WO2012162879A1 - 制备大孔氧化钛或其前躯体的方法 - Google Patents

制备大孔氧化钛或其前躯体的方法 Download PDF

Info

Publication number
WO2012162879A1
WO2012162879A1 PCT/CN2011/074921 CN2011074921W WO2012162879A1 WO 2012162879 A1 WO2012162879 A1 WO 2012162879A1 CN 2011074921 W CN2011074921 W CN 2011074921W WO 2012162879 A1 WO2012162879 A1 WO 2012162879A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
acid solution
precursor
reaction
alkali metal
Prior art date
Application number
PCT/CN2011/074921
Other languages
English (en)
French (fr)
Inventor
杨祝红
陆小华
冀超
姚文俊
施荣华
王昌松
冯新
Original Assignee
南京钛威科技有限公司
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钛威科技有限公司, 南京工业大学 filed Critical 南京钛威科技有限公司
Priority to PCT/CN2011/074921 priority Critical patent/WO2012162879A1/zh
Publication of WO2012162879A1 publication Critical patent/WO2012162879A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Definitions

  • the invention belongs to the field of inorganic macroporous carriers, and in particular relates to a method for preparing macroporous titanium oxide or a precursor thereof.
  • the pore structure is one of the important indexes of the inorganic carrier.
  • the main methods for obtaining large pore titanium oxide or its precursors with controlled pore structure are as follows: By changing the sol-gel reaction or post-treatment conditions such as pH, water amount, magnetic field, microwave and calcination temperature [ 1] Adjust the pore structure in a small range, and the control of these conditions must be very fine; 2) Add different size templating agents [2] or surfactants, phosphoric acid, nitric acid, ammonia water, etc.
  • titanate can not be obtained because a high surface area titanium oxide or conventional methods or by conventional Its precursor [4] , Sasaki et al. [5] used the intercalation or reassembly method to use titanate or titanium oxide as raw material, alumina or organic ammonium salt as column support, and changed the amount of addition to control the pore structure.
  • this method is expensive raw materials, route complexity; 4) Wdl en berg et al [6] found that if the feedstock titanate minor amounts of a potassium titanate, can be effectively improved oxidation product Or a specific surface area of the precursor, but no further in-depth study. 5) Lu Xiaohua et al (ZL03158274.5) using alkali metal titanate as raw material, reacting in a humidity atmosphere of 20 ⁇ 250 ° C and humidity of 2 ⁇ 100% for 0.5 ⁇ 72h, then cleaning with water or acid solution Finally, air baking or solvent heat treatment, the obtained titanium oxide has a pore diameter of 1 to 20 nm.
  • titanium oxide above 20 nm can be prepared by sol-gel reaction, but the cost of this preparation method is relatively high, and some methods are difficult to achieve industrialization; and Lu Xiaohua et al. (ZL03158274.5)
  • the process of using alkali metal titanate as a raw material is simple, the titanium oxide obtained by them is targeted to the field of small molecule catalysis, and the obtained titanium oxide has a pore diameter adjusted in the range of 1 to 20 nm, and does not make the pore diameter reach 20 nm or more.
  • the pore size of the carrier is generally about three times the size of the enzyme molecule due to the influence of the nature of the enzyme. Since the size of the enzyme molecule is usually from a few nanometers to several tens of nanometers, it is required that the size of the pore size can be adjusted within a large range, and one
  • the required pore size of the carrier is about 30 nm, and thus a method for preparing an inorganic carrier having a large pore diameter is required.
  • titanium oxide has an important application in enzyme single loading due to its good biocompatibility.
  • Yao Zhong (CN101775387A) uses 20-50 nm mesoporous titania as a carrier and immobilized Y-glutamyltranspeptidase on mesoporous titania of 20-50 nm.
  • the mesoporous titania immobilized enzyme was found to have It has the characteristics of uniformity, large surface area, strong enzyme stability and good reusability. Therefore, titanium oxide having a pore size of 20 nm or more has a great application advantage in terms of biological single loading.
  • the invention mainly reflects the difference in the process and the control steps.
  • the Lu Xiaohua patent is usually placed in an alkaline solution after being reacted by a moisture atmosphere or dispersed in water.
  • the size of the pore structure is adjusted, and then the alkali ions are removed by acid treatment, and finally the mesoporous titanium oxide is obtained by heat treatment; and the process is directly subjected to acid treatment to remove alkali ions, and then heat-treated in a salt solution to form pores, and finally heat treatment. It is possible to obtain 20-100 nm large pore titanium oxide and its precursor.
  • the object of the present invention is to provide a method for preparing macroporous titanium oxide of 20-100 nm or a precursor thereof in view of the deficiencies in the prior art, which has the advantages of simple and easy to control synthesis conditions, easy access to large pores and the like.
  • the object of the invention can be achieved by the following measures:
  • a method for preparing 20-100 nm large-pore titanium oxide or a precursor thereof, and mixing a five-coordinated or tetra-coordinated alkali metal titanate having a layer structure with an acid solution at 10 to 150 ° C The mixture is stirred, and the obtained mixture is reacted in a reaction apparatus at an ambient temperature of 50 to 250 ° C. After the reaction, the solid matter is filtered and dried, and the solid matter is calcined at 300 to 600 ° C to obtain the most.
  • the macroporous titanium oxide prepared by the method the precursor of titanium oxide or the mixture of titanium oxide and its precursor has a maximum pore diameter of 20 to: LOOnm, a pore volume of 0.05 to 0.4 cm 3 /g, and a specific surface area of > 30 cm. 2 / g.
  • the titanium oxide is at least one of anatase phase titanium oxide, Ti0 2 (B) phase titanium oxide or rutile phase titanium oxide; and the titanium oxide precursor is a titanic acid, a dititanic acid or an amorphous titanic acid.
  • the present invention uses a five-coordinated or four-coordinated alkali metal titanate having a layered structure as a raw material, and the so-called five-coordinated or tetra-coordinated alkali metal titanate having a layered structure means the titanate.
  • the titanyl polyhedron is a titanium oxypentatriene structure or a titanium oxytetrahedral structure, and the layered structure means that the connecting unit composed of the titanyl polyhedron does not enclose potassium or sodium ions in the titanate polyhedron.
  • Alkali metal titanate having a layered structure of the present invention is penta-coordinated or tetracoordinate selected from K 2 Ti0 3, NaKTi0 3, Na 4 Ti 5 0 2 Ti 2 0 5 one kind of K, or 12, or several Kind.
  • the acid solution of the present invention is selected from one or more of a hydrochloric acid solution, a sulfuric acid solution, a nitric acid solution, a formic acid solution, an acetic acid solution or an oxalic acid solution, and the solvent is a water solvent in the general sense of the above respective solutions; The best effect is obtained in the concentration range of ⁇ 10mol/L.
  • the alkali metal titanate is used in a mixture of an alkali metal titanate and an acid solution in an amount of 5 to 1000 g/L.
  • the stirring condition after mixing the alkali metal titanate with the acid solution is: stirring at 10 to 150 ° C for 1 to 100 hours.
  • the purpose of this step of agitation is to exchange the potassium and sodium ions in the alkali metal titanate as much as possible to achieve a balanced process.
  • the reaction apparatus of the present invention may be an open type reaction apparatus or a reaction apparatus having a hermetic function, and a reaction apparatus having a hermetic function may be further employed, and an autoclave is preferably used, and the pressure of the autoclave is supplied by itself or supplied from the outside.
  • the reaction of the mixed solution in the reaction device may be a general reaction or a hydrothermal reaction.
  • a hydrothermal reaction is preferably employed, that is, the reactant is placed in a closed reaction device, and heated outside the reaction device to make the reaction device The reaction is carried out under high temperature and pressure.
  • the reaction time of the above mixture in the reaction apparatus is from 1 to 30 hours.
  • the solid matter is filtered off after the reaction, and dried by usual or usual drying conditions.
  • the final calcination time of the solid material at 300 to 600 ° C is 0.5 to 24 h, which can increase the crystallinity of the product.
  • this process can obtain a larger pore size of 20-100 nm large-pored titanium oxide or its precursor, and the pore diameter of titanium oxide or its precursor helps the immobilized enzyme and drug release. Application of the field.
  • the preparation conditions and processes of the method are simple and easy to control, which is beneficial to large-scale production, and the equipment is simple and the investment cost is low.
  • the pore diameter of the product titanium oxide or its precursor can be adjusted within the macroporous range of 20-100 nm, and the pore volume and specific surface area can be adjusted to meet different conditions.
  • the requirement of the enzyme for the carrier can be adjusted to meet different conditions.
  • the present invention mainly reflects the difference in the process and the control steps.
  • the existing process is usually firstly reacted by a humidity atmosphere of 2-100% humidity or hydrated by an aqueous solution for 7 to 10 days (such as ZL200710025816). .X) adjust the pore size, then remove the alkali ions by acid treatment, and finally obtain the mesoporous titanium oxide by heat treatment; and the process directly removes the alkali ions by acid treatment, and then forms a pore by heat treatment in the salt solution, and finally Further heat treatment can obtain 20 to 100 nm of porous titanium oxide and its precursor.
  • Figure 1 is a BET characterization diagram of Example 1 below.
  • K 2 Ti 2 0 5 obtained from the reaction of amorphous titanium compound and potassium compound prepared as starting material, K 2 Ti 2 0 5 used in an amount of 100g / L, was added at a concentration of 0. 2mol / L hydrochloric acid After stirring at 25 ° C for 24 h, the obtained mixed solution was placed in an autoclave and sealed, and then the autoclave was reacted in an oven at 180 ° C for 24 hours, and the resulting solution was filtered out of a solid and dried, and finally Calcination in a muffle furnace at 500 ° C for 2 h gave titanium oxide.
  • the most collapsible pore size is 90 nm, the specific surface area is 110 m 2 /g, the pore volume is 0.32 cm 3 /g, and the crystal form is anatase titanium oxide.
  • the potassium content of the phase is less than 5% by weight of the product, followed by washing with water, drying at 20-50 ° C for 12 hours, and finally crystallization in air at 500 degrees for two hours, the most collapsible pore diameter of the obtained titanium oxide is l Lnm, specific surface area 105m7g, pore volume is 0. 17, crystal form is Ti0 2 (B) phase titanium oxide and anatase type titanium oxide. Comparative Example 2:
  • K 2 Ti 4 0 9 is used in an amount of 100 g/L, and the concentration of hydrochloric acid is 1 mol/L, and after stirring at 25 ° C for 24 hours, the solution is placed in an autoclave, followed by hydrothermal conditions at 150 °C. O. 02cm 3 , the specific surface area is 17m 2 /g, the pore volume is 0. 02cm 3 , the pore volume is 0. 02cm 3 /g, the crystal form is Ti0 2 (B) phase titanium oxide.
  • This comparative example shows that when the titanate is a hexa-coordinate layered titanate, it is not possible to obtain a macroporous titanium oxide of 20-100 nm by using this process, and the specific surface area and pore volume of the obtained titanium oxide are also compared. small.
  • the K 2 Ti 2 0 5 is used as a raw material, and the amount of K 2 Ti 2 0 5 is 100 g/L, and the concentration of hydrochloric acid is added to 0.005 mol/L, and after stirring at 25 ° C for 24 hours, the solution is placed in an autoclave, and then The reaction was filtered for 24 h under 150 ° hydrothermal conditions. The obtained solution was filtered, dried, and finally calcined in a 450-degree muffle furnace for 2 h to obtain an amorphous material having a maximum pore diameter of 3 nm and a specific surface area of 16 m 2 / g, ⁇ 0. 02cm 3 /g.
  • K 2 Ti 2 0 5 is used in an amount of 100 g/L, and hydrochloric acid is added at a concentration of l lmol/L, and after stirring at 25 ° C for 24 hours, the solution is placed in an autoclave, followed by 150 The reaction was carried out for 24 h under hydrothermal conditions, and the obtained solution was filtered, dried, and finally calcined in a 450-degree muffle furnace for 2 h.
  • the obtained titanium oxide had a most collapsible pore diameter of 22 nm and a specific surface area of 15 m 2 /g. 0. l lcmVg, the crystal form is anatase titanium oxide.
  • Comparative Examples 3 and 4 It can be seen from Comparative Examples 3 and 4 that a layered pentacoordinated titanate is used when hydrochloric acid is added. When the amount is small or more, we can't get the high specific surface area and high pore volume we need.
  • the mesoporous titanium oxide has a maximum pore diameter of 3 nm, a specific surface area of 85 m 7 g, and a pore volume of 0.1 cm 7 g.
  • the crystal form is a mixture of tetratitanate, anatase phase titanium oxide and Ti 2 2 (B) phase titanium oxide.
  • the macroporous titanium oxide or the precursor thereof obtained by the invention has simple preparation conditions and a simple process, and the reaction time is short, and the pore structure can be adjusted according to requirements in the range of 20-100 nm.
  • Type mixing or doping is more convenient than the advantages of previous work.
  • the invention can obtain large pore titanium oxide or precursors of 20-100 nm with different pore structure properties by adjusting the concentration of the acid solution and the post-treatment conditions, and is suitable for being large-scale due to simple process and low operating cost. Production and wide application. references

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

提供了一种制备大孔氧化钛或其前驱体的方法。所述方法包括将五配位或者四配位的并具有层状结构的碱金属钛酸盐与酸溶液混合后,于10〜150°C下搅拌,然后在反应装置内于50〜250°C下进行反应,反应后过滤以得到固体物质并干燥,在300〜600°C下煅烧所述固体物质,得到最可几孔径为20〜100nm的大孔氧化钛、氧化钛前驱体或氧化钛和其前驱体的混合物。所述方法的优点是反应时间短,能耗少,制备条件和工艺简单易控,原料来源广,设备简单并且投资成本低。产物的孔径,孔容以及比表面积可以调控,能够满足不同酶对载体的要求。

Description

说明书
制备大孔氧化钛或其前躯体的方法
技术领域
本发明属于无机大孔载体领域, 具体涉及一种大孔氧化钛或其前躯体的 制备方法。 孔结构是无机载体的重要指标之一。 目前获得可控孔结构的大孔氧化钛 或其前躯体的主要方法有以下几种: 通过改变溶胶 -凝胶反应或后处理条件, 如 pH值、 水量、 加入磁场、 微波和焙烧温度等 [1]在小范围内调整孔结构, 并 且这些条件的控制必须非常精细; 2)在制备氧化钛溶胶过程中加入不同大小 的模板剂 [2]或表面活性剂、 磷酸、 硝酸、 氨水等 [3]作为催化剂或结构导向剂, 但这种方法只适合于少量制备, 而且在处理这些催化剂过程中可能引起环境 污染; 3)由于钛酸盐用常规或传统方法不能得到高比表面积的氧化钛或其前 躯体 [4], Sasaki等 [5]用插层或重组装方法, 将钛酸盐或氧化钛作为原料, 氧化 铝或有机铵盐作为柱撑物, 通过改变添加量达到控制孔结构的目的, 这种方 法原料昂贵, 路线复杂; 4)Wdlenberg等 [6]发现钛酸盐原料中如果有少量二钛 酸钾, 能够有效地提高产物氧化钛或其前躯体的比表面积, 但没有进行进一 步深入研究。 5 ) 陆小华等 (ZL03158274.5 ) 以碱金属钛酸盐为原料, 在温度 为 20〜250°C、 湿度为 2〜100%的湿气气氛中反应 0.5〜72h, 然后经过水或 者酸溶液清洗, 最后空气焙烧或溶剂热处理, 得到的氧化钛的孔径在 1〜 20nm。
针对以上说明, 我们可以看出使用溶胶-凝胶反应可以制备出 20nm以上 的氧化钛, 但是这种制备方法的成本比较高, 并且有些方法比较难以实现工 业化; 而陆小华等 (ZL03158274.5 ) 以碱金属钛酸盐为原料的工艺虽然简单 但是他们得到的氧化钛是以小分子催化领域为目标领域, 得到的氧化钛的孔 径在 l-20nm范围内调节, 并没有使得孔径达到 20nm以上。 一般认为由于酶的性质收到其支链的影响, 所以载体的孔径大小一般最 佳为酶分子大小的三倍左右。 由于酶分子的大小通常在几个纳米到几十纳米 左右, 这就要求孔径的大小范围可以在一个较大的范围内实现调控, 而一个
10nm左右的酶分子, 其需要的载体的孔径大小就是 30nm左右, 这样就需要 一种可以制备出大孔径的无机载体的方法。
另外氧化钛因其具有良好的生物相容性在酶单载方面具有重要应用。 例 如, 姚忠 (CN101775387A)使用 20-50nm 的介孔氧化钛作为载体, 将 Y -谷氨 酰转肽酶固定在 20-50nm的介孔氧化钛上面, 发现得到的介孔二氧化钛固定 化酶具有性状均一、 表面积大、 酶稳定性强、 重复使用性能好等特点。 所以 孔径在 20nm以上的氧化钛在生物单载方面有着一个巨大的应用优势。
本发明与陆小华专利(ZL03158274.5, ZL200710025816.X)相比, 主要体 现在工艺以及控制步骤上面的不同, 陆小华专利通常是先通过湿气气氛反应 或者水中分散后, 置于碱性溶液中来实现调节孔径结构大小, 然后经过酸处 理去除碱离子, 最后经过热处理就可以得到介孔氧化钛; 而本工艺直接先经 过酸处理去除碱离子, 之后通过在盐溶液中热处理来成孔, 最后热处理就可 以得到 20-100nm的大孔氧化钛和其前躯体。
发明内容
本发明的目的是针对现有技术中存在的不足, 提供一种 20-lOOnm的大 孔氧化钛或其前躯体的制备方法, 这种方法具有合成条件简单易控, 易得到 大孔等优点。
本发明的目的可以通过以下措施达到:
一种制备 20-100nm的大孔氧化钛或其前躯体的方法, 将五配位或者四 配位的具有层状结构的碱金属钛酸盐与酸溶液混合后, 于 10〜150°C下进行 搅拌, 得到的混合液在反应装置内于 50〜250°C的环境温度下进行反应, 反 应后过滤出固体物质并干燥, 再在 300〜600°C下煅烧所述固体物质, 得到最 可几孔径为 20〜100nm的大孔氧化钛、氧化钛前躯体或氧化钛和其前躯体的 混合物。 本法制得的大孔氧化钛、 氧化钛的前躯体或氧化钛和其前躯体的混合物 的最可几孔径为 20〜: LOOnm, 孔容为 0.05〜0.4cm3/g, 比表面积〉 30 cm2/g。 其中氧化钛为锐钛矿相氧化钛、 Ti02(B)相氧化钛或金红石相氧化钛中的至少 一种; 所述氧化钛前躯体为一钛酸、 二钛酸或无定形钛酸。
本发明以五配位或者四配位的具有层状结构的碱金属钛酸盐为原料, 所 谓五配位或者及四配位的具有层状结构的碱金属钛酸盐就是指该钛酸盐的钛 氧多面体为钛氧五面体结构或者为钛氧四面体结构, 而层状结构就是说钛氧 多面体组成的连接单元没有将钾或者钠离子封闭在钛氧多面体当中。 本发明 的五配位或者四配位的具有层状结构的碱金属钛酸盐选自 K2Ti03、NaKTi03、 Na4Ti5012或 K2Ti205中的一种或几种。
本发明的酸溶液选自盐酸溶液、 硫酸溶液、 硝酸溶液、 甲酸溶液、 乙酸 溶液或草酸溶液中的一种或几种,其溶剂为前述各溶液一般意义上的水溶剂; 酸溶液的在 0.01〜10mol/L的浓度范围内才具有最佳的效果。
碱金属钛酸盐与酸溶液混合后的混合液中碱金属钛酸盐的用量为 5〜 1000g/L。 碱金属钛酸盐与酸溶液混合后的搅拌条件是: 在 10〜150°C下搅拌 l〜100h。 这一步搅拌的目的是将碱金属钛酸盐中的钾钠离子尽量的交换出 来, 达到一个平衡的过程。
本发明的反应装置可以采用开口式反应装置或者具有密闭功能的反应装 置, 可进一步采用具有密闭功能的反应装置, 优选采用高压釜, 该高压釜的 压力由自身提供或由外界提供。
混合液在反应装置内的反应可以为一般反应, 也可以为水热反应, 本发 明中优选采用水热反应, 即将反应物置于密闭的反应装置内, 在反应装置外 加热, 使反应装置内的反应物在高温高压下进行反应。
上述混合液在反应装置内的反应时间为 l〜30h。反应后过滤出固体物质 通过一般或常用的干燥条件进行干燥。
固体物质最后在 300〜600°C下的煅烧时间为 0.5〜24h,该步骤可以提高 产物的结晶度。 本发明的有益效果:
1. 本工艺与以前工艺相比可以得到孔径更大的 20-lOOnm大孔氧化钛或 其前躯体, 这种孔径的氧化钛或其前躯体有助于其在固定化酶和药物缓释等 领域的应用。
2. 本方法制备条件和工艺简单易控,有利于规模化生产,并且设备简单, 投资成本低。
3. 通过控制酸浓度、烘箱温度、反应时间等条件, 本法的产物氧化钛或 其前躯体的孔径能在 20-lOOnm大孔范围内调节, 并且可以调控孔容及比表 面积, 能够满足不同酶对载体的要求。
4. 本发明与现有技术相比, 主要体现在工艺以及控制步骤上面的不同, 现有工艺通常是先通过湿度为 2-100%的湿气气氛反应或者水溶液水合 7〜10 天 (如 ZL200710025816.X)调节孔径大小, 然后经过酸处理去除碱离子, 最后 经过热处理就可以得到介孔氧化钛;而本工艺直接先经过酸处理去除碱离子, 之后通过在盐溶液中热处理来成孔, 最后再次热处理就可以得到 20-100nm 的多孔氧化钛和其前躯体。
附图说明
图 1为下面实施例 1的 BET表征图。
其进一步证实了本方法可以获得大孔的氧化钛或其前躯体。
具体实施方式
以下结合实施例对本发明作进一步说明。
实施例 1:
以 K2Ti205 (由钛的非晶态化合物和含钾化合物的反应制备得到)为原料, K2Ti205的用量为 100g/L,加入浓度为 0. 2mol/L的盐酸中, 于 25°C搅拌 24h 之后, 将得到的混合溶液放入高压釜中并密封, 之后高压釜在 180°C的烘箱 中进行反应 24h,将得到的溶液过滤出固体并烘干,最后在 500°C马弗炉中煅 烧 2h,得到氧化钛。其最可积孔径为 90nm,比表面积为 110m2/g,孔容 0. 32cm3/g, 晶型为锐钛矿氧化钛。
实施例 2〜8
其他实施例均按实施例 1的步骤进行,其具体反应的原料和条件见表 1, 及性能见表 2。
表 1. 实施例 2〜8原料及制备条件
Figure imgf000007_0001
表 2. 实施例 2〜8的产物的结构性能
其他实施 原料 产物的结构性能
例 最可几孔径 比表面积 孔 容
晶型
(m2/g) (cm3/g)
锐钛矿相氧化钛 +金红石相 实施例 2 NaKTi03 100 31 0.13
氧化钛
锐钛矿相氧化钛 + Ti02(B) 实施例 3 Κ2ΉΟ3 32 102 0.21
相氧化钛
实施例 4 Na4Ti5012 75 51 0.32 无定形钛酸
实施例 5 K2Ti205 26 157 0.1 锐钛矿相氧化钛
二钛酸 +锐钛矿相氧化钛 + 实施例 6 K2Ti205 23 167 0.35
Ti02(B) 相氧化钛 实施例 7 K2Ti03 36 135 0.28 一钛酸 +锐钛矿相氧化钛 实施例 8 K2Ti205 20 200 0.4 锐钛矿相氧化钛 比较例 1 :
以 11205为原料, 烧结产物在水中分散后, 置于 50°C、 5倍的 pH=8的 水溶液中反应 8小时,过滤后置入 pH=3的盐酸水溶液搅拌 8小时,至固相含 钾量小于产物重量的 5wt%, 之后进行水洗过滤在 20-50°C干燥 12个小时, 最后在 500度的空气中晶化两个小时, 得到的氧化钛的最可积孔径为 l lnm, 比表面积 105m7g,孔容为 0. 17,晶型为 Ti02 (B)相氧化钛和锐钛矿型氧化钛。 比较例 2 :
2 09为原料, K2Ti409的用量为 100g/L, 加入盐酸浓度为 lmol/L, 25°C搅拌 24h之后,将溶液放入高压釜中,之后在 150度水热条件下反应 24h, 将得到的溶液过滤、 烘干、 最后在 450度马弗炉中煅烧 2h, 得到的氧化钛的 最可积孔径为 7nm, 比表面积为 17m2/g, 孔容 0. 02cm3/g,晶型为 Ti02 (B)相氧 化钛。
这个比较例说明当钛酸盐为六配位的层状钛酸盐时, 使用该工艺并不能 够得到 20-lOOnm的大孔氧化钛,并且得到的氧化钛的比表面积和孔容也都较 小。
比较例 3 :
以 K2Ti205为原料,K2Ti205的用量为 100g/L,加入盐酸浓度为 0. 005mol/L, 25°C搅拌 24h之后,将溶液放入高压釜中,之后在 150度水热条件下反应 24h, 将得到的溶液过滤、 烘干、 最后在 450度马弗炉中煅烧 2h, 得到的为无定型 的物质, 最可积孔径为 3nm, 比表面积为 16m2/g, 孔容 0. 02cm3/g。
比较例 4:
以 K2Ti205为原料, K2Ti205的用量为 100g/L, 加入盐酸浓度为 l lmol/L, 25°C搅拌 24h之后,将溶液放入高压釜中,之后在 150度水热条件下反应 24h, 将得到的溶液过滤、 烘干、 最后在 450度马弗炉中煅烧 2h, 得到的氧化钛的 最可积孔径为 22nm, 比表面积为 15m2/g, 孔容 0. l lcmVg,晶型为锐钛相氧化 钛。
从比较例 3和 4中可以看出使用层状的五配位的钛酸盐, 当加入盐酸的 量较少或者较多的时候, 均无法得到我们所需要的高比表面积、 高孔容的
20-100nm的大孔氧化钛。
比较例 5:
以 K2Ti409为原料(ZL200710025816. X),在温度为 200°C、湿度为 15%的丙 三醇 -水蒸气气氛中反应 6h, 然后经过水洗, 最后空气焙烧后得到的微孔-介 孔氧化钛的最可几孔径为 3nm, 比表面积为 85m7g, 孔容为 0. Icm7g, 晶型 为四钛酸、 锐钛矿相氧化钛和 Ti02 (B)相氧化钛的混合物。
由实施例和比较例可以看出, 本发明得到的大孔氧化钛或其前躯体具有 制备条件和工艺简单易控,反应时间短,孔结构能在 20-lOOnm范围内根据需 要进行调节, 晶型混合或掺杂比较方便等明显优于前人工作的优点。 本发明 可以通过调节酸溶液的浓度以及后处理条件, 得到不同孔结构性能的 20-lOOnm的大孔氧化钛或及其前躯体, 且由于工艺简单, 操作成本较低, 非 常适合于被大规模生产和广泛应用。 参考文献
[ 1] M. Andersson, A. Kiselev and L. Osterlund, et al. J. Phys. Chem. C 2007, 111, 6789-6797 ; J. Aguado-Serrano, M丄 Rojas-Cervantes. Micro. Meso. Mater. 2006, 88, 205-213; S Tursi loadi, Y. Yamanaka and H. Hirashima. J. Sol-Gel Sci. Techn. 2006, 38, 5-12 ; J. Yu, G. Wang and B. Cheng, et al. Appl. Catal. B, 2007, 69, 171-180 ; D. M. Antonel l i and J. Y. Ying. Angw. Chim. Int. Ed. Engl. 1995, 34 (18) , 2014—2017 ; Y. Wang, X. Tang and L. Yin, et al. Adv. Mater. 2000, 12 (16) , 1183-1186 ; S. Yuan, Q. Sheng and J. Zhang, et al. Micro. Meso. Mater. 2005, 79, 93—99·
[2] H. Li, Z. Bian and J. Zhu. J. Am. Chem. Soc. 2007, 129, 453-454 ; Y. Yang, M. Suzuki and S. Owa. J. Am. Chem. Soc. 2007, 129, 581—587 ; N. Koshitani, S. Sakulkhaemaruethai and Y. Suzuki. Ceram. Inter. 2006, 32, 819-824 ; T. Sreethawong, Y. Suzuki and S. Yoshikawa. J. Sol id State Chem. 2005, 178, 329-338.
[3] M. Mohamed, W. A. Bayoumy and M. Khairy. Micro. Meso. Mater. 2007, 103, 174-183 ; Q. Sheng, Y. Cong and S. Yuan. Micro. Meso. Mater. 2006, 95, 220-225 ; D. Huang, G. S. Luo and Y. J. Wang. Micro. Meso. Mater. 2005, 84, 27-33 ; K. Yoo, H. Choi and D. Dionysiou. Chem. Comm. 2004, 2000-2001.
[4] S. Yin and T. Sato. Ind. Eng. Chem. Res. 2000, 39, 4526-4530.
[5] T. Sasaki, F. Izumi and M. Watanabe. Chem. Mater. 1996, 8, 777-782 ; T. Sasaki, S. Nakano and S. Yamauchi, Chem. Mater. 1997, 9, 602-608; F. Kool i, T. Sasaki and V. Rives. J. Mater. Chem. , 2000, 10, 497-501 ; R. Ma, Y. Bando and T. Sasaki. J. Phys. Chem. B 2004, 108, 2115—2119·
[6] L. R. Wal lenberg, M. Sanati and A. Andersson. Microsc. Microanal. Microstruct. 1990, 1 (5-6) , 357-364.

Claims

权利要求书
1、 一种制备 20-100nm的大孔氧化钛或其前躯体的方法, 其特征在于: 将五配位或者四配位的具有层状结构的碱金属钛酸盐与酸溶液混合后, 于 10〜150°C下搅拌, 然后将混合液在反应装置内于 50〜250°C的环境温度下进 行反应, 反应后过滤出固体物质并干燥, 再在 300〜600°C下煅烧所述固体物 质, 得到最可几孔径为 20〜100nm的大孔氧化钛、 氧化钛前躯体或氧化钛和 其前躯体的混合物。
2、 根据权利要求 1所述的方法, 其特征在于: 所述大孔氧化钛、 氧化钛 的前躯体或氧化钛和其前躯体的混合物的最可几孔径为 20〜100nm, 孔容为 0.05〜0.4cm3/g, 比表面积〉 30 cm2/g。
3、 根据权利要求 1或 2所述的方法, 其特征在于: 所述氧化钛为锐钛矿 相氧化钛、 Ti02(B)相氧化钛或金红石相氧化钛中的至少一种; 所述氧化钛前 躯体为一钛酸、 二钛酸或无定形钛酸。
4、 根据权利要求 1所述的方法, 其特征在于: 所述五配位或者四配位的 具有层状结构的碱金属钛酸盐选自 K2Ti03、 NaKTi03、 Na4Ti5012或者 K2Ti205 中的一种或几种。
5、根据权利要求 1所述的方法,其特征在于:所述酸溶液选自盐酸溶液、 硫酸溶液、 硝酸溶液、 甲酸溶液、 乙酸溶液或草酸溶液中的一种或几种。
6、 根据权利要求 1或 4所述的方法, 其特征在于: 所述酸溶液的浓度为 0.01〜: L0mol/L。
7、 根据权利要求 1所述的方法, 其特征在于: 所述碱金属钛酸盐与酸溶 液混合后的混合液中碱金属钛酸盐的用量为 5〜1000g/L。
8、 根据权利要求 1所述的方法, 其特征在于: 所述碱金属钛酸盐与酸溶 液混合后, 进行搅拌的时间为 l〜100h。
9、 根据权利要求 8所述的方法, 其特征在于: 所述反应装置为开口容器 或具有密闭功能的高压釜, 所述高压釜的压力由自身提供或由外界提供。
10、 根据权利要求 1所述的方法, 其特征在于: 所述混合液在反应装置 内的反应为水热反应。
11、 根据权利要求 1所述的方法, 其特征在于: 所述混合液在反应装置 内的反应时间为 l〜30h; 所述固体物质在 300〜600°C下煅烧的时间为 0.5〜 4 h。
PCT/CN2011/074921 2011-05-30 2011-05-30 制备大孔氧化钛或其前躯体的方法 WO2012162879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074921 WO2012162879A1 (zh) 2011-05-30 2011-05-30 制备大孔氧化钛或其前躯体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/074921 WO2012162879A1 (zh) 2011-05-30 2011-05-30 制备大孔氧化钛或其前躯体的方法

Publications (1)

Publication Number Publication Date
WO2012162879A1 true WO2012162879A1 (zh) 2012-12-06

Family

ID=47258272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074921 WO2012162879A1 (zh) 2011-05-30 2011-05-30 制备大孔氧化钛或其前躯体的方法

Country Status (1)

Country Link
WO (1) WO2012162879A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109107564A (zh) * 2018-08-28 2019-01-01 上海烟草集团有限责任公司 一种缺陷型钙钛矿光催化材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136125A (en) * 1980-03-10 1980-10-23 Natl Inst For Res In Inorg Mater Manufacture of noncrystalline titania
JPS60259625A (ja) * 1984-06-01 1985-12-21 Natl Inst For Res In Inorg Mater チタニア繊維の製造法
CN101139109A (zh) * 2007-08-07 2008-03-12 南京工业大学 一种快速制备易控微孔-介孔结构氧化钛或其前躯体的方法
CN101842319A (zh) * 2007-08-30 2010-09-22 石原产业株式会社 钛酸化合物、制造该钛酸化合物的方法、含有该钛酸化合物的电极活性材料和使用该电极活性材料的存储设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136125A (en) * 1980-03-10 1980-10-23 Natl Inst For Res In Inorg Mater Manufacture of noncrystalline titania
JPS60259625A (ja) * 1984-06-01 1985-12-21 Natl Inst For Res In Inorg Mater チタニア繊維の製造法
CN101139109A (zh) * 2007-08-07 2008-03-12 南京工业大学 一种快速制备易控微孔-介孔结构氧化钛或其前躯体的方法
CN101842319A (zh) * 2007-08-30 2010-09-22 石原产业株式会社 钛酸化合物、制造该钛酸化合物的方法、含有该钛酸化合物的电极活性材料和使用该电极活性材料的存储设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109107564A (zh) * 2018-08-28 2019-01-01 上海烟草集团有限责任公司 一种缺陷型钙钛矿光催化材料及其制备方法和应用
CN109107564B (zh) * 2018-08-28 2021-05-25 上海烟草集团有限责任公司 一种缺陷型钙钛矿光催化材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN102225783B (zh) 一种制备大孔氧化钛或其前躯体的方法
EP2189420B1 (en) A method for quick preparing titanium oxide or precursor thereof with a controllable structure from micropore to mesopore
CN100558642C (zh) 一种快速制备易控微孔-介孔结构氧化钛或其前驱体的方法
Imai et al. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes
Zhou et al. Sepiolite-TiO2 nanocomposites for photocatalysis: Synthesis by microwave hydrothermal treatment versus calcination
JP3076844B1 (ja) メソポーラス酸化チタン多孔体およびその製造方法
CN103730259B (zh) 一种双尺度孔隙结构的纳米晶二氧化钛薄膜及其制备方法
CN109499619B (zh) TiO2/MIL-101光催化剂及其制备方法
CN101391811A (zh) 一种高比表面积二氧化钛的制备方法
CN109399711A (zh) 一种金红石相二氧化钒纳米粉体的制备方法
CN105217676B (zh) 具有纳米片及纳米多孔结构的氧化钛气凝胶及其制备方法
CN104439276B (zh) 一种快速制备中空多孔二氧化硅/银纳米复合材料的方法及产品
WO2016026339A1 (zh) 一种TiO2纳米晶的合成方法
CN102784632A (zh) 核/壳结构的硅藻土/二氧化钛复合光催化剂的制备方法
Wang et al. Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts
WO2012162879A1 (zh) 制备大孔氧化钛或其前躯体的方法
CN103601239A (zh) 一种锐钛矿和板钛矿的混晶TiO2纳米线的制备方法
CN101830501B (zh) 一种可溶性锐钛型二氧化钛的制备方法
CN110342572B (zh) 一种锐钛矿型纳米二氧化钛的制备方法
CN116003262B (zh) 一种n,n-二甲基苯胺的合成方法
CN104386742A (zh) 一种高结晶度、大比表面积的介孔二氧化钛及其制备方法
CN103752301B (zh) 纳孔碱金属/碱土金属钛酸盐光催化剂及其制备方法
Dadvar et al. Application of sodium titanate nanotubes doped with vanadium (VNaTNT) as a heterogeneous catalyst for oxidation of sulfides at room temperature
RU2733936C1 (ru) Способ получения термостабильного микропористого покрытия на основе смешанного оксида титана-кремния
JP3708216B2 (ja) 酸化チタン微粒子及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/02/2014).

122 Ep: pct application non-entry in european phase

Ref document number: 11866538

Country of ref document: EP

Kind code of ref document: A1