WO2012164895A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2012164895A1
WO2012164895A1 PCT/JP2012/003434 JP2012003434W WO2012164895A1 WO 2012164895 A1 WO2012164895 A1 WO 2012164895A1 JP 2012003434 W JP2012003434 W JP 2012003434W WO 2012164895 A1 WO2012164895 A1 WO 2012164895A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
data based
press
operator
enlargement
Prior art date
Application number
PCT/JP2012/003434
Other languages
English (en)
French (fr)
Inventor
愉美子 柏
靖志 佐々木
誠 千嶋
宇志 山田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2013517863A priority Critical patent/JP5808404B2/ja
Priority to US14/122,640 priority patent/US9798408B2/en
Publication of WO2012164895A1 publication Critical patent/WO2012164895A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04883Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures for inputting data by handwriting, e.g. gesture or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04806Zoom, i.e. interaction techniques or interactors for controlling the zooming operation

Definitions

  • the present invention relates to an electronic device. More specifically, the present invention relates to an electronic device that performs processing according to data based on pressure detected by a pressure detection unit.
  • Patent Document 1 proposes an analog type resistive touch panel that can be miniaturized at a low production cost.
  • a touch panel as described in Patent Document 1 is composed of two conductive films that are slightly spaced by spacers. This touch panel is configured to read a position where the conductive film is pressed and in contact with the other conductive film as a voltage by a voltage gradient applied to the one conductive film.
  • a touch sensor For such a touch sensor, various methods such as a capacitive method and an optical method are known in addition to the resistive film method. Both types of touch sensors detect contact with an operator's finger or stylus pen.
  • An electronic device including a touch sensor generally displays an image (hereinafter, referred to as “object”) such as operation keys and buttons on a display unit such as a liquid crystal display disposed on the back side of the touch sensor.
  • object an image
  • the touch sensor detects a contact at a position corresponding to the object.
  • An electronic device equipped with such a touch sensor can have various user interfaces configured by displaying various objects in accordance with application software to be used (hereinafter simply referred to as “application”). Therefore, the electronic device provided with the touch sensor can configure various user interfaces with a high degree of freedom. Since such an electronic device is easy to understand for the operator and easy to use, an electronic device equipped with a touch sensor is rapidly spreading.
  • touch sensors that support multi-touch can detect a plurality of points even when touched at the same time. is there.
  • various types of processing can be performed depending on the operation mode by detecting not only the presence / absence of contact but also the mode of operation by contact. There are some (see, for example, Patent Document 2).
  • a tap that touches the touch sensor only once (single tap)
  • a double tap that touches the touch sensor twice quickly a slide (or drag) that moves the position of the contact while touching the touch sensor
  • a flick that slides quickly to repel
  • Some touch sensors that support multi-touch can detect a pinch operation in which two fingers or the like of an operator are simultaneously brought into contact with the touch sensor to open or close the two fingers or the like.
  • a pinch-out operation an operation of opening two fingers that are brought into contact with each other
  • an operation of closing two fingers or the like may be referred to as a pinch-in operation.
  • FIG. 48A in the electronic device 100 in which the touch sensor 200 is placed on the front side of the display unit 300, a wide area map including Japan is displayed on the display unit 300 as an image.
  • the electronic device 100 is an electronic device that supports a pinch operation.
  • the operator touches to pinch a specific area to be expanded.
  • a pinch-out operation can be performed by spreading two fingers.
  • FIG. 48B the specific area that is touched so as to be pinched with the two fingers is enlarged and displayed so as to follow the movement in which the two fingertips are spread.
  • the operator touches two fingers that touch the specific area to be reduced as shown in FIG.
  • the pinch-in operation can be performed by narrowing the interval.
  • FIG. 48A the specific area that is touched so as to be pinched with two fingers is reduced and displayed so as to follow the movement of closing the two fingertips.
  • the operator When the electronic device 100 is a relatively large device such as a tablet computer, for example, the operator holds the case of the electronic device 100 with one hand and touches it with the finger of the other hand. There are many scenes where pinch operation is performed on the sensor.
  • the electronic device 100 when the electronic device 100 is a relatively small device such as a smartphone, the operator holds the housing of the electronic device 100 with one hand and uses the thumb of the same hand to tap on the touch sensor. The operation can be performed.
  • the image displayed on the display unit is enlarged and displayed as shown in FIG. 49, for example.
  • a dedicated object such as a button to zoom out.
  • FIG. 49A in the electronic device 100 in which the touch sensor 200 is placed on the front side of the display unit 300, a wide area map including Japan is displayed on the display unit 300 as an image.
  • objects of a “+” button for enlarging an image and a “ ⁇ ” button for reducing an image are displayed in the lower right area.
  • the operator taps the position corresponding to the “+” button on the touch sensor 200 to display on the display unit 300 as shown in FIG. 49 (B).
  • the image can be enlarged.
  • the operator taps the position corresponding to the “ ⁇ ” button on the touch sensor 200 to display the display unit 300 as shown in FIG.
  • the displayed image can be reduced.
  • an object of the present invention made in view of such circumstances is to reduce the number of places where an operator performs an operation and to perform processing without displaying a number of dedicated objects for processing and the like Is to provide.
  • the invention of the electronic device is as follows: A pressure detector for detecting pressure; When a standard related to data based on pressure is set, control is performed to increase or decrease the value of a parameter associated with a predetermined process according to the difference between the standard and data based on the pressure detected by the pressure detection unit.
  • a control unit It is characterized by providing.
  • the invention of the electronic device is as follows: A pressure detector for detecting pressure; When a standard for data based on pressure is set, the speed at which the parameter value associated with the predetermined process changes is changed according to the difference between the standard and data based on the pressure detected by the pressure detection unit.
  • a control unit for controlling to It is characterized by providing.
  • the invention according to a third aspect is the electronic device according to the first or second aspect,
  • the control unit sets the reference based on the data based on the pressure detected in the predetermined period when the change in the data based on the pressure detected by the pressure detection unit is within a predetermined range within the predetermined period. Is to control.
  • the invention according to a fourth aspect is the electronic device according to the first aspect,
  • the control unit uses the reference and the pressure detection unit.
  • the amount of increase or decrease in the parameter value is controlled to be equal according to the difference from the detected data based on the pressure.
  • An invention according to a fifth aspect is the electronic device according to the first aspect,
  • the control unit is configured such that the difference between the reference and the data based on the pressure detected by the pressure detection unit before and after the data based on the pressure detected by the pressure detection unit changes from one to the other among the increase and decrease.
  • the amount of increase / decrease in the parameter value is controlled to be different according to the above.
  • a pressure detector for detecting pressure If the data based on the pressure detected by the pressure detection unit satisfies a predetermined condition, set a reference for data based on the pressure, When the reference is set, a control unit that controls to increase or decrease the value of the parameter associated with the predetermined process according to the difference between the reference and data based on the pressure detected by the pressure detection unit , It is characterized by providing.
  • the invention of the electronic device for achieving the above object is as follows: A pressure detector for detecting pressure; If the data based on the pressure detected by the pressure detection unit satisfies a predetermined condition, set a reference for data based on the pressure, When the reference is set, control is performed to change the speed at which the value of the parameter associated with the predetermined process changes according to the difference between the reference and data based on the pressure detected by the pressure detection unit.
  • a control unit to It is characterized by providing.
  • the invention according to an eighth aspect is the electronic device according to the sixth or seventh aspect,
  • the control unit increases the data based on the pressure when the change changes from increase to decrease and the increase from the decrease
  • the control is performed so as to set the reference based on the data based on the pressure at the time of turning to.
  • the invention according to a ninth aspect is the electronic device according to the sixth aspect,
  • the control unit uses the reference and the pressure detection unit.
  • the amount of increase or decrease in the parameter value is controlled to be equal according to the difference from the detected data based on the pressure.
  • the invention according to a tenth aspect is the electronic device according to the sixth aspect,
  • the control unit is configured such that the difference between the reference and the data based on the pressure detected by the pressure detection unit before and after the data based on the pressure detected by the pressure detection unit changes from one to the other among the increase and decrease.
  • the amount of increase / decrease in the parameter value is controlled to be different according to the above.
  • an electronic device it is possible to reduce the number of places where an operator performs an operation and to perform processing without displaying a number of dedicated objects for processing.
  • the electronic device according to the present invention is not limited to a mobile phone, a smart phone, a tablet computer, or the like, and can be applied to any device having a touch sensor such as a PDA.
  • the present invention is not limited to a portable electronic device, and can be applied to any device having a touch sensor, such as a bank ATM or a station ticket vending machine.
  • the present invention is preferably applied to an electronic device having a touch sensor, but is not limited to a device having a touch sensor, as will be described later, and is also applicable to an electronic device having no touch sensor. Can be applied.
  • FIG. 1 is a functional block diagram showing a schematic configuration of the electronic apparatus 1 according to the first embodiment of the present invention.
  • the electronic device 1 includes a control unit 10, a touch sensor 20, a display unit 30, a press detection unit 40, a tactile sensation providing unit 50, and a storage unit 60.
  • the control unit 10 controls and manages the entire electronic device 1 including each functional unit constituting the electronic device 1. Among the processes performed in the control unit 10, those unique to the present embodiment will be described later.
  • the touch sensor 20 is usually configured by being superimposed on the front surface of the display unit 30 to detect contact with an operator's finger or stylus (hereinafter collectively referred to as “contact object”).
  • the touch sensor 20 outputs a signal corresponding to the position where the contact is detected to the control unit 10 by detecting the contact by the contact object.
  • the touch sensor 20 is configured using a system such as a resistance film system or a capacitance system, for example. Note that it is not essential for the touch sensor 20 to physically touch the touch sensor 20 when the touch sensor 20 detects a touch by the touch object.
  • the touch sensor 20 is an optical type, the touch sensor 20 detects a position where the infrared light on the touch sensor 20 is blocked by the contact object, and thus it is not necessary for the contact object to touch the touch sensor 20. .
  • the display unit 30 performs display corresponding to each application, and draws and displays a user interface constituted by objects in a predetermined display area. Furthermore, the display unit 30 also displays various information such as input results according to each application. In particular, in the present embodiment, as will be described later, the display unit 30 also displays an image such as a map as an example by an application that performs enlargement / reduction display in the electronic device 1.
  • the display unit 30 is configured using, for example, a liquid crystal display panel (LCD), an organic EL display panel, or the like.
  • the press detection unit 40 detects a press when the operator performs an operation on the touch panel 20. For example, physical or electrical characteristics (distortion, resistance, voltage, etc.) change according to the press. An element such as a strain gauge sensor or a piezoelectric element is used.
  • the piezoelectric element of the press detection unit 40 has a magnitude of a load (force) related to a press on the touch panel 20 (or a magnitude of the load (force).
  • the magnitude of the voltage (voltage value (hereinafter referred to as data based on pressure)), which is an electrical characteristic, changes in accordance with the speed (acceleration) at which the voltage changes.
  • the control part 10 can be controlled to perform a predetermined
  • the control unit 10 is based on the pressure when the press detection unit 40 notifies the control unit 10 of data based on the press, or the control unit 10 detects data based on the press of the press detection unit 40. Get the data. That is, the control unit 10 acquires data based on the pressure on the touch panel 20 from the pressure detection unit 40. Note that the data based on the pressure may be the magnitude of the load applied to the pressure, the power value, the resistance value, or the like instead of the voltage value.
  • the press detection unit 40 can be configured according to a contact detection method on the touch panel 20.
  • the touch panel 20 is a resistive film type
  • the resistance according to the size of the contact area, or the range in which the magnitude of the resistance has changed is used as the load (force) of pressing against the touch surface of the touch panel.
  • the load (force) of pressing against the touch surface of the touch panel By associating, it is possible to configure without using a strain gauge sensor or a piezoelectric element.
  • the touch panel 20 is a capacitance type
  • the size of the capacitance (charge) according to the size of the contact area, the range in which the size of the capacitance (charge) has changed, or the like is displayed. By associating it with the load (force) of pressing against, it can be configured without using a strain gauge sensor, a piezoelectric element or the like.
  • the tactile sensation providing unit 50 vibrates the touch sensor 20, and is configured using, for example, a piezoelectric element or an ultrasonic transducer.
  • the tactile sensation providing unit 50 presents a tactile sensation to a contact object that is in contact with the touch sensor 20 by generating a vibration according to a predetermined vibration pattern.
  • the tactile sensation providing unit 50 generates vibration based on the drive signal supplied from the control unit 10.
  • the tactile sensation providing unit 50 vibrates the tactile sensation providing unit in response to a press detected by the press detection unit 40 (press on the touch panel 20), thereby generating a vibration and presenting a tactile sensation to a user's finger or the like. It can be understood sensuously that the user who is pressing 20 has performed the operation.
  • the press detection part 40 can also be comprised integrally with the tactile sense presentation part 50. FIG.
  • the press detection unit 40 and the tactile sensation providing unit 50 are configured using a piezoelectric element, it is also possible to configure a press detection unit / tactile sensation providing unit using the piezoelectric element in common. This is because the piezoelectric element generates a voltage when pressure is applied and deforms when the voltage is applied.
  • the tactile sensation providing unit 50 performs a predetermined process and drives the piezoelectric element when the magnitude of the voltage (voltage value (data)) of the piezoelectric element that also serves as the pressure detection unit 40 satisfies a predetermined threshold. By doing so, vibration can be generated.
  • a predetermined threshold value when the magnitude of the voltage of the piezoelectric element (voltage value (data)) satisfies a predetermined threshold value, it may be when the voltage value (data) reaches a predetermined reference value, It may be when the value (data) exceeds a predetermined reference value or when a voltage value (data) equal to the predetermined reference value is detected.
  • the storage unit 60 is configured by, for example, a NAND flash memory, and can store not only various applications executed in the electronic device 1 but also various information.
  • the storage unit 60 can store a contact position detected by the touch sensor 20 at an arbitrary timing, and can also store a history of the contact position.
  • the storage unit 60 can also store data based on the pressure detected by the pressure detection unit 40 at an arbitrary timing, and can also store a history of data based on the pressure. it can.
  • FIG. 2 is a diagram illustrating an example of a mounting structure of the touch sensor 20, the display unit 30, the press detection unit 40, and the tactile sensation providing unit 50 of the electronic device 1 illustrated in FIG. 2A is a cross-sectional view of a main part, and FIG. 2B is a plan view of the main part.
  • the display unit 30 for performing various displays is housed and held in a housing 90.
  • the touch sensor 20 is held on the display unit 30 via an insulator 94 made of an elastic member.
  • the electronic apparatus 1 according to the present embodiment has the display unit 30 and the touch sensor 20 in a rectangular shape in plan view.
  • the touch sensor 20 is illustrated as a square shape, but may be a rectangular shape or the like according to the specifications of the electronic device 1 on which the touch sensor 20 is mounted.
  • the electronic device 1 holds the touch sensor 20 on the display unit 30 via the insulators 94 disposed at the four corners deviated from the display area A of the display unit 30 indicated by virtual lines in FIG. To do.
  • the housing 90 is provided with an upper cover 92 so as to cover the surface area of the touch sensor 20 that is out of the display area of the display unit 30, and is made of an elastic member between the upper cover 92 and the touch sensor 20.
  • An insulator 96 is provided.
  • the touch sensor 20 includes, for example, a transparent film on the front surface, that is, a surface on which an operation by the operator is performed, and a glass on the back surface. Use a structure that bends (distorts) slightly.
  • the electronic device 1 includes a strain gauge sensor for detecting pressure applied to the touch sensor 20 in the vicinity of each side covered with the upper cover 92 on the transparent film on the surface of the touch sensor 20.
  • a piezoelectric element or an ultrasonic vibrator for vibrating the touch sensor 20 is provided in the vicinity of two opposing sides by bonding or the like. That is, in the electronic device 1 shown in FIG. 2, the press detection unit 40 shown in FIG. 1 is configured using four strain gauge sensors, and the tactile sensation providing unit 50 is configured using two vibrators.
  • the pressure detection unit 40 detects the pressure from, for example, an average value of outputs from the four strain gauge sensors.
  • the tactile sensation providing unit 50 drives, for example, two vibrators in the same phase.
  • FIG. 2B illustration of the housing 90, the upper cover 92, and the insulator 96 shown in FIG. 2A is omitted.
  • a standard regarding data based on pressure is set based on a predetermined operation by an operator, and when the standard is set, the electronic apparatus 1 shifts to an enlargement / reduction mode.
  • FIG. 3 is a flowchart for explaining processing centering on setting of a standard regarding data based on pressing in the present embodiment.
  • This “reference for data based on pressure” is a standard set based on data based on pressure by an operator's operation, and based on this standard for data based on pressure, the map is enlarged by subsequent processing. ⁇ Reduce. Therefore, when setting the reference regarding the data based on the press, the data based on the press during the operation in which the operator presses the touch sensor 20 with a force that is not relatively strong or weak (medium) is used. It is preferable to use the “reference for data based on pressure”.
  • the control unit 10 monitors the contact detected by the touch sensor 20 and the pressure detected by the pressure detection unit 40 (step S11). In particular, in the present embodiment, it is preferable that the control unit 10 performs monitoring while storing a history of changes in data based on the pressure detected by the pressure detection unit 40 in the storage unit 60.
  • the control unit 10 determines whether or not a change in data based on the press is within a predetermined range within a predetermined period (step S12).
  • the “predetermined period” is a period that is too short, a reference for data based on the pressure is set before the operator performs an operation to appropriately maintain the pressure.
  • the “predetermined period” is set to an excessively long period, there is a risk that the operability of the electronic device 1 may be deteriorated because a standard regarding data based on pressing is not set. Therefore, it is possible to set an appropriate period of time such as about 1 second, which corresponds to “long press” on a normal button, and to change it appropriately after the setting according to the preference of the operator. It is preferable to do this.
  • the change in the data based on the pressure is within “predetermined range” means that the change in the data based on the pressure detected by the pressure detection unit 40 is small when the operator maintains the pressure. Or, it means a state that has hardly changed.
  • the control unit 10 determines whether the change in data based on the pressure is within a predetermined range, for example, the amount of change per minute time from the history of the data based on the pressure stored in the storage unit 60. It can be determined whether or not is substantially zero. In this case, since it is difficult to assume that the amount of change per minute time of the data based on the pressure is strictly maintained at zero, the control unit 10 considers the margin per predetermined time by considering the margin of the predetermined width.
  • the control unit 10 determines whether or not the data change based on is within the predetermined range. That is, it is preferable that the control unit 10 determines that the differential coefficient has become a small value close to zero so that it can be determined that the differential coefficient in the time change of the data based on the pressure is close to zero. Further, when the control unit 10 determines whether or not the data change based on the pressure is within a predetermined range, for example, the difference between the maximum value and the minimum value of the data based on the pressure in the “predetermined period” described above. It can be determined whether the value is less than or equal to a predetermined threshold. In this case, when the difference value mentioned above is below a predetermined threshold, the control part 10 can determine with the change of the data based on a press being within the predetermined range.
  • FIG. 4 is a graph for explaining an example of the time change of data based on the press by the operation of the operator.
  • the horizontal axis represents the passage of time
  • the vertical axis represents data based on the pressure detected by the pressure detection unit 40.
  • FIG. 4 shows an operation of gradually increasing the pressure after the operator starts pressing (starting operation) the touch sensor 20, and then performs a predetermined period (from time A to time B, that is, between t 0 and t 1 ). ), A state of performing an operation of maintaining the pressure substantially constant (P 0 ).
  • step S12 If it is determined in step S12 that the change in the data based on the pressure is not within the predetermined range within the predetermined period, the control unit 10 returns to step S11 and continues the process. On the other hand, if it is determined in step S12 that the change in the data based on the pressure is within the predetermined range within the predetermined period, the control unit 10 performs the pressing based on the data based on the pressure detected during the predetermined period. A reference for the data based on is set (step S13). That is, in the present embodiment, if the change in the data based on the pressure detected by the pressure detection unit 40 is within a predetermined range within the predetermined period, the control unit 10 converts the data based on the pressure detected during the predetermined period.
  • control is performed so as to set a reference for data based on pressure.
  • the reference (P 0 ) regarding the data based on the pressure is set at the time t 1.
  • the control unit 10 when setting the reference regarding the data based on the pressure, the control unit 10, for example, the average value of the data based on the pressure detected (substantially constant) detected during a predetermined period (that is, between t 0 and t 1 ). Can be calculated.
  • the calculation is not limited to the average value as described above, and various calculations can be performed. For example, data based on a press at the moment of change of the data based on a press is first determined that within a predetermined range, i.e. data based on a press at the time of t 0 shown in FIG. 4 (data based on a press of the point A) Can also be set as a reference for data based on pressure.
  • data changes in the data based on a press is based on a press at the time of t 1 shown in the data, i.e., 4 based on a press at the moment it is determined that within a predetermined range within a predetermined time period (B point Can be set as a reference for data based on pressure.
  • step S13 the control unit 10 controls the corresponding functional unit so as to notify the operator that the reference regarding the data based on the press is set (step S14). ).
  • step S14 the operator is informed that the reference for the data based on the pressure has been set by the elapse of the predetermined period after the change in the data based on the pressure is within the predetermined range. Therefore, the control unit 10 can control the tactile sensation providing unit 40 so as to present the tactile sensation to the operator by vibrating the touch sensor 20, for example.
  • the display on the display unit 30 is changed, or a predetermined sound is output from a sound output unit (not shown), thereby setting a standard for data based on pressing. It is also possible to notify the operator that this has been done.
  • a reference relating to data based on pressing is set, and the operator is notified that a reference relating to data based on pressing has been set.
  • step S14 When it is notified in step S14 that the reference regarding the data based on the press is set, the control unit 10 shifts to the enlargement / reduction mode and is displayed on the display unit 30 in accordance with the adjustment of the operator's press. Control is performed to enlarge or reduce the image (step S15). This enlargement / reduction mode will be described later.
  • the notification that the reference related to the data based on the pressure performed in step S13 is set can also be interpreted for the operator as notification that the mode is to be shifted to the enlargement / reduction mode.
  • the same operation as when an operator operates an electronic device equipped with a conventional touch sensor can be performed. It is preferable to perform the processing as described above. For example, before the transition to the enlargement / reduction mode in step S15, for example, when a slide operation on the touch sensor 20 is detected, the control unit 10 displays an image displayed on the display unit 30 so as to follow the slide operation. It is also preferable to control the sliding. Since such processing can be the same processing as that of an electronic device having a touch sensor according to the prior art, detailed description thereof is omitted.
  • FIG. 5 is a flowchart for explaining processing performed in the enlargement / reduction mode as step S15 in FIG.
  • step S21 the control unit 10 performs control so as to associate the data based on the press with the enlargement / reduction ratio (step S21).
  • step S ⁇ b> 21 the control unit 10 presets a ratio of how much the image displayed on the display unit 30 should be enlarged or reduced according to data based on the pressure detected by the pressure detection unit 40.
  • the control unit 10 may calculate the association between the data based on the detected press and the enlargement / reduction ratio each time.
  • FIG. 6 is a graph for explaining an example of the association between the data based on the press shown in step S21 of FIG. 5 and the enlargement / reduction ratio.
  • the control unit 10 determines the data (P) based on the pressure and the enlargement / reduction ratio based on the reference (P 0 ) regarding the data based on the pressure set in step S13 in FIG. Control to associate with (X).
  • the horizontal axis represents data (P) based on pressure
  • the vertical axis represents the enlargement / reduction ratio (X).
  • P max on the horizontal axis represents data based on the maximum pressure that can be detected by the pressure detection unit 40
  • P min represents data based on the minimum pressure that can be detected by the pressure detection unit 40.
  • data based on the maximum or minimum pressure that can be detected by the pressure detection unit 40 is determined by various conditions such as physical characteristics and arrangement of the pressure detection unit 40.
  • P max is, for example, a data value based on a pressure slightly smaller than the maximum pressure that can be actually detected by the pressure detection unit 40.
  • P min is, for example, actually detected by the pressure detection unit 40. It can also be a data value based on a pressure slightly greater than the smallest possible pressure. That is, P max and P min can be values set in a range in which the pressure detection unit 40 can accurately and reliably detect data based on the pressure.
  • X max on the vertical axis represents the maximum enlargement rate when the image displayed on the display unit 30 is enlarged
  • X min represents the minimum reduction rate when the image displayed on the display unit 30 is reduced.
  • X 0 is a reference for the enlargement / reduction ratio, and represents the enlargement / reduction ratio of the image displayed on the display unit 30 when the reference P 0 regarding data based on pressing is set.
  • the change in the data based on the press from P min to P 0 may include an enlargement / reduction ratio from X min to X 0.
  • a change in data based on the pressure from P 0 to P max is associated with a linear change in the enlargement / reduction ratio from X 0 to X max .
  • FIG. 6 for simplification of description, an example in which the reference P 0 related to the data based on the pressure is set just around the middle between P max and P min in step S13 of FIG. Show. Therefore, in step S13 of FIG.
  • step S21 of FIG. 5 after associating the data based on the pressure as shown in FIG. 6 with the enlargement / reduction ratio, the control unit 10 determines whether or not the position of the contact detected by the touch sensor 20 has changed. That is, it is determined whether or not a slide operation by the operator is detected (step S22). In this case, when the change in the contact position detected by the touch sensor 20 is extremely small, the control unit 10 does not determine that the slide operation has been detected. It is preferable to determine that a slide operation has been detected when the distance has changed beyond this distance.
  • step S22 the control unit 10 sets the enlargement / reduction ratio of the image displayed on the display unit 30 at that time as a fixed value (step S23), and ends the enlargement / reduction mode. . That is, in the enlargement / reduction mode shown in FIG. 5, when a slide operation by the operator is detected on the touch sensor 20, the image displayed on the display unit 30 at that time is next put into the enlargement / reduction mode again. Do not scale up or down until the transition.
  • step S24 determines whether data based on the pressure detected by the pressure detection unit 40 has changed. If it is not determined in step S24 that the data based on the pressure has changed, the control unit 10 returns to step S22 and continues the process. On the other hand, if it is determined that data based on a press is changed in step S24, the control unit 10, in accordance with the difference between the data P based on a press detected by the reference P 0 and press detection unit 40 on the data based on a press Then, control is performed to enlarge or reduce the image displayed on the display unit 30 (step S25).
  • the control unit 10 causes the display unit 30 to Control to reduce the displayed image a little.
  • the difference between P 0 and P is large, so the control unit 10 displays the display unit. The image displayed at 30 is controlled to be considerably enlarged.
  • the control unit 10 when a reference relating to data based on pressure is set, the control unit 10 responds to a difference between the set reference and data based on the pressure detected by the pressure detection unit 40. Thus, control is performed so as to increase or decrease the value of the parameter associated with the predetermined process.
  • the “predetermined process” corresponds to a process of enlarging or reducing the image displayed on the display unit 30 in this example, but various other processes depending on the application executed on the electronic device 1. It can be.
  • the “parameter value” corresponds to a value of an enlargement / reduction ratio when an image is enlarged or reduced in this example, and this also applies to various parameters according to the application executed in the electronic device 1. Value.
  • FIG. 7 is a graph showing an example of the time change of data based on the press by the operation of the operator, as in FIG.
  • FIG. 7 after the point B described in FIG. 4, i.e., after the reference regarding the data based on the pressure is set, an increase in data based on the pressure by the operation of the operator is detected up to the point C.
  • the data based on a press detected by the press detection unit 40 is increased relative to the P 0, is displayed on the display unit 30
  • the image is enlarged.
  • the time t 2 the i.e.
  • the pressing data based on a press detected by the detecting unit 40 is maintained at a substantially constant value P 1, when the slide operation is detected at this time , It is fixed at the current enlargement / reduction ratio. That is, in this case, the image displayed on the display unit 30 is neither enlarged nor reduced. After that, if the pressure on the touch sensor 20 by the operation of the operator is maintained again for a predetermined time, a reference regarding data based on the new pressure is set, and the image displayed on the display unit 30 at that time is enlarged again or as a reference. Can be reduced.
  • FIG. 8 is also a graph showing another example of the time change of the data based on the press by the operation of the operator, as in FIG.
  • the point B that is, after the reference regarding the data based on the pressure is set
  • a decrease in the data based on the pressure due to the operation by the operator is detected up to the point C.
  • the data based on a press detected by the press detection unit 40 is reduced relative to the P 0, is displayed on the display unit 30 The image is reduced.
  • FIG. 9 is also a graph showing another example of the time change of the data based on the press by the operation of the operator, similarly to FIG.
  • point B that is, after a reference relating to data based on pressing is set
  • a decrease in data based on pressing due to the operation by the operator is detected up to point C.
  • the data based on the pressure changes from decreasing to increasing, and increases from the E point to the F point.
  • the data based on pressing changes from increasing to decreasing and decreases to the H point.
  • the image displayed on the display unit 30 is reduced between the times t 1 and t 2 and is displayed on the display unit 30 between the times t 3 and t 5.
  • the image to be displayed is enlarged, and the image displayed on the display unit 30 is reduced again between times t 6 and t 7 .
  • the time t 4 it has returned to the scaling ratio of the time the standards for data based on a press is set. That is, at the point E, an image having the same enlargement / reduction ratio as that at the time when the reference regarding the data based on the pressure is set is displayed.
  • the data based on the pressure changes, but exceeds the data P max based on the maximum pressure that can be detected by the pressure detection unit 40. Or is less than the data P min based on the minimum pressing, so neither enlargement nor reduction is performed.
  • FIG. 10 is a graph showing the change over time of the enlargement / reduction ratio of the image displayed on the display unit 30 when the data based on the pressure changes over time as shown in FIG.
  • the horizontal axis represents the passage of time
  • the vertical axis represents the enlargement / reduction ratio of the image displayed on the display unit 30.
  • FIG. 11 is a diagram illustrating a specific example of display on the display unit 30 when the operator performs an operation on the electronic device 1 according to the present embodiment.
  • the operator performs a slide operation on the touch sensor 20 before the reference regarding the data based on the pressure is set, that is, before the transition to the enlargement / reduction mode.
  • the map of Japan displayed on the display unit 30 can be arbitrarily slid.
  • standard regarding the data based on a press is set by maintaining the position and press which an operator contacts in arbitrary positions of the touch sensor 20 for a predetermined time, and the electronic device 1 transfers to expansion / reduction mode.
  • the display unit 30 is displayed as shown in FIG.
  • the displayed image is not slid and the enlargement / reduction ratio of the image is fixed. Therefore, after the operator performs a sliding operation on the touch sensor 20 as shown in FIG. 11D, even if the operator reduces the pressure by removing the finger from the touch sensor 20, the display unit 30 images are not reduced.
  • the present embodiment if the casing of the electronic device is small, using the fingertip of the same hand while holding the electronic device with one hand, enlargement or reduction similar to the conventional pinch operation Etc. can be performed. Further, according to the present embodiment, when an operation is performed on the touch sensor 20 regardless of the size of the electronic device, the operation is performed with only one finger, that is, by pressing only one place. be able to. Furthermore, according to the present embodiment, since the operation can be started at an arbitrary position of the touch sensor 20, the operation can be smoothly performed with a small number of procedures. Further, according to the present embodiment, it is not necessary to display a dedicated object for performing a specific process such as enlargement or reduction on the display unit, so that the display area of the display unit can be used effectively.
  • the processing by the control unit 10 is changed in the first embodiment described above. That is, the second embodiment changes the process of step S25 described in FIG. 5 in the electronic device 1 according to the first embodiment. Specifically, the electronic device 2 according to the second embodiment responds to the difference between the reference P 0 related to the data based on the pressure and the data P based on the pressure detected by the pressure detection unit 40 in the enlargement / reduction mode. Thus, the speed at which the image displayed on the display unit 30 is enlarged or reduced is changed.
  • the electronic device 2 according to the second embodiment can be realized by basically the same device configuration and control as those of the electronic device 1 described in the first embodiment described above except for the above points. For this reason, below, the description which becomes the same content as having demonstrated in 1st Embodiment is abbreviate
  • FIG. 12 is a flowchart for explaining processing of the electronic device 2 according to the second embodiment.
  • FIG. 12 illustrates the processing performed in the enlargement / reduction mode shown in step S15 of FIG. 3 after the reference regarding the data based on the press is set, as in FIG. 5 described in the first embodiment. It is a flowchart.
  • “association of data based on pressing and enlargement / reduction ratio” is performed in step S21.
  • “association of data based on pressure and enlargement / reduction speed” is performed in step S21.
  • step S21 after associating the data (P) based on the pressure with the enlargement / reduction speed in step S21, the control unit 10 does not detect the slide operation in step S22, but in step S24 the pressure detection unit.
  • the process of step S31 is performed.
  • control unit 10 is displayed on the display unit 30 according to the difference between the reference P 0 related to the data based on the pressure and the data P based on the pressure detected by the pressure detection unit 40. Control is performed to enlarge or reduce the image (step S25).
  • control unit 10 in accordance with the difference between the data P based on a press detected by the reference P 0 and press detection unit 40 on the data based on a press, it is displayed on the display unit 30
  • Control is made to change the speed at which the image is enlarged or reduced (step S31).
  • the control unit 10 causes the display unit 30 to Control to reduce the displayed image at a relatively slow speed.
  • the difference between P 0 and P is large, so the control unit 10 displays the display unit. Control is performed so that the image displayed at 30 is enlarged at a relatively high speed.
  • the pressure is maintained in the enlargement / reduction mode, neither enlargement nor reduction is performed.
  • the reference P 0 regarding the data based on the pressure is Enlargement or reduction is performed according to the difference from the data P based on the pressure detected by the pressure detection unit 40.
  • control unit 10 when a reference relating to data based on pressure is set, the control unit 10 responds to a difference between the set reference and data based on the pressure detected by the pressure detection unit 40. Then, control is performed to change the speed at which the value of the parameter associated with the predetermined process changes.
  • step S21 the data based on the pressure detected by the pressure detection unit 40 and the image displayed on the display unit 30 are enlarged or reduced. Correlate with speed.
  • the data P based on the pressure slightly larger than the reference P 0 regarding the data based on the pressure is associated with a relatively slowly expanding speed
  • the data P based on the pressure much smaller than the standard P 0 regarding the data based on the pressure is associated with the data P.
  • FIG. 13 is a graph showing an example of the time change of data based on the press by the operation of the operator, like FIG.
  • point B that is, after a reference relating to data based on the pressure is set
  • the case where the point C is reached by increasing the data based on the pressure by the operator's operation and the operation of the operator
  • the case where the point D is reached as a result of further increase in data based on the pressing due to is shown.
  • the reference P 0 related to the data based on the press is set, several stages of the data based on the press are set above and below the reference based on the reference P 0 related to the data based on the press. .
  • FIG. 13 only the stage of data based on the pressure set higher than the reference P 0 regarding the data based on the pressure is shown. Further, in FIG. 13, as an example, only two data stages based on the pressure set for each 1N are shown for data based on the pressure larger than the reference P 0 regarding the data based on the pressure.
  • the level of the data based on the pressure it is not essential that the interval between the levels of the data based on the pressure be 1N, and it is also possible to set the data at a denser interval. You can also set it with. It is not essential to set two such stages, and more stages may be set, or a very large number of stages may correspond to changes in data based on pressure in an analog manner. May be. Furthermore, it is not essential to set the stage of data based on such a press in advance, and the above-described stage may be calculated every time a press is detected.
  • the speed displayed on the display unit 30 is enlarged as the speed
  • correspond.
  • the speed ⁇ is used as the speed at which the image displayed on the display unit 30 is enlarged at the data stage based on the pressure from P 0 + 1N to P 0 + 2N.
  • the speed ⁇ can be a speed at which an image displayed on the display unit 30 is enlarged faster than the speed ⁇ . That is, in this case, when the operator operates the touch sensor 20, the image displayed on the display unit 30 is enlarged at a higher speed when the greater pressure is maintained.
  • FIG. 14 is a graph showing another example of the time change of the data based on the press by the operation of the operator, similarly to FIG. 7 and the like.
  • point B that is, after a reference relating to data based on pressing is set
  • the data based on pressing by the operator's operation decreases to reach point C
  • the operator's operation The case where the point D is reached by further reducing the data based on the pressure by the is shown at the same time.
  • FIG. 14 only the data stage based on the pressure set lower than the reference P 0 regarding the data based on the pressure is shown. Moreover, in FIG. 14, as an example, only two data stages based on the pressure set for each 1N are shown for data based on the pressure smaller than the reference P 0 regarding the data based on the pressure.
  • the speed ⁇ can be a speed at which an image displayed on the display unit 30 is reduced faster than the speed ⁇ . That is, in this case, when the operator operates the touch sensor 20, the image displayed on the display unit 30 is reduced at a higher speed when the smaller pressure is maintained.
  • FIG. 15 is a graph showing still another example of the time change of the data based on the press by the operation of the operator.
  • the point B that is, after the standard regarding the data based on the pressure is set, the data based on the pressure once decreases and then increases and then increases and decreases.
  • phase of the data based on a press from P 0 to P 0 + 1N made to correspond to the speed alpha
  • stage of the data based on a press from P 0 + 1N to P 0 + 2N Is associated with a speed ⁇ .
  • FIG. 15 similar to FIG. 14, in correspondence to the rate ⁇ is the phase of the data based on a press from P 0 to P 0 -1N, based on the pressure from P 0 -1N to P 0 -2N
  • a speed ⁇ is associated with the data stage.
  • FIG. 16 is a graph showing the change over time of the enlargement / reduction ratio of the image displayed on the display unit 30 when the data based on the pressure changes over time as shown in FIG.
  • the horizontal axis represents the passage of time
  • the vertical axis represents the enlargement / reduction ratio of the image displayed on the display unit 30.
  • FIG. 15 and FIG. 16 are compared, since the mode has not been changed to the enlargement / reduction mode from the operation start time to time t 0 , that is, before the reference relating to the data based on the pressure is set, it is based on the pressure. Although the data is changing, it can be seen that the scaling ratio does not change from the standard. As shown in FIG. 15, since the data based on the pressure is maintained between P 0 and P 0 ⁇ 1N between times t 1 and t 2 , as shown in FIG. The image displayed on the display unit 30 is reduced at the speed ⁇ . Further, as shown in FIG.
  • the number of operations performed by the operator can be reduced and the procedure of operations performed by the operator can also be reduced. it can.
  • the image displayed on the display unit 30 is enlarged at such a large speed, so that the operator performs the operation with a large pressure. Since a short time is required, the burden on the operator of applying a pressing force can be reduced.
  • the 3rd Embodiment changes the process by the control part 10 in 1st Embodiment mentioned above. That is, in the electronic device 1 according to the first embodiment, the third embodiment changes the mode of the process in step S21 described in FIG. Specifically, in the electronic device 3 according to the third embodiment, after the reference regarding the data based on the pressing is set, the manner of associating the data based on the pressing and the enlargement / reduction ratio as described in FIG. To change.
  • the electronic device 3 according to the third embodiment can be realized by basically the same device configuration and control as those of the electronic device 1 described in the first embodiment described above except for the above points. For this reason, below, the description which becomes the same content as having demonstrated in 1st Embodiment is abbreviate
  • the change in the data based on the pressure from P min to P 0 includes X min A linear change in the enlargement / reduction ratio from 1 to X0 was associated.
  • the change in data based on the pressure from P 0 to P max is associated with the linear change in the enlargement / reduction ratio from X 0 to X max .
  • FIG. 6 shows an example in which the reference P 0 related to the data based on the pressure is set just around the middle between P max and P min for the sake of simplicity of explanation.
  • the relationship between the data based on the pressure and the enlargement / reduction ratio is as follows.
  • the graph is a straight line from P min to P max .
  • the vertical axis and the horizontal axis are set differently from those in FIG.
  • the graph changes in slope at the point of P 0 .
  • the reference P 0 related to the data based on the pressure is set to a position smaller than the middle of P min and P max , the relationship between the data based on the pressure and the enlargement / reduction ratio is shown in FIG. as shown in C), the graph, the slope of which varies at the time of P 0 Again.
  • the data based on the pressure is less than P 0 even if the operator gradually decreases the pressure at a certain rate. As a result, the rate at which the enlargement ratio decreases suddenly increases, and the image displayed on the display unit 30 is suddenly reduced.
  • the reference P regarding the data based on the pressure is used. Before and after 0 , correction is performed so that the amount of change in the enlargement / reduction ratio for the data based on the pressure does not change significantly. Specifically, for example, when the association shown in FIG. 17B is about to be performed, the control unit 10 corrects these associations, for example, as shown in FIG. Correspondence between the data based on the press and the enlargement / reduction ratio is performed.
  • the reference P 0 regarding the data based on the pressure is P min (actually, the enlargement / reduction ratio is the minimum X min) . It is set in the middle between the data P) based on the pressing of time and P max . Therefore, the correlation between the data based on the pressure and the enlargement / reduction ratio is a graph in which the slope does not change before and after P 0 , and even if the operator changes the pressure across the reference P 0 regarding the data based on the pressure. Does not give a sense of incongruity to the follow-up performance of enlargement or reduction
  • control unit 10 corrects these associations and based on the press as shown in FIG. 18B, for example. Correspondence between data and enlargement / reduction ratio is performed.
  • the reference P 0 regarding the data based on the pressure is P min and P max (actually, the enlargement / reduction ratio is X It is set in the middle of the data P) based on the pressure when reaching max . Therefore, the correlation between the data based on the pressure and the enlargement / reduction ratio is a graph in which the slope does not change before and after P 0 , and even if the operator changes the pressure across the reference P 0 regarding the data based on the pressure. Does not give a sense of incongruity to the follow-up performance of enlargement or reduction
  • control unit 10 responds to the difference between the reference regarding the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40, as in the first embodiment. Then, control is performed so as to increase or decrease the value of the parameter associated with the predetermined process.
  • control unit 10 includes a case where the data based on the pressure detected by the pressure detection unit 40 increases and a case where the data based on the pressure detected by the pressure detection unit 40 decreases. The amount of increase or decrease in the parameter value is controlled to be equal.
  • the “amount to increase / decrease the value of the parameter” is based on the pressure according to the difference between the reference regarding the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40 in the above-described example. This corresponds to the amount of change in the enlargement / reduction ratio for the data.
  • the mode of correction so as not to change is not limited to that described in FIG. 18, and various modes can be assumed.
  • the corrected association as shown in FIG. 19A can be performed.
  • the amount of change in the enlargement / reduction ratio with respect to the data based on the press is large before and after the reference P 0 regarding the data based on the press.
  • the enlargement / reduction ratio can be changed until the data based on the pressure reaches the original Pmin .
  • the corrected association as shown in FIG. 19B can be performed.
  • the change amount of the enlargement / reduction ratio with respect to the data based on the press is large before and after the reference P 0 regarding the data based on the press.
  • the enlargement / reduction ratio can be changed until the data based on the pressure reaches the original Pmax .
  • the present embodiment even if the operator changes the pressure across the reference P 0 regarding the data based on the pressure, the amount of increase or decrease in the value of the parameter associated with the predetermined process is greatly changed. Without being almost equal. Therefore, according to the present embodiment, when the operator changes the pressure across the reference P 0 regarding the data based on the pressure, the followability when the image displayed on the display unit 30 is enlarged or reduced. There is no sense of discomfort.
  • the processing by the control unit 10 is changed in the first embodiment described above. That is, in the electronic device 1 according to the first embodiment, the fourth embodiment changes the process after step S25 described in FIG. That is, in the electronic device 4 according to the fourth embodiment, the reference regarding the data based on the press is set, and a predetermined operation is performed during the process of enlarging or reducing the image according to the data based on the press. If it is determined that it has been performed, the manner of associating the data based on the press and the enlargement / reduction ratio as described with reference to FIG. 6 is changed.
  • the electronic device 4 according to the fourth embodiment can be realized by basically the same device configuration and control as those of the electronic device 1 described in the first embodiment described above except for the above points. For this reason, below, the description which becomes the same content as having demonstrated in 1st Embodiment is abbreviate
  • the operator enlarges or reduces the image too much during the process of enlarging or reducing the image displayed on the display unit 30 by the electronic device 1 according to the first embodiment.
  • a measure for easily correcting to a desired enlargement / reduction ratio is provided.
  • FIG. 20 is a flowchart for explaining processing of the electronic device 4 according to the fourth embodiment. Note that FIG. 20 illustrates processing performed in the enlargement / reduction mode shown in step S ⁇ b> 15 of FIG. 3 after the reference regarding the data based on pressing is set, as in FIG. 5 described in the first embodiment. It is a flowchart.
  • control unit 10 at step S25, according to the difference between the data P based on a press detected by the reference P 0 and press detection unit 40 on the data based on a press, is displayed on the display unit 30
  • the processing until the control is performed to enlarge or reduce the image is performed in the same manner as in the first embodiment.
  • the control unit 10 increases the data P based on the pressure detected by the pressure detection unit 40, and the data P based on the maximum pressure that can be detected by the pressure detection unit 40. It is determined whether or not it has started decreasing after exceeding max (step S41). If it is determined in step S41 that the data P based on the pressure exceeds the data P max based on the maximum pressure and then starts to decrease, the control unit 10 changes the association between the data based on the pressure and the enlargement / reduction ratio ( Step S42).
  • step S41 the control unit 10 increases after the data P based on the pressure detected by the pressure detection unit 40 decreases and falls below the data P min based on the minimum pressure that can be detected by the pressure detection unit 40. Also when it is determined that the process has changed to step S42, the process of step S42 is performed. That is, even if it is determined in step S41 that the data P based on the pressure has decreased below the data P min based on the minimum pressure, the control unit 10 associates the data based on the pressure with the enlargement / reduction ratio. Change (step S42).
  • step S42 when the association between the data based on the pressure and the enlargement / reduction ratio is changed, the control unit 10 returns to step S22 and continues the process.
  • the control unit 10 returns to step S22 and continues the process without performing the process of step S42.
  • FIG. 21 is a graph showing an example of the time change of data based on the press by the operator's operation, like FIG. 7 described in the first embodiment.
  • the data based on the pressure by the operation of the operator is maintained substantially constant from the point A to the point B, and as shown in FIG. Correlation with the reduction ratio X is performed (step S21 in FIG. 20).
  • the processing so far is the same as that described with reference to FIG. 6 and the like in the first embodiment.
  • the data based on the pressure by the operation of the operator increases to the point D beyond P max at the point C, It starts to decrease at point D (Yes in step S41). Accordingly, in this case, the association between the data based on the pressure and the enlargement / reduction ratio is changed to a mode as shown in FIG. 22B, for example (step S42).
  • the association between the data based on the pressure shown in FIG. 22B and the enlargement / reduction ratio has a smaller (gradual) slope of the graph representing the correspondence than the mode shown in FIG. For this reason, when the data based on the pressure is reduced from the point E to the point F in FIG.
  • the change in the reduction ratio with respect to the decrease is also small (slow). Therefore, when the operator increases the data based on the press up to point C and enlarges the image too much, and when the image is reduced by reducing the data based on the press, the operator can reduce the image finely. And a desired enlargement / reduction ratio can be easily reached.
  • FIG. 23 is a graph showing an example of the time change of data based on the press by the operation of the operator, like FIG. 7 described in the first embodiment. Also in FIG. 23, the data based on the pressure by the operation of the operator is maintained substantially constant from the point A to the point B, and as shown in FIG. Correlation with the reduction ratio X is performed (step S21 in FIG. 20).
  • step S42 the association between the data based on the pressure shown in FIG. 22C and the enlargement / reduction ratio is changed to a mode as shown in FIG. 22C, for example (step S42).
  • the correlation between the data based on the pressure shown in FIG. 22C and the enlargement / reduction ratio is also made smaller (slower) than the aspect shown in FIG. For this reason, when the data based on the press is increased from the point E to the point F in FIG.
  • the control unit 10 according to the difference between the reference regarding the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40. Control is performed to increase or decrease the value of a parameter associated with a predetermined process. However, in the present embodiment, the control unit 10 is different in the amount by which the value of the parameter is increased or decreased before and after the data based on the pressure detected by the pressure detection unit 40 increases or decreases from one to the other. To control.
  • the “amount to increase / decrease the value of the parameter” is based on the pressure according to the difference between the reference regarding the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40 in the above-described example.
  • the control unit 10 reduces the amount of the parameter value less than before. It is preferable to control as described above. Similarly, after the data based on the pressure detected by the pressure detection unit 40 changes from decrease to increase, the control unit 10 controls the parameter value to increase less than before. Is preferred. Further, in the present embodiment, in order to reduce the change in the enlargement / reduction ratio with respect to the increase / decrease in the data based on the pressure, for example, when a slide operation is detected in step S22 in FIG. It is preferable to return to the association between the data based on the pressure and the enlargement / reduction ratio.
  • FIG. 24 is a flowchart for explaining processing of the electronic device 4 according to another example of the fourth embodiment.
  • FIG. 24 is a flowchart for explaining processing performed in the enlargement / reduction mode shown as step S ⁇ b> 15 in FIG. 3, after the reference regarding the data based on pressing is set, as in FIG. 20.
  • step S41 of FIG. 20 when it is determined that a predetermined operation has been performed by the operator, the manner of associating the data based on the pressure with the enlargement / reduction ratio is changed.
  • the case where it is determined that a predetermined operation has been performed is the case where the data P based on the pressure exceeds the data Pmax based on the maximum pressure and then starts to decrease, and the case where the data is based on the pressure. It was assumed that the data P started to increase after falling below the data P min based on the minimum pressing.
  • the aspect of changing the association between the data based on the press and the enlargement / reduction ratio is the same as the example described above. Change the content of the operation. That is, in this example, as shown in step S51 of FIG. 24, when the data P based on the pressure changes from increase to decrease, and when the data P based on the pressure changes from decrease to increase, it is based on the pressure. Change the association between data and scaling ratio. In short, in this example, when the data P based on the pressure changes from increase to decrease, even if P max does not exceed P max, and when the data P based on the pressure changes from increase to decrease, it does not fall below P min. In both cases, as in the example described above, the association between the data based on the press and the enlargement / reduction ratio is changed.
  • FIG. 25 is a graph showing an example of the time change of data based on the press by the operation of the operator, as in FIG.
  • the data based on the pressure by the operator's operation is maintained almost constant from the point A to the point B, and as shown in FIG. Association with the reduction ratio X is performed (step S21 in FIG. 24).
  • the processing so far is the same as that described with reference to FIG. 6 and the like in the first embodiment.
  • FIG. 27 is a graph showing an example of the time change of data based on the press by the operation of the operator, as in FIG.
  • the data based on the pressure by the operator's operation is maintained almost constant from the point A to the point B, thereby expanding the data P based on the pressure as shown in FIG. Association with the reduction ratio X is performed (step S21 in FIG. 24).
  • the processing so far is the same as that described with reference to FIG. 6 and the like in the first embodiment.
  • step S51 after the point B, that is, after the reference regarding the data based on the pressure is set, the data based on the pressure by the operation of the operator decreases to the point C and starts increasing at the point C. (Yes in step S51). Therefore, in this case, even data based on a press is not less than the P min, at the time of t 2, the correspondence between the data and the scaling factor based on a press, for example, as shown in FIG. 28 (B), pressing The mode based on the point at which the data based on P1 is P 1 is changed (step S42). The association between the data based on the press shown in FIG.
  • the processing according to the above-described example may be performed continuously every time data based on pressing increases and decreases.
  • Such an example will be described.
  • FIG. 29 is a graph showing an example of the time change of the data based on the press by the operation of the operator, similarly to FIG. 25 and FIG. Also in FIG. 29, the data based on the pressure by the operation of the operator is maintained substantially constant from the point A to the point B, and as shown in FIG. Correlation with the reduction ratio X is performed (step S21 in FIG. 20).
  • step S42 the control part may be changed to a mode based on the point at which the data based on the pressure becomes P min , for example. .
  • the correspondence between the data based on the pressure shown in FIG. 30C and the enlargement / reduction ratio is smaller (slower) than the aspect shown in FIG. 30B. . For this reason, when the data based on the pressure increases after the point D in FIG. 29 by the operation of the operator, the change in the enlargement ratio with respect to the increase in the data based on the pressure is further reduced (slowly).
  • the operator when the operator increases the data based on the pressure from the point B to the point C and enlarges the image too much, and when the image is reduced by reducing the data based on the pressure, the operator The image can be reduced finely. Further, in this example, even if the operator reduces the data based on the pressure from the point C to the point D and reduces the image too much, the operator enlarges the image by increasing the data based on the pressure. The operator can enlarge the image more finely. For this reason, the operator can reach the desired enlargement / reduction ratio more easily.
  • the enlargement / reduction with respect to the increase / decrease in the data based on the press The rate change becomes smaller and smaller. Therefore, even if the operator intends to keep the data based on the pressure constant, when the data based on the pressure detected by the pressure detection unit 40 repeats a minute increase / decrease, the enlargement / reduction with respect to the increase / decrease in the data based on the pressure is performed. The change in the rate may gradually become smaller (gradually) against the operator's intention.
  • a measure for reducing (gradually) the change in the enlargement / reduction ratio with respect to the increase / decrease in the data based on the pressure is taken. You can also avoid it.
  • a minute change width ⁇ P of the data based on the pressure may be set. And even if the data based on the pressure changes within such a small change width ⁇ P, the association between the data based on the pressure and the enlargement / reduction ratio can be prevented from being changed.
  • FIG. 31 is a graph illustrating an example of a time change of data based on a press by an operator's operation. Also in FIG. 31, during the period from point A to point B, by the data based on a press by the operation of the operator is maintained substantially constant, at a time point t 1, the data P based on a press and scaling factor X Are associated.
  • the point B that is, after the standard regarding the data based on the pressure is set
  • the data based on the pressure by the operator's operation slightly increases to the point C, and starts decreasing at the point C. ing.
  • the increase in the data based on the pressure up to the point C is within the predetermined change width ⁇ P of the data based on the pressure, the association between the data based on the pressure and the enlargement / reduction ratio may not be changed.
  • the electronic device 5 according to the fifth embodiment can be realized by basically the same device configuration and control as those of the electronic device 1 described in the first embodiment, except for the above points. For this reason, below, the description which becomes the same content as having demonstrated in 1st Embodiment is abbreviate
  • the control unit 10 determines whether or not the data based on the pressure detected by the pressure detection unit 40 satisfies a predetermined condition. However, in the present embodiment, the control unit 10 determines whether the data based on the pressure detected by the pressure detection unit 40 satisfies a predetermined condition, and determines the pressure detected by the pressure detection unit 40. After the base data has changed from increasing to decreasing, it is determined whether or not the data has decreased to increasing.
  • FIG. 32 is a flowchart for explaining processing centering on setting of a standard regarding data based on pressing in the present embodiment.
  • Set criteria for data based on That is, in the present embodiment, the data based on the pressure by the operation of the operator changes from increasing to decreasing without moving the position of the finger or the like operated by the operator on the touch sensor 20, and then increases from the decrease. Then, “standard for data based on pressure” is set. It should be noted that in setting the “reference for data based on pressure”, the “reference for data based on pressure” may be set even if the position of a finger or the like operated on the touch sensor 20 moves.
  • the control unit 10 monitors the contact detected by the touch sensor 20 and the pressure detected by the pressure detection unit 40 (step S11). In particular, in the present embodiment, it is preferable that the control unit 10 performs monitoring while storing a history of changes in data based on the pressure detected by the pressure detection unit 40 in the storage unit 60.
  • the control unit 10 determines whether or not the data based on the pressure detected by the pressure detection unit 40 changes from increase to decrease and then increases. Is determined (step S61). In this case, in order to notify the operator that the “reference for data based on pressing” is set by this operation, for example, in the display unit 30, “press the touch sensor strongly, then weaken and press again. "Please do” may be displayed.
  • FIG. 33 is a graph for explaining an example of a time change of data based on a press by an operator's operation.
  • the horizontal axis represents the passage of time
  • the vertical axis represents data based on the pressure detected by the pressure detection unit 40.
  • the operator performs a gradual operation of increasing the pressure from the start of pressing (operation start) on the touch sensor 20, was allowed to turn to decrease the pressing from the increase in the point A (i.e. time point t 0) It represents the situation. Further, as shown in FIG. 33, the operator performs an operation to reduce gradually pressed from point A (i.e. time point t 0), started to increase the pressure from decreasing at the point B (i.e. time point t 1) It shows the state of letting.
  • step S61 If it is determined in step S61 that the data based on the pressure has not changed from increase to decrease after the change from increase to decrease, the control unit 10 returns to step S11 and continues the process. On the other hand, if it is determined in step S61 that the data based on the pressure has changed from the increase to the decrease and then changed from the decrease to the increase, the control unit 10 determines the data based on the pressure based on the data based on the pressure detected during the period.
  • the reference regarding is set (step S13). That is, in the present embodiment, the control unit 10 sets a reference for data based on pressure when the data based on the pressure detected by the pressure detection unit 40 changes from increase to decrease and then decreases. To control. In the example shown in FIG.
  • a reference (P 0 ) relating to data based on the pressure is set at the time t 1 .
  • the control unit 10 when setting the reference (P 0 ) related to the data based on the pressure, the control unit 10, for example, as shown in FIG. 33, the data based on the pressure detected at the point A (that is, at the time t 0 ).
  • An average value of (P max ) and data (P min ) based on the pressure detected at point B (that is, at time t 1 ) can be calculated.
  • the calculation is not limited to the average value as described above, and various calculations can be performed. For example, instead of simply calculating the average value of P max and P min as described above, for example, the time from the start of the operation until the point A is reached and / or the time from the point A to the point B.
  • the time factor When taking into account temporal factors, for example, when the time from the start of the operation until reaching point A is longer than the time from reaching point A to point B, the average value of P max and P min A value closer to Pmax can be set as a reference for data based on pressure. It should be noted that the value close to P max is determined based on the ratio of the time from the start of the operation until the point A is reached and the time from the point A to the point B. Can do.
  • a reference (P 0 ) regarding data based on pressure may be set based only on data (P max ) based on pressure detected at point A (that is, at time t 0 ), or point B
  • the reference (P 0 ) related to the data based on the pressure may be set based only on the data based on the pressure (P min ) detected at the time point (t 1 ).
  • the reference (P 0 ) relating to the data based on the pressure that is the predetermined value stored in the storage unit 60 in advance. Can also be set.
  • step S13 the control unit 10 controls the corresponding functional unit so as to notify the operator that the reference regarding the data based on the press is set (step S14). ).
  • step S ⁇ b> 14 the operator is notified that the reference for the data based on the pressure has been set by changing the data based on the pressure from the increase to the decrease and then the decrease to the increase. Therefore, the control unit 10 can control the tactile sensation providing unit 40 so as to present the tactile sensation to the operator by vibrating the touch sensor 20, for example.
  • the display on the display unit 30 is changed, or a predetermined sound is output from a sound output unit (not shown), thereby setting a standard for data based on pressing. It is also possible to notify the operator that this has been done.
  • Figure 33 together with standards for data based on a press at the time of t 1 (B point) is set, the operator is informed of the fact that standards for data based on a press is set.
  • the subsequent processing can be performed in the same manner as in the first embodiment described above. Further, the processing performed in the enlargement / reduction mode as step S15 in FIG. 32 can be performed in the same manner as in the first embodiment as described in FIG.
  • step S21 in FIG. 5 the association between the data based on the pressing and the enlargement / reduction ratio shown in step S21 in FIG. 5 can be performed in the same manner as in the first embodiment, as described in FIG.
  • the control unit 10 performs the data (P) based on the pressure and the enlargement / reduction based on the reference (P 0 ) regarding the data based on the pressure set in step S ⁇ b> 13 in FIG. 32.
  • Control is performed to associate with the rate (X).
  • P max on the horizontal axis represents data based on the pressure detected at point A (ie, at time t 0 )
  • P min represents data based on the pressure detected at point B (ie, at time t 1 ).
  • the data based on the maximum or minimum pressure that can be detected by the pressure detection unit 40 is determined by various conditions such as physical characteristics and arrangement of the pressure detection unit 40, and exceeds the data based on the maximum pressure, Data based on the pressure below the minimum pressure cannot be detected. Therefore, P max is a value of data based on the pressure below the data based on the maximum pressure that can be actually detected by the pressure detection unit 40. Similarly, P min is the minimum value that can be actually detected by the pressure detection unit 40. It becomes the value of the data based on the press more than the data based on the press. That is, P max and P min are values set in a range in which the pressure detection unit 40 can accurately and reliably detect data based on the pressure.
  • control unit 10 sets a reference for data based on pressure when the data based on the pressure detected by the pressure detection unit 40 changes from increase to decrease and then decreases to increase. Control.
  • the control unit 10 converts the data based on the pressure when the data based on the pressure is changed from the increase to the decrease and the data based on the pressure when the data based on the pressure is changed from the decrease to the increase. Based on this, it is possible to control to set a reference for data based on pressure.
  • the control unit 10 returns to step S22 and continues the process.
  • FIG. 34 is a graph showing an example of the time change of data based on the press by the operation of the operator, as in FIG.
  • FIG. 34 after the point B described in FIG. 33, that is, after the reference regarding the data based on the pressure is set, an increase in data based on the pressure by the operator's operation is detected from the point C to the point D. ing. In such a case, neither enlargement nor reduction is performed until the reference P 0 regarding the data based on the pressure is reached, that is, between the times t 1 and t 2 .
  • the image displayed on the display unit 30 as the data based on the pressure detected by the pressure detection unit 40 increases with reference to P 0.
  • FIG. 35 is also a graph showing another example of the time change of the data based on the press by the operation of the operator, similarly to FIG.
  • the point B that is, after the reference regarding the data based on the pressure is set
  • an increase in data based on the pressure by the operation of the operator is detected until the point D.
  • the data based on pressure turned to decrease and decreased from point E to point G
  • point G the data based on pressure turned to increase and increased from point H to point I. Has been.
  • the image displayed on the display unit 30 is enlarged between the times t 2 and t 3 , and is displayed on the display unit 30 between the times t 4 and t 6.
  • the image to be displayed is reduced, and the image displayed on the display unit 30 is enlarged again between the times t 7 and t 8 .
  • the time t 5 it has returned to the scaling ratio of the time the standards for data based on a press is set. That is, at the point F, an image having the same enlargement / reduction ratio as that at the time when the reference regarding the data based on the pressure is set is displayed.
  • the data P max based on the pressure is exceeded or less than the data P min based on the pressure, and both enlargement and reduction are performed. I will not.
  • FIG. 36 is a graph showing the change over time of the enlargement / reduction ratio of the image displayed on the display unit 30 when the data based on the pressure changes over time as shown in FIG.
  • the horizontal axis represents the passage of time
  • the vertical axis represents the enlargement / reduction ratio of the image displayed on the display unit 30.
  • a specific example of display on the display unit 30 when the operator performs an operation on the electronic device 5 according to this embodiment can be performed in the same manner as described in the first embodiment in FIG.
  • the operator performs a slide operation on the touch sensor 20 before the reference regarding the data based on the pressure is set, that is, before the transition to the enlargement / reduction mode.
  • the map of Japan displayed on the display unit 30 can be arbitrarily slid.
  • the data based on the pressure is changed from the increase to the decrease, and then the decrease is changed to the increase.
  • the standard regarding the data based on is set, and the electronic device 5 shifts to the enlargement / reduction mode.
  • the present embodiment if the casing of the electronic device is small, using the fingertip of the same hand while holding the electronic device with one hand, enlargement or reduction similar to the conventional pinch operation Etc. can be performed. Further, according to the present embodiment, when an operation is performed on the touch sensor 20 regardless of the size of the electronic device, the operation is performed with only one finger, that is, by pressing only one place. be able to. Furthermore, according to the present embodiment, since the operation can be started at an arbitrary position of the touch sensor 20, the operation can be smoothly performed with a small number of procedures. Further, according to the present embodiment, it is not necessary to display a dedicated object for performing a specific process such as enlargement or reduction on the display unit, so that the display area of the display unit can be used effectively.
  • the processing by the control unit 10 is changed in the above-described fifth embodiment. That is, the sixth embodiment changes the process of step S25 described in FIG. 5 in the electronic device 5 according to the fifth embodiment. Specifically, the electronic device 6 according to the sixth embodiment responds to the difference between the reference P 0 related to the data based on the pressure and the data P based on the pressure detected by the pressure detection unit 40 in the enlargement / reduction mode. Thus, the speed at which the image displayed on the display unit 30 is enlarged or reduced is changed.
  • the electronic device 6 according to the sixth embodiment is basically realized by the same device configuration and control as those of the electronic device 5 and the electronic device 2 described in the fifth and second embodiments, except for the above points. can do. For this reason, below, the description which becomes the same content as having demonstrated in 5th and 2nd embodiment is abbreviate
  • the processing of the electronic device 6 according to the sixth embodiment can be performed according to the flowchart described with reference to FIG. 12 in the second embodiment.
  • FIG. 38 is a graph showing an example of the time change of data based on the press by the operation of the operator, similarly to FIG. 34 and the like.
  • the data based on the pressure by the operation of the operator increases to reach the point E through the point C.
  • the case where the point D is reached by further increasing the data based on the press by the operation of the operator is shown at the same time.
  • the reference P 0 on the data based on a press is set, based on the reference P 0 on the data based on the pressing, set some stages of data based on a press above and below the said reference.
  • FIG. 38 shows only the stage of data based on a press which is set higher than the reference P 0 on the data based on a press. Further, in FIG. 38, as an example, only two data stages based on the pressure set for each 1N are shown for data based on the pressure larger than the reference P 0 regarding the data based on the pressure.
  • the level of the data based on the pressure it is not essential that the interval between the levels of the data based on the pressure be 1N, and it is also possible to set the data at a denser interval. You can also set it with. It is not essential to set two such stages, and more stages may be set, or a very large number of stages may correspond to changes in data based on pressure in an analog manner. May be. Furthermore, it is not essential to set the stage of data based on such a press in advance, and the above-described stage may be calculated every time a press is detected.
  • the speed displayed on the display unit 30 is enlarged as the speed.
  • correspond.
  • the speed ⁇ is used as the speed at which the image displayed on the display unit 30 is enlarged at the data stage based on the pressure from P 0 + 1N to P 0 + 2N.
  • the speed ⁇ can be a speed at which an image displayed on the display unit 30 is enlarged faster than the speed ⁇ . That is, in this case, when the operator operates the touch sensor 20, the image displayed on the display unit 30 is enlarged at a higher speed when the greater pressure is maintained.
  • FIG. 39 is a graph showing another example of the time change of data based on the press by the operation of the operator, as in FIG.
  • the point B that is, after the reference regarding the data based on the pressure is set
  • the data based on the pressure increases and reaches the reference P 0 regarding the data based on the pressure at the C point.
  • the case where the point D is reached due to the decrease in the data based on the point and the case where the point E is reached due to the further decrease in the data based on the press by the operator's operation are shown.
  • Figure 39 shows only the stage of data based on a press which is set lower than the reference P 0 on the data based on a press.
  • FIG. 39 as an example, only two data stages based on the pressure set for each 1N are shown for data based on the pressure smaller than the reference P 0 regarding the data based on the pressure.
  • it is not essential to set the interval between the levels of the data based on the pressure every 1N, and it is also necessary to set two such levels. is not.
  • the speed ⁇ can be a speed at which an image displayed on the display unit 30 is reduced faster than the speed ⁇ . That is, in this case, when the operator operates the touch sensor 20, the image displayed on the display unit 30 is reduced at a higher speed when the smaller pressure is maintained.
  • FIG. 40 is a graph showing still another example of the time change of data based on the press by the operation of the operator.
  • the data based on the pressing increases and reaches the reference P 0 regarding the data based on the pressing at the C point.
  • the data based on the data once decreases and then increases, and then increases and decreases.
  • Figure 40 the step of data based on a press which is set lower than the reference P 0 on the data based on a press, and both stages of the data based on the high set pressed than the reference P 0 on the data based on a press Show. Note that in the example shown in FIG. 40, for the data based on the pressure larger than the reference P 0 and the data based on the small pressure related to the data based on the pressure, two stages of data based on the pressure set for each 1N are performed. It is shown. Further, in FIG. 40, similar to FIG.
  • phase of the data based on a press from P 0 to P 0 + 1N made to correspond to the speed alpha
  • stage of the data based on a press from P 0 + 1N to P 0 + 2N Is associated with a speed ⁇ .
  • FIG. 40 similar to FIG. 39, in correspondence to the rate ⁇ is the phase of the data based on a press from P 0 to P 0 -1N, based on the pressure from P 0 -1N to P 0 -2N
  • a speed ⁇ is associated with the data stage.
  • FIG. 41 is a graph showing the change over time of the enlargement / reduction ratio of the image displayed on the display unit 30 when the data based on the pressure changes over time as shown in FIG. 41.
  • the horizontal axis represents the passage of time
  • the vertical axis represents the enlargement / reduction ratio of the image displayed on the display unit 30.
  • FIG. 40 and FIG. 41 are compared, since the mode does not shift to the enlargement / reduction mode from the operation start time to time t 1 , that is, before the reference relating to the data based on the pressure is set, it is based on the pressure. Although the data is changing, it can be seen that the scaling ratio does not change from the standard. Moreover, since as described above, the period from time t 1 to t 2, but has been shifted to the scale mode, which as described above, it does not reach the reference P 0 on the data based on a press, Fig. 41 As shown in the figure, neither enlargement nor reduction is performed.
  • the number of operations performed by the operator can be reduced, and the operation procedure by the operator can be reduced. it can.
  • the image displayed on the display unit 30 is enlarged at such a large speed, so that the operator performs the operation with a large pressure. Since a short time is required, the burden on the operator of applying a pressing force can be reduced.
  • the 7th Embodiment changes the process by the control part 10 in 5th Embodiment mentioned above. That is, in the electronic device 5 according to the fifth embodiment, the seventh embodiment changes the mode of the process in step S21 described in FIG. Specifically, in the electronic device 7 according to the seventh embodiment, after the reference regarding the data based on the press is set, the manner of associating the data based on the press with the enlargement / reduction ratio as described in FIG. To change.
  • the electronic device 7 according to the seventh embodiment is realized by basically the same device configuration and control as the electronic device 5 and the electronic device 3 described in the fifth and third embodiments described above except for the above points. can do. For this reason, below, the description which becomes the same content as having demonstrated in 5th and 3rd Embodiment is abbreviate
  • the change in the data based on the pressure from P min to P 0 is represented by X min A linear change in the enlargement / reduction ratio from 1 to X0 was associated.
  • the change in data based on the pressure from P 0 to P max is associated with the linear change in the enlargement / reduction ratio from X 0 to X max .
  • FIG. 6 shows an example in which the reference P 0 related to the data based on the pressure is set just around the middle between P max and P min for the sake of simplicity of explanation.
  • the relationship between the data based on the pressure and the enlargement / reduction ratio is As shown in FIG. 17A, the graph is a straight line from P min to P max .
  • the vertical axis and the horizontal axis are set differently from those in FIG.
  • the graph changes in slope at the point of P 0 .
  • the reference P 0 related to the data based on the pressure is set to a position smaller than the middle of P min and P max , the relationship between the data based on the pressure and the enlargement / reduction ratio is shown in FIG. as shown in C), the graph, the slope of which varies at the time of P 0 Again.
  • the reference P regarding the data based on the pressure is used. Before and after 0 , correction is performed so that the amount of change in the enlargement / reduction ratio for the data based on the pressure does not change significantly. Specifically, for example, when the association shown in FIG. 17B is about to be performed, the control unit 10 corrects these associations, for example, as shown in FIG. Correspondence between the data based on the press and the enlargement / reduction ratio is performed.
  • the reference P 0 regarding the data based on the press is P min (the press when the enlargement / reduction ratio is the minimum X min). Is set in the middle of the data P) and P max based on. Therefore, the correlation between the data based on the pressure and the enlargement / reduction ratio is a graph in which the inclination does not change before and after P 0 , and the operator changes the data based on the pressure across the reference P 0 regarding the data based on the pressure. Even if it makes it, it does not give a sense of incongruity to the followability of enlargement or reduction.
  • control unit 10 corrects these associations and based on the press as shown in FIG. 18B, for example. Correspondence between data and enlargement / reduction ratio is performed.
  • the reference P 0 regarding the data based on the pressure is P min and P max (the enlargement / reduction ratio is the maximum X max) . It is set in the middle with the data P) based on the pressing of time. Therefore, the correlation between the data based on the pressure and the enlargement / reduction ratio is a graph in which the inclination does not change before and after P 0 , and the operator changes the data based on the pressure across the reference P 0 regarding the data based on the pressure. Even if it makes it, it does not give a sense of incongruity to the followability of enlargement or reduction.
  • control unit 10 responds to the difference between the reference on the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40, as in the fifth embodiment. Then, control is performed so as to increase or decrease the value of the parameter associated with the predetermined process.
  • control unit 10 includes a case where the data based on the pressure detected by the pressure detection unit 40 increases and a case where the data based on the pressure detected by the pressure detection unit 40 decreases. The amount of increase or decrease in the parameter value is controlled to be equal.
  • the “amount to increase / decrease the value of the parameter” is based on the pressure according to the difference between the reference regarding the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40 in the above-described example. This corresponds to the amount of change in the enlargement / reduction ratio for the data.
  • the amount of change in the enlargement / reduction ratio with respect to the data based on the press is large before and after the reference P 0 regarding the data based on the press.
  • the mode of correction so as not to change is not limited to that described with reference to FIG. 18, and various modes can be assumed as described in the third embodiment.
  • the present embodiment even if the operator changes the pressure across the reference P 0 regarding the data based on the pressure, the amount of increase or decrease in the value of the parameter associated with the predetermined process is greatly changed. Without being almost equal. Therefore, according to the present embodiment, when the operator changes the pressure across the reference P 0 regarding the data based on the pressure, the followability when the image displayed on the display unit 30 is enlarged or reduced. There is no sense of discomfort.
  • the eighth embodiment also changes the processing performed by the control unit 10 in the fifth embodiment described above. That is, the eighth embodiment changes the processing after step S25 described in FIG. 5 in the electronic device 1 according to the fifth embodiment. That is, in the electronic device 8 according to the eighth embodiment, the reference regarding the data based on the press is set, and a predetermined operation is performed during the process of enlarging or reducing the image according to the data based on the press. If it is determined that it has been performed, the manner of associating the data based on the press and the enlargement / reduction ratio as described with reference to FIG. 6 is changed.
  • the electronic device 8 according to the eighth embodiment is basically realized by the same device configuration and control as those of the electronic device 5 and the electronic device 4 described in the fifth and fourth embodiments, except for the above points. can do. For this reason, hereinafter, descriptions that are the same as those described in the fifth and fourth embodiments are omitted as appropriate.
  • the operator enlarges or reduces the image too much during the process of enlarging or reducing the image displayed on the display unit 30 by the electronic device 5 according to the fifth embodiment.
  • a measure for easily correcting to a desired enlargement / reduction ratio is provided.
  • the processing of the electronic device 8 according to the eighth embodiment can be performed based on the flowchart described in FIG. 20 in the fourth embodiment.
  • step S25 in FIG. 20 the control unit 10 increases the data P based on the pressure detected by the pressure detection unit 40, and the value of the data based on the pressure exceeds Pmax . It is then determined whether or not it has started to decrease (step S41). If it is determined in step S41 that the data P based on the pressure has turned to decrease after exceeding Pmax , the control unit 10 changes the association between the data based on the pressure and the enlargement / reduction ratio (step S42).
  • step S41 the control unit 10 determines that the data P based on the pressure detected by the pressure detection unit 40 has decreased, and has increased after the value of the data based on the pressure falls below Pmin . Even in this case, the process of step S42 is performed. Even if it is determined in step S41 that the data P based on the pressure has decreased below P min and then increased, the control unit 10 changes the association between the data based on the pressure and the enlargement / reduction ratio (step S42). .
  • step S42 when the association between the data based on the pressure and the enlargement / reduction ratio is changed, the control unit 10 returns to step S22 and continues the process.
  • the control unit 10 returns to step S22 and continues the process without performing the process of step S42.
  • FIG. 42 is a graph showing an example of the time change of data based on the press by the operation of the operator, like FIG. 34 described in the fifth embodiment.
  • the data based on the pressure by the operator's operation changed from increase to decrease and then decreased to increase after point A to point B.
  • the data P based on the pressure and the enlargement / reduction ratio X are associated with each other (step S21 in FIG. 20).
  • the processing up to this point is the same as that described with reference to FIG. 6 in the fifth embodiment described above.
  • the data based on the pressure by the operation of the operator passes the point C and the point D and exceeds the point P max. Until the point E decreases (Yes in step S41). Accordingly, in this case, the association between the data based on the pressure and the enlargement / reduction ratio is changed to a mode as shown in FIG. 22B, for example (step S42).
  • the association between the data based on the pressure shown in FIG. 22B and the enlargement / reduction ratio has a smaller (gradual) slope of the graph representing the correspondence than the mode shown in FIG. For this reason, when the data based on the pressure is decreased from the F point to the G point in FIG.
  • the data based on the pressure is reduced.
  • the change in the reduction ratio with respect to the decrease is also small (slow). Therefore, when the operator increases the data based on the press to the point D to enlarge the image too much, and when the image is reduced by reducing the data based on the press, the operator can reduce the image finely. And a desired enlargement / reduction ratio can be easily reached.
  • FIG. 43 is a graph showing an example of the time change of data based on the press by the operation of the operator, like FIG. 34 described in the first embodiment. Also in FIG. 43, as shown in FIG. 22 (A), the data based on the pressure by the operator's operation changed from increase to decrease and then decreased to increase after point A to point B. The data P based on the pressure and the enlargement / reduction ratio X are associated with each other (step S21 in FIG. 20).
  • the data based on the pressing by the operator's operation reaches the reference P 0 regarding the data based on the pressing at the C point. After that, it started to decrease. Then, the data based on the pressure that has turned to decrease after point C passes through point D and point E, decreases below Pmin to point F, and starts increasing at point F (Yes in step S41). Therefore, in this case, the association between the data based on the pressure and the enlargement / reduction ratio is changed to a mode as shown in FIG. 22C, for example (step S42).
  • the control unit 10 according to the difference between the reference regarding the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40. Control is performed to increase or decrease the value of a parameter associated with a predetermined process. However, in the present embodiment, the control unit 10 is different in the amount by which the value of the parameter is increased or decreased before and after the data based on the pressure detected by the pressure detection unit 40 increases or decreases from one to the other. To control.
  • the “amount to increase / decrease the value of the parameter” is based on the pressure according to the difference between the reference regarding the data based on the pressure and the data based on the pressure detected by the pressure detection unit 40 in the above-described example.
  • the control unit 10 reduces the amount of the parameter value less than before. It is preferable to control as described above. Similarly, after the data based on the pressure detected by the pressure detection unit 40 changes from decrease to increase, the control unit 10 controls the parameter value to increase less than before. Is preferred. Further, in the present embodiment, in order to reduce the change in the enlargement / reduction ratio with respect to the increase / decrease in the data based on the pressure, for example, when a slide operation is detected in step S22 in FIG. It is preferable to return to the association between the data based on the pressure and the enlargement / reduction ratio.
  • FIG. 24 is a flowchart for explaining processing performed in the enlargement / reduction mode shown as step S ⁇ b> 15 in FIG. 3, after the reference regarding the data based on pressing is set, as in FIG. 20.
  • step S41 of FIG. 20 when it is determined that a predetermined operation has been performed by the operator, the manner of associating the data based on the pressure with the enlargement / reduction ratio is changed.
  • the case where it is determined that a predetermined operation has been performed is the case where the data P based on the pressure exceeds the data Pmax based on the maximum pressure and then starts to decrease, and the case where the data is based on the pressure. It was assumed that the data P started to increase after falling below the data P min based on the minimum pressing.
  • the aspect of changing the association between the data based on the press and the enlargement / reduction ratio is the same as the example described above. Change the content of the operation. That is, in this example, as shown in step S51 of FIG. 24, when the data P based on the pressure changes from increase to decrease, and when the data P based on the pressure changes from decrease to increase, it is based on the pressure. Change the association between data and scaling ratio. In short, in this example, when the data P based on the pressure changes from increase to decrease, even if P max does not exceed P max, and when the data P based on the pressure changes from increase to decrease, it does not fall below P min. In both cases, as in the example described above, the association between the data based on the press and the enlargement / reduction ratio is changed.
  • FIG. 44 is a graph showing an example of the time change of data based on the press by the operation of the operator, as in FIG.
  • the data based on the pressure by the operation of the operator changed from increase to decrease and then decreased to increase after point A to point B.
  • Correspondence between the data P based on the pressure and the enlargement / reduction ratio X is performed (step S21 in FIG. 24). The processing up to this point is the same as that described with reference to FIG. 6 in the fifth embodiment described above.
  • the enlargement / reduction ratio has a smaller (gradual) slope of the graph representing the correspondence than the mode shown in FIG. Therefore, when the data based on the pressure is reduced from the point D to the point E in FIG. 44 by the operator's operation (corresponding to the decrease from P 1 to P min in FIG. 26B ), the data based on the pressure is reduced.
  • the change in the reduction ratio with respect to the decrease is also small (slow). Therefore, also in this example, when the operator increases the data based on the press to the point D and enlarges the image too much, and when the image is reduced by reducing the data based on the press, the operator finely selects the image. Can be reduced, and a desired enlargement / reduction ratio can be easily reached.
  • FIG. 45 is a graph showing an example of the time change of data based on the press by the operation of the operator, as in FIG.
  • the data based on the pressure by the operator's operation changed from increase to decrease and then decreased to increase after point A to point B.
  • Correspondence between the data P based on the pressure and the enlargement / reduction ratio X is performed (step S21 in FIG. 24). The processing so far is the same as that described with reference to FIG. 6 and the like in the first embodiment.
  • step S42 pressing The mode based on the point at which the data based on P1 is P 1 is changed (step S42).
  • the association between the data based on the press shown in FIG. 28B and the enlargement / reduction ratio has a smaller (gradual) slope of the graph representing the correspondence than the mode shown in FIG. Therefore, when the data based on a press by the operation of the operator is increased from the point E in FIG. 45 to point F (corresponding to an increase from P 1 to P max in FIG. 28 (B)), the data based on a press
  • the change of the reduction ratio with respect to the increase is also small (slow).
  • the processing according to the above-described example may be performed continuously every time data based on pressing increases and decreases.
  • Such an example will be described.
  • FIG. 46 is a graph showing an example of the time change of data based on the press by the operator's operation, similarly to FIG. 44 and FIG. Also in FIG. 46, as shown in FIG. 30 (A), the data based on the pressure by the operator's operation changed from increase to decrease after the change from increase to decrease between point A and point B.
  • the data P based on the pressure and the enlargement / reduction ratio X are associated with each other (step S21 in FIG. 20).
  • the data based on the pressure decreases before the point E before the point P min decreases.
  • the data based on the press by the operation of the operator has started to increase (Yes in step S51). Therefore, in this case, at the time of t 4, the correspondence between the data and the scaling factor based on a press, for example, as shown in FIG. 30 (C), aspect data based on the pressed relative to the point where the P2 (Step S42).
  • step S42 the control part may be changed to a mode based on the point at which the data based on the pressure becomes P min , for example. .
  • the correspondence between the data based on the pressure shown in FIG. 30C and the enlargement / reduction ratio is smaller (slower) than the aspect shown in FIG. 30B. . For this reason, when the data based on the pressure increases after the point E in FIG. 46 by the operation of the operator, the change in the enlargement ratio with respect to the increase in the data based on the pressure is further reduced (slowly).
  • the operator when the operator increases the data based on the pressure from the point C to the point D to enlarge the image too much, and when the image is reduced by reducing the data based on the pressure, the operator The image can be reduced finely. Further, in this example, even when the operator reduces the data based on the pressure from the point D to the point E and reduces the image too much, the operator enlarges the image by increasing the data based on the pressure. The operator can enlarge the image more finely. For this reason, the operator can reach the desired enlargement / reduction ratio more easily.
  • the enlargement / reduction with respect to the increase / decrease in the data based on the press The rate change becomes smaller and smaller. Therefore, even if the operator intends to keep the data based on the pressure constant, when the data based on the pressure detected by the pressure detection unit 40 repeats a minute increase / decrease, the enlargement / reduction with respect to the increase / decrease in the data based on the pressure is performed. The change in the rate may gradually become smaller (gradually) against the operator's intention.
  • a measure for reducing (gradually) the change in the enlargement / reduction ratio with respect to the increase / decrease in the data based on the pressure is taken. You can also avoid it.
  • a minute change width ⁇ P of the data based on the pressure may be set. In the enlargement / reduction mode, even if the data based on the pressure changes within such a small change width ⁇ P, the association between the data based on the pressure and the enlargement / reduction ratio can be prevented from being changed.
  • FIG. 47 is a graph showing an example of the time change of data based on the press by the operation of the operator. Also in FIG. 47, during the period from point A to point B, by turned from decreasing to increasing after the data based on a press by the operation of the operator has turned from increase to decrease, at time of t 1, based on a press The data P and the enlargement / reduction ratio X are associated with each other. In the example of FIG. 47, after the point B, that is, after the reference regarding the data based on the pressure is set, the data based on the pressure by the operation of the operator slightly increases to the D point after passing through the C point. The point has started to decrease.
  • the present invention is not limited to the above embodiment, and many variations or modifications are possible.
  • an aspect has been described in which an image such as a map is displayed on the display unit 30 and the image is enlarged or reduced.
  • the present invention is not limited to the mode of performing such a process, and is applicable to various scenes in which the value of a parameter associated with a predetermined process is changed according to data based on the pressure applied to the pressure detection unit 40. Can be applied.
  • the predetermined processing here may be any processing such as processing associated with an application.
  • the volume at the time of reproducing the sound is adjusted according to the difference between the reference relating to the data based on the set pressure and the data based on the pressure detected by the pressure detection unit 40. It can be applied to various processes such as adjusting the playback speed of a moving image displayed on the display unit 30.
  • the present invention is preferably applied to an electronic device including a touch sensor, but changes the value of a parameter associated with a predetermined process in accordance with data based on the pressure applied to the pressure detection unit 40. Therefore, the present invention is not limited to a device provided with a touch sensor.
  • the present invention can also be applied to an electronic device that includes a press detection unit but does not include a touch sensor. In this case, for example, data based on the pressure on the key or button so that the data based on the pressure when the operator performs an operation on the key or button constituting the normal operation unit can be detected. It is preferable to provide a pressure detection unit for detecting the above.
  • a press detection unit that detects data based on pressing when the operator directly presses the casing of the electronic device. It is also possible to consider an aspect that comprises.
  • a pressure detection unit can be configured as a touch sensor 20 provided with an arbitrary number of strain gauge sensors and the like.
  • such a pressure detection unit can be configured according to a contact detection method in the touch sensor 20.
  • a contact detection method in the touch sensor 20.
  • the resistance film method if a pressure can be detected from a change in an output signal based on a change in resistance due to a contact area, it can be configured without using a strain gauge sensor.
  • the electrostatic capacity method even when the pressure can be detected from the change in the output signal based on the change in the electrostatic capacity, it can be configured without using the strain gauge sensor.
  • the tactile sensation providing unit 50 is configured using an arbitrary number of piezoelectric vibrators, is configured by providing a transparent piezoelectric element over the entire surface of the touch sensor 20, or rotates the eccentric motor once in one cycle of the drive signal. It can also be configured in this way. Further, when the pressure detection unit and the tactile sensation providing unit 50 are configured using a piezoelectric element, the pressure detection unit / vibration unit may be configured by sharing the piezoelectric element. This is because the piezoelectric element generates electric power when pressure is applied and deforms when electric power is applied.
  • the tactile sensation providing unit 50 detects the data based on the pressure based on the output of the piezoelectric element that also serves as the pressure detection unit, and drives the piezoelectric element when a reference regarding the data based on the pressure is set, for example. Therefore, vibration can be generated.
  • the electronic device according to the present invention does not necessarily have such a configuration, and the touch sensor 20 and the display unit 30 can be separated from each other.
  • the touch sensor 20 is arranged so as to overlap the upper surface of the display unit 30, the operator can easily recognize the correspondence between the displayed image and the generated vibration.
  • the display unit 30 and the touch sensor 20 in the description of the present embodiment may be configured by an integrated device, for example, by providing both functions of the display unit and the contact detection unit on a common substrate. Good.
  • a plurality of photoelectric conversion elements such as photodiodes are regularly arranged in a matrix electrode array of pixel electrodes included in the liquid crystal panel.
  • This device displays an image with a liquid crystal panel structure, while reflecting the light of the backlight for liquid crystal display at the tip of the pen that contacts the desired position on the panel surface, and the surrounding photoelectric conversion elements receive this reflected light. By doing so, the position of contact can be detected.
  • a standard related to data based on pressure is set.
  • the standard related to data based on pressure is set based on a reference value stored in the storage unit when the application is started, for example.
  • the setting may be made by operating the object for setting the reference regarding the data based on the press by the operator when the application is activated.
  • the present invention is not limited to the mode described in the description of the present embodiment for setting the reference regarding the data based on the pressure.
  • the control unit determines whether the data based on the pressure detected by the pressure detection unit satisfies a predetermined condition, and based on the pressure detected by the pressure detection unit. Although it is determined whether or not the data has changed from increase to decrease after the data has changed from increase to decrease, the present invention is not limited to this.
  • the control unit is data based on the pressure detected by the pressure detection unit. Determine whether the data based on the pressure detected by the pressure detection unit satisfies a predetermined load standard (greater than or equal to a predetermined pressure threshold). Alternatively, it may be determined whether or not the data based on the pressure detected by the pressure detection unit has changed in accordance with a data change curve based on a predetermined pressure.

Abstract

 操作者が操作を行う箇所を低減させるとともに、操作者による操作の手順も低減させることができる電子機器を提供する。 電子機器1は、押圧を検出する押圧検出部40と、押圧に基づくデータに関する基準が設定されると、その基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する制御部10と、を備えることを特徴とする。

Description

電子機器 関連出願の相互参照
 本出願は、2011年5月27日に出願された日本国特許出願2011-119682号および日本国特許出願2011-119713号の優先権を主張するものであり、これらの先の出願の開示全体を、ここに参照のために取り込む。
 本発明は、電子機器に関するものである。より詳細には、本発明は、押圧検出部が検出する押圧に基づくデータに応じた処理を行う電子機器に関するものである。
 近年、携帯電話等の携帯端末において、操作者による接触を検出する部材として、タッチパネルやタッチスイッチ等のタッチセンサを備える電子機器が増えている。また、携帯端末以外に、電卓、券売機等の機器や、電子レンジ、テレビ、照明器具等の家電製品、産業用機器(FA機器)等、タッチセンサを備える電子機器は広く使用されている。
 従来、タッチセンサは、種々のものが提案されている(例えば、特許文献1参照)。この特許文献1は、生産コストが安価であり小型化が可能なアナログタイプの抵抗膜式タッチパネルを提案している。特許文献1に記載されているようなタッチパネルは、スペーサにより僅かな間隔を空けた2枚の導電膜により構成される。このタッチパネルは、導電膜が押圧されて接触した位置を、一方の導電膜にかけられた電圧勾配により、他方の導電膜で電圧として読み取る構成になっている。
 このようなタッチセンサには、抵抗膜方式の他にも、静電容量方式、光学式等の種々の方式が知られている。いずれの方式のタッチセンサも、操作者の指やスタイラスペン等による接触を検出する。タッチセンサを備えた電子機器は、一般的に、タッチセンサの裏面側に配置した液晶ディスプレイなどの表示部に、操作キーやボタンなどの画像(以下、「オブジェクト」と記す)を表示する。表示部に表示されたオブジェクトに対して操作者が接触する操作を行うと、当該オブジェクトに対応する位置における接触をタッチセンサが検出するようになっている。
 このようなタッチセンサを備えた電子機器は、使用するアプリケーションソフトウェア(以下、単に「アプリケーション」と記す)に応じて、種々のユーザインタフェースを、各種オブジェクトの表示によって構成することができる。したがって、タッチセンサを備えた電子機器は、種々のユーザインタフェースを高い自由度で構成することができる。このような電子機器は、操作者にとって操作がわかり易く使い勝手が良いため、タッチセンサを備えた電子機器は急速に普及している。
 また、最近では、電子機器に備えられたタッチセンサの性能が向上し、例えばマルチタッチに対応したタッチセンサのように、複数のポイントに同時に触れても、当該複数のポイントをそれぞれ検出できるものがある。さらに、操作者がタッチセンサに対して行う操作方法として、単に接触の有無のみならず接触による操作の態様をも検出することにより、当該操作の態様に応じて種々の異なる処理を行うことができるものもある(例えば、特許文献2参照)。
 例えば、タッチセンサに一度だけ触れるタップ(シングルタップ)、すばやく2度触れるダブルタップ、タッチセンサに触れたまま接触の位置を移動させるスライド(またはドラッグ)、素早くはじくようにスライドするフリックなど、各種の態様の操作を検出できる電子機器がある。また、マルチタッチ対応のタッチセンサの場合、操作者の2本の指等を同時にタッチセンサに接触させて、当該2本の指等を開いたり、閉じたりするピンチ操作を検出できるものもある。この場合、特に、接触させた2本の指等を開く操作をピンチアウト操作、2本の指等を閉じる操作をピンチイン操作と呼ぶことがある。
 最近では、例えばスマートフォンやタブレット型コンピュータ等のように、タッチセンサを備えた高性能かつ多機能な電子機器が普及してきたことにより、タッチセンサに対する操作者の各種操作を検出する技術は特に重要性を増している。
特開2003-241898号公報 特開2010-122856号公報
 ところで、上述したピンチアウトやピンチインのような操作は、特に表示部に表示した画像を拡大または縮小する場面において用いられることが多い。
 例えば、図48(A)に示すように、表示部300の前面側にタッチセンサ200が重ねて配置されている電子機器100において、表示部300には日本国を含む広域の地図が画像で表示されているとする。説明のため、この電子機器100は、ピンチ操作に対応した電子機器であるものとする。この電子機器100において、画像表示された日本地図のうち、ある特定の領域を拡大表示する場合、操作者は、図48(A)に示すように、拡大したい特定の領域をつまむように接触した2本の指を広げて、ピンチアウト操作を行うことができる。その結果、図48(B)に示すように、2本の指先が広げられる動きに追従するように、2本の指でつまむように接触されていた特定の領域が拡大表示される。
 また、この電子機器100において、画像表示された特定の領域を縮小表示する場合、操作者は、図48(B)に示すように、縮小したい特定の領域をつまむように接触した2本の指の間隔を狭めて、ピンチイン操作を行うことができる。その結果、図48(A)に示すように、2本の指先が閉じられる動きに追従するように、2本の指でつまむように接触されていた特定の領域が縮小表示される。このようにピンチ操作を行うことにより、操作者は、表示部に画像表示された任意の領域を拡大または縮小することができる。
 ところが、このピンチ操作においては、タッチセンサ上で2点を同時に接触する必要があるため、操作者が1本指で当該操作を行うことは不可能である。
 なお、この電子機器100が例えばタブレット型コンピュータのように比較的大き目の機器である場合、操作者は片手で電子機器100の筐体を保持したまま、もう片方の手の指を用いて、タッチセンサ上でピンチ操作を行う場面が多い。一方、この電子機器100が例えばスマートフォンのように比較的小さな機器である場合、操作者は片手で電子機器100の筐体を保持したまま、同じ手の親指など用いてタッチセンサ上でタップなどの操作を行うことができる。しかしながら、この場合に、操作者は、片手で電子機器100を保持したまま、同じ手の指を用いてタッチセンサ上でピンチ操作を行うことは非常に困難である。これは、操作者が親指と人差し指を用いてタッチセンサ上でピンチ操作を行う際に、同時に同じ手の中指、薬指、および小指のみを用いて電子機器100全体を安定させて保持することは困難だからである。
 このように、電子機器においてピンチ操作を行う場合、機器の大きさによらず、操作者は、左右の両手とも用いて操作を行う必要があるのが一般的であり、さらに操作を行う手の指を2本以上用いて操作を行う必要もある。
 そこで、操作者が操作を行う箇所を低減させるため、すなわち指を2本も用いずに操作できるようにするためには、例えば図49に示すように、表示部に表示された画像を拡大および縮小するボタンのような、専用のオブジェクトを用意することもできる。例えば、図49(A)に示すように、表示部300の前面側にタッチセンサ200が重ねて配置されている電子機器100において、表示部300には日本国を含む広域の地図が画像で表示されているとする。この電子機器100の表示部300には、右下の領域に、画像を拡大する「+」のボタン、および画像を縮小する「-」のボタンのオブジェクトが表示されている。
 図49(A)に示すように、操作者は、タッチセンサ200において「+」のボタンに対応する位置をタップすることにより、図49(B)に示すように、表示部300に表示された画像を拡大することができる。また、図49(B)に示す状態においては、操作者は、タッチセンサ200において「-」のボタンに対応する位置をタップすることにより、図49(A)に示すように、表示部300に表示された画像を縮小することができる。このように、拡大および縮小ボタンのような専用のオブジェクトを用意すれば、操作者が操作を行う箇所を低減させることができる。すなわち、このような操作においては、電子機器100が小型であれば、操作者は、片手で筐体を保持したまま同じ手の指を用いて操作を行うことが可能であり、しかもタッチセンサ200に対する操作を1本指で行うことが可能である。
 しかしながら、このように拡大および縮小ボタンのような専用のオブジェクトを用意すると、これらのオブジェクトは表示部300における表示領域の面積の一部を占めることになる。特に、スマートフォンのように比較的小さな機器においては表示部における表示領域の面積も限られているため、このように特定の処理を行うための専用のオブジェクトをいくつも表示部に表示するのは望ましくない。
 したがって、かかる事情に鑑みてなされた本発明の目的は、操作者が操作を行う箇所を低減させるとともに、処理を行うための専用のオブジェクトなどをいくつも表示することなく処理することができる電子機器を提供することにある。
 上記目的を達成する第1の観点に係る電子機器の発明は、
 押圧を検出する押圧検出部と、
 押圧に基づくデータに関する基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する制御部と、
 を備えることを特徴とするものである。
 また、上記目的を達成する第2の観点に係る電子機器の発明は、
 押圧を検出する押圧検出部と、
 押圧に基づくデータに関する基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値が変化する速度を変更するように制御する制御部と、
 を備えることを特徴とするものである。
 第3の観点に係る発明は、第1または第2の観点に係る電子機器において、
 前記制御部は、前記押圧検出部により検出される押圧に基づくデータの変化が所定期間内に所定範囲内であったら、前記所定期間に検出された押圧に基づくデータに基づいて前記基準を設定するように制御するものである。
 第4の観点に係る発明は、第1の観点に係る電子機器において、
 前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加した場合と、前記押圧検出部により検出される押圧に基づくデータが減少した場合とで、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が等しくなるように制御するものである。
 第5の観点に係る発明は、第1の観点に係る電子機器において、
 前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加および減少のうち一方から他方へと転じる前後において、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が異なるように制御するものである。
 さらに、上記目的を達成する第6の観点に係る電子機器の発明は、
 押圧を検出する押圧検出部と、
 前記押圧検出部により検出される押圧に基づくデータが所定の条件を満たしたら、押圧に基づくデータに関する基準を設定し、
 前記基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する制御部と、
 を備えることを特徴とするものである。
 また、上記目的を達成する第7の観点に係る電子機器の発明は、
 押圧を検出する押圧検出部と、
 前記押圧検出部により検出される押圧に基づくデータが所定の条件を満たしたら、押圧に基づくデータに関する基準を設定し、
 前記基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値が変化する速度を変更するように制御する制御部と、
 を備えることを特徴とするものである。
 第8の観点に係る発明は、第6または第7の観点に係る電子機器において、
 前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたら、前記増加から減少に転じた際の押圧に基づくデータおよび前記減少から増加に転じた際の押圧に基づくデータに基づいて前記基準を設定するように制御するものである。
 第9の観点に係る発明は、第6の観点に係る電子機器において、
 前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加した場合と、前記押圧検出部により検出される押圧に基づくデータが減少した場合とで、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が等しくなるように制御するものである。
 第10の観点に係る発明は、第6の観点に係る電子機器において、
 前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加および減少のうち一方から他方へと転じる前後において、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が異なるように制御するものである。
 本発明によれば、電子機器において、操作者が操作を行う箇所を低減させるとともに、処理を行うための専用のオブジェクトなどをいくつも表示することなく処理することができる。
本発明の第1実施の形態に係る電子機器の概略構成を示す機能ブロック図である。 第1実施の形態に係る電子機器の実装構造の一例を示す図である。 第1実施の形態における押圧に基づくデータに関する基準の設定に関する処理を説明するフローチャートである。 第1実施の形態における操作者の操作による押圧に基づくデータの時間変化の例を説明するグラフである。 第1実施の形態の拡大・縮小モードにおける処理を説明するフローチャートである。 第1実施の形態における押圧に基づくデータと拡大縮小率との対応付けの例を説明するグラフである。 第1実施の形態における操作者の操作による押圧に基づくデータの時間変化の他の例を説明するグラフである。 第1実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第1実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第1実施の形態における操作者の操作に応じた拡大縮小率の時間変化の例を説明するグラフである。 第1実施の形態による処理の結果の具体列を説明する図である。 第2実施の形態の拡大・縮小モードにおける処理を説明するフローチャートである。 第2実施の形態における操作者の操作による押圧に基づくデータの時間変化の例を説明するグラフである。 第2実施の形態における操作者の操作による押圧に基づくデータの時間変化の他の例を説明するグラフである。 第2実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第2実施の形態における操作者の操作に応じた拡大縮小率の時間変化の例を説明するグラフである。 第3実施の形態における押圧に基づくデータと拡大縮小率との対応付けについて説明するグラフである。 第3実施の形態における押圧に基づくデータと拡大縮小率との対応付けの例を説明するグラフである。 第3実施の形態における押圧に基づくデータと拡大縮小率との対応付けの他の例を説明するグラフである。 第4実施の形態の拡大・縮小モードにおける処理を説明するフローチャートである。 第4実施の形態における操作者の操作による押圧に基づくデータの時間変化の例を説明するグラフである。 第4実施の形態における押圧に基づくデータと拡大縮小率との対応付けの例を説明するグラフである。 第4実施の形態における操作者の操作による押圧に基づくデータの時間変化の他の例を説明するグラフである。 第4実施の形態の他の例による拡大・縮小モードにおける処理を説明するフローチャートである。 第4実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第4実施の形態における押圧に基づくデータと拡大縮小率との対応付けの他の例を説明するグラフである。 第4実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第4実施の形態における押圧に基づくデータと拡大縮小率との対応付けのさらに他の例を説明するグラフである。 第4実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第4実施の形態における押圧に基づくデータと拡大縮小率との対応付けのさらに他の例を説明するグラフである。 第4実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第5実施の形態における押圧に基づくデータに関する基準の設定に関する処理を説明するフローチャートである。 第5実施の形態における操作者の操作による押圧に基づくデータの時間変化の例を説明するグラフである。 第5実施の形態における操作者の操作による押圧に基づくデータの時間変化の他の例を説明するグラフである。 第5実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第5実施の形態における操作者の操作に応じた拡大縮小率の時間変化の例を説明するグラフである。 第5実施の形態の変形例における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第6実施の形態における操作者の操作による押圧に基づくデータの時間変化の例を説明するグラフである。 第6実施の形態における操作者の操作による押圧に基づくデータの時間変化の他の例を説明するグラフである。 第6実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第6実施の形態における操作者の操作に応じた拡大縮小率の時間変化の例を説明するグラフである。 第8実施の形態における操作者の操作による押圧に基づくデータの時間変化の例を説明するグラフである。 第8実施の形態における操作者の操作による押圧に基づくデータの時間変化の他の例を説明するグラフである。 第8実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第8実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第8実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 第8実施の形態における操作者の操作による押圧に基づくデータの時間変化のさらに他の例を説明するグラフである。 従来のタッチセンサを備えた電子機器の例を説明する概略図である。 従来のタッチセンサを備えた電子機器の他の例を説明する概略図である。
 以下、本発明の各実施の形態について、図面を参照して説明する。なお、以下の各実施の形態においては、本発明による電子機器の一例として、携帯電話やスマートフォンまたはタブレット型コンピュータなどを想定して説明する。しかしながら、本発明による電子機器は、携帯電話やスマートフォンまたはタブレット型コンピュータなどに限定されるものではなく、例えばPDAなどタッチセンサを有する任意の機器などに適用できる。また、本発明は、携帯型の電子機器に限定されるものでもなく、例えば銀行のATMや駅の券売機など、タッチセンサを有する任意の機器にも適用することができる。さらに、本発明は、タッチセンサを備えた電子機器に適用するのが好適であるが、後述するように、タッチセンサを有する機器に限定されるものでもなく、タッチセンサを備えない電子機器にも適用することができる。
(第1実施の形態)
 図1は、本発明の第1実施の形態に係る電子機器1の概略構成を示す機能ブロック図である。図1に示すように、電子機器1は、制御部10と、タッチセンサ20と、表示部30と、押圧検出部40と、触感呈示部50と、記憶部60と、を備えている。
 制御部10は、電子機器1を構成する各機能部をはじめとして、電子機器1の全体を制御および管理する。制御部10において行われる処理のうち、本実施の形態特有のものについては、後述する。
 タッチセンサ20は、通常、表示部30の前面に重畳させて配設することにより構成し、操作者の指やスタイラスなど(以下、「接触物」と総称する)による接触を検出する。このタッチセンサ20は、接触物による接触を検出することにより、当該接触が検出された位置に対応する信号を制御部10に出力する。このタッチセンサ20は、例えば抵抗膜方式や静電容量方式などの方式のものを用いて構成する。なお、タッチセンサ20が接触物による接触を検出する上で、接触物がタッチセンサ20に物理的に触れることは必須ではない。例えば、タッチセンサ20が光学式である場合は、タッチセンサ20は当該タッチセンサ20上の赤外線が接触物で遮られた位置を検出するため、接触物がタッチセンサ20に触れることは不要である。
 表示部30は、各アプリケーションに対応する表示を行う他、オブジェクトにより構成されるユーザインタフェースを所定の表示領域に描画して表示する。さらに、表示部30は、各アプリケーションに応じて、入力結果など各種情報などの表示も行う。特に、本実施の形態において、表示部30は、後述するように、電子機器1において拡大・縮小の表示を行うアプリケーションにより、一例として、地図などの画像も表示する。表示部30は、例えば、液晶表示パネル(LCD)や有機EL表示パネル等を用いて構成する。
 押圧検出部40は、タッチパネル20に対して操作者が操作を行う際の押圧を検出するもので、例えば、押圧に応じて物理的または電気的な特性(歪み、抵抗、電圧等)が変化する歪みゲージセンサや圧電素子等の素子等を用いて構成する。押圧検出部40が、例えば、圧電素子等を用いて構成された場合、押圧検出部40の圧電素子は、タッチパネル20に対する押圧に係る荷重(力)の大きさ(または、荷重(力)の大きさが変化する速さ(加速度))に応じて、電気的な特性である電圧の大きさ(電圧値(以下、押圧に基づくデータと称する))が変化する。そして、制御部10は、押圧に基づくデータが所定の閾値以上である場合に、例えばアプリケーション基づくなどして、所定の処理を行うように制御することができる。
 制御部10は、押圧検出部40が押圧に基づくデータを制御部10に通知することにより、または、制御部10が、押圧検出部40の押圧に基づくデータを検出することにより、当該押圧に基づくデータを取得する。つまり、制御部10は、タッチパネル20に対する押圧に基づくデータを押圧検出部40から取得する。なお、押圧に基づくデータは、電圧値の代わりに、押圧に係る荷重の大きさ、電力値、抵抗値等でもよい。
 また、押圧検出部40は、タッチパネル20における接触検出方式に応じて構成することができる。例えば、タッチパネル20が抵抗膜方式の場合には、接触面積の大きさに応じた抵抗の大きさ、または抵抗の大きさが変化した範囲等を、タッチパネルのタッチ面に対する押圧の荷重(力)に対応付けることにより、歪みゲージセンサや圧電素子等を用いることなく構成することができる。あるいは、タッチパネル20が静電容量方式の場合には、接触面積の大きさに応じた静電容量(電荷)の大きさ、または静電容量(電荷)の大きさが変化した範囲等を、タッチパネルに対する押圧の荷重(力)に対応付けることにより、歪みゲージセンサや圧電素子等を用いることなく構成することができる。
 触感呈示部50は、タッチセンサ20を振動させるもので、例えば、圧電素子または超音波振動子などを用いて構成する。この触感呈示部50は、所定の振動パターンによる振動を発生させることにより、タッチセンサ20に接触している接触物に対して触感を呈示する。本実施の形態において、触感呈示部50は、制御部10から供給される駆動信号に基づいて振動を発生する。
 この触感呈示部50は、押圧検出部40が検出する押圧(タッチパネル20に対する押圧)に応じて触感呈示部を振動させることにより、振動を発生してユーザの指などに触感を呈示して、タッチパネル20を押圧しているユーザに操作したことが感覚的に分かるようにできる。なお、押圧検出部40は、触感呈示部50と一体化して構成することもできる。特に、押圧検出部40および触感呈示部50は、圧電素子を用いて構成する場合は、圧電素子を共用して押圧検出部兼触感呈示部を構成することもできる。圧電素子は、圧力が加わると電圧を発生し、電圧が加えられると変形するためである。
 また、触感呈示部50は、押圧検出部40も兼ねる圧電素子の電圧の大きさ(電圧値(データ))が所定の閾値を満たした際に、所定の処理を行うとともに、当該圧電素子を駆動することにより振動を発生するようにもできる。ここで、圧電素子の電圧の大きさ(電圧値(データ))が所定の閾値を満たした際とは、電圧値(データ)が所定の基準値に達した際であってもよいし、電圧値(データ)が所定の基準値を超えた際でもよいし、所定の基準値と等しい電圧値(データ)が検出された際でもよい。
 記憶部60は、例えばNAND型フラッシュメモリ等によって構成し、電子機器1において実行する各種のアプリケーションを記憶するのみならず、各種の情報を記憶することができる。特に、本実施の形態において、記憶部60は、タッチセンサ20が検出する接触の位置を、任意のタイミングで記憶することができ、さらに、当該接触の位置の履歴なども記憶することができる。また、本実施の形態において、記憶部60は、押圧検出部40が検出する押圧に基づくデータも任意のタイミングで記憶することができ、さらに、当該押圧に基づくデータの履歴なども記憶することができる。
 次に、上述したタッチセンサ20および表示部30と、押圧検出部40および触感呈示部50との構成上の関係について説明する。
 図2は、図1に示した電子機器1のタッチセンサ20、表示部30、押圧検出部40、および触感呈示部50の実装構造の一例を示す図である。図2(A)は要部断面図であり、図2(B)は要部平面図である。
 図2(A)に示すように、各種の表示を行う表示部30は、筐体90内に収納保持する。表示部30上には、弾性部材からなるインシュレータ94を介して、タッチセンサ20を保持する。なお、本実施の形態に係る電子機器1は、表示部30およびタッチセンサ20を平面視で矩形状とする。図2においては、タッチセンサ20は、正方形状として示してあるが、タッチセンサ20を実装する電子機器1の仕様に応じて、長方形等とすることもできる。また、この電子機器1は、タッチセンサ20を、図2(B)に仮想線で示す表示部30の表示領域Aから外れた4隅に配設したインシュレータ94を介して、表示部30に保持する。
 また、筐体90には、表示部30の表示領域から外れたタッチセンサ20の表面領域を覆うようにアッパカバー92を設け、このアッパカバー92とタッチセンサ20との間に、弾性部材からなるインシュレータ96を配設する。
 なお、タッチセンサ20は、例えば、表面すなわち操作者による操作が行われる面が透明フィルムで構成され、裏面がガラスで構成され、操作面が押圧されると、押圧に応じて表面の透明フィルムが微少量撓む(歪む)構造のものを用いる。
 さらに、本実施の形態に係る電子機器1は、タッチセンサ20の表面の透明フィルム上で、アッパカバー92で覆われる各辺の近傍に、タッチセンサ20に加わる押圧を検出するための歪みゲージセンサをそれぞれ接着等により設ける。また、タッチセンサ20の裏面のガラス面上で、対向する2つの辺の近傍には、タッチセンサ20を振動させるための圧電素子または超音波振動子などを、それぞれ接着等により設ける。すなわち、図2に示す電子機器1は、図1に示した押圧検出部40を4つの歪みゲージセンサを用いて構成し、触感呈示部50を2つの振動子を用いて構成している。押圧検出部40は、例えば、4つの歪みゲージセンサの出力の平均値などから押圧を検出する。触感呈示部50は、例えば、2つの振動子を同相で駆動する。なお、図2(B)は、図2(A)に示した筐体90、アッパカバー92、およびインシュレータ96の図示を省略している。
 次に、本実施の形態に係る電子機器1による処理について説明する。
 以下、本実施の形態における処理を説明するためのひとつの具体例として、電子機器1において、操作者の操作に基づいて地図を拡大・縮小することができるアプリケーションを実行する例について説明する。すなわち、以下、操作者が電子機器1のタッチセンサ20に対する操作を行うことにより、表示部30に表示された地図を拡大・縮小する場面について説明する。
 本実施の形態においては、まず、操作者による所定の操作に基づいて押圧に基づくデータに関する基準が設定され、当該基準が設定されると、電子機器1は、拡大・縮小モードに移行する。
 図3は、本実施の形態における押圧に基づくデータに関する基準の設定を中心とする処理について説明するフローチャートである。まず、本実施の形態における押圧に基づくデータに関する基準の設定について説明する。この「押圧に基づくデータに関する基準」とは、操作者の操作による押圧に基づくデータに基づいて設定される基準であり、この押圧に基づくデータに関する基準に基づいて、後の処理によって、地図の拡大・縮小を行う。したがって、この押圧に基づくデータに関する基準の設定に際しては、操作者が比較的強くも弱くもない(中位の)力によってタッチセンサ20を押圧する操作を行っている最中の押圧に基づくデータを、「押圧に基づくデータに関する基準」とするのが好適である。そこで、本実施の形態では、操作者がタッチセンサ20上で操作している指などの位置を動かさずに上述のように押圧をかけている状態が所定期間維持された際に、「押圧に基づくデータに関する基準」を設定する。なお、この「押圧に基づくデータに関する基準」の設定に際しては、タッチセンサ20上で操作している指などの位置が動いていても「押圧に基づくデータに関する基準」を設定してもよい。
 本実施の形態による処理が開始すると、制御部10は、タッチセンサ20が検出する接触を監視するとともに、押圧検出部40が検出する押圧を監視する(ステップS11)。特に、本実施の形態において、制御部10は、押圧検出部40が検出する押圧に基づくデータの変化の履歴を記憶部60に記憶しながら監視を行うのが好適である。
 ステップS11において押圧検出部40が押圧を検出したら、制御部10は、押圧に基づくデータの変化が所定期間内に所定範囲内に収まっているか否かを判定する(ステップS12)。ここで、「所定期間」とは、あまりに短い期間とすると、操作者が適切に押圧を維持する操作を行う前に押圧に基づくデータに関する基準が設定されてしまう。また、この「所定期間」を、あまりに長い期間とすると、なかなか押圧に基づくデータに関する基準が設定されず、電子機器1の操作性を悪化させるおそれがある。したがって、通常のボタンにおける「長押し」に相当するような、例えば約1秒とするなど適当な期間の時間を設定し、当該設定の後も、操作者の好みに応じて適宜変更できるようにするのが好適である。
 また、ここで、押圧に基づくデータの変化が「所定範囲内」に収まっているとは、操作者が押圧を維持することにより、押圧検出部40により検出される押圧に基づくデータの変化が少ないか、あるいは、ほぼ変化していない状態を意味する。押圧に基づくデータの変化が所定範囲内に収まっているか否かを制御部10が判定する際には、例えば、記憶部60に記憶された押圧に基づくデータの履歴から、微小時間当たりの変化量がほぼゼロであるか否かを判定することができる。この場合、押圧に基づくデータの微小時間当たりの変化量が厳密にゼロのまま維持されることは想定しにくいため、制御部10は、所定幅のマージンを考慮することにより、微小時間当たりの押圧に基づくデータの変化がその所定幅に収まっているか否かを判定することができる。すなわち、制御部10は、押圧に基づくデータの時間変化における微分係数がゼロに近いことを判定できるように、当該微分係数がゼロに近い小さな値になったことを判定するのが好適である。また、押圧に基づくデータの変化が所定範囲内に収まっているか否かを制御部10が判定する際には、例えば、上述した「所定期間」における押圧に基づくデータの最大値と最小値の差分値が、予め定められた閾値以下であるか否かを判定することができる。この場合、上述した差分値が、予め定められた閾値以下である場合、制御部10は、押圧に基づくデータの変化が所定範囲内に収まっていると判定することができる。
 図4は、操作者の操作による押圧に基づくデータの時間変化の一例を説明するグラフである。図4において、横軸は時間の経過を表し、縦軸は押圧検出部40により検出された押圧に基づくデータを表している。図4は、操作者がタッチセンサ20に対する押圧を開始(操作開始)してから徐々に押圧を増加する操作を行い、それから所定期間(A点~B点の時間つまりt~tの間)、押圧をほぼ一定(P)に維持する操作を行っている様子を表している。
 ステップS12において押圧に基づくデータの変化が所定期間内に所定範囲内に収まっていないと判定したら、制御部10は、ステップS11に戻って処理を続行する。一方、ステップS12において押圧に基づくデータの変化が所定期間内に所定範囲内に収まっていると判定されたら、制御部10は、その所定期間に検出された押圧に基づくデータに基づいて、押圧に基づくデータに関する基準を設定する(ステップS13)。すなわち、本実施の形態において、制御部10は、押圧検出部40により検出される押圧に基づくデータの変化が所定期間内に所定範囲内であったら、所定期間に検出された押圧に基づくデータに基づいて、押圧に基づくデータに関する基準を設定するように制御する。図4に示す例においては、押圧に基づくデータの変化が所定期間内に所定範囲内に収まっていると判定されるため、tの時点で押圧に基づくデータに関する基準(P)が設定される。
 ここで、押圧に基づくデータに関する基準を設定する際は、制御部10は、例えば、所定期間(すなわちt~tの間)に検出された(ほぼ一定の)押圧に基づくデータの平均値を算出することができる。また、この押圧に基づくデータに関する基準の算出の際には、上述したような平均値のみに限定されず、種々の算出を行うことができる。例えば、押圧に基づくデータの変化が最初に所定範囲内に収まったと判定された瞬間における押圧に基づくデータ、すなわち図4に示すtの時点における押圧に基づくデータ(A点の押圧に基づくデータ)を、押圧に基づくデータに関する基準として設定することもできる。また、例えば、押圧に基づくデータの変化が所定期間内に所定範囲内に収まっていると判定された瞬間における押圧に基づくデータ、すなわち図4に示すtの時点における押圧に基づくデータ(B点の押圧に基づくデータ)を、押圧に基づくデータに関する基準として設定することもできる。
 ステップS13において押圧に基づくデータに関する基準が設定されたら、制御部10は、当該押圧に基づくデータに関する基準が設定された旨を操作者に報知するように、該当する機能部を制御する(ステップS14)。ステップS14においては、押圧に基づくデータの変化が所定範囲内に収まってから所定期間が経過したことにより、押圧に基づくデータに関する基準が設定されたことを操作者に知らせる。このために、制御部10は、例えばタッチセンサ20を振動させて操作者に触感を呈示するように触感呈示部40を制御することができる。また、触感の呈示に代えて、あるいは触感の呈示とともに、例えば表示部30における表示を変化させたり、または図示しない音声出力部から所定の音声を出力することにより、押圧に基づくデータに関する基準が設定されたことを操作者に知らせることもできる。図4においては、tの時点(B点)で押圧に基づくデータに関する基準が設定されるとともに、操作者は押圧に基づくデータに関する基準が設定された旨を報知される。
 ステップS14において押圧に基づくデータに関する基準が設定された旨が報知されたら、制御部10は、拡大・縮小モードに移行して、操作者の押圧の調節に応じて、表示部30に表示された画像を拡大または縮小するように制御する(ステップS15)。この拡大・縮小モードについては後述する。ステップS13において行った押圧に基づくデータに関する基準が設定された旨の報知は、操作者にとっては、これから拡大・縮小モードに移行する旨の報知と解釈することもできる。
 なお、ステップS15の拡大・縮小モードに移行する前段階においては、図3に示した処理とともに、従来のタッチセンサを備えた電子機器を操作者が操作した場合と同様の操作を行うことができるように処理を行うのが好適である。例えば、ステップS15の拡大・縮小モードに移行する前までは、例えばタッチセンサ20に対するスライド操作が検出されたら、制御部10は、当該スライド操作に追従するように、表示部30に表示される画像もスライドさせるように制御するのが好適である。このような処理は、従来技術によるタッチセンサを有する電子機器と同様の処理とすることができるため、詳細な説明は省略する。
 図5は、図3のステップS15として拡大・縮小モードにおいて行う処理を説明するフローチャートである。
 図5に示す拡大・縮小モードにおける処理が開始すると、まず、制御部10は、押圧に基づくデータと拡大縮小率との対応付けを行うように制御する(ステップS21)。ステップS21において、制御部10は、押圧検出部40において検出される押圧に基づくデータに応じて、表示部30に表示する画像をどの程度の拡大または縮小すべきかの比率を予め設定する。なお、ここでは、説明の簡略化のために、押圧に基づくデータと拡大縮小率との対応付けを、予め行う例について説明する。しかしながら、例えば、押圧検出部40において押圧が検出されると、制御部10が、当該検出された押圧に基づくデータと拡大縮小率との対応付けを、その都度算出するようにしてもよい。
 図6は、図5のステップS21に示した押圧に基づくデータと拡大縮小率との対応付けの一例を説明するグラフである。図6に示すように、ステップS21において、制御部10は、図3のステップS13において設定された押圧に基づくデータに関する基準(P)に基づいて、押圧に基づくデータ(P)と拡大縮小率(X)との対応付けを行うように制御する。図6において、横軸は押圧に基づくデータ(P)を表し、縦軸は拡大縮小率(X)を表す。横軸のPmaxは押圧検出部40で検出できる最大の押圧に基づくデータを表し、Pminは押圧検出部40で検出できる最小の押圧に基づくデータを表す。
 一般的に、押圧検出部40で検出できる最大または最小の押圧に基づくデータは、押圧検出部40の物理的特性や配置などの諸条件によって決定される。しかしながら、Pmaxは、例えば、押圧検出部40が実際に検出可能な最大の押圧よりも少し小さな押圧に基づくデータの値とし、同様に、Pminは、例えば、押圧検出部40が実際に検出可能な最小の押圧よりも少し大きな押圧に基づくデータの値とすることもできる。すなわち、PmaxおよびPminは、押圧検出部40が押圧に基づくデータを正確かつ確実に検出可能な範囲において設定される値とすることもできる。
 また、縦軸のXmaxは表示部30に表示された画像を拡大する際の最大の拡大率を表し、Xminは表示部30に表示された画像を縮小する際の最小の縮小率を表す。さらに、Xは拡大縮小率の基準であり、押圧に基づくデータに関する基準Pが設定された際に表示部30に表示されていた画像の拡大縮小率を表す。これらXmaxおよびXminは、表示部30に表示されている画像またはアプリケーションなどによって定められているものとすることができる。
 本実施の形態においては、押圧に基づくデータと拡大縮小率との対応付けの具体例として、PminからPまでの押圧に基づくデータの変化には、XminからXまでの拡大縮小率の線形的な変化を対応付ける。同様に、本実施の形態においては、PからPmaxまでの押圧に基づくデータの変化には、XからXmaxまでの拡大縮小率の線形的な変化を対応付ける。なお、図6においては、説明の簡略化のために、図3のステップS13において、ちょうどPmaxとPminとの中間周辺に、押圧に基づくデータに関する基準Pが設定された場合の例を示している。したがって、図3のステップS13において、押圧に基づくデータに関する基準PがPmaxとPminとの真ん中に設定されない場合には、図6の対応関係のグラフは一直線にはならず、Pの前後で傾きが変わるグラフになる。このような例については後述する。
 図5のステップS21において、図6に示したような押圧に基づくデータと拡大縮小率との対応付けの後、制御部10は、タッチセンサ20によって検出される接触の位置が変化したか否か、すなわち操作者によるスライド操作が検出されたか否かを判定する(ステップS22)。なお、この場合、タッチセンサ20が検出した接触の位置の変化が極微細な場合には、スライド操作が検出されたとは判定しないように、制御部10は、当該接触の位置が予め定めた所定の距離以上に変化した場合に、スライド操作が検出されたと判定するのが好適である。
 ステップS22においてスライド操作が検出されたら、制御部10は、その時点で表示部30に表示されていた画像の拡大縮小率を固定値として設定して(ステップS23)、拡大・縮小モードを終了する。すなわち、図5に示す拡大・縮小モードにおいて、タッチセンサ20上で操作者によるスライド操作が検出されると、その時点で表示部30に表示されていた画像は、次に再び拡大・縮小モードに移行するまで、拡大も縮小もしなくなるようにする。
 また、ステップS22においてスライド操作が検出されない場合、制御部10は、押圧検出部40により検出される押圧に基づくデータが変化したか否かを判定する(ステップS24)。ステップS24において押圧に基づくデータが変化したと判定されないなら、制御部10は、ステップS22に戻って処理を続行する。一方、ステップS24において押圧に基づくデータが変化したと判定されたら、制御部10は、押圧に基づくデータに関する基準Pと押圧検出部40により検出された押圧に基づくデータPとの差に応じて、表示部30に表示された画像を拡大または縮小するように制御する(ステップS25)。例えば、押圧検出部40により検出された押圧に基づくデータPが、押圧に基づくデータに関する基準Pよりも少し小さな場合、PとPとの差は小さいため、制御部10は表示部30に表示された画像を少し縮小するように制御する。また、例えば、押圧検出部40により検出された押圧に基づくデータPが、押圧に基づくデータに関する基準Pよりもかなり大きな場合、PとPとの差は大きいため、制御部10は表示部30に表示された画像をかなり拡大するように制御する。
 このように、本実施の形態において、制御部10は、押圧に基づくデータに関する基準が設定されると、その設定された基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する。ここで、「所定の処理」とは、本例においては、表示部30に表示された画像を拡大または縮小する処理に相当するが、その他、電子機器1で実行するアプリケーションに応じて各種の処理とすることができる。さらに、「パラメータの値」とは、本例においては、画像を拡大または縮小する際の拡大縮小率の値に相当するが、これについても、電子機器1で実行するアプリケーションに応じて各種のパラメータの値とすることができる。ステップS25の処理の後は、制御部10は、ステップS22に戻って処理を続行する。
 図7は、図4と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図7においては、図4でも説明したB点の後、すなわち押圧に基づくデータに関する基準が設定された後で、C点まで操作者の操作による押圧に基づくデータの増加が検出されている。このような場合、時刻t~tの間において、図7に示すように、押圧検出部40により検出される押圧に基づくデータがPを基準として増加するにつれて、表示部30に表示される画像は拡大される。なお、時刻tの後、すなわちC点の後において、押圧検出部40により検出される押圧に基づくデータはほぼ一定値Pに維持されているが、この時にスライド操作が検出された場合は、その時点の拡大縮小率に固定される。すなわち、この場合、表示部30に表示された画像は拡大も縮小もしなくなる。その後、タッチセンサ20に対する操作者の操作による押圧が再び所定時間維持されれば、新たな押圧に基づくデータに関する基準が設定され、その時に表示部30に表示されている画像を基準として再び拡大または縮小することができる。
 図8も、図4と同様に、操作者の操作による押圧に基づくデータの時間変化の他の例を示すグラフである。図8においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、C点まで操作者の操作による押圧に基づくデータの減少が検出されている。このような場合、時刻t~tの間において、図8に示すように、押圧検出部40により検出される押圧に基づくデータがPを基準として減少するにつれて、表示部30に表示される画像は縮小される。
 図9も、図4と同様に、操作者の操作による押圧に基づくデータの時間変化の他の例を示すグラフである。図9においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、C点まで操作者の操作による押圧に基づくデータの減少が検出されている。その後、押圧に基づくデータは減少から増加に転じ、E点を経てF点まで増大して、さらにその後、押圧に基づくデータは増加から減少に転じ、H点まで減少している。
 このような場合、図9に示すように、時刻t~tの間においては表示部30に表示される画像は縮小され、時刻t~tの間においては表示部30に表示される画像は拡大され、時刻t~tの間においては表示部30に表示される画像は再び縮小される。なお、時刻tにおいては、押圧に基づくデータに関する基準が設定された時点の拡大縮小率に戻っている。すなわち、点Eにおいては、押圧に基づくデータに関する基準が設定された時点と同じ拡大縮小率の画像が表示される。また、時刻t~tの間および時刻t~tの間においては、押圧に基づくデータは変化しているが、押圧検出部40で検出できる最大の押圧に基づくデータPmaxを超えていたり、または最小の押圧に基づくデータPminを下回っているため、拡大も縮小も行われない。
 図10は、図9に示したように押圧に基づくデータが時間変化した際における、表示部30に表示される画像の拡大縮小率の時間変化を示すグラフである。図10においては、横軸は時間の経過を表しているが、縦軸は表示部30に表示される画像の拡大縮小率を表していることに留意すべきである。
 図9と図10とを対比させると、操作開始時点から時刻tまでの間すなわち押圧に基づくデータに関する基準が設定される前までは、拡大・縮小モードに移行していないため、押圧に基づくデータが変化しているものの拡大縮小率は基準から変化しないことがわかる。また、上述したように、時刻t~tの間および時刻t~tの間においては、押圧に基づくデータは変化しているが、拡大縮小率は変化しないことがわかる。
 図11は、本実施の形態による電子機器1に対して操作者が操作を行った場合における表示部30の表示の具体例を示す図である。
 図11(A)に示すように、押圧に基づくデータに関する基準が設定される前、すなわち拡大・縮小モードに移行する前段階においては、操作者は、タッチセンサ20に対してスライド操作を行うことにより、表示部30に表示される日本地図を任意にスライドさせることができる。そして、タッチセンサ20の任意の位置において操作者が接触する位置および押圧を所定時間維持することにより、押圧に基づくデータに関する基準が設定され、電子機器1は拡大・縮小モードに移行する。
 その後、操作者がタッチセンサ20を操作する押圧を増加させると、図11(A)に示す状態から図11(B)に示すように、操作者が操作している位置を中心として、表示部30に表示される日本地図の画像が拡大される。同様に、操作者がタッチセンサ20を操作する押圧をさらに増加させると、図11(B)に示す状態から図11(C)に示すように、操作者が操作している位置を中心として、表示部30に表示される日本地図の画像がさらに拡大される。ここで、本実施の形態による電子機器1においては、タッチセンサ20の任意の位置において操作を行うことにより、拡大・縮小モードに移行することができる。したがって、拡大または縮小したい位置を予め設定したり、または予め表示部30の中央にスライドして移動させておいたり、というような追加の手順は不要である。
 また、拡大・縮小モードの継続中は、図11(C)に示す状態で、操作者がタッチセンサ20を操作する押圧を減少させると、図11(B)に示すように、操作者が操作している位置を中心として、表示部30に表示される日本地図の画像が縮小される。さらに、図11(B)に示す状態で、操作者がタッチセンサ20を操作する押圧をさらに減少させると、図11(A)に示すように、操作者が操作している位置を中心として、表示部30に表示される日本地図の画像がさらに縮小される。
 一方、拡大・縮小モードの継続中に、図11(C)に示す状態で、タッチセンサ20に対する操作者のスライド操作が検出されると、図11(D)に示すように、表示部30に表示された画像はスライドされずに、当該画像の拡大縮小率が固定される。したがって、図11(D)に示すように操作者がタッチセンサ20に対してスライド操作を行った後では、操作者がタッチセンサ20から指を離すなどして押圧が減少しても、表示部30の画像は縮小されない。
 このように、本実施の形態によれば、電子機器の筐体が小型であれば、片手で電子機器を保持したまま、同じ手の指先を用いて、従来のピンチ操作と同様の拡大または縮小などの操作を行うことができる。また、本実施の形態によれば、電子機器の大きさによらず、タッチセンサ20に対して操作を行う際には、指1本のみで、すなわち一箇所を押圧するのみで、操作を行うことができる。さらに、本実施の形態によれば、タッチセンサ20の任意の位置において操作を開始することができるため、少ない手順でスムーズに操作を行うことができる。また、本実施の形態によれば、拡大または縮小などの特定の処理を行うための専用のオブジェクトを表示部に表示する必要もないため、表示部の表示領域を有効に活用することができる。
(第2実施の形態)
 次に、本発明の第2実施の形態に係る電子機器について説明する。
 第2実施の形態は、上述した第1実施の形態において、制御部10による処理を変更するものである。すなわち、第2実施の形態は、第1実施の形態に係る電子機器1において、図5で説明したステップS25の処理を変更するものである。具体的には、第2実施の形態に係る電子機器2は、拡大・縮小モードにおいて、押圧に基づくデータに関する基準Pと押圧検出部40により検出された押圧に基づくデータPとの差に応じて、表示部30に表示された画像を拡大または縮小する速度を変更する。
 第2実施の形態に係る電子機器2は、上記の点以外においては、上述した第1実施の形態で説明した電子機器1と基本的に同じ機器構成および制御により実現することができる。このため、以下、第1実施の形態において説明したのと同じ内容になる説明は、適宜省略する。
 図12は、第2実施の形態に係る電子機器2の処理を説明するフローチャートである。なお、図12は、第1実施の形態で説明した図5と同様に、押圧に基づくデータに関する基準が設定された後、図3のステップS15に示した拡大・縮小モードにおいて行う処理を説明するフローチャートである。上述した第1実施の形態では、ステップS21において「押圧に基づくデータと拡大縮小率との対応付け」を行った。第2実施の形態では、第1実施の形態と異なり、ステップS21において「押圧に基づくデータと拡大縮小速度との対応付け」を行う。第2実施の形態において、制御部10は、ステップS21で押圧に基づくデータ(P)と拡大縮小速度との対応付けの後、ステップS22でスライド操作が検出されずに、ステップS24で押圧検出部40が検出する押圧に基づくデータが変化した場合、ステップS31の処理を行う。
 上述した第1実施の形態においては、制御部10は、押圧に基づくデータに関する基準Pと押圧検出部40により検出された押圧に基づくデータPとの差に応じて、表示部30に表示された画像を拡大または縮小するように制御する(ステップS25)。しかしながら、第2実施の形態においては、制御部10は、押圧に基づくデータに関する基準Pと押圧検出部40により検出された押圧に基づくデータPとの差に応じて、表示部30に表示された画像を拡大または縮小する速度を変更するように制御する(ステップS31)。例えば、押圧検出部40により検出された押圧に基づくデータPが、押圧に基づくデータに関する基準Pよりも少し小さな場合、PとPとの差は小さいため、制御部10は表示部30に表示された画像を比較的ゆっくりとした速度で縮小するように制御する。また、例えば、押圧検出部40により検出された押圧に基づくデータPが、押圧に基づくデータに関する基準Pよりもかなり大きな場合、PとPとの差は大きいため、制御部10は表示部30に表示された画像を比較的速い速度で拡大するように制御する。第1実施の形態においては、拡大・縮小モードにおいて押圧が維持された場合には、拡大も縮小も行わなかった。一方、第2実施の形態においては、拡大・縮小モードにおいて、押圧に基づくデータに関する基準よりも大きいまたは小さい押圧に基づくデータが維持された場合であっても、押圧に基づくデータに関する基準Pと押圧検出部40により検出された押圧に基づくデータPとの差に応じて、拡大または縮小を行う。
 このように、本実施の形態において、制御部10は、押圧に基づくデータに関する基準が設定されると、その設定された基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値が変化する速度を変更するように制御する。このような制御を行うため、本実施の形態では、上述したように、ステップS21において、押圧検出部40により検出される押圧に基づくデータと、表示部30に表示される画像を拡大または縮小する速度との対応付けを行う。例えば、押圧に基づくデータに関する基準Pよりも少し大きな押圧に基づくデータPには比較的ゆっくりと拡大する速度を対応付け、押圧に基づくデータに関する基準Pよりもかなり小さな押圧に基づくデータPには比較的速く縮小する速度を対応付ける。
 図13は、図7等と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図13においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータが増加することによりC点に至っている場合と、操作者の操作による押圧に基づくデータが一層増加することによりD点に至っている場合とを同時に示してある。本実施の形態においては、押圧に基づくデータに関する基準Pが設定されたら、当該押圧に基づくデータに関する基準Pに基づいて、当該基準の上下に、押圧に基づくデータの段階をいくつか設定する。
 なお、図13においては、押圧に基づくデータに関する基準Pよりも高く設定された押圧に基づくデータの段階のみを示している。また、図13においては、一例として、押圧に基づくデータに関する基準Pよりも大きな押圧に基づくデータについて、1Nごとに設定した押圧に基づくデータの段階を、2つのみ示してある。しかしながら、押圧に基づくデータの段階を設定する際には、当該押圧に基づくデータの段階同士の間隔は1Nごとにすることは必須ではなく、より密な間隔で設定することも、より疎な間隔で設定することもできる。また、このような段階を2つ設定することも必須ではなく、さらに多くの段階を設定してもよいし、あるいは非常に多くの段階が押圧に基づくデータの変化にアナログ的に対応するようにしてもよい。さらに、このような押圧に基づくデータの段階は、予め設定しておくことは必須ではなく、押圧が検出されるたびに、上述したような段階を算出してもよい。
 図13に示すように、本例においては、押圧に基づくデータに関する基準PからP+1Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を拡大する速度として、速度αを対応させる。また、図13に示すように、本例においては、P+1NからP+2Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を拡大する速度として、速度βを対応させる。ここで、速度βは、速度αよりも、表示部30に表示される画像を速く拡大する速度とすることができる。すなわち、この場合、操作者がタッチセンサ20を操作する際に、より大きな押圧を維持した方が、より速い速度で、表示部30に表示される画像が拡大される。
 図14は、図7等と同様に、操作者の操作による押圧に基づくデータの時間変化の他の例を示すグラフである。図14においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータが減少することによりC点に至っている場合と、操作者の操作による押圧に基づくデータが一層減少することによりD点に至っている場合とを同時に示してある。
 図14においては、押圧に基づくデータに関する基準Pよりも低く設定された押圧に基づくデータの段階のみを示している。また、図14においては、一例として、押圧に基づくデータに関する基準Pよりも小さな押圧に基づくデータについて、1Nごとに設定した押圧に基づくデータの段階を、2つのみ示してある。しかしながら、押圧に基づくデータの段階を設定する際には、当該押圧に基づくデータの段階同士の間隔は1Nごとにすることは必須ではなく、また、このような段階を2つ設定することも必須ではない。さらに、このような押圧に基づくデータの段階は、予め設定しておくことも必須ではない。
 図14に示すように、本例においては、押圧に基づくデータに関する基準PからP-1Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を縮小する速度として、速度γを対応させる。また、図14に示すように、本例においては、P-1NからP-2Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を拡大する速度として、速度δを対応させる。ここで、速度δは、速度γよりも、表示部30に表示される画像を速く縮小する速度とすることができる。すなわち、この場合、操作者がタッチセンサ20を操作する際に、より小さな押圧を維持した方が、より速い速度で、表示部30に表示される画像が縮小される。
 図15は、操作者の操作による押圧に基づくデータの時間変化のさらに他の例を示すグラフである。図15においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、押圧に基づくデータは一旦減少した後に増大に転じ、その後増大から減少に転じている。
 図15においては、押圧に基づくデータに関する基準Pよりも低く設定された押圧に基づくデータの段階、および押圧に基づくデータに関する基準Pよりも高く設定された押圧に基づくデータの段階の双方を示している。なお、図15に示した例においては、押圧に基づくデータに関する基準Pよりも大きな押圧に基づくデータおよび小さな押圧に基づくデータについて、1Nごとに設定した押圧に基づくデータの段階を、2つずつ示してある。また、図15においては、図13と同様に、PからP+1Nまでの押圧に基づくデータの段階には速度αを対応させ、P+1NからP+2Nまでの押圧に基づくデータの段階には速度βを対応させている。さらに、図15においては、図14と同様に、PからP-1Nまでの押圧に基づくデータの段階には速度γを対応させ、P-1NからP-2Nまでの押圧に基づくデータの段階には速度δを対応させている。
 図16は、図15に示したように押圧に基づくデータが時間変化した際における、表示部30に表示される画像の拡大縮小率の時間変化を示すグラフである。図16においては、横軸は時間の経過を表しているが、縦軸は表示部30に表示される画像の拡大縮小率を表していることに留意すべきである。
 図15と図16とを対比させると、操作開始時点から時刻tまでの間すなわち押圧に基づくデータに関する基準が設定される前までは、拡大・縮小モードに移行していないため、押圧に基づくデータが変化しているものの拡大縮小率は基準から変化しないことがわかる。図15に示すように、時刻t~tの間は押圧に基づくデータがPからP-1Nまでの間に維持されているため、図16に示すように、当該区間においては、表示部30に表示される画像は速度γで縮小される。また、図15に示すように、時刻t~tの間は押圧に基づくデータがPからP+1Nまでの間に維持されているため、図16に示すように、当該区間においては、表示部30に表示される画像は速度αで拡大される。また、図15に示すように、時刻t~tの間は押圧に基づくデータがP+1NからP+2Nまでの間に維持されているため、図16に示すように、当該区間においては、表示部30に表示される画像は速度βで拡大される。さらに、図15に示すように、時刻t~tの間は押圧に基づくデータがPからP+1Nまでの間に維持されているため、図16に示すように、当該区間においては、表示部30に表示される画像は速度αで拡大される。
 このように、本実施の形態によれば、第1実施の形態で説明した電子機器1と同様に、操作者が操作を行う箇所を低減させるとともに、操作者による操作の手順も低減させることができる。また、本実施の形態によれば、操作者が大きな押圧で操作を行うと、そのぶん大きな速度で表示部30に表示される画像が拡大されるため、操作者が大きな押圧で操作を行うのは短い時間で済むため、操作者が押圧力を加える負担を減らすことができる。
(第3実施の形態)
 次に、本発明の第3実施の形態に係る電子機器について説明する。
 第3実施の形態は、上述した第1実施の形態において、制御部10による処理を変更するものである。すなわち、第3実施の形態は、第1実施の形態に係る電子機器1において、図5で説明したステップS21の処理の態様を変更するものである。具体的には、第3実施の形態に係る電子機器3は、押圧に基づくデータに関する基準が設定された後、図6で説明したような押圧に基づくデータと拡大縮小率との対応付けの態様を変更する。
 第3実施の形態に係る電子機器3は、上記の点以外においては、上述した第1実施の形態で説明した電子機器1と基本的に同じ機器構成および制御により実現することができる。このため、以下、第1実施の形態において説明したのと同じ内容になる説明は、適宜省略する。
 第1実施の形態においては、図6を用いて説明したように、押圧に基づくデータと拡大縮小率との対応付けとして、PminからPまでの押圧に基づくデータの変化には、XminからXまでの拡大縮小率の線形的な変化を対応付けた。同様に、第1実施の形態においては、PからPmaxまでの押圧に基づくデータの変化には、XからXmaxまでの拡大縮小率の線形的な変化を対応付けた。この際、図6においては、説明の簡略化のために、ちょうどPmaxとPminとの中間周辺に、押圧に基づくデータに関する基準Pが設定された場合の例を示した。しかしながら、実際に押圧に基づくデータに関する基準Pを設定する際は、当該PがPmaxとPminとの真ん中に設定されない場合も充分に想定される。この場合、すなわち押圧に基づくデータに関する基準PがPmaxとPminとの真ん中に設定されない場合には、図6の対応関係のグラフは一直線にはならず、Pの前後で傾きが変わるグラフになる。
 第1実施の形態で説明したように、押圧に基づくデータに関する基準PがPminとPmaxとの真ん中に設定された場合、押圧に基づくデータと拡大縮小率との対応付けの関係は、図17(A)に示すように、PminからPmaxにわたって一直線のグラフとなる。なお、図17においては、説明の便宜のために、縦軸および横軸を、図6とは異なる態様で設定している。
 ここで、例えば、押圧に基づくデータに関する基準PがPminとPmaxとの真ん中よりも大きい位置に設定された場合、押圧に基づくデータと拡大縮小率との対応付けの関係は、図17(B)に示すように、Pの時点において傾きが変化するグラフとなる。また、例えば、押圧に基づくデータに関する基準PがPminとPmaxとの真ん中よりも小さな位置に設定された場合、押圧に基づくデータと拡大縮小率との対応付けの関係は、図17(C)に示すように、この場合もPの時点において傾きが変化するグラフとなる。
 図17(B)および(C)に示したように、押圧に基づくデータと拡大縮小率との対応付けの関係を示すグラフの傾きがPの時点で変化する場合、操作者が押圧に基づくデータに関する基準Pをまたいで押圧を変化させると、拡大または縮小の追従性に違和感を与えるおそれがある。
 例えば、図17(B)においては、操作者が押圧を徐々に増加させている最中に、押圧に基づくデータがPを超えると、グラフの傾きが大きく(急峻に)なる。したがって、図17(B)に示す押圧に基づくデータと拡大縮小率との対応付けにおいては、操作者が押圧に基づくデータを一定の割合で徐々に増加させても、押圧に基づくデータがPを超えると突然拡大率が増加する割合が大きくなり、表示部30に表示される画像が突然拡大される。逆に、図17(B)に示す押圧に基づくデータと拡大縮小率との対応付けにおいては、操作者が押圧を一定の割合で徐々に減少させても、押圧に基づくデータがPを下回ると突然拡大率が減少する割合が小さくなり、表示部30に表示される画像があまり縮小されなくなる。
 また、例えば、図17(C)においては、操作者が押圧を徐々に増加させている最中に、押圧に基づくデータがPを超えると、グラフの傾きが小さく(緩やかに)なる。したがって、図17(C)に示す押圧に基づくデータと拡大縮小率との対応付けにおいては、操作者が押圧に基づくデータを一定の割合で徐々に増加させても、押圧に基づくデータがPを超えると突然拡大率が増加する割合が小さくなり、表示部30に表示される画像があまり拡大されなくなる。逆に、図17(C)に示す押圧に基づくデータと拡大縮小率との対応付けにおいては、操作者が押圧を一定の割合で徐々に減少させても、押圧に基づくデータがPを下回ると突然拡大率が減少する割合が大きくなり、表示部30に表示される画像が突然縮小される。
 したがって、本実施の形態においては、このような不都合に対処すべく、図5のステップS21で説明した押圧に基づくデータと拡大縮小率との対応付けを行う際に、押圧に基づくデータに関する基準Pの前後で、押圧に基づくデータに対する拡大縮小率の変化量が大きく変わらないように補正する。具体的には、例えば図17(B)に示したような対応付けがなされようとしている場合、制御部10は、これらの対応付けを補正して、例えば図18(A)に示すような、押圧に基づくデータと拡大縮小率との対応付けを行う。
 図18(A)に示すような押圧に基づくデータと拡大縮小率との対応付けを行えば、押圧に基づくデータに関する基準Pは、Pmin(実際には拡大縮小率が最小Xminになる時の押圧に基づくデータP)とPmaxとの真ん中に設定される。したがって、押圧に基づくデータと拡大縮小率との対応付けの関係は、Pの前後にわたって傾きの変わらないグラフとなり、操作者が押圧に基づくデータに関する基準Pをまたいで押圧を変化させても、拡大または縮小の追従性に違和感を与えない。
 また、例えば図17(C)に示したような対応付けがなされようとしている場合、制御部10は、これらの対応付けを補正して、例えば図18(B)に示すような、押圧に基づくデータと拡大縮小率との対応付けを行う。
 図18(B)に示すような押圧に基づくデータと拡大縮小率との対応付けを行えば、押圧に基づくデータに関する基準Pは、PminとPmax(実際には拡大縮小率が最大Xmaxになる時の押圧に基づくデータP)との真ん中に設定される。したがって、押圧に基づくデータと拡大縮小率との対応付けの関係は、Pの前後にわたって傾きの変わらないグラフとなり、操作者が押圧に基づくデータに関する基準Pをまたいで押圧を変化させても、拡大または縮小の追従性に違和感を与えない。
 このように、本実施の形態においても、制御部10は、第1実施の形態と同様に、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する。ただし、本実施の形態において、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加した場合と、押圧検出部40により検出される押圧に基づくデータが減少した場合とで、前記パラメータの値を増減する量が等しくなるように制御する。ここで、「パラメータの値を増減する量」とは、上述した例においては、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じた、押圧に基づくデータに対する拡大縮小率の変化量に相当する。
 なお、本実施の形態において、押圧に基づくデータと拡大縮小率との対応付けを行う際に、押圧に基づくデータに関する基準Pの前後で、押圧に基づくデータに対する拡大縮小率の変化量が大きく変わらないように補正する態様は、図18で説明したものに限定されず、種々の態様が想定できる。
 例えば、図18(A)のように補正する代わりに、図19(A)のように補正した対応付けを行うこともできる。図19(A)に示すような押圧に基づくデータと拡大縮小率との対応付けによれば、押圧に基づくデータに関する基準Pの前後で、押圧に基づくデータに対する拡大縮小率の変化量が大きく変わらないようにしつつも、押圧に基づくデータが本来のPminになるまで拡大縮小率を変化させることができる。さらに、押圧に基づくデータが本来のPminからPまでの区間も曲線的に変化させることで、当該区間において、操作者が押圧に基づくデータを変化させても、拡大または縮小の追従性に違和感を与えない。
 また、例えば、図18(B)のように補正する代わりに、図19(B)のように補正した対応付けを行うこともできる。図19(B)に示すような押圧に基づくデータと拡大縮小率との対応付けによれば、押圧に基づくデータに関する基準Pの前後で、押圧に基づくデータに対する拡大縮小率の変化量が大きく変わらないようにしつつも、押圧に基づくデータが本来のPmaxになるまで拡大縮小率を変化させることができる。さらに、押圧に基づくデータがPから本来のPmaxまでの区間も曲線的に変化させることで、当該区間において、操作者が押圧に基づくデータを変化させても、拡大または縮小の追従性に違和感を与えない。
 このように、本実施の形態によれば、操作者が押圧に基づくデータに関する基準Pをまたいで押圧を変化させても、所定の処理に関連付けられたパラメータの値を増減する量は大きく変化せずにほぼ等しくなる。したがって、本実施の形態によれば、操作者が押圧に基づくデータに関する基準Pをまたいで押圧を変化させた場合に、表示部30に表示される画像が拡大または縮小される際の追従性に違和感を与えることはなくなる。
(第4実施の形態)
 次に、本発明の第4実施の形態に係る電子機器について説明する。
 第4実施の形態も、上述した第1実施の形態において、制御部10による処理を変更するものである。すなわち、第4実施の形態は、第1実施の形態に係る電子機器1において、図5で説明したステップS25の後の処理を変更するものである。すなわち、第4実施の形態に係る電子機器4は、押圧に基づくデータに関する基準が設定され、押圧に基づくデータに応じて画像の拡大または縮小の処理を行っている最中に、所定の操作が行われたと判定された場合、図6で説明したような押圧に基づくデータと拡大縮小率との対応付けの態様を変更する。
 第4実施の形態に係る電子機器4は、上記の点以外においては、上述した第1実施の形態で説明した電子機器1と基本的に同じ機器構成および制御により実現することができる。このため、以下、第1実施の形態において説明したのと同じ内容になる説明は、適宜省略する。
 第4実施の形態は、第1実施の形態に係る電子機器1により表示部30に表示された画像の拡大または縮小の処理を行っている最中に、操作者が画像を拡大または縮小し過ぎてしまった際に、所望の拡大縮小率に容易に修正するための措置を提供する。
 図20は、第4実施の形態に係る電子機器4の処理を説明するフローチャートである。なお、図20は、第1実施の形態で説明した図5と同様に、押圧に基づくデータに関する基準が設定された後、図3のステップS15に示した拡大・縮小モードにおいて行う処理を説明するフローチャートである。
 本実施の形態において、制御部10は、ステップS25において、押圧に基づくデータに関する基準Pと押圧検出部40により検出された押圧に基づくデータPとの差に応じて、表示部30に表示された画像を拡大または縮小するように制御するまでの処理は、第1実施の形態と同様に行う。
 第4実施の形態においては、ステップS25の後、制御部10は、押圧検出部40により検出される押圧に基づくデータPが増加して、押圧検出部40で検出できる最大の押圧に基づくデータPmaxを超えてから減少に転じたか否かを判定する(ステップS41)。ステップS41において押圧に基づくデータPが最大の押圧に基づくデータPmaxを超えてから減少に転じたと判定されたら、制御部10は、押圧に基づくデータと拡大縮小率との対応付けを変更する(ステップS42)。
 また、ステップS41においては、制御部10は、押圧検出部40により検出される押圧に基づくデータPが減少して、押圧検出部40で検出できる最小の押圧に基づくデータPminを下回ってから増加に転じたと判定された場合も、ステップS42の処理を行う。すなわち、ステップS41において押圧に基づくデータPが最小の押圧に基づくデータPminを下回ってから増加に転じたと判定されても、制御部10は、押圧に基づくデータと拡大縮小率との対応付けを変更する(ステップS42)。
 ステップS42において、押圧に基づくデータと拡大縮小率との対応付けが変更されたら、制御部10は、ステップS22に戻って処理を続行する。なお、ステップS41において上述したような所定の操作が行われことが判定されない場合、制御部10は、ステップS42の処理を行わずにステップS22に戻って処理を続行する。
 次に、本実施の形態のステップS42において行う、押圧に基づくデータと拡大縮小率との対応付けの変更について説明する。
 図21は、第1実施の形態で説明した図7等と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図21においては、A点からB点までの間、操作者の操作による押圧に基づくデータがほぼ一定に維持されることにより、図22(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図20のステップS21)。ここまでの処理は、上述した第1実施の形態において図6等を用いて説明したのと同様である。
 図21の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点でPmaxを超えてD点まで増加し、D点において減少に転じている(ステップS41におけるYes)。したがって、この場合、押圧に基づくデータと拡大縮小率との対応付けは、例えば図22(B)に示すような態様に変更される(ステップS42)。図22(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図22(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図21におけるE点からF点まで減少(図22(B)におけるPmaxからPminまでの減少に相当)した際に、押圧に基づくデータの減少に対する縮小率の変化も小さく(緩やかに)なる。したがって、操作者が押圧に基づくデータをC点まで増加させて画像を拡大し過ぎてしまい、押圧に基づくデータを減少させることにより画像を縮小させる際に、操作者はきめ細かく画像を縮小させることができ、所望の拡大縮小率まで容易に到達させることができる。
 図23は、第1実施の形態で説明した図7等と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図23においても、A点からB点までの間、操作者の操作による押圧に基づくデータがほぼ一定に維持されることにより、図22(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図20のステップS21)。
 図23の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点でPminを下回ってD点まで減少し、D点において増加に転じている(ステップS41におけるYes)。したがって、この場合、押圧に基づくデータと拡大縮小率との対応付けは、例えば図22(C)に示すような態様に変更される(ステップS42)。図22(C)に示す押圧に基づくデータと拡大縮小率との対応付けも、図22(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図23におけるE点からF点まで増加(図22(C)におけるPminからPmaxまでの増加に相当)した際に、押圧に基づくデータの増加に対する縮小率の変化も小さく(緩やかに)なる。したがって、操作者が押圧に基づくデータをC点まで減少させて画像を縮小し過ぎてしまい、押圧に基づくデータを増加させることにより画像を拡大させる際に、操作者はきめ細かく画像を拡大させることができ、所望の拡大縮小率まで容易に到達させることができる。
 このように、本実施の形態において、制御部10は、第1実施の形態と同様に、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する。ただし、本実施の形態において、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加および減少のうち一方から他方へと転じる前後において、前記パラメータの値を増減する量が異なるように制御する。ここで、「パラメータの値を増減する量」とは、上述した例においては、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じた、押圧に基づくデータに対する拡大縮小率の変化量に相当する。なお、上述したように、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加から減少へと転じた後は、それ以前よりも前記パラメータの値を減少する量が少なくなるように制御するのが好適である。同様に、制御部10は、押圧検出部40により検出される押圧に基づくデータが減少から増加へと転じた後は、それ以前よりも前記パラメータの値を増加する量が少なくなるように制御するのが好適である。また、本実施の形態においては、押圧に基づくデータの増減に対する拡大縮小率の変化を小さく(緩やかに)するため、例えば図20のステップS22においてスライド操作が検出された際などに、変更前の押圧に基づくデータと拡大縮小率との対応付けに戻すようにするのが好適である。
 次に、第4実施の形態の他の例について説明する。
 図24は、第4実施の形態の他の例に係る電子機器4の処理を説明するフローチャートである。なお、図24は、図20と同様に、押圧に基づくデータに関する基準が設定された後、図3のステップS15として示した拡大・縮小モードにおいて行う処理を説明するフローチャートである。
 上述した例においては、図20のステップS41で説明したように、操作者によって所定の操作が行われたと判定された場合、押圧に基づくデータと拡大縮小率との対応付けの態様を変更した。また、上述した例においては、所定の操作が行われたと判定される場合とは、押圧に基づくデータPが最大の押圧に基づくデータPmaxを超えてから減少に転じた場合、および押圧に基づくデータPが最小の押圧に基づくデータPminを下回ってから増加に転じた場合とした。以下説明する例においては、所定の操作が行われたと判定された場合、押圧に基づくデータと拡大縮小率との対応付けの態様を変更する点については上述した例と同じであるが、当該所定の操作の内容を変更する。すなわち、本例においては、図24のステップS51に示すように、押圧に基づくデータPが増加から減少に転じた場合、および押圧に基づくデータPが減少から増加に転じた場合に、押圧に基づくデータと拡大縮小率との対応付けを変更する。要するに、本例においては、押圧に基づくデータPが増加から減少に転じた場合、Pmaxを超えていなくとも、また押圧に基づくデータPが減少から増加に転じた場合、Pminを下回っていなくとも、上述した例のように押圧に基づくデータと拡大縮小率との対応付けを変更する。
 次に、本例において行う、押圧に基づくデータと拡大縮小率との対応付けの変更について説明する。
 図25は、図21と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図25においては、A点からB点までの間、操作者の操作による押圧に基づくデータがほぼ一定に維持されることにより、図26(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図24のステップS21)。ここまでの処理は、上述した第1実施の形態において図6等を用いて説明したのと同様である。
 図25の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点まで増加し、C点において減少に転じている(ステップS51におけるYes)。したがって、この場合、押圧に基づくデータがPmaxを超えなくとも、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図26(B)に示すように、押圧に基づくデータがPとなるポイントを基準とした態様に変更する(ステップS42)。図26(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図26(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図25におけるC点からD点まで減少(図26(B)におけるPからPminまでの減少に相当)した際に、押圧に基づくデータの減少に対する縮小率の変化も小さく(緩やかに)なる。したがって、本例においても、操作者が押圧に基づくデータをC点まで増加させて画像を拡大し過ぎてしまい、押圧に基づくデータを減少させることにより画像を縮小させる際に、操作者はきめ細かく画像を縮小させることができ、所望の拡大縮小率まで容易に到達させることができる。
 図27は、図25と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図27においては、A点からB点までの間、操作者の操作による押圧に基づくデータがほぼ一定に維持されることにより、図28(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図24のステップS21)。ここまでの処理は、上述した第1実施の形態において図6等を用いて説明したのと同様である。
 図27の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点まで減少し、C点において増加に転じている(ステップS51におけるYes)。したがって、この場合、押圧に基づくデータがPminを下回っていなくとも、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図28(B)に示すように、押圧に基づくデータがPとなるポイントを基準とした態様に変更する(ステップS42)。図28(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図28(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図27におけるC点からD点まで増加(図28(B)におけるPからPmaxまでの増加に相当)した際に、押圧に基づくデータの増加に対する拡大率の変化も小さく(緩やかに)なる。したがって、本例においても、操作者が押圧に基づくデータをC点まで減少させて画像を縮小し過ぎてしまい、押圧に基づくデータを増加させることにより画像を拡大させる際に、操作者はきめ細かく画像を拡大させることができ、所望の拡大縮小率まで容易に到達させることができる。
 上述した例による処理は、押圧に基づくデータが増加および減少するたびに、連続的に行うようにしてもよい。以下、このような例について説明する。
 図29は、図25および図27と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図29においても、A点からB点までの間、操作者の操作による押圧に基づくデータがほぼ一定に維持されることにより、図30(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図20のステップS21)。
 図29の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点まで増加し、C点において減少に転じている(ステップS51におけるYes)。したがって、この場合、押圧に基づくデータがPmaxを超えなくとも、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図30(B)に示すように、押圧に基づくデータがPとなるポイントを基準とした態様に変更する(ステップS42)。図30(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図30(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図29におけるC点からD点の手前まで減少(図30(B)におけるPからPminまでの減少に相当)した際に、押圧に基づくデータの減少に対する縮小率の変化も小さく(緩やかに)なる。
 さらに、図29の例においては、C点において押圧に基づくデータと拡大縮小率との対応付けが変更された後で、D点の手前で押圧に基づくデータがPminを下回るまで減少し、D点において操作者の操作による押圧に基づくデータは増加に転じている(ステップS51におけるYes)。したがって、この場合、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図30(C)に示すように、押圧に基づくデータがP2となるポイントを基準とした態様に変更する(ステップS42)。なお、押圧検出部40がPminを下回る押圧に基づくデータを検出できない場合、ステップS42において、制御部は、例えば押圧に基づくデータがPminとなるポイントを基準とした態様に変更してもよい。図30(C)に示す押圧に基づくデータと拡大縮小率との対応付けは、図30(B)に示した態様よりも、対応関係を表すグラフの傾きをさらに小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図29におけるD点の後で増加した際に、押圧に基づくデータの増加に対する拡大率の変化はさらに小さく(緩やかに)なる。
 したがって、本例においても、操作者が押圧に基づくデータをB点からC点まで増加させて画像を拡大し過ぎてしまい、押圧に基づくデータを減少させることにより画像を縮小させる際に、操作者はきめ細かく画像を縮小させることができる。さらに、本例においては、操作者が押圧に基づくデータをC点からD点まで減少させて画像を縮小し過ぎてしまったとしても、押圧に基づくデータを増加させることにより画像を拡大させる際に、操作者はさらにきめ細かく画像を拡大させることができる。このため、操作者は、所望の拡大縮小率までより一層容易に到達させることができる。
 なお、本例で説明したように、押圧に基づくデータが増加および減少するたびに、押圧に基づくデータと拡大縮小率との対応付けを連続して変更すると、押圧に基づくデータの増減に対する拡大縮小率の変化はますます小さく(緩やかに)なる。したがって、操作者が押圧に基づくデータを一定に維持しているつもりでも、押圧検出部40で検出される押圧に基づくデータが微細な増減を繰り返すような場合、押圧に基づくデータの増減に対する拡大縮小率の変化は、操作者の意図に反して次第に小さく(緩やかに)なるおそれがある。
 そこで、本例においては、このような不都合を防ぐために、押圧に基づくデータが微細に増減する場合には、押圧に基づくデータの増減に対する拡大縮小率の変化を小さく(緩やかに)する措置を講じないようにすることもできる。例えば、図31に示すように、押圧検出部40によって検出される押圧に基づくデータの時間変化において、押圧に基づくデータの微小な変化幅ΔPを設定してもよい。そして、このような微小な変化幅ΔP内において押圧に基づくデータが変化したとしても、押圧に基づくデータと拡大縮小率との対応付けを変更しないようにすることができる。
 図31は、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図31においても、A点からB点までの間、操作者の操作による押圧に基づくデータがほぼ一定に維持されることにより、tの時点において、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる。図31の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点までわずかに増加し、C点において減少に転じている。しかしながら、C点までの押圧に基づくデータの増加は、押圧に基づくデータの所定の変化幅ΔP内であるため、押圧に基づくデータと拡大縮小率との対応付けを変更しないようにしてもよい。
 このようにすれば、本例において、押圧に基づくデータの増減に対する拡大縮小率の変化が、操作者の意図に反して次第に小さく(緩やかに)なることはなくなる。
(第5実施の形態)
 次に、本発明の第5実施の形態に係る電子機器について説明する。
 第5実施の形態は、上述した第1実施の形態において、制御部10による処理を変更するものである。第5実施の形態に係る電子機器5は、上記の点以外においては、上述した第1実施の形態で説明した電子機器1と基本的に同じ機器構成および制御により実現することができる。このため、以下、第1実施の形態において説明したのと同じ内容になる説明は、適宜省略する。
 なお、本実施形態においても、第1実施形態と同様に、制御部10は、押圧検出部40により検出される押圧に基づくデータが所定の条件を満たすか否かを判定する。しかしながら、本実施の形態においては、制御部10は、押圧検出部40により検出される押圧に基づくデータが所定の条件を満たすか否かを判定するとして、押圧検出部40により検出される押圧に基づくデータが増加から減少に転じた後に、減少から増加に転じたか否かを判定する。
 図32は、本実施の形態における押圧に基づくデータに関する基準の設定を中心とする処理について説明するフローチャートである。本実施の形態では、操作者がタッチセンサ20上で操作している指などの位置を動かさずに、操作による押圧を強めてから一旦弱めて、その後再び強めるのが検出されたら、「押圧に基づくデータに関する基準」を設定する。すなわち、本実施の形態では、操作者がタッチセンサ20上で操作している指などの位置を動かさずに、操作者の操作による押圧に基づくデータが増加から減少に転じた後に、減少から増加に転じたら、「押圧に基づくデータに関する基準」を設定する。なお、「押圧に基づくデータに関する基準」の設定に際しては、タッチセンサ20上で操作している指などの位置が動いても「押圧に基づくデータに関する基準」を設定してもよい。
 本実施の形態による処理が開始すると、制御部10は、タッチセンサ20が検出する接触を監視するとともに、押圧検出部40が検出する押圧を監視する(ステップS11)。特に、本実施の形態において、制御部10は、押圧検出部40が検出する押圧に基づくデータの変化の履歴を記憶部60に記憶しながら監視を行うのが好適である。
 ステップS11において押圧検出部40が押圧に基づくデータを検出したら、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加から減少に転じた後に、減少から増加に転じたか否かを判定する(ステップS61)。なお、この場合、この操作によって「押圧に基づくデータに関する基準」が設定される旨を操作者に知らせるために、例えば表示部30において、「タッチセンサを強めに押圧してから一旦弱めて再び押圧して下さい」のような表示をしてもよい。
 図33は、操作者の操作による押圧に基づくデータの時間変化の一例を説明するグラフである。図33において、横軸は時間の経過を表し、縦軸は押圧検出部40により検出された押圧に基づくデータを表している。図33は、操作者がタッチセンサ20に対する押圧を開始(操作開始)してから徐々に押圧を増加する操作を行い、A点(つまりtの時点)において押圧を増加から減少に転じさせた様子を表している。また、図33に示すように、操作者は、A点(つまりtの時点)から徐々に押圧を減少する操作を行い、B点(つまりtの時点)において押圧を減少から増加に転じさせている様子を表している。
 ステップS61において押圧に基づくデータが増加から減少に転じた後に減少から増加に転じていないと判定したら、制御部10は、ステップS11に戻って処理を続行する。一方、ステップS61において押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたと判定されたら、制御部10は、その期間に検出された押圧に基づくデータに基づいて、押圧に基づくデータに関する基準を設定する(ステップS13)。すなわち、本実施の形態において、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加から減少に転じた後に、減少から増加に転じたら、押圧に基づくデータに関する基準を設定するように制御する。図33に示す例においては、tの時点で押圧に基づくデータが増加から減少に転じており、その後tの時点で押圧に基づくデータが減少から増加に転じている。したがって、この場合、tの時点で押圧に基づくデータに関する基準(P)が設定される。
 ここで、押圧に基づくデータに関する基準(P)を設定する際は、制御部10は、例えば、図33に示すように、A点(つまりtの時点)で検出された押圧に基づくデータ(Pmax)と、B点(つまりtの時点)で検出された押圧に基づくデータ(Pmin)との平均値を算出することができる。また、この押圧に基づくデータに関する基準の算出の際には、上述したような平均値のみに限定されず、種々の算出を行うことができる。例えば、上述したような、PmaxとPminとの単なる平均値を算出するのではなく、例えば操作の開始からA点に到達するまでの時間および/またはA点からB点に到達するまでの時間のように、時間的な要素を加味してもよい。時間的な要素を加味する場合、例えば操作の開始からA点に到達するまでの時間が、A点からB点に到達するまでの時間より長い場合には、PmaxとPminとの平均値よりPmaxに近い値を押圧に基づくデータに関する基準として設定することができる。なお、どの程度Pmaxに近い値にするかについては、操作の開始からA点に到達するまでの時間と、A点からB点に到達するまでの時間との時間の比率に基づき決定することができる。また、例えば、A点(つまりtの時点)で検出された押圧に基づくデータ(Pmax)のみに基づいて、押圧に基づくデータに関する基準(P)を設定してもよいし、B点(つまりtの時点)で検出された押圧に基づくデータ(Pmin)のみに基づいて、押圧に基づくデータに関する基準(P)を設定してもよい。さらに、例えば、押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたと判定されたら、予め記憶部60に記憶しておいた所定値である押圧に基づくデータに関する基準(P)を設定することもできる。
 ステップS13において押圧に基づくデータに関する基準が設定されたら、制御部10は、当該押圧に基づくデータに関する基準が設定された旨を操作者に報知するように、該当する機能部を制御する(ステップS14)。ステップS14においては、押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたことにより、押圧に基づくデータに関する基準が設定されたことを操作者に知らせる。このために、制御部10は、例えばタッチセンサ20を振動させて操作者に触感を呈示するように触感呈示部40を制御することができる。また、触感の呈示に代えて、あるいは触感の呈示とともに、例えば表示部30における表示を変化させたり、または図示しない音声出力部から所定の音声を出力することにより、押圧に基づくデータに関する基準が設定されたことを操作者に知らせることもできる。図33においては、tの時点(B点)で押圧に基づくデータに関する基準が設定されるとともに、操作者は押圧に基づくデータに関する基準が設定された旨を報知される。
 以降の処理は、上述した第1実施の形態と同様に行うことができる。また、図32のステップS15として拡大・縮小モードにおいて行う処理も、図5において説明したように、第1実施形態と同様に行うことができる。
 本実施の形態において、図5のステップS21に示した押圧に基づくデータと拡大縮小率との対応付けも、図6において説明したように、第1実施形態と同様に行うことができる。図6に示したように、ステップS21において、制御部10は、図32のステップS13において設定された押圧に基づくデータに関する基準(P)に基づいて、押圧に基づくデータ(P)と拡大縮小率(X)との対応付けを行うように制御する。横軸のPmaxはA点(つまりtの時点)で検出された押圧に基づくデータを表し、PminはB点(つまりtの時点)で検出された押圧に基づくデータを表す。
 一般的に、押圧検出部40で検出できる最大または最小の押圧に基づくデータは、押圧検出部40の物理的特性や配置などの諸条件によって決定され、この最大の押圧に基づくデータを超えたり、この最小の押圧に基づくデータを下回る押圧に基づくデータを検出することはできない。したがって、Pmaxは、押圧検出部40が実際に検出可能な最大の押圧に基づくデータ以下の押圧に基づくデータの値となり、同様に、Pminは、押圧検出部40が実際に検出可能な最小の押圧に基づくデータ以上の押圧に基づくデータの値となる。すなわち、PmaxおよびPminは、押圧検出部40が押圧に基づくデータを正確かつ確実に検出可能な範囲において設定される値となる。
 本実施の形態において、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加から減少に転じた後に、減少から増加に転じたら、押圧に基づくデータに関する基準を設定するように制御する。この場合、本実施の形態において、制御部10は、押圧に基づくデータが増加から減少に転じた際の押圧に基づくデータおよび押圧に基づくデータが減少から増加に転じた際の押圧に基づくデータに基づいて、押圧に基づくデータに関する基準を設定するように制御することができる。ステップS25の処理の後は、制御部10は、ステップS22に戻って処理を続行する。
 図34は、図33と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図34においては、図33でも説明したB点の後、すなわち押圧に基づくデータに関する基準が設定された後で、C点を経てD点まで操作者の操作による押圧に基づくデータの増加が検出されている。このような場合、押圧に基づくデータに関する基準Pに達するまでは、すなわち時刻t~tの間においては、拡大も縮小も行わない。しかしながら、図34に示すように、時刻t~tの間においては、押圧検出部40により検出される押圧に基づくデータがPを基準として増加するにつれて、表示部30に表示される画像は拡大される。なお、時刻tの後、すなわちD点の後において、押圧検出部40により検出される押圧に基づくデータはほぼ一定値に維持されているが、この時にスライド操作が検出された場合は、その時点の拡大縮小率に固定される。すなわち、この場合、表示部30に表示された画像は拡大も縮小もしなくなる。その後、タッチセンサ20に対する操作者の操作による押圧に基づくデータが再び増加から減少に転じた後に減少から増加に転じたら、新たな押圧に基づくデータに関する基準が設定され、その時に表示部30に表示されている画像を基準として再び拡大または縮小することができる。
 図35も、図33と同様に、操作者の操作による押圧に基づくデータの時間変化の他の例を示すグラフである。図35においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、D点の後まで操作者の操作による押圧に基づくデータの増加が検出されている。D点の後、押圧に基づくデータは減少に転じてE点からG点の後まで減少し、G点の後、押圧に基づくデータは増加に転じてH点からI点まで増加したことが検出されている。
 このような場合、図35に示すように、時刻t~tの間においては表示部30に表示される画像は拡大され、時刻t~tの間においては表示部30に表示される画像は縮小され、時刻t~tの間においては表示部30に表示される画像は再び拡大される。なお、時刻tにおいては、押圧に基づくデータに関する基準が設定された時点の拡大縮小率に戻っている。すなわち、点Fにおいては、押圧に基づくデータに関する基準が設定された時点と同じ拡大縮小率の画像が表示される。また、時刻t~tの間および時刻t~tの間においては、押圧に基づくデータPmaxを超えていたり、または押圧に基づくデータPminを下回っており、拡大も縮小も行われない。
 図36は、図35に示したように押圧に基づくデータが時間変化した際における、表示部30に表示される画像の拡大縮小率の時間変化を示すグラフである。図36においては、横軸は時間の経過を表しているが、縦軸は表示部30に表示される画像の拡大縮小率を表していることに留意すべきである。
 図35と図36とを対比させると、操作開始時点から時刻tまでの間すなわち押圧に基づくデータに関する基準が設定される前までは、拡大・縮小モードに移行していないため、押圧に基づくデータが変化しているものの拡大縮小率は基準から変化しないことがわかる。なお、時刻tからtまでの間は、拡大・縮小モードに移行しているが、上述したように、押圧に基づくデータに関する基準Pに達していないため、拡大も縮小も行われない。また、上述したように、時刻t~tの間および時刻t~tの間においては、拡大縮小率は変化しないことがわかる。
 本実施の形態による電子機器5に対して操作者が操作を行った場合における表示部30の表示の具体例は、図11において第1実施の形態で説明したのと同様に行うことができる。
 図11(A)に示すように、押圧に基づくデータに関する基準が設定される前、すなわち拡大・縮小モードに移行する前段階においては、操作者は、タッチセンサ20に対してスライド操作を行うことにより、表示部30に表示される日本地図を任意にスライドさせることができる。そして、本実施の形態においては、タッチセンサ20の任意の位置において操作者が接触する位置を維持したまま、押圧に基づくデータを増加から減少に転じた後に減少から増加に転じさせることにより、押圧に基づくデータに関する基準が設定され、電子機器5は拡大・縮小モードに移行する。
 その後、操作者がタッチセンサ20を操作する押圧に基づくデータを増加させて、押圧に基づくデータに関する基準Pを超えると、図11(A)に示す状態から図11(B)に示すように、操作者が操作している位置を中心として、表示部30に表示される日本地図の画像が拡大される。同様に、操作者がタッチセンサ20を操作する押圧に基づくデータをさらに増加させると、図11(B)に示す状態から図11(C)に示すように、操作者が操作している位置を中心として、表示部30に表示される日本地図の画像がさらに拡大される。
 このように、本実施の形態によれば、電子機器の筐体が小型であれば、片手で電子機器を保持したまま、同じ手の指先を用いて、従来のピンチ操作と同様の拡大または縮小などの操作を行うことができる。また、本実施の形態によれば、電子機器の大きさによらず、タッチセンサ20に対して操作を行う際には、指1本のみで、すなわち一箇所を押圧するのみで、操作を行うことができる。さらに、本実施の形態によれば、タッチセンサ20の任意の位置において操作を開始することができるため、少ない手順でスムーズに操作を行うことができる。また、本実施の形態によれば、拡大または縮小などの特定の処理を行うための専用のオブジェクトを表示部に表示する必要もないため、表示部の表示領域を有効に活用することができる。
 なお、本実施の形態においては、図34で説明したように、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータの増加が検出されも、押圧に基づくデータに関する基準Pに達するまでは、拡大も縮小も行わないものとして説明した。しかしながら、例えば図37に示すように、B点の時点、すなわち押圧に基づくデータに関する基準が設定された時点で、表示部30に表示される画像を最も低い拡大縮小率(Xmin)に縮小してもよい。この場合、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、C点までの間においても、押圧に基づくデータの増加が検出されると、押圧に基づくデータに関する基準Pに達する前であっても、時刻t~tの間においても、拡大が行われる。
(第6実施の形態)
 次に、本発明の第6実施の形態に係る電子機器について説明する。
 第6実施の形態は、上述した第5実施の形態において、制御部10による処理を変更するものである。すなわち、第6実施の形態は、第5実施の形態に係る電子機器5において、図5で説明したステップS25の処理を変更するものである。具体的には、第6実施の形態に係る電子機器6は、拡大・縮小モードにおいて、押圧に基づくデータに関する基準Pと押圧検出部40により検出された押圧に基づくデータPとの差に応じて、表示部30に表示された画像を拡大または縮小する速度を変更する。
 第6実施の形態に係る電子機器6は、上記の点以外においては、上述した第5および第2実施の形態で説明した電子機器5および電子機器2と基本的に同じ機器構成および制御により実現することができる。このため、以下、第5および第2実施の形態において説明したのと同じ内容になる説明は、適宜省略する。
 第6実施の形態に係る電子機器6の処理は、第2実施の形態で図12を用いて説明したフローチャートに従って行うことができる。
 図38は、図34等と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図38においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータが増加することによりC点を経てE点に至っている場合と、操作者の操作による押圧に基づくデータが一層増加することによりD点に至っている場合とを同時に示してある。本実施の形態においては、押圧に基づくデータに関する基準Pが設定されたら、当該押圧に基づくデータに関する基準Pに基づいて、当該基準の上下に押圧に基づくデータの段階をいくつか設定する。
 なお、図38においては、押圧に基づくデータに関する基準Pよりも高く設定された押圧に基づくデータの段階のみを示している。また、図38においては、一例として、押圧に基づくデータに関する基準Pよりも大きな押圧に基づくデータについて、1Nごとに設定した押圧に基づくデータの段階を、2つのみ示してある。しかしながら、押圧に基づくデータの段階を設定する際には、当該押圧に基づくデータの段階同士の間隔は1Nごとにすることは必須ではなく、より密な間隔で設定することも、より疎な間隔で設定することもできる。また、このような段階を2つ設定することも必須ではなく、さらに多くの段階を設定してもよいし、あるいは非常に多くの段階が押圧に基づくデータの変化にアナログ的に対応するようにしてもよい。さらに、このような押圧に基づくデータの段階は、予め設定しておくことは必須ではなく、押圧が検出されるたびに、上述したような段階を算出してもよい。
 図38に示すように、本例においては、押圧に基づくデータに関する基準PからP+1Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を拡大する速度として、速度αを対応させる。また、図38に示すように、本例においては、P+1NからP+2Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を拡大する速度として、速度βを対応させる。ここで、速度βは、速度αよりも、表示部30に表示される画像を速く拡大する速度とすることができる。すなわち、この場合、操作者がタッチセンサ20を操作する際に、より大きな押圧を維持した方が、より速い速度で、表示部30に表示される画像が拡大される。
 図39は、図34等と同様に、操作者の操作による押圧に基づくデータの時間変化の他の例を示すグラフである。図39においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、押圧に基づくデータが増加してC点で押圧に基づくデータに関する基準Pに達した後、押圧に基づくデータが減少することによりD点に至っている場合と、操作者の操作による押圧に基づくデータが一層減少することによりE点に至っている場合とを同時に示してある。
 図39においては、押圧に基づくデータに関する基準Pよりも低く設定された押圧に基づくデータの段階のみを示している。また、図39においては、一例として、押圧に基づくデータに関する基準Pよりも小さな押圧に基づくデータについて、1Nごとに設定した押圧に基づくデータの段階を、2つのみ示してある。しかしながら、押圧に基づくデータの段階を設定する際には、当該押圧に基づくデータの段階同士の間隔は1Nごとにすることは必須ではなく、また、このような段階を2つ設定することも必須ではない。さらに、このような押圧に基づくデータの段階は、予め設定しておくことも必須ではない。
 図39に示すように、本例においては、押圧に基づくデータに関する基準PからP-1Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を縮小する速度として、速度γを対応させる。また、図39に示すように、本例においては、P-1NからP-2Nまでの押圧に基づくデータの段階には、表示部30に表示される画像を拡大する速度として、速度δを対応させる。ここで、速度δは、速度γよりも、表示部30に表示される画像を速く縮小する速度とすることができる。すなわち、この場合、操作者がタッチセンサ20を操作する際に、より小さな押圧を維持した方が、より速い速度で、表示部30に表示される画像が縮小される。
 図40は、操作者の操作による押圧に基づくデータの時間変化のさらに他の例を示すグラフである。図40においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、押圧に基づくデータが増加してC点で押圧に基づくデータに関する基準Pに達した後、押圧に基づくデータが一旦減少した後さらに増大に転じ、その後増大から減少に転じている。
 図40においては、押圧に基づくデータに関する基準Pよりも低く設定された押圧に基づくデータの段階、および押圧に基づくデータに関する基準Pよりも高く設定された押圧に基づくデータの段階の双方を示している。なお、図40に示した例においては、押圧に基づくデータに関する基準Pよりも大きな押圧に基づくデータおよび小さな押圧に基づくデータについて、1Nごとに設定した押圧に基づくデータの段階を、2つずつ示してある。また、図40においては、図38と同様に、PからP+1Nまでの押圧に基づくデータの段階には速度αを対応させ、P+1NからP+2Nまでの押圧に基づくデータの段階には速度βを対応させている。さらに、図40においては、図39と同様に、PからP-1Nまでの押圧に基づくデータの段階には速度γを対応させ、P-1NからP-2Nまでの押圧に基づくデータの段階には速度δを対応させている。
 図41は、図40に示したように押圧に基づくデータが時間変化した際における、表示部30に表示される画像の拡大縮小率の時間変化を示すグラフである。図41においては、横軸は時間の経過を表しているが、縦軸は表示部30に表示される画像の拡大縮小率を表していることに留意すべきである。
 図40と図41とを対比させると、操作開始時点から時刻tまでの間すなわち押圧に基づくデータに関する基準が設定される前までは、拡大・縮小モードに移行していないため、押圧に基づくデータが変化しているものの拡大縮小率は基準から変化しないことがわかる。また、上述したように、時刻tからtまでの間は、拡大・縮小モードに移行しているが、上述したように、押圧に基づくデータに関する基準Pに達していないため、図41に示すように、拡大も縮小も行われない。
 図40に示すように、時刻t~tの間は押圧に基づくデータがPからP+1Nまでの間に維持されているため、図41に示すように、当該区間においては、表示部30に表示される画像は速度αで拡大される。また、図40に示すように、時刻t~tの間は押圧に基づくデータがPからP-1Nまでの間に維持されているため、図41に示すように、当該区間においては、表示部30に表示される画像は速度γで縮小される。また、図40に示すように、時刻t~tの間は押圧に基づくデータがP+1NからP+2Nまでの間に維持されているため、図41に示すように、当該区間においては、表示部30に表示される画像は速度βで拡大される。さらに、図40に示すように、時刻t~tの間は押圧に基づくデータがPからP+1Nまでの間に維持されているため、図41に示すように、当該区間においては、表示部30に表示される画像は速度αで拡大される。
 このように、本実施の形態によれば、第5実施の形態で説明した電子機器5と同様に、操作者が操作を行う箇所を低減させるとともに、操作者による操作の手順も低減させることができる。また、本実施の形態によれば、操作者が大きな押圧で操作を行うと、そのぶん大きな速度で表示部30に表示される画像が拡大されるため、操作者が大きな押圧で操作を行うのは短い時間で済むため、操作者が押圧力を加える負担を減らすことができる。
(第7実施の形態)
 次に、本発明の第7実施の形態に係る電子機器について説明する。
 第7実施の形態は、上述した第5実施の形態において、制御部10による処理を変更するものである。すなわち、第7実施の形態は、第5実施の形態に係る電子機器5において、図5で説明したステップS21の処理の態様を変更するものである。具体的には、第7実施の形態に係る電子機器7は、押圧に基づくデータに関する基準が設定された後、図6で説明したような押圧に基づくデータと拡大縮小率との対応付けの態様を変更する。
 第7実施の形態に係る電子機器7は、上記の点以外においては、上述した第5および第3実施の形態で説明した電子機器5および電子機器3と基本的に同じ機器構成および制御により実現することができる。このため、以下、第5および第3実施の形態において説明したのと同じ内容になる説明は、適宜省略する。
 第5実施の形態においては、図6を用いて説明したように、押圧に基づくデータと拡大縮小率との対応付けとして、PminからPまでの押圧に基づくデータの変化には、XminからXまでの拡大縮小率の線形的な変化を対応付けた。同様に、第5実施の形態においては、PからPmaxまでの押圧に基づくデータの変化には、XからXmaxまでの拡大縮小率の線形的な変化を対応付けた。この際、図6においては、説明の簡略化のために、ちょうどPmaxとPminとの中間周辺に、押圧に基づくデータに関する基準Pが設定された場合の例を示した。しかしながら、実際に押圧に基づくデータに関する基準Pを設定する際は、当該PがPmaxとPminとの真ん中に設定されない場合も充分に想定される。この場合、すなわち押圧に基づくデータに関する基準PがPmaxとPminとの真ん中に設定されない場合には、図6の対応関係のグラフは一直線にはならず、Pの前後で傾きが変わるグラフになる。
 第5実施の形態で説明したように、押圧に基づくデータに関する基準PがPminとPmaxとの真ん中に設定された場合、押圧に基づくデータと拡大縮小率との対応付けの関係は、図17(A)に示すように、PminからPmaxにわたって一直線のグラフとなる。なお、図17においては、説明の便宜のために、縦軸および横軸を、図6とは異なる態様で設定している。
 ここで、例えば、押圧に基づくデータに関する基準PがPminとPmaxとの真ん中よりも大きい位置に設定された場合、押圧に基づくデータと拡大縮小率との対応付けの関係は、図17(B)に示すように、Pの時点において傾きが変化するグラフとなる。また、例えば、押圧に基づくデータに関する基準PがPminとPmaxとの真ん中よりも小さな位置に設定された場合、押圧に基づくデータと拡大縮小率との対応付けの関係は、図17(C)に示すように、この場合もPの時点において傾きが変化するグラフとなる。
 図17(B)および(C)に示したように、押圧に基づくデータと拡大縮小率との対応付けの関係を示すグラフの傾きがPの時点で変化する場合、操作者が押圧に基づくデータに関する基準Pをまたいで押圧に基づくデータを変化させると、第3実施の形態と同様に、拡大または縮小の追従性に違和感を与えるおそれがある。
 したがって、本実施の形態においては、このような不都合に対処すべく、図5のステップS21で説明した押圧に基づくデータと拡大縮小率との対応付けを行う際に、押圧に基づくデータに関する基準Pの前後で、押圧に基づくデータに対する拡大縮小率の変化量が大きく変わらないように補正する。具体的には、例えば図17(B)に示したような対応付けがなされようとしている場合、制御部10は、これらの対応付けを補正して、例えば図18(A)に示すような、押圧に基づくデータと拡大縮小率との対応付けを行う。
 図18(A)に示すような押圧に基づくデータと拡大縮小率との対応付けを行えば、押圧に基づくデータに関する基準Pは、Pmin(拡大縮小率が最小Xminになる時の押圧に基づくデータP)とPmaxとの真ん中に設定される。したがって、押圧に基づくデータと拡大縮小率との対応付けの関係は、Pの前後にわたって傾きの変わらないグラフとなり、操作者が押圧に基づくデータに関する基準Pをまたいで押圧に基づくデータを変化させても、拡大または縮小の追従性に違和感を与えない。
 また、例えば図17(C)に示したような対応付けがなされようとしている場合、制御部10は、これらの対応付けを補正して、例えば図18(B)に示すような、押圧に基づくデータと拡大縮小率との対応付けを行う。
 図18(B)に示すような押圧に基づくデータと拡大縮小率との対応付けを行えば、押圧に基づくデータに関する基準Pは、PminとPmax(拡大縮小率が最大Xmaxになる時の押圧に基づくデータP)との真ん中に設定される。したがって、押圧に基づくデータと拡大縮小率との対応付けの関係は、Pの前後にわたって傾きの変わらないグラフとなり、操作者が押圧に基づくデータに関する基準Pをまたいで押圧に基づくデータを変化させても、拡大または縮小の追従性に違和感を与えない。
 このように、本実施の形態においても、制御部10は、第5実施の形態と同様に、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する。ただし、本実施の形態において、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加した場合と、押圧検出部40により検出される押圧に基づくデータが減少した場合とで、前記パラメータの値を増減する量が等しくなるように制御する。ここで、「パラメータの値を増減する量」とは、上述した例においては、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じた、押圧に基づくデータに対する拡大縮小率の変化量に相当する。
 なお、本実施の形態において、押圧に基づくデータと拡大縮小率との対応付けを行う際に、押圧に基づくデータに関する基準Pの前後で、押圧に基づくデータに対する拡大縮小率の変化量が大きく変わらないように補正する態様は、図18で説明したものに限定されず、第3実施の形態でも説明したように、種々の態様が想定できる。
 このように、本実施の形態によれば、操作者が押圧に基づくデータに関する基準Pをまたいで押圧を変化させても、所定の処理に関連付けられたパラメータの値を増減する量は大きく変化せずにほぼ等しくなる。したがって、本実施の形態によれば、操作者が押圧に基づくデータに関する基準Pをまたいで押圧を変化させた場合に、表示部30に表示される画像が拡大または縮小される際の追従性に違和感を与えることはなくなる。
(第8実施の形態)
 次に、本発明の第8実施の形態に係る電子機器について説明する。
 第8実施の形態も、上述した第5実施の形態において、制御部10による処理を変更するものである。すなわち、第8実施の形態は、第5実施の形態に係る電子機器1において、図5で説明したステップS25の後の処理を変更するものである。すなわち、第8実施の形態に係る電子機器8は、押圧に基づくデータに関する基準が設定され、押圧に基づくデータに応じて画像の拡大または縮小の処理を行っている最中に、所定の操作が行われたと判定された場合、図6で説明したような押圧に基づくデータと拡大縮小率との対応付けの態様を変更する。
 第8実施の形態に係る電子機器8は、上記の点以外においては、上述した第5および第4実施の形態で説明した電子機器5および電子機器4と基本的に同じ機器構成および制御により実現することができる。このため、以下、第5および第4実施の形態において説明したのと同じ内容になる説明は、適宜省略する。
 第8実施の形態は、第5実施の形態に係る電子機器5により表示部30に表示された画像の拡大または縮小の処理を行っている最中に、操作者が画像を拡大または縮小し過ぎてしまった際に、所望の拡大縮小率に容易に修正するための措置を提供する。
 第8実施の形態に係る電子機器8の処理は、第4実施の形態で図20において説明したフローチャートに基づいて行うことができる。
 第8実施の形態においては、図20におけるステップS25の後、制御部10は、押圧検出部40により検出される押圧に基づくデータPが増加して、押圧に基づくデータの値がPmaxを超えてから減少に転じたか否かを判定する(ステップS41)。ステップS41において押圧に基づくデータPがPmaxを超えてから減少に転じたと判定されたら、制御部10は、押圧に基づくデータと拡大縮小率との対応付けを変更する(ステップS42)。
 また、ステップS41においては、制御部10は、押圧検出部40により検出される押圧に基づくデータPが減少して、押圧に基づくデータの値がPminを下回ってから増加に転じたと判定された場合も、ステップS42の処理を行う。そして、ステップS41において押圧に基づくデータPがPminを下回ってから増加に転じたと判定されても、制御部10は、押圧に基づくデータと拡大縮小率との対応付けを変更する(ステップS42)。
 ステップS42において、押圧に基づくデータと拡大縮小率との対応付けが変更されたら、制御部10は、ステップS22に戻って処理を続行する。なお、ステップS41において上述したような所定の操作が行われことが判定されない場合、制御部10は、ステップS42の処理を行わずにステップS22に戻って処理を続行する。
 次に、本実施の形態のステップS42において行う、押圧に基づくデータと拡大縮小率との対応付けの変更について説明する。
 図42は、第5実施の形態で説明した図34等と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図42においては、A点からB点までの間において、操作者の操作による押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたことにより、図22(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図20のステップS21)。ここまでの処理は、上述した第5実施の形態において図6等を用いて説明したのと同様である。
 図42の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点およびD点を経てPmaxを超えてE点まで増加し、E点において減少に転じている(ステップS41におけるYes)。したがって、この場合、押圧に基づくデータと拡大縮小率との対応付けは、例えば図22(B)に示すような態様に変更される(ステップS42)。図22(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図22(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図42におけるF点からG点まで減少(図22(B)におけるPmaxからPminまでの減少に相当)した際に、押圧に基づくデータの減少に対する縮小率の変化も小さく(緩やかに)なる。したがって、操作者が押圧に基づくデータをD点まで増加させて画像を拡大し過ぎてしまい、押圧に基づくデータを減少させることにより画像を縮小させる際に、操作者はきめ細かく画像を縮小させることができ、所望の拡大縮小率まで容易に到達させることができる。
 図43は、第1実施の形態で説明した図34等と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図43においても、A点からB点までの間において、操作者の操作による押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたことにより、図22(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図20のステップS21)。
 図43の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点で押圧に基づくデータに関する基準Pに達した後減少に転じている。そして、C点の後に減少に転じた押圧に基づくデータはD点およびE点を経てPminを下回ってF点まで減少し、F点において増加に転じている(ステップS41におけるYes)。したがって、この場合、押圧に基づくデータと拡大縮小率との対応付けは、例えば図22(C)に示すような態様に変更される(ステップS42)。図22(C)に示す押圧に基づくデータと拡大縮小率との対応付けも、図22(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図43におけるG点からH点まで増加(図22(C)におけるPminからPmaxまでの増加に相当)した際に、押圧に基づくデータの増加に対する縮小率の変化も小さく(緩やかに)なる。したがって、操作者が押圧に基づくデータをE点まで減少させて画像を縮小し過ぎてしまい、押圧に基づくデータを増加させることにより画像を拡大させる際に、操作者はきめ細かく画像を拡大させることができ、所望の拡大縮小率まで容易に到達させることができる。
 このように、本実施の形態において、制御部10は、第5実施の形態と同様に、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する。ただし、本実施の形態において、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加および減少のうち一方から他方へと転じる前後において、前記パラメータの値を増減する量が異なるように制御する。ここで、「パラメータの値を増減する量」とは、上述した例においては、押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じた、押圧に基づくデータに対する拡大縮小率の変化量に相当する。なお、上述したように、制御部10は、押圧検出部40により検出される押圧に基づくデータが増加から減少へと転じた後は、それ以前よりも前記パラメータの値を減少する量が少なくなるように制御するのが好適である。同様に、制御部10は、押圧検出部40により検出される押圧に基づくデータが減少から増加へと転じた後は、それ以前よりも前記パラメータの値を増加する量が少なくなるように制御するのが好適である。また、本実施の形態においては、押圧に基づくデータの増減に対する拡大縮小率の変化を小さく(緩やかに)するため、例えば図20のステップS22においてスライド操作が検出された際などに、変更前の押圧に基づくデータと拡大縮小率との対応付けに戻すようにするのが好適である。
 次に、第8実施の形態の他の例について説明する。
 第8実施の形態の他の例に係る電子機器8の処理は、第4実施の形態で図24において説明したフローチャートに基づいて行うことができる。なお、図24は、図20と同様に、押圧に基づくデータに関する基準が設定された後、図3のステップS15として示した拡大・縮小モードにおいて行う処理を説明するフローチャートである。
 上述した例においては、図20のステップS41で説明したように、操作者によって所定の操作が行われたと判定された場合、押圧に基づくデータと拡大縮小率との対応付けの態様を変更した。また、上述した例においては、所定の操作が行われたと判定される場合とは、押圧に基づくデータPが最大の押圧に基づくデータPmaxを超えてから減少に転じた場合、および押圧に基づくデータPが最小の押圧に基づくデータPminを下回ってから増加に転じた場合とした。以下説明する例においては、所定の操作が行われたと判定された場合、押圧に基づくデータと拡大縮小率との対応付けの態様を変更する点については上述した例と同じであるが、当該所定の操作の内容を変更する。すなわち、本例においては、図24のステップS51に示すように、押圧に基づくデータPが増加から減少に転じた場合、および押圧に基づくデータPが減少から増加に転じた場合に、押圧に基づくデータと拡大縮小率との対応付けを変更する。要するに、本例においては、押圧に基づくデータPが増加から減少に転じた場合、Pmaxを超えていなくとも、また押圧に基づくデータPが減少から増加に転じた場合、Pminを下回っていなくとも、上述した例のように押圧に基づくデータと拡大縮小率との対応付けを変更する。
 次に、本例において行う、押圧に基づくデータと拡大縮小率との対応付けの変更について説明する。
 図44は、図42と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図44においては、A点からB点までの間において、操作者の操作による押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたことにより、図26(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図24のステップS21)。ここまでの処理は、上述した第5実施の形態において図6等を用いて説明したのと同様である。
 図44の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点を経てD点まで増加し、D点において減少に転じている(ステップS51におけるYes)。したがって、この場合、押圧に基づくデータがPmaxを超えなくとも、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図26(B)に示すように、押圧に基づくデータがPとなるポイントを基準とした態様に変更する(ステップS42)。図26(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図26(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図44におけるD点からE点まで減少(図26(B)におけるPからPminまでの減少に相当)した際に、押圧に基づくデータの減少に対する縮小率の変化も小さく(緩やかに)なる。したがって、本例においても、操作者が押圧に基づくデータをD点まで増加させて画像を拡大し過ぎてしまい、押圧に基づくデータを減少させることにより画像を縮小させる際に、操作者はきめ細かく画像を縮小させることができ、所望の拡大縮小率まで容易に到達させることができる。
 図45は、図44と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図45においては、A点からB点までの間において、操作者の操作による押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたことにより、図28(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図24のステップS21)。ここまでの処理は、上述した第1実施の形態において図6等を用いて説明したのと同様である。
 図45の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点で押圧に基づくデータに関する基準Pに達した後減少に転じている。そして、C点の後に減少に転じた押圧に基づくデータはD点を経てE点まで減少し、E点において増加に転じている(ステップS51におけるYes)。したがって、この場合、押圧に基づくデータがPminを下回っていなくとも、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図28(B)に示すように、押圧に基づくデータがPとなるポイントを基準とした態様に変更する(ステップS42)。図28(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図28(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図45におけるE点からF点まで増加(図28(B)におけるPからPmaxまでの増加に相当)した際に、押圧に基づくデータの増加に対する縮小率の変化も小さく(緩やかに)なる。したがって、本例においても、操作者が押圧に基づくデータをE点まで減少させて画像を縮小し過ぎてしまい、押圧に基づくデータを増加させることにより画像を拡大させる際に、操作者はきめ細かく画像を拡大させることができ、所望の拡大縮小率まで容易に到達させることができる。
 上述した例による処理は、押圧に基づくデータが増加および減少するたびに、連続的に行うようにしてもよい。以下、このような例について説明する。
 図46は、図44および図45と同様に、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図46においても、A点からB点までの間において、操作者の操作による押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたことにより、図30(A)に示すように、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる(図20のステップS21)。
 図46の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点を経てD点まで増加し、D点において減少に転じている(ステップS51におけるYes)。したがって、この場合、押圧に基づくデータがPmaxを超えなくとも、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図30(B)に示すように、押圧に基づくデータがPとなるポイントを基準とした態様に変更する(ステップS42)。図30(B)に示す押圧に基づくデータと拡大縮小率との対応付けは、図30(A)に示した態様よりも、対応関係を表すグラフの傾きを小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図46におけるD点からE点の手前まで減少(図30(B)におけるPからPminまでの減少に相当)した際に、押圧に基づくデータの減少に対する縮小率の変化も小さく(緩やかに)なる。
 さらに、図46の例においては、D点において押圧に基づくデータと拡大縮小率との対応付けが変更された後で、E点の手前で押圧に基づくデータがPminを下回るまで減少し、E点において操作者の操作による押圧に基づくデータは増加に転じている(ステップS51におけるYes)。したがって、この場合、tの時点において、押圧に基づくデータと拡大縮小率との対応付けを、例えば図30(C)に示すように、押圧に基づくデータがP2となるポイントを基準とした態様に変更する(ステップS42)。なお、押圧検出部40がPminを下回る押圧に基づくデータを検出できない場合、ステップS42において、制御部は、例えば押圧に基づくデータがPminとなるポイントを基準とした態様に変更してもよい。図30(C)に示す押圧に基づくデータと拡大縮小率との対応付けは、図30(B)に示した態様よりも、対応関係を表すグラフの傾きをさらに小さく(緩やかに)してある。このため、操作者の操作によって押圧に基づくデータが図46におけるE点の後で増加した際に、押圧に基づくデータの増加に対する拡大率の変化はさらに小さく(緩やかに)なる。
 したがって、本例においても、操作者が押圧に基づくデータをC点からD点まで増加させて画像を拡大し過ぎてしまい、押圧に基づくデータを減少させることにより画像を縮小させる際に、操作者はきめ細かく画像を縮小させることができる。さらに、本例においては、操作者が押圧に基づくデータをD点からE点まで減少させて画像を縮小し過ぎてしまったとしても、押圧に基づくデータを増加させることにより画像を拡大させる際に、操作者はさらにきめ細かく画像を拡大させることができる。このため、操作者は、所望の拡大縮小率までより一層容易に到達させることができる。
 なお、本例で説明したように、押圧に基づくデータが増加および減少するたびに、押圧に基づくデータと拡大縮小率との対応付けを連続して変更すると、押圧に基づくデータの増減に対する拡大縮小率の変化はますます小さく(緩やかに)なる。したがって、操作者が押圧に基づくデータを一定に維持しているつもりでも、押圧検出部40で検出される押圧に基づくデータが微細な増減を繰り返すような場合、押圧に基づくデータの増減に対する拡大縮小率の変化は、操作者の意図に反して次第に小さく(緩やかに)なるおそれがある。
 そこで、本例においては、このような不都合を防ぐために、押圧に基づくデータが微細に増減する場合には、押圧に基づくデータの増減に対する拡大縮小率の変化を小さく(緩やかに)する措置を講じないようにすることもできる。例えば、図47に示すように、押圧検出部40によって検出される押圧に基づくデータの時間変化において、押圧に基づくデータの微小な変化幅ΔPを設定してもよい。そして、拡大・縮小モードにおいて、このような微小な変化幅ΔP内において押圧に基づくデータが変化したとしても、押圧に基づくデータと拡大縮小率との対応付けを変更しないようにすることができる。
 図47は、操作者の操作による押圧に基づくデータの時間変化の一例を示すグラフである。図47においても、A点からB点までの間において、操作者の操作による押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたことにより、tの時点において、押圧に基づくデータPと拡大縮小率Xとの対応付けが行われる。図47の例においては、B点の後、すなわち押圧に基づくデータに関する基準が設定された後で、操作者の操作による押圧に基づくデータはC点を経た後にD点までわずかに増加し、D点において減少に転じている。しかしながら、PからD点までの押圧に基づくデータの増加は、押圧に基づくデータの所定の変化幅ΔP内であるため、押圧に基づくデータと拡大縮小率との対応付けを変更しないようにしてもよい。
 このようにすれば、本例において、押圧に基づくデータの増減に対する拡大縮小率の変化が、操作者の意図に反して次第に小さく(緩やかに)なることはなくなる。
 なお、本発明は、上記実施の形態にのみ限定されるものではなく、幾多の変形または変更が可能である。例えば、上述した各実施の形態では、表示部30に地図などの画像を表示して、当該画像を拡大または縮小する態様について説明した。しかしながら、本発明はこのような処理を行う態様に限定されるものではなく、押圧検出部40に対する押圧に基づくデータに応じて、所定の処理に関連付けられたパラメータの値を変化させる各種の場面に適用することができる。また、ここでいう所定の処理についても、例えばアプリケーションに関連付けられた処理など任意のものとすることができる。例えば、上述した各実施の形態において、設定された押圧に基づくデータに関する基準と押圧検出部40により検出される押圧に基づくデータとの差に応じて、音声を再生する際の音量を調節したり、表示部30に表示する動画の再生速度を調節するなど、種々の処理に適用することができる。
 また、本発明は、タッチセンサを備えた電子機器に適用するのが好適であるが、押圧検出部40に対する押圧に基づくデータに応じて、所定の処理に関連付けられたパラメータの値を変化させるものであるため、タッチセンサを備えた機器に限定されるものではない。例えば、本発明は、押圧検出部を備えるが、タッチセンサを備えない電子機器にも適用することができる。この場合、例えば、通常の操作部を構成するキーやボタン等に対して操作者が操作を行う際の押圧に基づくデータを検出することができるように、当該キーやボタン等に対する押圧に基づくデータを検出する押圧検出部を備えるようにするのが好適である。あるいは、特にキーやボタン等が押圧に基づくデータを検出することが必須ではない場合には、例えば操作者が電子機器の筐体を直接押圧する際の押圧に基づくデータを検出する押圧検出部を備えるような態様も考えることができる。
 また、上記実施の形態では、タッチセンサ20を用いて、当該接触検出部のタッチ面に対する接触を検出したが、荷重センサ(押圧検出部)を用いて、所定の押圧に基づくデータに関する基準を満たした場合に、接触がなされたものと判定することもできる。このような押圧検出部は、任意の個数の歪みゲージセンサ等をタッチセンサ20に設けたものとして構成することができる。
 また、このような押圧検出部は、タッチセンサ20における接触検出方式に応じて構成することができる。例えば、抵抗膜方式の場合には、接触面積による抵抗変化に基づく出力信号の変化から押圧が検出できれば、歪みゲージセンサを用いることなく構成することができる。あるいは、静電容量方式の場合には、静電容量の変化に基づく出力信号の変化から押圧が検出できる場合も、歪みゲージセンサを用いることなく構成することができる。
 また、触感呈示部50は、任意の個数の圧電振動子を用いて構成したり、タッチセンサ20の全面に透明圧電素子を設けて構成したり、偏心モータを駆動信号の1周期で1回転させるようにして構成したり、することもできる。さらに、押圧検出部および触感呈示部50は、圧電素子を用いて構成する場合は、圧電素子を共用して押圧検出部兼振動部を構成することもできる。圧電素子は、圧力が加わると電力を発生し、電力が加えられると変形するためである。この場合、触感呈示部50は、押圧検出部も兼ねる圧電素子の出力に基づいて押圧に基づくデータを検出するとともに、例えば押圧に基づくデータに関する基準が設定された際に、当該圧電素子を駆動することにより振動を発生するようにもできる。
 上述した実施の形態においては、タッチセンサ20を表示部30の上面に重ねて配置した構成を想定して説明した。本発明による電子機器は、このような構成にすることは必須ではなく、タッチセンサ20と表示部30とを離間した構成にすることもできる。しかしながら、タッチセンサ20を表示部30の上面に重ねて配置した構成とする方が、表示される画像と発生する振動との対応関係を、操作者に容易に認識させることができる。
 また、本実施の形態の説明における表示部30およびタッチセンサ20は、表示部と接触検出部との両機能を共通の基板に持たせる等により、一体化した装置によって構成されるようにしてもよい。このように表示部と接触検出部との両機能を一体化した装置の構成の一例としては、液晶パネルが有するマトリクス状配列の画素電極群に、フォトダイオード等の複数の光電変換素子を規則的に混在させたものを挙げることができる。この装置は、液晶パネル構造によって画像を表示する一方で、パネル表面の所望位置に接触するペンの先端で液晶表示用のバックライトの光を反射し、この反射光を周辺の光電変換素子が受光することによって、接触の位置を検出することができる。
 また、本発明は、押圧に基づくデータに関する基準が設定されるが、この押圧に基づくデータに関する基準は、例えば、アプリケーションを起動した際に、記憶部に記憶している基準値に基づき設定されてもよいし、アプリケーションが起動している際に、操作者が押圧に基づくデータに関する基準を設定するためのオブジェクトに対して操作を行うことにより設定されてもよい。このように、本発明は、押圧に基づくデータに関する基準の設定については、本実施の形態の説明で記載した態様に限定されない。
 また、本実施の形態の説明においては、制御部は、押圧検出部により検出される押圧に基づくデータが所定の条件を満たすか否かを判定するとして、押圧検出部により検出される押圧に基づくデータが増加から減少に転じた後に、減少から増加に転じたか否かを判定するとしたが、本発明はこれに限定されず、例えば、制御部は、押圧検出部により検出される押圧に基づくデータが所定の条件を満たすか否かを判定するとして、押圧検出部により検出される押圧に基づくデータが所定の荷重基準を満たしている(所定の押圧閾値以上又は超えている)か否か判定してもよいし、押圧検出部により検出される押圧に基づくデータが予め定められた押圧に基づくデータの変化曲線と一致する変化をしたか否かを判定してもよい。
 1 電子機器
 10 制御部
 20 タッチセンサ
 30 表示部
 40 押圧検出部
 50 触感呈示部
 80 記憶部
 
 

Claims (10)

  1.  押圧を検出する押圧検出部と、
     押圧に基づくデータに関する基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する制御部と、
     を備えることを特徴とする電子機器。
  2.  押圧を検出する押圧検出部と、
     押圧に基づくデータに関する基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値が変化する速度を変更するように制御する制御部と、
     を備えることを特徴とする電子機器。
  3.  前記制御部は、前記押圧検出部により検出される押圧に基づくデータの変化が所定期間内に所定範囲内であったら、前記所定期間に検出された押圧に基づくデータに基づいて前記基準を設定するように制御する、請求項1または2に記載の電子機器。
  4.  前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加した場合と、前記押圧検出部により検出される押圧に基づくデータが減少した場合とで、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が等しくなるように制御する、請求項1に記載の電子機器。
  5.  前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加および減少のうち一方から他方へと転じる前後において、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が異なるように制御する、請求項1に記載の電子機器。
  6.  押圧を検出する押圧検出部と、
     前記押圧検出部により検出される押圧に基づくデータが所定の条件を満たしたら、押圧に基づくデータに関する基準を設定し、
     前記基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値を増減するように制御する制御部と、
     を備えることを特徴とする電子機器。
  7.  押圧を検出する押圧検出部と、
     前記押圧検出部により検出される押圧に基づくデータが所定の条件を満たしたら、押圧に基づくデータに関する基準を設定し、
     前記基準が設定されると、当該基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて、所定の処理に関連付けられたパラメータの値が変化する速度を変更するように制御する制御部と、
     を備えることを特徴とする電子機器。
  8.  前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加から減少に転じた後に減少から増加に転じたら、前記増加から減少に転じた際の押圧に基づくデータおよび前記減少から増加に転じた際の押圧に基づくデータに基づいて前記基準を設定するように制御する、請求項6または7に記載の電子機器。
  9.  前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加した場合と、前記押圧検出部により検出される押圧に基づくデータが減少した場合とで、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が等しくなるように制御する、請求項6に記載の電子機器。
  10.  前記制御部は、前記押圧検出部により検出される押圧に基づくデータが増加および減少のうち一方から他方へと転じる前後において、前記基準と前記押圧検出部により検出される押圧に基づくデータとの差に応じて前記パラメータの値を増減する量が異なるように制御する、請求項6に記載の電子機器。
     
PCT/JP2012/003434 2011-05-27 2012-05-25 電子機器 WO2012164895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013517863A JP5808404B2 (ja) 2011-05-27 2012-05-25 電子機器
US14/122,640 US9798408B2 (en) 2011-05-27 2012-05-25 Electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-119713 2011-05-27
JP2011-119682 2011-05-27
JP2011119682 2011-05-27
JP2011119713 2011-05-27

Publications (1)

Publication Number Publication Date
WO2012164895A1 true WO2012164895A1 (ja) 2012-12-06

Family

ID=47258771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003434 WO2012164895A1 (ja) 2011-05-27 2012-05-25 電子機器

Country Status (3)

Country Link
US (1) US9798408B2 (ja)
JP (1) JP5808404B2 (ja)
WO (1) WO2012164895A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142813A (ja) * 2013-01-24 2014-08-07 Sharp Corp 電子機器、および電子機器操作制御プログラム
US20150002416A1 (en) * 2013-06-27 2015-01-01 Fujitsu Limited Electronic device
JP2015176449A (ja) * 2014-03-17 2015-10-05 アルプス電気株式会社 入力装置
JP2016039497A (ja) * 2014-08-07 2016-03-22 キヤノン株式会社 携帯端末および携帯端末の制御方法
JP2016130999A (ja) * 2015-01-15 2016-07-21 Smk株式会社 タッチパネル保持体
US9588616B2 (en) 2014-05-06 2017-03-07 Corning Incorporated Cantilevered displacement sensors and methods of determining touching forces on a touch screen
EP2939098B1 (en) * 2012-12-29 2018-10-10 Apple Inc. Device, method, and graphical user interface for transitioning between touch input to display output relationships
JP2019204199A (ja) * 2018-05-22 2019-11-28 国立大学法人お茶の水女子大学 情報処理端末、情報処理方法、及び情報処理プログラム
JP2020518897A (ja) * 2017-04-20 2020-06-25 株式会社 ハイディープHiDeep Inc. タッチ感知及びタッチ圧力感知が可能な装置及び制御方法
WO2023281829A1 (ja) * 2021-07-07 2023-01-12 アルプスアルパイン株式会社 入力装置

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9417754B2 (en) 2011-08-05 2016-08-16 P4tents1, LLC User interface system, method, and computer program product
KR101806350B1 (ko) 2012-05-09 2017-12-07 애플 인크. 사용자 인터페이스 객체를 선택하는 디바이스, 방법, 및 그래픽 사용자 인터페이스
WO2013169851A2 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for facilitating user interaction with controls in a user interface
WO2013169843A1 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for manipulating framed graphical objects
AU2013259613B2 (en) 2012-05-09 2016-07-21 Apple Inc. Device, method, and graphical user interface for providing tactile feedback for operations performed in a user interface
EP2847659B1 (en) 2012-05-09 2019-09-04 Apple Inc. Device, method, and graphical user interface for transitioning between display states in response to a gesture
WO2013169865A2 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for moving a user interface object based on an intensity of a press input
WO2013169846A1 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for displaying additional information in response to a user contact
WO2013169845A1 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for scrolling nested regions
WO2013169842A2 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for selecting object within a group of objects
WO2013169875A2 (en) 2012-05-09 2013-11-14 Yknots Industries Llc Device, method, and graphical user interface for displaying content associated with a corresponding affordance
CN109298789B (zh) 2012-05-09 2021-12-31 苹果公司 用于针对激活状态提供反馈的设备、方法和图形用户界面
EP3264252B1 (en) 2012-05-09 2019-11-27 Apple Inc. Device, method, and graphical user interface for performing an operation in accordance with a selected mode of operation
WO2013169849A2 (en) 2012-05-09 2013-11-14 Industries Llc Yknots Device, method, and graphical user interface for displaying user interface objects corresponding to an application
CN104220975B (zh) * 2012-05-10 2017-12-01 英特尔公司 用于响应手势捕捉图像的方法和设备
JP2014038560A (ja) * 2012-08-20 2014-02-27 Canon Inc 情報処理装置、情報処理方法及びプログラム
CN107831991B (zh) 2012-12-29 2020-11-27 苹果公司 用于确定是滚动还是选择内容的设备、方法和图形用户界面
WO2014105274A1 (en) 2012-12-29 2014-07-03 Yknots Industries Llc Device, method, and graphical user interface for navigating user interface hierarchies
CN105144057B (zh) 2012-12-29 2019-05-17 苹果公司 用于根据具有模拟三维特征的控制图标的外观变化来移动光标的设备、方法和图形用户界面
WO2014105279A1 (en) 2012-12-29 2014-07-03 Yknots Industries Llc Device, method, and graphical user interface for switching between user interfaces
AU2013368441B2 (en) 2012-12-29 2016-04-14 Apple Inc. Device, method, and graphical user interface for forgoing generation of tactile output for a multi-contact gesture
US9396697B2 (en) * 2013-06-01 2016-07-19 Apple Inc. Intelligently placing labels
JP6473610B2 (ja) * 2014-12-08 2019-02-20 株式会社デンソーテン 操作装置、及び、操作システム
JP6038202B2 (ja) * 2015-02-06 2016-12-07 京セラドキュメントソリューションズ株式会社 入力装置および電子機器
TWI653552B (zh) 2015-02-13 2019-03-11 禾瑞亞科技股份有限公司 調整觸控筆壓力信號值參數的設定方法、觸控電子裝置與系統
US9990107B2 (en) 2015-03-08 2018-06-05 Apple Inc. Devices, methods, and graphical user interfaces for displaying and using menus
US10048757B2 (en) 2015-03-08 2018-08-14 Apple Inc. Devices and methods for controlling media presentation
US9632664B2 (en) 2015-03-08 2017-04-25 Apple Inc. Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
US10095396B2 (en) 2015-03-08 2018-10-09 Apple Inc. Devices, methods, and graphical user interfaces for interacting with a control object while dragging another object
US9645732B2 (en) 2015-03-08 2017-05-09 Apple Inc. Devices, methods, and graphical user interfaces for displaying and using menus
US9639184B2 (en) 2015-03-19 2017-05-02 Apple Inc. Touch input cursor manipulation
US9785305B2 (en) 2015-03-19 2017-10-10 Apple Inc. Touch input cursor manipulation
US10067653B2 (en) 2015-04-01 2018-09-04 Apple Inc. Devices and methods for processing touch inputs based on their intensities
US20170045981A1 (en) 2015-08-10 2017-02-16 Apple Inc. Devices and Methods for Processing Touch Inputs Based on Their Intensities
US10200598B2 (en) 2015-06-07 2019-02-05 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
US10346030B2 (en) 2015-06-07 2019-07-09 Apple Inc. Devices and methods for navigating between user interfaces
US9674426B2 (en) 2015-06-07 2017-06-06 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
US9860451B2 (en) 2015-06-07 2018-01-02 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
US9891811B2 (en) 2015-06-07 2018-02-13 Apple Inc. Devices and methods for navigating between user interfaces
US9830048B2 (en) 2015-06-07 2017-11-28 Apple Inc. Devices and methods for processing touch inputs with instructions in a web page
US10416800B2 (en) 2015-08-10 2019-09-17 Apple Inc. Devices, methods, and graphical user interfaces for adjusting user interface objects
US9880735B2 (en) 2015-08-10 2018-01-30 Apple Inc. Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
US10235035B2 (en) 2015-08-10 2019-03-19 Apple Inc. Devices, methods, and graphical user interfaces for content navigation and manipulation
US10248308B2 (en) 2015-08-10 2019-04-02 Apple Inc. Devices, methods, and graphical user interfaces for manipulating user interfaces with physical gestures
US20170068374A1 (en) * 2015-09-09 2017-03-09 Microsoft Technology Licensing, Llc Changing an interaction layer on a graphical user interface
EP3936991A1 (en) * 2015-10-02 2022-01-12 Koninklijke Philips N.V. Apparatus for displaying data
KR102468314B1 (ko) * 2015-10-21 2022-11-17 삼성전자주식회사 Ui 제공 방법 및 이를 수행하는 전자 장치
US20170220241A1 (en) * 2016-01-29 2017-08-03 Onshape Inc. Force touch zoom selection
CN105718116A (zh) * 2016-02-01 2016-06-29 京东方科技集团股份有限公司 一种触控面板及其制备方法、触控显示屏
KR102514963B1 (ko) * 2016-04-18 2023-03-28 엘지전자 주식회사 이동 단말기 및 그 제어방법
JP6730972B2 (ja) * 2017-10-20 2020-07-29 ヤフー株式会社 情報制御プログラム、情報制御方法および端末装置
CN113096220A (zh) * 2021-04-08 2021-07-09 苏州伊恩动漫有限公司 动漫场景渲染制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317142A (ja) * 1994-04-28 2000-11-21 Sega Enterp Ltd コンピュータゲーム装置およびこれに用いる操作制御装置
JP2001202192A (ja) * 2000-01-18 2001-07-27 Sony Corp 情報処理装置及びその方法並びにプログラム格納媒体
JP2010211399A (ja) * 2009-03-09 2010-09-24 Sony Corp 情報処理装置、閾値設定方法及びそのプログラム
JP2011048666A (ja) * 2009-08-27 2011-03-10 Sony Corp 情報処理装置、情報処理方法、及びプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW521205B (en) * 2001-06-05 2003-02-21 Compal Electronics Inc Touch screen capable of controlling amplification with pressure
JP2003157075A (ja) * 2001-11-22 2003-05-30 Kawai Musical Instr Mfg Co Ltd 電子楽器のパラメータ入力装置
JP2003241898A (ja) 2002-02-20 2003-08-29 Fujikura Ltd タッチパネル
EP1462917A1 (en) * 2003-03-26 2004-09-29 High Tech Computer Corp. Touch panel threshold pressure setup method and apparatus
CN1993672A (zh) * 2004-08-02 2007-07-04 皇家飞利浦电子股份有限公司 在触摸屏上的压控导航
US7619616B2 (en) 2004-12-21 2009-11-17 Microsoft Corporation Pressure sensitive controls
US7683889B2 (en) * 2004-12-21 2010-03-23 Microsoft Corporation Pressure based selection
JP2006345209A (ja) 2005-06-08 2006-12-21 Sony Corp 入力装置、情報処理装置、情報処理方法、及びプログラム
US7486282B2 (en) * 2006-01-27 2009-02-03 Microsoft Corporation Size variant pressure eraser
US20070222767A1 (en) * 2006-03-22 2007-09-27 David Wang Glide touch sensor based interface for navigation infotainment systems
US20090046110A1 (en) * 2007-08-16 2009-02-19 Motorola, Inc. Method and apparatus for manipulating a displayed image
JP4590596B2 (ja) * 2007-12-11 2010-12-01 独立行政法人理化学研究所 入力装置、制御装置、入力方法、制御方法ならびに、プログラム
JP5191321B2 (ja) * 2008-09-02 2013-05-08 株式会社ジャパンディスプレイウェスト 情報入力装置、情報入力方法、情報入出力装置および情報入力プログラム
JP4811452B2 (ja) 2008-11-19 2011-11-09 ソニー株式会社 画像処理装置、画像表示方法および画像表示プログラム
JP5734546B2 (ja) * 2009-02-25 2015-06-17 京セラ株式会社 オブジェクト表示装置
JP2011053974A (ja) * 2009-09-02 2011-03-17 Sony Corp 操作制御装置、操作制御方法およびコンピュータプログラム
JP5182260B2 (ja) 2009-09-02 2013-04-17 ソニー株式会社 操作制御装置、操作制御方法およびコンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000317142A (ja) * 1994-04-28 2000-11-21 Sega Enterp Ltd コンピュータゲーム装置およびこれに用いる操作制御装置
JP2001202192A (ja) * 2000-01-18 2001-07-27 Sony Corp 情報処理装置及びその方法並びにプログラム格納媒体
JP2010211399A (ja) * 2009-03-09 2010-09-24 Sony Corp 情報処理装置、閾値設定方法及びそのプログラム
JP2011048666A (ja) * 2009-08-27 2011-03-10 Sony Corp 情報処理装置、情報処理方法、及びプログラム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2939098B1 (en) * 2012-12-29 2018-10-10 Apple Inc. Device, method, and graphical user interface for transitioning between touch input to display output relationships
JP2014142813A (ja) * 2013-01-24 2014-08-07 Sharp Corp 電子機器、および電子機器操作制御プログラム
US20150002416A1 (en) * 2013-06-27 2015-01-01 Fujitsu Limited Electronic device
JP2015176449A (ja) * 2014-03-17 2015-10-05 アルプス電気株式会社 入力装置
US9588616B2 (en) 2014-05-06 2017-03-07 Corning Incorporated Cantilevered displacement sensors and methods of determining touching forces on a touch screen
JP2016039497A (ja) * 2014-08-07 2016-03-22 キヤノン株式会社 携帯端末および携帯端末の制御方法
JP2016130999A (ja) * 2015-01-15 2016-07-21 Smk株式会社 タッチパネル保持体
JP2020518897A (ja) * 2017-04-20 2020-06-25 株式会社 ハイディープHiDeep Inc. タッチ感知及びタッチ圧力感知が可能な装置及び制御方法
JP2019204199A (ja) * 2018-05-22 2019-11-28 国立大学法人お茶の水女子大学 情報処理端末、情報処理方法、及び情報処理プログラム
JP7085195B2 (ja) 2018-05-22 2022-06-16 国立大学法人お茶の水女子大学 情報処理端末、情報処理方法、及び情報処理プログラム
WO2023281829A1 (ja) * 2021-07-07 2023-01-12 アルプスアルパイン株式会社 入力装置

Also Published As

Publication number Publication date
US20140111456A1 (en) 2014-04-24
US9798408B2 (en) 2017-10-24
JP5808404B2 (ja) 2015-11-10
JPWO2012164895A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5808404B2 (ja) 電子機器
JP5738413B2 (ja) 電子機器
US20110179381A1 (en) Portable electronic device and method of controlling same
JP5977627B2 (ja) 情報処理装置、情報処理方法およびプログラム
CA2667911C (en) Portable electronic device including a touch-sensitive display and method of controlling same
US20110084910A1 (en) Portable electronic device including touch-sensitive display and method of controlling same
KR101971982B1 (ko) 터치 감지 및 터치압력 감지가 가능한 장치 및 제어방법
JP5792558B2 (ja) 電子機器および制御方法
CA2685639A1 (en) Portable electronic device including touch-sensitive display and method of controlling same to provide tactile feedback
EP2390766A1 (en) Electronic device including touch-sensitive display and method of controlling same
JP5555612B2 (ja) 触感呈示装置
US20110128236A1 (en) Electronic device and method of controlling same
US8887086B2 (en) Portable electronic device and method of controlling same
EP2306288A1 (en) Electronic device including touch-sensitive input device and method of controlling same
JP2013206180A (ja) 電子機器および表示方法
JP5529981B2 (ja) 電子機器
JP5792553B2 (ja) 電子機器および制御方法
US20110074827A1 (en) Electronic device including touch-sensitive input device and method of controlling same
CA2761567A1 (en) Portable electronic device with dual-touch zoom
JP5588023B2 (ja) 電子機器
EP2348392A1 (en) Portable electronic device and method of controlling same
JP2015106174A (ja) 電子機器
EP2690538A1 (en) Electronic device including touch-sensitive display and method of controlling same
US8350818B2 (en) Touch-sensitive display method and apparatus
CA2686570C (en) Method of changing boundaries on a touch-sensitive display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517863

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12793413

Country of ref document: EP

Kind code of ref document: A1