WO2012163247A1 - 金属锂复合结构锂离子电池负极 - Google Patents

金属锂复合结构锂离子电池负极 Download PDF

Info

Publication number
WO2012163247A1
WO2012163247A1 PCT/CN2012/076046 CN2012076046W WO2012163247A1 WO 2012163247 A1 WO2012163247 A1 WO 2012163247A1 CN 2012076046 W CN2012076046 W CN 2012076046W WO 2012163247 A1 WO2012163247 A1 WO 2012163247A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
metal
negative electrode
barrier layer
ion battery
Prior art date
Application number
PCT/CN2012/076046
Other languages
English (en)
French (fr)
Inventor
贾殷秋
杨毅
贾志杰
杨新建
Original Assignee
武汉市弘阳科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉市弘阳科技发展有限公司 filed Critical 武汉市弘阳科技发展有限公司
Publication of WO2012163247A1 publication Critical patent/WO2012163247A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion battery, and in particular to a metal lithium composite lithium ion battery negative electrode. Background technique
  • the lithium ion anode material currently used for production is generally a graphite ball.
  • graphite anode materials Although many non-graphite anode materials have been researched and developed, the working principle is the same, that is, lithium/delithium is inserted, and representative materials such as tin-based, silicon-based, and aluminum-lithium alloys.
  • graphite has the highest lithium ion transport efficiency but low capacity; other materials have high capacity, but lithium ion transport efficiency is low.
  • graphite balls due to their lithium-ion/de-lithium operation, still have a hindrance to lithium-ion transport, that is, high-current performance is still limited.
  • Metallic lithium has a very high capacity (mass specific capacity is more than 10 times the theoretical value of graphite) and extremely high lithium ion transmission efficiency (lithium ion directly grows outside the lithium crystal grain, without any resistance to transmission), no degradation, etc.
  • high capacity mass specific capacity is more than 10 times the theoretical value of graphite
  • extremely high lithium ion transmission efficiency lithium ion directly grows outside the lithium crystal grain, without any resistance to transmission
  • long dendrites are formed, which can pierce the ion membrane (polyvinyl chloride sandwiched polyethylene), causing internal short circuit of the battery, posing a safety hazard.
  • some spherical graphite particles are mixed to make a negative electrode and metal lithium, and a33 V0 2. 66 and lithium-free oxides, sulfides, and a positive electrode material Li match.
  • An object of the present invention is to solve the deficiencies of the above-mentioned background art, and to provide a lithium metal ion battery negative electrode of a metal lithium composite structure capable of preventing the ion film from being pierced by lithium dendrites and more fully exhibiting the electrochemical advantages of metal lithium.
  • a metal lithium composite structure lithium ion battery anode which is characterized in that metal lithium is used as a negative electrode core material of a lithium ion battery, and the outer surface of the metal lithium and the ion film is coated with a barrier lithium.
  • the dendrite grows toward the barrier layer to prevent the barrier layer from penetrating the ion membrane, and the barrier layer is provided with a hole capable of conducting the electrolyte.
  • This barrier layer prevents the lithium dendrite from growing in the direction of the barrier layer, thereby protecting the ionic membrane on the back side of the barrier layer from puncturing by the lithium dendrites.
  • the holes in the barrier layer direct the electrolyte to the metal lithium, ensuring that the electrochemical process is not affected.
  • the barrier layer is a perforated sheet.
  • the apertured sheet has a hole diameter of 10 to 100 ⁇ m.
  • the hole of the apertured sheet is filled with a powder material, and the micropores or slits are formed between the powder material particles to form a curved hole, which not only conducts the electrolyte but also prevents the lithium dendrite from passing through the barrier layer.
  • the ion membrane is then pierced.
  • the particle size of the powder material particles is less than one third of the diameter of the pores of the barrier layer.
  • the barrier layer is a perforated sheet having a length and width dimension greater than a metal lithium length and width dimension, and the metal lithium is sandwiched between the two sides by a barrier layer, and the edges of the two side barrier layers are connected to form an integral negative electrode structure together with the metal lithium. .
  • the barrier layer has a thickness of 5-100 microns.
  • the barrier layer is a sheet, and the length and width of the surface are larger than the surface length and width of the metal lithium.
  • the metal lithium is covered by two barrier layers, and the edges of the two barrier layers are connected, and the holes of the barrier layer are in contact with the metal. The lithium and the barrier layer are combined and punched together on a punching machine.
  • the barrier layer has a thickness of 10-100 microns.
  • a mesh having a thickness of more than 20 ⁇ m and a mesh size of more than 400 mesh is used as a barrier layer, and the two barrier layers sandwich the lithium metal sheet to constitute a negative electrode.
  • Metal lithium is the core material of the negative electrode of lithium ion battery.
  • a barrier layer which blocks the growth of lithium dendrite is coated with a metal lithium, and the barrier layer has a lithium dendrite preventing The barrier layer grows to protect the ionic membrane on the back side from being pierced.
  • the barrier layer structure is provided with a hole that can be infiltrated and passed through by the electrolyte, so that the surface of the metallic lithium is wetted by the electrolyte.
  • the negative electrode of the present invention can be used on one side or on both sides.
  • Single-sided use is a layer of positive electrode, one layer of negative electrode; double-sided use is a layer of negative electrode, two layers of positive electrode, which can maximize the capacity density of lithium-ion battery.
  • Figure 1 is a perspective view of the negative electrode of Embodiment 1;
  • Figure 2 is a cross-sectional view of Figure 1;
  • Figure 3 is a partial enlarged view of a hole in the barrier layer;
  • Figure 4 is a cross-sectional view of Figure 3;
  • Figure 5 is a cross-sectional view of Embodiment 2.
  • Fig. 6 is a view showing a state in which the present invention is used in combination with a two-layer positive electrode. detailed description
  • Example 1 See Figures 1 to 4.
  • the embodiment relates to a lithium metal battery negative electrode of a lithium metal composite structure, which uses a sheet metal lithium 1 as a negative electrode core material of a lithium ion battery.
  • a barrier layer 2 is disposed between the metallic lithium 1 and the ionic membrane 5, and the barrier layer coats the metallic lithium to prevent the lithium dendrites from growing in a direction perpendicular to the barrier layer.
  • the barrier layer 2 may be a copper mesh of 20 to 600 mesh, or other hard material mesh, preferably 200-500 mesh.
  • the mesh is made of carbon black or other powder material with a small amount of binder and solvent, and is prepared into a paste.
  • a layer is applied to the hard material web and penetrated into the mesh (to ensure that each hole is filled).
  • the particle size of the powder material particles 3 is less than one third of the diameter of the mesh so that the powder material is filled into the mesh.
  • Example 2 See Figure 5.
  • the metal lithium 1 is a sheet material
  • the barrier layer 2 is a copper sheet.
  • the thickness of the copper sheet is greater than 10 ⁇ m, and the length and width dimensions thereof are larger than the length and width dimensions of the metal lithium sheet.
  • the metal lithium sheet is wrapped with two pieces of copper, the edges of which are joined together, and then punched together on the punching machine 4 to form a negative electrode.
  • Embodiment 3 The metal lithium 1 in this embodiment is a sheet material, and the barrier layer 2 is a mesh larger than 400 mesh, and the thickness is more than 20 micrometers. The two layers of the metal layer are directly coated with a metal lithium plate, and may also be a negative electrode. Figure omitted.
  • the negative electrode prepared according to the above embodiment can be used in combination with the two positive electrodes 6 in use.
  • the high capacity of the negative electrode core-metal lithium plate can be fully utilized, and the battery capacity is improved while the battery is improved.
  • the high current performance (depending on the positive electrode, the negative electrode has no effect). If the positive lithium is not charged or is rarely charged (such as oxide or sulfide), the barrier layer and the lithium metal sheet may be in close contact; if the positive electrode is filled with lithium (such as lithium manganate or lithium iron phosphate), The lithium metal sheet is thin, and a certain gap is left between the barrier layer and the lithium metal sheet.
  • the lithium dendrite effect was blocked: the embodiment 1 was the best, the example 2 was the second, and the example 3 was again (because the dendrite grew up filling the mesh, forming a bond).
  • the capacity improvement effect under the same positive electrode 6 condition The battery capacity of the embodiment scheme and the embodiment 2 was improved by more than 50%; and the battery capacity of the embodiment 3 was increased by about 40%.
  • the three embodiment schemes have excellent high current performance.
  • the present invention can prevent the ion film 5 from being pierced by lithium dendrites, and more fully exerts the electrochemical superiority performance of the metal lithium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及金属锂复合结构锂离子电池负极,其特征在于采用金属锂作为锂离子电池负极核心材料,在金属锂与离子膜相对的外表面包覆有阻隔锂枝晶朝阻隔层方向长大、防止刺穿离子膜作用的阻隔层,在阻隔层中设有能导通电解液的孔洞。本发明能够防止离子膜被锂枝晶刺穿,更加充分地发挥金属锂电化学优势性能。

Description

金属锂复合结构锂离子电池负极 技术领域
本发明涉及锂离子电池, 具体地说涉及一种金属锂复合结构锂离子电池负极。 背景技术
目前生产用的锂离子负极材料一般为石墨球。虽然研究开发了很多非石墨负极材料, 但工作原理相同, 即插锂 /脱锂, 具有代表性的是锡基、 硅基、 铝锂合金等材料。 在这些 负极材料中, 石墨的锂离子传输效率最高, 但容量低; 其它材料容量高, 但锂离子传输 效率较低。 然而, 即使是石墨球, 由于其插锂 /脱锂的工作方式, 对锂离子传输仍然有阻 碍,即大电流性能仍然有限。金属锂有极高的容量(质量比容量是石墨理论值的 10倍多) 和极高的锂离子传输效率(锂离子直接长在锂晶粒外部, 传输无任何阻力)、无衰退等优 点, 但多次循环后, 会形成较长的枝晶, 可刺穿离子膜(聚氯乙烯夹聚乙烯), 使电池内 部短路, 造成安全隐患。 虽然有人用石墨球与金属锂颗粒混合做负极, 与 Lia33V02.66及 无锂氧化物、 硫化物等正极材料相配和。 但在这种情形下, 金属锂仍然会长成较长枝晶 刺穿离子膜。 而且由于金属锂不仅化学性质极活泼, 在粉化处理过程中极易发生氧化, 使金属锂失效。 发明内容
本发明的目的是为了解决上述背景技术存在的不足,提出一种能够防止离子膜被锂 枝晶刺穿, 更加充分地发挥金属锂电化学优势性能的金属锂复合结构锂离子电池负极。
为实现上述目的, 本发明采用如下技术方案: 金属锂复合结构锂离子电池负极, 其 特征在于采用金属锂作为锂离子电池负极核心材料, 在金属锂与离子膜相对的外表面包 覆有阻隔锂枝晶朝阻隔层方向长大、 防止刺穿离子膜作用的阻隔层, 在阻隔层中设有能 导通电解液的孔洞。 这种阻隔层能够阻止锂枝晶朝阻隔层方向长大, 从而保护阻隔层背 面的离子膜, 避免被锂枝晶刺穿。 阻隔层中的孔洞可引导电解液流向金属锂, 保证电化 学过程不受影响。
优选地, 所述阻隔层为带孔薄片。 进一步说, 所述带孔薄片的孔洞直径为 10-100微米。
优选地, 所述带孔薄片的孔洞中填充粉体材料, 粉体材料颗粒之间有贯通的微孔或 缝隙, 形成弯曲孔洞, 既导通电解液, 又防止锂枝晶穿过阻隔层, 然后刺穿离子膜。
进一步说, 所述粉体材料颗粒的粒径小于阻隔层孔洞直径的三分之一。
优选地, 所述阻隔层为带孔薄片, 其长宽尺寸大于金属锂长宽尺寸, 金属锂两面被 阻隔层夹在中间, 两面阻隔层的边缘相连, 与金属锂一起, 组成一整体负极结构。
较佳地, 所述阻隔层的厚度为 5-100微米。
优选地, 所述阻隔层为薄片, 表面的长宽尺寸大于金属锂表面长宽尺寸, 用两片阻 隔层包住金属锂, 两片阻隔层边缘相连, 所述阻隔层的孔洞是在与金属锂与阻隔层组合 后一起在冲孔机上冲孔加工而成。
较佳地, 所述阻隔层的厚度为 10-100微米。
优选地, 利用厚度大于 20微米、 目数大于 400目的网, 作为阻隔层, 两片阻隔层夹 住金属锂片, 构成负极。
本发明具有如下特点:
1 ) 金属锂为锂离子电池负极核心材料。
2) 为克服金属锂作为锂离子电池负极的缺陷 (枝晶刺穿离子膜、 造成短路), 采用 在金属锂外包覆阻隔锂枝晶长大的阻隔层, 阻隔层具有阻止锂枝晶朝阻隔层方向长大、 保护其背面的离子膜不被刺穿的功能。
3)阻隔层结构中设有能够被电解液渗透、穿过的孔洞,使金属锂表面被电解液浸润。
4)能够更加充分地发挥金属锂的大电流、 大容量、 高可逆、 长循环寿命等电化学优 势性能。
5)本发明所述的负极即可单面使用, 也可双面使用。 单面使用为一层正极, 一层负 极; 双面使用为一层负极, 两层正极, 可最大限度提高锂离子电池的容量密度。 附图说明
图 1是实施例 1所述负极立体图;
图 2是图 1的横截面图;
图 3是阻隔层中孔洞局部放大图; 图 4是图 3的横截面图;
图 5是实施例 2剖面图;
图 6是本发明与两层正极配合使用状态图。 具体实施方式
以下结合附图所示实施例对本发明作详细描述, 以便本领域技术人员的理解。
实施例 1 : 参见图 1至图 4。本实施例涉及一种金属锂复合结构锂离子电池负极, 采 用片状金属锂 1作为锂离子电池负极核心材料。 在金属锂 1与离子膜 5之间设置阻隔层 2, 阻隔层包裹金属锂, 以阻止锂枝晶沿垂直于阻隔层方向长大。所述阻隔层 2采用 20〜 600 目的铜网, 也可以采用其他硬质材料网, 优选 200-500 目。 该网用碳黑或其它粉体 材料加少量粘结剂和溶剂, 调制成糊状, 在硬质材料网上涂挂一层, 渗入网孔 (要保证 每个孔都被填充)。所述粉体材料颗粒 3的粒径小于网孔直径的三分之一,这样才能使粉 体材料填充到网孔中。
将上述制成的网晾、 烘干后, 取样检测: 网平放于一玻璃器皿之上, 在网上滴电解 液, 放置 1-5小时, 观察电解液是否渗透到网的另一面。 若渗透, 则合格。 最后, 在干 燥室内,用两层这种网夹一层金属锂片材(厚度要保证两层正极容量之需,还要多 50%), 两层网边缘连接 (焊接) 在一起。 网的长宽尺寸大于金属锂片材长、 宽尺寸, 以利于保 护。
实施例 2: 参见图 5。 本实施例金属锂 1为片状材料, 阻隔层 2为铜片, 铜片厚度 大于 10微米, 其长宽尺寸大于金属锂片材长宽尺寸。用两片铜包住金属锂片材, 其边缘 连接在一起, 然后一起在冲孔机上冲孔 4, 即成负极。
也可以在铜片的一面溅射一层锂后, 一起在冲孔机上冲孔 4, 孔径尽可能小一些。 实施例 3: 本实施例金属锂 1为片状材料, 阻隔层 2为大于 400目的网, 厚度大于 20微米, 直接将两层网包一层金属锂片, 也可成负极。 图略。
按照上述实施例制成的负极, 使用时可与两层正极 6配合, 参见图 6, 可以充分地 利用负极核心一金属锂片的高容量, 而且在提高整个电池容量的同时, 也改善了电池 的大电流性能(完全取决于正极, 负极没有影响)。若正极锂充不出或充出很少(如氧化 物或硫化物), 则阻隔层与金属锂片可贴紧; 若正极充出锂 (如锰酸锂或磷酸亚铁锂), 则金属锂片要薄, 且阻隔层与金属锂片间留一定间隙。
阻隔锂枝晶效果:实施例 1方案最佳,实施例 2方案次之,实施例 3方案再次之(因 为枝晶长大填满了网孔, 形成了粘结)。
相同正极 6条件下, 容量提高效果: 实施例方案和实施例 2方案的电池容量提高超 过 50% ; 实施例 3方案电池容量提高 40%左右。 三个实施例方案大电流性能都很佳。
综上所述, 本发明能够防止离子膜 5被锂枝晶刺穿, 更加充分地发挥金属锂电化学 优势性能。
尽管上述实施例对本发明做出了详尽的描述,但本领域普通技术人员还可以对其作 出不偏离中心思想的修改, 如采用块状或条状等其他形状的金属锂, 这些修改都属于本 发明的保护范围, 本发明的保护范围应以权利要求书为准。

Claims

权利要求书
1、 金属锂复合结构锂离子电池负极, 其特征在于采用金属锂作为锂离子电池负极核 心材料, 在金属锂与离子膜相对的外表面包覆有阻隔锂枝晶朝阻隔层方向长大、 防止刺 穿离子膜作用的阻隔层, 在阻隔层中设有能导通电解液的孔洞。
2、根据权利要求 1所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述阻隔 层为带孔薄片。
3、根据权利要求 2所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述带孔 薄片的孔洞直径为 10-100微米。
4、根据权利要求 2所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述带孔 薄片的孔洞中填充粉体材料, 粉体材料颗粒之间有贯通的微孔或缝隙。
5、根据权利要求 4所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述粉体 材料颗粒的粒径小于阻隔层孔洞直径的三分之一。
6、根据权利要求 1至 5中至少一项权利要求所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述阻隔层为带孔薄片, 其长宽尺寸大于金属锂长宽尺寸, 金属锂两面被 阻隔层夹在中间, 两面阻隔层的边缘相连, 与金属锂一起, 组成一整体负极结构。
7、根据权利要求 6所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述阻隔 层的厚度为 5-100微米。
8、根据权利要求 1所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述阻隔 层为薄片, 表面的长宽尺寸大于金属锂表面长宽尺寸, 用两片阻隔层包住金属锂, 两片 阻隔层边缘相连, 所述阻隔层的孔洞是在与金属锂与阻隔层组合后一起在冲孔机上冲孔 加工而成。
9、根据权利要求 8所述的金属锂复合结构锂离子电池负极, 其特征在于, 所述阻隔 层的厚度为 10-100微米。
10、 根据权利要求 1所述的金属锂复合结构锂离子电池负极, 其特征在于, 利用厚 度大于 20微米、 目数大于 400目的网, 作为阻隔层, 两片阻隔层夹住金属锂片, 构成负 极。
PCT/CN2012/076046 2011-06-03 2012-05-25 金属锂复合结构锂离子电池负极 WO2012163247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110149479.1 2011-06-03
CN2011101494791A CN102263232A (zh) 2011-06-03 2011-06-03 金属锂复合结构锂离子电池负极

Publications (1)

Publication Number Publication Date
WO2012163247A1 true WO2012163247A1 (zh) 2012-12-06

Family

ID=45009773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/076046 WO2012163247A1 (zh) 2011-06-03 2012-05-25 金属锂复合结构锂离子电池负极

Country Status (2)

Country Link
CN (1) CN102263232A (zh)
WO (1) WO2012163247A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263232A (zh) * 2011-06-03 2011-11-30 武汉市弘阳科技发展有限公司 金属锂复合结构锂离子电池负极
CN103794755B (zh) * 2014-02-21 2017-01-11 武汉市弘阳科技发展有限公司 金属锂复合结构锂离子电池负极
CN103887074A (zh) * 2014-03-19 2014-06-25 上海奥威科技开发有限公司 一种长寿命锂离子电容器
CN105470551A (zh) * 2015-12-22 2016-04-06 中天储能科技有限公司 一种高比能量低成本锂离子电池
KR101827135B1 (ko) * 2016-07-27 2018-02-07 현대자동차주식회사 리튬 이차 전지용 전극, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
CN106876662A (zh) * 2017-01-23 2017-06-20 浙江大学 一种具有三维结构的金属电极
CN108735970B (zh) * 2018-04-20 2022-08-16 南京邮电大学 一种二次电池用三明治结构金属复合负极片
CN109616612B (zh) * 2018-12-05 2020-09-01 珠海格力电器股份有限公司 一种电极及锂离子电池
CN111613772B (zh) * 2020-04-21 2022-08-05 浙江锋锂新能源科技有限公司 一种三维结构复合金属锂负极及其制备方法
CN112164804A (zh) * 2020-09-29 2021-01-01 贵州梅岭电源有限公司 一种复合改性锂金属软包电池的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1511351A (zh) * 2001-05-23 2004-07-07 分子技术股份有限公司 电化学电池的锂阳极
CN1581538A (zh) * 2004-05-21 2005-02-16 惠州Tcl金能电池有限公司 一种二次金属锂电池负极的制造方法
US20100104948A1 (en) * 1999-11-23 2010-04-29 Sion Power Corporation Protection of anodes for electrochemical cells
CN102263232A (zh) * 2011-06-03 2011-11-30 武汉市弘阳科技发展有限公司 金属锂复合结构锂离子电池负极

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514180B2 (en) * 2004-03-16 2009-04-07 Toyota Motor Engineering & Manufacturing North America, Inc. Battery with molten salt electrolyte and protected lithium-based negative electrode material
CN202121011U (zh) * 2011-06-03 2012-01-18 武汉市弘阳科技发展有限公司 金属锂复合结构锂离子电池负极

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100104948A1 (en) * 1999-11-23 2010-04-29 Sion Power Corporation Protection of anodes for electrochemical cells
CN1511351A (zh) * 2001-05-23 2004-07-07 分子技术股份有限公司 电化学电池的锂阳极
CN1581538A (zh) * 2004-05-21 2005-02-16 惠州Tcl金能电池有限公司 一种二次金属锂电池负极的制造方法
CN102263232A (zh) * 2011-06-03 2011-11-30 武汉市弘阳科技发展有限公司 金属锂复合结构锂离子电池负极

Also Published As

Publication number Publication date
CN102263232A (zh) 2011-11-30

Similar Documents

Publication Publication Date Title
WO2012163247A1 (zh) 金属锂复合结构锂离子电池负极
US10020478B2 (en) Electrode with porous protective film, nonaqueous electrolyte secondary battery, and method for manufacturing electrode with porous protective film
CN107681115B (zh) 一种锂浆料电池的负极片
TW200917546A (en) Non-aqueous electrolyte secondary battery and producing method of electrode
JP2013026057A (ja) 集電体および非水系二次電池
JPWO2018225515A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
CN105103342B (zh) 锂离子二次电池
JP2011029079A (ja) 非水電解質二次電池
WO2020038011A1 (zh) 锂离子电池及其制备方法和电动车辆
CN113314696A (zh) 电极极片、制备方法、复合集流体、电池及电子设备
WO2022052119A1 (zh) 复合固态电解质、电池和电子装置
CN202121011U (zh) 金属锂复合结构锂离子电池负极
CN108346772B (zh) 一种锂浆料电池及其非对称式电极片
JPWO2013047379A1 (ja) リチウム二次電池及びその製造方法
US20210104746A1 (en) Electrode Assemblies Incorporating Ion Exchange Materials
JP6851711B2 (ja) 蓄電素子
CN112490425B (zh) 柔性复合锂金属电极及其制备和锂金属电池
CN110880575A (zh) 一种复合隔膜、制备及其在锂硫电池中的应用
WO2017187888A1 (ja) リチウム空気電池の負極複合体構造
CN208674263U (zh) 复合型负极和锂二次电池
JP2010003614A (ja) 電極用集電体の製造方法
CN217822875U (zh) 复合集流体、极片和电芯
JP2021057291A (ja) 全固体電池システム
US11909025B2 (en) Air electrode assemblies incorporating ion exchange materials
JP7406545B2 (ja) シート状電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/07/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12794121

Country of ref document: EP

Kind code of ref document: A1