WO2012161177A1 - 腫瘍の画像診断用標識誘導体 - Google Patents

腫瘍の画像診断用標識誘導体 Download PDF

Info

Publication number
WO2012161177A1
WO2012161177A1 PCT/JP2012/063009 JP2012063009W WO2012161177A1 WO 2012161177 A1 WO2012161177 A1 WO 2012161177A1 JP 2012063009 W JP2012063009 W JP 2012063009W WO 2012161177 A1 WO2012161177 A1 WO 2012161177A1
Authority
WO
WIPO (PCT)
Prior art keywords
labeled
labeled derivative
tumor
formula
compound
Prior art date
Application number
PCT/JP2012/063009
Other languages
English (en)
French (fr)
Inventor
佳裕 村上
荘介 三好
昭宏 野田
圭介 光岡
誠 實岡
松矢 高広
彩 栗生
堅太郎 山中
崇人 中原
Original Assignee
アステラス製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アステラス製薬株式会社 filed Critical アステラス製薬株式会社
Publication of WO2012161177A1 publication Critical patent/WO2012161177A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0453Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole

Definitions

  • the present invention relates to a labeled derivative labeled with a positron emitting nuclide or a single photon emitting nuclide and a method for producing the same. Furthermore, the present invention relates to a composition for diagnostic imaging of a tumor containing the labeled derivative, and a kit for producing the composition.
  • Survivin is one of the IAP family proteins that control apoptosis and is overexpressed in major cancer types. Survivin is present in rapidly dividing cells such as placenta, testis and CD34 + bone marrow stem cells, but is poorly expressed in most normal differentiated cells. Survivin overexpression in cancer has been reported to be associated with poor survival in patients with non-small cell lung cancer (Monzo M, et al., J Clin Oncol 1999; 17: 2100-4).
  • Survivin is a new target for cancer treatment, based on the selective expression of survivin in cancer cells, the ability to suppress apoptosis in cancer cells, and the fact that survivin expression regulates the cell cycle and correlates with cancer malignancy and prognosis. It is attracting attention as.
  • Patent Documents 1 and 2 1- (2-methoxyethyl) -2-methyl-4,9-dioxo-3- (pyrazin-2-ylmethyl) -4,9-dihydro-1H-naphthobromide represented by the following formula [2 , 3-d] imidazol-3-ium (generic name: sepantromium bromide, hereinafter abbreviated as YM155) is expected to be an anticancer agent because it has a good in vivo inhibitory activity against cancer growth and has low toxicity. Is disclosed.
  • YM155 is the first small molecule compound found to selectively suppress survivin and is a human hormone resistant prostate cancer (HRPC) transplantation model (Nakahara et al. Cancer Res. 2007; 67: 8014-221. ), Human NSCLC transplantation model (Proc Amer Assoc Cancer Res 2006; 47: [Abstract # 5671]), and in patients with advanced solid cancer or non-Hodgkin lymphoma (NHL) (Nakahara et al. Cancer Sci. 2011; 102 : 614-21.) And showed a good anticancer effect.
  • HRPC human hormone resistant prostate cancer
  • Non-Patent Document 1 uses YM155 (hereinafter referred to as [ 14 C] YM155) labeled with a radioactive half-carbon radioisotope 14 C having a long half-life, represented by the following formula: The results of examining the drug biodistribution at the time of administration are disclosed. From the radioluminogram of frozen animal sections of [ 14 C] YM155-treated mice, it was disclosed that [ 14 C] YM155 migrated to the tumor at a high rate and the tumor / blood radioactivity ratio was also good.
  • [ 14 C] YM155 migrated to the tumor at a high rate and the tumor / blood radioactivity ratio was also good.
  • a survivin expression inhibitor typified by YM155 suppresses the expression of its target survivin inside tumor cells and induces apoptosis of tumor cells.
  • Survivin has been reported to be highly expressed in most cancer cell types, but it has been confirmed that some cancers have low susceptibility to YM155 in tests using conventional tumor-bearing model animals. If it is possible to predict the sensitivity of a patient tumor to YM155 prior to treatment, it is expected to effectively bring the antitumor effect of YM155 to sensitive patients without depriving the patient of treatment opportunities. . Therefore, development of a diagnostic method that enables a more rapid and non-invasive survivin expression inhibitor, particularly sensitive / insensitive patients to YM155, is eagerly desired.
  • the inventors have identified 1- (2-methoxyethyl) -2-methyl-4,9-dioxo-3- (pyrazin-2-ylmethyl) -4,9-dihydro-1H-naphtho [2,3 -d] Positron emission tomography (PET) using a positron emitting nuclide-labeled derivative prepared by introducing a positron emitting nuclide into imidazole-3-ium (YM155) It was found that positron emitting nuclide-labeled derivatives accumulate in the tumor and that tumors can be imaged, and that the accumulation of YM155-labeled derivatives and the antitumor effect are correlated.
  • PET Positron emission tomography
  • YM155 sensitive and insensitive by tumor imaging by PET and single photon tomography (SPECT) using YM155 labeled derivatives labeled with positron emitting nuclide or single photon emitting nuclide of the present invention The present invention was completed by not only identifying patients but also discovering that the size and staging of sensitive tumors and the therapeutic effects of YM155 and other antitumor agents can be diagnosed.
  • the present invention [1] Formula (I) (Where X ⁇ is a counter anion or is not present) 1- (2-methoxyethyl) -2-methyl-4,9-dioxo-3- (pyrazin-2-ylmethyl) -4,9-dihydro-1H-naphtho [2,3-d] imidazole- In 3-ium or a salt thereof, (a) at least one of its constituent carbon, nitrogen and oxygen atoms is a positron emitting nuclide, or (b) a halogen atom which is a positron emitting nuclide or a single photon emitting nuclide or The present invention relates to a labeled derivative into which at least one functional group containing a halogen atom has been introduced. Furthermore, the present invention also relates to the following [2] to [18].
  • composition for diagnostic imaging according to [8], wherein the radioactivity is 0.5 GBq or more, 1 GBq or more, or 1.5 GBq or more.
  • radioactivity is 0.5 GBq or more, 1 GBq or more, or 1.5 GBq or more.
  • composition according to [8] which is used for diagnosing tumor sensitivity to imidazol-3-ium.
  • a kit comprising a raw material compound and at least one reagent for labeling for producing the diagnostic imaging composition according to [8].
  • the composition for image diagnosis according to [9] which is for image diagnosis of a human tumor.
  • the compound of the formula (II) and the compound of the formula (III) or a salt thereof shown in the following reaction formula may contain 40% (v / v) or less of triethylamine based on the whole base. , Reacting in the presence of one or more bases selected from the group consisting of N-methylmorpholine, N, N-dimethylbenzylamine and dibenzylamine, and then reacting the resulting compound of formula (IV) with an acid.
  • a method for producing a labeled derivative represented by the formula (IZ), comprising a step of treating and cyclizing.
  • X ⁇ is a counter anion or is not present
  • Z * is —O— 11 CH 3 , — 18 F or — (CH 2 ) n — 18 F, and n is 1 or 2
  • Ac is an acetyl group.
  • introduction refers to a positron emitting nuclide or a single photon instead of at least one hydrogen atom or terminal functional group (specifically, a methoxy group or a methyl group) present in the compound of the formula (I). It means that a halogen atom which is a releasing nuclide or a functional group containing the halogen atom is substituted. Unless otherwise specified, when symbols in chemical formulas in this specification are also used in other chemical formulas, the same symbols have the same meanings.
  • a compound labeled with a positron emitting nuclide or a single photon emitting nuclide may be described by adding [labeled nuclide] in front of the compound. For example, the 11 C label YM155 is expressed as [ 11 C] YM155.
  • the labeled derivative of the present invention and the diagnostic imaging composition comprising the same have good accumulation properties with respect to YM155 sensitive tumors, and imaging of tumors by positron emission tomography (PET) or single photon tomography (SPECT) Is possible. Therefore, the labeled derivative of the present invention and the diagnostic imaging composition comprising the same are used as a radiolabeled tracer for rapid and non-invasive fractionation of YM155 sensitive / insensitive patients, diagnosis of the size and staging of YM155 sensitive tumors, Furthermore, it can be used for diagnosis of therapeutic effects by YM155 and other antitumor agents. Further, the improved method for producing a labeled derivative of the present invention can be used to produce the diagnostic imaging composition of the present invention having high radioactivity suitable for human clinical application.
  • FIG. 1 is a graph showing the tissue / organ distribution of [ 11 C] YM155-a in cancer-bearing mice with PC-3 or A549 cells in Example 4.
  • FIG. 2 is a graph showing tumor / blood (T / B) and tumor / muscle (T / M) ratios of [ 11 C] YM155-a concentration in tumor-bearing mice with PC-3 or A549 cells in Example 4. It is.
  • FIG. 3 shows PPIS images of cancer-bearing mice with (A) PC-3 cells and (B) A549 cells in Example 4. The arrow in the figure indicates a tumor.
  • FIG. 5 is a graph showing the antitumor effect of YM155 in 6 types of cancer-bearing mice in Example 5.
  • indicates a physiological saline administration group as a control, and ⁇ indicates a YM155M (2 mg / kg, however, A549 only 5 mg / kg) administration group.
  • FIG. 6 shows PET images of six types of cancer-bearing mice in Example 5.
  • the arrow in the figure indicates a tumor.
  • FIG. 7 is a graph showing the correlation between the antitumor effect and the tumor accumulation of [ 11 C] YM155-b in 6 types of cancer-bearing mice in Example 5.
  • halogen atom includes F, Cl, Br and I atoms
  • halogen ion includes these ions.
  • the “counter anion” is not particularly limited as long as it is a physiologically acceptable anion as a counter anion of an imidazolium cation, and is preferably a halogen ion, an organic sulfonate ion (for example, methanesulfonate ion, ethanesulfone, etc.).
  • the counter anion is Cl ⁇ , Br ⁇ and I ⁇ .
  • the counter anion is, Cl - and Br - are.
  • the counter anion is Cl 2 — .
  • the counter anion, Br - is.
  • the positron emitting nuclide when at least one of carbon, nitrogen and oxygen atoms constituting the derivatized derivative is a positron emitting nuclide, examples of the positron emitting nuclide include 11 C, 13 N or 15 O atoms.
  • a halogen atom which is a positron emitting nuclide or single photon emitting nuclide or a functional group containing the halogen atom is introduced, a halogen atom which is a positron emitting nuclide or a single photon emitting nuclide 18 F (positron emitting nuclide), 123 I (single photon emitting nuclide), 124 I (positron emitting nuclide), 131 I (single photon emitting nuclide), 75 Br (positron & single photon emitting nuclide) 76 Br (positron emitting nuclide), 77 Br (positron & single photon emitting nuclide), and 82 Br (single photon emitting nuclide) atoms, wherein the halogen atom can be substituted for the compound of formula (I) It may be introduced directly into the site as a substituent, or substituted at a substitutable site of the
  • the halogenoalkyl group is a lower alkyl group having 1 to 3 carbon atoms substituted with 1 to 3 halogen atoms
  • the halogenoalkoxy group is 1 to 3 carbon atoms substituted with 1 to 3 halogen atoms.
  • Preferred functional groups include fluoromethyl, fluoroethyl, fluoromethoxy and fluoroethoxy groups.
  • a positron emitting nuclide-labeled derivative in which one of the constituent carbon atoms is labeled with 11 C, and 11 C may be in any position, for example, the following formula (I-1a And derivatives represented by (I-1b).
  • 18 a F or positron-emitting nuclide labeled derivative functional group is introduced comprising the same, may be 18 F or functional groups containing the same is introduced at any position, for example, 18 F
  • 18 F As the labeled derivatives into which is introduced, derivatives represented by the following formulas (I-2) and (I-3) are exemplified, and as the labeled derivatives into which a functional group containing 18 F is introduced, the following formulas (I-4) and (I -5).
  • One embodiment is a positron emitting nuclide labeled derivative in which the methoxy group of the compound of formula (I) is substituted with 18 F or a functional group containing the same.
  • the methoxy group of the compound of formula (I) is replaced with a 18 F or 18 F label (hereinafter referred to as [ 18 F]) fluoroalkoxy group (eg, fluoromethyl group, fluoroethyl group) Positron emitting nuclide-labeled derivative.
  • [ 18 F] 18 F or 18 F label
  • fluoroalkoxy group eg, fluoromethyl group, fluoroethyl group
  • Positron emitting nuclide-labeled derivative In the above formula, n represents 1 or 2.
  • the labeled derivative of the present invention is advantageous as a tracer in that most of it is excreted in the urine in an unchanged form when administered in vivo, and is hardly affected by metabolism.
  • the solubility with respect to water is large, and after concentration, by adjusting with physiological saline, it is possible to easily obtain a liquid for injection, which is advantageous for adjusting the composition for diagnostic imaging.
  • the labeled derivative of the present invention is used for PET, SPECT and the like as a radiolabeled tracer.
  • the labeled derivative of the present invention has the ability to accumulate in a survivin-sensitive tumor in vivo, and enables imaging of the tumor by PET, SPECT and similar imaging methods.
  • it can also be used as an in vivo diagnostic imaging device in the Planar Positron Imaging System (PPIS), which acquires planar integrated images instead of tomographic images.
  • PPIS Planar Positron Imaging System
  • autoradiography which is an image analysis means for a section of an isolated organ, and for evaluation of accumulation in an isolated organ using a ⁇ counter.
  • positron emitting nuclide or single photon emitting nuclide used in the labeled derivative of the present invention 11 C (half life 20.4 minutes), 13 N (half life 9.96 minutes), 15 O (half life 2.07) are used for PET. Min), 18 F (half-life 109.7 min), 76 Br (half-life 16.2 hours), etc. are preferred.
  • nuclides having a longer half-life such as 123 I are also suitable.
  • 11 C and 18 F are particularly preferred because of their suitable half-life for clinical PET tests and ease of labeling. Generally, these nuclides are produced by a device called a cyclotron.
  • a production method and apparatus according to the production nuclide can be selected.
  • the nuclide thus produced can be used to label the compound of formula (I).
  • a nuclide with a short half-life such as 11 C is used, the desired nuclide is obtained from a (ultra) small cyclotron installed in the facility to be used, and the labeled derivative of the present invention is produced by a method known in the art.
  • a composition for diagnostic imaging can be produced.
  • YM155 is a compound in which the 1-position and 3-position of the imidazole ring are each substituted with a substituted lower alkyl to form an imidazolium cation, and the cation forms an ion pair with a bromide anion.
  • the labeled derivative of the present invention forms an imidazolium cation, and forms an ion pair with the counter anion (X ⁇ ). If labeled compounds of the present invention is dissolved in an aqueous solvent, counter anion (X -) and does not form an ion pair, X - does not exist.
  • YM155 is known to have a tautomer due to cation delocalization, and the labeled derivative of the present invention also has a tautomer.
  • Examples of the labeled derivative of the present invention include those obtained by separating these isomers or a mixture thereof.
  • the labeled derivative of the present invention may form a salt depending on conditions in addition to the salt with the counter anion, and these salts are also included in the present invention.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, malein
  • organic acids such as acid, lactic acid, malic acid, tartaric acid, citric acid, methanesulfonic acid, ethanesulfonic acid, aspartic acid, and glutamic acid.
  • the labeled derivative of the present invention may be provided as a hydrate, solvate or crystalline polymorphic substance, and the present invention includes these.
  • the raw material compound and the synthesis route can be selected so that the target positron emitting nuclide, for example, 11 C, 13 N or 15 O atom is located at a desired position.
  • the compound (I-1a) into which 11 C has been introduced can be produced, for example, by the following synthetic route described in International Publication No. 01/60803.
  • * in a formula shows presence of a positron or a single photon emission nuclide.
  • the compound (5) and labeled acetyl chloride (4) are reacted in the presence of a strong acid in an inert solvent, and then the obtained compound (6) is reacted in an inert solvent (eg, benzene). React with a corresponding or excess amount of compound (7).
  • an inert solvent eg, benzene
  • an appropriate inorganic base such as potassium carbonate
  • organic base such as triethylamine
  • the subsequent cyclization step is advantageously carried out in an inert solvent (for example, an alcohol-based solvent) using a reaction-corresponding amount or an excess amount of acid at room temperature or under heating.
  • the labeled acetyl chloride (4) can be produced by introducing and reacting with a Grignard reagent solution using [ 11 C] CO 2 produced by cyclotron and further treating with phthaloyl dichloride. .
  • Compound (I-1b) can be produced, for example, by the following synthetic route described in International Publication No. 01/60803.
  • the substitution reaction in the first step uses an excessive amount of the compound (13) and (12) corresponding to the reaction amount or one of them in an inert solvent (for example, benzene), and if necessary, as an acid scavenger.
  • an inert solvent for example, benzene
  • a suitable inorganic base such as potassium carbonate
  • organic base such as triethylamine
  • the subsequent cyclization reaction in the second step is advantageously carried out in an inert solvent (for example, an alcohol solvent) using a reaction-corresponding amount or an excess amount of acid at room temperature or under heating.
  • the labeled compound (12) can be produced by the following method well known to those skilled in the art. Specifically, 2-aminoethanol having an amino group protected is reacted with [ 11 C] CH 3 I produced by a conventional method from [ 11 C] CO 2 produced from cyclotron, followed by deprotection reaction. The compound (12) can be produced by attaching.
  • compounds (I-2) and (I-3) are produced by introducing 18 F into an aromatic ring by a method known to those skilled in the art such as electrophilic substitution, and the production method described in International Publication No. 01/60803 Moreover, it can manufacture using a method well-known to those skilled in the art.
  • the labeled derivative of the present invention produced using a known method is adjusted to a diagnostic imaging composition containing an appropriate amount and administered to a human or mammal.
  • the 11 C-labeled compound obtained in Example 1 described later has a radioactivity of 129.5 MBq and is suitable for use in small animals such as mice.
  • the labeled derivative of the present invention is used as a composition for diagnostic imaging of human tumors, higher radioactivity is required.
  • the yield in the known production method is low, and in order to obtain high radioactivity, synthesis using a large amount of raw materials is required, which is not practical.
  • labeled nuclides have their respective physical half-lives, and the radioactivity decreases with the passage of time, a production method that requires a short time for synthesis and a high radiochemical yield is required.
  • 11 C-labeled compounds have a short half-life of 20.4 minutes and can be synthesized at once using a general-purpose facility.
  • High radioactivity for example, 0.5 GBq or more, preferably 1 GBq or more, more preferably 1.5 GBq or more. Therefore, there is a demand for a production method capable of obtaining a labeled compound that provides the radioactivity in a short time with a good yield.
  • the present inventors have found an improved synthesis method that can easily produce a labeled derivative having high radioactivity.
  • This synthesis method is an improved production method for obtaining the labeled derivatives (I-1b), (I-4) and (I-5) of the present application, and is characterized by the selection of the base in the first step.
  • substitution reaction of compound (II) with compound (III) or a salt thereof proceeds well in the presence of a strong base such as triethylamine (base with a large pKa), compound (II) or compound (IV) is strong. It was found that the yield of the target product reached a peak because it easily decomposes with a base, resulting in an increase in by-products and complication of the subsequent purification process.
  • the base is one or more bases selected from N-methylmorpholine, N, N-dimethylbenzylamine and dibenzylamine, which may contain triethylamine in a volume ratio of 30% or less.
  • the base may contain triethylamine in a volume ratio of 25% or less, and one or more selected from N-methylmorpholine, N, N-dimethylbenzylamine and dibenzylamine Of the base.
  • the base is N-methylmorpholine which may contain triethylamine in a volume ratio of 40% or less, 30% or less, or 25% or less.
  • the base is N-methylmorpholine.
  • the base may be used in an amount suitable for favorably proceeding the reaction. For example, for 5 mg of the raw material compound (II), 10 to 100 ⁇ L, in one embodiment, 20 to 80 ⁇ L, and in another embodiment, 30 ⁇ 60 ⁇ L. Yet another embodiment is 40 ⁇ L, 50 ⁇ L or 60 ⁇ L.
  • the reaction is carried out in a solvent inert to the reaction, in some embodiments, in a nitrile solvent such as propionitrile, acetonitrile, etc., for a few minutes, for example 2 to 6 minutes, in another embodiment 3 minutes, 4 minutes or It is preferable to carry out under heating for 5 minutes, and in one embodiment, under heating at 100 ° C.
  • the subsequent cyclization reaction in the second step is advantageously carried out by adding an excessive amount of acid, specifically, an excessive amount of 2-5 M aqueous hydrochloric acid or hydrobromic acid to the reaction mixture in the first step. is there.
  • an excess amount of 3-5M aqueous hydrobromic acid solution is added and heated for several minutes, such as 2-6 minutes, in another embodiment, 3 minutes, 4 minutes, or 5 minutes.
  • the reaction is preferably carried out under heating at 100 ° C.
  • Isolation and purification of the labeled derivative of the present invention produced in this manner is performed by applying ordinary chemical operations such as extraction, concentration, distillation, crystallization, filtration, recrystallization, and various chromatography.
  • the diagnostic imaging composition of the present invention can be produced by combining the labeling derivative with at least one pharmaceutically acceptable carrier.
  • the diagnostic imaging composition of the present invention is preferably in a dosage form suitable for intravenous administration, for example, an injection for intravenous administration.
  • injections include those containing sterile aqueous or non-aqueous solutions, suspensions, and emulsions.
  • aqueous solvent include distilled water for injection and physiological saline.
  • the non-aqueous solvent include propylene glycol, polyethylene glycol, vegetable oil such as olive oil, alcohols such as ethanol, polysorbate 80 (trade name), and the like.
  • compositions may further contain isotonic agents, preservatives, wetting agents, emulsifiers, dispersants, stabilizers, and solubilizing agents. These are sterilized by, for example, filtration through a bacteria-retaining filter, blending of bactericides, or irradiation. These can also be used by producing a sterile solid composition and dissolving or suspending it in sterile water or a sterile solvent for injection before use.
  • the diagnostic imaging composition of the present invention is an injection for intravenous administration.
  • Another embodiment is an aqueous solution.
  • the diagnostic imaging composition of the present invention When the diagnostic imaging composition of the present invention is used clinically, it is necessary to conduct a quality inspection before administration. For example, in the case of 18 F-FDG, after manufacturing the composition, purity by HPLC (radiochemical purity, chemical purity), filter integrity test (inspection of filter used during sterilization), fever Tests such as sex tests (endotoxin test) are required (Nuclear Medicine, Vol. 38, No. 2, pp. 131-137, 2001), but depending on the test item, an examination time of about 20-30 minutes is usually required.
  • the diagnostic imaging composition of the present invention should also be administered to humans after performing the same quality inspection. When adjusting the composition for diagnostic imaging, it is necessary to adjust in consideration of the radioactivity that decreases within the time required for the quality inspection.
  • the composition for diagnostic imaging labeled with 11 C for diagnostic imaging of human tumors at the time of adjustment is 0.5 GBq or more, as one aspect, 1 GBq or more, as another aspect, It is desirable to have a radioactivity of 1.5GBq or more.
  • the composition for image diagnosis of the present invention can be used by adjusting the dosage according to the imaging method to be used (PET, SPECT, etc.), the type of disease, the age / condition of the patient, the examination site, and the purpose of imaging.
  • the diagnostic imaging composition of the present invention needs to include a detectable amount of a labeled derivative, but needs to be sufficiently careful about the patient's exposure dose.
  • the amount of radioactivity is about 100 to 2000 megabecquerel (MBq). 1000 MBq, and in another embodiment about 370-740 MBq. This can be administered in one or more divided doses or continuously infused.
  • the present invention includes a kit including a raw material compound for preparing a diagnostic imaging composition and at least one reagent for labeling.
  • a kit for rapid synthesis of the labeled derivative of the present invention includes an intermediate compound for producing the labeled derivative of the present invention and a reagent for labeling containing a positron emitting isotope, and can be used to prepare a diagnostic imaging composition when necessary.
  • reaction vessels devices for transferring isotope materials to reaction vessels, pre-filled separation columns for separating products from excess reactants, shields, etc. Instrumentation can also be included.
  • Example 1 [ 11 C] CO 2 (1.5 Ci) produced from cyclotron was introduced into 0.5 M methylmagnesium chloride (in diethyl ether) (0.3 mL) previously cooled to ⁇ 20 ° C. using N 2 gas as a carrier gas. After adding phthaloyl dichloride (0.15 mL) and 2,6-di-t-butylpyridine (0.27 mL) and stirring, diethyl ether was removed by bubbling nitrogen at 40 ° C.
  • reaction solution was distilled as [ 11 C] acetyl chloride while being heated to 140 ° C., and 2-chloro-3-[(2-methoxyethyl) amino] -1, which had been cooled to -30 ° C. in advance. It was introduced into a solution of 4-naphthoquinone (10 mg), fluorosulfonic acid (6 ⁇ L) and acetonitrile (0.3 mL), and reacted at 80 ° C. for 3 minutes. Subsequently, a solution of 2-aminomethylpyrazine (80 ⁇ L), ethanol (0.3 mL) and water (0.3 mL) was added to the reaction solution and reacted at 80 ° C.
  • N- (3-chloro-1,4-dihydro-1,4-dioxo-2-naphthalenyl) -N- (2-pyrazylmethyl) acetamide 5 mg
  • triethylamine 40 ⁇ L
  • acetonitrile 0.3 mL
  • 4M hydrochloric acid 0.8 mL was added and reacted at 100 ° C. for 5 minutes.
  • the [ 18 F] -ion aqueous solution obtained from the cyclotron was adsorbed on a previously conditioned anion exchange resin (Sep-Pak QMA) and then eluted with 20 mM aqueous potassium carbonate solution (1 mL). 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane (20 mg) and acetonitrile (1 mL) were added to the eluate and concentrated under reduced pressure at 120 ° C. Further, acetonitrile was added to the concentrated solution and concentrated under reduced pressure. This operation was repeated twice.
  • N, N-di-t-butoxycarbonylaminoethyl tosylate (30 mg) and acetonitrile (2.0 mL) were added to the resulting concentrated residue, and the mixture was heated at 95 ° C. for 10 minutes.
  • Trifluoroacetic acid (0.5 mL) and water (0.5 mL) were added to the obtained [ 18 F] N, N-di-t-butoxycarbonylfluoroethylamine fraction and heated at 100 ° C.
  • Example 4 The compound (I-1a) labeled with 11 C obtained in Example 1 (hereinafter referred to as [I-1a) (hereinafter, [[ 11 C] YM155-a) was used for the tumor migration test of [ 11 C] YM155-a.
  • PC-3 cells and A549 cells cultured in an optimal medium containing 10% serum were suspended in 50% Matrigel / PBS solution and transplanted subcutaneously into the right thigh of nude mice at 3 ⁇ 10 6 cells / 0.1 mL / mouse.
  • the average tumor volume was about 250 mm 3 as a guide, and the groups were divided into groups so that the variation between the groups was small.
  • [ 11 C] YM155-a solution was administered into the tail vein of the mouse, and 40 minutes after administration, the mouse was decapitated, and the tumor, blood, muscle, liver and kidney were respectively removed, and the weight and gamma counter were used. Radioactivity was measured and drug transferability was calculated. Measurements were performed with 5 animals per group.
  • PPIS Planar Positron Imaging System
  • tumors were extracted from the tumor-bearing mice and sliced, and images based on accumulation of [ 11 C] YM155-a were obtained by autoradiography. Measurements were performed with 3 animals per group.
  • FIGS. 1 and 2 show the results of tissue and organ distribution of [ 11 C] YM155-a.
  • FIG. 3 shows an image by PPIS
  • FIG. 4 shows an autoradiography image.
  • % ID / g is a relative concentration value (tissue radiation) indicating what percentage of the total injected radioactivity (ID: injected dose) is distributed in tissues / organs per g.
  • SUV is a relative concentration value (% ID /%) when the total radioactivity administered is evenly distributed throughout the body (value calculated by dividing the active concentration (Bq / g) by the dose (Bq)) the value calculated by dividing the mouse weight (g)) g
  • the T / B is [11 C] YM155-a concentration tumor / blood ratios of
  • T / M is [11 C] YM155-a concentration
  • the tumor / muscle ratio is shown respectively. From Table 1, FIGS.
  • YM155 highly sensitive strain that is, PC-3 having high antitumor effect by YM155
  • YM155 low sensitive strain that is, A549 having low antitumor effect. It was shown that the concentration of a in the tumor tissue was about 5 times higher.
  • the PC-3 tumor which is known to be a highly sensitive YM155 tumor, showed a high accumulation ratio of [ 11 C] YM155-a, and it was confirmed that the presence of a YM155 sensitive tumor can also be diagnosed by imaging in actual images. It was.
  • the results of autoradiography with the excised tumor in FIG. 4 showed that high accumulation was observed in PC-3, but low accumulation in A549, and noninvasive tumor-bearing mice using PPIS in FIG. Strongly supported the image results.
  • Example 5 In order to investigate in detail the correlation between the antitumor effect of YM155 and tumor migration of [ 11 C] YM155 in tumor-bearing mice, PC-3 cells, A375 cells, Calu-6 cells, SK-MEL-5 cells, A549 cells and Using 6 types of subcutaneously transplanted tumor-bearing mice with HCT-15 cells, YM155 antitumor evaluation test and compound (I-1b) introduced with 11 C obtained in Example 2 (hereinafter referred to as [ 11 C] YM155- The tumor migration test was performed using the solution (abbreviated as b)).
  • each tumor cell cultured in an optimal medium containing 10% serum is suspended in 50% Matrigel / PBS solution and transplanted subcutaneously at the base of the right forelimb of nude mice at 3 ⁇ 10 6 cells / 0.1 mL / mouse. And created.
  • FIG. 5 shows the antitumor effect of YM155
  • FIG. 6 shows a PET image administered with [ 11 C] YM155-b together with the SUV value.
  • FIG. 7 and FIG. 8 show the correlation between the antitumor effect of YM155 and the tumor migration of [ 11 C] YM155-b.
  • FIG. 7 shows the antitumor effect of YM155 shown in FIG. 5 (vertical axis:% inhibition) and the accumulation of [ 11 C] YM155-b tumor from the PET image shown in FIG. (Axis: SUV value).
  • FIG. 8 (A) from the correlation of FIG.
  • FIG. 5 shows that the antitumor effects of YM155 in each tumor-bearing mouse are PC-3, A375, Calu-6 and SK-MEL-5, which are sensitive groups, and A549 and HCT-15 are resistant groups. It was clear that Furthermore, in the PET image of the tumor-bearing mouse treated with [ 11 C] YM155-b in FIG. 6, high [ 11 C] YM155-b accumulation was observed in the tumors of PC-3, A375, Calu-6, and SK-MEL-5. On the other hand, accumulation of A549 and HCT-15 in the tumor was low.
  • Example 6 1- (2-fluoroethyl) -2-methyl-4,9-dioxo-3- (pyrazin-2-ylmethyl) -4,9-dihydro-1H prepared by the same method as YM155 and Example 3 above.
  • -In-vitro culture cell uptake test was performed using naphtho [2,3-d] imidazol-3-ium (hereinafter abbreviated as F-YM155).
  • F-YM155 naphtho [2,3-d] imidazol-3-ium
  • YM155 highly sensitive cell line PC-3 and resistant cell line A549 were cultured in 6-well plates, respectively, and incubated for a specified time in a test solution containing 1 mM YM155 or F-YM155. The cells were recovered with 800 ⁇ L of 0.1% formic acid solution.
  • the cells were crushed with an ultrasonic device and used as a sample for measuring the amount of intracellular uptake.
  • Intracellular YM155 and F-YM155 were quantified by LC-MS / MS.
  • the amount taken up into the cells was shown as a cleared volume ( ⁇ L / well).
  • the cleared volume is a value obtained by dividing the uptake amount (mol / well) by the initial concentration (mol / L) of the test solution.
  • a tumor migration test in tumor-bearing mice was performed using a solution containing the compound (I-5) introduced with 18 F obtained in Example 3 (hereinafter abbreviated as [ 18 F] YM155). did.
  • YM155 tumor migration test was performed using two groups of tumor-bearing mice with PCM cells, which are YM155 highly sensitive strains, and A549 cells, which are hyposensitive strains.
  • PC-3 cells and A549 cells cultured in an optimal medium containing 10% serum were suspended in 50% Matrigel / PBS solution and transplanted subcutaneously into the right thigh of nude mice at 3 ⁇ 10 6 cells / 0.1 mL / mouse.
  • the average tumor volume was 200-400 mm 3 as a guide, and the group was used for the test so that the variation between the groups was small.
  • YM155 was taken up in the highly sensitive cell PC-3 in a time-dependent manner, indicating that the amount of intracellular uptake was higher in the highly sensitive cell PC-3 than in the resistant cell A549 (FIG. 9A).
  • F-YM155 was taken up into PC-3 cells in a time-dependent manner, and the uptake amount was shown to be higher in highly sensitive cells PC-3 than in resistant cells A549 (FIG. 9B).
  • YM155 highly sensitive strain, ie, PC-3 with high antitumor effect by YM155 compared to YM155 low sensitive strain, ie, A549 with low antitumor effect, in [ 18 F] YM155 tumor tissue The concentration was high.
  • the labeled derivative of the present invention into which at least one halogen atom which is a positron emitting nuclide or single photon emitting nuclide or a functional group containing the halogen atom is introduced, can be rapidly and non-invasively like [ 11 C] YM155. It was confirmed that it can be used for the classification of sensitive and insensitive patients.
  • Example 8 Screening of bases In the reaction of synthesizing compound (24) from methoxyethylamine (22), the solvent, base and reaction conditions in the step of reacting compound (13) and compound (23) were appropriately changed, and obtained. The amounts of compound (24), compound (13) and by-products in the reaction solution were measured.
  • the labeled derivative of the present invention can be used as a radiolabeled tracer for rapid and non-invasive classification of YM155 sensitive / insensitive patients, diagnosis of the size and staging of YM155 sensitive tumors, and therapeutic effects of YM155 and other antitumor agents Can be used for diagnosis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

【課題】迅速かつ非侵襲的な、サバイビン発現抑制剤、殊にYM155に対する感受性・非感受性患者の分別を可能とする画像診断用の標識誘導体を提供する。 【解決手段】本発明者らは、YM155に対する感受性・非感受性患者の分別を可能とする方法を鋭意検討し、1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム若しくはその塩の標識誘導体が、YM155感受性腫瘍に対して良好な集積性を有し、陽電子断層撮影(PET)や単一光子断層撮影(SPECT)による腫瘍の画像化を可能とすることを見出した。よって、本発明の標識誘導体は、放射標識トレーサーとして、迅速かつ非侵襲的な、YM155感受性・非感受性患者の分別や、YM155感受性腫瘍の大きさやステージングの診断、さらにはYM155やその他の抗腫瘍剤による治療効果の診断に使用しうる。

Description

腫瘍の画像診断用標識誘導体
 本発明は、陽電子放出核種若しくは単一光子放出核種で標識された標識誘導体並びにその製造方法に関する。更に、当該標識誘導体を含む腫瘍の画像診断用組成物、ならびにそれを作成するためのキットに関する。
 サバイビンはアポトーシスを制御するIAPファミリータンパク質の一つであり、主要な癌種で過剰発現している。サバイビンは、胎盤、精巣及びCD34+骨髄幹細胞等の急速に分裂する細胞には存在するが、ほとんどの正常な分化細胞での発現は低い。癌におけるサバイビンの過剰発現が、非小細胞肺癌患者の生存率が低いことと関係していることが報告されている(Monzo M, et al., J Clin Oncol 1999;17:2100-4)。サバイビンの発現抑制は癌細胞の有糸分裂を止めてアポトーシスを誘導する(Giodini A, et al., Cancer Res 2002;62:2462-7、Giodini A, et al., Cancer Res 2002;62:2462-7、及び、Yamamoto T, et al., Med Electron Microsc 2001;34:207-12)。サバイビンの癌細胞選択的な発現、癌細胞におけるアポトーシスを抑制する能力、そしてサバイビン発現が細胞周期を制御していることや癌の悪性度や予後と相関する報告から、サバイビンは癌治療における新しいターゲットとして注目されている。
 良好な抗腫瘍活性を有し、低毒性で安全域の広い縮合イミダゾリウム誘導体が国際公開第01/60803号及び第2004/092160号パンフレット(特許文献1及び2)に開示されている。中でも、下式で示される、臭化 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム(一般名:sepantromium bromide、以下、YM155と略記する)は、良好なin vivoにおける癌増殖阻害活性を有し、しかも低毒性であることから抗癌剤として期待されることが開示されている。
Figure JPOXMLDOC01-appb-C000005
 YM155はサバイビンを選択的に抑制することが見出された最初の低分子化合物であり、ヒトホルモン抵抗性前立腺癌(HRPC)移植モデル(Nakahara et al. Cancer Res. 2007;67:8014-21.)、ヒトNSCLC移植モデル(Proc Amer Assoc Cancer Res 2006; 47:[Abstract #5671])、更に、進行性固形癌や非ホジキンリンパ腫(NHL)の患者において(Nakahara et al. Cancer Sci. 2011;102:614-21.)、良好な抗癌作用を示した。さらに、YM155は時間依存的な抗腫瘍作用を示し、YM155の7日間皮下持続投与によりHRPC移植モデルで腫瘍退縮が誘導された(前出Nakahara et al. Cancer Res. 2007;67:8014-21)。
 更に、非特許文献1には、下式で示される、半減期の長い炭素原子の放射性同位体14Cを用いて標識したYM155(以下、[14C]YM155と表記する)を使って、YM155投与時の薬剤体内分布を調べた結果が開示される。[14C]YM155投与マウスの凍結動物切片のラジオルミノグラム(radioluminogram)から、[14C]YM155は高い比率で腫瘍に移行し、腫瘍/血液の放射活性比も良好であったことが開示される。
Figure JPOXMLDOC01-appb-C000006
 一方、近年、標識誘導体を用いた陽電子断層撮影法(PET)や単一光子断層撮影(SPECT)を用いた臨床における腫瘍の画像診断が行われつつあり、[18F]Fluoro-2-deoxy-D-glucose (FDG)や[18F]Fluoro-3'-deoxy-3'-L-fluorothymidine (FLT)等の標識トレーサーが使用されている。
  
国際公開第01/60803号パンフレット 国際公開第2004/092160号パンフレット Drug Metabolism and Disposition 37:619-628, 2009
 YM155に代表されるサバイビン発現抑制剤は、腫瘍細胞内部においてその標的であるサバイビンの発現を抑制して腫瘍細胞のアポトーシスを誘導する。サバイビンは殆どの癌細胞種で高発現していることが報告されているが、これまでの担癌モデル動物を用いた試験において一部の癌腫ではYM155に対する感受性が低いことが確認されている。治療を行う前に患者腫瘍のYM155に対する感受性を予測することが可能であれば、患者の治療機会を奪うことなく、感受性のある患者に効果的にYM155の抗腫瘍効果をもたらすことが期待される。従って、より迅速かつ非侵襲的な、サバイビン発現抑制剤、殊にYM155に対する感受性・非感受性患者の分別を可能とする診断方法の開発が切望されている。
 本発明者等は、臭化 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム(YM155)に陽電子放出核種を導入して作製した陽電子放出核種標識誘導体を用いて陽電子断層撮影法(PET)を行なったところ、意外にも、良好にYM155感受性腫瘍に陽電子放出核種標識誘導体が集積し、腫瘍が画像化できること及びYM155の標識誘導体の集積性と抗腫瘍効果には相関関係があることを見出した。更に、ヒトの臨床診断に使用できる高い放射能を有するYM155のPET用画像診断用組成物の製造を目指して鋭意検討を重ねた結果、YM155標識誘導体を良好な放射化学的収率(decay corrected radiochemical yield)で製造する新たな合成法を見出した。この方法を用いることによって、ヒトの臨床応用に好適な、高い放射能を有する画像診断用組成物を得ることに成功した。本発明の陽電子放出核種若しくは単一光子放出核種で標識されたYM155の標識誘導体を用いたPETや単一光子断層撮影(SPECT)による腫瘍イメージングにより、迅速かつ非侵襲的に、YM155感受性・非感受性患者の分別が可能であるばかりでなく、感受性腫瘍の大きさやステージングの診断、更にはYM155や他の抗腫瘍剤の治療効果の診断が可能であることをも知見し、本発明を完成した。
 即ち、本発明は、
[1] 式(I)
Figure JPOXMLDOC01-appb-C000007
(式中、X-は、カウンターアニオンであるか又は存在しない)
で示される1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム若しくはその塩において、(a)その構成する炭素、窒素及び酸素原子の少なくとも1つが陽電子放出核種であるか、又は、(b)陽電子放出核種若しくは単一光子放出核種であるハロゲン原子或いは該ハロゲン原子を含む官能基を少なくとも1つ導入したものである、標識誘導体に関する。更に、本発明は、以下の[2]~[18]にも関する。
[2] 構成する炭素原子の少なくとも1つが11Cであるか、又は、18F若しくはこれを含む官能基を少なくとも1つ導入したものである、[1]記載の標識誘導体。
[3] 下式(I-Z)で示される標識誘導体である、[2]記載の標識誘導体。
Figure JPOXMLDOC01-appb-C000008

(式中、X-は、カウンターアニオンであるか又は存在せず、Z*は、-O-11CH318F又は-(CH2)n-18Fであり、nは1又は2である。)
[4] 標識誘導体が、下式(I-1b)又は(I-5)で示される標識誘導体である、[3]記載の標識誘導体
Figure JPOXMLDOC01-appb-C000009
[5] 標識誘導体が式(I-1b)で示される標識誘導体である、[4]記載の標識誘導体。
[6] 標識誘導体が式(I-5)で示される標識誘導体である、[4]記載の標識誘導体。
[7] 比放射能が20GBq/μmol以上、25GBq/μmol以上、又は、30GBq/μmol以上である、[3]記載の標識誘導体。
[8] 検出可能な量の、[1]~[7]のいずれかに記載の標識誘導体を含む、腫瘍の画像診断用組成物。
[9] 放射能量が0.5 GBq以上、1GBq以上、又は、1.5GBq以上である、[8]記載の画像診断用組成物。
[10] 臭化 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウムに対する腫瘍の感受性診断用である[8]の組成物。
[11] [8]記載の画像診断用組成物を作成するための、原料化合物と少なくとも一つの標識するための試薬とを包含するキット。
[12] ヒトの腫瘍の画像診断用である、[9]記載の画像診断用組成物。
[13] 下記反応式に示す、式(II)の化合物と式(III)の化合物又はその塩とを、塩基全体に対して40%(v/v)以下のトリエチルアミンを含んでいていもよい、N-メチルモルホリン、N,N-ジメチルベンジルアミン及びジベンジルアミンからなる群から選択される1以上の塩基の存在下で反応させる工程と、次いで得られた式(IV)の化合物を酸で処理し環化する工程を含む、式(I-Z)で示される標識誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000010
(式中、X-は、カウンターアニオンであるか又は存在せず、Z*は、-O-11CH3、-18F又は-(CH2)n-18Fであり、nは1又は2であり、Acはアセチル基である。)
[14] Z*が、-O-11CH3である、[13]記載の製造方法。
[15] 塩基が、塩基全体に対して30%(v/v)以下のトリエチルアミンを含んでいてもよいN-メチルモルホリンである、[13]記載の製造方法。
[16] X-がBr-である、[13]記載の製造方法。
[17] 2-アミノエタノールと11C標識メチルトリフレートとを水素化ナトリウム存在下反応させ、次いで過剰量の酸を加えて、式(III)で示される11C標識2-メトキシエタンアミンの酸付加塩を製造する工程を更に含むものである、[14]記載の製造方法。
[18] サイクロトロンにより産生させた11C標識二酸化炭素を用いて11C標識ヨウ化メチルを得、次いでこれを加温下の銀トリフレートカラムを通して11C標識メチルトリフレートを得る工程を更に含むものである、[17]記載の製造方法。
 ここに、「導入」とは、式(I)の化合物に存在する少なくとも1つの水素原子或いは末端の官能基(具体的にはメトキシ基又はメチル基)に代えて、陽電子放出核種若しくは単一光子放出核種であるハロゲン原子或いは該ハロゲン原子を含む官能基を置換させることを意味する。なお、特に記載がない限り、本明細書中にある化学式中の記号が他の化学式においても用いられる場合、同一の記号は同一の意味を示す。また、本明細書中で、陽電子放出核種若しくは単一光子放出核種を用いて標識した化合物を、化合物の前に[標識核種]を付けて表記することがある。例えば、11C標識YM155を[11C]YM155と表記する。
 本発明の標識誘導体及びこれを含む画像診断用組成物は、YM155感受性腫瘍に対して良好な集積性を有し、陽電子断層撮影(PET)や単一光子断層撮影(SPECT)による腫瘍の画像化を可能とする。よって、本発明の標識誘導体及びこれを含む画像診断用組成物は、放射標識トレーサーとして、迅速かつ非侵襲的な、YM155感受性・非感受性患者の分別や、YM155感受性腫瘍の大きさやステージングの診断、更にはYM155やその他の抗腫瘍剤による治療効果の診断に使用できる。また、本発明の標識誘導体の改良製造方法は、ヒトでの臨床応用に好適な高い放射能を有する本発明の画像診断用組成物を製造するのに使用できる。
図1は、実施例4における、PC-3又はA549細胞による担癌マウスにおける[11C]YM155-aの組織・臓器分布を示すグラフである。棒グラフは平均値±標準誤差を示す(n=5)。 図2は、実施例4における、PC-3又はA549細胞による担癌マウスにおける [11C]YM155-a濃度の腫瘍/血液(T/B)及び腫瘍/筋肉(T/M)比を示すグラフである。棒グラフは平均値±標準誤差を示す(n=5)。 図3は、実施例4における、(A) PC-3細胞及び(B) A549細胞による担癌マウスのPPIS画像である。図中の矢印は腫瘍を示す。 図4は、実施例4における、摘出腫瘍スライスのオートラジオグラフィーの画像である(上段:A549、下段:PC-3、n=3)。
図5は、実施例5における、6種の担癌マウスにおけるYM155の抗腫瘍効果を示すグラフである。折れ線グラフは平均値±標準誤差を示す(n=5)。○はコントロールとして生理食塩水の投与群を、●はYM155 (2 mg/kg、但しA549のみ 5mg/kg)の投与群を、それぞれ示す。 図6は、実施例5における、6種の担癌マウスにおけるPET画像である。図中の矢印は腫瘍を示す。 図7は、実施例5における、6種の担癌マウスにおける抗腫瘍効果と[11C]YM155-bの腫瘍集積との相関を示すグラフである。
図8の(A)は、実施例5における、腫瘍集積性で群分けした場合の抗腫瘍効果の平均値を示すグラフであり、(B)は、実施例5における、YM155感受性で群分けした場合の腫瘍集積の平均値を示すグラフである。棒グラフは平均値±標準誤差を示す(但しn=2の場合は平均値のみを示す)。 図9は、実施例6における、in vitroでの腫瘍細胞における(A)YM155、並びに(B)F-YM155の取り込みを示すグラフであり、○はPC-3細胞、●はA549細胞の結果をそれぞれ示す。折れ線グラフは平均値±標準誤差を示す(n=3)。
 以下、本発明を詳細に説明する。
 本発明において、「ハロゲン原子」としては、F,Cl,Br及びI原子が挙げられ、「ハロゲンイオン」としては、これらのイオンが挙げられる。
 「カウンターアニオン」としては、イミダゾリウムカチオンのカウンターアニオンとして生理的に許容されるアニオンであれば、特に制限はなく、好ましくは、ハロゲンイオン、有機スルホン酸イオン(例えば、メタンスルホン酸イオン、エタンスルホン酸イオン、ベンゼンスルホン酸イオン、トルエンスルホン酸イオン等)、酢酸イオン、トリフルオロ酢酸イオン、炭酸イオン、硫酸イオン等の、1価若しくは2価のアニオンが挙げられ、特に好ましくはハロゲンイオンである。ある態様としては、カウンターアニオンは、Cl-、Br-及びI-である。ある態様としては、カウンターアニオンは、Cl-及びBr-である。ある態様としては、カウンターアニオンは、Cl-である。別の態様としては、カウンターアニオンは、Br-である。
 本発明の標識誘導体において、その構成する炭素、窒素及び酸素原子の少なくとも1つが陽電子放出核種である場合、当該陽電子放出核種としては、例えば11C 、13N若しくは15O原子が挙げられる。
 一方、陽電子放出核種若しくは単一光子放出核種であるハロゲン原子或いは該ハロゲン原子を含む官能基が少なくとも1つ導入された本発明の標識誘導体において、陽電子放出核種若しくは単一光子放出核種であるハロゲン原子としては、18F(陽電子放出核種)、123I(単一光子放出核種)、124I(陽電子放出核種)、131I(単一光子放出核種)、75Br(陽電子&単一光子放出核種)、76Br(陽電子放出核種)、77Br(陽電子&単一光子放出核種)、および82Br(単一光子放出核種)原子が挙げられ、該ハロゲン原子が式(I)の化合物の置換可能な部位に直接置換基として導入されていてもよく、又は、該ハロゲン原子を含む官能基、例えば、ハロゲノアルキル基、ハロゲノアルコキシ基として、式(I)の化合物の置換可能な部位に置換基として導入されていてもよい。
 ここにハロゲノアルキル基としては、ハロゲン原子が1~3個置換した炭素数1~3個の低級アルキル基であり、ハロゲノアルコキシ基としては、ハロゲン原子が1~3個置換した炭素数1~3個の低級アルコキシ基である。好ましい官能基としては、フロオロメチル、フルオロエチル、フルオロメトキシ並びにフルオロエトキシ基が挙げられる。
 ある態様としては、その構成する炭素原子の1つが11Cで標識されている、陽電子放出核種標識誘導体であって、11Cはいずれの位置にあってもよく、例えば、下式(I-1a)及び(I-1b)で示される誘導体が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 他の態様としては、18Fもしくはこれを含む官能基が導入された陽電子放出核種標識誘導体であって、18Fもしくはこれを含む官能基はいずれの位置に導入してもよく、例えば、18Fを導入した標識誘導体としては下式(I-2)及び(I-3)で示される誘導体が、18Fを含む官能基を導入した標識誘導体としては、下式(I-4)及び (I-5)で示される誘導体が挙げられる。ある態様としては、式(I)の化合物のメトキシ基を18Fもしくはこれを含む官能基で置換した陽電子放出核種標識誘導体である。別の態様としては、式(I)の化合物のメトキシ基を、18Fもしくは18F標識(以下、[18F]と記載する)フルオロアルコキシ基(例えば、フルオロメチル基、フルオロエチル基)で置換した陽電子放出核種標識誘導体である。
Figure JPOXMLDOC01-appb-C000012
(上記式中、nは1若しくは2を示す。)
 本発明の標識誘導体は、生体内に投与された際に、ほとんどが未変化体のまま尿中に排泄され、代謝による影響を受けにくい点でトレーサーとして有利である。また、水に対する溶解度が大きく、濃縮後、生理食塩水で調整することにより、容易に注射用液剤を得ることが可能であり、画像診断用組成物の調整に有利である。
 本発明の標識誘導体は、放射標識トレーサーとしてPETやSPECT等に使用される。本発明の標識誘導体は、生体内でサバイビン感受性腫瘍へ集積性を有し、PET、SPECT及び同様の画像化方法によるその腫瘍の画像化を可能にするものである。小動物試験においてはin vivoでの画像診断手段として、小動物用PETシステムに加えて、断層像ではなく平面集積画像を取得する装置Planar Positron Imaging System (PPIS)にも使用することができる。更には、摘出臓器の切片における画像解析手段であるオートラジオグラフィーや、γカウンターを用いた摘出臓器における集積性の評価にも利用できる。
 本発明の標識誘導体に使用される陽電子放出核種若しくは単一光子放出核種としては、PET用には、11C(半減期20.4分)、13N(半減期9.96分)、15O(半減期2.07分)、18F(半減期109.7分)、76Br(半減期16.2時間)等が好ましい。SPECT用としては、前述の核種に加えて123I等のより半減期の長い核種も好適である。陽電子放出核種の中でも、臨床PET試験として半減期が適当であること、標識しやすいことから、11C及び18Fが特に好ましい。
 一般的には、これらの核種はサイクロトロンと呼ばれる装置により産生させる。産生核種に応じた産生方法及び装置が選択できる。そのようにして産生された核種を用いて、式(I)の化合物を標識することができる。11Cなどの半減期が短い核種を用いる場合は、使用する施設内などに設置された(超)小型サイクロトロンから所望の核種を得て、当該分野において公知の方法により本発明の標識誘導体を製造し、画像診断用組成物を作製することができる。
 YM155はイミダゾール環の1位及び3位がそれぞれ置換低級アルキルによって置換され、イミダゾリウムカチオンを形成し、当該カチオンが臭化アニオンとイオン対を形成している化合物である。本発明の標識誘導体も同様にイミダゾリウムカチオンを形成し、カウンターアニオン(X-)とイオン対を形成している。本発明の標識化合物が水性溶剤に溶解している場合は、カウンターアニオン(X-)とイオン対を形成しておらず、X-は存在しない。
 また、YM155はカチオンの非局在化による互変異性体を有することが知られており、本発明の標識誘導体も同様に互変異性体を有している。本発明の標識誘導体としては、これらの異性体の分離したもの,あるいは混合物が包含される。
 本発明の標識誘導体は前記カウンターアニオンとの塩以外に、条件によっては塩を形成する場合があり、本発明にはこれらの塩も包含される。ここに、塩としては,塩酸,臭化水素酸,ヨウ化水素酸,硫酸,硝酸,リン酸等の無機酸,ギ酸,酢酸,プロピオン酸,シュウ酸,マロン酸,コハク酸,フマル酸,マレイン酸,乳酸,リンゴ酸,酒石酸,クエン酸,メタンスルホン酸,エタンスルホン酸,アスパラギン酸,グルタミン酸等の有機酸との酸付加塩等が挙げられる。
 更に、本発明の標識誘導体は、水和物や溶媒和物及び結晶多形の物質として提供される場合もあり、本発明はこれらを包含する。
(製造法) 
 当該分野において公知の方法により、所望の核種を用いて前記式(I)で示される1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム若しくはその塩の標識誘導体を製造することができる。1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム若しくはその塩の製造法は、国際公開01/60803号ならびに国際公開2004/092160号に具体的に記載される。
 その構成する原子が陽電子放出核種である場合は、所望の箇所に目的の陽電子放出核種、例えば11C、13N若しくは15O原子が位置するよう原料化合物と合成ルートを選択することができる。
(合成法1)
 11Cを導入した化合物(I-1a)は、例えば、国際公開01/60803号に記載される以下の合成ルートにより製造することができる。なお、式中の*は陽電子若しくは単一光子放出核種の存在を示す。ここに、化合物(5)と標識した塩化アセチル(4)とを不活性溶媒中、強酸存在下で反応させ、次に得られた化合物(6)を不活性溶媒(例えばベンゼン等)中、反応対応量若しくは過剰量の化合物(7)と反応させる。必要に応じ、酸補足剤として適当な無機塩基(炭酸カリウム等)又は有機塩基(トリエチルアミン等)を使用して、常温乃至加温下にて行うのが有利である。続く環化工程は、不活性溶媒(例えばアルコール系溶媒)中、反応対応量又は過剰量の酸を用い、常温乃至加温下にて行うのが有利である。
Figure JPOXMLDOC01-appb-C000013
(原料の合成1)
 ここに、標識した塩化アセチル(4)は、サイクロトロンにより産生させた[11C]CO2を用いて、グリニャール試薬溶液中に導入し反応させ、更にフタロイルジクロリドで処理して製造することができる。
Figure JPOXMLDOC01-appb-C000014
(合成法2)
 化合物(I-1b)は、例えば国際公開01/60803号に記載される以下の合成ルートにより製造することができる。ここに、第一工程の置換反応は、不活性溶媒(例えばベンゼン等)中、反応対応量の化合物(13)及び(12)又はいずれか一方を過剰量用い、必要に応じ、酸補足剤として適当な無機塩基(炭酸カリウム等)又は有機塩基(トリエチルアミン等)を使用して、常温乃至加温下にて行うのが有利である。続く第二工程の環化反応は、不活性溶媒(例えばアルコール系溶媒)中、反応対応量又は過剰量の酸を用い、常温乃至加温下にて行うのが有利である。
Figure JPOXMLDOC01-appb-C000015
(原料の合成2)
 ここに、標識化合物(12)は、以下の当業者によく知られた方法により製造することができる。具体的には、アミノ基を保護した2-アミノエタノールと、サイクロトロンより産生させた[11C]CO2から常法により製造した[11C]CH3Iを反応させ、続いて脱保護反応に付すことにより化合物(12)を製造することができる。
Figure JPOXMLDOC01-appb-C000016
(合成法3)
 化合物(I-4)及び(I-5)は、例えば、前記合成法2と同様にして製造することができる。
Figure JPOXMLDOC01-appb-C000017
(原料の合成3)
 ここに、化合物(15)及び(16)はサイクロトロンにより産生させた18F標識(以下、[18F]と表記する)Fイオン水溶液を陰イオン交換樹脂に吸着させ、炭酸カリウム水溶液で溶出させて[18F]KFとして得、これを用いて製造することができる。例えば、化合物(16)は、[18F]KF(17)を化合物(18)と反応させて、続いて脱保護反応に付すことにより製造することができる。
Figure JPOXMLDOC01-appb-C000018
 また、化合物(I-2)及び(I-3)は、求電子置換反応等の当業者に公知の方法で芳香環に18Fを導入し、国際公開01/60803号に記載される製造方法並びに当業者に公知の方法を用いて、製造することができる。
 公知の方法を用いて製造した本発明の標識誘導体は、適切な量を含む画像診断用組成物に調整され、ヒト若しくは哺乳動物に投与される。例えば、後記実施例1で得られた11Cによる標識化合物は、放射能が129.5MBqであり、マウス等の小動物における使用に好適である。
 一方、本発明の標識誘導体をヒトの腫瘍の画像診断用組成物として用いる場合は、より高い放射能が必要となる。公知の製造方法における収率は低く、高い放射能を得るためには大量の原料を用いて合成することが要求され現実的ではない。標識核種はそれぞれの物理的半減期を有し、放射能が時間の経過とともに減少することから、合成に要する時間が短くしかも高い放射化学的収率を与える製法が必要である。殊に11Cによる標識化合物は、半減期が20.4分と短く、汎用の設備を用いて一度の合成で、高い放射能、例えば、0.5GBq以上、好ましくは1 GBq以上、より好ましくは1.5 GBq以上の放射能を与える標識化合物を短時間で且つ収率良く得られる製法が求められる。
 本発明者等は、更に検討を重ねた結果、高い放射能を保持した標識誘導体を簡便に製造できる改良合成法を見出した。
(改良合成法)
Figure JPOXMLDOC01-appb-C000019
 本合成法は、本願の標識誘導体(I-1b)、(I-4)及び(I-5)を得るための改良製造法であり、第一工程の塩基の選択に特徴を有する。トリエチルアミン等の強塩基(pKaが大きい塩基)の存在下で、化合物(II)と化合物(III)又はその塩との置換反応が良好に進行するものの、化合物(II)や化合物(IV)は強塩基で分解しやすく副生成物の増加とその後の精製工程の煩雑化を招き、目的物の収率が頭打ちとなることが分かった。しかしながら、N,N-ジベンジルアミノエタノール等の弱い塩基(pKaが小さい塩基)では分解は抑制できるものの、置換反応の進行が遅く、短時間の反応では収率が低いものであった。意外にも、N-メチルモルホリン、N,N-ジメチルベンジルアミン及びジベンジルアミンから選択される1以上の塩基を用いた場合に、反応速度を良好に保ったまま、副生成物の産生を抑制でき、結果として、放射化学的収率が大幅に向上し、比放射能の高い本発明の標識化合物を得ることが出来ることを見出した。また、これらの塩基に塩基全体に対して40%(v/v)以下のトリエチルアミンを組み合わせることによって、反応速度をより速くでき、一方で、副生成物の量は増えるものの精製工程に影響しない範囲に抑えることが可能であることも見出した。ある態様としては、該塩基は、30%以下の容積比でトリエチルアミンを含んでいていもよい、N-メチルモルホリン、N,N-ジメチルベンジルアミン及びジベンジルアミンから選択される1以上の塩基であり、別の態様としては、該塩基は、25%以下の容積比でトリエチルアミンを含んでいていもよい、N-メチルモルホリン、N,N-ジメチルベンジルアミン及びジベンジルアミンから選択される1以上の塩基である。更に別の対応としては、該塩基は、40%以下、30%以下、或いは25%以下の容積比でトリエチルアミンを含んでいていもよいN-メチルモルホリンである。更に別の態様としては、該塩基は、N-メチルモルホリンである。
 塩基は反応を良好に進行するのに適した量を用いればよく、例えば、原料化合物(II)5mgに対して、10~100μL、ある態様としては、20~80μL、別の態様としては、30~60μLである。更に別の態様としては40μL、50μL又は60μLである。
 反応は、反応に不活性な溶媒中で、ある態様としては、プロピオニトリル、アセトニトリル等のニトリル系溶媒中で、数分間、例えば2~6分間、別の態様としては3分、4分又は5分間、加温下で、ある態様としては100℃加熱下で、行うことが好ましい。
 続く第二工程の環化反応は、第一工程の反応混合物に過剰量の酸、具体的には、2~5Mの塩酸水溶液若しくは臭化水素酸水溶液を過剰量加えて、行うことが有利である。ある態様としては、3~5Mの臭化水素酸水溶液を過剰量加え、数分間、例えば2~6分、別の態様としては3分、4分又は5分間、加温下、ある態様としては100℃加熱下で、反応させることが好ましい。
 11Cによる標識化合物は、半減期が20.4分と短く、短時間の反応及び短時間の精製により高収率で標識化合物を合成する方法が求められることから、原料である標識2-メトキシエタンアミン(23)の合成について更に検討を行った。
(原料の合成4)
Figure JPOXMLDOC01-appb-C000020
 当該合成法は、窒素気流下で、水素化ナトリウムと2-アミノエタノールを含むTHF等の反応に不活性な溶媒に、サイクロトロンにより産生させた[11C]CO2から定法により得た[11C]CH3Iを200℃に加熱された銀トリフレート(AgOTf、ここに、TfはSO2CF3である)カラムに通して得られた[11C]メチルトリフレート([11C]CH3OTf)(22)をバブリングし捕捉し反応させて、O-メチル化を行う方法である。次に、過剰量の酸を加えて完全に中和して、標識2-メトキシエタンアミン(23)を酸付加塩として得る。完全に中和することが、後の反応における副生成物の生成を抑制する上で有利である。
 当該方法は脱保護工程を有さず、反応時間を短縮化し収率良く標識原料を得られる点で有利である。
このようにして製造された本発明標識誘導体の単離・精製は、抽出、濃縮、留去、結晶化、濾過、再結晶、各種クロマトグラフィー等の通常の化学操作を適用して行われる。
 本発明の標識化合物の精製は、高速液体クロマトグラフィー(HPLC)で行うことが有利である。具体的には、YM155の分離に有利なODSカラム(例えば、YMC-Pack Pro C18 (YMC Co., Ltd., Kyoto, Japan))を用いて、移動相として、例えば、0.04 M塩酸:アセトニトリル=80:20を用いて行うことができる。
 本発明の画像診断用組成物は、前記標識誘導体を少なくとも1つの製薬学的に許容される担体と組み合わせることにより製造することができる。本発明の画像診断用組成物は、静脈内投与に適した剤型であることが好ましく、例えば、静脈内投与のための注射剤である。ここに注射剤としては,無菌の水性又は非水性の液剤,懸濁剤,乳剤を含有するものが挙げられる。水性の溶剤としては,例えば注射用蒸留水及び生理食塩水が含まれる。非水性の溶剤としては,例えばプロピレングリコール,ポリエチレングリコール,オリーブ油のような植物油,エタノールのようなアルコール類,ポリソルベート80(商品名)等がある。このような組成物は,さらに等張化剤、防腐剤,湿潤剤,乳化剤,分散剤,安定化剤,溶解補助剤を含んでもよい。これらは例えばバクテリア保留フィルターを通す濾過,殺菌剤の配合又は照射によって無菌化される。また、これらは無菌の固体組成物を製造し,使用前に無菌水又は無菌の注射用溶媒に溶解、懸濁して使用することもできる。ある態様としては、本発明の画像診断用組成物は、静脈内投与用の注射剤である。別の態様としては、水性の液剤である。
 本発明の画像診断用組成物を臨床で使用する場合は、投与前に品質検査を行う必要がある。例えば、18F-FDGの場合は、組成物を製造した後に、HPLCによる純度(放射化学的純度、化学的純度)やフィルターの完全性試験(無菌化する際に使用したフィルターの検査)、発熱性試験(エンドトキシン検査)等の検査が必要とされ(核医学、38巻2号131-137頁、2001)、検査項目にもよるが、通常20~30分程度の検査時間を必要とする。本発明の画像診断用組成物についても、同様の品質検査を行いた後にヒトに投与すべきである。画像診断用組成物を調整する際には、当該品質検査に要する時間内に減少する放射能を考慮して調整する必要がある。例えば、11Cにより標識された本発明の画像診断用組成物においては、投与時に必要とされる放射能量の数倍、最低でも2~3倍の放射能を有する組成物を調整する必要がある。よって、調整時(品質検査前)のヒトの腫瘍の画像診断用である11Cにより標識された画像診断用組成物は、0.5 GBq以上、ある態様としては、1GBq以上、別の態様としては、1.5GBq以上の放射能を有している事が望ましい。
 本発明の画像診断用組成物は、使用する撮影法(PET、SPECT等)、疾患の種類、患者の年齢・状態、検査部位、画像化の目的によって投与量を調整して使用できる。本発明の画像診断用組成物は、検出可能な量の標識誘導体を包含する必要があるが、患者の被爆量については十分に注意を要する必要がある。例えば、11Cにより標識された本発明の画像診断用組成物を患者に投与する場合(品質検査後)の放射能量としては、約100~2000メガベクレル(MBq)であり、ある態様としては185~1000MBq、別の態様としては、約370~740MBqである。これを1回もしくは複数回に分けて投与するか、持続的に点滴投与する。
 
 本発明は、画像診断用組成物を作成するための原料化合物と少なくとも一つの標識するための試薬とを包含するキットを包含する。ある態様としては、本発明の標識誘導体の迅速な合成のためのキットである。キットは、本発明標識誘導体を製造するための中間体化合物と、陽電子放出同位体を含む標識するための試薬を包含し、必要時に画像診断用組成物を作製するために使用できる。また、当該分野で公知のような、反応容器、反応容器に同位体物質を移すための装置、生成物を過剰の反応物から分離するための前もって充填された分離カラム、遮蔽物等のような、器具類をも含み得る。
 以下、実施例に基づき、本発明の標識誘導体の製造法並びにその効果をさらに詳細に説明する。なお、実施例中のCiは、放射能の単位キュリー(1 Ci = 3.7×1010 Bq)を示す。
実施例1
Figure JPOXMLDOC01-appb-C000021
サイクロトロンから製造された[11C]CO2(1.5 Ci)をN2ガスをキャリアーガスとして、あらかじめ-20℃に冷却した0.5 M 塩化メチルマグネシウム(ジエチルエーテル中) (0.3 mL)に導入した。フタロイルジクロリド(0.15 mL)、2,6-ジ-t-ブチルピリジン(0.27 mL)を加えて撹拌した後、40℃で窒素バブリングすることによりジエチルエーテルを除いた。続いて反応溶液を140℃まで加温しながら[11C]塩化アセチルとして蒸留し、あらかじめ-30℃に冷却しておいた2-クロロ-3-[(2-メトキシエチル)アミノ]-1,4-ナフトキノン(10 mg)、フルオロスルホン酸(6μL)及びアセトニトリル(0.3 mL)の溶液に導入し、80℃で3分間反応させた。続いて2-アミノメチルピラジン(80μL)、エタノール(0.3 mL)及び水(0.3 mL)の溶液を反応液に加えて80℃で3分間反応させた後、4M塩酸(0.9 mL)を加えて100℃で5分間反応させた。得られた反応溶液をHPLCで精製した(移動相: 0.04 M塩酸:アセトニトリル=80:20, カラム: YMC-Pack Pro C18, S-5μm, 12 nm, 10×250 mm(YMC Co., Ltd., Kyoto, Japan), 流速: 4 mL/min)。得られた[11C] 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム分画を濃縮し、生理食塩水(3.0mL)を加え、滅菌フィルター(sterile flter; Millipore GS)にてろ過し、[11C] 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウムを含む注射用液剤を得た(3.5mCi、129.5MBq)。照射からの総合成時間は48分、最終工程までの放射化学的収率(decay corrected radiochemical yield)は1%、放射化学純度(radiochemical purity)は99%以上、比放射能(specific radioactivity)は14GBq/μmolであった。
実施例2
Figure JPOXMLDOC01-appb-C000022
サイクロトロンから得られた[11C]CO2からCH3I自動合成装置を用いて[11C]CH3Iを製造し(1.3 Ci)、あらかじめ-20℃に冷却しておいたN-t-ブトキシカルボニルアミノエタノール(2 mg)、60% 水酸化テトラn-ブチルアンモニウム(10μL)及びアセトニトリル(0.2 mL)の溶液に導入した後5℃で3分間反応させた。得られた反応溶液にトリフルオロ酢酸 (0.1 mL)を加えて、70℃で4分間加熱した後、減圧濃縮した。濃縮残渣にN-(3-クロロ-1,4-ジヒドロ-1,4-ジオキソ-2-ナフタレニル)-N-(2-ピラジルメチル)アセタミド(5 mg)、トリエチルアミン(40μL)及びアセトニトリル(0.3 mL)を加えて80℃で5分間加熱した。続いて4M塩酸(0.8 mL)を加えて100℃で5分間反応させた。得られた反応溶液をHPLCで精製した(移動相: 0.02 M 塩酸:アセトニトリル=80:20, カラム: YMC-Pack Pro C18, S-5μm, 12 nm, 10×250 mm, 流速: 4 mL/min)。得られた[11C] 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム分画を濃縮し、生理食塩水(3.0mL)を加え、滅菌フィルター(sterile flter; Millipore GS)にてろ過し、 [11C] 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウムを含む注射用液剤を得た(13mCi、481MBq)。照射からの総合成時間は50分、最終工程までの放射化学的収率は5%、放射化学純度は99%以上、比放射能は56GBq/μmolであった。
実施例3
Figure JPOXMLDOC01-appb-C000023
 サイクロトロンから得られた[18F]-イオン水溶液をあらかじめコンディショニングしておいた陰イオン交換樹脂(Sep-Pak QMA)に吸着させた後、20 mM炭酸カリウム水溶液(1 mL)で溶出した。4,7,13,16,21,24-ヘキサオキサ-1,10-ジアザビシクロ[8.8.8]ヘキサコサン(20 mg)、アセトニトリル(1 mL)を溶出液に加えて120℃で減圧濃縮した。さらに濃縮液にアセトニトリルを加え減圧濃縮した。この操作を2回繰り返した。得られた濃縮残渣にN,N-ジ-t-ブトキシカルボニルアミノエチルトシレート(30 mg)及びアセトニトリル(2.0 mL)を加えて95℃で10分間加熱した。反応溶液をHPLCで精製した(移動相: 水 : アセトニトリル = 35 : 65, カラム: YMC-Pack Pro C18, S-5μm, 12 nm, 10×250 mm, 流速: 4 mL/min)。得られた[18F]N,N-ジ-t-ブトキシカルボニルフルオロエチルアミン分画にトリフルオロ酢酸(0.5 mL)及び水(0.5 mL)を加えて100℃で5分間加熱した。反応溶液を減圧濃縮し、N-(2-クロロ-1,4-ジヒドロ-1,4-ジオキソ-2-ナフタレニル)-N-(2-ピラジルメチル)アセタミド(10 mg)、トリエチルアミン(40μL)及びアセトニトリル(2.0 mL)を加えて75℃で5分間加熱した。続いて4M塩酸(0.8 mL)を加えて100℃で5分間反応させた。得られた反応溶液をHPLCで精製した(移動相: 0.02M 塩酸:アセトニトリル=80:20, カラム: YMC-Pack Pro C18, S-5μm, 12 nm, 10×250 mm, 流速: 4 mL/min)。得られた[18F] 1-(2-フルオロエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム分画を濃縮し、生理食塩水を加えて滅菌フィルター(sterile flter; Millipore GS)にてろ過し、[18F] 1-(2-フルオロエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウムを含む液剤を得た(1.9 mCi、70.3MBq)。照射からの総合成時間は106分、最終工程までの放射化学的収率は0.5%、放射化学純度は99%以上、比放射能は46GBq/μmolであった。
実施例4
 YM155高感受性株であるPC-3細胞と低感受性株であるA549細胞による担癌マウス2群を用いて、実施例1で得た11Cで標識化した化合物(I-1a)(以下、[11C]YM155-aと略記する)の液剤を用いて[11C]YM155-aの腫瘍移行性試験を実施した。
 10%血清含む最適培地で培養したPC-3細胞とA549細胞をそれぞれ50%マトリジェル/PBS溶液に懸濁し,3×106 cells/0.1 mL/mouseでヌードマウスの右大腿皮下に移植した。ノギス測定によって、腫瘍体積の平均が約250 mm3であることを目安として、群内群間のばらつきが小さくなるように群分けして試験に用いた。
 次に、[11C]YM155-a溶液をマウス尾静脈内に投与し、投与40分後にマウスを断頭して、腫瘍、血液、筋肉、肝臓、腎臓をそれぞれ摘出し、その重量とガンマカウンターによる放射能を測定して薬剤移行性を算出した。1群あたり5匹での測定を行った。
 [11C]YM155-aの腫瘍移行性に関する画像データとして、気化麻酔下の担癌マウス (1匹/群) を非侵襲的にPlanar Positron Imaging System (PPIS)(浜松ホトニクス社製)を用いて、[11C]YM155-a溶液(約5 MBq) の尾静脈内投与後から最大60分間までの10分間毎の連続撮像を行った。
 さらに、[11C]YM155-aの投与40分後に担癌マウスから腫瘍を摘出しスライスしたものをオートラジオグラフィーにて[11C]YM155-aの集積に基づく画像を取得した。1群あたり3匹での測定を行った。
(結果)
表1及び図1~2に [11C]YM155-aの組織・臓器分布の結果を示す。図3にPPISによる画像を、図4にオートラジオグラフィー画像をそれぞれ示す。
 ここに、表1、図1及び2において、%ID/gは投与した全放射能(ID:injected dose)の何%がg当り組織・臓器に分布するかを示す相対的濃度値(組織放射能濃度(Bq/g)を投与量(Bq)で除して算出した値)を、SUVは投与した全放射能が全身に均一に分布したときを1とする相対的濃度値(%ID/gをマウス体重(g)で除して算出した値)を、T/Bは[11C]YM155-a濃度の腫瘍/血液比を、及び、T/Mは[11C]YM155-a濃度の腫瘍/筋肉比をそれぞれ示す。
 表1、図1及び2より、YM155高感受性株、すなわちYM155による抗腫瘍効果が高いPC-3では、YM155低感受性株、すなわち抗腫瘍効果が低いA549と比較して、[11C]YM155-aの腫瘍組織中濃度が約5倍高い値であることが示された。また、[11C]YM155-a濃度の腫瘍/血液(T/B)比、並びに腫瘍/筋肉(T/M)比より、高感受性株であるPC-3ではT/BおよびT/Mのいずれも低感受性株であるA549と比較して格段に高い値を示し、YM155の抗腫瘍効果(感受性)と[11C]YM155-aの腫瘍への集積性に高い相関が見られることが確認された。
 図3の(A)PC-3細胞及び(B)A549細胞による担癌マウスのPPIS画像において、コントロールとして左足の画像を用いて、左右足の集積比を測定したところ、PC-3で1.71、A549で1.17であった。YM155高感受性の腫瘍であることが知られるPC-3腫瘍では、[11C]YM155-aの高い集積比を示し、実際の画像においてもYM155感受性腫瘍の存在が画像化により診断できることが確認された。
 図4の摘出腫瘍によるオートラジオグラフィーの結果は、PC-3では高い集積が認められた一方でA549では低い集積であることを示し、図3のPPISを用いたの非侵襲的な担癌マウスの画像結果を強く支持した。
実施例5
 担癌マウスにおけるYM155の抗腫瘍効果と[11C]YM155の腫瘍移行性に関する相関を詳細に調べるため、PC-3細胞、A375細胞、Calu-6細胞、SK-MEL-5細胞、A549細胞そしてHCT-15細胞による6種の皮下移植担癌マウスを用いて、YM155の抗腫瘍評価試験と実施例2で得た11Cを導入した化合物(I-1b)(以下、[11C]YM155-bと略記する)の液剤を用いて腫瘍移行性試験を実施した。担癌マウスは、10%血清含む最適培地で培養したそれぞれの腫瘍細胞を50%マトリジェル/PBS溶液に懸濁し,3 × 106 cells/0.1 mL/mouseでヌードマウスの右前肢付け根に皮下移植し作成した。
 抗腫瘍評価試験では、2 mg/kgで7日間のスケジュールにてYM155を皮下持続投与し、ノギスによる腫瘍体積の変化にて抗腫瘍効果を評価した(n=5)。
 腫瘍移行性試験では、担癌マウスの尾静脈内に約5 MBqの[11C]YM155-bを投与し、投与30分後から10分間のイソフルラン気化麻酔下における担癌マウスのPET画像を動物用PETカメラ(Inveon シーメンス社製)を用いて撮影した。PET画像は期待値最大化法(ordered subset expectation maximization,OSEM)にて再構成を行った後、担癌マウス腫瘍部分に関心領域(ROI)を設定し、[11C]YM155-bの腫瘍集積(Standardized Uptake Value (SUV))を、ROIにおける放射能カウント(MBq/g)÷〔投与量(MBq)/体重(g)〕として算出した(n=5)。
(結果)
 YM155の抗腫瘍効果を図5に、[11C]YM155-bを投与したPET画像をSUV値と共に図6に示す。YM155の抗腫瘍効果と[11C]YM155-bの腫瘍移行性の相関を図7及び図8に示す。図7は、6種の担癌マウスにおける、図5で示すYM155の抗腫瘍効果(縦軸:阻害%)と、図6で示すPET画像からの[11C]YM155-bの腫瘍集積(横軸:SUV値)との相関を示す。また、図8(A)には、図7の相関から、[11C]YM155-bの腫瘍集積(SUV値)の低い群(SUV<0.3;A549とHCT-15)と高い群(SUV>0.3;PC-3、A375、Calu-6及びSK-MEL-5)の2群に分け、それぞれの群における抗腫瘍効果(阻害%)の平均値を、図8(B)には、図7の相関から、YM155抵抗性(阻害%<30%;A549とHCT-15)とYM155感受性(阻害%>30%;PC-3、A375、Calu-6及びSK-MEL-5)の2群に分け、それぞれのPET画像からの[11C]YM155-bの腫瘍集積(PET SUV)の平均値を示した。
 図5より、それぞれの担癌マウスにおけるYM155の抗腫瘍効果として、PC-3、A375、Calu-6、SK-MEL-5は高感受性株群であり、A549とHCT-15は抵抗性株群であることが明らかであった。さらに、図6の[11C]YM155-b投与による担癌マウスのPET画像では、PC-3、A375、Calu-6、SK-MEL-5の腫瘍に高い[11C]YM155-bの集積が認められ、一方A549とHCT-15の腫瘍への集積は低かった。このように、[11C]YM155-bを用いたPET画像より、YM155高感受性腫瘍に対しては[11C]YM155-bの集積が高く、YM155抵抗性腫瘍に対しては[11C]YM155-bの集積は低いことが確認された。腫瘍のYM155に対する感受性と、腫瘍への[11C]YM155-bの集積性をさらに詳細に解析すると、図7に示すように、YM155の抗腫瘍効果と[11C]YM155-bの腫瘍移行性の間には良好な相関が認められることが示された。図8の(A)より、SUV値が0.3より大きい腫瘍においては、SUV値0.3未満の腫瘍に比べ顕著に高い薬効が現れた、一方、(B)より、退縮率30%以上の高感受性腫瘍への[11C]YM155-bの集積量は、退縮率30%未満のYM155抵抗性腫瘍への集積量に比べて顕著に高いものであることが認められた。これらの結果は、その構成する炭素、窒素及び酸素原子の少なくとも1つが陽電子放出核種である本発明の標識誘導体を用いて、迅速かつ非侵襲的な、YM155感受性・非感受性患者の分別が可能であることを示す。更に、図6のPET画像より、YM155感受性腫瘍においては、本発明の標識誘導体が、腫瘍の大きさやステージングの診断、さらにはYM155やその他の抗腫瘍剤による治療効果の診断へも利用可能であることが示される。
実施例6
 まずYM155及び前記実施例3と同様の方法で製造した 1-(2-フルオロエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム(以下F-YM155と略記する)を用いて、in vitro培養細胞への取り込み試験を実施した。すなわち、YM155高感受性細胞株であるPC-3、抵抗性細胞株であるA549をそれぞれ6-well plateにて培養して、1 mMのYM155あるいはF-YM155を含む試験溶液にて規定時間インキュベーション後、細胞を0.1%ギ酸溶液800μLにて回収した。細胞を超音波装置にて破砕して、細胞内取り込み量測定サンプルとした。細胞内YM155量、F-YM155量をLC-MS/MSにより定量した。細胞内への取り込み量はcleared volume (μL/well) で示した。cleared volumeは、uptake amount (mol/well) を試験溶液の初期濃度(mol/L)で除した値である。
 次に、前記実施例3で得た18Fを導入した化合物(I-5)(以下、[18F]YM155と略記する)を含む液剤を用いて、担癌マウスにおける腫瘍移行性試験を実施した。
 YM155高感受性株であるPC-3細胞と低感受性株であるA549細胞による担癌マウス2群を用いて、[18F]YM155の腫瘍移行性試験を実施した。10%血清含む最適培地で培養したPC-3細胞とA549細胞をそれぞれ50%マトリジェル/PBS溶液に懸濁し、3 × 106 cells/0.1 mL/mouseでヌードマウスの右大腿皮下に移植した。ノギス測定によって、腫瘍体積の平均が200-400 mm3であることを目安として、群内群間のばらつきが小さくなるように群分けして試験に用いた。[18F]YM155溶液(5~20 MBq)を皮下移植マウス(n=5)へ尾静脈内投与して60 分後にマウスを断頭して、筋肉、腫瘍、血液、肺、肝臓、腎臓、盲腸をそれぞれ摘出した。それらの組織重量を電子天秤で秤量して、放射能量をガンマカウンターにより測定して、組織分布データを取得した。
(結果)
 YM155とF-YM155の取り込み試験の結果を図9(A)及び(B)にそれぞれ示す。また、腫瘍移行性試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000025
 表中、%ID/g及びSUVは前記の通り、T/Bは[18F] YM155濃度の腫瘍/血液比を、T/Mは[18F] YM155濃度の腫瘍/筋肉比をそれぞれ示す。
 YM155は高感受性細胞PC-3において時間依存的に取り込まれ、細胞内取り込み量は抵抗性細胞A549に比べ高感受性細胞PC-3で高いことが示された(図9(A))。F-YM155は時間依存的にPC-3細胞に取り込まれ、その取り込み量は抵抗性細胞A549に比べ高感受性細胞PC-3で高いことが示された(図9(B))。
 組織移行性試験から、YM155高感受性株、すなわちYM155による抗腫瘍効果が高いPC-3では、YM155低感受性株、すなわち抗腫瘍効果が低いA549と比較して、[18F]YM155の腫瘍組織中濃度が高い値であった。また、高感受性株であるPC-3ではT/BおよびT/Mのいずれも低感受性株であるA549と比較して高い値を示した。このことは、[18F]YM155の腫瘍への集積性が高い細胞ほどYM155の抗腫瘍効果が高いことを示す。従って、陽電子放出核種若しくは単一光子放出核種であるハロゲン原子或いは該ハロゲン原子を含む官能基を少なくとも1つ導入した本発明の標識誘導体は、前記[11C]YM155と同様に、迅速かつ非侵襲的な、YM155感受性・非感受性患者の分別に利用できることが確認された。
 前記実施例4~6の結果より、本発明の標識誘導体及びこれを用いた画像診断用組成物は、より迅速かつ非侵襲的な、YM155感受性・非感受性患者の分別や、感受性腫瘍の大きさやステージングの診断、さらにはYM155や他の抗腫瘍剤投与における治療効果の診断まで可能とする標識剤として有用であることが確認された。
実施例7
Figure JPOXMLDOC01-appb-C000026
 NaH(60%)をヘキサンで洗浄し、そこに窒素気流下で2-アミノエタノールのTHF溶液(2.5 μL/mL)を0.2 mL加えてよく撹拌した。以上の溶液をあらかじめ-20℃に冷却しておいた。[11C]CO2から定法に従って[11C]CH3Iを製造し、200℃に加熱された銀トリフレートカラムを通して得られた[11C]CH3OTfを上記溶液にバブリング、捕捉した。室温で3分間反応させた後、4M-塩酸-酢酸エチル溶液(200 μL)を加えて80℃で窒素でバブリングしながら濃縮した。濃縮残渣にN-(3-クロロ-1,4-ジヒドロ-1,4-ジオキソ-2-ナフタレニル)-N-(2-ピラジルメチル)アセタミドのアセトニトリル溶液(5 mg/0.2 mL)、続いてN-メチルモルホリン(40 μL)、トリエチルアミン(10 μL)、アセトニトリル(0.2 mL)の混合溶液を加え、100℃で5分間加熱した後、4.4M 臭化水素酸(1.0 mL)を加えて100℃で5分加熱した。得られた反応溶液をHPLCで精製した(移動相: 0.02 M 塩酸:アセトニトリル=80:20, カラム: YMC-Pack Pro C18, S-5μm, 12 nm, 10×250 mm, 流速: 5.0 mL/min)。得られた[11C] 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム分画を濃縮し、生理食塩水(3.0mL)を加え、滅菌フィルター(sterile flter; Millipore GS)にてろ過し、 [11C] 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウムを含む注射用液剤を得た(48 mCi、1.78GBq)。照射からの総合成時間は47分、最終工程までの放射化学的収率は20%、放射化学純度は99%以上、比放射能は37GBq/μmolであった。
実施例8 塩基のスクリーニング
 メトキシエチルアミン(22)から化合物(24)を合成する反応において、化合物(13)と化合物(23)を反応させる工程の溶媒、塩基及び反応条件を適宜替えて、得られた反応溶液中の化合物(24)、化合物(13)及び副生成物の量を測定した。
Figure JPOXMLDOC01-appb-C000027
 具体的には、メトキシエチルアミン(1 mg)に4M-塩酸-酢酸エチル溶液(0.2 mL)を加えて酸性にし、減圧濃縮して得た化合物(23)(5 mg)に、溶媒(0.3 mL)と塩基を加えて、3分間(若しくは5分間)加熱反応させた。得られた反応溶液をメタノールで希釈し、HPLCで反応溶液中の化合物を定量した。各収率はHPLCの面積百分率から、HPLCの測定時間(15分)中にあるピーク全体を100%として算出した。
 結果を表3に示す。表中、「塩基」の欄は、使用した塩基とそのpKa値及び添加量を、「反応」の欄は、反応温度と反応時間を、「収率(%)」の欄は、化合物(24)、化合物(13)及び副生成物の収率をそれぞれ示す。また、Bnはベンジルを、Meはメチル、Etはエチル、DMFはジメチルホルムアミド、DMSOはジメチルスルホキシド、NMPはN-メチルピロリドンを、それぞれ示す。
Figure JPOXMLDOC01-appb-T000028
 比較例1~5に示す結果より、溶媒がプロピオニトリル(EtCN)の時に最も化合物(24)の収率がよかった。塩基として、N,N-ジベンジル-2-アミノエタノール(pKa=7.89、比較例1)やN-メチルジベンジルアミン(pKa=8.4、比較例7)を用いた場合は、100℃3分間という短時間の反応において、化合物(24)の収率は40%未満と反応の進行が不十分であった。また、比較例6に示す塩基としてトリエチルアミン(pKa=10.15)を用いた場合は、原料化合物の残存が少なく反応は良好に進むが、分解による副生成物が目的物を上回る収率であった。
 一方、No.8-1~8-6に示す通り、塩基としてN-メチルモルホリン(pKa=7.42)を用いた場合、弱塩基であるにも関わらず、化合物(24)の収率は44.2~48.0%と良好であり、一方で副生成物の生成も僅かであった。また、N,N-ジメチルベンジルアミン(pKa=9.18)やジベンジルアミン(pKa=8.91)を使用した場合も化合物(24)の収率は40%を超え、副生成物も僅かであった。更に、No.8-4に示す通り、塩基としてN-メチルモルホリンにトリエチルアミン(pKa=10.15)を組合せて用いた場合、化合物(24)の収率は最も良好となり、一方で、副生成物は僅かに増加するものの精製に影響を与える程の量ではなく、良好な結果であった。
 本発明の標識誘導体は、放射標識トレーサーとして、迅速かつ非侵襲的なYM155感受性・非感受性患者の分別や、YM155感受性腫瘍の大きさやステージングの診断、さらにはYM155やその他の抗腫瘍剤による治療効果の診断に使用できる。

Claims (18)

  1. 式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、X-は、カウンターアニオンであるか又は存在しない)
    で示される1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウム若しくはその塩において、(a)その構成する炭素、窒素及び酸素原子の少なくとも1つが陽電子放出核種であるか、又は、(b)陽電子放出核種若しくは単一光子放出核種であるハロゲン原子或いは該ハロゲン原子を含む官能基を少なくとも1つ導入したものである、標識誘導体。
  2. 構成する炭素原子の少なくとも1つが11Cであるか、又は、18F若しくはこれを含む官能基を少なくとも1つ導入したものである、請求項1記載の標識誘導体。
  3. 下式(I-Z)で示される標識誘導体である、請求項2記載の標識誘導体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、X-は、カウンターアニオンであるか又は存在せず、Z*は、11Cで標識されたメトキシ基、18F又は-(CH2)n-18Fであり、nは1又は2である。)
  4. 標識誘導体が、式(I-1b)又は(I-5)で示される標識誘導体である、請求項3記載の標識誘導体
    Figure JPOXMLDOC01-appb-C000003
  5. 標識誘導体が式(I-1b)で示される標識誘導体である、式請求項4記載の標識誘導体。
  6. 標識誘導体が式(I-5)で示される標識誘導体である、式請求項4記載の標識誘導体。
  7. 比放射能が25GBq/μmol以上である、請求項3記載の標識誘導体。
  8. 検出可能な量の、請求項1~7のいずれか1項に記載の標識誘導体を含む、腫瘍の画像診断用組成物。
  9. 放射能量が0.5ギガベクレル以上である、請求項8記載の画像診断用組成物。
  10. 臭化 1-(2-メトキシエチル)-2-メチル-4,9-ジオキソ-3-(ピラジン-2-イルメチル)-4,9-ジヒドロ-1H-ナフト[2,3-d]イミダゾール-3-イウムに対する腫瘍の感受性診断用である請求項8記載の組成物。
  11. 請求項8の画像診断用組成物を作成するための、原料化合物と少なくとも一つの標識するための試薬とを包含するキット。
  12. ヒトの腫瘍の画像診断用である、請求項9記載の画像診断用組成物。
  13. 下記反応式に示す、式(II)の化合物と式(III)の化合物又はその塩とを、塩基全体に対して40%(v/v)以下のトリエチルアミンを含んでいていもよい、N-メチルモルホリン、N,N-ジメチルベンジルアミン及びジベンジルアミンからなる群から選択される1以上の塩基の存在下で反応させる工程と、次いで得られた式(IV)の化合物を酸で処理し環化する工程を含む、式(I-Z)で示される標識誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式中、X-は、カウンターアニオンであるか又は存在せず、Z*は、-O-11CH3、-18F又は-(CH2)n-18Fであり、nは1又は2であり、Acはアセチル基である。)
  14. *が、-O-11CH3である、[13]記載の製造方法。
  15. 塩基が、塩基全体に対して30%(v/v)以下のトリエチルアミンを含んでいてもよいN-メチルモルホリンである、請求項13記載の製造方法。
  16. X-がBr-である、請求項13記載の製造方法。
  17. 2-アミノエタノールと11C標識メチルトリフレートとを水素化ナトリウム存在下反応させ、次いで過剰量の酸を加えて、式(III)で示される11C標識2-メトキシエタンアミンの酸付加塩を製造する工程を更に含むものである、請求項14記載の製造方法。
  18. サイクロトロンにより産生させた11C標識二酸化炭素を用いて11C標識ヨウ化メチルを得、次いでこれを加温下の銀トリフレートカラムを通して11C標識メチルトリフレートを得る工程を更に含むものである、請求項17記載の製造方法。
PCT/JP2012/063009 2011-05-24 2012-05-22 腫瘍の画像診断用標識誘導体 WO2012161177A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011115628A JP2014156400A (ja) 2011-05-24 2011-05-24 腫瘍の画像診断用標識誘導体
JP2011-115628 2011-05-24

Publications (1)

Publication Number Publication Date
WO2012161177A1 true WO2012161177A1 (ja) 2012-11-29

Family

ID=47217253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063009 WO2012161177A1 (ja) 2011-05-24 2012-05-22 腫瘍の画像診断用標識誘導体

Country Status (2)

Country Link
JP (1) JP2014156400A (ja)
WO (1) WO2012161177A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608324A (zh) * 2019-01-16 2019-04-12 成家钢 一种2,2-二甲基丁酸的制备工艺
CN110680813A (zh) * 2018-07-06 2020-01-14 北京大学 萘醌类衍生物作为ido1和/或tdo抑制剂的用途
WO2020036852A1 (en) * 2018-08-13 2020-02-20 Beijing Percans Oncology Co. Ltd. Biomarkers for cancer therapy
CN111544598A (zh) * 2020-05-12 2020-08-18 华东理工大学 负载Survivin双抑制剂的铁蛋白纳米颗粒及其制备方法和应用
WO2021155580A1 (en) * 2020-02-07 2021-08-12 Cothera Bioscience, Inc. Combination therapies and biomarkers for treating cancer
US11753476B2 (en) 2018-04-08 2023-09-12 Cothera Bioscience, Inc. Combination therapy for cancers with BRAF mutation
US12076399B2 (en) 2017-06-02 2024-09-03 Cothera Bioscience, Inc. Combination therapies for treating cancers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377775B2 (en) 2014-12-04 2019-08-13 Shin-Etsu Chemical Co., Ltd. Method for producing polyalkylene glycol derivative having amino group at end
US9708350B2 (en) 2014-12-04 2017-07-18 Shin-Etsu Chemical Co., Ltd. Method for producing polyalkylene glycol derivative having amino group at end, polymerization initiator for use in the same, and alcohol compound as raw material for the polymerization initiator
JP6460937B2 (ja) * 2014-12-04 2019-01-30 信越化学工業株式会社 末端にアミノ基を有するポリアルキレングリコール誘導体の製造方法
WO2016125884A1 (ja) * 2015-02-06 2016-08-11 日産化学工業株式会社 担癌哺乳動物モデルの作成方法
CN116768801A (zh) 2022-03-07 2023-09-19 上海交通大学 稠合的醌肟咪唑及其鎓衍生物与其制备和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060803A1 (fr) * 2000-02-15 2001-08-23 Yamanouchi Pharmaceutical Co., Ltd. Derives d'imidazolium fondus
WO2004092160A1 (ja) * 2003-04-15 2004-10-28 Astellas Pharma Inc. 臭化物及びその結晶
JP2009062287A (ja) * 2007-09-04 2009-03-26 Taiho Yakuhin Kogyo Kk ウラシル化合物又はその塩、これらを有効成分として含有するイメージング剤、およびこれらを有効成分として含有する腫瘍診断をするためのイメージング剤
JP2009515988A (ja) * 2005-11-15 2009-04-16 アレイ バイオファーマ、インコーポレイテッド 過剰増殖性疾患の処置のためのErbBI型受容体チロシンキナーゼ阻害剤としてのN4−フェニルキナゾリン−4−アミン誘導体および関連化合物
WO2010054006A1 (en) * 2008-11-04 2010-05-14 Chemocentryx, Inc. Modulators of cxcr7
JP2010523599A (ja) * 2007-04-05 2010-07-15 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド クリックケミストリーを使用した炭酸脱水酵素−ixのための分子イメージングプローブの開発

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060803A1 (fr) * 2000-02-15 2001-08-23 Yamanouchi Pharmaceutical Co., Ltd. Derives d'imidazolium fondus
WO2004092160A1 (ja) * 2003-04-15 2004-10-28 Astellas Pharma Inc. 臭化物及びその結晶
JP2009515988A (ja) * 2005-11-15 2009-04-16 アレイ バイオファーマ、インコーポレイテッド 過剰増殖性疾患の処置のためのErbBI型受容体チロシンキナーゼ阻害剤としてのN4−フェニルキナゾリン−4−アミン誘導体および関連化合物
JP2010523599A (ja) * 2007-04-05 2010-07-15 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド クリックケミストリーを使用した炭酸脱水酵素−ixのための分子イメージングプローブの開発
JP2009062287A (ja) * 2007-09-04 2009-03-26 Taiho Yakuhin Kogyo Kk ウラシル化合物又はその塩、これらを有効成分として含有するイメージング剤、およびこれらを有効成分として含有する腫瘍診断をするためのイメージング剤
WO2010054006A1 (en) * 2008-11-04 2010-05-14 Chemocentryx, Inc. Modulators of cxcr7

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AYA KITA ET AL.: "Survivin supressant : a promising target for cancer therapy and pharmacological profiles of YM155", FOLIA PHARMACOL.JPN., vol. 136, 2010, pages 198 - 203 *
MINEMATSU T. ET AL.: "Carrier-Mediated Uptake of 1-(2-Methoxyethyl)-2-methyl-4,9-dioxo-3-(pyrazin-2-ylmethyl)-4,9-dihydro-1H-naphtho[2,3-d]imidazolium Bromide (YM155 Monobromide), a Novel Small-Molecule Survivin Suppressant, into Human Solid Tumor and Lymphoma Cells", DRUG METABOLISM AND DISPOSITION, vol. 37, no. 3, 2009, pages 619 - 628 *
TOSHIHIRO TAKAHASHI: "''Synthesis of Diagnostic Agents for PET Study Using 11C/18F Laveled Fatty Acid Derivatives''", RADIOISOTOPES, vol. 47, no. 7, 1998, pages 599 - 602 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12076399B2 (en) 2017-06-02 2024-09-03 Cothera Bioscience, Inc. Combination therapies for treating cancers
US11753476B2 (en) 2018-04-08 2023-09-12 Cothera Bioscience, Inc. Combination therapy for cancers with BRAF mutation
CN110680813A (zh) * 2018-07-06 2020-01-14 北京大学 萘醌类衍生物作为ido1和/或tdo抑制剂的用途
CN110680813B (zh) * 2018-07-06 2023-03-10 北京大学 萘醌类衍生物作为ido1和/或tdo抑制剂的用途
WO2020036852A1 (en) * 2018-08-13 2020-02-20 Beijing Percans Oncology Co. Ltd. Biomarkers for cancer therapy
CN109608324A (zh) * 2019-01-16 2019-04-12 成家钢 一种2,2-二甲基丁酸的制备工艺
WO2021155580A1 (en) * 2020-02-07 2021-08-12 Cothera Bioscience, Inc. Combination therapies and biomarkers for treating cancer
CN111544598A (zh) * 2020-05-12 2020-08-18 华东理工大学 负载Survivin双抑制剂的铁蛋白纳米颗粒及其制备方法和应用

Also Published As

Publication number Publication date
JP2014156400A (ja) 2014-08-28

Similar Documents

Publication Publication Date Title
WO2012161177A1 (ja) 腫瘍の画像診断用標識誘導体
JP5922207B2 (ja) 灌流造影を含む適用のための造影剤
KR102558962B1 (ko) 방사성 표지된 전립선-특이적 막 항원(PSMA) 억제제 [18F]DCFPyL의 개선된 합성
JP2017523195A (ja) フッ素18標識化カボザンチニブ及びその類似体の調製方法
CN101657454A (zh) 18f-标记的叶酸酯类
TW201317218A (zh) 放射性氟標記化合物
US20080138283A1 (en) Radiolabeled compounds and uses thereof
WO2005115971A1 (ja) 放射性チロシン誘導体、その製造方法、放射性チロシン誘導体からなるポジトロンイメージング用標識剤及び腫瘍の悪性度評価薬剤並びに腫瘍の検出方法
Singh et al. A homodimeric bivalent radioligand derived from 1-(2-methoxyphenyl) piperazine with high affinity for in vivo 5-HT1A receptor imaging
EP3741392A1 (en) Positron emission tomography radiotracer for diseases associated with translocator protein overexpression, translocator protein-targeting ligand for fluorescence imaging diagnosis and photodynamic therapy, and preparation method therefor
WO2019131458A1 (ja) 2-[5-(イミダゾール-1-イルメチル)ピリジン-3-イル]ベンズイミダゾール誘導体化合物、及び、これを含む医薬
Lindberg et al. Development of a 18F-labeled PET radioligand for imaging 5-HT1B receptors:[18F] AZ10419096
KR101829913B1 (ko) 방사성 금속 표지 벤조사이아졸 유도체 및 그 유도체를 포함하는 방사성 의약품
US11504439B2 (en) Radioactive compound for diagnosis of malignant melanoma and use thereof
WO2015152128A1 (ja) アミノ酸前駆体、アミノ酸およびその製造方法、ならびに該アミノ酸を用いたpet診断用トレーサー
CN108997372B (zh) 正电子显像用化合物、其中间体、制备方法和显像剂
KR101519006B1 (ko) 신규한 벤즈아마이드 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 피부암 진단용 약학적 조성물
WO2023063154A1 (ja) 放射性pet診断用トレーサー組成物、その中間体、その製造方法
JP6218366B2 (ja) H3受容体の放射性標識リガンド
WO2016164921A1 (en) Pet imaging tracer for imaging prostate cancer
WO2020045638A1 (ja) 放射性イミダゾチアジアゾール誘導体化合物
WO2024230728A1 (zh) 靶向成纤维细胞活化蛋白的配体
US20190262479A1 (en) Imaging method for diffuse intrinsic pontine glioma using an imaging agent, and imaging agents for early stage diagnoses
WO2011040574A1 (ja) アゼチジニルメトキシピリジン誘導体の製造方法及びその使用
TW201210621A (en) Fluorodeuteriomethyl tyrosine derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP