WO2020045638A1 - 放射性イミダゾチアジアゾール誘導体化合物 - Google Patents

放射性イミダゾチアジアゾール誘導体化合物 Download PDF

Info

Publication number
WO2020045638A1
WO2020045638A1 PCT/JP2019/034156 JP2019034156W WO2020045638A1 WO 2020045638 A1 WO2020045638 A1 WO 2020045638A1 JP 2019034156 W JP2019034156 W JP 2019034156W WO 2020045638 A1 WO2020045638 A1 WO 2020045638A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
salt
radioactive
compound
formula
Prior art date
Application number
PCT/JP2019/034156
Other languages
English (en)
French (fr)
Inventor
真登 桐生
徳仁 中田
務 阿部
小野 正博
Original Assignee
日本メジフィジックス株式会社
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本メジフィジックス株式会社, 国立大学法人京都大学 filed Critical 日本メジフィジックス株式会社
Priority to CN201980056856.1A priority Critical patent/CN112638919A/zh
Priority to JP2020539633A priority patent/JPWO2020045638A1/ja
Priority to EP19856185.4A priority patent/EP3845541A4/en
Priority to KR1020217003211A priority patent/KR20210052435A/ko
Priority to US17/270,946 priority patent/US20210322582A1/en
Publication of WO2020045638A1 publication Critical patent/WO2020045638A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0482Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group chelates from cyclic ligands, e.g. DOTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0453Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0497Organic compounds conjugates with a carrier being an organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo

Definitions

  • the present invention relates to a radioactive imidazothiadiazole derivative compound having an affinity for carbonic anhydrase-IX (hereinafter, also referred to as “CA-IX”) and its use.
  • CA-IX is known to be highly expressed in the hypoxic region of cancer, and it is expected that a compound targeting CA-IX will enable the diagnosis and treatment of cancer.
  • some compounds having a terminal sulfonamide group such as acetazolamide and 1,3,5-triazolebenzenesulfonamide, exhibit CA-IX inhibitory activity (Non-patent Documents 1 and 2).
  • Non-patent Documents 3 and 4 There is also an attempt to image a hypoxic region of cancer by labeling a compound having an affinity for CA-IX with a radionuclide.
  • Patent Document 1 The applicant has filed a patent application for a radiometal complex targeting CA-IX (Patent Document 1).
  • Non- Patent Documents 5 and 2 Although not targeting CA-IX, compounds having a sulfonamide group in the imidazothiadiazole skeleton inhibit certain carbonic anhydrases like acetazolamide and exhibit cerebral vasodilatory activity (non- Patent Documents 5 and 2) and reports that it is useful for preventing neuronal cell loss or treating neuronal or axonal degeneration (Patent Document 3).
  • the object of the present invention is to provide a radioactive imidazothiadiazole derivative compound having an affinity for CA-IX.
  • One embodiment of the present invention provides a radiolabeled compound represented by the following formula (1) or a salt thereof.
  • n is an integer of 1 to 4
  • L is a radionuclide or a monovalent to tetravalent group containing a radionuclide.
  • Another aspect of the present invention provides a radiopharmaceutical containing the radiolabeled compound represented by the above formula (1) or a salt thereof as an active ingredient.
  • R 1 is a non-radioactive halogen atom, a nitro group, a trialkylammonium group, a dialkylsulfonium group, a trialkylstannyl group, a triphenylstannyl group, a trialkylsilyl group, a triphenylsilyl group, and the terminal is sulfonyl It is an alkyl group having 1 to 10 carbon atoms substituted with an oxy group, or a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a sulfonyloxy group.)
  • R 2 is a radioactive halogen atom, an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom, or a polyethylene having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom. It is a glycol group.
  • R 2 is a radioactive halogen atom, an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom, or a polyethylene having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom. It is a glycol group.
  • Another embodiment of the present invention provides a compound represented by the following formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof.
  • R 4 is H or CO 2 H.
  • Another embodiment of the present invention provides a complex of a compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof with a radioactive metal. provide.
  • Another embodiment of the present invention provides a method of mixing a compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof with a radioactive metal. And a method for producing a radioactive metal complex, comprising obtaining the above complex.
  • Another embodiment of the present invention provides a method for preparing the above complex, comprising the compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof.
  • a kit for preparing the above complex comprising the compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof.
  • Another embodiment of the present invention relates to a radiolabeled compound represented by the above formula (1) or a salt thereof, a compound represented by the above formulas (2), (2-1), (2-2), (3) -1) or use of the compound represented by (3-2) or a salt thereof.
  • radioactive imidazothiadiazole derivative compound having an affinity for CA-IX.
  • FIG. 9 is an autoradiogram showing radioactivity accumulation of [ 123 I] HIC205 obtained in Example 4 and a change in accumulation in each treatment.
  • FIG. 9 is a diagram showing a comparison between [ 123 I] HIC205 radioactivity accumulation and CA-IX expression sites measured in Example 4.
  • FIG. 2B is an enlarged view showing the results of immunohistochemical staining of animal B shown in the lower left part of FIG. 2A.
  • FIG. 14 is a view showing a result of Example 11.
  • FIG. 14 is a view showing a result of Example 11.
  • FIG. 14 is a view showing a result of Example 11.
  • 21 is a graph showing the time-dependent change in the intact% of [ 111 In] ITDA1 obtained in Example 13.
  • FIG. 21 is a graph showing the time-dependent change in the intact% of [ 111 In] ITDA2 obtained in Example 13.
  • FIG. 18 is a view showing a result of Example 15.
  • 14 shows SPECT / CT imaging results of HT-29 tumor-bearing mice obtained in Example 16.
  • the arrow indicates the site where the tumor is located.
  • 14 is a result of SPECT / CT imaging of the MDA-MB-231 tumor-bearing mouse obtained in Example 16.
  • the arrow indicates the site where the tumor is located.
  • the salt may be any pharmaceutically acceptable.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, or acetic acid, trifluoroacetic acid, maleic acid, succinic acid, mandelic acid, fumaric acid, malonic acid, pyruvic acid, oxalic acid, glycol Acid, salicylic acid, pyranosidic acid (glucuronic acid, galacturonic acid, etc.), ⁇ -hydroxy acid (citric acid, tartaric acid, etc.), amino acid (aspartic acid, glutamic acid, etc.), aromatic acid (benzoic acid, cinnamic acid, etc.), sulfone
  • It can be a salt derived from an organic acid such as an acid (p-toluenesulfonic acid, ethanesulfonic acid, etc.).
  • radioactiveuclide refers to a nuclide having radioactivity, and preferably refers to a radioactive halogen atom or a radioactive metal.
  • the “radioactive halogen atom” is at least one selected from radioactive isotopes of fluorine, chlorine, bromine, iodine and astatine, and is preferably 18 F, 34 mCl, 76 Br, 123 I, 124. I, 125 I, 131 I or 211 At can be used.
  • radioactive iodine atom refers to any of 123 I, 124 I, 125 I, or 131 I.
  • L is a radioactive halogen atom, an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom, or a terminal whose radio terminal is substituted with a radioactive halogen atom. It is preferably a polyethylene glycol group having 1 to 10 carbon atoms.
  • the “alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom” is represented by — (CH 2 ) m X (m is 1 to 10, and X is a radioactive halogen atom). Can be.
  • a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom is — (CH 2 CH 2 O) p X (p is 1 to 5, and X is a radioactive halogen atom. ).
  • L is a radioactive halogen atom
  • a radioactive iodine atom is preferred.
  • L is an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom or a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom
  • As the halogen atom a radioactive fluorine atom is preferable.
  • the compound represented by the formula (3) wherein R 2 is a radioactive halogen atom or a salt thereof is a compound represented by the formula (2) or a salt thereof:
  • R 1 is a non-radioactive halogen atom, a nitro group, a trialkylammonium group, a dialkylsulfonium group, a trialkylstannyl group, a triphenylstannyl group, a trialkylsilyl group or a triphenylsilyl group; Can be manufactured.
  • R 2 of the compound represented by the above formula (1) or a salt thereof is an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom.
  • R 1 is an alkyl group having 1 to 10 carbon atoms, the terminal of which is substituted with a sulfonyloxy group, by a radiohalogenation reaction. be able to.
  • the salt is a compound represented by the above formula (2) or a salt thereof, in which R 1 is a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a sulfonyloxy group, by radiohalogenation reaction.
  • R 1 is a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a sulfonyloxy group, by radiohalogenation reaction.
  • the non-radioactive halogen atom is at least one selected from a non-radioactive fluorine atom, a non-radioactive chlorine atom, a non-radioactive bromine atom, a non-radioactive iodine atom and a non-radioactive astatine atom.
  • examples of the trialkylammonium group include a tri (C1-C4 alkyl) ammonium group, and a trimethylammonium group is more preferable.
  • dialkylsulfonium group preferably, a di (C1-4) alkylsulfonium group is used.
  • examples of the trialkylstannyl group include a tri (C1-C4 alkyl) tin group, and a tributylstannyl group is more preferable.
  • examples of the trialkylsilyl group include a tri (C1-C4 alkyl) silyl group, and a trimethylsilyl group is more preferable.
  • an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a sulfonyloxy group can be represented by — (CH 2 ) m R 3 , where m is 1 to 10, and R 3 is It is a sulfonyloxy group.
  • a polyethylene glycol group having a terminal substituted with a sulfonyloxy group can be represented by — (CH 2 CH 2 O) p R 3 , where p is 1 to 5, and R 3 is a sulfonyloxy group.
  • C1-C4 alkyl means a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the sulfonyloxy group include a straight-chain or branched-chain alkylsulfonyloxy group having 1 to 10 carbon atoms (eg, a mesylate group) and a straight-chain or branched-chain halogenoalkylsulfonyloxy group having 1 to 10 carbon atoms (eg, , A triflate group) or a substituted or unsubstituted arylsulfonyloxy group (eg, a tosylate group).
  • R 1 is a trialkylstannyl group, a triphenylstannyl group, a trialkylsilyl group or a triphenylsilyl group
  • the compound is radioactive by an electrophilic substitution reaction.
  • a halogenation reaction can be performed.
  • R 1 is a nitro group, a trialkylammonium group, a dialkylsulfonium group, an alkyl group having 1 to 10 carbon atoms in which a terminal is substituted by a sulfonyloxy group, or
  • a radiohalogenation reaction can be performed by a nucleophilic substitution reaction.
  • radioactive halogenation reaction When the radiohalogenation reaction is performed by an electrophilic substitution reaction, it may be performed using a radioactive halogen prepared as an electrophile, for example, using a radioactive halogen molecule or radioactive acetylhypohalide.
  • Radioactive halogen molecules include radioactive fluorine molecules, radioactive chlorine molecules, radioactive bromine molecules, radioactive iodine molecules, and radioactive astatine molecules.
  • the radioactive acetyl hypohalolide includes radioactive acetyl hypofluoride, radioactive acetyl hypochloride, radioactive acetyl hypobromide, and radioactive acetyl hypoiodide.
  • reaction may be carried out with a radioactive sodium halide or a radioactive potassium halide under acidic conditions in the presence of an oxidizing agent.
  • an oxidizing agent for example, chloramine-T, aqueous hydrogen peroxide, peracetic acid, halogenated succinimide and the like can be used.
  • radiohalogenation reaction is carried out by a nucleophilic substitution reaction
  • it may be carried out using a radioactive halogen prepared as a nucleophile, for example, using a radioactive halide ion.
  • Radiohalide ions include radiofluoride ion, radiochloride ion, radiobromide ion, radioiodide ion, or radiostatatin ion.
  • the reaction may be performed in the presence of a base.
  • R 1 is a non-radioactive iodine atom, a trialkylstannyl group, a triphenylstannyl group, a trialkylsilyl group or a triphenylstannyl group
  • the compound represented by the above formula (2) is an alkali metal radioactive iodide.
  • the radioiodination reaction is preferably performed by reacting an alkali metal radioiodide and an oxidizing agent under acidic conditions.
  • an alkali metal radioactive iodide for example, a sodium compound of radioactive iodine or a potassium compound of radioactive iodine can be used.
  • an oxidizing agent for example, chloramine-T, aqueous hydrogen peroxide, peracetic acid, N-chlorosuccinimide, N-bromosuccinimide and the like can be used.
  • radioactive sodium iodide eg, [ 123 I] sodium iodide, [ 124 I] sodium iodide, [ 125 I] iodide under acidic conditions such as hydrochloric acid and in the presence of an oxidizing agent such as aqueous hydrogen peroxide.
  • an oxidizing agent such as aqueous hydrogen peroxide.
  • a compound represented by the above formula (2), wherein R 1 is a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a sulfonyloxy group is subjected to a radiofluorination reaction using a radiofluoride ion.
  • R 2 is a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive fluorine atom, can be obtained.
  • a compound represented by the above formula (2) in which R 1 is a dialkylsulfonium group is subjected to a radiofluorination reaction using a radiofluoride ion, whereby the compound represented by the above formula (R) in which R 2 is a radiofluorine atom is obtained.
  • the compound represented by 3) can be obtained.
  • it when performing a radioactive fluorination reaction, it can also be performed in the presence of potassium carbonate and cryptand, or in the presence of tetrabutylammonium hydrogencarbonate.
  • L in the compound represented by the above formula (1) is a group containing a radionuclide
  • the group is preferably a monovalent to tetravalent ligand supporting a radioactive metal.
  • n in the formula (1) is 1 or 2, the water solubility becomes lower, so that it is more preferable as a radiopharmaceutical.
  • ligand examples include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraaminehexaacetic acid (TTHA), cyclam, 1,4,8,11-tetraazacyclotetradecane-1, 4,8,11-tetraacetic acid (TETA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), N ⁇ 1-2,3-dioleyloxy ⁇ propyl ⁇ -N, N, N, -triethylammonium (DOTMA), mercaptoacetylglycylglycine (MAG3), ethylene cysteine dimer (ECD), hydrazinonicotinyl (HYNIC), lysine-tyrosine-cysteine (KYC), cysteine- Glycine-cysteine (CYC), N, N'-bis (mercap (Acet
  • DOTA in which at least one carboxy terminus is amidated is preferable from the viewpoint of enhancing the accumulation property in a tumor. Further, from the viewpoint of reducing accumulation in normal tissues, DOTA having four carboxyl groups intact or a derivative thereof is preferable, and for example, DOTAGA is preferable.
  • the radioactive metal is not particularly limited as long as it chelates the above-mentioned ligand.
  • radioactive isotopes such as indium, gallium, actinium, yttrium, lutetium, technetium, copper, gadolinium, and bismuth (specifically, Include 111 In, 90 Y, 68 Ga, 177 Lu, 99 m Tc, 64 Cu, 153 Gd, 213 Bi or 225 Ac).
  • a radiolabeled compound represented by the above formula (1), a compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof and a radioactive metal When a complex with is used as an imaging agent, a positron or a gamma-ray-emitting radioactive metal is used.
  • radioactive metals that emit gamma rays include 111 In, 67 Ga, 68 Ga, 99m Tc, 64 Cu, and 153 Gd.
  • a radiolabeled compound represented by the above formula (1) a compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof and a radioactive metal
  • a radioactive metal which emits alpha rays or beta rays is used.
  • Radioactive metals that emit alpha or beta rays include, for example, 225 Ac, 90 Y, 177 Lu, 64 Cu, 213 Bi.
  • Compounds represented by the above formulas (2-1), (2-2), (3-1) or (3-2) or complexes of these salts with radioactive metals are represented by the above formulas (2-1), (2-1)
  • the compound can be produced by mixing the compound represented by (2-2), (3-1) or (3-2) or a salt thereof with a radioactive metal as it is or in the presence of a solvent.
  • This complex may be prepared using a kit including a compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof.
  • This kit comprises the compound represented by the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof as it is or in a state dissolved in a solvent. ing.
  • the above formula (2-1), (2-2), (3-1) or (3-2) or a salt thereof can be made into a powder, for example, a lyophilized powder.
  • radiolabeled compounds represented by the above formula (1) compounds wherein L is DOTA and n is 1 or 2 are preferred. Therefore, according to a preferred embodiment of the present invention, there is provided a radiolabeled compound represented by the following formula (1-1) or (1-2).
  • M 3+ is a trivalent radioactive metal element.
  • M 3+ is a trivalent radioactive metal element.
  • L is a ligand supporting a radioactive metal and represented by the following formula (1-3) or (1-4), and n is a ligand.
  • a radiolabeled compound that is 1 is preferred.
  • R 4 is H or CO 2 H, and the pentagram asterisk is a binding site.
  • the five-pointed asterisk is a binding site.
  • the trivalent radiometal element represented by M 3+ in the radiolabeled compound represented by the above formulas (1-1) and (1-2) or a salt thereof any one capable of chelating to the above ligand can be used. Although not particularly limited, for example, indium, gallium, actinium, yttrium, lutetium and the like can be mentioned.
  • M 3+ is a trivalent radioactive metal element that emits positron or gamma rays. Examples of the trivalent radioactive metal element that emits a positron or a gamma ray include 111 In, 67 Ga, and 68 Ga.
  • M 3+ is a trivalent radioactive metal that emits alpha rays or beta minus rays.
  • Element examples of the trivalent radioactive metal element that emits an alpha ray or a beta minus ray include 225 Ac, 90 Y, and 177 Lu.
  • the radiolabeled compound represented by the above formula (1-1) or (1-2) or a salt thereof is a compound represented by the above formula (2-1) or (2-2) or a salt thereof and a metal ion M 3+ Can be produced as they are or by incubating them in a solvent.
  • a salt such as a chloride of the metal M 3+ can be used.
  • Incubation temperature and time vary depending on the type of metal ions M 3+, depending on the type of metal ions M 3+ is used, it may be used preferred conditions.
  • the compound represented by the above formula (2-1) or (2-2) or a salt thereof and a metal M 3+ chloride are incubated in a weakly acidic solvent having a pH of 4 to 6.
  • a pH buffer can be used, and examples thereof include a MES buffer and a sodium acetate buffer. Incubation may be performed under heating or under microwave irradiation.
  • the obtained compounds represented by the above formulas (1-1) and (1-2) or salts thereof can be purified by high performance liquid chromatography (HPLC) or the like.
  • the compound of the above formula (1) contains a sulfonamide group which is a CA-IX ligand at the 2-position of 6-phenylimidazo [2,1-b] [1,3,4] thiadiazole, it is specific for CA-IX. It is considered to have a physiological activity of accumulating in the cell.
  • Tumors expressing CA-IX include, for example, solid tumors in cancers of the bladder, cervix, head and neck, breast, lung, kidney, etc., and CA-IX is a cancer in a hypoxic region of a solid tumor. It is specifically expressed on cell membranes. Therefore, another aspect of the present invention is to provide a radiopharmaceutical targeting CA-IX by formulating the radiolabeled compound represented by the above formula (1) into a form suitable for administration into a living body. Can be.
  • the radiopharmaceutical of the present invention is preferably administered by parenteral means, and the dosage form is more preferably an injection. It is preferably an aqueous solution and may optionally contain additional components such as a pH adjuster, a pharmaceutically acceptable solubilizer, a tonicity agent, a stabilizer or an antioxidant.
  • the radiolabeled compound represented by the formula (1) specifically accumulates in the CA-IX expression site of the tumor and visualizes the site by a nuclear medicine test. can do. Therefore, the radiopharmaceutical of the present invention can be used as an imaging agent for a tumor expressing CA-IX.
  • the “imaging agent” means a radiopharmaceutical administered to the body for the purpose of nuclear medicine examination.
  • the content of the compound represented by the above formula (1) in the imaging agent is not particularly limited as long as it has a radioactivity capable of performing a nuclear medicine test at the time of use.
  • a radioactivity of 740 MBq is practical for imaging an adult.
  • examples of the nuclear medical examination include positron tomography (PET) and single photon emission tomography (SPECT).
  • PET positron tomography
  • SPECT single photon emission tomography
  • the imaging agent is released from the body after administration into a living body. This means a test that enables non-invasive diagnosis of a disease state by detecting and imaging radiation with a PET device, a SPECT device, or the like.
  • PET positron tomography
  • SPECT single photon emission tomography
  • the imaging method of a tumor using the radiolabeled compound represented by the above formula (1) is performed by performing tomography on the administered subject by a nuclear medicine test to determine the CA-IX expression site of the tumor of the subject. It suffices to include the step of generating image data including the rendered image.
  • the “subject” means a living body to be subjected to a nuclear medicine test, and includes humans and animals.
  • the radiolabeled compound represented by the formula (1) accumulates in the CA-IX expression site in the hypoxic region of the tumor to enable radiotherapy. And Therefore, the radiopharmaceutical of the present invention can be used as an internal radiotherapy agent for tumors expressing CA-IX.
  • the content of the compound represented by the above formula (1) in the internal radiotherapy agent is not particularly limited as long as it has a radioactivity capable of performing internal radiotherapy at the time of use.
  • a method for internal radiotherapy of tumor using a radiolabeled compound represented by the above formula (1) may include a step of administering to a patient having a tumor expressing CA-IX.
  • the “patient” means a living body to be subjected to internal radiotherapy, and includes humans and animals.
  • the radiopharmaceutical of the present invention comprises a radiolabeled compound represented by the above formula (1) wherein the radionuclide emits alpha rays or beta minus rays, and a radiolabeled compound represented by the above formula (1) wherein the radionuclides emit gamma rays. It can also be used as a medicament for theranostics of tumors expressing CA-IX, which contains the radiolabeled compound shown in (1) as an active ingredient.
  • the radiolabeled compound represented by the above formula (1) of the present invention when administered to a living body, specifically accumulates in the CA-IX expression site of the tumor and shows good clearance. Not only can be clearly imaged by nuclear medical examination, but also can suppress the growth of tumors expressing CA-IX, and can also be expected to suppress the resistance to chemotherapy and radiation therapy. It is useful for internal radiotherapy and can also be applied to cancer theranostics.
  • Atmospheric pressure chemical ionization mass spectrometry was measured using a high-speed chromatograph mass spectrometer LCMS-2020 manufactured by Shimadzu Corporation.
  • room temperature is 25 ° C. in the examples.
  • Non-radioactive HIC205 was prepared according to the following scheme did.
  • reaction mixture was cooled to room temperature, added with 200 ⁇ L of water for injection, and subjected to HPLC under the following conditions to collect [ 123 I] HIC205 fraction.
  • the [ 123 I] HIC205 fraction was confirmed to have the same retention time as that of the non-radioactive HIC205.
  • TLC analysis under the following conditions revealed that the radiochemical purity was 98%.
  • Example 4 Examination of affinity of non-radioactive HIC205 for CA-IX Affinity was measured using Biacore (GEHC). Human CA-IX (R & D) was immobilized on the sensor chip (CM7) by the amino coupling method.
  • Non-radioactive HIC205 was dissolved in 100% dimethylsulfoxide (DMSO), and then serially diluted 10 times with a running buffer to prepare a non-radioactive HIC205 solution containing 0.1% DMSO. Based on this, a two-fold dilution series was prepared with a running buffer containing 0.1% DMSO, and measurement was performed.
  • DMSO dimethylsulfoxide
  • the composition of the running buffer is 0.01 M HEPES (pH 7.4), 0.15 M sodium chloride, 0.005% v / v Surfactant P20.
  • the sensorgram obtained from each concentration was directly curve-fitted by the nonlinear least squares method, and the affinity was calculated. Table 1 shows the results.
  • Example 5 In vitro autoradiography using [ 123 I] HIC205 A fresh frozen section (14 ⁇ m) was prepared from a tumor having a tumor volume of about 200 mm 3 and sufficiently air-dried. This was immersed in Tris-buffered saline (TBS), and then [ 123 I] HIC205 was adjusted to 5 kBq / ml, and TBS solution containing 400 ⁇ M acetazolamide (both containing 0.1% dimethyl sulfoxide (DMSO)) ) And incubated at the same time (37 ° C., 30 minutes). Thereafter, each was washed with TBS and TBS containing 40% ethanol (EtOH) and air-dried.
  • TBS Tris-buffered saline
  • FIG. 1 A change in the binding of [123 I] HIC205 in [123 I] localization and the processing of radioactivity HIC205 shown in FIG.
  • the upper row shows the results of incubating the tumor sections in [ 123 I] HIC205-containing Tris buffered saline and then washing with TBS.
  • the middle row shows the same results as in the upper row except for washing with TBS containing 40% ethanol instead of TBS.
  • the lower row shows the results when the tumor section was the same as the upper row except that [ 123 I] HIC205-containing Tris-buffered saline and acetazolamide-containing TBS solution were simultaneously incubated. From FIG. 1, it was confirmed that [ 123 I] HIC205 binds with a contrast on the tumor section. In addition, it was confirmed that the binding of [ 123 I] HIC205 due to incubation with acetazolamide was reduced. In addition, washing with 40% ethanol significantly reduced the localization of radioactivity.
  • FIGS. 2A and 2B show the results of comparing the localization of radioactivity of [ 123 I] HIC205 with the expression of CA-IX.
  • FIG. 2A shows the result of the autoradiogram of the tumor section on the right, and the result of immunohistochemical staining of the tumor section on the left. The region between the two arrows indicates where the binding of [ 123 I] HIC205 and the expression of CA-IX do not match.
  • FIG. 2B is an enlarged view of the area between the two arrows of the result of immunohistochemical staining of animal B shown in the lower left of FIG. 2A, showing the result of immunohistochemical staining of FIG. 2A. It is shown on the left and an enlarged view of the area between the two arrows is shown on the right. The portion indicated by the arrow indicates the overlap of the sections.
  • Example 6 Synthesis of targeting moiety A targeting moiety was prepared according to the following scheme.
  • Example 7 Synthesis of ITDA1 and [ 113/115 In] ITDA1
  • Purification conditions (first time): Cosmosil AR-II column (20 ⁇ 250 mm), mobile phase: acetonitrile / water / trifluoroacetic acid [10/90 / 0.1 (5 minutes) ⁇ 25/75 / 0.1 (75) Min)], flow rate: 5 mL / min.
  • Purification conditions (second time): Cosmosil AR-II column (10 ⁇ 250 mm), mobile phase: acetonitrile / water / trifluoroacetic acid [15/85 / 0.1], flow rate: 2.8 mL / min.
  • Example 8 Synthesis of ITDA2 and [ 113/115 In] ITDA2
  • the labeled precursor compound 2,2 ′-(4,10-bis (2-oxo-2-((4 -(2-sulfamoylimidazo [2,1-b] [1,3,4] thiadiazol-6-yl) phenyl) amino) ethyl) -1,4,7,10-tetraazacyclododecane-1, 7-Diyl) diacetate (hereinafter referred to as "ITDA2”) was synthesized according to the following scheme.
  • Purification conditions (first time): Cosmosil AR-II column (10 ⁇ 250 mm), mobile phase: acetonitrile / water / trifluoroacetic acid [5/95 / 0.1 (5 minutes) ⁇ 35/65 / 0.1 (35) Min)], flow rate: 4 mL / min.
  • Purification conditions (second): Cosmosil AR-II column (10 ⁇ 250 mm), mobile phase: acetonitrile / water / trifluoroacetic acid [5/95 / 0.1 (5 minutes) ⁇ 35/65 / 0.1 (95) Min)] Flow rate: 4 mL / min.
  • Example 9 [111 In] ITDA1 and [111 In] Synthesis of ITDA2 (1)
  • [111 In] is a complex of the compound and 111 In represented by synthesized above formula ITDA1 (2-1) [111 In] Indium (III) 2,2 ', 2''-(10- (2-oxo-2-((4- (2-sulfamoylimidazo [2,1-b] [1,3,4] thiadiazole- 6-yl) phenyl) amino) ethyl) -1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (hereinafter referred to as “[ 111 In] ITDA1”) in the present specification It was synthesized according to the scheme.
  • the obtained [ 111 In] ITDA2 was analyzed by RP-HPLC under the following conditions. As a result, the radiochemical yield of the obtained [ 111 In] ITDA2 was as shown in Table 2.
  • Sodium acetate buffer (0.1 M, pH 4.6, 200 ⁇ L) and [ 111 In] Indium chloride (2.4 MBq in 100 ⁇ L of physiological saline) were incubated in a low protein adsorption tube (1.5 mL) at room temperature for 10 minutes. Thereafter, the ITDA2 obtained in Example 8 (0.05 mg in 10 ⁇ L dimethyl sulfoxide, 50 nmol) and dimethyl sulfoxide (190 ⁇ L) were added, and the mixture was incubated in a heat block at 90 ° C. for 30 minutes. Thereafter, purification was performed by reversed-phase high-performance liquid chromatography (RP-HPLC) under the following conditions to obtain 1.5 MBq of [ 111 In] ITDA2.
  • RP-HPLC reversed-phase high-performance liquid chromatography
  • the obtained [ 111 In] ITDA2 was analyzed by RP-HPLC under the following conditions. As a result, the radiochemical yield of the obtained [ 111 In] ITDA2 was 64.5%, and the radiochemical purity was> 99%.
  • Example 10 Synthesis of ITDA3 and [ 113/115 In] ITDA3 Labeled precursor compound 2,2 ′, 2 ′′-(R) represented by the above formula (3-1) (where R 4 is CO 2 H). 10- (1-carboxy-4-oxo-4-((4- (2-sulfamoylimidazo [2,1-b] [1,3,4] thiadiazol-6-yl) phenyl) amino) butyl) -1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (herein referred to as “ITDA3”) and a complex thereof with indium-113,115 [ 113 / 115 In] ITDA3 was synthesized according to the following scheme.
  • DOTAGA dodecane-1-yl pentanoic acid
  • Purification conditions (first time): Cosmosil AR-II column (20 ⁇ 250 mm), mobile phase: MeCN / H 2 O / TFA [10/90 / 0.1 (5 minutes) ⁇ 40/60 / 0.1 (65) Min)], flow rate: 5 mL / min.
  • Purification conditions (second time): Cosmosil AR-II column (10 ⁇ 250 mm), mobile phase: MeCN / H 2 O / TFA [14/86 / 0.1 (isocratic)], flow rate: 4 mL / min.
  • Example 11 In vitro CA-IX affinity / specificity HT-29 cells of [ 111 In] ITDA1, [ 111 In] ITDA2, and [ 111 In] ITDA3 at room temperature (purchased from Dainippon Sumitomo Pharma Co., Ltd.) ) And MDA-MB-231 cells (purchased from Dainippon Sumitomo Pharma Co., Ltd.) in a 12-well plate (2.0 ⁇ 10 5 cells / well) at 37 ° C. under an atmosphere of 5% carbon dioxide and 21% oxygen. For 24 hours and then at 37 ° C. in an atmosphere of 5% carbon dioxide and 21% or 1% oxygen for 24 hours.
  • DMEM Dulbecco's modified Eagle medium
  • DMEM Dulbecco's modified Eagle medium
  • AZ acetazolamide
  • FIG. 3A is a graph showing whether the affinity of compound [ 111 In] ITDA1 for CA-IX in HT-29 cells and MDA-MB-231 cells is inhibited by the coexistence of acetazolamide (AZ).
  • FIG. 3B is a graph showing whether the affinity of the compound [ 111 In] ITDA2 for CA-IX in HT-29 cells and MDA-MB-231 cells is inhibited by the coexistence of acetazolamide (AZ).
  • FIG. 3C is a graph showing whether the affinity of the compound [ 111 In] ITDA3 for CA-IX in HT-29 cells and MDA-MB-231 cells is inhibited by the coexistence of acetazolamide (AZ). .
  • CA-IX-positive HT-29 cells were inhibited in the presence of acetazolamide in both normoxic and hypoxic states, but inhibited in the absence of a competitor compound.
  • acetazolamide in both normoxic and hypoxic states, but inhibited in the absence of a competitor compound.
  • CA-IX-negative MDA-MB-231 cells no competitive inhibition was observed in either normoxia or hypoxia regardless of the presence or absence of acetazolamide. From these results, it can be seen that [ 111 In] ITDA1, [ 111 In] ITDA2 and [ 111 In] ITDA3 are selectively bonded to CA-IX.
  • Example 12 [111 In] ITDA1, obtained in [111 In] ITDA2 and the [111 an In] obtained in the measurement in Example 6 partition coefficient ITDA3 [111 In] ITDA1 and [111 In] ITDA2 and Examples 10
  • the 1-octanol / PBS (pH 7.4) partition coefficient of the obtained [ 111 In] ITDA3 was measured.
  • the two phases were saturated with each other in advance, and 1-octanol (3 mL) and PBS were placed in a 15 mL test tube containing [ 111 In] ITDA1 (37 kBq), [ 111 In] ITDA2 (37 kBq) or [ 111 In] ITDA3 (370 kBq). (3 mL) was added with a pipette.
  • Example 14 [111 In] ITDA1 cancer-bearing mice in Biodistribution 5-week-old male BALB / c nude mice (purchased from Shimizu Laboratory Supplies Co., Ltd., the following examples are also the same) HT-29 cells in the left shoulder of (5 ⁇ 10 6 cells / mouse) were inoculated subcutaneously.
  • mice were sacrificed 1, 4, 8, and 24 hours after administration, and blood, spleen, pancreas, stomach, intestine, kidney, liver, heart, lung, brain, HT-29 transplanted tumor, and muscle were collected.
  • the weight of each organ was measured, and the radioactivity was measured with a gamma counter.
  • the radioactivity accumulation of each organ was represented by% ID (injected dose) / g, which is the ratio of the radioactivity of each organ to the administered radioactivity divided by the organ weight. Table 4 shows the results.
  • the unit of the numerical value is% ID / tissue weight (g), and is expressed as the mean ⁇ standard deviation of the specimen.
  • the unit of the numerical value of the stomach is% ID. Pp ⁇ 0.05 vs. 24 h.
  • [ 111 In] ITDA1 accumulates in large amounts in HT-29 transplanted tumors (3.81% ID / g 1 hour after administration), and thus has high specificity for CA-IX-expressing tumors. You can see that it is. Further, it is considered that the amount of [ 111 In] ITDA1 incorporated into the HT-29 transplanted tumor is larger than that of the conventional CA-IX imaging probe.
  • the ratio of the HT-29 transplanted tumor / blood ratio and the HT-29 transplanted tumor / muscle ratio both increased with time and reached 53.56 and 6.59, respectively, 24 hours after administration.
  • [ 111 In] ITDA1 has favorable pharmacokinetics for in vivo imaging of solid tumors.
  • Example 15 CA-IX selectivity in [ 111 In] ITDA1 tumor-bearing mice HT-29 cells (5 ⁇ 10 6 cells / mouse) or MDA-MB on the left shoulder of 5-week-old male BALB / c nude mice -231 cells (5 ⁇ 10 6 cells / mouse) were inoculated subcutaneously.
  • the radioactivity accumulation of each organ was expressed as% ID (dose) / g obtained by dividing the ratio of the radioactivity of each organ to the administered radioactivity by the weight of the organ.
  • FIG. 5 shows the results.
  • “*” indicates data at a significance level of 1%, which was tested using Welch's t-test as a test method, and a significant difference was recognized.
  • Example 16 SPECT / CT imaging using [ 111 In] ITDA1
  • Physiological saline (150 ⁇ L) in which [ 111 In] ITDA1 (23.8 to 26.2 MBq) was dissolved was administered from the tail vein of the tumor-bearing mouse.
  • Mice were SPECT / CT imaged at 1, 4, 8, and 24 hours after administration.
  • U-SPECT-II / CT single pinhole collimator 0.6 or 1.0 mm, resolution: 0.45 mm
  • MILab three-dimensional ordered-subset exposure maximization
  • the arrow indicates the site where the tumor exists.
  • FIG. 6A high accumulation of radioactivity in the transplanted tumor was observed in the HT-29 tumor-bearing mouse 24 hours after administration, but as shown in FIG. 6B, the MDA-MB-231 tumor-bearing mouse No accumulation of [ 111 In] ITDA1 in the transplanted tumor was observed in the mice. Therefore, it was confirmed that [ 111 In] ITDA1 can selectively and clearly image HT-29 tumors by SPECT / CT.
  • Example 17 [111 In] ITDA3 HT -29 cells or MDA-MB-231 cells left shoulder of the male BALB / c nude mice biodistribution 5 weeks old in cancer-bearing mice (5 ⁇ 10 6 cells / mouse) was inoculated subcutaneously.
  • HT-29 tumor-bearing mice were sacrificed at 1, 4 and 24 hours after administration, and MDA-MB-231 tumor-bearing mice were sacrificed 24 hours after administration, and blood, spleen, pancreas, stomach, intestine, kidney , Liver, heart, lung, brain, HT-29 or MDA-MB-231 transplanted tumor, and muscle were collected.
  • the weight of each organ was measured, and the radioactivity was measured with a gamma counter.
  • the accumulation of radioactivity in each organ other than the stomach was expressed as% ID (injected dose) / g obtained by dividing the ratio of the radioactivity of each organ to the administered radioactivity by the weight of the organ.
  • the stomach was represented by% ID (injected dose). Table 5 shows the results.
  • [ 111 In] ITDA3 has a lower tumor accumulation amount than [ 111 In] ITDA1, but has less accumulation in normal tissues (particularly, pancreas, stomach, small intestine, and lung).
  • a trivalent radioactive metal element that emits beta-minus rays is used, reduction of side effects can be expected, suggesting that it may be suitable for an internal radiotherapeutic agent.
  • Example 18 at 37 ° C. conditions [111 In] ITDA1, except that dissolved in [111 In] ITDA2, and [111 In] ITDA3 in vitro CA -IX Affinity-specific cells to 37 ° C. water bath for Was performed according to Example 11.
  • the accumulation of radioactivity in each cell was expressed as% initial dose / mg protein obtained by dividing the ratio of the amount of radioactivity bound to each cell to the amount of added radioactivity by the amount of cell protein.
  • the binding amount (% initial dose / mg protein) to HT-29 cells was as shown in Table 6.
  • the binding amount (% initial dose / mg protein) to MDA-MB-231 cells was as shown in Table 7.
  • Example 19 Distribution of [ 111 In] ITDA2 in tumor-bearing mice HT-29 cells (5 ⁇ 10 6 cells / mouse) or MDA-MB-231 cells on left shoulder of 5-week-old male BALB / c nude mice (1 ⁇ 10 7 cells / mouse) were inoculated subcutaneously and used when the tumor diameter reached 6-10 mm.
  • HT-29 tumor-bearing mice were sacrificed at 1, 4, 8, and 24 hours after administration, and MDA-MB-231 tumor-bearing mice were sacrificed 24 hours after administration, and blood, spleen, pancreas, stomach, intestine, kidney , Liver, heart, lung, brain, tumor, and muscle were collected.
  • the weight of each organ was measured, and the radioactivity was measured with a gamma counter.
  • the accumulation of radioactivity in each organ other than the stomach was expressed as% injected dose / g organ obtained by dividing the ratio of the radioactivity of each organ to the administered radioactivity by the weight of the organ.
  • the stomach was expressed in% injected dose. The results are shown in Tables 8 and 9.
  • a radiolabeled compound represented by the following formula (1) or a salt thereof (In the above formula (1), n is an integer of 1 to 4, and L is a radionuclide or a monovalent to tetravalent group containing a radionuclide.) (2) n is 1 and L is a radioactive halogen atom, an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom, or 1 carbon atom whose terminal is substituted with a radioactive halogen atom.
  • the radiolabeled compound or a salt thereof according to (1) which has up to 10 polyethylene glycol groups.
  • radiolabeled compound or a salt thereof according to (2) wherein the radioactive halogen atom is a radioactive iodine atom.
  • the (4) or (5), wherein the radioactive metal is 111 In, 90 Y, 67 Ga, 68 Ga, 177 Lu, 99 m Tc, 64 Cu, 153 Gd, 213 Bi, or 225 Ac.
  • the radiolabeled compound or a salt thereof according to any one of (4) to (6) which is represented by the following formula (1-1) or (1-2).
  • M 3+ is a trivalent radioactive metal element.
  • M 3+ is a trivalent radioactive metal element.
  • (11) A compound represented by the following formula (2) or a salt thereof.
  • R 1 is a non-radioactive halogen atom, a nitro group, a trialkylammonium group, a dialkylsulfonium group, a trialkylstannyl group, a triphenylstannyl group, a trialkylsilyl group, a triphenylsilyl group, and the terminal is sulfonyl It is an alkyl group having 1 to 10 carbon atoms substituted with an oxy group, or a polyethylene glycol group having 1 to 10 carbon atoms whose terminal is substituted with a sulfonyloxy group.) (12) The following equation (2): (Wherein R 1 is a non-radioactive halogen atom, a nitro group, a trialkylammonium group, a dialkylsulfonium group, a trialkylstannyl group, a triphenylstannyl group, a trialkylsilyl group, a triphenyls
  • R 2 is a radioactive halogen atom, an alkyl group having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom, or a polyethylene having 1 to 10 carbon atoms whose terminal is substituted with a radioactive halogen atom. It is a glycol group.
  • a complex of the compound or a salt thereof according to (13) and a radioactive metal is a complex of the compound or a salt thereof according to (13) and a radioactive metal.
  • a method for producing a radiometal complex comprising mixing the compound or salt thereof according to (13) with a radiometal to obtain the complex according to (14).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、CA-IXに親和性を有する放射性イミダゾチアジアゾール誘導体化合物である下記式(1)で示される放射性標識化合物又はその塩を提供する。上記式(1)中、nは1~4の整数であり、Lは放射性核種または放射性核種を含む1~4価の基である。

Description

放射性イミダゾチアジアゾール誘導体化合物
 本発明は、炭酸脱水酵素-IX(以下、「CA-IX」ともいう)に親和性のある放射性イミダゾチアジアゾール誘導体化合物及びその用途に関する。
 CA-IXは、がんの低酸素領域に多く発現することが知られており、CA-IXを標的とした化合物により、がんの診断や治療が可能になることが期待されている。例えば、アセタゾラミド、1,3,5-トリアゾールベンゼンスルホンアミドなどの末端にスルホンアミド基を有する幾つかの化合物がCA-IX阻害活性を示すことが報告されている(非特許文献1、2)。また、CA-IXに親和性を有する化合物を放射性核種で標識することで、がんの低酸素領域をイメージングする試みもある(例えば、非特許文献3、4)。
 本出願人は、CA-IXを標的とした放射性金属錯体について特許出願した(特許文献1)。
 なお、CA-IXを標的とするものではないが、イミダゾチアジアゾール骨格にスルホンアミド基を備えた化合物が、アセタゾラミドと同様にある種の炭酸脱水酵素を阻害して脳血管拡張作用を示すこと(非特許文献5、特許文献2)や、ニューロン細胞喪失の予防または神経細胞もしくは軸索退化の治療に有用であること(特許文献3)の報告がある。
V. Garaj et al, Bioorg. Med. Chem. Lett., 14, 2004, 5427-5433 Ilies MA et al., J. Med. Chem. 2003 May 22;46(11):2187-96 Lau J, et al., Mol Pharm. 2016; 13: 1137-46 Lv PC, et al., Bioconjugate Chem. 2016; 27: 1762-9 Ian T. Barnish et al., J. Med. Chem. 1980, 23: 117-121
特願2017-169825 英国特許第1464259号明細書 国際公開第2003/051890号公報
 本発明は、CA-IXに親和性を有する放射性イミダゾチアジアゾール誘導体化合物を提供することにある。
 本発明の一態様は、下記式(1)で示される放射性標識化合物又はその塩を提供する。
Figure JPOXMLDOC01-appb-C000013
 上記式(1)中、nは1~4の整数であり、Lは放射性核種または放射性核種を含む1~4価の基である。
 また、本発明の他の態様は、上記式(1)で示される放射性標識化合物又はその塩を有効成分として含有する放射性医薬を提供する。
 また、本発明の他の態様は、下記式(2)で表される、化合物又はその塩を提供する。
Figure JPOXMLDOC01-appb-C000014

(式中、Rは、非放射性ハロゲン原子、ニトロ基、トリアルキルアンモニウム基、ジアルキルスルホニウム基、トリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基、トリフェニルシリル基、末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基、又は、末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基である。)
 また、本発明の他の態様は、上記式(2)で表される化合物又はその塩から、放射性ハロゲン化反応により、下記式(3):
Figure JPOXMLDOC01-appb-C000015

(式中、Rは、放射性ハロゲン原子、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基、又は、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基である。)
で表される放射性ハロゲン標識化合物又はその塩を製造する方法を提供する。
 また、本発明の他の態様は、下記式(2-1)、(2-2)、(3-1)又は(3-2)で示される化合物又はその塩を提供する。
Figure JPOXMLDOC01-appb-C000016

Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

(式中、Rは、H又はCOHである。)
Figure JPOXMLDOC01-appb-C000019
 また、本発明の他の態様は、上記式(2-1)、(2-2)、(3-1)又は(3-2)で示される化合物又はその塩と、放射性金属との錯体を提供する。
 また、本発明の他の態様は、上記式(2-1)、(2-2)、(3-1)又は(3-2)で示される化合物又はその塩と放射性金属とを混合して、上記の錯体を得ることを含む、放射性金属錯体の製造方法を提供する。
 また、本発明の他の態様は、上記式(2-1)、(2-2)、(3-1)又は(3-2)で示される化合物又はその塩を備える、上記の錯体を調製するためのキットを提供する。
 また、本発明の他の態様は、医薬の製造における、上記式(1)で示される放射性標識化合物又はその塩、上記式(2)、(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はその塩の使用を提供する。
 本発明によれば、CA-IXに親和性を有する放射性イミダゾチアジアゾール誘導体化合物が提供される。
実施例4で得られた[123I]HIC205の放射能集積と各処理における集積の変化を示すオートラジオグラムである。 実施例4で測定した[123I]HIC205の放射能集積とCA-IX発現箇所との対比を示す図である。 図2Aの左下に示された動物Bの免疫組織化学染色の結果を拡大して示す図である。 実施例11の結果を示す図である。 実施例11の結果を示す図である。 実施例11の結果を示す図である。 実施例13で得られた[111In]ITDA1のインタクト%の経時的変化を示すグラフである。 実施例13で得られた[111In]ITDA2のインタクト%の経時的変化を示すグラフである。 実施例15の結果を示す図である。 実施例16で得られたHT-29担がんマウスのSPECT/CT撮像結果である。図中、矢印が腫瘍のある部位を示す。 実施例16で得られたMDA-MB-231担がんマウスのSPECT/CT撮像結果である。図中、矢印が腫瘍のある部位を示す。
 本発明において、塩とは、医薬として許容されるものであればよい。例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸などの無機酸、又は、酢酸、トリフルオロ酢酸、マレイン酸、コハク酸、マンデル酸、フマル酸、マロン酸、ピルビン酸、シュウ酸、グリコール酸、サリチル酸、ピラノシジル酸(グルクロン酸、ガラクツロン酸など)、α-ヒドロキシ酸(クエン酸、酒石酸など)、アミノ酸(アスパラギン酸、グルタミン酸など)、芳香族酸(安息香酸、ケイ皮酸など)、スルホン酸(p-トルエンスルホン酸、エタンスルホン酸など)などの有機酸から誘導される塩にすることができる。
 本発明において、「放射性核種」とは、放射能をもつ核種のことをいい、好ましくは、放射性ハロゲン原子、又は、放射性金属をいう。
 本発明において、「放射性ハロゲン原子」とは、フッ素、塩素、臭素、ヨウ素及びアスタチンの放射性同位体から選択される少なくとも一種であり、好ましくは、18F、34mCl、76Br、123I、124I、125I、131I又は211Atを用いることができる。ここで、本発明において「放射性ヨウ素原子」とは、123I、124I、125I、又は131Iのいずれかをいう。
 上記式(1)においてn=1であるとき、Lは、放射性ハロゲン原子、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基、又は、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基であることが好ましい。「末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基」は、-(CHX(mが1~10であり、Xが放射性ハロゲン原子である。)で表すことができる。また、「末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基」は、-(CHCHO)X(pが1~5であり、Xが放射性ハロゲン原子である。)で表すことができる。Lが放射性ハロゲン原子であるとき、放射性ヨウ素原子が好ましい。また、Lが、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基、又は、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基であるとき、放射性ハロゲン原子としては、放射性フッ素原子が好ましい。
 上記式(1)で示される化合物又はその塩のうちRが放射性ハロゲン原子である上記式(3)で示される化合物又はその塩は、上記式(2)で示される化合物又はその塩において、Rが非放射性ハロゲン原子、ニトロ基、トリアルキルアンモニウム基、ジアルキルスルホニウム基、トリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基又はトリフェニルシリル基であるものから、放射性ハロゲン化反応により、製造することができる。
 上記式(1)で示される化合物又はその塩のうちRが、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基である上記式(3)で示される化合物又はその塩は、上記式(2)で示される化合物又はその塩において、Rが末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基であるものから、放射性ハロゲン化反応により、製造することができる。
 上記式(1)で示される化合物又はその塩のうちRが、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基である上記式(3)で示される化合物又はその塩は、上記式(2)で示される化合物又はその塩において、Rが末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基であるものから、放射性ハロゲン化反応により、製造することができる。
 本発明において、非放射性ハロゲン原子としては、非放射性フッ素原子、非放射性塩素原子、非放射性臭素原子、非放射性ヨウ素原子及び非放射性アスタチン原子から選択される少なくとも一種である。
 本発明において、トリアルキルアンモニウム基としては、トリ(C1-C4アルキル)アンモニウム基が挙げられ、トリメチルアンモニウム基がより好ましい。また、ジアルキルスルホニウム基としては、好ましくは、ジ(C1-4)アルキルスルホニウム基が挙げられる。また、トリアルキルスタニル基としては、トリ(C1-C4アルキル)スズ基が挙げられ、トリブチルスタニル基がより好ましい。また、トリアルキルシリル基としてはトリ(C1-C4アルキル)シリル基が挙げられ、トリメチルシリル基がより好ましい。また、末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基は、-(CHで表すことができ、ここで、mは1~10であり、Rはスルホニルオキシ基である。また、末端がスルホニルオキシ基で置換されているポリエチレングリコール基は、-(CHCHO)で表すことができ、ここで、pは1~5であり、Rはスルホニルオキシ基である。
 なお、本発明において、C1-C4アルキルとは、炭素数が1~4の直鎖又は分岐鎖のアルキル基を意味する。また、スルホニルオキシ基としては、炭素数1~10の直鎖もしくは分岐鎖のアルキルスルホニルオキシ基(例えば、メシレート基)、炭素数1~10の直鎖もしくは分岐鎖のハロゲノアルキルスルホニルオキシ基(例えば、トリフレート基)、又は、置換もしくは非置換アリールスルホニルオキシ基(例えば、トシレート基)が挙げられる。
 上記式(2)で示される化合物又はその塩において、Rがトリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基又はトリフェニルシリル基であるものは、求電子置換反応により、放射性ハロゲン化反応を行うことができる。また、上記式(2)で示される化合物又はその塩において、Rがニトロ基、トリアルキルアンモニウム基、ジアルキルスルホニウム基、末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基又は末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基であるものは、求核置換反応により、放射性ハロゲン化反応を行うことができる。
 放射性ハロゲン化反応は、求電子置換反応により行う場合は、求電子剤として調製された放射性ハロゲンを用いて行えばよく、例えば、放射性ハロゲン分子、放射性アセチルハイポハロリドを用いて行うことができる。放射性ハロゲン分子としては、放射性フッ素分子、放射性塩素分子、放射性臭素分子、放射性ヨウ素分子、又は放射性アスタチン分子が挙げられる。放射性アセチルハイポハロリドとしては、放射性アセチルハイポフルオライド、放射性アセチルハイポクロライド、放射性アセチルハイポブロマイド、放射性アセチルハイポアイオダイドが挙げられる。また、酸性条件下、酸化剤存在下に、放射性ハロゲン化ナトリウム又は放射性ハロゲン化カリウムと反応させてもよい。酸化剤としては、例えば、クロラミン-T、過酸化水素水、過酢酸、ハロゲン化スクシンイミド等を用いることができる。
 また、放射性ハロゲン化反応を求核置換反応により行う場合は、求核剤として調製された放射性ハロゲンを用いて行えばよく、例えば、放射性ハロゲン化物イオンを用いて行うことができる。放射性ハロゲン化物イオンとしては、放射性フッ化物イオン、放射性塩化物イオン、放射性臭化物イオン、放射性ヨウ化物イオン、又は放射性アスタチン化物イオンが挙げられる。また、塩基存在下に反応させてもよい。
 例えば、Rが非放射性ヨウ素原子、トリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基又はトリフェニルスタニル基の上記式(2)で示される化合物に対してアルカリ金属放射性ヨウ化物を用いて放射性ヨウ素化反応を行うことにより、上記式(1)においてLが放射性ヨウ素原子である化合物(Rが放射性ヨウ素原子の上記式(3)で示される化合物)を得ることができる。放射性ヨウ素化反応は、酸性条件下、アルカリ金属放射性ヨウ化物、及び、酸化剤を反応させることにより行うことが好ましい。アルカリ金属放射性ヨウ化物としては、例えば、放射性ヨウ素のナトリウム化合物又は放射性ヨウ素のカリウム化合物を用いることができる。酸化剤としては、例えば、クロラミン-T、過酸化水素水、過酢酸、N-クロロスクシンイミド、N-ブロモスクシンイミド等を用いることができる。一例として、塩酸などの酸性条件下、過酸化水素水などの酸化剤存在下に、放射性ヨウ化ナトリウム(例えば、[123I]ヨウ化ナトリウム、[124I]ヨウ化ナトリウム、[125I]ヨウ化ナトリウム、[131I]ヨウ化ナトリウム)を反応させることにより、放射性ヨウ素化反応を行って、上記式(1)においてLが放射性ヨウ素原子でn=1の放射性標識化合物を得ることができる。
 また、Rが末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基の上記式(2)で示される化合物に対して、放射性フッ化物イオンを用いて放射性フッ素化反応を行うことにより、Rが、末端が放射性フッ素原子で置換されている炭素数1~10のアルキル基の上記式(3)で示される化合物を得ることができる。
 また、Rが、末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基である上記式(2)で示される化合物に対して放射性フッ化物イオンを用いて放射性フッ素化反応を行うことにより、Rが末端が放射性フッ素原子で置換されている炭素数1~10のポリエチレングルコール基である上記式(3)で示される化合物を得ることができる。
 また、Rが、ジアルキルスルホニウム基である上記式(2)で示される化合物に対して放射性フッ化物イオンを用いて放射性フッ素化反応を行うことにより、Rが放射性フッ素原子である上記式(3)で示される化合物を得ることができる。
 なお、放射性フッ素化反応を行う場合は、炭酸カリウム及びクリプタンド存在下、あるいは、テトラブチルアンモニウム炭酸水素塩存在下に実行することもできる。
 本発明において、上記式(1)で示される化合物中のLが放射性核種を含む基である場合、当該基は放射性金属を担持した1~4価のリガンドであることが好ましく、この場合、上記式(1)のnは1または2とすると、水溶性がより低くなるため、放射性医薬としてより好ましい。リガンドとしては、例えば、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラアミン六酢酸(TTHA)、シクラム(cyclam)、1,4,8,11-テトラアザシクロテトラデカン-1,4,8,11-四酢酸(TETA)、1,4,7,10-テトラアザシクロドデカン-1,4,7,10-四酢酸(DOTA)、N{1-2,3-ジオレイロキシ}プロピル}-N,N,N,-トリエチルアンモニウム(DOTMA)、メルカプトアセチルグリシルグリシン(MAG3)、エチレンシステインダイマー(ECD)、ヒドラジノニコチニル(HYNIC)、リジン-チロシン-システイン(KYC)、システイン-グリシン-システイン(CYC)、N,N’-ビス(メルカプトアセタミド)エチレンジアミン(DADS)、N,N’-ビス(メルカプトアセタミド)-2,3ジアミンプロパン酸(CO2DADS)、N,N’-ビス(2-メルカプトエチル)エチレンジアミン(BATs)、チオセミカルバゾン、プロピレンアミンオキシム(PnAO)、その他のアミンオキシムリガンドおよびこれらの誘導体が挙げられる。このうち、腫瘍への集積性を高める観点では、少なくとも1つのカルボキシ末端がアミド化されたDOTAが好ましい。また、正常組織への集積を低減する観点では、4つのカルボキシル基がインタクトなDOTA又はその誘導体が好ましく、例えば、DOTAGAが好ましい。
 本発明において、放射性金属は、上記のリガンドにキレートするものであれば特に限定されないが、例えば、インジウム、ガリウム、アクチニウム、イットリウム、ルテチウム、テクネチウム、銅、ガドリニウム、ビスマス等の放射性同位体(具体的には、111In、90Y、68Ga、177Lu、99mTc、64Cu、153Gd、213Biまたは225Ac)が挙げられる。上記式(1)で示される放射性標識化合物や、上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示された化合物又はこれらの塩と放射性金属との錯体をイメージング剤として使用する場合、ポジトロンやガンマ線を放出する放射性金属が使用される。ガンマ線を放出する放射性金属としては、例えば、111In、67Ga、68Ga、99mTc、64Cu、153Gdが挙げられる。上記式(1)で示される放射性標識化合物や、上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はこれらの塩と放射性金属との錯体を内用放射線治療剤として使用する場合、アルファ線又はベータ線を放出する放射性金属が使用される。アルファ線又はベータ線を放出する放射性金属としては、例えば、225Ac、90Y、177Lu、64Cu、213Biが挙げられる。
 上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はこれらの塩と放射性金属との錯体は、上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はこれらの塩と放射性金属とをそのままあるいは溶剤存在下に混合することにより、製造することができる。この錯体は、上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はこれらの塩を備えたキットを用いて調製されてもよい。このキットは、上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はこれらの塩をそのまま、あるいは、溶剤に溶解させた状態で備えている。上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はこれらの塩をそのまま備える場合、上記式(2-1)、(2-2)、(3-1)若しくは(3-2)で示される化合物又はこれらの塩を粉末状にすることができ、例えば、凍結乾燥された粉末とすることができる。
 上記式(1)で示される放射性標識化合物の内、LがDOTAであり、nが1または2の化合物が好ましい。
 したがって、本発明の好ましい実施形態によれば、下記式(1-1)又は(1-2)で示される放射性標識化合物が提供される。
Figure JPOXMLDOC01-appb-C000020

(式中、M3+は3価の放射性金属元素である。)
Figure JPOXMLDOC01-appb-C000021

(式中、M3+は3価の放射性金属元素である。)
 また、正常組織への集積を低減する観点からは、上記式(1)において、Lが放射性金属を担持した下記式(1-3)又は(1-4)で示されるリガンドであり、nが1である放射性標識化合物が好ましい。
Figure JPOXMLDOC01-appb-C000022

 式(1-3)中、Rは、H又はCOHであり、五芒のアスタリスクは結合部位である。
Figure JPOXMLDOC01-appb-C000023

 式(1-4)中、五芒のアスタリスクは結合部位である。
 上記式(1-1)及び(1-2)で示される放射性標識化合物又はその塩中のM3+で表される3価の放射性金属元素としては、上記のリガンドにキレートするものであれば特に限定されないが、例えば、インジウム、ガリウム、アクチニウム、イットリウム、ルテチウム等が挙げられる。上記式(1-1)又は(1-2)で示される放射性標識化合物又はその塩をイメージング剤として使用する場合、M3+はポジトロン又はガンマ線を放出する3価の放射性金属元素とする。ポジトロン又はガンマ線を放出する3価の放射性金属元素としては、例えば、111In、67Ga、68Gaが挙げられる。上記式(1-1)及び(1-2)で示される放射性標識化合物又はその塩を内用放射線治療剤として使用する場合、M3+はアルファ線又はベータマイナス線を放出する3価の放射性金属元素とする。アルファ線又はベータマイナス線を放出する3価の放射性金属元素としては、例えば、225Ac、90Y、177Luが挙げられる。
 上記式(1-1)若しくは(1-2)で示される放射性標識化合物又はその塩は、上記式(2-1)若しくは(2-2)で示される化合物又はその塩と金属イオンM3+ とをそのまま、あるいは、溶剤中でインキュベートすることにより製造することができる。金属イオンM3+としては、金属M3+の塩化物などの塩を使用できる。インキュベートする温度及び時間は金属イオンM3+の種類によって異なり、用いる金属イオンM3+の種類に応じ、好ましい条件を用いれば良い。
 例えば、上記式(2-1)若しくは(2-2)で示される化合物又はその塩と金属M3+の塩化物とをpH4~6の弱酸性下溶剤中でインキュベートする。溶剤としては、pH緩衝液を使用することができ、MES緩衝液や酢酸ナトリウム緩衝液が挙げられる。インキュベートは、加熱又はマイクロ波照射下に行ってもよい。得られた上記式(1-1)及び(1-2)で示される化合物又はその塩は、高速液体クロマトグラフィー(HPLC)などにより精製することもできる。
 上記式(1)の化合物は6-フェニルイミダゾ[2,1-b][1,3,4]チアジアゾールの2位にCA-IXリガンドであるスルホンアミド基を含むので、CA-IXに特異的に集積するという生理活性を有するものと考えられる。CA-IXを発現する腫瘍としては、例えば、膀胱、子宮頸部、頭頚部、乳房、肺、腎臓等のがんにおける固形腫瘍が挙げられ、CA-IXは固形腫瘍の低酸素領域のがん細胞膜で特異的に発現する。したがって、本発明の他の態様は、上記式(1)で示される放射性標識化合物は、生体内への投与に適した形態に処方することで、CA-IXを標的とした放射性医薬とすることができる。
 本発明の放射性医薬は、非経口的手段によって投与されることが好ましく、剤形としては、注射剤がより好ましい。好ましくは、水溶液であり、適宜、pH調節剤、製薬学的に許容される可溶化剤、等張化剤、安定剤又は酸化防止剤などの追加成分を含んでいてもよい。
 上記式(1)で示される放射性標識化合物は、放射性核種がポジトロン又はガンマ線を放出するものである場合、腫瘍のCA-IX発現部位に特異的に集積して核医学的検査により当該部位を可視化することができる。したがって、本発明の放射性医薬は、CA-IXを発現する腫瘍のイメージング剤として用いることができる。
 本発明において「イメージング剤」とは、核医学的検査を目的として体内に投与される放射性医薬を意味するものである。
 本発明において、イメージング剤中の上記式(1)で示される化合物の含有量は、使用時に核医学検査が可能となる放射能量を有していれば特に限定されないが、例えば、使用時に50~740MBqの放射能量を有していれば、成人に対する撮像に実用的である。
 本発明において核医学的検査としては、ポジトロン断層撮影(PET)、単一光子放射断層撮影(SPECT)などが挙げられ、具体的には、イメージング剤を生体内に投与後、体内から放出される放射線をPET装置、SPECT装置等で検出・画像化することにより、非侵襲的に病態の診断を可能にする検査を意味する。上記式(1)で示される化合物の放射性核種として、ポジトロンを放出するものが使用される場合、PETが好適であり、ガンマ線を放出するものが使用される場合、SPECTが好適である。
 上記式(1)で示される放射性標識化合物を用いた腫瘍の撮像方法は、投与された被検体に対し核医学的検査により断層撮影を行うことにより、被検体の腫瘍のCA-IX発現部位の描出像を含む画像データを生成するステップを含んでいればよい。ここで、「被検体」とは、核医学的検査の対象とされる生体を意味し、ヒト及び動物を包含する。
 また、上記式(1)で示される放射性標識化合物は放射性核種がアルファ線又はベータマイナス線を放出するものである場合、腫瘍の低酸素領域のCA-IX発現部位に集積して放射線治療を可能とする。したがって、本発明の放射性医薬は、CA-IXを発現する腫瘍の内用放射線治療剤として用いることができる。
 本発明において、内用放射線治療剤中の上記式(1)で示される化合物の含有量は、使用時に内用放射線治療が可能となる放射能量を有していれば特に限定されない。
 上記式(1)で示される放射性標識化合物を用いた腫瘍の内用放射線治療方法は、CA-IXを発現する腫瘍の患者に対して投与するステップを含んでいればよい。ここで、「患者」とは、内用放射線治療の対象とされる生体を意味し、ヒト及び動物を包含する。
 また、放射性核種がアルファ線又はベータマイナス線を放出するものである上記式(1)で示される放射性標識化合物又はその塩と、放射性核種がポジトロン又はガンマ線を放出するものである上記式(1)で示される放射性標識化合物又はその塩とを併用することによって、CA-IX発現する腫瘍のセラノティクスが可能となる。したがって、本発明の放射性医薬は、放射性核種がアルファ線又はベータマイナス線を放出するものである上記式(1)で示される放射性標識化合物、及び、放射性核種がガンマ線を放出するものである上記式(1)で示される放射性標識化合物を共に有効成分として含有するCA-IXを発現する腫瘍のセラノスティクス用医薬として用いることも可能である。
 本発明の上記式(1)で示される放射性標識化合物は、生体に投与した場合、腫瘍のCA-IX発現部位に特異的に集積するとともに良好なクリアランスを示すので、腫瘍のCA-IX発現部位を核医学的検査により鮮明に撮像できるだけでなく、CA-IXを発現する腫瘍の増殖を抑制することができ、更には化学療法や放射線療法に対する治療抵抗性の抑制も期待できるので、がんの内用放射線治療に有用であり、がんのセラノスティクス(theranostics)にも応用できる。
 以下、実施例を記載して本発明をさらに詳しく説明するが、本発明はこれらの内容に限定されるものではない。
 実施例中、各化合物の分子構造は、NMRスペクトル(使用NMR装置:JNM-ECP-500(日本電子株式会社製、実施例1及び2で使用)又はJNM-ECS-400(日本電子株式会社製、実施例6~8及び10で使用))で同定した。全ての化学シフトはデルタスケール(δ)上のppmであり、そしてシグナルの微細分裂については、略号(s:シングレット、d:ダブレット、m:マルチプレット、br:ブロード)を用いて示した。大気圧化学イオン化質量分析(APCI-MS)には、株式会社島津製作所製高速クロマトグラフ質量分析計LCMS-2020を用いて測定した。
 以下、実施例において「室温」は、25℃である。
実施例1:標識前駆体化合物の合成
 標識前駆体化合物として6-(4-ブロモフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド)(化合物3)を下記のスキームに従い調製した。
Figure JPOXMLDOC01-appb-C000024
(1)5-アミノ-1,3,4-チアジアゾール-2-スルホンアミド(化合物2)の合成
 アセタゾラミド5.0g(化合物1、22.5mmol相当)をメタノール20mLに溶解し、6mol/mL塩酸10mLを加え、63.5時間加熱還流した。反応終了後、反応液を濃縮し、残差に飽和炭酸水素ナトリウム溶液を加え中和した。固形成分をろ過した後、酢酸エチル(100mL)で3回抽出した。合わせた酢酸エチル層を濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(溶離液:クロロホルム/メタノール=5/1)にて精製を行い、化合物2を3.18g(17.6mmol相当)得た。
H-NMR(溶媒:重ジメチルスルホキシド、共鳴周波数:500MHz):δ 8.06-8.05(br,2H),7.84(br,2H)。
(2)6-(4-ブロモフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド(化合物3)の合成
 2,4´-ジブロモアセトフェノン1.4g(5.04mmol相当)と5-アミノ-1,3,4-チアジアゾール-2-スルホンアミド1.0g(化合物2,5.6mmol相当)を1,4-ジオキサン12.5mLに溶解し、加熱還流下で17時間攪拌した。反応終了後、反応液を氷冷し、析出した固体をろ取した。得られた粗生成物を酢酸エチル/メタノール=5/1で溶解させた後、ヘキサンを添加して再沈殿させた。析出した固体をろ取し、真空下乾燥させて、化合物3を1.36g(3.77mmol相当)得た。
H-NMR(溶媒:重ジメチルスルホキシド、共鳴周波数:500MHz):δ 8.94-8.93(m,1H),8.73(br,2H),7.88-7.84(m,2H),7.68-7.63(m,2H)。
実施例2:6-(4-(ヨードフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド(非放射性HIC205)の合成
 非放射性HIC205を下記のスキームに従い調製した。
Figure JPOXMLDOC01-appb-C000025
 4’-ヨードアセトフェノン246mg(1.0mmol相当)を酢酸3.0mLに溶解しピリジニウムトリブロミド384mg(1.2mmol相当)を添加し、室温で1時間撹拌した。反応終了後、溶媒を濃縮し真空下一晩乾燥させた。得られた固形物に5-アミノ-1,3,4-チアジアゾール-2-スルホンアミド180mg1,4-ジオキサン2.5mLを添加し、加熱還流下で20時間攪拌した。反応終了後、溶媒を留去した後に水5mLを添加し、析出した固体をろ取した。得られた粗生成物を酢酸エチル/メタノール=5/1で溶解させた後、ヘキサンを添加して再沈殿させた。析出した固体をろ取し、真空下乾燥させて、6-(4-ヨードフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド179mg(HIC205,0.441mmol相当)を得た。
H-NMR(溶媒:重ジメチルスルホキシド、共鳴周波数:500MHz):δ 8.95-8.93(m,1H),8.73(br,2H),7.82-7.78(m,2H),7.72-7.68(m,2H)。
実施例3:6-(4-[ 123 I](ヨードフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド([ 123 I]HIC205)の合成
 下記のスキームに従い、実施例1で得られた標識前駆体化合物(化合物3)から123I標識化合物[123I]HIC205を合成した。
Figure JPOXMLDOC01-appb-C000026
 硫酸銅五水和物10mgをギ酸2.0mLに溶解し、2μmol/mL硫酸銅ギ酸溶液を調製した。標識前駆体化合物(化合物3)1mgを調製した2μmol/mL硫酸銅ギ酸溶液100μLに溶解した後、[123I]ヨウ化ナトリウム含有1mol/L水酸化ナトリウム溶液40μL(放射能量679MBq、合成開始時補正値)を添加し、132℃で1時間加熱した。反応終了後、室温まで冷却した後、注射用水200μLを添加し、下記の条件のHPLCに付して[123I]HIC205画分を分取した。なお、[123I]HIC205画分は、非放射性HIC205の保持時間と同じであることで確認した。
<HPLC条件>
 カラム:COSMOSIL(商品名、ナカライテスク社製、サイズ:4.6mmφ×250mm)
 移動相A:0.1%トリフルオロ酢酸水溶液
 移動相B:0.1%トリフルオロ酢酸を含むアセトニトリル
 グラジエント:0分(移動相A/移動相B=40/60(体積比))、120分(80/20(体積比))
 流速:1.0mL/分
 検出器:紫外可視吸光光度計(検出波:254nm)
     放射能検出器
 当該画分にエタノール2.0mLを添加し、90℃で加熱し溶媒を約0.5mLになるまで留去した。その後、上記のHPLC条件に付して[123I]HIC205画分を再度分取した。分取液をSep-Pak tC2 Plus(商品名、日本ウォーターズ株式会社製)に通液し、[123I]HIC205を当該カラムに吸着捕集した。このカラムを水1mLで洗浄した後、ジエチルエーテル1mLを通液して[123I]HIC205を溶出させた。得られた放射能量は11.8MBq(合成開始後202分)であった。また、下記の条件によるTLC分析を行ったところ、その放射化学的純度は98%であった。
<TLC分析条件>
TLCプレート:Silica Gel 60 F254(製品名、メルク社製)
展開相:ヘキサン/酢酸エチル=1/1
検出器:Gina Star(製品名、raytest社製)
実施例4:非放射性HIC205のCA-IXに対するアフィニティーの検討
 アフィニティーの測定はBiacore(GEHC)を用いて実施した。センサーチップ(CM7)にアミノカップリング法でヒトCA-IX(R&D社)を固定化した。非放射性HIC205を100%ジメチルスルホキシド(DMSO)に溶解した後、ランニングバッファーで10倍ずつ段階的に希釈して、最終的に0.1%DMSOを含む非放射性HIC205溶液を作製した。これを元に、0.1%DMSOを含むランニングバッファーで2倍の希釈系列を作製し、測定を行った。なお、ランニングバッファーの組成は、0.01M HEPES(pH7.4)、0.15M塩化ナトリウム、0.005%v/v Surfactant P20である。各濃度から得られたセンサーグラムを非線形最小二乗法により直接カーブフィッティングし、アフィニティーを算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000027
実施例5:[ 123 I]HIC205を用いたin vitroオートラジオグラフィー
 腫瘍体積が200mm程度の腫瘍を用いて新鮮凍結切片(14μm)を作製し、十分に風乾した。これをトリス緩衝生理食塩水(TBS)に浸漬した後、[123I]HIC205が5kBq/mlになるよう調整したTBS及び400μMのアセタゾラミド含有TBS溶液(いずれも0.1%ジメチルスルホキシド(DMSO)含有)に浸漬し、同時にインキュベートした(37℃,30分)。その後,TBS及び40%エタノール(EtOH)含有TBSでそれぞれを洗浄し、風乾した。これをイメージングプレート(IP)にコンタクトし、バイオイメージングアナライザBAS2000(富士フィルム株式会社製)にて読み込みを行った。オートラジオグラフィー(ARG)に使用した切片はそのまま、goat由来抗CA-IX抗体を用いて免疫組織化学を実施した。
 [123I]HIC205の放射能の局在と各処理における[123I]HIC205の結合の変化を図1に示す。上段は、腫瘍切片を[123I]HIC205含有トリス緩衝生理食塩水にインキュベートした後、TBSで洗浄した結果、中段は、TBSの代わりに40%エタノール含有TBSを用いて洗浄した以外上段と同様とした場合の結果であり、下段は、腫瘍切片を[123I]HIC205含有トリス緩衝生理食塩水とアセタゾラミド含有TBS溶液とを同時にインキュベートした以外上段と同様とした場合の結果である。
 図1から、腫瘍切片上においてコントラストを持って[123I]HIC205が結合することが確認された。また、アセタゾラミドと同時にインキュベートすることによる[123I]HIC205の結合が減少していることが確認された。さらに、40%エタノールで洗浄することにより、放射能の局在が著しく減少した。
 [123I]HIC205の放射能の局在とCA-IX発現との対比した結果を図2A及び図2Bに示す。図2Aは、腫瘍切片のオートラジオグラムの結果を右側に、同腫瘍切片の免疫組織化学染色した結果を左側に示す。2つ矢印の間の領域は、[123I]HIC205の結合とCA-IXの発現が一致しない箇所を示す。また、図2Bは、図2Aの左下に示された動物Bの免疫組織化学染色の結果の2つ矢印の間の領域を拡大して示す図であり、図2Aの免疫組織化学染色の結果を左側に示し、2つ矢印の間の領域の拡大図を右側に示す。矢印で示す部分は切片の重なりを示す。
 図2Aの2例の結果より、[123I]HIC205の局在とCA-IX発現箇所は肉眼的に概ね一致していることが確認された。しかし、CA-IXが発現していない部位での[123I]HIC205の結合が一部確認されており、強拡大により観察した結果,切片の重なりであることが認められた(図2B)。
 以上の結果より、[123I]HIC205はCA-IXに対しての結合能を有していることが確認された。
実施例6:ターゲティング部位の合成
 ターゲティング部位を下記のスキームに従い調製した。
Figure JPOXMLDOC01-appb-C000028
(1)5-アミノ-1,3,4-チアジアゾール-2-スルホンアミド(化合物1)の合成
 N-(5-スルファモイル-1,3,4-チアジアゾール-2-イル)アセタミド(アセタゾラミド)(3,000mg、13.5mmol)を3N塩酸水溶液(25mL)に懸濁させ、110℃で2時間還流した。NaHCOで中和した後、酢酸エチル(200mL×3)で抽出した。有機層を回収し、溶媒留去した後、真空で乾燥させ、白色粉末の目的物1を得た(収量:1,574mg、収率64%)。
H-NMR(400MHz,DMSO-d)δ 8.07(s,2H),7.83(s,2H)
13C-NMR(100MHz,DMSO-d)δ 171.6,157.9
MS(ESI):m/z;C ,計算値;179.0,実測値;179.0([M-H])。
(2)6-(4-ニトロフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド(化合物2)の合成
 化合物2(1,574mg、8.73mmol)と2-ブロモ-1-(4-ニトロフェニル)エタン-1-オン(2,131mg、8.73mmol)をエタノール(30mL)中で懸濁させ、70℃で36時間還流した。混合物を濃縮した後、冷アセトンを加え、吸引ろ過を行った。残渣を冷アセトンで洗浄し、真空で乾燥させ、黄色粉末の目的物2を得た(収量:1,734mg、収率:61%)。
H-NMR(400MHz,DMSO-d)δ 9.23(s,1H),8.89(s,2H),8.33(d,2H,J=29.3Hz),8.19(d,2H,J=29.3Hz)。
13C-NMR(100MHz,DMSO-d)δ 165.2,146.5,146.2,144.3,139.8,125.7,124.3,113.8。MS(ESI):m/z;C10 ,計算値;324.0,実測値;324.0([M-H])。
(3)6-(4-アミノフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド(化合物3)の合成
 化合物3(325mg、1mmol)をエタノール(30mL)に懸濁させ、塩化すず(II)(無水)(1,896mg、10mmol)を添加した。70℃で終夜還流した後、溶液を濃縮し、NaHCO飽和水溶液で中和後、酢酸エチル(50mL×3)で抽出した。有機層を飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた後、溶媒留去し真空で乾燥させ、黄色粉末の目的物3を得た(収量:125mg、収率42%)。
H-NMR(400MHz,DMSO-d)δ 8.69(s,2H),8.56(s,1H),7.57(d,2H,J=19.7Hz),6.60(d,2H,J=19.7Hz),5.29(s,2H)。
13C-NMR(100MHz,DMSO-d)δ 162.7,148.9,148.2,144.6,126.2,121.0,114.0,108.2.
MS(APCI):m/z;C1010 ,計算値;296.0,実測値;296.0([M+H])。
実施例7:ITDA1および[ 113/115 In]ITDA1の合成
 上記式(2-1)で示される標識前駆体化合物2,2’,2’’-(10-(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,4,7-トリイル)三酢酸(本明細書では「ITDA1」という)および、これをインジウム-113,115との錯体である[113/115In]ITDA1を下記スキームに従い、合成した。
Figure JPOXMLDOC01-appb-C000029
(1)2,2’-(4,10-ビス(2-(tert-ブトキシ)-2-オキソエチル)-1,4,7,10-テトラアザシクロドデカン-1,7-ジイル)二酢酸(DO2A)(化合物4)の合成
 化合物4は既報の論文(Mukai T et al.Bioorg Med Chem.2009;17(13):4285-9.Design of Ga-DOTA-based bifunctional radiopharmaceuticals: Two functional moieties can be conjugated to radiogallium DOTA without reducing the complex stability)に従って5段階で合成した。
(2)2,2’,2’’-(10-(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,4,7-トリイル)三酢酸(ITDA1)(化合物5)の合成
 化合物4(105mg、0.20mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(38mg、0.20mmol)、1-ヒドロキシベンゾトリアゾール(HOAt)(27mg、0.20mmol)を無水N,N-ジメチルホルムアミド(DMF)(4mL)に氷浴下で溶解させた。氷冷下、アルゴン雰囲気下で30分撹拌した。化合物3(60mg、0.20mmol)、無水DMF(4mL)、トリエチルアミン(28μL、0.20mmol)を加えた後、アルゴン雰囲気下、室温で48時間撹拌した。凍結乾燥させ、残渣に氷浴下でゆっくりトリフルオロ酢酸(4mL)を加え、室温で7時間撹拌した。濃縮した後、ジメチルスルホキシド(DMSO)に溶解した後、逆相HPLCにて精製することにより目的物5を得た。
精製条件(1回目):Cosmosil AR-II column(20×250mm)、移動相:アセトニトリル/水/トリフルオロ酢酸[10/90/0.1(5分)→25/75/0.1(75分)]、流速:5mL/min。
精製条件(2回目):Cosmosil AR-II column(10×250mm)、移動相:アセトニトリル/水/トリフルオロ酢酸[15/85/0.1]、流速:2.8mL/min。
H-NMR(400MHz,DMSO-d)δ 10.59(s,1H),8.81(s,1H),8.75(s,2H),7.86(d,2H,J=21.5Hz),7.65(d,2H,J=21.5Hz),3.9-4.1(br,16H),3.3-3.1(br,8H)。
MS(ESI):m/z;C2636 計算値;682.2,実測値;682.2([M+H])。
(3)[113/115In]インジウム(III)2,2’,2’’-(10-(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,4,7-トリイル)三酢酸([113/115In]ITDA1)(化合物7)の合成
 ジメチルスルホキシドに溶解させた化合物5(4.8mg、0.007mmol)に無水[113/115In]塩化インジウム(III)(15.5mg、0.07mmol)、0.1M MES緩衝液(pH5.5、7mL)を添加し、60℃で24時間撹拌した。濃縮後、残渣をジメチルスルホキシドに溶解させ、逆相HPLCにて精製を行うことにより目的物7を得た(収量:4.2mg、収率76%)。
精製条件:Cosmosil AR-II column(10×250mm)移動相:アセトニトリル/水/トリフルオロ酢酸[5/95/0.1(5分)→35/65/0.1(95分)],流速:4mL/min。保持時間:34分。
H-NMR(400MHz,DMSO-d)δ 10.91(s,1H),8.84(s,1H),8.74(s,2H),7.87(d,2H,J=14.8Hz),7.64(d,2H,J=14.8Hz),3.4-3.3(br,4H),3.2-3.2(br,12H),3.0-2.8(br,8H)。
MS(ESI):m/z;C2633InN 計算値;794.1,実測値;794.1([M+H])。
実施例8:ITDA2および[ 113/115 In]ITDA2の合成
 上記式(2-2)で示される標識前駆体化合物2,2’-(4,10-ビス(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,7-ジイル)二酢酸(本明細書では「ITDA2」という)を下記スキームに従い、合成した。
Figure JPOXMLDOC01-appb-C000030
(1)2,2’-(4,10-ビス(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,7-ジイル)二酢酸(ITDA2)(化合物6)の合成
 化合物4(108mg、0.21mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(80mg、0.42mmol)、1-ヒドロキシベンゾトリアゾール(HOAt)(57mg、0.42mmol)を無水DMF(5mL)に氷浴下で溶解させた。氷冷下、アルゴン雰囲気下で30分撹拌した。化合物3(126mg、0.42mmol)、無水DMF(5mL)、トリエチルアミン(58μL、0.42mmol)を加えた後、アルゴン雰囲気下で室温で26時間撹拌した。凍結乾燥させ、残渣に氷浴下でゆっくりトリフルオロ酢酸(8mL)を加え、室温で6時間撹拌した。濃縮した後、ジメチルスルホキシドに溶解し、逆相HPLCにて精製することにより目的物6を得た。
精製条件(1回目):Cosmosil AR-II column(10×250mm)、移動相:アセトニトリル/水/トリフルオロ酢酸[5/95/0.1(5分)→35/65/0.1(35分)]、流速:4mL/min。
精製条件(2回目):Cosmosil AR-II column(10×250mm)、移動相:アセトニトリル/水/トリフルオロ酢酸[5/95/0.1(5分)→35/65/0.1(95分)]流速:4mL/min。
H-NMR(400MHz,DMSO-d)δ 10.65(s,2H),8.78(s,1H),8.74(s,2H),7.84(d,2H,J=22.6Hz),7.67(d,2H,J=22.6Hz),4.16(br,4H),3.70(br,4H),3.46(br,8H),3.20(br,8H)。
MS(ESI):m/z;C36431410 ,計算値;959.2,実測値;959.2([M+H])。
(2)[113/115In]インジウム(III)2,2’-(4,10-ビス(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,7-ジイル)二酢酸([113/115In]ITDA2)(化合物8)の合成
 ジメチルスルホキシドに溶解させた化合物6(4.5mg、0.004mmol)に無水[113/115In]塩化インジウム(III)(10mg、0.04mmol)、0.1M MES緩衝液(pH5.5、4mL)を添加し、60℃で16時間撹拌した。濃縮した後、残渣をジメチルスルホキシドに溶解させ、逆相HPLCにて精製することにより目的物8を得た。
精製条件:Cosmosil AR-II column(10×250mm)移動相:アセトニトリル/水/トリフルオロ酢酸[5/95/0.1(5分)→35/65/0.1(35分)]、流速:4mL/min、保持時間:30.5分。
H-NMR(400MHz,DMSO-d)δ 11.04(s,2H),8.85(s,2H),8.72(s,4H),7.87(d,4H,J=19.1Hz),7.63(d,4H,J=19.1Hz),2.6-3.0(br,24H)。
MS(ESI):m/z;C3640InN1410 ,計算値;1071.1,実測値;1071.2([M+H])。
実施例9:[ 111 In]ITDA1 及び[ 111 In]ITDA2の合成
(1)[111In]ITDA1の合成
 上記式(2-1)で示される化合物と111Inとの錯体である[111In]インジウム(III)2,2’,2’’-(10-(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,4,7-トリイル)三酢酸(本明細書では「[111In]ITDA1」という)を下記スキームに従い、合成した。
Figure JPOXMLDOC01-appb-C000031
 酢酸ナトリウム緩衝液(0.1M,pH4.6、200μL)及び[111In]塩化インジウム(生理食塩水100μL中6.9MBq)をタンパク質低吸着チューブ(1.5mL)内で室温下10分間インキュベートした後、実施例7で得られたITDA1(10μLジメチルスルホキシド中0.13mg、200 nmol)を添加し、90℃で30分間インキュベートした。その後、逆相高速液体クロマトグラフィー(RP-HPLC)で精製し、[111In]ITDA15.3 MBqを得た。
 得られた[111In]ITDA1を下記の条件下でRP-HPLCにて分析した。その結果、得られた[111In]ITDA1の放射性化学収率は、76.4%であり、放射化学的純度は>99%であった。
<RP-HPLC条件>
カラム: Cosmosil 5C18-AR-II 4.6ID×150mm;
流速:0.6mL/min;
移動相:アセトニトリル/水/トリフルオロ酢酸=10/90/0.1(0min)→40/60/0.1(30分)
(2)[111In]ITDA2の合成条件検討
 上記式(2-2)で示される化合物と111Inとの錯体[111In]インジウム(III)2,2’-(4,10-ビス(2-オキソ-2-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)エチル)-1,4,7,10-テトラアザシクロドデカン-1,7-ジイル)二酢酸(本明細書では「[111In]ITDA2」という)の合成条件を下記のとおり検討した。
 MES緩衝液(0.1M,pH5.6、200μL)又は酢酸ナトリウム緩衝液(0.1M,pH4.6、200μL)に[111In]塩化インジウム(生理食塩水100μL中2.6~5.9MBq)を添加し、室温下10分間インキュベートした後、実施例8で得られたITDA2(10μLジメチルスルホキシド中0.05mg,50nmol)を添加し、ヒートブロック又はマイクロウエーブを用いて、表2に示す温度及び時間インキュベートした。その後、逆相高速液体クロマトグラフィー(RP-HPLC)で精製し、[111In]ITDA2を0.6~1.0MBq得た。
 得られた[111In]ITDA2を下記の条件下でRP-HPLCにて分析した。その結果、得られた[111In]ITDA2の放射性化学収率は表2に示すとおりであった。
<RP-HPLC条件>
カラム:Cosmosil 5C18-AR-II 4.6ID×150mm;
流速:1.0mL/min;
移動相:アセトニトリル/水/トリフルオロ酢酸=10/90/0.1(0m分)→40/60/0.1(60分)
Figure JPOXMLDOC01-appb-T000032
(3)[ 111 In]ITDA2の合成
 [111In]ITDA2を下記スキームに従い、合成した。
Figure JPOXMLDOC01-appb-C000033
 酢酸ナトリウム緩衝液(0.1M,pH4.6、200μL)及び[111In]塩化インジウム(生理食塩水100μL中2.4MBq)をタンパク質低吸着チューブ(1.5mL)内で室温下10分間インキュベートした後、実施例8で得られたITDA2(10μLジメチルスルホキシド中0.05mg、50nmol)及びジメチルスルホキシド(190μL)を添加し、ヒートブロックにて、90℃で30分間インキュベートした。その後、下記の条件下で逆相高速液体クロマトグラフィー(RP-HPLC)で精製し、[111In]ITDA2を1.5MBq得た。
 得られた[111In]ITDA2を下記の条件下でRP-HPLCにて分析した。その結果、得られた[111In]ITDA2の放射性化学収率は64.5%であり、放射化学的純度は>99%であった。
<RP-HPLC条件>
カラム:Cosmosil 5C18-AR-II 4.6ID×150mm;
流速:1.0mL/min;
移動相:アセトニトリル/水/トリフルオロ酢酸=
   10/90/0.1(0分)→40/60/0.1(60分)(精製の場合)
   10/90/0.1(0分)→40/60/0.1(30分)(分析の場合)
実施例10:ITDA3および[ 113/115 In]ITDA3の合成
 上記式(3-1)(式中、RはCOH)で示される標識前駆体化合物2,2’,2’’-(10-(1-カルボキシ-4-オキソ-4-((4-(2-スルファモイルイミダゾ[2,1-b][1,3,4]チアジアゾール-6-イル)フェニル)アミノ)ブチル)-1,4,7,10-テトラアザシクロドデカン-1,4,7-トリイル)三酢酸(本明細書では「ITDA3」という)および、これをインジウム-113,115との錯体である[113/115In]ITDA3を下記スキームに従い、合成した。
Figure JPOXMLDOC01-appb-C000034
(1)5-(tert-ブトキシ)-5-オキソ-4-(4,7,10-トリス(2-(tert-ブトキシ)-2-オキソエチル)-1,4,7,10-テトラアザシクロドデカン-1-イル)ペンタン酸(DOTAGA)の合成
 DOTAGAは既報の論文(Eisenwiener KP et al. Bioorg Med Chem Lett. 2000;10(18):2133-5. A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling.)に従って合成した。
(2)ITDA3の合成
 DOTAGA(65mg、0.093mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(18mg、0.093mmol)、1-ヒドロキシベンゾトリアゾール(HOAt)(13mg、0.093mmol)を無水N,N-ジメチルホルムアミド(4mL)に氷浴下で溶解させた。氷浴下、アルゴン雰囲気下で30分撹拌した。6-(4-アミノフェニル)イミダゾ[2,1-b][1,3,4]チアジアゾール-2-スルホンアミド(化合物3)(27mg、0.093mmol)、トリエチルアミン(13μL、0.093mmol)を加えたのち、アルゴン雰囲気下で50℃で6.5日間撹拌した。凍結乾燥させ、残渣に氷浴下でゆっくりトリフルオロ酢酸(4mL)を加え,室温で6時間撹拌した。濃縮し、N,N-ジメチルスルホキシドに溶かして逆相高速液体クロマトグラフィーで精製した。
精製条件(1回目):Cosmosil AR-II column(20×250mm)、移動相:MeCN/HO/TFA[10/90/0.1(5分)→40/60/0.1(65分)]、流速:5mL/分。
精製条件(2回目):Cosmosil AR-II column(10×250mm)、移動相:MeCN/HO/TFA[14/86/0.1(isocratic)]、流速:4mL/分。
精製条件(3回目):Cosmosil AR-II column(4.6ID×150mm)、移動相:MeCN/HO/TFA[18/82/0.1(isocratic)]、流速:0.6mL/分。
収率:1.5mg(2%)
H-NMR(400MHz、DMSO-d)δ 10.11(s, 1H),8.79(s,1H),8.75(s,2H),7.84(d,2H,J=25.2 Hz),7.66(d,2H,J=25.2Hz),3.6-2.3(br, 27H)。
MS(ESI):m/z;C293911、計算値;753.2,実測値;754.2([M+H])。
(3)[113/115In]ITDA3の合成
 N,N-ジメチルスルホキシドに溶解させたITDA3(4mg、0.005mmol)に無水塩化インジウム(III)(11.7mg、0.05mmol)、0.1M MESバッファー(pH5.5、5mL)を添加し、60℃で24時間撹拌した。濃縮後、残渣をN,N-ジメチルスルホキシドに溶解させ,逆相高速液体クロマトグラフィーで精製した。
MS(ESI):m/z;C2936InN11、計算値;865.1,実測値;866.1([M+H])。
(4)[111In]ITDA3の合成
 酢酸/酢酸ナトリウムバッファー(0.1M、pH4.6、200μL)と111InCl(100μL)を低吸着エッペンチューブ(1.5mL)に入れ,室温で10分インキュベートした。その後、ITDA3(10μLDMSO溶液)を加えた。ブロックヒーターを用いて90℃で30分インキュベートし、逆相高速液体クロマトグラフィーで精製した。
精製条件:Cosmosil AR-II column (4.6ID×150mm)、移動相:MeCN/HO/TFA[10/90/0.1(0分)→40/60/0.1(30分)]、流速:1.0mL/分。
 放射化学的純度の確認は逆相高速液体クロマトグラフィーに非標識体と合わせ打ちすることで行った。[111In]ITDA3は放射化学的収率57.3%、放射化学的純度95%以上で得られた。
実施例11:室温条件での[ 111 In]ITDA1、[ 111 In]ITDA2、及び[ 111 In]ITDA3のin vitro CA-IX親和性・特異性
 HT-29細胞(大日本住友製薬株式会社から購入)及びMDA-MB-231細胞(大日本住友製薬株式会社から購入)を12-ウェルプレート(2.0×10cells/well)中37℃にて5%二酸化炭素及び21%酸素の雰囲気下で24時間インキュベートした後、37℃にて5%二酸化炭素及び21%又は1%酸素の雰囲気下で24時間インキュベートした。培地を取り除いた後、各ウェルに[111In]ITDA1(14kBq)、[111In]ITDA2(26kBq)又は[111In]ITDA3(37kBq)を含むDMEM(ダルベッコ改変イーグル培地)(1mL)を加え、37℃にて5%二酸化炭素及び21%又は1%酸素の雰囲気下で2時間インキュベートした。また、これとは別に、[111In]ITDA1(14kBq)、[111In]ITDA2(26kBq)又は[111In]ITDA3(37kBq)にCA-IXに対する競合化合物としてアセタゾラミド(AZ)(50μM)を加えた以外同様のプレートを同様にインキュベートした。その後、各ウェルをリン酸緩衝食塩水(PBS)(pH7.4)(ナカライテスク株式会社製)1mLで洗浄し、1N水酸化ナトリウム水溶液([111In]ITDA1:0.25mL×2,[111In]ITDA2:0.5mL×2,[111In]ITDA3:0.2mL×2)で細胞を室温にて溶解した。細胞に結合した放射能量をガンマーカウンター(型名:Wallac 1470 Wizard、PerkinElmer,Massachusetts,U.S.A.製、以下の実施例も同じ)で測定した。結果を図3A、図3B及び図3Cに示す。
 図3Aは、化合物[111In]ITDA1のHT-29細胞及びMDA-MB-231細胞におけるCA-IXへの親和性がアセタゾラミド(AZ)の共存によって阻害されるかどうかを示すグラフである。また、図3Bは、化合物[111In]ITDA2のHT-29細胞及びMDA-MB-231細胞におけるCA-IXへの親和性がアセタゾラミド(AZ)の共存によって阻害されるかどうかを示すグラフである。また、図3Cは、化合物[111In]ITDA3のHT-29細胞及びMDA-MB-231細胞におけるCA-IXへの親和性がアセタゾラミド(AZ)の共存によって阻害されるかどうかを示すグラフである。 
 図3A、図3B及び図3Cから、CA-IX陽性のHT-29細胞では酸素正常状態及び低酸素状態の何れの場合もアセタゾラミド存在下で阻害が見られたが、競合化合物非存在下では阻害は見られなかった。一方、CA-IX陰性のMDA-MB-231細胞では酸素正常状態及び低酸素状態の何れの場合もアセタゾラミドの存否にかかわらず競合阻害が見られなかった。これらのことから、[111In]ITDA1、[111In]ITDA2及び[111In]ITDA3は、CA-IXに対して選択的に結合していることがわかる。
実施例12:[ 111 In]ITDA1、[ 111 In]ITDA2及び[ 111 In]ITDA3の分配係数の測定
 実施例6で得られた[111In]ITDA1及び[111In]ITDA2並びに実施例10で得られた[111In]ITDA3の1-オクタノール/PBS(pH7.4)分配係数を測定した。
 上記2相を予め相互に飽和させ、[111In]ITDA1(37kBq)、[111In]ITDA2(37kBq)又は[111In]ITDA3(370kBq)を含む15mL試験管に1-オクタノール(3mL)及びPBS(3mL)をピペットで加えた。試験管を2分間ボルテックスし、遠心分離(4,000g,5分)にかけた。1-オクタノール相及びPBS相から0.5mLを分取し、2つの試験管の夫々に移して測定した。残余のPBS相(1mL)及び新たに用意した1-オクタノール(3mL)及びPBS(2mL)を新しい試験管にピペットで加えた。各試験管の放射能量はガンマーカウンターで測定した。分配係数は式logPow=log10[カウント1-octanol/カウントPBS]を用いて計算した。その結果、[111In]ITDA1のlogPowは、-3.72±0.05であり、[111In]ITDA2のlogPowは、-2.32±0.01であり、[111In]ITDA3のlogPowは、-3.47±0.09であった。
実施例13: [ 111 In]ITDA1、[ 111 In]ITDA2及び[ 111 In]ITDA3のマウス血漿中におけるIn vitro安定性
 血液をddyマウス(清水実験材料株式会社から購入)から採取し、静脈血採血管(Becton,Dickinson and Company社製)中で遠心分離(1,200g,10分)した。血漿(200μL)を分離し、それに[111In]ITDA1、[111In]ITDA2又は[111In]ITDA3の生理食塩水溶液(185kBq)を加え、37℃にて1、4、8及び24時間インキュベートした(n=3)。そして、アセトニトリル(200μL)を添加した後、遠心分離(10,000g、5分)を行い、上清をコスモナイスフィルター(S)(0.45μm、4mm)(ナカライテスク社製)で濾過し、濾液を下記条件下にRP-HPLCで分析した。結果を図4A及び図4Bに示す。なお、図4A及び図4Bのインタクト %はRP-HPLC溶出パターンの面積パーセントから求めた。
<RP-HPLC条件>
カラム:Cosmosil C18 カラム(5C18-PAQ,4.6×250mm)
移動相:水/アセトニトリル/トリフルオロ酢酸(90:10:0.1(0m分)→60:40:0.1(30分))を用いた分析用流速:1.0mL/min
 図4A及び図4Bから、[111In]ITDA1及び[111In]ITDA2は、24時間インキュベート中、十分な安定性を有することがわかる。[111In]ITDA3の結果は表3に示した。表3から、[111In]ITDA3は、インキュベートで1~24時間中インタクト95%以上の安定性を示し、[111In]ITDA1とほぼ同様の結果を示した。
Figure JPOXMLDOC01-appb-T000035
実施例14:[ 111 In]ITDA1の担がんマウスにおける体内分布
 5週齢の雄BALB/c ヌードマウス(清水実験材料株式会社から購入、以下の実施例も同じ)の左肩にHT-29細胞(5×10細胞/マウス)を皮下接種した。このHT-29担がんマウス(n=5)の尾静脈から、[111In]ITDA1(37kBq)を溶解した生理食塩水(100μL)を投与した。投与1、4、8及び24時間後に、マウスを屠殺し、血液、脾臓、膵臓、胃、腸、腎臓、肝臓、心臓、肺、脳、HT-29移植腫瘍、及び筋肉を回収した。各臓器の重量を測定し、放射能量をガンマーカウンターで測定した。各臓器の放射能集積は、各臓器の放射能量の投与放射能量に対する割合を臓器重量で割った%ID(injected dose)/gで表記した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000036

注:表中、数値の単位は%ID/組織重量(g)であり、検体についての平均±標準偏差で示す。胃の数値の単位は%IDである。† p < 0.05 vs. 24 h.
 表4に示されるとおり、[111In]ITDA1はHT-29移植腫瘍(投与後1時間で3.81%ID/g)に大量に集積するので、CA-IX発現腫瘍に高い特異性を備えていることがわかる。また、[111In]ITDA1がHT-29移植腫瘍に取り込まれる量は従来のCA-IX描出用プローブよりも多いと考えられる。また、表4において、HT-29移植腫瘍/血液比及びHT-29移植腫瘍/筋肉比がいずれも経時的に増加し、投与後24時間でそれぞれ53.56及び6.59に達していることから、[111In]ITDA1は固形腫瘍のin vivo撮像にとって好ましい薬物動態を備えていることがわかる。
実施例15:[ 111 In]ITDA1の担がんマウスにおけるCA-IX選択性
 5週齢の雄BALB/c ヌードマウスの左肩にHT-29細胞(5×10細胞/マウス)又はMDA-MB-231細胞(5×10細胞/マウス)を皮下接種した。この担がんマウス(n=5)の尾静脈から、[111In]ITDA1(37kBq)を溶解した生理食塩水(100μL)を投与した。投与24時間後に、マウスを屠殺し、血液、移植腫瘍、及び筋肉を回収した。各臓器の重量を測定し、放射能量をガンマーカウンターで測定した。各臓器の放射能集積は、各臓器の放射能量の投与放射能量に対する割合を臓器重量で割った%ID(投与量)/gで表記した。結果を図5に示す。図中「*」は有意水準1%で検定手法としてウェルチのt検定を用いて検定し、有意な差を認めたデータを示す。
 図5に示されるとおり、[111In]ITDA1のHT-29腫瘍への集積量とMDA-MB-231腫瘍への集積量に有意差が認められた。移植腫瘍/血液比及び移植腫瘍/筋肉比も同様であった。これらのことから[111In]ITDA1のCA-IX選択的な腫瘍集積が確認された。
実施例16:[ 111 In]ITDA1を用いたSPECT/CT撮像
 5週齢の雄BALB/c ヌードマウスの左肩にHT-29細胞(5×10細胞/マウス)又はMDA-MB-231細胞(5×10細胞/マウス)を皮下接種した。この担がんマウスの尾静脈から、[111In]ITDA1(23.8~26.2MBq)を溶解した生理食塩水(150μL)を投与した。投与1、4、8及び24時間後に、マウスをSPECT/CT撮像した。SPECT/CT装置としてMILab社製のU-SPECT-II/CT(シングルピンホールコリメータ0.6又は1.0 mm、分解能:0.45 mm)を用い、投与後1、4、8及び24時間から60分間の収集を行った。
 収集データは3次元ordered-subset expectation maximization(3D-OSEM)法により再構成した。HT-29担がんマウスの結果を図6Aに示し、MDA-MB-231担がんマウスの結果を図6Bに示す。
 図6A及び図6B中、矢印が腫瘍のある部位を示している。図6Aに示されるとおり、投与24時間後において、HT-29担がんマウスでは移植腫瘍への高い放射能集積が認められたが、図6Bに示されるとおり、MDA-MB-231担がんマウスでは移植腫瘍への[111In]ITDA1の集積は認められなかった。したがって、[111In]ITDA1によりHT-29腫瘍をSPECT/CTにより選択的かつ明瞭にイメージングできることが確認された。
実施例17:[ 111 In]ITDA3の担がんマウスにおける体内分布
 5週齢の雄BALB/c ヌードマウスの左肩にHT-29細胞又はMDA-MB-231細胞(5×10細胞/マウス)を皮下接種した。この担がんマウス(n=5)の尾静脈から、[111In]ITDA3(40kBq)を溶解した生理食塩水(100μL)を投与した。HT-29担がんマウスは投与1、4及び24時間後に、MDA-MB-231担がんマウスは投与後24時間後に、各々マウスを屠殺し、血液、脾臓、膵臓、胃、腸、腎臓、肝臓、心臓、肺、脳、HT-29又はMDA-MB-231移植腫瘍、及び筋肉を回収した。各臓器の重量を測定し、放射能量をガンマーカウンターで測定した。胃以外の各臓器の放射能集積は、各臓器の放射能量の投与放射能量に対する割合を臓器重量で割った%ID(injected dose)/gで表記した。胃は%ID(injected dose)で表記した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000037

* 単位は、胃のみ%IDで、その他は、%ID/g。
 表5の結果から、[111In]ITDA3は[111In]ITDA1よりも腫瘍集積量は低いが、正常組織への集積(特に膵臓、胃、小腸、肺)が少ないため、放射性金属としてアルファ線又はベータマイナス線を放出する3価の放射性金属元素を用いた場合は、副作用の低減が期待でき、内用放射線治療剤に適している可能性が示唆された。
実施例18:37℃条件での[ 111 In]ITDA1、[ 111 In]ITDA2、及び[ 111 In]ITDA3のin vitro CA-IX親和性・特異性
 細胞を37℃の恒温水槽にて溶解した以外は、実施例11に準じて行った。各細胞の放射能集積は、各細胞に結合した放射能量の添加放射能量に対する割合を細胞タンパク質量で割った% initial dose/mg proteinで表記した。HT-29細胞に対する結合量(% initial dose/mg protein)は表6に示す通りであった。また、MDA-MB-231細胞に対する結合量(% initial dose/mg protein)は表7に示す通りであった。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 表6で示すように、CA-IX陽性のHT-29細胞では酸素正常状態及び低酸素状態の何れの場合もアセタゾラミド存在下で阻害が見られたが、競合化合物非存在下では阻害は見られなかった。一方、表7で示すように、CA-IX陰性のMDA-MB-231細胞では酸素正常状態及び低酸素状態の何れの場合もアセタゾラミドの存否にかかわらず競合阻害が見られなかった。これらのことから、37℃で細胞を溶解した場合も、室温条件(実施例11)の結果と同様に、[111In]ITDA1、[111In]ITDA2及び[111In]ITDA3は、CA-IXに対して選択的に結合していることが示された。
実施例19:[ 111 In]ITDA2の担がんマウスにおける体内分布
 5週齢の雄BALB/cヌードマウスの左肩にHT-29細胞(5×10細胞/マウス)又はMDA-MB-231細胞(1×10細胞/マウス)を皮下接種し、腫瘍径が6-10mmに達した時点で用いた。HT-29腫瘍又はMDA-MB-231腫瘍担がんマウス(n=5)の尾静脈から、[111In]ITDA2(40kBq)を溶解した生理食塩水(100μL)を投与した。投与1、4、8、及び24時間後にHT-29腫瘍担がんマウスを、投与24時間後にMDA-MB-231腫瘍担がんマウスを屠殺し、血液、脾臓、膵臓、胃、腸、腎臓、肝臓、心臓、肺、脳、腫瘍、及び筋肉を回収した。各臓器の重量を測定し、放射能量をガンマーカウンターで測定した。胃以外の各臓器の放射能集積は、各臓器の放射能量の投与放射能量に対する割合を臓器重量で割った% injected dose/g organで表記した。胃は% injected doseで表記した。結果を表8及び表9に示す。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 表8、表9より、腫瘍/筋肉比は、ITDA2はITDA1と同程度の値を示したが、腫瘍集積および腫瘍/血液比は、ITDA1に比べ、ITDA2で低値を示した。これは実施例11、18の結果と相関しているものと考えられる。 
 上記実施形態は、以下の技術思想を包含するものである。
(1)下記式(1)で示される放射性標識化合物又はその塩。
Figure JPOXMLDOC01-appb-C000042

(上記式(1)中、nは1~4の整数であり、Lは放射性核種または放射性核種を含む1~4価の基である。)
(2)nは1であり、Lは、放射性ハロゲン原子、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基、又は、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基である、(1)に記載の放射性標識化合物又はその塩。
(3)前記放射性ハロゲン原子は、放射性ヨウ素原子である、(2)に記載の放射性標識化合物又はその塩。
(4)Lは放射性金属を担持した1~4価のリガンドである、(1)に記載の放射性標識化合物又はその塩。
(5)前記リガンドは、カルボキシル末端がアミド化されていてもよいDOTAである、(4)に記載の放射性標識化合物又はその塩。
(6)前記放射性金属が、111In、90Y、67Ga、68Ga、177Lu、99mTc、64Cu、153Gd、213Biまたは225Acである、(4)又は(5)に記載の放射性標識化合物又はその塩。
(7)下記式(1-1)または(1-2)で示される、(4)乃至(6)いずれか1項に記載の放射性標識化合物又はその塩。
Figure JPOXMLDOC01-appb-C000043

(式中、M3+は3価の放射性金属元素である。)
Figure JPOXMLDOC01-appb-C000044

(式中、M3+は3価の放射性金属元素である。)
(8)(1)乃至(8)の何れか一項に記載の放射性標識化合物又はその塩を有効成分として含有する放射性医薬。
(9)腫瘍のイメージング剤である、(8)に記載の放射性医薬。
(10)腫瘍の内用放射線治療剤である、(8)に記載の放射性医薬。
(11)下記式(2)で示される、化合物又はその塩。
Figure JPOXMLDOC01-appb-C000045

(式中、Rは、非放射性ハロゲン原子、ニトロ基、トリアルキルアンモニウム基、ジアルキルスルホニウム基、トリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基、トリフェニルシリル基、末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基、又は、末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基である。)
(12)下記式(2):
Figure JPOXMLDOC01-appb-C000046

(式中、Rは、非放射性ハロゲン原子、ニトロ基、トリアルキルアンモニウム基、ジアルキルスルホニウム基、トリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基、トリフェニルシリル基、末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基、又は、末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基である。)で示される化合物又はその塩から、放射性ハロゲン化反応により、下記式(3):
Figure JPOXMLDOC01-appb-C000047

(式中、Rは、放射性ハロゲン原子、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基、又は、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基である。)
で表される放射性ハロゲン標識化合物又はその塩を製造する方法。
(13)下記式(2-1)又は(2-2)で示される化合物又はその塩。
Figure JPOXMLDOC01-appb-C000048

Figure JPOXMLDOC01-appb-C000049

(14)(13)記載の化合物又はその塩と、放射性金属との錯体。
(15)(13)記載の化合物又はその塩と放射性金属とを混合して、(14)記載の錯体を得ることを含む、放射性金属錯体の製造方法。
(16)(13)記載の化合物又はその塩を備える、(14)記載の錯体を調製するためのキット。
(17)医薬の製造における、(1)乃至(7)、(11)、及び(13)の何れか1項に記載の化合物又はその塩の使用。
 この出願は、平成30年8月30日に出願された日本出願特願2018-162085、平成30年11月5日に出願された日本出願特願2018-208322、及び平成31年3月1日に出願された日本出願特願2019-37734を基礎とする優先権を主張し、その開示の総てをここに取り込む。

Claims (18)

  1.  下記式(1)で示される放射性標識化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(1)中、nは1~4の整数であり、Lは放射性核種または放射性核種を含む1~4価の基である。)
  2.  nは1であり、Lは、放射性ハロゲン原子、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基、又は、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基である、請求項1に記載の放射性標識化合物又はその塩。
  3.  前記放射性ハロゲン原子は、放射性ヨウ素原子である、請求項2に記載の放射性標識化合物又はその塩。
  4.  Lは放射性金属を担持した1~4価のリガンドである、請求項1に記載の放射性標識化合物又はその塩。
  5.  前記リガンドは、カルボキシル末端がアミド化されていてもよいDOTAである、請求項4に記載の放射性標識化合物又はその塩。
  6.  Lは放射性金属を担持した式(1-3)または式(1-4)で表されるリガンドであり、nが1である、請求項4に記載の放射性標識化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000002

    (式(1-3)中、Rは、H又はCOHであり、五芒のアスタリスクは結合部位である)
    Figure JPOXMLDOC01-appb-C000003

    (式(1-4)中、五芒のアスタリスクは結合部位である)
  7.  前記放射性金属が、111In、90Y、67Ga、68Ga、177Lu、99mTc、64Cu、153Gd、213Biまたは225Acである、請求項4乃至6のいずれか1項に記載の放射性標識化合物又はその塩。
  8.  下記式(1-1)または(1-2)で示される、請求項4乃至7いずれか1項に記載の放射性標識化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000004

    (式中、M3+は3価の放射性金属元素である。)
    Figure JPOXMLDOC01-appb-C000005

    (式中、M3+は3価の放射性金属元素である。)
  9.  請求項1乃至8の何れか一項に記載の放射性標識化合物又はその塩を有効成分として含有する放射性医薬。
  10.  腫瘍のイメージング剤である、請求項9に記載の放射性医薬。
  11.  腫瘍の内用放射線治療剤である、請求項9に記載の放射性医薬。
  12.  下記式(2)で示される、化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000006

    (式中、Rは、非放射性ハロゲン原子、ニトロ基、トリアルキルアンモニウム基、ジアルキルスルホニウム基、トリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基、トリフェニルシリル基、末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基、又は、末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基である。)
  13.  下記式(2):
    Figure JPOXMLDOC01-appb-C000007

    (式中、Rは、非放射性ハロゲン原子、ニトロ基、トリアルキルアンモニウム基、ジアルキルスルホニウム基、トリアルキルスタニル基、トリフェニルスタニル基、トリアルキルシリル基、トリフェニルシリル基、末端がスルホニルオキシ基で置換されている炭素数1~10のアルキル基、又は、末端がスルホニルオキシ基で置換されている炭素数1~10のポリエチレングリコール基である。)で示される化合物又はその塩から、放射性ハロゲン化反応により、下記式(3):
    Figure JPOXMLDOC01-appb-C000008

    (式中、Rは、放射性ハロゲン原子、末端が放射性ハロゲン原子で置換されている炭素数1~10のアルキル基、又は、末端が放射性ハロゲン原子で置換されている炭素数1~10のポリエチレングリコール基である。)
    で表される放射性ハロゲン標識化合物又はその塩を製造する方法。
  14.  下記式(2-1)、(2-2)、(3-1)又は(3-2)で示される化合物又はその塩。
    Figure JPOXMLDOC01-appb-C000009

    Figure JPOXMLDOC01-appb-C000010

    Figure JPOXMLDOC01-appb-C000011

    (式中、Rは、H又はCOHである。)
    Figure JPOXMLDOC01-appb-C000012
  15.  請求項14記載の化合物又はその塩と、放射性金属との錯体。
  16.  請求項14記載の化合物又はその塩と放射性金属とを混合して、請求項15記載の錯体を得ることを含む、放射性金属錯体の製造方法。
  17.  請求項14記載の化合物又はその塩を備える、請求項15記載の錯体を調製するためのキット。
  18.  医薬の製造における、請求項1乃至7、12、及び14の何れか1項に記載の化合物又はその塩の使用。
PCT/JP2019/034156 2018-08-30 2019-08-30 放射性イミダゾチアジアゾール誘導体化合物 WO2020045638A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980056856.1A CN112638919A (zh) 2018-08-30 2019-08-30 放射性咪唑并噻二唑衍生物化合物
JP2020539633A JPWO2020045638A1 (ja) 2018-08-30 2019-08-30 放射性イミダゾチアジアゾール誘導体化合物
EP19856185.4A EP3845541A4 (en) 2018-08-30 2019-08-30 Radioactive imidazothiadiazole derivative compound
KR1020217003211A KR20210052435A (ko) 2018-08-30 2019-08-30 방사성 이미다조티아디아졸 유도체 화합물
US17/270,946 US20210322582A1 (en) 2018-08-30 2019-08-30 Radioactive imidazothiadiazole derivative compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-162085 2018-08-30
JP2018162085 2018-08-30
JP2018-208322 2018-11-05
JP2018208322 2018-11-05
JP2019037734 2019-03-01
JP2019-037734 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020045638A1 true WO2020045638A1 (ja) 2020-03-05

Family

ID=69642801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034156 WO2020045638A1 (ja) 2018-08-30 2019-08-30 放射性イミダゾチアジアゾール誘導体化合物

Country Status (6)

Country Link
US (1) US20210322582A1 (ja)
EP (1) EP3845541A4 (ja)
JP (1) JPWO2020045638A1 (ja)
KR (1) KR20210052435A (ja)
CN (1) CN112638919A (ja)
WO (1) WO2020045638A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1464259A (en) 1975-10-03 1977-02-09 Pfizer Ltd Imidazo-thiazole and -thiadiazole sulphonamides and their use as therapeutic agents
WO2003051890A1 (en) 2001-12-14 2003-06-26 Aegera Therapeutics Inc. Imidazo [2,1-b]-1,3,4-thiadiazole suflonamides
WO2007087716A1 (en) * 2006-02-01 2007-08-09 Aegera Therapeutics Inc. Assay for identifying inhibitors of neuronal apoptotic pathways
WO2010065906A2 (en) * 2008-12-05 2010-06-10 Molecular Insight Pharmaceuticals, Inc. Ca-ix specific radiopharmaceuticals for the treatment and imaging of cancer
WO2017161170A1 (en) * 2016-03-16 2017-09-21 Purdue Research Foundation Carbonic anhydrase ix targeting agents and methods
JP2017169825A (ja) 2016-03-24 2017-09-28 京楽産業.株式会社 遊技機
WO2017197251A1 (en) * 2016-05-13 2017-11-16 The Johns Hopkins University Nuclear imaging and radiotherapeutics agents targeting carbonic anhydrase ix and uses thereof
JP2018162085A (ja) 2017-03-27 2018-10-18 三甲株式会社 折畳み容器
JP2019037734A (ja) 2017-08-28 2019-03-14 久男 加藤 ジャストコック(スイング矯正具)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1464259A (en) 1922-09-12 1923-08-07 Fredrick W Coffing Free-chain hoist
CA2711678A1 (en) * 2008-01-09 2009-07-16 Molecular Insight Pharmaceuticals, Inc. Inhibitors of carbonic anhydrase ix
BRPI0922839A2 (pt) * 2008-12-05 2019-09-03 Molecular Insight Pharm Inc radiofarmacêuticos específicos de ca-ix para tratamento e imageamento de câncer.
SG11201406757SA (en) * 2012-04-26 2014-11-27 Bristol Myers Squibb Co Imidazothiadiazole and imidazopyrazine derivatives as protease activated receptor 4 (par4) inhibitors for treating platelet aggregation
AU2016275179B2 (en) * 2015-06-11 2021-10-07 Queen's University At Kingston Automated mobile geotechnical mapping

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1464259A (en) 1975-10-03 1977-02-09 Pfizer Ltd Imidazo-thiazole and -thiadiazole sulphonamides and their use as therapeutic agents
WO2003051890A1 (en) 2001-12-14 2003-06-26 Aegera Therapeutics Inc. Imidazo [2,1-b]-1,3,4-thiadiazole suflonamides
WO2007087716A1 (en) * 2006-02-01 2007-08-09 Aegera Therapeutics Inc. Assay for identifying inhibitors of neuronal apoptotic pathways
WO2010065906A2 (en) * 2008-12-05 2010-06-10 Molecular Insight Pharmaceuticals, Inc. Ca-ix specific radiopharmaceuticals for the treatment and imaging of cancer
WO2017161170A1 (en) * 2016-03-16 2017-09-21 Purdue Research Foundation Carbonic anhydrase ix targeting agents and methods
JP2017169825A (ja) 2016-03-24 2017-09-28 京楽産業.株式会社 遊技機
WO2017197251A1 (en) * 2016-05-13 2017-11-16 The Johns Hopkins University Nuclear imaging and radiotherapeutics agents targeting carbonic anhydrase ix and uses thereof
JP2018162085A (ja) 2017-03-27 2018-10-18 三甲株式会社 折畳み容器
JP2019037734A (ja) 2017-08-28 2019-03-14 久男 加藤 ジャストコック(スイング矯正具)

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BARNISH, I. T. ET AL.: "Cerebrovasodilatation through selective inhibition of the enzyme carbonic anhydrase''. 2. Imidazo[2, 1-b]thiadiazole and imidazo[2, 1-b]thiazolesulfonamides", JOURNAL OF MEDICINAL CHEMISTRY, vol. 23, no. 2, 1980, pages 117 - 121, XP002232874, ISSN: 0022-2623, DOI: 10.1021/jm00176a003 *
EISENWIENER KP ET AL., BIOORG MED CHEM LETT., vol. 10, no. 18, 2000, pages 2133 - 5
IAN T. BARNISH ET AL., J. MED. CHEM., vol. 23, 1980, pages 117 - 121
ILIES MA ET AL., J. MED. CHEM., vol. 46, no. 11, 22 May 2003 (2003-05-22), pages 2187 - 96
LAU J ET AL., MOL PHARM., vol. 13, 2016, pages 1137 - 46
LV PC ET AL., BIOCONJUGATE CHEM., vol. 27, 2016, pages 1762 - 9
MUKAI T ET AL., BIOORG MED CHEM., vol. 17, no. 13, 2009, pages 4285 - 9
SCOZZAFAVA, A. ET AL.: "Complexes with biologically active ligands. Part 10. Inhibition of carbonic anhydrase isoenzymes I and II with metal complexes of imidazo[2, l-b]-l, 3, 4-thiadiazole-2- sulfonamide", METAL-BASED DRUGS, vol. 4, no. 1, 1997, pages 19 - 26, XP001146224, ISSN: 0793-0291 *
See also references of EP3845541A4
V. GARAJ ET AL., BIOORG. MED. CHEM. LETT., vol. 14, 2004, pages 5427 - 5433

Also Published As

Publication number Publication date
KR20210052435A (ko) 2021-05-10
EP3845541A1 (en) 2021-07-07
CN112638919A (zh) 2021-04-09
EP3845541A4 (en) 2021-12-29
JPWO2020045638A1 (ja) 2021-08-12
US20210322582A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
JP7304588B2 (ja) Psmaを標的としたイメージング及び放射線治療のための金属/放射性金属標識psma阻害剤
JP7500551B2 (ja) 前立腺特異的膜抗原(psma)の標識化阻害剤、画像化剤としてのそれらの使用、及びpsma発現がんの処置のための医薬剤
JP2008546804A (ja) 造影剤として用いるためのリガンドの放射性標識ペグ化
ES2953196T3 (es) Radiotrazador de modo dual de unión a PSMA y terapéutico
EP3375787B1 (en) Peptide thiourea derivative, radioisotope labeled compound containing same, and pharmaceutical composition containing same as active ingredient for treating or diagnosing prostate cancer
WO2019065774A1 (ja) 放射性薬剤
US20210284613A1 (en) Radiolabelled compound
US20240066155A1 (en) Dual mode radiotracer and -therapeutics
Singh et al. A homodimeric bivalent radioligand derived from 1-(2-methoxyphenyl) piperazine with high affinity for in vivo 5-HT1A receptor imaging
Shi et al. [68Ga] Ga-HBED-CC-DiAsp: A new renal function imaging agent
JP2022529335A (ja) コンジュゲート及びそのイメージング剤としての使用
JP5481673B2 (ja) 放射性標識薬剤
WO2020045638A1 (ja) 放射性イミダゾチアジアゾール誘導体化合物
CN115745903A (zh) 一种肽脲素衍生物、含其的药物组合物及其应用
CN111741751B (zh) 伊文思蓝衍生物的化学缀合物及其作为靶向前列腺癌的放射疗法和显像剂的用途
Class et al. Patent application title: METAL/RADIOMETAL-LABELED PSMA INHIBITORS FOR PSMA-TARGETED IMAGING AND RADIOTHERAPY
JP2022549258A (ja) セラノスティックスとして使用するための放射性標識grprアンタゴニスト
JP2024507343A (ja) デュアルモード放射性トレーサーおよびその療法
CN111741751A (zh) 伊文思蓝衍生物的化学缀合物及其作为靶向前列腺癌的放射疗法和显像剂的用途
Ali et al. Research Article Development of 99m Tc-N4-NIM for Molecular Imaging of Tumor Hypoxia
US20100104511A1 (en) Methods and compositions using chelator-antibody conjugates
Ali et al. Development of 𝟗 𝟗 𝐦 𝐓 𝐜-N4-NIM for Molecular Imaging of Tumor Hypoxia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019856185

Country of ref document: EP

Effective date: 20210330