straight). The translation mechanism and the reaction vessel will be described in detail later.
  • the nozzle mechanism 105 is not illustrated, the inside has a cylindrical shape and is connected to a suction / discharge driving device such as a pump.
  • the nozzle mechanism 105 moves in the x-axis direction along the nozzle mechanism moving guide X108, moves in the y-axis direction along the nozzle mechanism moving guide Y107, and moves in the z-axis direction along the nozzle mechanism moving guide Z106. Moving. Since the drive mechanism for moving these three axes in the x-axis, y-axis, and z-axis directions is well known, detailed description thereof is omitted.
  • the nozzle mechanism 105 moves between the sample rack 102, the reagent rack 103, and the reaction container setting unit 120 on the mounting table 101 by a combination of the movements in the x-axis direction, the y-axis direction, and the z-axis direction, and aspirates the sample and the reagent.
  • the nozzle mechanism 105 can aspirate the sample from the sample rack 102, move to the reaction well 503 in the reaction container 110, and discharge the sample to the well. Further, the nozzle mechanism 105 can aspirate the reagent from the reagent rack 103, move to the reaction well 503 in the reaction container 110, and discharge the reagent to the well. Further, the nozzle mechanism 105 can aspirate the cleaning liquid from the reagent rack 103, move to the cleaning well (# 1) 504 and the cleaning well (# 2) 505 of the reaction container 110, and discharge the cleaning liquid to the well. The nozzle mechanism 105 can suck the extract from the reagent rack 103, move to the elution well 506 of the reaction vessel 110, and discharge the extract to the well.
  • the nozzle mechanism 105 can be mounted with a disposable chip mounted on the chip rack 104 at the tip.
  • the user of the sample processing apparatus can replace the disposable chip mounted on the nozzle mechanism 105 with that on the chip rack 104 as necessary.
  • the disposable chip can be manufactured using a resin such as polyethylene, polypropylene, and polycarbonate.
  • reagent rack 103 may be unnecessary.
  • tip rack 104 may be unnecessary.
  • An integrated stem mechanism 111 is disposed above the reaction vessel setting unit 120 so as to be movable in the vertical direction (z-axis direction).
  • the integrated stem mechanism 111 includes a plurality of stems (401a to 401d) and a stem vertical movement mechanism 130 that supports these stems integrally and moves them in the z-axis direction.
  • the plurality of stems (401a to 401d) are supported by a common support member 131 via respective stem holders (113a to 113d), and are uniaxially (z-axis direction) by the stem vertical movement mechanism 130 via the support member 131. Do exercise.
  • the stem vertical movement mechanism 130 includes various mechanisms such as a mechanism that converts the rotational motion of a motor (actuator) into a linear motion in the z-axis direction, and a mechanism that performs linear motion in the z-axis direction by turning on and off the solenoid (actuator).
  • actuator a mechanism that converts the rotational motion of a motor (actuator) into a linear motion in the z-axis direction
  • solenoid actuator
  • the form is not limited.
  • the stem vertical movement mechanism 130 moves the support members 131 common to the plurality of stems up and down to enable the plurality of stems to move up and down collectively with a single driving device. In this way, the number of drive devices can be reduced.
  • the present invention is not limited to this.
  • the number of motors used as the servo motor (actuator) of the stem vertical movement mechanism 130 is one for the entire stem, and the rotating shaft that rotates thereby is common.
  • a mechanism (for example, a cam mechanism) that converts the rotation of the rotation shaft in the z-axis direction may be provided in each stem, and the stem may be configured to move up and down by each cam operation. It is also possible to provide a mechanism such as a solenoid for each stem and individually move the stem up and down as long as there is no cost problem.
  • These stems (401 a to 401 d) form a row in a direction (x-axis direction) intersecting the moving direction (y-axis direction) of the reaction container 110, and the wells of the reaction containers 110 arranged in parallel in the reaction container setting unit 120. They are arranged at a pitch that matches the pitch between the processing units. Positions (x-axis and y-axis direction positions) other than the position in the z-axis direction of the integrated stem mechanism 111 are fixed. Located above any well.
  • the integrated stem mechanism 111 performs a periodic vertical motion at a timing determined by the integrated stem mechanism drive control unit 112.
  • the integrated stem mechanism 111 includes a number of stems equal to the maximum number of reaction vessels 110 that can be set in the reaction vessel setting section 120.
  • the reaction vessel setting unit 120 can arbitrarily arrange reaction vessels 110 equal to or less than the number of stems.
  • the stems of the integrated stem mechanism 111 can be parallelized to, for example, about 8 to 12 stations. By parallelizing the stems, the processing capacity (throughput) per unit time can be improved.
  • the reaction vessel 110 can move in the y-axis direction along the guide groove 115 at a timing determined by a servo motor (actuator) 116 as will be described later (in FIG. 1, the reaction vessel 110 is a solid line). Move in the dashed area).
  • the sample processing apparatus also includes a computer 133 that comprehensively controls the nozzle mechanism drive control unit 109, the integrated stem mechanism drive control unit 112, and the reaction vessel drive control unit 132.
  • the computer 133 inputs processing conditions, information on a biological sample, and other various information, and generates a control signal for executing a sample processing method described later.
  • (Move reaction vessel) 2A is a schematic cross-sectional view of the reaction container setting unit 120 in FIG. 1 as viewed from the x-axis direction
  • FIG. 2B is a schematic cross-sectional view of the reaction container in FIG. 1 as viewed from the y-axis direction.
  • the reaction vessel 110 is placed on the upper surface of the stage 201.
  • a plurality of movers 202 are attached to the lower surface of the stage 201.
  • the mover 202 is provided with a female screw, and a screw rod 203 passes through the female screw.
  • the screw rod 203 is rotationally driven by a servo motor (actuator) 116.
  • Servo motors (actuators) 116 are provided by the maximum number of reaction containers 110 that can be set (placed side by side) in the reaction container setting unit 120, and are driven and controlled by a control signal from the reaction container drive control unit 132. By driving the servo motor (actuator) 116, the reaction vessel 110 can move along with the stage 201 in the y-axis direction (the direction of the arrow in FIG. 2A) along the guide groove 115.
  • the reaction vessels 110 can be set in the reaction vessel setting section 120 within a range in which a maximum number of sets can be set, and each of them is independently moved (translated) by the corresponding servo motor (actuator) 116 in the well arrangement direction. Be controlled. As shown in FIG. 1, when a plurality of reaction vessels (110a to 110d in FIG. 3A) are set (arranged) from the beginning, each reaction vessel is controlled by a corresponding servo motor (actuator) 116.
  • the movement of the reaction vessel is independently controlled via each servo motor (actuator) 116, and different well positions between the reaction vessels are directly below the integrated stem mechanism 111 according to the respective processing conditions. It is also possible to control as described above. Further, (iii) regardless of whether the processing conditions are the same or different, an arbitrary number of reaction vessels are additionally set in the reaction vessel setting section as needed (ie, with a time difference). It is also possible. In this case as well, the movement of the reaction vessel is independently controlled via each servo motor (actuator) 116 as in (ii).
  • FIG. 3A is a schematic plan view showing an example of the case where the reaction container is independently moved and controlled as in (ii) and (iii) above.
  • Sample processing can be performed continuously at any time. That is, even if it does not wait until the process of one reaction container is complete
  • FIG. 3A shows the movement state of the reaction vessel after setting the reaction vessels 110a to 110c with a time difference as needed, and further shows an empty state in which the reaction vessel (110d) can be added if necessary.
  • the stem of the integral stem mechanism and the reaction vessel can be arranged in parallel, for example, up to about 12 stations.
  • FIG. 3B shows a plan view of another embodiment of the reaction vessel, the reaction vessel setting unit, and the reaction vessel moving mechanism.
  • the reaction vessels are illustrated as being capable of translational movements independently, but in FIG. 3B, instead of this, reaction vessels 110 ′ (110a ′ to 110d ′) are uniaxially (not shown).
  • reaction vessels 110a ′ to 110d ′ move in the area of the solid line and the broken line).
  • the stem mechanism 111 ′ performs the same operation as the stem mechanism 111 described above by the stem vertical movement mechanism.
  • the reaction container group has a fan shape when viewed from above.
  • the stem 401 is provided with different outer diameter portions for attaching and detaching the magnetic tip and the cover through the openings of the magnetic tip 402 and the cover 405 from the end of the stem to the middle portion of the stem.
  • each stem 401 can be covered with a magnetic chip 402 and a cover 405 or directly with a cover 405 without covering the magnetic chip 402.
  • Each of the magnetic tip 402 and the cover 405 has an opening at the base end opposite to the tip, the inside diameter of the opening is larger in the cover 405 than in the magnetic tip 402, and a flange is provided at the periphery of each opening. Part (404 and 406).
  • the magnetic tip 402 has a shape in which the inner diameter of the base end portion is substantially the same as that of the distal end portion of the stem 401 and the diameter becomes smaller toward the distal end.
  • the proximal end of 402 can be fitted.
  • the magnetic chip 402 has a magnetic body 403 that generates a magnetic field at the tip.
  • the cover 405 has an inner diameter at the base end that is substantially the same as the intermediate portion of the stem 401 and has a shape that decreases in diameter toward the tip.
  • the base end of the cover 405 is fitted to the intermediate portion of the stem 401. be able to.
  • FIG. 5A is a perspective view showing a configuration example of a reaction vessel in the sample processing apparatus according to the present invention.
  • FIG. 5B shows a plan view of FIG. 5A.
  • the reaction vessel 110 has a substantially box shape, and has wells 501 to 506 serving as a plurality of processing units into which various reagents are dispensed.
  • each well is described as a cover storage well 501, a magnetic chip storage well 502, a reaction well 503, a cleaning well (# 1) 504, a cleaning well (# 2) 505, and an elution well 506.
  • the number can be changed as appropriate according to the type of analysis. For example, if washing is an important analysis, additional washing wells may be added.
  • the plurality of wells 501 to 506 of the reaction vessel 110 are formed as depressions having a predetermined volume.
  • Each well forms a recess having a depth at which the bottom surface of the well and the cover do not come into contact with each other when the stem 401 equipped with the cover 405 reaches the bottom dead center.
  • the elution well 506 is formed as a hollow portion shallower than the reaction wells 501 to 505 so as to be smaller than the volume of the reaction wells 501 to 505.
  • the number and volume of wells are not particularly limited, and can be set as appropriate according to the content of processing on a biological sample.
  • each well of the reaction vessel 110 includes an attachment / detachment mechanism for attaching / detaching the magnetic chip 402 and the cover 405 attached to the stem 401.
  • this attachment / detachment mechanism will be described in detail.
  • the attachment / detachment mechanism includes an upper pressing plate 507 and a lower pressing plate 508 for holding the magnetic chip 402 and the cover 405.
  • the upper presser plate 507 and the lower presser plate 508 are disposed substantially parallel to each other with a predetermined interval immediately above the opening of each well. Further, as shown in FIG. 5B, the upper pressing plate 507 and the lower pressing plate 508 are provided with a notch portion 509 facing each well, and the notch portion 509 has two types of notch elements 509a having different curvatures. , 509b.
  • the notch element 509 a has a curvature larger than that of the flange portion 406 with a curvature equal to or smaller than the outer diameter of the cover so that the notch element 509 a can be adapted to the outer diameter of the cover 405.
  • the notch element 509 b has a curvature larger than that of the flange portion 404 with a curvature equal to or smaller than the outer diameter of the magnetic tip so that it can be adapted to the outer diameter of the magnetic tip 402.
  • the notch 509 has a two-stage notch structure by the notch elements 509a and 509b.
  • the notch element 509b is in a position deeper than the notch element 509a, and the openings of the notch elements 509a and 509b are respectively directed to the center of the well.
  • the one end opposite to the opening of the notch element 509b is formed so as to be located immediately above or almost directly above the well opening edge.
  • the notches 509 corresponding to the wells 501 to 506 are formed in a straight line in the moving direction when the reaction vessel 110 is mounted on the reaction vessel setting unit 120.
  • the openings of the notch elements 509a and 509b are oriented in the reaction container moving direction.
  • the cover 405 and the magnetic tip 402 are concentric with the well or at a position eccentric to the opposite side of the notch 509, the flange 406 or 404 is detached from the holding plates 507 and 508, and the cover and the magnetic tip are placed in the well. On the other hand, it can be put in and out (inserted and removed), that is, can be attached and detached.
  • the pressing plate for the magnetic chip cover and the pressing plate for the magnetic chip are constituted by the common upper pressing plate 507 and the lower pressing plate 508, and one notch portion 509 is formed on these pressing plates 2 It comprises stepped cutout elements 509a and 509b.
  • a magnetic chip cover pressing plate and a magnetic chip pressing plate are separately provided, and the former is constituted by an upper pressing plate 507a and a lower pressing plate 508a.
  • the latter is composed of an upper pressing plate 507b and a lower pressing plate 508b, and two types of notch elements (notch portions) 509a and 509b having different curvatures are separately formed on the former and latter pressing plates. Also good.
  • the former and the latter pressing plates may be arranged in steps.
  • the cover 405 when the flange portion 406 of the cover 405 is hooked on the holding plates 507a and 508a, the cover 405 may be eccentric to the well portion 509a side. Further, when the flange portion 404 of the magnetic tip 402 is hooked on the pressing plates 507b and 508b, the magnetic tip 402 may be eccentric to the notch 509b side with respect to the well.
  • the openings of the notches 509a and 509b are also directed toward the well center in the moving direction of the reaction vessel 110.
  • an oil layer may be added to the upper part of each reaction well in order to prevent volatilization or bringing liquid into an adjacent well.
  • Such an oil reservoir technology is disclosed in Japanese Patent Application No. 2009-285343, which is the prior application of the applicant of the present application.
  • the magnetic chip 402 is stored in advance in the magnetic chip storage well 502 of the reaction container 110 (502 in FIG. 7A) and set together with the reaction container 110 in the apparatus. This storage may be performed by the manufacturer supplying the reaction vessel, or by the user each time.
  • the cover 405 is stored in advance in the cover storage well 501 of the reaction vessel 110 (501 in FIG. 7A) and set together with the reaction vessel 110 in the apparatus. This storage may be performed by the manufacturer supplying the reaction vessel, or by the user each time.
  • the chip rack 104 has a plurality of openings for accommodating a plurality of disposable chips. This opening has a diameter that is slightly larger than the outer diameter of the disposable chip and slightly smaller than the flange of the disposable chip.
  • the waste container 117 is a container for discarding used disposable chips, magnetic chips 402 and cover 405, biological samples after treatment, washing liquid, and the like, and has a box shape.
  • the waste container 117 preferably includes a removal mechanism for removing a disposable chip, a magnetic chip 402, and a cover 405 attached to a part of the distal end side of the stem 401 or an intermediate part.
  • a removing mechanism for example, a pressing plate that abuts against the flange portion of the disposable tip, the flange portion 404 of the magnetic tip 402 and the flange portion 406 of the cover 405 and drives the stem 401 upward to push down the flange portion downward. Can be adopted. It should be noted that the removal mechanism only needs to be provided in one of the stem 401 and the waste container 117.
  • the nozzle mechanism drive control unit 109 includes a power source such as a motor, a drive mechanism including a gear mechanism and an arm that transmits power from the power source, and the nozzle mechanism 105 described above with the x axis in FIG. and a control board for outputting a control signal to the drive mechanism for causing a dispensing operation by movement and suction / discharge along the y-axis and the z-axis.
  • a control board for outputting a control signal to the drive mechanism for causing a dispensing operation by movement and suction / discharge along the y-axis and the z-axis.
  • various conditions set by the operator on the computer 133 are input or various conditions set in advance are read out and used.
  • the sample processing apparatus described above has a configuration in which the reaction vessel 110 having a cover attaching / detaching mechanism is attached to the mounting table 101.
  • the sample processing apparatus may include a cover removal mechanism at a position where the reaction container 110 is attached. That is, the sample processing apparatus may have a cover attaching / detaching mechanism.
  • the sample processing apparatus configured as described above can perform various processes on biological samples.
  • a sample processing method will be described by taking as an example an embodiment in which a process of extracting a nucleic acid component from a biological sample is performed.
  • the sample processing method includes (1) mixing a silica-coated magnetic bead in the presence of a chaotropic agent with a sample containing nucleic acid and other impurities, and (2) adsorbing the nucleic acid on the surface of the magnetic bead. (3) separating the magnetic beads adsorbing the nucleic acid, and (4) performing nucleic acid extraction by eluting the nucleic acid from the magnetic beads after washing.
  • the integrated stem mechanism 111 above the plurality of reaction vessels 110 is an integrated type, it performs only a simple vertical movement or a preset periodic vertical movement.
  • the preset periodic up / down motion is, for example, a reciprocating motion between the top dead center and the bottom dead center, not a simple reciprocating motion, but 0.5 seconds at the top dead center and bottom dead center or at a specific height.
  • a periodic operation that is set so as to provide a stop time.
  • each reaction vessel 110 independently translates in the preset y-axis direction. For example, when it is necessary to move the stem 401 attached with the cover 405 up and down in the washing well (# 1) 504 with respect to the first reaction vessel 110a, the stage 201 on the mounting table 101 on which the reaction vessel 110a is placed is If the washing well (# 1) 504 is moved in the y-axis direction and positioned immediately below the cover 405 and stopped, the cover 405 directly connected to the integrated stem mechanism 111 that simply moves up and down is removed from the washing well (# 1). ) Move up and down within 504. At this time, the adjacent reaction vessels 110b can be arranged at completely different positions from the cover 405 by a program that uniquely controls the translational movement in the y-axis direction.
  • reaction vessel 110 If the reaction vessel 110 is not mounted on the stage 201 by the independent translational movement in the y-axis direction for each reaction well 110, the reaction vessel 110 can be mounted at any time, and the sample is continuously loaded. Can be realized.
  • a reaction well 503 includes a biological sample to be processed, a solution 701 containing a chaotropic agent and a surfactant, a washing well (# 1) Dispense the washing solution into the washing well (# 2) 504 and the elution solution into the elution well 506.
  • a disposable tip is attached to the nozzle mechanism 105.
  • the nozzle mechanism 105 is controlled by the nozzle mechanism drive control unit 109, the center of the base end of the disposable chip accommodated in the chip rack 104, and the tip of the nozzle mechanism 105.
  • the disposable chip can be attached to the tip of the nozzle mechanism 105 by moving the nozzle mechanism 105 downward (z-axis) under the control of the nozzle mechanism drive control unit 109.
  • the disposable chip can be attached to the nozzle mechanism 105 by the series of operations described above.
  • the nozzle mechanism 105 is moved above the reagent rack 103 under the control of the nozzle mechanism drive control unit 109, the tip of the disposable chip is inserted into the reagent bottle, pump means (not shown), etc. A predetermined amount of solution is sucked by the suction / discharge driving device.
  • the nozzle mechanism drive control unit 109 the nozzle mechanism 105 is moved above the reaction vessel 110, and the tip of the disposable chip is positioned on a predetermined well (any one of 501 to 506).
  • the suction / discharge driving device operates, and the solution sucked into the disposable chip can be dispensed into a predetermined well (any one of 501 to 506).
  • the nozzle mechanism 105 When dispensing of the solution is completed, the nozzle mechanism 105 is moved above the waste container 117 under the control of the nozzle mechanism drive control unit 109, and a removal mechanism (not shown) attached to the nozzle mechanism 105 or the waste container 117 is shown. To dispose of the used disposable chip.
  • the above series of operations are operations common when dispensing a solution containing a cleaning solution, an eluent, a chaotropic agent or a surfactant.
  • the biological sample is dispensed by the above series of operations except that a predetermined amount of biological sample is aspirated from the sample tube accommodated in the sample rack 102.
  • different disposable tips were used, but depending on the reaction, disposable tips are used. It does not have to be.
  • the nozzle mechanism 105 dispenses various reagents and specimens on the apparatus, but the various reagents may be dispensed into the reaction container 110 by the manufacturer in advance, or an analyst in advance outside the apparatus. You may implement. The sample may be dispensed by an analyst outside the apparatus.
  • silica-coated magnetic beads 702 are dispensed into a reaction well 503 into which a biological sample to be treated has been dispensed by a magnetic bead dispensing mechanism (not shown).
  • the magnetic beads 702 may be dispensed into the reaction well 503 in advance, or a solution in which the magnetic beads 702 are dispersed may be dispensed into the reaction well 703 in the same manner as the operation of the nozzle mechanism 105 described above. good.
  • the biological sample may be dispensed together with the magnetic beads 702 or sequentially at this stage.
  • the magnetic beads 702 may be of any material, shape and particle size as long as the beads have characteristics as a magnetic material conventionally used in the field of biotechnology. Further, when nucleic acid extraction processing is performed in the sample processing apparatus, magnetic beads 702 having nucleic acid adsorption ability are used. The nucleic acid adsorption ability can be imparted by coating the surface of beads made of a magnetic material with silica.
  • the nucleic acid component contained in the biological sample is adsorbed on the surface of the magnetic beads 702 coated with silica.
  • the inside of the reaction well 503 may be stirred.
  • a method of moving the magnetic beads 702 inside by periodically applying a magnetic field from the outside of the reaction vessel 110, or a cover 405 is attached to the stem 401 and integrated.
  • a method can be used in which the integrated stem mechanism 111 is controlled by the shaft mechanism drive control unit 112 and the cover 405 attached to the stem 401 is swung inside the reaction well 503 (FIG. 7H).
  • an oil layer may be added to the upper part of each reaction well in order to prevent volatilization or bringing liquid into adjacent wells.
  • a series of operations as points in the present embodiment are performed in the wells 501 to 506, as shown in FIG. 7A, respectively, the cover 405, the magnetic chip 402, the reaction solution (sample, reagent). And after preparing magnetic beads, a washing solution, and an eluent, it is carried out as follows.
  • the integrated stem mechanism 110 moves up and down by the stem vertical movement mechanism, and each reaction vessel 110 moves through the stage 201 in the well arrangement direction by each reaction vessel movement mechanism. . Further, these moving mechanisms are interlocked and controlled via the stem mechanism drive control unit 112 and the reaction vessel drive control unit 132 in accordance with a control command from the host computer 113.
  • FIG. 7A shows a state in which a reaction container in which a reagent and a sample including magnetic beads are dispensed is mounted on the reaction container setting unit 120 on the apparatus.
  • the plurality of stems 401 perform a periodic vertical movement set at a predetermined position (position shown in FIG. 1).
  • a periodic operation set to provide a stop time of 0.5 seconds at the top dead center and the bottom dead center.
  • a cover 405 is attached to the stem 401 in order to stir the mixed solution in the reaction well 503.
  • the reaction vessel 110 While the integrated stem mechanism 111 is at the top dead center and is stopped for 0.5 seconds, the reaction vessel 110 is moved so that the cover storage well 501 comes directly under the stem 401 (note that the subsequent reaction vessel 110 Is also done via the stage). After a waiting time of 0.5 seconds, the stem 401 is lowered (FIG. 7B), and the cover 405 is attached to the stem 401 (FIG. 7C). The cover is attached at the bottom dead center of the integrated stem mechanism 111. In order to remove the cover from the cover holding portion (the gap between the upper pressing plate 507 and the lower pressing plate 508) in the reaction vessel, the reaction vessel 110 is slightly moved in the y-axis direction (in FIG. (Eccentric direction). When the integrated stem mechanism 111 is raised at this point, the stem 401 and the cover 405 attached thereto are taken out from the reaction vessel 110 as shown in FIG. 7E.
  • the integrated stem mechanism 111 descends and enters the reaction well 503.
  • the lowered positions of the stem 401 and the cover 405 are in an eccentric state on the opposite side of the notch 509 with respect to the well center. Accordingly, the flange portion 406 of the cover 405 can be lowered without interfering with the holding plates 507 and 508.
  • the integrated stem mechanism 111 reaches the bottom dead center. At this position, the stage 201 is controlled to stop, and agitation is performed a plurality of times by the cover 405.
  • the integrated stem mechanism 111 descends (FIG. 7J) and reaches the bottom dead center (FIG. 7K). While the integrated stem mechanism 111 is stopped for 0.5 seconds at the bottom dead center, the reaction vessel 110 is slightly moved (eccentric) toward the notch 509 in the y-axis direction (indicated by the arrow in FIG. 7L). Direction), the flange portion 406 of the cover 405 is sandwiched between the cover holding portions (the gap between the upper pressing plate 507 and the lower pressing plate 508). When waiting here, the integrated stem mechanism 111 rises, so that the cover 405 is pressed by the pressing plates 507 and 508, and the cover 405 is removed from the stem 401 (FIG. 7M).
  • the reaction vessel 110 is slightly moved in the y-axis direction (that is, eccentric to the opposite side to the notch 509), and the magnetic chip 402 is moved to the gap between the upper pressing plate 507 and the lower pressing plate 508. If the integrated stem mechanism 111 is raised in FIG. 7Q, the stem 401 with the magnetic chip attached is positioned above the reaction vessel 110.
  • a cover 405 is attached to the stem 401 from above the magnetic chip 402. That is, in FIG. 7R, the reaction vessel 110 is moved so that the cover storage well 501 comes directly under the stem 401 with the magnetic chip 402 attached. In FIG. 7S, the integrated stem mechanism 111 is lowered to allow the stem 401 with the magnetic tip 402 to enter the cover storage well 501. As a result, the cover 405 is attached to the stem 401. In FIG. 7T, the reaction vessel 110 is slightly moved in the direction of the arrow (movement in a direction in which the cover 401 and the stem 401 with the magnetic tip are eccentric relative to the notch 509 relative to the cover storage well 501). As a result, the cover 401 and the stem 401 with the magnetic tip are detached from the holding plates 507 and 508. In this state, as shown in FIG. 7U, the cover 401 and the stem 401 with the magnetic tip are pulled up.
  • the reaction vessel 110 is moved so that the reaction well 503 comes directly under the stem 401 with the magnetic chip 402 and the cover 405 attached, and the reaction vessel 110 is stopped at this position.
  • the integrated stem mechanism 111 is lowered in FIG. 7W and the magnetic chip 402 and the cover 405 enter the reaction well 503, the magnetic beads 702 are collected.
  • the stem mechanism when collecting the magnetic beads, the stem mechanism temporarily stops at the bottom dead center, and thereafter, the integrated stem mechanism 111 is raised as shown in FIG. 7Y. If the magnetic beads are not sufficiently collected by one reciprocating (up and down) movement of the stem, the integral stem mechanism may be set to reciprocate (up and down) a plurality of times.
  • the integrated stem mechanism 111 is positioned above the reaction vessel 110 by the integrated stem mechanism drive control unit 112 (the state where the magnetic beads 702 are collected: the state shown in FIG. 7Y). Then, the reaction vessel 110 is moved so that the washing well (# 1) 504 is located directly under the magnetic chip 402 and the cover 405 (that is, directly under the integrated stem mechanism). Thereafter, the stem mechanism 111 is lowered, and the cover 405 with magnetic beads and the magnetic chip 402 are caused to enter the cleaning well (# 1) 504.
  • the reaction vessel 110 is slightly moved so that the flange portion 406 of the cover 405 is sandwiched (locked) by the holding plates 507 and 508 above the cleaning well (# 1) 504. Move (that is, the cover 405 is eccentric to the notch 509 side of the pressing plate). In this state, with the cover 405 remaining and the magnetic chip 402 mounted on the stem 401, the stem mechanism 111 is raised and the reaction vessel 110 is moved so that the magnetic chip storage well 502 comes directly under the stem mechanism 111. . By this operation, the magnetic beads 702 are immersed in the cleaning solution of the cleaning well (# 1) 504 away from the cover 405.
  • the stem mechanism 111 and the reaction vessel are operated so as to perform the reverse operation of FIGS. 7N to 7Q (that is, the operation of FIGS. 7Q to 7N). 110 is operated. Thereafter, the reaction vessel 110 is moved again so that the washing well (# 1) 504 comes directly under the stem mechanism 111. Thereafter, the stem mechanism 111 is lowered, the cover 405 locked to the pressing plates 507 and 508 of the cleaning well (# 1) 504 is mounted again on the stem 401, and the locking of the cover 405 to the pressing plate is released. The reaction vessel 110 is slightly moved to move the stem mechanism 111 up and down. By this vertical movement, stirring is performed in the cleaning liquid, and cleaning with the magnetic beads 702 is performed in the cleaning well (# 1) 504. By this washing, impurities such as proteins derived from biological samples can be removed from the surface of the magnetic beads.
  • the cover 405 is left on the cleaning well (# 1) 504 with the pressing plates 507 and 508 without performing the reverse operation of FIGS. 7N to 7Q, and the integral stem mechanism 111 is simply raised.
  • the magnetic chip 402 is separated from the cover 405 together with the stem 401, the magnetic beads 702 are detached from the cover 405 and immersed in the cleaning liquid in the cleaning well.
  • the above-described stirring action due to the vertical movement of the cover cannot be expected, and the cleaning time is longer than that with stirring of the cleaning liquid.
  • the reaction vessel 110 and the stem mechanism 111 are moved and controlled so that the magnetic chip 402 and the cover 405 are mounted on the stem 401 again, and the magnetic chip 402 and the cover 405 are washed with the washing well (# 1).
  • the magnetic beads 702 are collected again on the cover 405.
  • the stem mechanism 111 is raised with the magnetic beads 702 collected in this manner, and the reaction vessel 110 is moved so that the washing well (# 2) 505 is located directly below the stem mechanism 111.
  • the second cleaning operation is performed by operating the reaction vessel 110 and the stem mechanism 111 in the same manner as the first cleaning.
  • the stem 401 on which the magnetic chip 402 and the cover 405 that has adsorbed the magnetic beads 702 after washing are mounted relative to the elution well 506 by the vertical movement control of the stem mechanism 111 and the movement control of the reaction vessel 110 in the well arrangement direction. Move. Thereafter, operations similar to the cover attaching / detaching operation and the magnetic chip attaching / detaching operation performed in the cleaning process (stem vertical movement and reaction container arrangement direction moving control) are also performed between the elution well 506 and the magnetic chip storage well 502. Thereby, the magnetic beads 702 are detached from the cover 405 and immersed in the eluent in the elution well 506.
  • each process so far includes the periodic vertical movement control of the integrated stem mechanism 111 by the stem mechanism drive control unit 112 and the well arrangement direction (y of the reaction vessel 110 by the reaction container drive control unit 132). (Axis direction) can only be achieved by translational motion control.
  • the nucleic acid component adsorbed on the surface of the magnetic bead 702 can be eluted in the eluent.
  • a series of processes of nucleic acid extraction, separation, and purification is performed.
  • the magnetic beads 702 in the eluent are collected again at the tip of the cover 405 using the magnetic chip 402.
  • the integrated stem mechanism 111 has an x-axis direction.
  • a movement mechanism (not shown) in the y-axis direction is added, and the integrated stem mechanism 111 is moved above the waste container 117 under the control of the stem mechanism drive control unit 112, and the nozzle mechanism 105 or the waste container 117 is moved.
  • the cover 405 and the magnetic chip 402 are set to be discarded in a state in which the magnetic bead 702 is captured at the tip by operating the detaching mechanism attached to the head.
  • only the cover 405 may be removed and discarded, and the magnetic chip 402 not in contact with the liquid may be recovered and reused.
  • the z-axis direction moving mechanism (stem up-and-down moving mechanism) is provided to the integrated stem mechanism 111, and the magnetic chip 402 and the cover 405 are discarded by the user himself / herself when replacing the reaction container 110. You may make it discard in a container. In this way, since the integral stem mechanism only needs to move in the z-axis direction, the mechanism and control can be simplified.
  • the magnetic beads 702 are collected (captured) at the tip of the cover 405 and moved from the reaction well 503 to the elution well 506.
  • dispensing inside the apparatus is executed by one syringe pump, and a series of processes (stirring, collecting magnetic beads, etc.) relating to extraction of biological molecules performed in the reaction vessel are integrated.
  • This is realized by the movement of the stem mechanism in the z-axis direction and the uniaxial movement of each reaction vessel in the y-axis direction.
  • the number of axes is one axis regardless of the number of parallel processes, and in order to increase the degree of parallelism, it is only necessary to add one y-axis per reaction vessel. Can be suppressed.
  • a reaction container (sample) is randomly processed as needed.
  • a series of independent treatments for each reaction vessel for example, disrupting cells and extracting biological molecules into the solution, separating the extracted biological molecules from the solution with magnetic beads
  • the treatment of washing the magnetic beads and eluting (purifying) the biological molecules adsorbed thereto with an eluent can be performed.
  • the arrangement direction of wells in which various treatments are performed coincides with the movement direction of the reaction container, and the magnetic chip provided in the reaction container and the notch of the attaching / detaching mechanism (pressing plate) for the cover are provided. Since the portion is provided in alignment with the well arrangement direction, and the opening of these notches is also directed to the well arrangement direction, a reaction container that enables the above-described sample processing method to be performed is provided. be able to.
  • Reaction container drive control part 133 ... Computer, 201 ... Stage, 202 ... Movable element, 203 ... Screw rod, 401 ... Stem, 402 ... Magnetic chip 403... Magnetic body 404.

Abstract

 生物学的試料を試薬と反応させて一連の処理を行なう装置において、生物学的試料(例えば検体)をバッチ処理することも、ランダムに投入して随時に連続処理を行うこともできるようにする。複数の処理部(ウェル)501~506を有する反応容器110を反応容器セット部に並置し、それぞれ独立して処理部(ウェル)の配列方向に移動可能にする。複数のステム401がそれぞれの反応容器110に対応して反応容器の上方に上下移動可能に配置される。その配置は、反応容器の移動方向と交差する方向とする。反応容器110とステム機構111とを連動させて、各反応容器110の処理部501~506の一つが処理手順にしたがってステム機構111の直下にきた時に対応のステム401或いはそれに装着される磁性体チップ402、そのカバー405が処理部内に出入り可能に制御される。

Description

試料処理装置、試料処理方法、およびこれらに使用する反応容器
 本発明は、細胞、細菌、ウイルス等を含む生物学的試料から、核酸やタンパク質等の生物学的分子を抽出したり、或いはそれに加えて分離および精製する試料処理装置および試料処理方法に関する。更に、これらの試料処理装置および試料処理方法に使用する反応容器に関する。
 生物学および医学などの生命現象の研究において、血液、血漿、組織片などの生物学的試料から、核酸やタンパク質等の生物学的分子を抽出、分離および精製することは、検査物質を得るための基本的で重要な操作である。また、上記の操作は、生命現象の研究の場においてのみではなく、農作物の品種改良および食品検査などの産業においても検査物質を得るために用いられる。
 核酸の検査については、DNAやRNAを増幅できるPCR(Polymerase Chain Reaction)法が普及している。その他にも、NASBA(Nucleic Acid Sequence-Based Amplification)法、SDA(Strand Displacement Amplification)法、3SR(Self-Sustained Sequence Replication)法、TMA(Transcription-Mediated Amplification)法、Qβ Replicase Amplification法、LAMP(Loop-mediated isothermal Amplification)法など様々な核酸増幅法があり、核酸検査の応用範囲は広がりつつある。そのため、より迅速に、簡便に、生物学的試料から核酸を抽出、分離および精製する技術の必要性はますます高まっていくと考えられる。
 生物学的試料からDNAやRNAなどの核酸を抽出、分離および精製する方法として、フェノール・クロロホルム抽出法が知られている。しかしこの方法は、有機溶剤を使用することや、操作が煩雑であることから、作業者の負担が大きいものであった。そこでこの問題を解決するために、生物学的試料から核酸を抽出、分離および精製する方法として、カオトロピック剤の存在下でシリカやガラス繊維などと核酸が結合する性質を利用した方法(例えば非特許文献1)が提案され、核酸抽出を自動で行う装置も開発された(例えば特許文献1および2)。
 自動装置で通常実施されている、核酸の抽出、分離および精製の流れは以下の(1)~(6)の通りである。
 (1)カオトロピック剤や界面活性剤を含む溶液によって生物学的試料中に含まれれる細胞を破砕し、溶液中に核酸を溶出させる。(2)シリカを表面にコーティングした磁性ビーズ(磁性シリカ粒子)を溶液に加え、混合することにより、粒子表面に核酸を吸着させる。(3)反応容器の外部から磁石を接近させ、磁性ビーズを反応容器に捕捉しつつ、タンパク質などの不要物を含む溶液をポンプなどを使用して除去する。(4)反応容器に洗浄液を加え、不要物を溶液中へ移動させる。(5)再び反応容器の外部から磁石を接近させ、磁性ビーズを反応容器に捕捉しつつ、不要物を含む溶液を除去する。(6)洗浄液除去後、磁性ビーズを減菌水または低塩濃度のバッファーを加え、磁性ビーズ表面から核酸を溶離させる。
特表2003-504195 特開2004-337137
Boom, R., Sol, C. J. A. Salimans, M. M. M., Jansen, C. L., Wertheimvan Dillien, P. M. E., and van der Noordaa, J., J. Clin. Microbiol., 28, 495-503(1990).
 臨床研究から臨床検査に市場がシフトするにつれて、ランダムに提供される検体を随時かつ連続に処理して、より迅速に、検査結果を診断にフィードバックすることが要求されるようになる。
 特許文献1に記載されている装置は、複数試料を処理する際、複数の試料を同時に処理するいわゆるバッチ処理であって、ランダムに提供される検体を随時かつ連続処理するものではない。特許文献2に記載された自動化装置は、複数の試料を処理する際、「一組の抽出装置を装置本体に複数組み設置する」と記載されており、複数のアームの上下左右移動機構と、複数のアーム位置の移動機構など多数の駆動部が必要となる。また、特許文献2中には複数の試料容器を同時に搭載できる旨の記載はあるが、同時に処理できると明記してあり、複数の抽出装置の駆動部を共用して同じ動作をさせるバッチ処理であって、これもランダムに提供される検体を随時かつ連続処理することができない。
 本発明の目的は、生物学的試料を試薬と反応させて一連の処理を行なう装置において、生物学的試料(例えば検体)をバッチ処理することも、ランダムに投入して随時に連続処理を行うこともできる試料処理装置、試料処理方法、およびこれらに使用する反応容器を提供することにある。
 本発明は上記目的を達成するため、第1には、次のような試料処理装置を提供する。
(試料処理装置1)
 すなわち、生物学的試料を試薬と反応させて一連の処理が行なわれる反応容器を備え、前記反応容器には、前記一連の処理が行われるよう配列された複数の処理部が設けられている試料処理装置において、
 前記反応容器を複数並置できる反応容器セット部と、
 前記反応容器セット部にセットされた前記反応容器を、反応容器ごとに独立して前記処理部の配列方向に移動させる反応容器移動機構と、
 前記反応容器と協働して前記一連の処理に使用される複数のステムがそれぞれの反応容器に対応して前記反応容器セット部の上方に上下移動可能に配置され、これらのステムは、前記反応容器の移動方向と交差する方向に列をなし、前記反応容器セット部に並置される反応容器同士の処理部間のピッチに合わせたピッチで配列されているステム機構と、
 前記ステム機構を上下移動させるステム上下移動機構と、
 前記一連の処理のために前記反応容器移動機構と前記ステム上下移動機構とを連動させて、各反応容器の該当の処理部が処理手順にしたがって前記ステム機構の直下にきた時に対応のステム或いはそれに装着されるツール(例えば磁性チップおよびそのカバー)が処理部内に出入りする制御を行う制御部と、
を備えることを特徴とする。
 また、本発明は上記目的を達成するため、上記の本発明に係る試料処理装置において、以下のような態様を任意に含む。
(付属的態様)
(1)前記反応容器は、試薬及び磁性ビーズを用いて前記生物学的試料から生物学的分子を少なくとも抽出するためのものであり、前記処理部として、
 前記生物学的試料、生物学的分子抽出用の試薬、生物学的分子吸着用の磁性ビーズが供給される反応部と、
 生物学的分子を吸着した前記磁性ビーズを回収するために用いる磁性チップを、前記ステムに着脱するために格納する磁性チップ格納部と、
 前記磁性チップのカバーを、前記ステムに着脱するために格納するカバー格納部と、
 前記生物学的分子を吸着した前記磁性ビーズを洗浄するための洗浄液を収容する洗浄部と、
 洗浄された前記磁性ビーズを受け入れて前記磁性ビーズ表面から前記生物学的分子を溶出させる溶出部と、
を備える。
(2)前記ステム機構は、複数の前記ステムが一体式に上下移動可能に支持される一体式ステム機構であり、
 前記ステム上下移動機構は、前記制御部からの制御信号により、一つの駆動源によって前記一体式ステム機構を周期的に上下運動させる機構を有し、
 前記反応容器移動機構は、前記ステム上下移動機構の周期的な上下方向の運動に合わせて、複数の前記処理部が処理順に従って前記ステム上下移動機構の直下にくるように前記制御部により移動制御される。
(3)前記反応容器移動機構は、前記反応容器セット部にセットされる前記反応容器を直線方向に移動させる機構、或いは、前記反応容器セット部にセットされる前記反応容器を、1軸を中心に回転方向に移動させる機構である。
(4)前記磁性チップおよび前記カバーは、先端と反対側の基端が開口して、その開口部の内径を前記磁性チップよりも前記カバーの方を大きくしてあり、且つ各開口周縁にフランジ部を有し、
 前記ステムには、前記各開口を通して前記磁性チップ及びカバーを着脱するための異なる外径部がステム先端側からステム中間部にかけて設けられ、
 前記反応用容器には、前記磁性チップ或いは前記カバーが前記処理部に挿入された時に、前記磁性チップ或いは前記カバーを前記処理部に対して反応容器を介して偏心移動させることで該反応容器に係合,離脱させる着脱機構を備える。
(5)前記着脱機構は、前記処理部の開口上方に対向して設けられた上部押さえ板と下部押さえ板とよりなり、これらの押さえ板には、前記磁性チップ及び前記カバーの外径に適合して前記偏心移動を受け入れる曲率の異なる切欠き部が設けられており、
 これらの切欠き部が前記反応容器の移動方向に配列され、かつ前記各切欠き部の開口も前記反応容器の移動方向に向けられている。
(試料処理装置2)
 さらに、上記試料処理装置1の構成要件に加えて、前記反応容器は、試薬及び磁性ビーズを用いて生物学的試料から生物学的分子の少なくとも抽出に関する一連の処理が行なわれる反応容器を備え、前記処理部として、少なくとも、
 生物学的試料、生物学的分子抽出用の試薬、生物学的分子吸着用の磁性ビーズが供給される反応部と、
 生物学的分子を吸着した前記磁性ビーズを回収するために用いる磁性チップを、前記ステムに着脱するために格納する磁性チップ格納部と、
前記磁性チップのカバーを、前記ステムに着脱するために格納するカバー格納部と、を備える試料処理装置2を提案する。
(試料処理方法)
 また、試料装置2を用いて、次のような試料処理方法を提案する。
 すなわち、生物学的試料から生物学的分子を抽出,分離,精製する一連の処理を行なう試料処理方法において、
 前記一連の処理に上記試料処理装置(2)が用いられ、
 前記反応容器セット部に前記反応容器を随時必要に応じてセットし、前記一連の処理にしたがって該当の処理部が前記一体式ステムの直下にくるように、各反応容器を前記反応容器移動機構により独立して移動制御する工程と、
 前記処理部が前記一体式ステム機構の直下にきた時に、対応のステムに装着した前記磁性チップ或いは前記カバーが前記処理部内に出入りする制御を行う工程と、
を含むことを特徴とする。
(付随的態様)
 また、上記の本発明の試料方法において、以下のような任意に態様を含む。
(1)前記ステム機構は、前記反応容器の移動制御に連動して周期的に上下移動し、上死点、下死点にある時に所定の停止期間を設けるように設定されている。
(2)前記反応容器には、前記磁性チップ或いは前記カバーが前記処理部に挿入された時に、前記磁性チップ或いは前記カバーを前記処理部に対して反応容器を介して偏心移動させることで係合,離脱させる着脱機構を備え、
 前記着脱機構は、前記処理部の開口上方に対向して設けられた上部押さえ板と下部押さえ板とよりなり、これらの押さえ板には、前記磁性チップ及び前記カバーの外径に適合して前記偏心移動を受け入れる切欠き部が設けられており、
 これらの切欠き部が前記反応容器の移動方向に配列され、かつ前記各切欠き部の開口も前記反応容器の移動方向に向けられており、
 前記反応容器を前記反応容器移動機構により独立して移動制御する工程は、前記処理部の間の移動に加えて、前記磁性チップ或いは前記カバーを対応の前記処理部に着脱させるために前記偏心移動させる制御も含む。
(反応容器)
 さらに、上記した試料処理装置及び方法に用いる反応容器として、次のようなものを提案する。
 すなわち、試薬及び磁性ビーズを用いて生物学的試料から生物学的分子を抽出するために使用される反応容器であって、箱形を呈し、箱形本体に前記一連の処理が行われるよう配列された複数のウェルが設けられている反応容器において、
 前記ウェルとして、少なくとも、
 生物学的試料、生物学的分子抽出用の試薬、生物学的分子吸着用の磁性ビーズが供給される反応ウェルと、
 生物学的分子を吸着した前記磁性ビーズを回収するために用いる磁性チップを、前記ステムに着脱するために格納する磁性チップ格納ウェルと、
 前記磁性チップのカバーを、前記ステムに着脱するために格納するカバー格納ウェルと、を備え、
 さらに前記箱形本体には、前記磁性チップ或いは前記カバーがこれらのウェルのいずれか一つに選択的に挿入された時に、前記磁性チップ或いは前記カバーをウェルに対して反応容器を介して偏心移動させることで係合,離脱させる着脱機構を備え、
 前記着脱機構は、前記処理部の開口上方に対向して設けられた上部押さえ板と下部押さえ板とよりなり、これらの押さえ板には、前記磁性チップ及び前記カバーの外径に適合して前記偏心移動を受け入れる切欠き部が設けられており、
 これらの切欠き部が前記ウェルの配列方向に一致して設けられ、かつこれらの切欠き部の開口も前記ウェルの配列方向に向けられていることを特徴とする。
(付随的態様)
 また、本発明に係る反応容器において、以下のような態様を任意に含む。
(1)前記上部押さえ板と前記下部押さえ板は、前記磁性チップ及び前記カバーに共用であり、各押さえ板に、前記磁性チップの外径に対応する曲率と前記カバーの外径に対応する曲率とを有する切欠き要素が複合的に形成されている。
(2)前記上部押さえ板と前記下部押さえ板は、前記磁性チップ用と前記カバー用とに分けて別々に配置され、前記磁性チップ用の上部押さえ板および下部押さえ板に、前記磁性チップの外径に対応する曲率の切欠き部が形成され、前記カバー用の上部押さえ板および下部押さえ板に、前記カバーの外径に対応する曲率の切欠き部が形成されている。
 本発明によれば、生物学的試料を試薬と反応させて一連の処理(例えば核酸やタンパク質等の生物学的分子を抽出、分離および精製する処理)において、生物学的試料(検体)をバッチ処理することも、ランダムに投入して随時に連続処理を行うこともできる試料処理装置、試料処理方法およびこれらに使用する反応容器を提供することができる。
本発明に係る試料処理装置の構成例を模式的に示す斜視図である。 図1において、反応容器のセット部をx軸方向から見た断面図である。 図1において、反応容器のセット部の一部をy軸方向から見た断面図である。 図1において、反応容器のセット部に反応容器を随時セットして独立に移動させた時の配列の一例を示す反応容器群の平面図である。 図1において、反応容器のセット部に反応容器を随時セットして独立に移動させた時の他の例を示す反応容器群の平面図である。 本発明に係る試料処理装置のステム、磁性チップおよびカバーの一例を示す図である。 上記ステムに磁性チップおよびカバーを装着した時の一例を示す図である。 上記ステムにカバーを装着した時の一例を示す図である。 本発明に係る試料処理装置における反応容器の構成例を示す斜視図である。 図5Aの反応容器の平面図である。 本発明の実施例に係る試料処理装置における反応容器の他の構成例を示す平面図である。 図6Aの反応容器の断面図である。 本実施例に係る試料処理装置の反応容器を示す断面図である。 本発明の実施例に係る試料処理方法において、ステムがカバー格納ウェルに降下する段階を示す断面模式図である。 本実施例の試料処理方法において、ステムに、カバーが装着される過程を示す断面模式図である。 本実施例の試料処理方法において、カバー装着後に、反応容器がy軸方向に移動(偏心)する過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルから出る上昇過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムの真下に反応ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムが反応ウェルに降下する過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムが反応ウェルに降下し、下死点に達した過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムの真下にカバー格納ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルに降下する過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルに降下し、下死点に達した過程を示す断面模式図である。 本実施例の試料処理方法において、カバーを装着したステムがカバー格納ウェルに降下し、下死点に達した後、反応容器がy軸方向に移動(偏心)する過程を示す断面模式図である。 本実施例の試料処理方法において、ステムがカバーを脱離して上昇する過程を示す断面模式図である。 本実施例の試料処理方法において、ステムの真下に磁性チップ格納ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。 本実施例の試料処理方法において、ステムが磁性チップ格納ウェルに降下する過程を示す断面模式図である。 本実施例の試料処理方法において、反応容器がy軸方向に移動する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップを装着したステムが上昇する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップを装着したステムの真下にカバー格納ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップを装着したステムがカバー格納ウェルに下降する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムがカバー格納ウェルに降下し、下死点に達した後、反応容器がy軸方向に移動(偏心)する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが上昇する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムの真下に反応ウェルがくるように、反応容器がy軸方向に移動する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが反応ウェルに下降する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが磁性ビーズを捕集する過程を示す断面模式図である。 本実施例の試料処理方法において、磁性チップおよびカバーを装着したステムが磁性ビーズを捕集したまま上昇する過程を示す断面模式図である。
 以下、本発明に係る実施の形態、特に試料処理装置、試料処理方法及びこれらに使用する反応容器について、図面を参照しながら詳細に説明する。ただし、本発明はここで取り上げた実施の形態に限定されるものではない。
(試料処理装置の構成)
 図1に、本発明に係る試料処理装置の構成例を模式的に示す。試料処理装置は、載置台101と、処理対象の生物学的試料を充填した試料容器を収容できる検体ラック102と、複数の試薬瓶を収容できる試薬ラック103と、複数のディスポーザブルチップを収容したチップラック104と、廃棄物を捨てるための廃棄物用容器117と、載置台101の一面に対向する位置にx軸、y軸、z軸方向に移動可能に配置されるノズル機構105と、ノズル機構105の移動、吸引および吐出を制御する駆動制御部109と、生物学的試料から生物学的分子を抽出、分離、精製する一連の処理が行なわれる反応容器110と、この反応容器110と協働して前記一連の処理を行うために用いる一体式ステム機構111と、反応容器110を複数並置できる反応容器セット部120と、反応容器セット部120にセットされた反応容器110を、反応容器ごとに独立して並進運動(直進移動)させる反応容器移動機構(図2Aの反応容器搭載ステージ201、可動子202、スクリューロッド203、サーボモータ(アクチュエータ)116)とを備えている。
 なお、本文中の生物学的試料とは、特に限定されないが、(1)ヒトを含む動物から採取された血液、血漿、組織片、体液及び尿といった生体試料、(2)動物細胞、植物細胞及び昆虫細胞などの細胞、(3)細菌、真菌および藻類等の微生物、(4)ウイルス(ウイルス感染細胞を含む)などである。また、生物学的試料とは、これら細胞、微生物及びウイルスを培養した培養液と、これら細胞、微生物及びウイルスを懸濁した懸濁液を含むものである。また、これら生物学的試料には、試料処理装置による分離抽出や精製の対象となる生物学的分子が含まれている。ここで、生物学的分子とは、DNAやRNA等の核酸、酵素や抗体等のタンパク質、ペプチド断片を意味する。なお、本発明に係る試料処理装置が分離抽出や精製の対象とするものは、核酸やタンパク質、ペプチド断片に限定するものではなく、細胞や微生物が産生する化合物(有機化合物や低分子化合物)も含む。
 検体ラック102は、異なる又は同一の生物学的試料を充填した複数の検体チューブを収容できる箱形を呈している。検体ラック102には、複数の検体チューブがノズル機構105によって分注できるように、また、分注の終わった検体チューブを装置外部に取り出し、次の検体チューブをセットできるように配置されている。 試薬ラック103は、複数の試薬瓶を収容できる箱形を呈している。試薬ラック103には、生物学的試料に対して実施する処理によって、異なる試薬瓶を収容することができる。例えば、生物学的試料から核酸成分を抽出する処理を実施する場合には、カオトロピック剤を含有する溶液の試薬瓶、洗浄液の試薬瓶、溶離液の試薬瓶および反応容器110に分注するオイルの試薬瓶等を試薬ラック103に収容することができる。
 反応容器110は、後述する複数の処理部となるウェルが列をなして配設されている箱形容器からなる。ウェルについては、種々の態様のものが存在するが、本実施例では、図5Aにカバー格納ウェル501、磁性チップ格納ウェル502、反応ウェル503、洗浄ウェル(#1)504、洗浄ウェル(#2)505、溶出ウェル506が例示されている。反応容器110は、試料処理装置に、バッチ処理を目的として複数のものを一括セットできるが、任意の数だけセットすることも可能であり、また、随時、必要に応じて追加セットして、それぞれ独立して一連の処理をランダムに進行させることができる。この反応容器110のセット部120は、各反応容器110が独立して並進(直進)動作できる機構を備えている。この並進動作機構及び反応容器については、追って詳述する。
 ノズル機構105は、図示しないが、内部が筒状となっており、ポンプ等の吸引・吐出駆動装置と接続される。
 ノズル機構105は、ノズル機構移動用ガイドX108に沿ってx軸方向に移動し、ノズル機構移動用ガイドY107に沿ってy軸方向に移動し、ノズル機構移動用ガイドZ106に沿ってz軸方向に移動する。これらのx軸、y軸、z軸の3軸方向に移動させる駆動メカニズムは、周知であるので、詳細な説明は省略する。ノズル機構105はこのx軸方向、y軸方向およびz軸方向の移動の組み合わせによって、載置台101上の検体ラック102、試薬ラック103、反応容器セット部120間を移動して検体や試薬を吸引および吐出することができる。例えば、ノズル機構105は、検体ラック102から検体を吸引し、反応容器110中の反応ウェル503へ移動し、該ウェルに検体を吐出することができる。また、ノズル機構105は、試薬ラック103から試薬を吸引し、反応容器110中の反応ウェル503へ移動し、該ウェルに試薬を吐出することができる。また、ノズル機構105は、試薬ラック103から洗浄液を吸引し、反応容器110の洗浄ウェル(#1)504および洗浄ウェル(#2)505へ移動し、該ウェルに洗浄液を吐出することができる。また、ノズル機構105は、試薬ラック103から抽出液を吸引し、反応容器110の溶出ウェル506へ移動し、該ウェルに抽出液を吐出することができる。
 ノズル機構105は、先端にチップラック104に搭載したディスポーザブルチップを装着することができる。試料処理装置のユーザーは、必要に応じて、ノズル機構105に装着されているディスポーザブルチップを、チップラック104上のものと交換することができる。ディスポーザブルチップを交換することで、試薬や試料間のコンタミネーションやキャリーオーバーを回避することができる。ディスポーザブルチップは、ポリエチレン、ポリプロピレン、ポリカーボネートなどの樹脂を素材として作製することができる。
 また、試料処理装置のユーザーやメーカーは、あらかじめ必要な試薬や洗浄液を反応容器中の複数のウェルに入れておくことも可能である。この場合は試薬ラック103の一部またはすべてが不要となることもある。さらに、下流の分析において、キャリーオーバーやコンタミネーションの影響がないと判断される場合は、チップラック104の一部またはすべてを不要としてもよい。
 反応容器セット部120の上方には、一体式ステム機構111が上下方向(z軸方向)に移動可能に配置されている。一体式ステム機構111は、複数のステム(401a~401d)と、これらのステムを一体に支持してz軸方向に移動させるステム上下移動機構130とにより構成される。複数のステム(401a~401d)は、それぞれのステムホルダ(113a~113d)を介して共通の支持部材131により支持され、この支持部材131を介してステム上下移動機構130により一軸(z軸方向)の運動を行う。ステム上下移動機構130については、例えばモータ(アクチュエータ)の回転運動をz軸方向の直進運動に変換する機構、ソレノイド(アクチュエータ)のオン、オフによりz軸方向の直進運動を行う機構など種々のものが考えられるが、一体式ステム機構駆動制御部112の電気信号により制御可能なものであれば、その形態を限定するものではない。
 本実施例では、ステム上下移動機構130は、複数のステム共通の支持部材131を上下移動させることで一つの駆動装置で複数のステムの上下移動を一括して可能にしている。このようにすれば、駆動装置の数を減らすことができる。ただし、これに限定されるものではなく、例えばステム上下移動機構130のサーボモータ(アクチュエータ)として用いるモータは、ステム全体で一つであり、また、それにより回転する回転軸については共通であるが、回転軸の回転をz軸方向に変換する機構(例えばカム機構)については個々のステムに備えられて、ステムがそれぞれのカム動作により上下移動するように構成することも可能である。またそれぞれのステムにソレノイドのような機構を備えて、ステムを個別に上下移動させることも、コスト的に問題がなければ可能である。
 これらのステム(401a~401d)は、反応容器110の移動方向(y軸方向)と交差する方向(x軸方向)に列をなし、反応容器セット部120に並置される反応容器110同士のウェル(処理部)間のピッチに合わせたピッチで配列されている。一体式ステム機構111のz軸方向の位置以外の位置(x軸、y軸方向位置)は固定であり、例えば反応容器セット部120における反応容器110の初期位置(図1の実線の位置)の任意のウェルの上方に位置している。
 一体式ステム機構111は、一体式ステム機構駆動制御部112によって定められたタイミングで、周期的な上下運動を行う。
 一体式ステム機構111は、反応容器セット部120にセット可能な、反応容器110の最大数に等しい数のステムを備えている。言い換えれば、反応容器セット部120は、ステムの個数以下の反応容器110を任意に配設することができる。より具体的には、一体式ステム機構111のステムは例えば8~12連程度までの並列化が可能である。ステムを並列化することで、単位時間当たりの処理能力(スループット)を向上させることが可能となる。
 反応容器110は、後述するようにサーボモータ(アクチュエータ)116によって定められたタイミングで、ガイド溝115に沿って、y軸方向に移動することができる(図1で、反応容器110が、実線と破線の領域で移動する)。
 また、試料処理装置は、ノズル機構駆動制御部109、一体式ステム機構駆動制御部112、反応容器駆動制御部132を統括的に制御するコンピュータ133を備える。コンピュータ133は、処理条件や生物学的試料に関する情報、その他の各種情報を入力して、後述する試料処理方法を実行するための制御信号を生成する。
(反応容器の移動)
 図2Aに、図1における反応容器セット部120をx軸方向から見た断面模式図を、図2Bに、図1における反応容器をy軸方向から見た断面模式図を示す。
 反応容器110は、ステージ201の上面に載置される。ステージ201の下面には、複数の可動子202が取り付けられている。可動子202には雌ねじが設けられ、この雌ねじにスクリューロッド203が貫通している。スクリューロッド203は、サーボモータ(アクチュエータ)116によって回転駆動する。サーボモータ(アクチュエータ)116は、反応容器セット部120にセット(並置)可能な反応容器110の最大数だけ備えられ、反応容器駆動制御部132からの制御信号により駆動制御される。サーボモータ(アクチュエータ)116の駆動により、反応容器110はステージ201とともに、ガイド溝115に沿ってy軸方向(図2A中矢印の方向)に移動することができる。
 反応容器110は最大数セット可能な範囲内で、反応容器セット部120にセットすることが可能であり、それぞれが対応のサーボモータ(アクチュエータ)116によりウェルの配列方向に独立して移動(並進)制御される。図1に示すように、当初から複数の反応容器(図3Aでは110a~110d)をセット(並置)した場合、個々の反応容器は、対応のサーボモータ(アクチュエータ)116によって制御される。この場合、(i)各反応容器110a~110dで実行される生物学的試料に対する処理が同じである場合には、各反応容器対応のサーボモータ(アクチュエータ)116を同期的に移動制御すれば、この移動制御と一体式ステム機構111とを連動制御することにより(なお、連動制御の具体的内容の一例については追って詳述する)、セットされた複数の反応容器に対して一括した一連の処理が行われる(図1参照)。また、(ii)複数の反応容器を当初から任意の数だけ並置してセットした場合であっても、各反応容器の生物学的試料を異ならせたり、及び/又は、処理の手順を異ならせる場合を望むこともあり得る。この場合には、各サーボモータ(アクチュエータ)116を介して反応容器の移動を独立制御して、それぞれの処理条件に応じて、反応容器間で異なるウェル位置が一体式ステム機構111の直下にくるように制御することも可能である。さらに、(iii)処理条件が同じ場合、異なる場合のいずれであっても、任意の数の反応容器を随時必要に応じて(すなわち時間差を有して)反応容器セット部に追加的にセットすることも可能である。この場合にも、(ii)同様に各サーボモータ(アクチュエータ)116を介して反応容器の移動を独立制御する。
 図3Aに、上記した(ii)、(iii)のように反応容器を独立して移動制御する場合の一例である平面模式図を示す。試料処理を随時に連続して行うことが可能になる。すなわち、1つの反応容器の処理が終了するまで待たなくても、次の反応容器を随時に追加して連続処理を行うことが可能となる。
 図3Aでは反応容器110a~110cを随時、時間差を与えてセットした後の反応容器の移動状態を示し、さらに必要に応じて反応容器(110d)を追加可能な空き状態を示している。一体式ステム機構のステムと、反応容器は、例えば12連程度まで並列されることが可能である。
 図3Bに、反応容器、反応容器セット部、反応容器移動機構の他の態様例の平面図を示す。図3Aでは、   反応容器は、それぞれ独立して並進運動可能なものを例示したが、図3Bでは、これに代えて反応容器110´(110a´~110d´)を、1軸(図示せず)を中心に回転方向(図中、矢印の方向)にそれぞれ独立して移動可能に設定したものである(反応容器110a´~110d´は、実線と破線の領域で移動する)。ステム機構111´は、ステム上下移動機構により既述したステム機構111同様の動作をなす。反応容器を回転方向に移動させる場合、内側の反応容器と外側の反応容器の単位回転角あたりの移動距離は内側より外側の方が大きくなるので、それに対応させて各反応容器のウェル間のピッチを設定する必要がある。すなわち、反応容器は、内側の反応容器ほどウェル間のピッチが小さくなる。以上の設定により、本態様の場合には、反応容器群は、上からみると扇形を呈する。
(ステム)
 ステム401には、磁性チップ402およびカバー405の各開口を通して磁性チップ及びカバーを着脱するための異なる外径部がステム先端側からステム中間部にかけて設けられている。
 図4A~図4Cに、本発明に係るステム401、磁性チップ(例えば、棒状の磁性体)402およびカバー405の一例を示す。各ステム401には、図4A~図4Cに示すよう、磁性チップ402およびカバー405を被せたり、或いは磁性チップ402を被せずに、直接カバー405を被せることが可能である。
 磁性チップ402およびカバー405は、それぞれ、先端と反対側の基端が開口して、その開口部の内径を、磁性チップ402よりもカバー405の方を大きくしてあり、且つ各開口周縁にフランジ部(404および406)を有している。
 また、磁性チップ402は、基端部の内径がステム401の先端部とほぼ同径であり、また先端に向かって径が小さくなる形状であり、ステム401の先端側の一部に、磁性チップ402の基端部をはめることができる。この磁性チップ402は、先端に磁界を発生する磁性体403を有している。
 カバー405は、基端部の内径がステム401の中間部とほぼ同径であり、また先端に向かって径が小さくなる形状であり、ステム401の中間部に、カバー405の基端部をはめることができる。
 磁性チップ402の磁性体を除く部分およびカバー405は、素材としてポリエチレン、ポリプロピレン、ポリカーボネートなどの樹脂を用いることができる。
(反応容器)
 図5Aに、本発明に係る試料処理装置における反応容器の構成例を斜視図により示す。
また、図5Bに、図5Aの平面図を示す。
 反応容器110は、略箱形を呈しており、内部に各種試薬が分注される複数の処理部となるウェル501~506を有する。
 ここではそれぞれのウェルを、カバー格納ウェル501、磁性チップ格納ウェル502、反応ウェル503、洗浄ウェル(#1)504、洗浄ウェル(#2)505、溶出ウェル506として説明するが、ウェルの種類や数は、分析の種類に応じて適宜変更することができる。たとえば、洗浄が重要な分析なのであれば、洗浄ウェルを追加してもよい。
 反応容器110の複数のウェル501~506は、所定の容積の窪み部として形成される。各ウェルは、カバー405を装着したステム401が、下死点に到達した時に、ウェルの底面とカバーが接触しない深さの窪みを形成している。なお、本例では、溶出ウェル506は、反応ウェル501~505の容積よりも小さくなるように、反応ウェル501~505よりも浅い窪み部として形成されている。
 ウェルの数および容積は特に限定されず、生物学的試料に対する処理の内容に応じて適宜設定することができる。
 また、反応容器110の各ウェルは、ステム401に取り付けられた磁性チップ402およびカバー405を着脱するための着脱機構を備えている。以下に、この着脱機構について詳細に説明する。
 着脱機構は、磁性チップ402およびカバー405を保持するための上部押さえ板507および下部押さえ板508で構成される。上部押さえ板507および下部押さえ板508は、各ウェルの開口の直ぐ上に所定の間隔をもって互いに略平行に配置されている。また、図5Bに示すように、上部押さえ板507及び下部押さえ板508は、各ウェルに対向して切欠き部509が設けられ、切欠き部509は、2種類の曲率の異なる切欠き要素509a、509bからなるダルマ型である。切欠き要素509aは、カバー405の外径に適合できるようにカバー外径と同じ或いはこれよりも小さい曲率で、フランジ部406よりも大きな曲率を有する。切欠き要素509bは、磁性チップ402の外径に適合できるように磁性チップ外径と同じ或いはこれよりも小さい曲率で、フランジ部404よりも大きな曲率を有する。
 上述したように切欠き要素509a及び509bにより、切欠き部509は、2段切欠き構造をなす。これらの切欠き要素は、上方から見たときに、切欠き要素509bが切欠き要素509aより奥まった位置にあって、切欠き要素509aおよび509bの開口部がそれぞれウェルの中心に向けられており、切欠き要素509b開口部と反対側の一端がウェル開口縁の真上或いはほぼ真上に位置するように形成されている。また、ウェル501~506に対応するそれぞれの切欠き部509は、反応容器110が反応容器セット部120に搭載された時の移動方向に一直線に並んで形成されている。それらの切欠き要素509a,509bの開口は、上記の反応容器移動方向に向けられている。
 図7A、図7Bに示すように、磁性チップカバー405は、ウェル(501~506)の中心よりも切欠き部509側に偏心させた時に、カバーの外径一部が切欠き要素509aに接して、フランジ部406の一部が上下の押さえ板507、508に引っ掛かるようにしてある。また、磁性チップ402は、カバー無しの状態でウェル(501~506)の中心よりもさらに切欠き部509側に偏心させた時に、磁性チップ402の外径一部が切欠き要素509bに接して、フランジ部404の一部が上下の押さえ板507、508に引っ掛かるようにしてある。カバー405及び磁性チップ402がウェルと同心の位置或いは切欠き部509と反対側に偏心した位置にある時には、フランジ部406或いは404は押さえ板507、508から外れて、カバー及び磁性チップがウェルに対して出し入れ(抜き差し)すなわち着脱操作が可能になる。
 上記実施例では、磁性チップカバー用押さえ板と磁性チップ用押さえ板を共通の上部押さえ板507と下部押さえ板508とで構成し、一つの切欠き部509を、これらの押さえ板に形成した2段の切欠き要素509a、509bで構成する。これに代えて、図6A,図6Bに示すように、磁性チップカバー用押さえ板と磁性チップ用押さえ板とを、それぞれ、別々にして、前者を上部押さえ板507a、下部押さえ板508aで構成し、後者を上部押さえ板507b、下部押さえ板508bで構成し、さらに前者と後者の押さえ板に、曲率の異なる2種類の切欠き要素(切欠き部)509a、509bを別々に分けて形成してもよい。また、前者と後者の押さえ板を段違いに配置してもよい。
 このような切欠き構造では、カバー405のフランジ部406を押さえ板507a、508aに引っ掛ける場合には、カバー405をウェルに対して切欠き部509a側に偏心させればよい。また、磁性チップ402のフランジ部404を押さえ板507b、508bに引っ掛ける場合には、磁性チップ402をウェルに対して切欠き部509b側に偏心させればよい。
 この場合の切り欠き部509a、509bの開口も、反応容器110の移動方向であってウェル中心側に向けられる。
 また、必要に応じて各反応ウェルの上部は揮発や隣接するウェルへの液の持ち込み防止のために油の層を加えておいてもよい。このような油層技術は、本願出願人の先願である特願2009-285343に開示されている。
 磁性チップ402は、反応容器110の磁性チップ格納ウェル502にあらかじめ格納されて(図7Aの502)反応容器110ごと装置にセットされる。この格納は反応容器を供給するメーカーが実施してもよいし、ユーザーがその都度実施してもよい。
 カバー405は、反応容器110のカバー格納ウェル501にあらかじめ格納されて(図7Aの501)反応容器110ごと装置にセットされる。この格納は反応容器を供給するメーカーが実施してもよいし、ユーザーがその都度実施してもよい。
 チップラック104は、複数のディスポーザブルチップを収容する複数の開口部を有している。この開口部は、ディスポーザブルチップの外径よりやや大であり、且つディスポーザルチップのフランジ部よりやや小となる径を有している。
 廃棄物用容器117は、使用済みのディスポーザブルチップ、磁性チップ402及びカバー405や、処理後の生物学的試料、洗浄液等を廃棄する容器であり箱形を呈している。なお、廃棄物用容器117は、図示しないが、ステム401の先端側の一部や中間部に取り付けられたディスポーザブルチップ、磁性チップ402及びカバー405を取り外すための取外し機構を備えていることが好ましい。取外し機構としては、例えば、ディスポーザブルチップのフランジ部、磁性チップ402のフランジ部404及びカバー405のフランジ部406に当接し、ステム401を上方に駆動することでこれらフランジ部を下方に押し下げる押圧板を採用することができる。なお、取外し機構は、ステム401及び廃棄物容器117のうちいずれか一方に備わっていればよい。
 ノズル機構駆動制御部109は、図示しないが、モータ等の動力源、動力源からの動力を伝達するギア機構及びアーム等からなる駆動機構と、上述したノズル機構105を図1中のx軸、y軸及びz軸に沿って移動及び吸引/吐出による分注動作させる制御信号を当該駆動機構に出力する制御基板とを備えている。なお、制御基板には、コンピュータ133で操作者が設定した各種条件が入力されるまたはあらかじめ設定した各種条件を読み出して使用する。
 ところで、上述した試料処理装置は、カバー着脱機構を有する反応容器110を載置台101に取り付ける構成であった。しかしながら、試料処理装置は、反応容器110を取り付ける位置にカバー脱着機構を備えてもよい。すなわち、試料処理装置がカバー着脱機構を有する構成であってもよい。
 以上のように構成された試料処理装置は、生物学的試料に対する様々な処理を実施することができる。
 以下、上記構成をなす試料処理装置を用いた生物学的試料の処理方法の実施例について説明する。
 以下では、生物学的試料から核酸成分を抽出する処理を実施する形態を例として試料処理方法を説明する。
 具体的には、試料処理方法は、(1)核酸及びその他の不純物を含有する試料にカオトロピック剤存在下でシリカコーティングされた磁性ビーズを混合し、(2)当該磁性ビーズの表面へ核酸を吸着させ、(3)核酸を吸着した磁性ビーズを分離し、(4)洗浄した後に磁性ビーズから核酸を溶離する核酸抽出を実施する。しかも、複数の反応容器110の上方にある一体式ステム機構111は、一体型であるゆえ単純な上下動作、または、あらかじめ設定された周期的な上下動作をのみを行う。あらかじめ設定された周期的な上下動作とは、たとえば上死点と下死点を往復する運動において、単純な往復動作ではなく、上死点および下死点または特定の高さでは0.5秒の停止時間を設けるような設定された周期的動作を指す。
 本処理装置では、各々の反応容器110が独立にあらかじめ設定されたy軸方向への並進運動を行う。たとえば、一番目の反応容器110aに関して、カバー405の取り付けられたステム401を洗浄ウェル(#1)504で上下運動させる必要がある場合は、反応容器110aを乗せた載置台101上のステージ201がy軸方向に移動し、カバー405の真下に洗浄ウェル(#1)504を位置させて停止すれば、単純に上下運動をする一体式ステム機構111に直結したカバー405は、洗浄ウェル(#1)504内で上下運動を行うこととなる。このとき、隣接する反応容器110bは、これのy軸方向への並進運動を独自に制御するプログラムによって、カバー405と異なるまったく別の位置に配置することが可能である。
 この反応ウェル110ごとに独立したy軸方向への並進運動によって、ステージ201に反応容器110が搭載されていなければ、随時反応容器110を搭載することが可能となって、試料のコンティニュアスローディングが実現できる。
 より具体的な一つの反応容器ステージの動作としては、先ず、図7Aに示すように、反応ウェル503に処理対象の生物学的試料とカオトロピック剤や界面活性剤を含む溶液701、洗浄ウェル(#1)504、洗浄ウェル(#2)505に洗浄液、溶出ウェル506に溶離液を分注する。これら溶液をウェル501~506に分注する際には、ノズル機構105にディスポーザブルチップを取り付ける。ディスポーザブルチップをノズル機構105に取り付けるには、先ず、ノズル機構駆動制御部109による制御によりノズル機構105を、チップラック104に収容されたディスポーザブルチップの基端部の中心とノズル機構105の先端部とが正確に対向する位置に移動させる(x軸及びy軸方向の移動)。次に、ノズル機構駆動制御部109による制御により、ノズル機構105を下方(z軸)に移動させることによって、ノズル機構105の先端部にディスポーザブルチップを取り付けることができる。以上の一連の動作により、ノズル機構105にディスポーザブルチップを取り付けることができる。
 そして、ディスポーザブルチップを取り付けた状態で、ノズル機構駆動制御部109による制御によりノズル機構105を試薬ラック103の上方に移動し、試薬瓶の内部にディスポーザブルチップの先端を挿入し、図示しないポンプ手段等の吸引・吐出駆動装置により所定量の溶液を吸引する。
 その後、ノズル機構駆動制御部109による制御により、ノズル機構105を反応容器110の上方に移動し、ディスポーザブルチップの先端を所定のウェル(501~506のいずれか)上に位置決めする。この状態で吸引・吐出駆動装置が作動し、ディスポーザブルチップ内に吸引した溶液を所定のウェル(501~506のいずれか)内に分注することができる。
 溶液を分注し終わると、ノズル機構駆動制御部109による制御によりノズル機構105を廃棄物用容器117の上方に移動し、ノズル機構105又は廃棄物用容器117に取り付けられた取外し機構(図示せず)を作動させて、使用済みのディスポーザブルチップを廃棄する。
 以上の一連の動作は、洗浄液や溶離液、カオトロピック剤や界面活性剤を含む溶液を分注する際に共通する動作である。なお、生物学的試料の分注については、検体ラック102に収容された検体チューブから所定量の生物学的試料を吸引する以外は、以上の一連の動作により実施される。また、洗浄液、溶離液、生物学的試料及びカオトロピック剤や界面活性剤を含む溶液を分注する際には、それぞれ異なるディスポーザブルチップが使用される例を示したが、反応によってはディスポーザブルチップを使わなくてもよい。また装置上でノズル機構105が各種試薬や検体の分注を実施したが、各種試薬はその反応容器110への分注を、メーカーが予め実施してもよいし、装置外部で分析者が予め実施してもよい。また検体の分注も装置外部で分析者が実施してもよい。
 次に、図7Aに示すように、処理対象の生物学的試料が分注された反応ウェル503に対して、シリカコーティングされた磁性ビーズ702を図示されない磁性ビーズ分注機構により分注する。なお、磁性ビーズ702は、予め反応ウェル503に分注されていても良いし、磁性ビーズ702を分散した溶液を上述したノズル機構105の動作と同様にして、反応ウェル703に分注しても良い。また、図7Aに示した段階で生物学的試料を分注したが、生物学的試料は磁性ビーズ702とともに或いは順次この段階で分注されても良い。
 ここで、磁性ビーズ702とは、例えば、バイオテクノロジーの分野で従来使用されている磁性体としての特徴を有するビーズであれば如何なる材質、形状及び粒径のものを使用することができる。また、試料処理装置において核酸抽出処理を実施する場合は、核酸吸着能を有する磁性ビーズ702を使用する。核酸吸着能は、磁性体からなるビーズの表面をシリカコーティングすることによって付与することができる。
 この段階では、反応ウェル503にカオトロピック剤が存在するため、生物学的試料に含まれていた核酸成分がシリカコーティングされた磁性ビーズ702の表面に吸着する。
また、この段階では、反応ウェル503の内部を撹拌しても良い。反応ウェル503の内部を撹拌するには、例えば、反応容器110の外部から磁界を周期的に印加することで磁性ビーズ702を内部で移動させる方法、又は、ステム401にカバー405を取り付け、一体式シャフト機構駆動制御部112で一体式ステム機構111を制御してステム401に取り付けたカバー405を反応ウェル503内部で揺動させる方法を使用することができる(図7H)。
 必要に応じて各反応ウェルの上部は揮発や隣接するウェルへの液の持ち込み防止のために油の層を加えておいてもよい。
 本実施例にポイントとなる一連の動作(核酸の抽出、分離、精製)は、ウェル501~506に、図7Aに示すように、それぞれ、カバー405、磁性チップ402、反応溶液(試料、試薬)および磁性ビーズ、洗浄液、溶離液を準備した後に、以下の通り行なわれる。以下の一連の動作において、既述したように一体式ステム機構110はステム上下移動機構により上下移動し、各反応容器110は、各反応容器移動機構によりウェル配列方向にステージ201を介して移動する。また、これらの移動機構は、上位のコンピュータ113の制御指令にしたがってステム機構駆動制御部112、反応容器駆動制御部132を介して連動制御される。
 図7Aは、磁性ビーズを含む試薬、検体が分注された反応容器が装置上の反応容器セット部120に搭載されている状態である。
 複数のステム401は、所定の位置(図1に示す位置)で設定された周期的な上下運動を行っている。ここでは単純な往復動作ではなく、上死点および下死点では0.5秒の停止時間を設けるような設定された周期的動作を行うものとする。
 まず、反応ウェル503内の混合液を攪拌するために、ステム401にカバー405を取り付ける。
 一体式ステム機構111が上死点にあって0.5秒停止している間に、ステム401の真下にカバー格納ウェル501が来るように反応容器110を移動させる(なお、以後の反応容器110の移動に関してもステージを介して行なわれる)。0.5秒の待ち時間を経た後、ステム401は下降し(図7B)、ステム401にカバー405が取り付けられる(図7C)。カバーの取り付け位置は、一体式ステム機構111の下死点である。反応容器内のカバー保持部(上部押さえ板507と下部押さえ板508の隙間)からカバーを取り外すために、図7Dに示すように、反応容器110を、わずかにy軸方向(図7D中、矢印の方向)に移動(偏心)させる。この時点で一体式ステム機構111が上昇すると、図7Eに示すように、ステム401と、それに取り付けられたカバー405が反応容器110から取り出される。
 図7Fで一体式ステム機構111が反応容器110の上方にあるうちに、ステム401の真下に反応ウェル503が来るように、反応容器110を移動させる。
 図7Gで一体式ステム機構111が降下して反応ウェル503内に進入する。このときのステム401及びカバー405の降下位置は、ウェル中心に対して切欠き部509と反対側に偏心した状態にある。それにより、カバー405のフランジ部406は、押さえ板507,508に干渉することなく降下可能になる。
 図7Hで一体式ステム機構111が下死点に到達する。この位置でステージ201は停止制御されており、カバー405による複数回の攪拌がなされる。
 攪拌後には、後述するように磁性ビーズを洗浄する。
 図7Iで一体式ステム機構111が上死点にある時にステージ201は、カバー405の真下にカバー格納ウェル501が来るように反応容器110を移動させる。
 この位置で待機すると、一体式ステム機構111が下降して(図7J)、下死点に到達する(図7K)。下死点で一体式ステム機構111が0.5秒停止しているうちに、反応容器110を、y軸方向にわずかに切欠き部509側に移動(偏心)させ(図7L中、矢印の方向)、カバー405のフランジ部406がカバー保持部(上部押さえ板507と下部押さえ板508の隙間)に挟まるようにする。ここで待機すると、一体式ステム機構111は上昇するので、カバー405が押さえ板507,508に押さえられて、カバー405がステム401から取り外される(図7M)。
 図7Nで一体式ステム機構111が上死点に到達したら、ステム401の真下に磁性チップ格納ウェル502が来るように反応容器110を移動させる。ここで待機すると、図7Oのように、一体式ステム機構111が下降して、ステム401に磁性チップ402が取り付けられる。
 図7Pで反応容器110をわずかにy軸方向に動かして(すなわち切欠き部509と反対側に偏心させて)、磁性チップ402を磁性チップ保持部(上部押さえ板507と下部押さえ板508の隙間)から外し、図7Qで一体式ステム機構111を上昇させれば、磁性チップを装着したステム401が反応容器110の上方に位置する。
 図7R~Uの動作で、ステム401には磁性チップ402の上からカバー405が取り付けられる。すなわち、図7Rでは、磁性チップ402を装着したステム401の真下にカバー格納ウェル501が来るように、反応容器110を移動させる。図7Sでは、一体式ステム機構111を降下させて、磁性チップ402付きのステム401をカバー格納ウェル501に進入させる。これにより、カバー405がステム401に装着される。図7Tでは、反応容器110をわずかに矢印方向に移動させる(カバー格納ウェル501に対して、カバー及び磁性チップ付きステム401が相対的に切欠き部509と反対側に偏心する方向の移動)。これによりカバー及び磁性チップ付きステム401が押さえ板507,508から外れる。この状態で、図7Uに示すように、カバー及び磁性チップ付きステム401が引き上げられる。
 図7Vで、磁性チップ402及びカバー405を装着したステム401の真下に反応ウェル503が来るように、反応容器110を移動させ、この位置で反応容器110を停止させる。図7Wで一体式ステム機構111を下降させて、磁性チップ402及びカバー405を反応ウェル503に進入させると磁性ビーズの702の捕集が行われる。図7Xで、上記磁性ビーズ捕集を行なっているときに、ステム機構が下死点で一時的に停止し、その後に図7Yに示すように一体式ステム機構111が上昇する。1回のステム往復(昇降)運動で磁性ビーズの捕集が十分なされない場合は、一体式ステム機構を複数回往復(上昇、下降)させるように設定すればよい。
 以降図示はしていないが、一体式ステム機構駆動制御部112によって、一体式ステム機構111を反応容器110の上方に位置させた状態(磁性ビーズ702を捕集した状態:図7Yの状態)で、磁性チップ402及びカバー405の真下(すなわち一体式ステム機構の真下)に洗浄ウェル(#1)504が来るように、反応容器110を移動させる。
その後、ステム機構111を下降させて、洗浄ウェル(#1)504に磁性ビーズ付きカバー405及び磁性チップ402を進入させる。ステム機構111が下死点に達した後に、カバー405のフランジ部406が洗浄ウェル(#1)504上方の押さえ板507,508に挟まれる(係止する)ように、反応容器110をわずかに移動させる(すなわち、カバー405を押さえ板の切欠き部509側に偏心させる)。この状態で、カバー405を残して、ステム401に磁性チップ402を装着した状態で、ステム機構111を上昇させ、ステム機構111の真下に磁性チップ格納ウェル502が来るように反応容器110を移動させる。この動作により磁性ビーズ702は、カバー405から離れて洗浄ウェル(#1)504の洗浄液内に浸漬される。ステム401に装着した磁性チップ402を磁性チップ格納ウェル502に戻すために、既述した図7N~図7Qの逆動作(すなわち図7Q~図7Nの動作)を行なうようにステム機構111および反応容器110を動作させる。その後に、ステム機構111の真下に再度、洗浄ウェル(#1)504が来るように反応容器110を移動させる。その後、ステム機構111を下降させて、洗浄ウェル(#1)504の押さえ板507,508に係止されているカバー405をステム401に再度装着し、カバー405の押さえ板に対する係止が解除されるよう反応容器110をわずかに移動させてステム機構111を上下運動させる。この上下運動により洗浄液内で攪拌が行なわれ洗浄ウェル(#1)504内で磁性ビーズ702での洗浄が行なわれる。
この洗浄により、生物学的試料に由来するタンパク質等の不純物を磁性ビーズ表面から除去することができる。
 なお、上記の洗浄において、図7N~図7Qの逆動作を行なわずに、カバー405を押さえ板507,508で洗浄ウェル(#1)504に残して)、一体式ステム機構111を上昇させるだけでも、磁性チップ402がステム401と共にカバー405から離れるので、磁性ビーズ702がカバー405から離脱して洗浄ウェル中の洗浄液中に浸漬される。ただし、この場合には、上記したようなカバーの上下動による攪拌作用は期待できず、洗浄時間は洗浄液攪拌を伴うものよりも長くなる。
 第1回目の洗浄後、再び磁性チップ402及びカバー405がステム401に装着されるように反応容器110とステム機構111を移動制御して、この磁性チップ402及びカバー405を洗浄ウェル(#1)504に位置させると、カバー405に磁性ビーズ702が再び捕集される。このように磁性ビーズ702を捕集した状態でステム機構111を上昇させて、ステム機構111の真下に洗浄ウェル(#2)505が来るように反応容器110を移動させる。その後、図示しないが、反応容器110及びステム機構111を、第1回目の洗浄同様に動作させることで、第2回目の洗浄動作が実施される。
 次に、磁性チップ402と洗浄後の磁性ビーズ702を吸着したカバー405とを装着したステム401を、ステム機構111の上下移動制御および反応容器110のウェル配列方向の移動制御により溶出ウェル506に相対移動させる。その後、洗浄過程で実施されたカバー着脱操作及び磁性チップ着脱操作と同様の操作(ステム上下移動及び反応容器配列方向移動制御)が、溶出ウェル506と磁性チップ格納ウェル502間でも行なわれる。それにより、磁性ビーズ702をカバー405から離脱させて溶出ウェル506内の溶離液内に浸漬させる。既述したように、ここまでの各々の過程は、ステム機構駆動制御部112による一体式ステム機構111の周期的上下運動制御と、反応容器駆動制御部132による反応容器110のウェル配列方向(y軸方向)への並進運動制御のみで実現できる。
 この溶出ウェル506では、磁性ビーズ702の表面に吸着した核酸成分を溶離液中に溶離させることができる。以上の過程により、核酸の抽出、分離、精製の一連の処理が行なわれる。最後に、溶離液中の磁性ビーズ702を、磁性チップ402を利用して再びカバー405の先端に捕集する。
 磁性ビーズ702を捕集した使用済みの磁性チップ402およびカバー405は、廃棄されることになるが、本実施例では、一体式ステム機構111にz軸方向の移動機構130の他にx軸方向,y軸方向の移動機構(図示省略)を加えて、ステム機構駆動制御部112による制御により一体式ステム機構111を廃棄物用容器117の上方に移動し、ノズル機構105又は廃棄物用容器117に取り付けられた取外し機構を作動させて、先端に磁性ビーズ702を捕捉した状態でカバー405及び磁性チップ402を廃棄するように設定している。ここではカバー405のみ取り外して廃棄して、接液していない磁性チップ402は回収して再利用してもよい。
 なお、一体式ステム機構111にz軸方向の移動機構(ステム上下移動機構)だけを与えて、磁性チップ402及びカバー405の廃棄については、反応容器110の交換時にユーザー自身が回収して廃棄物用容器に廃棄するようにしてもよい。このようにすれば、一体式ステム機構はz軸方向の移動だけで済むので、機構及び制御の簡略化を図ることができる。
 本実施例に係る試料処理装置を用いた核酸抽出方法では、磁性ビーズ702をカバー405の先端に捕集(捕捉)して反応ウェル503~溶出ウェル506へと移動させている。
 従来の技術は反応容器の数だけ試料の分注ノズルが準備されている。このような従来技術は、すべての検体をバッチで処理する場合には、一つのシリンジポンプで共通の試薬や、対応する位置にある検体を反応容器の数だけの分注ノズルで吸引吐出すればよいが、すべての反応容器内での動作が同じであるため、典型的なバッチ処理である。もし、反応容器の各々にシリンジポンプを備える構造とするなら、各々の反応容器に、シリンジポンプ、xyz軸移動機構を配置せねばならず、装置のコストを増大させる。
 本実施例は、装置の内部での分注は、1つのシリンジポンプに実行させて、反応容器で行なわれる生物学的分子の抽出に関する一連の処理(攪拌、磁性ビーズ捕集等)は、一体式ステム機構のz軸方向の動作と、各反応容器のy軸方向への1軸運動によって実現している。特に、z軸方向の運動は、処理の並列数によらず軸の数は1軸であり、並列度を上げるには、1反応容器あたりy軸を1軸追加すればよいので、装置コストを抑えることができる。
 さらに、本実施例の試料処理装置および試料処理方法によれば、磁性ビーズを用いた生物学的分子の抽出、分離、精製の一連の処理において、反応容器(検体)をランダムに随時に処理装置に追加して、反応容器ごとにそれぞれ独立して一連の処理(例えば、細胞を破砕して溶液中に生物学的分子を抽出すること、抽出された生物学的分子を磁性ビーズにより溶液から分離すること、磁性ビーズを洗浄してそこに吸着された生物学的分子を溶離液により溶出(精製)させることの処理)を実施することができる。
 さらに本実施例の反応容器は、各種処理が行なわれるウェルの配列方向が、反応容器の移動方向と一致し、反応容器に設けた磁性チップ及びそのカバー用の着脱機構(押さえ板)の切欠き部が前記ウェルの配列方向に一致して設けられ、かつこれらの切欠き部の開口もウェルの配列方向に向けられているので、上記の試料処理方法の実施を可能にする反応容器を提供することができる。
 101…載置台、102…検体ラック、103…試薬ラック、104…チップラック、105…ノズル機構、106…ノズル機構移動用ガイドZ、107…ノズル機構移動用ガイドY、108…ノズル機構移動用ガイドX、109…ノズル機構駆動制御部、110…反応容器、111…一体式ステム機構、112…一体式ステム機構駆動制御部、113…ステムホルダ、115…ガイド溝、116…サーボモータ(アクチュエータ)、120…反応容器セット部、130…ステム上下移動機構、131…支持部材、132…反応容器駆動制御部、133…コンピュータ、201…ステージ、202…可動子、203…スクリューロッド、401…ステム、402…磁性チップ、403…磁性体、404…フランジ部、405…カバー、406…フランジ部、501…カバー格納ウェル、502…磁性チップ格納ウェル、503…反応ウェル、504…洗浄ウェル(#1)、505…洗浄ウェル(#2)、506…溶出ウェル、507…上部押さえ板、508…下部押さえ板、701…処理対象の生物学的試料とカオトロピック剤や界面活性剤を含む溶液、702…磁性ビーズ。

Claims (15)

  1.  生物学的試料を試薬と反応させて一連の処理が行なわれる反応容器を備え、前記反応容器には、前記一連の処理が行われるよう配列された複数の処理部が設けられている試料処理装置において、
     前記反応容器を複数並置できる反応容器セット部と、
     前記反応容器セット部にセットされた前記反応容器を、反応容器ごとに独立して前記処理部の配列方向に移動させる反応容器移動機構と、
     前記反応容器と協働して前記一連の処理に使用される複数のステムがそれぞれの反応容器に対応して前記反応容器セット部の上方に上下移動可能に配置され、これらのステムは、前記反応容器の移動方向と交差する方向に列をなし、前記反応容器セット部に並置される反応容器同士の処理部間のピッチに合わせたピッチで配列されているステム機構と、
     前記ステム機構を上下移動させるステム上下移動機構と、
     前記一連の処理のために前記反応容器移動機構と前記ステム上下移動機構とを連動させて、各反応容器の該当の処理部が処理手順にしたがって前記ステム機構の直下にきた時に対応のステム或いはそれに装着されるツールが処理部内に出入りする制御を行う制御部と、
    を備えることを特徴とする試料処理装置。
  2.  請求項1記載の試料処理装置において、
     前記反応容器は、試薬及び磁性ビーズを用いて前記生物学的試料から生物学的分子を少なくとも抽出するためのものであり、前記処理部として、
     前記生物学的試料、生物学的分子抽出用の試薬、生物学的分子吸着用の磁性ビーズが供給される反応部と、
     生物学的分子を吸着した前記磁性ビーズを回収するために用いる磁性チップを、前記ステムに着脱するために格納する磁性チップ格納部と、
     前記磁性チップのカバーを、前記ステムに着脱するために格納するカバー格納部と、
     前記生物学的分子を吸着した前記磁性ビーズを洗浄するための洗浄液を収容する洗浄部と、
     洗浄された前記磁性ビーズを受け入れて前記磁性ビーズ表面から前記生物学的分子を溶出させる溶出部と、
    を備える試料処理装置。
  3.  請求項1記載の試料処理装置において、
     前記ステム機構は、複数の前記ステムが一体式に上下移動可能に支持される一体式ステム機構であり、
     前記ステム上下移動機構は、前記制御部からの制御信号により、一つの駆動源によって前記一体式ステム機構を周期的に上下運動させる機構を有し、
     前記反応容器移動機構は、前記ステム上下移動機構の周期的な上下方向の運動に合わせて、複数の前記処理部が処理順に従って前記ステム上下移動機構の直下にくるように前記制御部により移動制御される試料処理装置。
  4.  請求項1記載の試料処理装置において、
     前記反応容器移動機構は、前記反応容器セット部にセットされる前記反応容器を直線方向に移動させる試料処理装置。
  5.  請求項1記載の試料処理装置において、
     前記反応容器移動機構は、前記反応容器セット部にセットされる前記反応容器を、1軸を中心に回転方向に移動させる試料処理装置。
  6.  請求項2記載の試料処理装置において、
     前記磁性チップおよび前記カバーは、先端と反対側の基端が開口して、その開口部の内径を前記磁性チップよりも前記カバーの方を大きくしてあり、且つ各開口周縁にフランジ部を有し、
     前記ステムには、前記各開口を通して前記磁性チップ及びカバーを着脱するための異なる外径部がステム先端側からステム中間部にかけて設けられ、
     前記反応用容器には、前記磁性チップ或いは前記カバーが前記処理部に挿入された時に、前記磁性チップ或いは前記カバーを前記処理部に対して反応容器を介して偏心移動させることで該反応容器に係合,離脱させる着脱機構を備える試料処理装置。
  7.  請求項6記載の試料処理装置において、
     前記着脱機構は、前記処理部の開口上方に対向して設けられた上部押さえ板と下部押さえ板とよりなり、これらの押さえ板には、前記磁性チップ及び前記カバーの外径に適合して前記偏心移動を受け入れる曲率の異なる切欠き部が設けられており、
     これらの切欠き部が前記反応容器の移動方向に配列され、かつ前記各切欠き部の開口も前記反応容器の移動方向に向けられている試料処理装置。
  8.  試薬及び磁性ビーズを用いて生物学的試料から生物学的分子の少なくとも抽出に関する一連の処理が行なわれる反応容器を備え、前記反応容器には、前記一連の処理が行われるよう配列された複数の処理部が設けられている試料処理装置において、
     前記反応容器は、試薬及び磁性ビーズを用いて前記生物学的試料から前記生物学的分子を抽出するために、前記処理部として、少なくとも、
     生物学的試料、生物学的分子抽出用の試薬、生物学的分子吸着用の磁性ビーズが供給される反応部と、
     生物学的分子を吸着した前記磁性ビーズを回収するために用いる磁性チップを、前記ステムに着脱するために格納する磁性チップ格納部と、
     前記磁性チップのカバーを、前記ステムに着脱するために格納するカバー格納部と、を備え、
     且つ前記試料処理装置は、
     前記反応容器を複数並置できる反応容器セット部と、
     前記反応容器セット部にセットされた前記反応容器を、反応容器ごとに独立して前記処理部の配列方向に移動させる反応容器移動機構と、
     前記反応容器と協働して前記一連の処理に使用される複数のステムがそれぞれの反応容器に対応して前記反応容器セット部の上方に上下移動可能に配置され、これらのステムは、前記反応容器の移動方向と交差する方向に列をなし、前記反応容器セット部に並置される反応容器同士の処理部間のピッチに合わせたピッチで配列されているステム機構と、
     前記ステム機構を上下移動させるステム上下移動機構と、
     前記一連の処理のために前記反応容器ごとの処理部配列方向の移動と前記ステム機構の上下移動とを連動制御して、前記処理部の一つが処理手順にしたがって前記ステム機構の直下にきた時に対応のステム或いはそれに装着される前記磁性チップ及びカバーが処理部内に出入りする制御を行う制御部と、
    を備えることを特徴とする試料処理装置。
  9.  請求項8記載の試料処理装置において、
     前記処理部としてさらに、前記生物学的分子を吸着した前記磁性ビーズを洗浄するための洗浄液を収容する洗浄部と、洗浄された前記磁性ビーズを受け入れて前記磁性ビーズ表面から前記生物学的分子を溶出させる溶出部と、を備える試料処理装置。
  10.  生物学的試料から生物学的分子を抽出,分離,精製する一連の処理を行なう試料処理方法において、
     前記一連の処理に請求項8又は請求項9記載の試料処理装置が用いられ、
     前記反応容器セット部に前記反応容器を随時必要に応じてセットし、前記一連の処理にしたがって該当の処理部が前記一体式ステムの直下にくるように、各反応容器を前記反応容器移動機構により独立して移動制御する工程と、
     前記処理部が前記一体式ステム機構の直下にきた時に、対応のステムに装着した前記磁性チップ或いは前記カバーが前記処理部内に出入りする制御を行う工程と、
    を含むことを特徴とする試料処理方法。
  11.  請求項10記載の試料処理方法において、
     前記ステム機構は、前記反応容器の移動制御に連動して周期的に上下移動し、上死点、下死点にある時に所定の停止期間を設けるように設定されている試料処理方法。
  12.  請求項10記載の試料処理方法において、
     前記反応容器には、前記磁性チップ或いは前記カバーが前記処理部に挿入された時に、前記磁性チップ或いは前記カバーを前記処理部に対して反応容器を介して偏心移動させることで係合,離脱させる着脱機構を備え、
     前記着脱機構は、前記処理部の開口上方に対向して設けられた上部押さえ板と下部押さえ板とよりなり、これらの押さえ板には、前記磁性チップ及び前記カバーの外径に適合して前記偏心移動を受け入れる切欠き部が設けられており、
     これらの切欠き部が前記反応容器の移動方向に配列され、かつ前記各切欠き部の開口も前記反応容器の移動方向に向けられており、
     前記反応容器を前記反応容器移動機構により独立して移動制御する工程は、前記処理部間の移動に加えて、前記磁性チップ或いは前記カバーを対応の前記処理部に着脱させるために前記偏心移動させる制御も含む試料処理方法。
  13.  試薬及び磁性ビーズを用いて生物学的試料から生物学的分子を抽出するために使用される反応容器であって、箱形を呈し、箱形本体に前記一連の処理が行われるよう配列された複数のウェルが設けられている反応容器において、
     前記ウェルとして、少なくとも、
     生物学的試料、生物学的分子抽出用の試薬、生物学的分子吸着用の磁性ビーズが供給される反応ウェルと、
     生物学的分子を吸着した前記磁性ビーズを回収するために用いる磁性チップを、前記ステムに着脱するために格納する磁性チップ格納ウェルと、
     前記磁性チップのカバーを、前記ステムに着脱するために格納するカバー格納ウェルと、を備え、
     さらに前記箱形本体には、前記磁性チップ或いは前記カバーがこれらのウェルのいずれか一つに選択的に挿入された時に、前記磁性チップ或いは前記カバーをウェルに対して反応容器を介して偏心移動させることで係合,離脱させる着脱機構を備え、
     前記着脱機構は、前記処理部の開口上方に対向して設けられた上部押さえ板と下部押さえ板とよりなり、これらの押さえ板には、前記磁性チップ及び前記カバーの外径に適合して前記偏心移動を受け入れる切欠き部が設けられており、
     これらの切欠き部が前記ウェルの配列方向に一致して設けられ、かつこれらの切欠き部の開口も前記ウェルの配列方向に向けられていることを特徴とする反応容器。
  14.  請求項13記載の反応容器において、
     前記上部押さえ板と前記下部押さえ板は、前記磁性チップ及び前記カバーに共用であり、各押さえ板に、前記磁性チップの外径に対応する曲率と前記カバーの外径に対応する曲率とを有する切欠き要素が複合的に形成されている反応容器。
  15.  請求項13記載の反応容器において、
     前記上部押さえ板と前記下部押さえ板は、前記磁性チップ用と前記カバー用とに分けて別々に配置され、前記磁性チップ用の上部押さえ板および下部押さえ板に、前記磁性チップの外径に対応する曲率の切欠き部が形成され、前記カバー用の上部押さえ板および下部押さえ板に、前記カバーの外径に対応する曲率の切欠き部が形成されている反応容器。
PCT/JP2012/062891 2011-05-30 2012-05-21 試料処理装置、試料処理方法、およびこれらに使用する反応容器 WO2012165187A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012002014.6T DE112012002014B4 (de) 2011-05-30 2012-05-21 Probenverarbeitungsvorrichtung, Probenverarbeitungsverfahren und in dieser Vorrichtung bzw. diesem Verfahren verwendeter Reaktionsbehälter
CN201280026705.XA CN103562727B (zh) 2011-05-30 2012-05-21 试样处理装置、试样处理方法以及所使用的反应容器
US14/122,325 US8906304B2 (en) 2011-05-30 2012-05-21 Sample processing device, sample treatment method, and reaction container used in these device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-119955 2011-05-30
JP2011119955A JP5650056B2 (ja) 2011-05-30 2011-05-30 試料処理装置、および試料処理方法

Publications (1)

Publication Number Publication Date
WO2012165187A1 true WO2012165187A1 (ja) 2012-12-06

Family

ID=47259048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062891 WO2012165187A1 (ja) 2011-05-30 2012-05-21 試料処理装置、試料処理方法、およびこれらに使用する反応容器

Country Status (5)

Country Link
US (1) US8906304B2 (ja)
JP (1) JP5650056B2 (ja)
CN (1) CN103562727B (ja)
DE (1) DE112012002014B4 (ja)
WO (1) WO2012165187A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290875A (zh) * 2017-02-03 2019-09-27 美可生物医学有限公司 一种用于从生物学试料分离或纯化目标物质的装置和方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5650056B2 (ja) 2011-05-30 2015-01-07 株式会社日立ハイテクノロジーズ 試料処理装置、および試料処理方法
CA2842359A1 (en) 2011-08-01 2013-02-07 Denovo Sciences Cell capture system and method of use
US11008628B1 (en) * 2013-02-18 2021-05-18 Labrador Diagnostics Llc Systems and methods for analyte testing and laboratory oversight
US10401373B1 (en) 2013-02-18 2019-09-03 Theranos Ip Company, Llc Systems and methods for analyte testing and laboratory oversight
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US11360107B1 (en) 2014-02-25 2022-06-14 Labrador Diagnostics Llc Systems and methods for sample handling
CN104436753B (zh) * 2014-12-09 2016-05-25 天津博纳艾杰尔科技有限公司 一种固相萃取仪
ES2596708B1 (es) 2015-07-08 2017-04-12 Kiro Grifols S.L Máquina y procedimiento para la preparación automática de sustancias de aplicación intravenosa
CN114432943A (zh) 2015-07-24 2022-05-06 新型微装置有限责任公司(Dba 新型装置) 标本提取装置及其使用方法
CN105137056B (zh) * 2015-08-28 2017-07-18 深圳市锦瑞生物科技有限公司 一种生化分析仪
CN106554901B (zh) * 2015-09-30 2019-06-14 精专生医股份有限公司 自动化萃取核酸的机台及配合其使用的针筒
JP6771903B2 (ja) 2016-02-29 2020-10-21 シスメックス株式会社 検体前処理装置、検体前処理カートリッジおよび検体前処理方法
JP6918914B2 (ja) * 2016-02-29 2021-08-11 シスメックス株式会社 検体前処理カートリッジを用いた前処理方法
US11204358B2 (en) 2016-05-25 2021-12-21 Universal Bio Research Co., Ltd. Specimen processing and measuring system
CN106381259B (zh) * 2016-09-27 2018-09-11 深圳市港科深研生物科技有限公司 外周血单个核细胞的体外提取装置和外周血单个核细胞的体外提取方法
CN109564212A (zh) * 2016-10-13 2019-04-02 松下知识产权经营株式会社 生物分子的提取方法、提取系统以及提取容器
CN106918713B (zh) * 2017-03-14 2019-04-12 复旦大学附属中山医院 一种全自动生物样品组分分选装置
CN106771307A (zh) * 2017-03-14 2017-05-31 骏实生物科技(上海)有限公司 磁性分析物收集转移系统及其方法
CN110945363B (zh) * 2017-07-21 2024-04-16 Seegene株式会社 一种用于转移磁珠的模块,包括该模块的自动化系统以及使用该模块提取核酸的方法
EP3651903A4 (en) 2017-08-29 2021-06-16 Bio-Rad Laboratories, Inc. SYSTEM AND METHOD FOR ISOLATING AND ANALYZING CELLS
CN107760561B (zh) * 2017-10-26 2019-05-28 深圳市汇研科创生物科技有限公司 核酸提取装置及核酸提取方法
CN108051587B (zh) * 2017-11-03 2020-02-14 无锡艾科瑞思产品设计与研究有限公司 一种具有搅拌功能的食物检测用酶标板
CN110272808B (zh) * 2018-03-13 2020-10-16 武汉医蒂生物科技有限公司 一种核酸提取系统
CN108998368A (zh) * 2018-08-01 2018-12-14 德诺杰亿(北京)生物科技有限公司 样本处理系统
US10633693B1 (en) 2019-04-16 2020-04-28 Celsee Diagnostics, Inc. System and method for leakage control in a particle capture system
CN114072490A (zh) 2019-05-07 2022-02-18 伯乐实验室有限公司 用于自动化的单细胞加工的系统和方法
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
CN112175943B (zh) * 2020-10-29 2022-07-15 绍兴迅敏康生物科技有限公司 连续进样的测序建库仪及其操作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504195A (ja) * 1999-07-19 2003-02-04 オルガノン・テクニカ・ベー・ヴエー 磁性粒子を流体と混合するための装置および方法
JP2004229657A (ja) * 2003-01-29 2004-08-19 Bionex Inc 核酸又は様々な生物学的物質を分離及び精製するためのキットと、このキットを用いて生物学的物質の分離又は精製操作を自動化するためのシステム
JP2004337137A (ja) * 2003-05-12 2004-12-02 Marcom:Kk 自動核酸抽出方法および自動核酸抽出装置
WO2005118803A1 (ja) * 2004-06-02 2005-12-15 Arkray, Inc. 核酸抽出用容器、固体マトリックスの洗浄方法および洗浄機構、ならびに核酸精製方法
US20060144169A1 (en) * 2005-01-05 2006-07-06 Amir Porat Combinatorial pipettor device
JP2006329986A (ja) * 2005-05-24 2006-12-07 Festo Corp 試料をソースからターゲットに移送するための装置および方法
JP2007279006A (ja) * 2006-04-12 2007-10-25 Bio-Magnetics Ltd 組み合わせピペッター器具
JP2008167722A (ja) * 2007-01-15 2008-07-24 Konica Minolta Medical & Graphic Inc 磁性支持体上での加熱による核酸単離方法
US20090176308A1 (en) * 2007-11-13 2009-07-09 Stratec Biomedical Systems Ag Apparatus and method for the purification of biomolecules
JP2011501194A (ja) * 2007-10-25 2011-01-06 アボット・ラボラトリーズ 超高感度免疫アッセイを実施する方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1130397B1 (en) * 1993-02-01 2006-10-11 Thermo Electron Oy Equipment for determination of an analyte from a sample
IL123210A0 (en) * 1998-02-06 1998-09-24 Gombinsky Moshe A device and system for the collection of magnetic particles
FI102906B1 (fi) * 1998-02-23 1999-03-15 Bio Nobile Oy Menetelmä ja väline aineen siirtämiseksi
JP4474099B2 (ja) * 2002-12-20 2010-06-02 アークレイ株式会社 液体保存容器およびカートリッジ
JP2005037179A (ja) * 2003-07-17 2005-02-10 Mitsubishi Kagaku Iatron Inc カートリッジシールの穿孔具を備えた自動測定装置
US7534081B2 (en) 2005-05-24 2009-05-19 Festo Corporation Apparatus and method for transferring samples from a source to a target
JP4328788B2 (ja) * 2005-10-04 2009-09-09 キヤノン株式会社 核酸試料検査装置
CN201060199Y (zh) * 2007-03-26 2008-05-14 台湾圆点奈米技术开发有限公司 全自动磁珠操作平台
EP2397861B1 (en) 2009-02-12 2019-03-06 ARKRAY, Inc. Analysis method, analysis apparatus, computer program used to implement said analysis method, and storage medium for this program
JP5292267B2 (ja) 2009-12-16 2013-09-18 株式会社日立ハイテクノロジーズ 試料処理装置、試料処理方法及びこれらに使用する反応容器
JP5650056B2 (ja) 2011-05-30 2015-01-07 株式会社日立ハイテクノロジーズ 試料処理装置、および試料処理方法
JP5745994B2 (ja) * 2011-10-26 2015-07-08 トヨタ自動車株式会社 組立装置
JP5599488B2 (ja) 2013-04-26 2014-10-01 株式会社日立ハイテクノロジーズ 試料処理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003504195A (ja) * 1999-07-19 2003-02-04 オルガノン・テクニカ・ベー・ヴエー 磁性粒子を流体と混合するための装置および方法
JP2004229657A (ja) * 2003-01-29 2004-08-19 Bionex Inc 核酸又は様々な生物学的物質を分離及び精製するためのキットと、このキットを用いて生物学的物質の分離又は精製操作を自動化するためのシステム
JP2004337137A (ja) * 2003-05-12 2004-12-02 Marcom:Kk 自動核酸抽出方法および自動核酸抽出装置
WO2005118803A1 (ja) * 2004-06-02 2005-12-15 Arkray, Inc. 核酸抽出用容器、固体マトリックスの洗浄方法および洗浄機構、ならびに核酸精製方法
US20060144169A1 (en) * 2005-01-05 2006-07-06 Amir Porat Combinatorial pipettor device
JP2006329986A (ja) * 2005-05-24 2006-12-07 Festo Corp 試料をソースからターゲットに移送するための装置および方法
JP2007279006A (ja) * 2006-04-12 2007-10-25 Bio-Magnetics Ltd 組み合わせピペッター器具
JP2008167722A (ja) * 2007-01-15 2008-07-24 Konica Minolta Medical & Graphic Inc 磁性支持体上での加熱による核酸単離方法
JP2011501194A (ja) * 2007-10-25 2011-01-06 アボット・ラボラトリーズ 超高感度免疫アッセイを実施する方法
US20090176308A1 (en) * 2007-11-13 2009-07-09 Stratec Biomedical Systems Ag Apparatus and method for the purification of biomolecules

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110290875A (zh) * 2017-02-03 2019-09-27 美可生物医学有限公司 一种用于从生物学试料分离或纯化目标物质的装置和方法

Also Published As

Publication number Publication date
CN103562727A (zh) 2014-02-05
US8906304B2 (en) 2014-12-09
DE112012002014B4 (de) 2014-08-07
JP2012247330A (ja) 2012-12-13
DE112012002014T5 (de) 2014-03-06
CN103562727B (zh) 2015-11-25
US20140087370A1 (en) 2014-03-27
JP5650056B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5650056B2 (ja) 試料処理装置、および試料処理方法
JP5292267B2 (ja) 試料処理装置、試料処理方法及びこれらに使用する反応容器
JP3551293B2 (ja) 核酸抽出装置
JP5998218B2 (ja) 磁力体カバー及び核酸抽出装置
JP5202339B2 (ja) 容器反復利用磁性粒子並行処理装置および容器反復利用磁性粒子並行処理方法
JP5890623B2 (ja) 液体処理システム及び液体処理方法
US8685322B2 (en) Apparatus and method for the purification of biomolecules
WO2017027425A1 (en) Modular liquid handling system
JP3752417B2 (ja) 核酸の精製方法および精製装置
WO2018181718A1 (ja) 核酸分離装置
CN111989390A (zh) 用于从样品提取生物分子的系统及相关方法
KR101282841B1 (ko) 핵산 또는 생물학적 물질을 분리하기 위한 장치 및 방법
JP7141530B2 (ja) 自動核酸抽出方法及び装置
WO2016031705A1 (ja) 可変ピッチ分注装置を利用した磁性粒子反応制御装置およびその反応制御方法
JP2011234671A (ja) 核酸抽出装置
KR20150012778A (ko) 자성나노입자를 이용한 자동 분리 농축 처리장치
JP5771731B2 (ja) 試料処理装置および試料処理方法に使用する反応容器
JP5599488B2 (ja) 試料処理方法
CN108315243B (zh) 自动化加样系统
JPWO2020162431A1 (ja) 検体処理装置
CN113583798A (zh) 用于磁棒法提取生物活性物质的磁针和套管系统和其应用
JP2000266764A (ja) 分注用装置
JP2002243746A (ja) 自動分離抽出装置
JP2018171029A (ja) 核酸分離装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14122325

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120020146

Country of ref document: DE

Ref document number: 112012002014

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12792863

Country of ref document: EP

Kind code of ref document: A1