WO2022052119A1 - 复合固态电解质、电池和电子装置 - Google Patents

复合固态电解质、电池和电子装置 Download PDF

Info

Publication number
WO2022052119A1
WO2022052119A1 PCT/CN2020/115132 CN2020115132W WO2022052119A1 WO 2022052119 A1 WO2022052119 A1 WO 2022052119A1 CN 2020115132 W CN2020115132 W CN 2020115132W WO 2022052119 A1 WO2022052119 A1 WO 2022052119A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
conductive layer
battery
layer
composite solid
Prior art date
Application number
PCT/CN2020/115132
Other languages
English (en)
French (fr)
Inventor
张艳如
孙建政
钟松材
丁小建
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080103370.1A priority Critical patent/CN115968518A/zh
Priority to PCT/CN2020/115132 priority patent/WO2022052119A1/zh
Publication of WO2022052119A1 publication Critical patent/WO2022052119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage, and in particular, to a composite solid electrolyte, a battery and an electronic device.
  • the present application provides a composite solid electrolyte including a first solid electrolyte layer, a second solid electrolyte layer and a conductive layer.
  • the conductive layer is disposed between the first solid electrolyte layer and the second solid electrolyte layer.
  • a conductive layer is arranged in the composite solid electrolyte to detect the chemical potential difference between the conductive layer and the pole piece, so as to detect the risk of a subsequent short circuit in advance, so that the battery can be safely handled in time before the short circuit occurs. Avoid serious safety hazards caused by short circuits and improve battery safety performance.
  • the material of the conductive layer includes an inorganic conductive material, and the inorganic conductive material is selected from at least one of metals, metal oxides, metal carbides, carbon nanomaterials and sulfides.
  • the conductive layer is a porous structure.
  • ions can be transported through the holes provided in the conductive layer, so that the composite solid electrolyte can be used for transporting ions.
  • the conductive layer has a specific surface area of 20 m 2 /g to 400 m 2 /g. Among them, when the specific surface area of the conductive layer is too small, the number of holes in the conductive layer is small, which is not conducive to ion conduction; when the specific surface area of the conductive layer is too large, the conductivity of the conductive layer is weakened.
  • the material of the conductive layer includes an organic conductive material
  • the organic conductive material is selected from at least one of polypyrrole, polyaniline, polythiophene and derivatives thereof. Therefore, the ions can be continuously complexed/decomplexed with the organic conductive material to migrate, so that the composite solid electrolyte can be used to transport ions.
  • the resistivity of the conductive layer is less than 10 -6 ⁇ cm, so that the conductive layer has better conductivity.
  • the thermal decomposition temperature of the material of the conductive layer is greater than 180° C., so that the conductive layer has high thermal stability.
  • the thickness of the conductive layer is 1 ⁇ m to 100 ⁇ m.
  • the conductive layer in the thickness direction of the composite solid electrolyte, includes a first thickness region adjacent to the first solid electrolyte layer, and part of the first solid electrolyte layer is disposed in the first thickness region.
  • the bonding force between the first solid electrolyte layer and the conductive layer can be improved.
  • the first solid-state electrolyte layer includes an inorganic solid-state electrolyte or an organic solid-state electrolyte.
  • the materials of the first solid-state electrolyte layer and the second solid-state electrolyte layer are different, so that the composite solid-state electrolyte can have the advantages of both the organic solid-state electrolyte and the inorganic solid-state electrolyte.
  • the thickness of the first solid electrolyte layer is 5 ⁇ m to 500 ⁇ m.
  • the composite solid state electrolyte further includes a terminal electrically connected to the conductive layer.
  • the conductive layer is electrically connected to the terminal through an adapter.
  • the material of the adapter is platinum or silver.
  • An embodiment of the present application also provides a battery, including an electrode assembly and a case for accommodating the electrode assembly.
  • the electrode assembly includes a first pole piece and a second pole piece.
  • the battery also includes the composite solid electrolyte as above, and the composite solid electrolyte is located between the first pole piece and the second pole piece.
  • the first pole piece is provided with a first tab, and a detection unit is provided between the terminal and the first tab.
  • the chemical potential difference between the conductive layer and the first pole piece is detected by the voltage detection unit, so as to detect in advance the possible risk of short circuit in the future. In this way, the battery can be safely processed in time before the short circuit occurs, so as to avoid the short circuit caused by the short circuit. Serious safety hazard.
  • the detection unit is a voltage detection unit.
  • the detection unit is provided inside the housing.
  • the terminal and the first tab extend out of the housing.
  • the present application also provides an electronic device including the above battery.
  • FIG. 1 is a cross-sectional view of a composite solid electrolyte according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of the pole piece of the battery shown in FIG. 2 when no lithium dendrites are precipitated.
  • FIG. 4 is a schematic structural diagram of the pole piece of the battery shown in FIG. 2 after lithium dendrites are precipitated.
  • FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 6 is a chemical potential diagram of the battery prepared in Example 1 of the present application before the lithium dendrite contacts the conductive layer.
  • FIG. 7 is a chemical potential diagram of the battery prepared in Example 1 of the present application after lithium dendrites are in contact with the conductive layer.
  • FIG. 8 is a chemical potential diagram of the battery prepared in Example 2 of the present application before lithium dendrites contact the conductive layer.
  • FIG. 9 is a chemical potential diagram of the battery prepared in Example 2 of the present application after lithium dendrites are in contact with the conductive layer.
  • Second pole piece 103 Second pole piece 103
  • the first collector 1021 The first collector 1021
  • the first active material layer 1022 is the first active material layer 1022
  • the second active material layer 1032 is the second active material layer 1032
  • an embodiment of the present application provides a composite solid electrolyte 10 including a first solid electrolyte layer 11 , a second solid electrolyte layer 12 and a conductive layer 13 .
  • the conductive layer 13 is provided between the first solid electrolyte layer 11 and the second solid electrolyte layer 12 .
  • the composite solid electrolyte 10 can be used in a lithium ion battery and is disposed between the first pole piece and the second pole piece of the lithium ion battery.
  • the composite solid state electrolyte 10 serves to hinder electron transport while conducting ions. Since the composite solid electrolyte 10 has the characteristics of being non-flammable, non-corrosive, non-volatile, and has no liquid leakage problem, the battery prepared by using the composite solid electrolyte 10 has high safety, long service life and theoretical energy. High density advantage.
  • lithium may be precipitated on the surface of the first pole piece or the second pole piece and lithium dendrites may be formed.
  • the lithium dendrite will pierce the solid electrolyte between the first pole piece and the second pole piece, resulting in the direct contact between the first pole piece and the second pole piece and a short circuit.
  • a conductive layer 13 is provided in the composite solid electrolyte 10.
  • the conductive layer 13 is arranged in the composite solid electrolyte 10 to detect the chemical potential difference between the conductive layer 13 and the pole piece, so as to detect in advance the risk of short circuit that may occur in the future.
  • the battery is safely handled to avoid serious safety hazards caused by short circuit and improve the safety performance of the battery.
  • the material of the conductive layer 13 includes an inorganic conductive material.
  • the inorganic conductive material may be selected from at least one of metals, metal oxides, metal carbides, carbon nanomaterials and sulfides.
  • the conductive layer 13 has a porous structure.
  • ions can be transported through the holes provided in the conductive layer 13, so that the composite solid electrolyte 10 can be used for transporting ions.
  • the specific surface area of the conductive layer 13 is 20 m 2 /g to 400 m 2 /g. Wherein, when the specific surface area of the conductive layer 13 is less than 20 m 2 /g, the number of holes in the conductive layer 13 is small, which is not conducive to ion conduction; when the specific surface area of the conductive layer 13 is greater than 400 m 2 /g, although the number of holes in the conductive layer 13 is relatively small However, the conductivity of the conductive layer 13 is weakened.
  • the inorganic conductive material is at least one of carbon nanotubes (CNTs) and silver nanowires, and the inorganic conductive materials can be interwoven to form a porous network structure.
  • the material of the conductive layer 13 may also be an organic conductive material.
  • the organic conductive material may be selected from at least one of polypyrrole, polyaniline, polythiophene and derivatives thereof.
  • the PEO main chain structure contains structural units This structural unit contains a strong electron-donating group (ie, ether oxygen functional group).
  • a strong electron-donating group ie, ether oxygen functional group
  • PEO acts as an ion-conducting matrix
  • lithium ion acts as a source of charge carriers.
  • the metal salt is dissociated into charge carriers, and the metal ion migrates through the continuous complexation/decomplexation process with the ether oxygen atom, thereby realizing the transport of ions.
  • the first solid-state electrolyte layer 11 includes an inorganic solid-state electrolyte or an organic solid-state electrolyte.
  • Inorganic solid electrolytes include oxide-type solid-state electrolytes or sulfide-type solid-state electrolytes.
  • the oxide type solid electrolyte may be of NASICON type, LISICON type, Garnet type or Anti-Perovskite type.
  • the inorganic solid electrolyte may be selected from Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 and Li 7-y La 3-x A x Zr 2- y By O 12 (wherein, 0 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 2, A is selected from Y, Nd, Sm or Gd, and B is selected from at least one of Nb or Ta).
  • the inorganic solid state electrolyte may be Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO).
  • the organic solid electrolyte can be selected from polyacrylonitrile, polyethylene oxide, polysiloxane, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP), polymethyl methacrylate and derivatives thereof at least one of.
  • the materials of the first solid electrolyte layer 11 and the second solid electrolyte layer 12 may be different.
  • the first solid electrolyte layer 11 uses an organic solid electrolyte and the second solid electrolyte layer 12 uses a sulfide-type inorganic solid electrolyte.
  • the composite solid electrolyte 10 can have the advantages of light weight, good viscoelasticity and excellent machinability of the organic solid electrolyte, as well as high ionic conductivity, low grain boundary resistance and good electrochemical stability of the sulfide type inorganic solid electrolyte. Etc.
  • the materials of the first solid electrolyte layer 11 and the second solid electrolyte layer 12 may also be the same.
  • the first solid electrolyte layer 11 can be obtained by the scraping method, and then the conductive layer slurry is coated on the first solid electrolyte layer 11 by the scraping method or the spraying method, and the conductive layer is obtained by drying. 13. Finally, a second solid electrolyte layer 12 is formed by blade coating on the other side of the conductive layer 13. By coating the conductive layer slurry on the first solid electrolyte layer 11 , the thickness of the final conductive layer 13 can be controlled without damaging the performance of the first solid electrolyte layer 11 .
  • the conductive layer 13 can also be prepared first, and then the first solid electrolyte layer 11 and the second solid electrolyte layer 12 are formed by blade coating on both sides of the conductive layer 13 respectively. At this time, during the blade coating process, part of the first solid electrolyte layer 11 and/or part of the second solid electrolyte layer 12 will be embedded in the holes provided in the conductive layer 13 to improve the connection between the conductive layer 13 and the first solid electrolyte layer 11 and/or or the bonding force of the second solid electrolyte layer 12 . That is, as shown in FIG.
  • the conductive layer 13 in the thickness direction of the composite solid electrolyte 10 , includes a first thickness region 131 adjacent to the first solid electrolyte layer 11 , and part of the first solid electrolyte layer 11 is disposed in the first thickness region 131 ;
  • the conductive layer 13 also includes a second thickness region 132 adjacent to the second solid electrolyte layer 12 , and part of the second solid electrolyte layer 12 is disposed in the second thickness region 132 .
  • the conductive layer paste may further include a thickener, a binder and a wetting agent.
  • the function of the thickener is to increase the stability of the slurry and prevent settling.
  • the thickener may be selected from sodium carboxymethylcellulose (CMC).
  • the binder is a core-shell structure or a non-core-shell structure. The role of the binder is to bind the components of the slurry together.
  • the binder may be selected from homopolymers or copolymers of acrylates, vinylidene fluoride, hexafluoropropylene, ethylene, propylene, vinyl chloride, propylene chloride, acrylic acid, styrene, tetravinylidene fluoride, butadiene and acrylonitrile at least one of.
  • the role of the wetting agent is to reduce the surface energy of the slurry and prevent coating leakage.
  • the wetting agent can be selected from polyether-modified polysiloxane, dimethylsiloxane, polyethylene oxide, oxyethylene alkyl phenol ether, polyoxyethylene fatty alcohol ether, polyoxyethylene polyoxypropylene block At least one of a copolymer and dioctyl sodium sulfosuccinate.
  • the mass percentage of inorganic conductive material or organic conductive material is 85% to 98.5%
  • the mass percentage of thickener is 0.2% to 1.2%
  • the mass percentage of binder is 0.6% to 10%.
  • the mass percentage of the wetting agent is 0.1% to 1.0%.
  • the resistivity of the conductive layer 13 is less than 10 ⁇ 6 ⁇ cm, so that the conductive layer 13 has better conductivity.
  • the thermal decomposition temperature of the material of the conductive layer 13 is greater than 180°C. Therefore, the conductive layer 13 can have high thermal stability, preventing the composite solid electrolyte 10 from failing at high temperature.
  • the thickness of the conductive layer 13 is 1 ⁇ m to 100 ⁇ m. Wherein, when the thickness of the conductive layer 13 is less than 1 ⁇ m, the process requirements are strict, and the conductivity of the conductive layer 13 is weak; when the thickness of the conductive layer 13 is greater than 100 ⁇ m, the thickness of the composite solid electrolyte 10 will be increased, thereby increasing the total thickness of the battery.
  • the thicknesses of the first solid electrolyte layer 11 and the second solid electrolyte layer 12 are both 5 ⁇ m to 500 ⁇ m.
  • the first solid electrolyte layer 11 accounts for 20% to 70% of the total thickness of the composite solid electrolyte 10
  • the second solid electrolyte layer 12 accounts for 20% to 70% of the total thickness of the composite solid electrolyte 10
  • the conductive layer 13 accounts for 20% to 70% of the total thickness of the composite solid electrolyte. 10 5% to 50% of the total thickness.
  • the composite solid electrolyte 10 further includes a terminal 14 (shown in FIG. 2 ) electrically connected to the conductive layer 13 .
  • a terminal 14 shown in FIG. 2
  • the conductive layer 13 may be electrically connected to the terminal 14 through an adapter (not shown), and the material of the adapter may be platinum (Pt) or silver (Ag).
  • an embodiment of the present application further provides a battery 100 , which includes an electrode assembly 101 and a case 104 that accommodates the electrode assembly 101 .
  • the electrode assembly 101 includes a first pole piece 102 and a second pole piece 103 .
  • the first pole piece 102 is provided with a first pole tab 1023
  • the second pole piece 103 is provided with a second pole tab 1033 .
  • the battery 100 further includes a composite solid electrolyte 10 located between the first pole piece 102 and the second pole piece 103 .
  • the detection unit 105 may be disposed between the terminal 14 and the first tab 1023 .
  • the detection unit 105 is used to detect the chemical potential difference between the conductive layer 13 and the first pole piece 102 .
  • the detection unit 105 may be a voltage detection unit, such as a voltmeter.
  • the voltage detection unit 105 detects a sharp decrease in the chemical potential difference between the conductive layer 13 and the first pole piece 102, it indicates that the lithium dendrites have pierced through the first solid-state electrolyte layer 11, and subsequent lithium dendrites may pierce the entire composite solid state
  • the electrolyte 10 contacts the second pole piece 103 , causing an internal short circuit in the battery 100 .
  • the chemical potential difference between the conductive layer 13 and the first pole piece 102 is detected by the voltage detection unit 105, so as to detect the risk of a subsequent short circuit in advance, so that the battery 100 can be safely carried out in time before the short circuit occurs. To avoid serious safety hazards caused by short circuit.
  • an alarm unit electrically connected to the detection unit 105 may also be provided, such as an indicator light or a buzzer.
  • the alarm unit is used to send out an alarm signal, thereby reminding the user that the risk of a short circuit of the battery 100 may occur in the future, so that the user can timely before the short circuit occurs.
  • the battery 100 is safely handled.
  • the "sharp decrease” may mean that the chemical potential difference decreases by more than a preset value within a predetermined period of time, for example, the chemical potential difference decreases by more than 2.5V in one second.
  • the terminal 14 and the first tab 1023 extend out of the housing 104 .
  • the detection unit 105 is arranged outside the casing 104 at the same time.
  • the housing 104 may be a packaging bag packaged with an aluminum-plastic film. That is, the battery 100 may be a pouch cell.
  • the case 104 includes a case body 1041 for accommodating the electrode assembly 101 and the composite solid electrolyte 10 , a top sealing edge 1042 and a side sealing edge 4043 connected to the case body 1041 , the terminal 14 , the first tab 1023 And the second tab 1033 protrudes from the top sealing edge 1042 .
  • the battery 100 is not limited to a soft-packed cell, but can also be a steel-shell cell or an aluminum-shell cell, etc., which is not limited in this application.
  • the detection unit 105 may also be provided inside the casing 104 .
  • the first pole piece 102 is a pole piece that is likely to generate lithium dendrites during the cycle.
  • the first pole piece 102 in the present application is a negative pole piece
  • the second pole piece 103 is a positive pole piece.
  • the first pole piece 102 includes a first current collector 1021 and a first active material layer 1022 disposed on the surface of the first current collector 1021 .
  • the first tab 1023 is electrically connected to the first current collector 1021 .
  • the second pole piece 103 includes a second current collector 1031 and a second active material layer 1032 disposed on the surface of the second current collector 1031 .
  • the second tab 1033 is electrically connected to the second current collector 1031 .
  • the active material (ie, the negative electrode active material) of the first active material layer 1022 is exemplified below by taking a lithium-ion battery as an example.
  • Anode active materials include anode materials capable of intercalating and extracting lithium, such as carbon materials, metal compounds, oxides, sulfides, lithium nitrides (eg, LiN 3 ), lithium metal, metals that form alloys with lithium, and polymer materials Wait.
  • the carbon material can include but is not limited to: low graphitization carbon, easily graphitized carbon, artificial graphite, natural graphite, mesophase carbon microspheres, soft carbon, hard carbon, pyrolytic carbon, coke, glassy carbon, organic carbon Sintered body of polymer compound, carbon fiber and activated carbon.
  • the coke may include pitch coke, needle coke and petroleum coke.
  • the organic polymer compound sintered body refers to a material obtained by calcining a polymer material (for example, a phenolic plastic or a furan resin) at an appropriate temperature to carbonize it, and these materials can be classified as low graphitization carbon or easily graphitizable carbon carbon.
  • Polymeric materials may include, but are not limited to, polyacetylene and polypyrrole.
  • a material with a charge and discharge voltage close to that of lithium metal can be selected as the negative electrode active material, because the lower the charge and discharge voltage of the negative electrode active material, the easier it is for the lithium-ion battery to have higher energy. density.
  • a carbon material can be selected as the negative electrode active material, because the crystal structure of the carbon material is small during charging and discharging, so good cycle characteristics and large charging and discharging capacity can be obtained.
  • graphite can be selected as the negative electrode active material, because graphite can provide a larger electrochemical equivalent and a higher energy density.
  • the negative electrode material capable of intercalating/deintercalating lithium may include elemental lithium metal, metal elements and semimetal elements capable of forming alloys with lithium, including alloys and compounds of such elements, and the like. In particular, they are used together with carbon materials, because in this case, good cycle characteristics as well as high energy density can be obtained.
  • alloys comprising two or more metal elements alloys as used herein also include alloys comprising one or more metal elements and one or more semi-metal elements. The alloys may be in the following states: solid solutions, eutectic crystals (eutectic mixtures), intermetallic compounds, and mixtures thereof.
  • metal elements and semi-metal elements may include tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), antimony (Sb), bismuth (Bi), Cadmium (Cd), Magnesium (Mg), Boron (B), Gallium (Ga), Germanium (Ge), Arsenic (As), Silver (Ag), Zirconium (Zr), Yttrium (Y) and Hafnium (Hf).
  • Examples of the above alloys and compounds may include materials having the chemical formula: Mas Mb t Li u and materials having the chemical formula: Map Mc q Md r .
  • Ma represents at least one element of metal elements and semi-metal elements capable of forming alloys with lithium
  • Mb represents at least one element of metal elements and semi-metal elements other than lithium and Ma
  • Mc represents at least one element among non-metal elements
  • Md represents at least one element among metal elements and semimetal elements other than Ma
  • s, t, u, p, q and r satisfy s>0, t ⁇ 0, u ⁇ 0, p>0, q>0, and r ⁇ 0.
  • inorganic compounds that do not include lithium such as MnO 2 , V 2 O 5 , V 6 O 13 , NiS, and MoS, may be used in the negative electrode.
  • the active material (ie, the positive electrode active material) of the second active material layer 1032 is exemplified below by taking a lithium-ion battery as an example.
  • Cathode active materials include cathode materials capable of intercalating and extracting lithium (Li), such as lithium cobaltate, ternary materials, lithium manganate, lithium iron manganese phosphate, lithium vanadium phosphate, lithium vanadyl phosphate, lithium iron phosphate, lithium titanate and lithium-manganese current collector materials.
  • the chemical formula of lithium cobaltate may be, but is not limited to, Li ⁇ Co a M1 b O 2-c H d , wherein M1 is selected from nickel (Ni), manganese (Mn), magnesium (Mg) , Aluminum (Al), Boron (B), Titanium (Ti), Vanadium (V), Chromium (Cr), Iron (Fe), Copper (Cu), Zinc (Zn), Molybdenum (Mo), Tin (Sn) , calcium (Ca), strontium (Sr), tungsten (W), yttrium (Y), lanthanum (La), zirconium (Zr), silicon (Si), and combinations thereof, wherein H is selected from the group consisting of fluorine (F ), sulfur (S), boron (B), nitrogen (N) or phosphorus (P) and combinations thereof, wherein the values of ⁇ , a, b, c and d are respectively in the following ranges: 0.8 ⁇ 1.2,
  • the ternary material includes nickel cobalt lithium manganate and/or nickel cobalt lithium aluminate.
  • the chemical formula of lithium manganate may be Li k Mn 2-p M3 p O 4-e , wherein M3 represents selected from cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al) ), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca ), strontium (Sr), tungsten (W), and combinations thereof, the values of k, p, and r are in the following ranges: 0.8 ⁇ k ⁇ 1.2, 0 ⁇ p ⁇ 1.0, and -0.2 ⁇ e ⁇ 0.2, respectively.
  • first pole piece 102 is the negative pole piece and the second pole piece 103 is the positive pole piece for illustration above, the present application is not limited to this. In other embodiments, the first pole piece 102 can also be a positive pole piece, and the second pole piece 103 can also be a negative pole piece.
  • the battery 100 may be a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, and a lithium ion polymer secondary battery.
  • the present application further provides an electronic device 200 , and the electronic device 200 includes the above-mentioned battery 100 .
  • the electronic device 200 of the present application may be, but is not limited to, a notebook computer, a pen input computer, a mobile computer, an e-book player, a portable telephone, a portable fax machine, a portable copier, a portable printer, a headset stereo headphones, VCRs, LCD TVs, portable cleaners, portable CD players, mini discs, transceivers, electronic notepads, calculators, memory cards, portable recorders, radios, backup power, motors, cars, motorcycles, power Bicycles, bicycles, lighting fixtures, toys, game consoles, clocks, power tools, flashlights, cameras, large household batteries and lithium-ion capacitors, etc.
  • conductive layer paste Preparation of conductive layer paste: CNT, CMC, acrylate and polyether modified polysiloxane are mixed in a ratio of 93.1%: 0.5%: 6%: 0.4% to obtain conductive layer paste.
  • PVDF-HFP is dissolved in acetonitrile solvent, mixed evenly, a thin layer is formed by scraping with a scraper, and the first solid electrolyte layer can be obtained by heating to volatilize the solvent.
  • the thickness of the first solid electrolyte layer is 50-200 ⁇ m,
  • the electrical conductivity is 10 -4 S/cm;
  • the conductive layer slurry is scraped or sprayed on the first solid electrolyte layer, and dried to obtain a conductive layer, the thickness of the conductive layer is 3-5 ⁇ m, and the electrical conductivity is 10 -6 S/cm;
  • Dissolve LLZTO in acetonitrile solvent mix evenly, scrape on the other side of the conductive layer with a scraper, and dry to obtain a second solid electrolyte layer, the thickness of the second solid electrolyte layer is 50-200 ⁇ m, and the conductivity is 10 -4 S/ cm.
  • pole piece Lithium cobalt oxide, conductive carbon black and polyvinylidene fluoride were dissolved in N-methylpyrrolidone (NMP) solvent in a mass ratio of 97:1.4:1.6 to form a positive electrode slurry, using aluminum foil as Positive electrode current collector, the positive electrode slurry is coated on the positive electrode current collector, and the positive electrode sheet is obtained after drying, cold pressing and cutting procedures; graphite, conductive carbon black, sodium carboxymethyl cellulose (CMC) and butylbenzene Rubber (SBR) was dissolved in deionized water in a mass ratio of 96.5:1.0:1.0:1.5, and stirred under the action of a vacuum mixer until the system was uniform to obtain a negative electrode slurry. Copper foil was used as the negative electrode current collector. The slurry is coated on the negative electrode current collector, dried and then cold-pressed and cut to obtain a negative electrode pole piece.
  • NMP N-methylpyrrolidone
  • Pt wire is embedded in the conductive layer of the composite solid electrolyte, and then the composite solid electrolyte is inserted into the negative pole piece and the positive pole piece to form a monolithic battery, which is then encapsulated.
  • the Pt wire is encapsulated, it is exposed from the top seal of the encapsulation bag and transfer soldered to form a terminal.
  • Example 1 The difference from Example 1 is that the CNTs in the conductive layer paste are replaced with silver nanowires, and other steps are the same as those in Example 1.
  • a voltage detection unit was connected between the terminals of the batteries of Examples 1 and 2 and the first tab (ie, the negative electrode tab) to detect the chemical potential between the conductive layer and the negative electrode tab.
  • the voltage detection unit detected a small chemical potential difference due to the presence of overpotential between the conductive layer and the negative electrode.
  • the voltage detection unit detects that the potential increases significantly. This is because the conductive layer and the lithium There is a large chemical potential difference between them.
  • the voltage detection unit detects a sharp drop in chemical potential, and the surface is subsequently Risk of short circuit may occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种复合固态电解质(10),包括第一固态电解质层(11)、第二固态电解质层(12)及导电层(13)。导电层(13)设置于第一固态电解质层(11)和第二固态电解质层(12)之间。还提供一种电池(100)和电子装置(200)。

Description

复合固态电解质、电池和电子装置 技术领域
本申请涉及储能技术领域,尤其涉及一种复合固态电解质、电池和电子装置。
背景技术
随着消费电子类的产品如笔记本电脑、手机、掌上游戏机、平板电脑、移动电源和无人机等的普及,人们对电池安全性的要求越来越严格。然而电池在受到挤压、碰撞或穿刺等异常情况时容易导致电池发生内短路,电池温度上升,进而容易导致着火、爆炸,引起严重危害。
为了避免发生电池内短路,研究者试图从隔膜结构或在电池内加入马甲结构等方面对电池进行改进。然而,这些方法无法完全避免电池内短路发生。目前为止尚没有能够对电池内短路进行有效检测的方法,使得因电池短路而造成的安全事故无法避免。
发明内容
为解决现有技术以上不足之处,有必要提供一种能够提前检测电池内短路的复合固态电解质和电池。
另外,还有必要提供一种具有如上电池的电子装置。
本申请提供一种复合固态电解质,包括第一固态电解质层、第二固态电解质层及导电层。导电层设置于第一固态电解质层和第二固态电解质层之间。本申请通过在复合固态电解质中设置导电层以检测导电层与极片之间的化学电势差,从而提前检测到后续可能发生短路风险,如此,便可在短路发生之前能够及时对电池进行安全处理,避免因短路造成严重的安全隐患,提高电池安全性能。
在一些可能的实现方式中,导电层的材质包括无机导电材料,无机导电材料选自金属、金属氧化物、金属碳化物、碳纳米材料和硫化物中的至少一种。
在一些可能的实现方式中,导电层为多孔结构。从而,离子可经由导电层中设有的孔洞进行传输,使得复合固态电解质可用于传输离子。
在一些可能的实现方式中,导电层的比表面积为20m 2/g至400m 2/g。其中,当导电层的比表面积过小时,导电层孔洞数量较少,不利于离子传导;当导电层的比表面积过大时,导电层的导电性减弱。
在一些可能的实现方式中,导电层的材质包括有机导电材料,有机导电材料选自聚吡咯、聚苯胺、聚噻吩及其衍生物中的至少一种。从而,离子可以与有机导电材料不断发生络合/解络合过程而进行迁移,使得复合固态电解质可用于传输离子。
在一些可能的实现方式中,导电层的电阻率小于10 -6Ω·cm,使导电层具有较好的导电性。
在一些可能的实现方式中,导电层的材质的热分解温度大于180℃,从而使得导电层具有较高的热稳定性。
在一些可能的实现方式中,导电层的厚度为1μm至100μm。
在一些可能的实现方式中,在复合固态电解质的厚度方向上,导电层包括临近第一固态电解质层的第一厚度区,部分第一固态电解质层设置于第一厚度区。从而,可以提高第一固态电解质层与导电层之间的结合力。
在一些可能的实现方式中,第一固态电解质层包括无机固态电解质或有机固态电解质。
在一些可能的实现方式中,第一固态电解质层和第二固态电解质层的材质不同,使得复合固态电解质能够兼具有机固态电解质及无机固态电解质的优点。
在一些可能的实现方式中,第一固态电解质层的厚度为5μm至500μm。
在一些可能的实现方式中,复合固态电解质还包括电连接于导电层的端子。
在一些可能的实现方式中,导电层通过转接件电连接于端子。
在一些可能的实现方式中,转接件的材质为铂或银。
本申请一实施方式还提供一种电池,包括电极组件和收容电极组件的壳体。电极组件包括第一极片和第二极片。电池还包括如上复合固态电解质,复合固态电解质位于第一极片和第二极片之间。
在一些可能的实现方式中,第一极片上设有第一极耳,端子和第一极耳之间设有检测单元。本申请通过电压检测单元检测导电层与第一极片之间的化学电势差,从而提前检测到后续可能发生短路风险,如此,便可在短路发生之前能够及时对电池进行安全处理,避免因短路造成严重的安全隐患。
在一些可能的实现方式中,检测单元为电压检测单元。
在一些可能的实现方式中,检测单元设于壳体内部。
在一些可能的实现方式中,端子和第一极耳伸出壳体。
本申请还提供一种电子装置,包括如上电池。
附图说明
图1为本申请一实施方式的复合固态电解质的剖视图。
图2为本申请一实施方式的电池的结构示意图。
图3为图2所示的电池的极片未析出锂枝晶时的结构示意图。
图4为图2所示的电池的极片析出锂枝晶后的结构示意图。
图5为本申请一实施方式的电子装置的结构示意图。
图6为本申请实施例1制备的电池在锂枝晶接触导电层前的化学电势图。
图7为本申请实施例1制备的电池在锂枝晶接触导电层后的化学电势图。
图8为本申请实施例2制备的电池在锂枝晶接触导电层前的化学电势图。
图9为本申请实施例2制备的电池在锂枝晶接触导电层后的化学电势图。
主要元件符号说明
复合固态电解质     10
第一固态电解质层   11
第二固态电解质层   12
导电层             13
端子               14
电池               100
电极组件           101
第一极片           102
第二极片           103
壳体               104
检测单元           105
第一厚度区         131
第二厚度区         132
电子装置           200
第一集流体         1021
第一活性物质层     1022
第一极耳           1023
第二集流体         1031
第二活性物质层     1032
第二极耳            1033
壳体本体            1041
顶封边              1042
侧封边              1043
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅为本申请一部分实施例,而不是全部的实施例。除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
请参阅图1,本申请一实施方式提供一种复合固态电解质10,包括第一固态电解质层11、第二固态电解质层12及导电层13。导电层13设置于第一固态电解质层11和第二固态电解质层12之间。
复合固态电解质10可用于锂离子电池中,并设置于锂离子电池的第一极片和第二极片之间。复合固态电解质10用于在传导离子的同时阻碍电子传输。由于复合固态电解质10具有不可燃,无腐蚀、不挥发,且不存在漏液问题的特性,因此,利用复合固态电解质10制备而成的电池安全性较高,同时还具有使用寿命长和理论能量密度高等优点。在现有的使用有机电解液的电池中,由于有机电解液在充放电循环过程中会反复地生成并破坏固体电解质界面(Solid-electrolyte interface,SEI)膜,导致电池的容量快速衰退,进而严重影响电池的使用寿命,而复合固态电解质10则有利于克服该问题。
现有技术中,随着电池循环过程进行,第一极片或第二极片表面可能会析出锂并生成锂枝晶。锂枝晶会刺穿第一极片和第二极片之间的固态电解质,导致第一极片和第二极片直接接触而发生短路。本申请在复合固态电解质10中设置导电层13,当锂枝晶刺穿第一固态电解质层11或第二固态电解质层12并与导电层13导通时,将使得具有锂枝晶的极片与导电层13导通,进而使导电层13与极片之间的化学电势差急剧降低。即,当检测到导电层13与极片之间化学电势差急剧降低时,表明锂枝晶已经刺穿第一固态电解质层11或第二固态电解质层12,而后续锂枝晶可能会刺穿整个复合固态电解质10并接触另一极片,造成电池内短路。因此,本申请通过在复合固态电解质10中设置导电层13以检测导 电层13与极片之间的化学电势差,从而提前检测到后续可能发生短路风险,如此,便可在短路发生之前能够及时对电池进行安全处理,避免因短路造成严重的安全隐患,提高电池安全性能。
在一实施方式中,导电层13的材质包括无机导电材料。无机导电材料具体可选自金属、金属氧化物、金属碳化物、碳纳米材料和硫化物中的至少一种。
进一步地,导电层13为多孔结构。从而,离子可经由导电层13中设有的孔洞进行传输,使得复合固态电解质10可用于传输离子。导电层13的比表面积为20m 2/g至400m 2/g。其中,当导电层13的比表面积小于20m 2/g时,导电层13孔洞数量较少,不利于离子传导;当导电层13的比表面积大于400m 2/g时,虽然导电层13孔洞数量较多,但是导电层13的导电性减弱。在一实施方式中,无机导电材料为碳纳米管(CNT)和银纳米线中的至少一种,无机导电材料可相互编织形成多孔的网络结构。
在另一实施方式中,导电层13的材质还可以为有机导电材料。有机导电材料具体可选自聚吡咯、聚苯胺、聚噻吩及其衍生物中的至少一种。通过设置导电层13的材质为有机导电材料,离子可以与有机导电材料不断发生络合/解络合过程而进行迁移,使得复合固态电解质10可用于传输离子。
以导电层13材质为聚氧化乙烯(PEO)为例,PEO主链结构含有结构单元
Figure PCTCN2020115132-appb-000001
该结构单元中含有强给电子基团(即醚氧官能团),醚氧官能团在与锂离子组成的络合体系中,PEO作为离子传导基质,锂离子作为电荷载流子源,在醚氧原子的作用下,金属盐解离为电荷载流子,金属离子通过与醚氧原子之间不断发生络合/解络合过程而进行迁移,从而实现离子的传输。
在一实施方式中,第一固态电解质层11包括无机固态电解质或有机固态电解质。无机固态电解质包括氧化物型固态电解质或硫化物型固态电解质。氧化物型固态电解质可以是NASICON型、LISICON型、Garnet型或Anti-Perovskite型。具体地,无机固态电解质可选自Li 1.3Al 0.3Ti 1.7(PO 4) 3、Li 1.5Al 0.5Ge 1.5(PO 4) 3和Li 7-yLa 3-xA xZr 2-yB yO 12(其中,0≤x≤3,0≤y≤2,A选自Y、Nd、Sm或Gd,B选自Nb或Ta)中的至少一种。例如,无机固态电解质可以是Li 6.4La 3Zr 1.4Ta 0.6O 12(LLZTO)。有机固态电解质可选自聚丙烯腈、聚氧化乙烯、聚硅氧烷、聚偏二氟乙烯、聚偏氟乙烯-六氟丙烯(PVDF-HFP)、聚甲基丙烯酸甲酯及其衍生物中的至少一种。
进一步地,第一固态电解质层11和第二固态电解质层12的材质可以不同。例如,第一固态电解质层11采用有机固态电解质且第二固态电解质层12采用硫化物型无机固态电 解质。此时,复合固态电解质10能够兼具有机固态电解质质量较轻、粘弹性好和机械加工性能优良等优点,以及硫化物型无机固态电解质离子电导率高、晶界电阻低和电化学稳定性良好等优点。在另一实施方式中,第一固态电解质层11和第二固态电解质层12的材质也可以相同。
制备复合固态电解质10时,可以先通过刮涂法得到第一固态电解质层11,然后利用刮涂法或喷涂法将导电层浆料涂覆在第一固态电解质层11上,烘干得到导电层13,最后再在导电层13另一侧刮涂形成第二固态电解质层12。通过将导电层浆料涂覆在第一固态电解质层11上,可以控制最终导电层13的厚度,而且不会破坏第一固态电解质层11的性能。
在另一实施方式中,也可先制备出导电层13,然后在导电层13两侧分别刮涂形成第一固态电解质层11和第二固态电解质层12。此时,刮涂过程中部分第一固态电解质层11和/或部分第二固态电解质层12会嵌入至导电层13中设有的孔洞中,提高导电层13与第一固态电解质层11和/或第二固态电解质层12的结合力。即,如图1所示,在复合固态电解质10的厚度方向上,导电层13包括临近第一固态电解质层11的第一厚度区131,部分第一固态电解质层11设置于第一厚度区131;导电层13还包括临近第二固态电解质层12的第二厚度区132,部分第二固态电解质层12设置于第二厚度区132。
其中,除无机或有机导电材料之外,导电层浆料还可包括增稠剂、粘结剂和润湿剂。增稠剂的作用是增加浆料的稳定性,防止沉降。增稠剂可以选自羧甲基纤维素钠(CMC)。粘结剂为核壳结构或非核壳结构。粘结剂的作用是将浆料各组分粘结在一起。粘结剂可以选自丙烯酸酯、偏氟乙烯、六氟丙烯、乙烯、丙烯、氯乙烯、氯丙烯、丙烯酸、苯乙烯、四偏氟乙烯、丁二烯和丙烯腈的均聚物或共聚物的至少一种。润湿剂的作用是降低浆料表面能,防止涂布漏涂。润湿剂可以选自聚醚改性聚硅氧烷、二甲基硅氧烷、聚环氧乙烷、氧乙烯烷基酚醚、聚氧乙烯脂肪醇醚、聚氧乙烯聚氧丙烯嵌段共聚物和磺基丁二酸二辛基钠盐中的至少一种。其中,在导电层浆料中,无机导电材料或有机导电材料的质量百分比为85%~98.5%,增稠剂的质量百分比为0.2%~1.2%,粘结剂的质量百分比为0.6%~10%,润湿剂的质量百分比为0.1%~1.0%。
在一实施方式中,导电层13的电阻率小于10 -6Ω·cm,使导电层13具有较好的导电性。
在一实施方式中,导电层13的材质的热分解温度大于180℃。从而,导电层13可具有较高的热稳定性,防止复合固态电解质10在高温下失效。
在一实施方式中,导电层13的厚度为1μm至100μm。其中,当导电层13的厚度小于1μm时,制程要求严苛,导电层13导电性较弱;当导电层13的厚度大于100μm时, 会增加复合固态电解质10的厚度,进而增加电池总厚度。
进一步地,第一固态电解质层11和第二固态电解质层12的厚度均为5μm至500μm。其中,第一固态电解质层11占复合固态电解质10总厚度的20%~70%,第二固态电解质层12占复合固态电解质10总厚度的20%~70%,导电层13厚度占复合固态电解质10总厚度的5%~50%。
在一实施方式中,复合固态电解质10还包括电连接于导电层13的端子14(在图2中示出)。通过检测导电层13的端子14与极片之间的化学电势差,从而提前检测到后续可能发生短路风险。其中,导电层13可通过转接件(图未示)电连接于端子14,转接件的材质具体可以为铂(Pt)或银(Ag)。
请参阅图2,本申请一实施方式还提供一种电池100,包括电极组件101和收容电极组件101的壳体104。电极组件101包括第一极片102和第二极片103。第一极片102上设有第一极耳1023,第二极片103上设有第二极耳1033。电池100还包括复合固态电解质10,复合固态电解质10位于第一极片102和第二极片103之间。
请一并参考图3和图4,端子14和第一极耳1023之间可设有检测单元105。检测单元105用于检测导电层13与第一极片102之间的化学电势差。其中,检测单元105可以为电压检测单元,如电压表。当电压检测单元105检测到导电层13与第一极片102之间化学电势差急剧降低时,表明锂枝晶已经刺穿第一固态电解质层11,而后续锂枝晶可能会刺穿整个复合固态电解质10并接触第二极片103,造成电池100内短路。因此,本申请通过电压检测单元105检测导电层13与第一极片102之间的化学电势差,从而提前检测到后续可能发生短路风险,如此,便可在短路发生之前能够及时对电池100进行安全处理,避免因短路造成严重的安全隐患。
进一步地,还可以设置与检测单元105电性连接的报警单元(图未示),如指示灯或蜂鸣器。当检测单元105检测到导电层13与第一极片102之间化学电势差急剧降低时,报警单元用于发出报警信号,从而提醒用户后续可能发生电池100短路风险,使用户在短路发生之前能够及时对电池100进行安全处理。其中,“急剧降低”可以是在预定时间段内化学电势差降低的幅度大于预设值,如,在一秒内化学电势差降低2.5V以上。
如图1所示,在一实施方式中,端子14和第一极耳1023伸出壳体104。为避免检测单元105占用电池100内部空间,同时将检测单元105设于壳体104外部。其中,壳体104可以是采用铝塑膜封装得到的包装袋。即,电池100可以为软包电芯。此时,壳体104包括用于容置电极组件101和复合固态电解质10的壳体本体1041以及连接于壳体本体1041的顶封边1042和侧封边4043,端子14、第一极耳1023和第二极耳1033自顶封边1042 伸出。当然,在另一实施方式中,电池100并不限于软包电芯,还可以为钢壳电芯或铝壳电芯等,本申请并不作限制。为提高电池100整体的集成度,还可以将检测单元105设于壳体104内部。
其中,第一极片102为循环过程中容易产生锂枝晶的极片。如,本申请的第一极片102为负极极片,第二极片103为正极极片。如图3和图4所示,第一极片102包括第一集流体1021和设置于第一集流体1021表面的第一活性物质层1022。第一极耳1023电连接于第一集流体1021。第二极片103包括第二集流体1031和设置于第二集流体1031表面的第二活性物质层1032。第二极耳1033电连接于第二集流体1031。
下面以用于锂离子电池为例对第一活性物质层1022的活性物质(即负极活性物质进)行举例说明。负极活性物质包括能够嵌入和脱出锂的负极材料,如碳材料、金属化合物、氧化物、硫化物、锂的氮化物(例如LiN 3)、锂金属、与锂一起形成合金的金属和聚合物材料等。
其中,碳材料可以包括但不限于:低石墨化的碳、易石墨化的碳、人造石墨、天然石墨、中间相碳微球、软碳、硬碳、热解碳、焦炭、玻璃碳、有机聚合物化合物烧结体、碳纤维和活性碳。其中,焦炭可以包括沥青焦炭、针状焦炭和石油焦炭。有机聚合物化合物烧结体指的是通过在适当的温度下煅烧聚合物材料(例如,苯酚塑料或者呋喃树脂)以使之碳化获得的材料,这些材料可以分为低石墨化碳或者易石墨化的碳。聚合物材料可以包括但不限于聚乙炔和聚吡咯。
更进一步地,可以选择充电和放电电压接近于锂金属的充电和放电电压的材料作为负极活性物质,这是因为负极活性物质的充电和放电电压越低,锂离子电池越容易具有更高的能量密度。其中,负极活性物质可以选择碳材料,因为在充电和放电时碳材料的晶体结构较小,因此可以获得良好的循环特性以及较大的充电和放电容量。负极活性物质尤其可以选择石墨,因为石墨能够提供较大的电化学当量和较高的能量密度。
此外,能够嵌入/脱出锂的负极材料可以包括单质锂金属、能够和锂一起形成合金的金属元素和半金属元素,包括这样的元素的合金和化合物等等。特别地,将它们和碳材料一起使用,因为在这种情况中,可以获得良好的循环特性以及高能量密度。除了包括两种或者多种金属元素的合金之外,这里使用的合金还包括包含一种或者多种金属元素和一种或者多种半金属元素的合金。所述合金可以处于以下状态固溶体、共晶晶体(共晶混合物)、金属间化合物及其混合物。金属元素和半金属元素的例子可以包括锡(Sn)、铅(Pb)、铝(Al)、铟(In)、硅(Si)、锌(Zn)、锑(Sb)、铋(Bi)、镉(Cd)、镁(Mg)、硼(B)、镓(Ga)、锗(Ge)、砷(As)、银(Ag)、锆(Zr)、钇(Y)和铪(Hf)。上述合金和化合物的例子可以包括具有化学式:Ma sMb tLi u 的材料和具有化学式:Ma pMc qMd r的材料。在这些化学式中,Ma表示能够与锂一起形成合金的金属元素和半金属元素中的至少一种元素;Mb表示除锂和Ma之外的金属元素和半金属元素中的至少一种元素;Mc表示非金属元素中的至少一种元素;Md表示除Ma之外的金属元素和半金属元素中的至少一种元素;并且s、t、u、p、q和r满足s>0、t≥0、u≥0、p>0、q>0和r≥0。
此外,可以在负极中使用不包括锂的无机化合物,例如MnO 2、V 2O 5、V 6O 13、NiS和MoS。
下面以用于锂离子电池为例对第二活性物质层1032的活性物质(即正极活性物质)进行举例说明。正极活性物质包括能够嵌入和脱出锂(Li)的正极材料,例如钴酸锂、三元材料、锰酸锂、磷酸锰铁锂、磷酸钒锂、磷酸钒氧锂、磷酸铁锂、钛酸锂和含锂锰集流体料。
在上述正极活性物质中,钴酸锂的化学式可以,但不限制为,Li γCo aM1 bO 2-cH d,其中M1选自由镍(Ni)、锰(Mn)、镁(Mg)、铝(Al)、硼(B)、钛(Ti)、钒(V)、铬(Cr)、铁(Fe)、铜(Cu)、锌(Zn)、钼(Mo)、锡(Sn)、钙(Ca)、锶(Sr)、钨(W)、钇(Y)、镧(La)、锆(Zr)、硅(Si)及其组合组成的群组,其中H选自由氟(F)、硫(S)、硼(B)、氮(N)或磷(P)及其组合组成的群组,其中γ、a、b、c和d值分别在以下范围内:0.8≤γ≤1.2、0.8≤a≤1、0≤b≤0.2、-0.1≤c≤0.2、0≤d≤0.2。
在上述正极活性物质中,三元材料的化学式可以为Li αNi xCo yM2 zN1 βO 2,其中0.7≤α≤1.3,0.3≤x<1,0<y<0.4,0<z<0.4,0≤β≤0.05,且x+y+z+β=1,M2选自Mn或Al中的至少一种,N1选自Mg、B、Ti、Fe、Cu、Zn、Sn、Ca、W、Si、Zr、Nb、Y、Cr、V、Ge、Mo或Sr中的至少一种。在本申请的一些实施例中,三元材料包括镍钴锰酸锂和/或镍钴铝酸锂。
在上述正极活性物质中,锰酸锂的化学式可以为Li kMn 2-pM3 pO 4-e,其中M3表示选自由钴(Co)、镍(Ni)、镁(Mg)、铝(Al)、硼(B)、钛(Ti)、钒(V)、铬(Cr)、铁(Fe)、铜(Cu)、锌(Zn)、钼(Mo)、锡(Sn)、钙(Ca)、锶(Sr)、钨(W)及其组合组成的群组,k、p和r值分别在以下范围内:0.8≤k≤1.2、0≤p<1.0和-0.2≤e≤0.2。
虽然以上以第一极片102为负极极片且第二极片103为正极极片进行举例说明,然而,本申请并不限于此。在其它实施方式中,第一极片102还可以为正极极片,第二极片103还可以为负极极片。
虽然以上电池100以锂离子电池进行举例说明,然而,本申请还适用于其它合适的电池,如所有种类的一次电池、二次电池、燃料电池或太阳能电池。特别的,电池100可以 是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池和锂离子聚合物二次电池。
请参阅图5,本申请还提供一种电子装置200,电子装置200包括如上的电池100。在一实施方式中,本申请的电子装置200可以是,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
以下将结合具体实施例对本申请进行进一步说明。
实施例1
制备导电层浆料:将CNT、CMC、丙烯酸酯和聚醚改性聚硅氧烷按照93.1%:0.5%:6%:0.4%的比例混合,得到导电层浆料。
制备复合固态电解质:将PVDF-HFP溶解在乙腈溶剂中,混合均匀,通过刮刀刮涂形成薄层,加热挥发掉溶剂即可得到第一固态电解质层,第一固态电解质层厚度为50-200μm,电导率为10 -4S/cm;在第一固态电解质层上刮涂或喷涂导电层浆料,烘干得到导电层,导电层厚度为3-5μm,电导率为10 -6S/cm;将LLZTO溶解在乙腈溶剂中,混合均匀,通过刮刀刮涂在导电层另一侧,烘干得到第二固态电解质层,第二固态电解质层厚度为50-200μm,电导率为10 -4S/cm。
制备极片:将钴酸锂、导电炭黑以及聚偏二氟乙烯按质量比为97:1.4:1.6的比例溶于N-甲基吡咯烷酮(NMP)溶剂中,形成正极浆料,采用铝箔作为正极集流体,将正极浆料涂覆于正极集流体上,经过干燥、冷压、裁切程序后得到正极极片;将石墨、导电炭黑、羧甲基纤维素钠(CMC)以及丁苯橡胶(SBR)按质量比为96.5:1.0:1.0:1.5的比例溶于去离子水中,在真空搅拌机作用下搅拌至体系呈均一状,获得负极浆料,采用铜箔作为负极集流体,将负极浆料涂覆于负极集流体上,烘干后经过冷压、分切得到负极极片。
制备电池:在复合固态电解质的导电层中嵌入Pt丝,然后将复合固态电解质插入负极极片和正极极片中,形成单片电池,然后进行封装。Pt丝封装时从封装袋顶封处露出并进行转接焊,形成端子。
实施例2
与实施例1不同之处在于,将导电层浆料中的CNT替换为银纳米线,其它步骤与实 施例1相同。
在实施例1和实施例2的电池的端子和第一极耳(即负极极耳)之间连接电压检测单元,检测导电层与负极极片之间的化学电势。如图6和图8所示,在电池刚开始工作时,由于没有锂枝晶生成,由于导电层与负极极片之间由于存在过电势,电压检测单元检测到较小的化学电势差。随着电池循环过程的进行,当负极极片上析出锂枝晶且锂枝晶未完全刺穿第一固态电解质层时,电压检测单元检测到电势发生明显增大,这是因为导电层与锂之间存在较大的化学电势差。如图7和图9所示,锂枝晶完全刺穿第一固态电解质层并接触到导电层后,锂枝晶与导电层形成闭合回路,电压检测单元检测到化学电势急剧降低,表面后续将可能发生短路风险。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种复合固态电解质,其特征在于,包括:
    第一固态电解质层;
    第二固态电解质层;及
    导电层,设置于所述第一固态电解质层和所述第二固态电解质层之间。
  2. 如权利要求1所述的复合固态电解质,其特征在于,所述导电层的材质包括无机导电材料,所述无机导电材料选自金属、金属氧化物、金属碳化物、碳纳米材料和硫化物中的至少一种。
  3. 如权利要求2所述的复合固态电解质,其特征在于,所述导电层为多孔结构。
  4. 如权利要求3所述的复合固态电解质,其特征在于,所述导电层的比表面积为20m 2/g至400m 2/g。
  5. 如权利要求1所述的复合固态电解质,其特征在于,所述导电层的材质包括有机导电材料,所述有机导电材料选自聚吡咯、聚苯胺、聚噻吩及其衍生物中的至少一种。
  6. 如权利要求1所述的复合固态电解质,其特征在于,所述导电层的电阻率小于10 -6Ω·cm。
  7. 如权利要求1所述的复合固态电解质,其特征在于,所述导电层的材质的热分解温度大于180℃。
  8. 如权利要求1所述的复合固态电解质,其特征在于,所述导电层的厚度为1μm至100μm。
  9. 如权利要求1所述的复合固态电解质,其特征在于,在所述复合固态电解质的厚度方向上,所述导电层包括临近第一固态电解质层的第一厚度区,部分所述第一固态电解质层设置于所述第一厚度区。
  10. 如权利要求1所述的复合固态电解质,其特征在于,所述第一固态电解质层包括无机固态电解质或有机固态电解质。
  11. 如权利要求10所述的复合固态电解质,其特征在于,所述第一固态电解质层和所述第二固态电解质层的材质不同。
  12. 如权利要求1所述的复合固态电解质,其特征在于,所述第一固态电解质层的厚度为5μm至500μm。
  13. 如权利要求1所述的复合固态电解质,其特征在于,还包括电连接于所述导电层的端子。
  14. 如权利要求13所述的复合固态电解质,其特征在于,所述导电层通过转接件电连接于所述端子。
  15. 如权利要求14所述的复合固态电解质,其特征在于,所述转接件的材质为铂或银。
  16. 一种电池,包括电极组件和收容所述电极组件的壳体,所述电极组件包括第一极片和第二极片,其特征在于,
    所述电池还包括如权利要求1至15中任一项所述的复合固态电解质,所述复合固态电解质位于所述第一极片和所述第二极片之间。
  17. 如权利要求16所述的电池,其特征在于,所述第一极片上设有第一极耳,所述端子和所述第一极耳之间设有检测单元。
  18. 如权利要求17所述的电池,其特征在于,所述检测单元为电压检测单元。
  19. 如权利要求17所述的电池,其特征在于,所述检测单元设于所述壳体内部。
  20. 如权利要求16所述的电池,其特征在于,所述端子和所述第一极耳伸出所述壳体。
  21. 一种电子装置,其特征在于,所述电子装置包括如权利要求16至20任一项所述的电池。
PCT/CN2020/115132 2020-09-14 2020-09-14 复合固态电解质、电池和电子装置 WO2022052119A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080103370.1A CN115968518A (zh) 2020-09-14 2020-09-14 复合固态电解质、电池和电子装置
PCT/CN2020/115132 WO2022052119A1 (zh) 2020-09-14 2020-09-14 复合固态电解质、电池和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/115132 WO2022052119A1 (zh) 2020-09-14 2020-09-14 复合固态电解质、电池和电子装置

Publications (1)

Publication Number Publication Date
WO2022052119A1 true WO2022052119A1 (zh) 2022-03-17

Family

ID=80630172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115132 WO2022052119A1 (zh) 2020-09-14 2020-09-14 复合固态电解质、电池和电子装置

Country Status (2)

Country Link
CN (1) CN115968518A (zh)
WO (1) WO2022052119A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835182B (zh) 2022-06-29 2024-03-11 國立臺北科技大學 用於鋰離子電池之共摻雜的磷酸鈦鋁鋰的固態電解質材料及其製備方法
EP4333163A3 (en) * 2022-08-30 2024-03-20 Huawei Digital Power Technologies Co., Ltd. Battery cell, battery module, battery pack, energy storage system, and electric vehicle
WO2024056758A1 (en) 2022-09-14 2024-03-21 Cdr-Life Ag Mage-a4 peptide dual t cell engagers

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070712A1 (ja) * 2009-12-11 2011-06-16 株式会社日立製作所 リチウムイオン電池およびその製造方法
WO2014179725A1 (en) * 2013-05-03 2014-11-06 The Board Of Trustees Of The Leland Stanford Junior University Improving rechargeable battery safety by multifunctional separators and electrodes
CN105226226A (zh) * 2015-09-22 2016-01-06 东莞市爱思普能源科技有限公司 一种锂离子电池隔膜及用其监测电池短路的方法
DE102014218277A1 (de) * 2014-09-12 2016-03-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen von Lithium-Dendriten in einer Batteriezelle und zum Batteriemanagement
CN106684298A (zh) * 2017-01-22 2017-05-17 湖南立方新能源科技有限责任公司 一种锂离子电池隔膜及其应用
CN109494333A (zh) * 2017-09-11 2019-03-19 罗伯特·博世有限公司 用于制造用于电池组电池的电极单元的方法和电池组电池
CN110429232A (zh) * 2019-08-14 2019-11-08 中南大学 一种超大容量锂离子电池用隔板及锂离子电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011070712A1 (ja) * 2009-12-11 2011-06-16 株式会社日立製作所 リチウムイオン電池およびその製造方法
WO2014179725A1 (en) * 2013-05-03 2014-11-06 The Board Of Trustees Of The Leland Stanford Junior University Improving rechargeable battery safety by multifunctional separators and electrodes
DE102014218277A1 (de) * 2014-09-12 2016-03-17 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen von Lithium-Dendriten in einer Batteriezelle und zum Batteriemanagement
CN105226226A (zh) * 2015-09-22 2016-01-06 东莞市爱思普能源科技有限公司 一种锂离子电池隔膜及用其监测电池短路的方法
CN106684298A (zh) * 2017-01-22 2017-05-17 湖南立方新能源科技有限责任公司 一种锂离子电池隔膜及其应用
CN109494333A (zh) * 2017-09-11 2019-03-19 罗伯特·博世有限公司 用于制造用于电池组电池的电极单元的方法和电池组电池
CN110429232A (zh) * 2019-08-14 2019-11-08 中南大学 一种超大容量锂离子电池用隔板及锂离子电池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI835182B (zh) 2022-06-29 2024-03-11 國立臺北科技大學 用於鋰離子電池之共摻雜的磷酸鈦鋁鋰的固態電解質材料及其製備方法
EP4333163A3 (en) * 2022-08-30 2024-03-20 Huawei Digital Power Technologies Co., Ltd. Battery cell, battery module, battery pack, energy storage system, and electric vehicle
WO2024056758A1 (en) 2022-09-14 2024-03-21 Cdr-Life Ag Mage-a4 peptide dual t cell engagers

Also Published As

Publication number Publication date
CN115968518A8 (zh) 2024-05-14
CN115968518A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US9281540B2 (en) Lithium-ion battery comprising an ion-selective conducting layer
JP4637590B2 (ja) リチウム二次電池用アノード及びそれを利用したリチウム二次電池
KR101601690B1 (ko) 다공성 보호막을 구비하는 전극, 비수 전해질 2차 전지, 및 다공성 보호막을 구비하는 전극의 제조 방법
JP2016006786A (ja) セパレータおよび電池
JP6570995B2 (ja) 全固体金属−金属電池
WO1997031401A1 (en) Rechargeable lithium battery having improved reversible capacity
CN105470576A (zh) 一种高压锂电池电芯及其制备方法、锂离子电池
US20130244085A1 (en) Battery with non-porous alkali metal ion conductive honeycomb structure separator
CN112242564B (zh) 具有电容器辅助夹层的固态电池
KR20170024862A (ko) 유무기 복합 고체 전지
EP2834866A1 (en) Battery with non-porous alkali metal ion conductive honeycomb structure separator
WO2022052119A1 (zh) 复合固态电解质、电池和电子装置
CN114242942A (zh) 一种具有稳定负极界面的复合缓冲层及其固态锂金属电池
JPH07335263A (ja) リチウム二次電池
JP2003123767A (ja) 集電体,電極および電池
CN114792808A (zh) 锂离子电池的负极片、锂离子电池和电子设备
JP2011003500A (ja) 全固体型リチウム二次電池
CN215644574U (zh) 一种二次电池的电极片和二次电池
CN112436106B (zh) 金属正极和基于金属正极的电池
JP4013036B2 (ja) 電池およびその製造方法
US11670755B2 (en) Modified electrolyte-anode interface for solid-state lithium batteries
CN210200886U (zh) 一种具有较高电化学性能的固态锂电池
WO2021154358A2 (en) Si-anode-based semi-solid cells with solid separators
JP3404929B2 (ja) 非水電解液電池
KR20210021777A (ko) 희생 양극을 이용한 리튬 애노드-프리 전고체 전지 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20952907

Country of ref document: EP

Kind code of ref document: A1