WO2012160775A1 - 固体撮像装置及び撮像装置 - Google Patents

固体撮像装置及び撮像装置 Download PDF

Info

Publication number
WO2012160775A1
WO2012160775A1 PCT/JP2012/003164 JP2012003164W WO2012160775A1 WO 2012160775 A1 WO2012160775 A1 WO 2012160775A1 JP 2012003164 W JP2012003164 W JP 2012003164W WO 2012160775 A1 WO2012160775 A1 WO 2012160775A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
imaging device
solid
state imaging
supply wiring
Prior art date
Application number
PCT/JP2012/003164
Other languages
English (en)
French (fr)
Inventor
裕之 網川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013516191A priority Critical patent/JP6057218B2/ja
Publication of WO2012160775A1 publication Critical patent/WO2012160775A1/ja
Priority to US14/084,381 priority patent/US9172893B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/709Circuitry for control of the power supply
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/65Noise processing, e.g. detecting, correcting, reducing or removing noise applied to reset noise, e.g. KTC noise related to CMOS structures by techniques other than CDS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/74Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/779Circuitry for scanning or addressing the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/616Noise processing, e.g. detecting, correcting, reducing or removing noise involving a correlated sampling function, e.g. correlated double sampling [CDS] or triple sampling

Definitions

  • the technology described in this specification relates to a solid-state imaging device and an imaging device.
  • FIG. 16 is a diagram showing a configuration of a conventional solid-state imaging device.
  • a conventional solid-state imaging device 10 includes a pixel array unit 11, a row selection circuit (Vdec) 12, a column readout circuit (AFE) 13, a shutter mode corresponding unit 14, and a shutter mode switching unit 15. Yes.
  • Control lines (LRST, LTRG, LSEL) for driving the pixel unit from the row selection circuit 12 are connected to the pixel array unit 11.
  • the pixel array unit 11 is composed of pixels arranged in a matrix. Each pixel is provided with a photodiode (PD) that performs photoelectric conversion, a floating diffusion (FD) that accumulates charges, a transfer transistor, a reset transistor, an amplification transistor, and the like.
  • PD photodiode
  • FD floating diffusion
  • the column readout circuit 13 receives data from the pixels controlled to be read out by the row selection circuit 12 one by one via the signal output line LSGN, and transfers the data to the subsequent signal processing circuit.
  • the column readout circuit 13 includes a correlated double sampling circuit (CDS: Correlated Double Sampling) and an analog-digital converter (ADC).
  • CDS Correlated Double Sampling
  • ADC analog-digital converter
  • the row selection circuit 12 receives the shutter mode switching signal SHRMODE output from the shutter mode switching unit 15, and a resistor RVDD is provided between the row selection circuit 12, the power supply VDD, and the ground VSS. Yes.
  • the reset, exposure, and readout operations for pixels arranged in the same row are performed simultaneously. For this reason, the exposure timing differs between rows, and image distortion occurs.
  • the global shutter method simultaneously resets and exposes all pixels. For this reason, image distortion does not occur between rows.
  • the shutter is closed so that light does not strike the PD of the pixel, thereby exposing all the pixels simultaneously.
  • the global shutter system when the global shutter system is adopted, it is necessary to simultaneously switch the potentials of all reset signals RST and transfer signals TRG (transfer transistor control signals) (all reset operation is performed). Therefore, the global shutter system has a disadvantage that excessive instantaneous current flows and noise countermeasures for the power supply are necessary. In addition, when the power supply capability is not sufficient, the instantaneous voltage change caused by the instantaneous current may cause latch-up, which may destroy the solid-state imaging device.
  • an impedance element (such as RVDD shown in FIG. 16) is inserted between the pixel drive circuit and its power supply terminal to suppress an excessive instantaneous current during the all reset operation and to take measures against power supply noise. It is carried out.
  • an impedance element is inserted between the pixel drive circuit in the row selection circuit 12 and its power supply terminal, so that the time between the control line driving the pixel and the power supply during the read operation can be reduced.
  • the constant increases. Therefore, when the potential of the control line fluctuates, there is a concern that the time for converging the fluctuation of the potential is extended. If the fluctuation of the potential of the control line goes around to the FD of the selected row, the fluctuation of the potential is output in combination with the signal component, so that noise is generated and the image quality is deteriorated.
  • An object of the present invention is to provide a solid-state imaging device capable of suppressing an excessive instantaneous current during an all-reset operation without affecting a readout operation.
  • a solid-state imaging device includes a photoelectric conversion element that converts incident light into a signal charge, a floating diffusion, and the signal charge generated by the photoelectric conversion element.
  • a transfer transistor that transfers to the floating diffusion, an amplification transistor that converts the signal charge transferred to the floating diffusion into a pixel signal that is a voltage signal, and a reset transistor that supplies a reset potential to the floating diffusion, respectively
  • a pixel array unit having a plurality of pixels arranged in a matrix, and a plurality of control lines provided for each pixel row in the pixel array unit to control the operation of the transfer transistor and the reset transistor,
  • the driver connected to the wiring
  • the driver circuit performs an all reset operation in which the signal charges of all the plurality of pixels are reset, and a read operation of the pixel signal for each row of pixels in the pixel array unit.
  • an impedance control means for making the impedance value of the power supply wiring during the read operation smaller than the impedance value of the power supply wiring during the
  • the impedance value of the power supply wiring becomes relatively large during the all reset operation, it is possible to suppress an excessive instantaneous current from flowing through the power supply wiring, and it is difficult to be destroyed.
  • the impedance value of the power supply wiring is relatively small during the read operation, fluctuations in the potential of the control line can be mitigated, and noise generation can be reduced. Further, the circuit area does not increase significantly.
  • the impedance control means may include an impedance switching circuit connected to the power supply wiring and having two or more switchable current paths.
  • the power supply wiring includes a first power supply wiring and a second power supply wiring, and the driver circuit is provided for each column of pixels and is connected to the first and second power supply wirings.
  • An imaging apparatus includes a solid-state imaging apparatus that outputs a pixel signal corresponding to incident light, an imaging optical system that guides the incident light to the solid-state imaging apparatus, and the pixels that are output from the solid-state imaging apparatus.
  • the solid-state imaging device includes a photoelectric conversion element that converts the incident light into a signal charge, a floating diffusion, a transfer transistor that transfers the signal charge generated by the photoelectric conversion element to the floating diffusion, and the floating
  • a plurality of pixels each having an amplification transistor that converts the signal charge transferred to the diffusion into the pixel signal that is a voltage signal and outputs the pixel signal and a reset transistor that supplies a reset potential to the floating diffusion are arranged in a matrix.
  • a driver circuit that controls the operation of the transfer transistor and the reset transistor via a plurality of control lines provided for each pixel row in the pixel array unit and is connected to a power supply wiring. is doing.
  • the driver circuit performs an all-reset operation in which the signal charges of all the plurality of pixels are reset, and a reading operation of the pixel signal for each row of pixels in the pixel array unit, Impedance control means is further provided for making the impedance value of the power supply wiring during the read operation smaller than the impedance value of the power supply wiring during the all reset operation.
  • the solid-state imaging device is less likely to be destroyed by the instantaneous current as described above, and noise included in the pixel signal output from the solid-state imaging device is reduced. Can be obtained.
  • the solid-state imaging device and the imaging device according to an example of the present invention it is possible to suppress an excessive instantaneous current during the all-reset operation without significantly increasing the circuit scale and without affecting the readout operation.
  • FIG. 1 is a diagram illustrating a configuration of the solid-state imaging device according to the first embodiment.
  • FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of the pixel cell in the solid-state imaging device according to the first embodiment.
  • FIG. 3 is a circuit diagram illustrating another example of the circuit configuration of the pixel cell in the solid-state imaging device according to the first embodiment.
  • FIG. 4 is a timing chart showing a rolling shutter system operation in the solid-state imaging device employing the pixel cell shown in FIG.
  • FIG. 5 is a timing chart showing the operation of the global shutter system using a liquid crystal shutter or a mechanical shutter in the solid-state imaging device according to the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration of the solid-state imaging device according to the first embodiment.
  • FIG. 2 is a circuit diagram illustrating an example of a circuit configuration of the pixel cell in the solid-state imaging device according to the first embodiment.
  • FIG. 3 is a circuit diagram illustrating another example of the
  • FIG. 6 is a diagram illustrating an example of a transfer pulse MPX circuit in the MPX circuit that controls the driver circuit in the solid-state imaging device according to the first embodiment.
  • FIG. 7 is a diagram illustrating an example of a circuit for driving the transfer transistor of the pixel unit in the solid-state imaging device according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of a circuit for supplying the reset power ⁇ VDDCELL of the pixel unit in the solid-state imaging device according to the first embodiment.
  • FIG. 9 is a diagram illustrating an example of a circuit for supplying the reset pulse ⁇ RS of the pixel unit in the solid-state imaging device according to the first embodiment.
  • FIG. 10 is a diagram illustrating another example of a circuit for driving the transfer transistor of the pixel unit in the solid-state imaging device according to the first embodiment.
  • FIG. 11 is a diagram illustrating an example of an MPX circuit for a transfer pulse in the MPX circuit that controls the driver circuit in the solid-state imaging device according to the second embodiment.
  • FIG. 12 is a diagram illustrating an example of a pixel array unit and a driver circuit in the solid-state imaging device according to the second embodiment.
  • FIG. 13 is a diagram illustrating an example of a pixel array unit and a driver circuit in the solid-state imaging device according to the second embodiment.
  • FIGS. 14A and 14B are diagrams respectively showing examples of the impedance switching circuit in the solid-state imaging device according to the second embodiment.
  • FIG. 15 is a block diagram illustrating a configuration of an imaging apparatus according to the third embodiment.
  • FIG. 16 is a diagram illustrating a configuration of a conventional solid-state imaging device.
  • FIG. 1 is a diagram illustrating a configuration of a solid-state imaging apparatus according to the first embodiment.
  • the solid-state imaging device 100 includes a pixel array unit 102 in which a large number of pixel cells 101 each including a photodiode (photoelectric conversion element) that performs photoelectric conversion and a transistor are arranged in a matrix.
  • a driver circuit 103 that drives the pixel array unit 102, a multiplexer (MPX) circuit 104, a vertical scanning circuit 105, and vertical signal lines VLa that transmit pixel signals read from the pixel cells 101 to the column circuits.
  • MPX multiplexer
  • VLb (hereinafter referred to as a vertical signal line VL), a constant current source 106 connected to the vertical signal line VL, and a column readout circuit 107 for receiving a pixel signal transmitted by the vertical signal line VL via the constant current source 106
  • a horizontal scanning circuit 108 that controls transmission of pixel signals in the column readout circuit 107 in the horizontal direction, a vertical scanning circuit 105, MP Circuit 104, driver circuit 103, and a timing generator (TG) 109 supplies a control pulse to the column readout circuit 107 and the horizontal scanning circuit 108,.
  • the column readout circuit 107 includes a noise canceller (CDS) circuit that receives a pixel signal of one column and has a difference means, and an analog-digital conversion circuit (ADC) that receives the pixel signal from the CDS circuit. Then, the analog-digital converted data of the columns selected by the horizontal scanning circuit 108 are sequentially output out of the solid-state imaging device.
  • the driver circuit 103 is connected to a power supply terminal PAD 110.
  • the CDS circuit included in the column readout circuit 107 is connected to each column of unit pixels (pixel cells 101) arranged in a matrix in the pixel array unit 102, for example.
  • the CDS circuit performs a CDS (correlated double sampling) process on the pixel signal output from the pixel cell 101 in the row selected by the vertical scanning circuit 105 through the vertical signal line VL. Thereby, reset noise generated in the pixel cell 101 and fixed pattern noise peculiar to the pixel due to transistor threshold variation are removed, and the pixel signal after signal processing is temporarily held in the CDS circuit. .
  • the analog-digital conversion circuit has an AGC (Auto-Gain-Control) function and an analog-digital conversion function, and the ADC converts a pixel signal that is an analog signal held in the CDS circuit into a digital signal. .
  • AGC Auto-Gain-Control
  • FIG. 2 is a circuit diagram showing an example of the circuit configuration of the pixel cell 101.
  • the pixel cell 101 includes elements that perform photoelectric conversion, for example, photodiodes 120 and 121, transfer transistors 122 and 123, a reset transistor 124, and an amplification transistor 125.
  • the transfer transistors 122 and 123, the reset transistor 124, and the amplification transistor 125 for example, N-channel MOS transistors can be used.
  • the transfer transistor 122 is connected between the cathode electrode of the photodiode 120 and the floating diffusion (FD) 126.
  • the transfer transistor 123 is connected between the cathode electrode of the photodiode 121 and the FD 126. That is, in this embodiment, for example, a circuit configuration in which two transfer transistors 122 and 123 are connected to the same FD 126 is employed.
  • the transfer control line 111 is connected to the gate electrode of the transfer transistor 122, and the transfer control line 112 is connected to the gate electrode of the transfer transistor 123.
  • the transfer pulse ⁇ TG (2n ⁇ 1) is applied to the gate electrode of the transfer transistor 122 from the transfer control line 111, the transfer transistor 122 is turned on, and the signal charge photoelectrically converted by the photodiode 120 and accumulated in the photodiode 120 is turned on. (Specifically, electrons) are transferred to the FD 126.
  • the reset control line 113 is connected to the gate electrode
  • the reset power supply line 114 for supplying the pixel reset power supply ⁇ VDDCELL is connected to the drain electrode
  • the FD 126 is connected to the source electrode.
  • the gate electrode is connected to the FD 126
  • the drain electrode is connected to the pixel power supply AVDP
  • the source electrode is connected to the vertical signal line VL.
  • the amplification transistor 125 outputs the potential of the FD 126 after being reset by the reset transistor 124 to the vertical signal line VL as a reset level, and further responds to the potential of the FD 126 after the signal charges are transferred by the transfer transistors 122 and 123. Is output as a signal level to the vertical signal line VL.
  • the transfer pulse ⁇ TG, the reset pulse ⁇ RS, and the reset power supply ⁇ VDDCELL are supplied from the driver circuit 103.
  • FIG. 3 is a circuit diagram showing another example of the circuit configuration of the pixel cell 101.
  • the same components as those in the circuit shown in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • differences from the circuit shown in FIG. 2 will be mainly described.
  • the drain voltage of the pixel power supply AVDDP is applied to the drain electrode of the amplification transistor 125, and the drain electrode of the selection transistor 127 is connected to the source electrode of the amplification transistor 125.
  • the gate electrode of the selection transistor 127 is connected to the selection control line 115, and a selection pulse ⁇ SEL (n) is applied from the selection control line 115.
  • the vertical signal line VL is connected to the source electrode of the selection transistor 127, and the pixel signal amplified by the amplification transistor 125 is output to the vertical signal line VL through the selection transistor 127.
  • the pixel cell 101 has a configuration including two photodiodes and two transfer transistors.
  • the present invention is not limited to this, and the pixel cell 101 includes one photodiode and one transfer transistor. It is also possible to use a structure including four transistors.
  • the reset power supply ⁇ VDDCELL and the pixel power supply are separated, but a configuration in which both are connected to each other can also be used.
  • FIG. 4 is a timing chart showing the operation of the rolling shutter system in the solid-state imaging device employing the so-called 3Tr type pixel circuit shown in FIG.
  • each pixel when imaging by a solid-state imaging device employing the 3Tr type pixel cell 101 is “PD reset / FD non-selection potential writing” ⁇ “exposure” ⁇ “FD reset and signal readout” ⁇ “from PD
  • the operation is controlled in the order of “charge transfer and signal read to FD” ⁇ “FD non-selection potential write”.
  • the PD 120 and the FD 126 in the 2n-1th row are electrically separated by the transfer transistor 122.
  • the transfer transistor 122 When resetting the PD 120, not only the reset transistor 124 but also the transfer transistor 122 is turned on. It needs to be in a state.
  • the reset power supply ⁇ VDDCELL of the pixel becomes low level (L)
  • the reset transistor 124 is turned on, and the L level of the reset power supply ⁇ VDDCELL is written to the FD 126, thereby Turn off. This operation needs to be performed in the same manner even after pixel readout.
  • the all reset pulse ⁇ ALLRST for performing the all reset operation is fixed at the low level (L).
  • FIG. 5 is a timing chart showing the operation of the global shutter system in which a solid-state imaging device employing the 3Tr pixel cell 101 and a liquid crystal shutter or a mechanical shutter are combined.
  • the reset pulse ⁇ RS and the transfer pulse ⁇ TG of all the pixels are switched simultaneously.
  • the pulse may be controlled such that the reset pulse ⁇ RS overlaps the transfer pulse ⁇ TG.
  • the reset power supply ⁇ VDDCELL of the pixels in all rows becomes low level (L) and the reset transistors 124 in all rows are turned on, so that the reset power supply is supplied to the floating diffusion FD of all pixel cells.
  • the amplification transistor 125 is turned off.
  • all reset pulses ⁇ ALLRST are at a high level (H) from TG 109 until PD reset is performed simultaneously for all pixels and the floating diffusion FD 126 of all pixels is written to a non-selection potential. After the non-selection potential is written to the FD 126, the all reset pulse ⁇ ALLRST becomes a low level.
  • FIG. 6 is a diagram illustrating an example of an MPX circuit for transfer pulse in the MPX circuit 104 that controls the driver circuit 103 in the solid-state imaging device according to the present embodiment.
  • the MPX circuit 104 for transfer pulses has an AND circuit and an OR circuit respectively corresponding to the row of pixels, and a row selection pulse ⁇ VSR_OUT (2N) output from the vertical scanning circuit 105, ⁇ VSR_OUT (2N ⁇ 1)... is input, and all reset pulse ⁇ ALLRST and transfer pulse ⁇ TGIN output from TG 109 are input.
  • a high level (H) is output to the row selection pulse ⁇ VSR_OUT (2N)
  • the transfer pulse ⁇ TGIN becomes a high level (H)
  • the transfer pulse output line TGIN (2N ) Is output from the high level (H).
  • a low level (L) is output from the transfer pulse output line.
  • FIG. 7 is a diagram illustrating an example of a circuit for driving the transfer transistor of the pixel portion of the present embodiment.
  • a driver circuit 103 receives a row selection pulse ⁇ VST_OUT from the vertical scanning circuit 105, and determines a selected row and a non-selected row (see FIG. 6). From the TG 109, the all reset pulse ⁇ ALLRST is input to the MPX circuit 104 during the all reset operation, and the transfer pulse ⁇ TGIN for controlling the transfer transistor is input to the MPX circuit 104.
  • the buffer circuit DRV of the driver circuit 103 is arranged for each row, and the low-level (L) power supply wiring of the buffer circuit DRV is connected to the impedance switching circuit 130.
  • the impedance switching circuit 130 is connected to the external capacitor Cout via the PAD 110 for power supply terminal.
  • Corresponding transfer pulse output lines TGIN (2N), TGIN (2N-1)... Are connected to the input terminal of the buffer circuit DRV. Transfer pulses ⁇ TG (2N), ⁇ TG (2N ⁇ 1)... Are output from the output terminal of the buffer circuit DRV.
  • the impedance switching circuit 130 includes a resistance element (impedance element) R1 and a transistor M0 connected in parallel to each other.
  • An impedance switching control pulse ⁇ RSW is input to the gate electrode of the transistor M0.
  • the impedance switching control pulse ⁇ RSW is at a low level (L) during the all reset operation, and the current path from the control lines (transfer control lines 111 and 112) of the pixel cell 101 to the power supply terminal (PAD110) is limited to only the resistance element R1.
  • L low level
  • the impedance switching control pulse ⁇ RSW is at a high level (H), from the control lines (transfer control lines 111 and 112) of the pixel portion to the power supply terminal (PAD110).
  • H high level
  • the resistance element R1 and the transistor M0 as the current path, the resistance value is lowered as compared with the all reset operation, and the above-described fluctuations in the potential of the control lines (transfer control lines 111 and 112) during the read operation are suppressed.
  • the generation of noise can be suppressed.
  • the voltage change can be alleviated, the risk of latch-up can be greatly reduced.
  • the impedance is temporarily switched when the transfer pulse TGIN is input to the buffer circuits DRV in the plurality of rows.
  • the control pulse ⁇ RSW may be changed from a low level to a high level to suppress an excessive instantaneous current from flowing.
  • the common impedance value from the control line (transfer control lines 111 and 112) of the pixel cell 101 to the power supply terminal (or power supply wiring) in the read operation is smaller than that in the all reset operation.
  • the “common impedance value” means the wiring from the control line of the pixel cell 101 in the row to be read to the power supply terminal (PAD110) and the control line of the pixel cell 101 in any arbitrary non-selected row to the power supply terminal.
  • the impedance value of the common part of wiring (and circuit) shall be said.
  • the solid-state imaging device of the present embodiment by providing the impedance switching circuit 130, from the control line (here, the transfer control lines 111 and 112) of the pixel cell 101 during the all reset operation and the read operation.
  • the seen impedance can be adjusted to the optimum impedance value for each. For example, in order to suppress an excessive instantaneous current during the all reset operation, it is desired to set the resistance value to 100 ⁇ or more, but during the read operation, it is desired to set the resistance value to less than 10 ⁇ in order to suppress the potential fluctuation of the transfer control lines 111 and 112.
  • the impedance switching circuit 130 only needs to be disposed in the vicinity of the driver circuit 103, and does not need to be disposed for each row. That is, since only one impedance switching circuit 130 is required for the driver circuit 103, the chip area is not increased.
  • the resistor element R1 and the transistor M0 are connected in parallel between the branch point of the power supply wiring TGL to the buffer circuit DRV and the PAD 110.
  • a diode element may be disposed.
  • a diode element connected between the buffer circuit DRV of the power supply wiring TGL and the ground power supply may be arranged.
  • the diode is turned on when the potential rises due to the generation of a potential gradient due to the resistance component and the instantaneous current during the all reset operation, so that a path for flowing the instantaneous current to the ground power supply can be formed only when the instantaneous current flows. .
  • the paths through which the instantaneous current flows can be dispersed, and an excessive instantaneous current can be prevented from flowing through a specific wiring.
  • driver circuit that supplies the reset pulse ⁇ RS and the driver circuit that supplies the pixel reset power supply ⁇ VDDCELL it is effective to provide an impedance switching circuit as in the above-described example.
  • control lines for supplying transfer pulse ⁇ TG, reset pulse ⁇ RS, and reset power supply ⁇ VDDCELL intersect with vertical signal line VL. Therefore, when charge is transferred from the PD 121 to the FD 126, parasitic capacitance is generated between these wirings. Due to the parasitic capacitance generated between the transfer control line 111 and the vertical signal line VL, the potential drop of the vertical signal line is propagated to the transfer control line 111, and the low level potential of the transfer pulse ⁇ TG is lowered. Since the potential fluctuation of the transfer control line 111 occurs in all rows, it propagates through the driver circuit 103 to the power supply wiring.
  • the transfer control line 111 is connected to the gate electrode of the transfer transistor 123, an overlap capacitance between the gate and the source exists between the FD 126 and the transfer control line 111.
  • the low-level potential fluctuation of the transfer pulse ⁇ TG is propagated to another FD 126 by the gate overlap capacitance, and the potential of the FD 126 fluctuates.
  • This fluctuation of the potential of the FD 126 is transmitted to the vertical signal line VL through the amplification transistor 125 and becomes noise.
  • an impedance switching circuit is also provided in the driver circuit that supplies the reset pulse ⁇ RS and the driver circuit that supplies the pixel reset power supply ⁇ VDDCELL. This is effective in reducing noise.
  • FIG. 8 is a diagram illustrating an example of a circuit for supplying the reset power ⁇ VDDCELL of the pixel unit of the present embodiment.
  • a driver circuit 103B shown in the figure is a part of the driver circuit 103 shown in FIG.
  • the driver circuit 103B is provided corresponding to the unit pixel cell, and a plurality of buffers to which signals VDDCELL_IN (N), VDDCELL_IN (N ⁇ 1)... Output from the MPX circuit 104 are respectively input. It has a circuit DRV.
  • the plurality of buffer circuits DRV are connected to the common power supply wiring VDDCELL_L and supply reset voltages ⁇ VDDCELL (N), ⁇ VDDCELL (N ⁇ 1)... To the drain electrode of the reset transistor 124 via the reset power supply line 114. To do.
  • the power supply wiring VDDCELL_L is connected to the PAD 110B connected to the external capacitor Cout_B.
  • the power supply wiring VDDCELL_L between the PAD 110B and the buffer circuit DRV has an impedance switching circuit having the same configuration as the impedance switching circuit 130 shown in FIG. 132 is provided. That is, the impedance switching circuit 132 includes a resistance element R3 and a transistor M3 connected in parallel. The operation of the transistor M3 is controlled by an impedance switching control pulse ⁇ RSW3.
  • the impedance switching control pulse ⁇ RSW3 becomes a low level (L) during the all reset operation, and the current path from the control line (reset power supply line 114) to the power supply terminal (PAD110B) of the pixel cell 101 is made only the resistance element R3.
  • the resistance value in the impedance switching circuit 132 is increased to suppress an excessive instantaneous current from flowing.
  • the impedance switching control pulse ⁇ RSW3 becomes high level (H), and the current from the control line (reset power supply line 114) to the power supply terminal (PAD110B) of the pixel portion.
  • the resistance value is lowered as compared with the all reset operation, and the fluctuation in the potential of the control line (reset power supply line 114) during the read operation described above is suppressed. Can be suppressed.
  • the voltage change can be alleviated, the risk of latch-up can be greatly reduced.
  • FIG. 9 is a diagram illustrating an example of a circuit for supplying the reset pulse ⁇ RS of the pixel portion of the present embodiment.
  • a driver circuit 103C shown in FIG. 1 is a part of the driver circuit 103 shown in FIG.
  • the driver circuit 103C is provided corresponding to the unit pixel cell, and a plurality of buffers to which the signals RS_IN (N), RS_IN (N ⁇ 1)... Output from the MPX circuit 104 are respectively input. It has a circuit DRV.
  • the plurality of buffer circuits DRV are connected to the common power supply line RS_L and supply reset pulses ⁇ RS (N), ⁇ RS (N ⁇ 1)... To the gate electrode of the reset transistor 124 via the reset power supply line 114. To do.
  • the power supply wiring VDDCELL_L is connected to the PAD 110C connected to the external capacitor Cout_C.
  • the power supply wiring RS_L between the PAD 110C and the buffer circuit DRV has an impedance switching circuit having the same configuration as the impedance switching circuit 130 shown in FIG. 133 is provided. That is, the impedance switching circuit 133 includes a resistance element R4 and a transistor M4 connected in parallel. The operation of the transistor M4 is controlled by an impedance switching control pulse ⁇ RSW4.
  • the impedance switching control pulse ⁇ RSW4 becomes a low level (L) during the all reset operation, and the current path from the control line (reset control line 113) of the pixel cell 101 to the power supply terminal (PAD110C) is limited to the resistance element R4.
  • the resistance value in the impedance switching circuit 133 is increased to prevent an excessive instantaneous current from flowing.
  • the impedance switching control pulse ⁇ RSW4 becomes high level (H), and the current from the control line (reset control line 113) of the pixel portion to the power supply terminal (PAD110C).
  • the resistance element R4 and the transistor M4 as the path, the resistance value is lowered as compared with the all-reset operation, and the fluctuation in the potential of the control line (reset control line 113) during the read operation described above is suppressed. Can be suppressed.
  • the voltage change can be alleviated, the risk of latch-up can be greatly reduced.
  • the common impedance value from the control line (reset control line 113, reset power supply line 114) to the power supply terminal (or power supply wiring) of the pixel cell 101 during the read operation can be increased. It becomes smaller than during all reset operation. That is, the impedance value of the power supply wiring during the read operation is smaller than that during the all reset operation.
  • the global shutter system that performs the all reset operation is mainly used during still image capturing, and is controlled so that the resistance value of the impedance switching circuit 130 becomes larger during the all reset operation.
  • the shutter operation is a rolling shutter system.
  • the pixel cells are accessed in units of rows as in the read operation, so that the resistance value of the impedance switching circuit 130 is controlled to be lower than that in the all reset operation.
  • FIG. 10 is a diagram showing another example of a circuit for driving the transfer transistor of the pixel portion of the present embodiment.
  • the same components as those in the circuit shown in FIG. 7 are denoted by the same reference numerals and description thereof is omitted.
  • differences from the circuit shown in FIG. 7 will be mainly described.
  • the impedance switching circuit 131 is configured in such a manner that the transistor M1 and the transistor M2 are connected in parallel, and the impedance switching control pulse ⁇ RSW1 is applied to the gate electrode of the transistor M1, and the gate electrode of the transistor M2. Is input with an impedance switching control pulse ⁇ RSW2.
  • the impedance switching control pulse ⁇ RSW1 is set to a high level (H) to turn on the transistor M1
  • the impedance switching control pulse ⁇ RSW2 is set to a low level (L) to turn the transistor M2 off.
  • the resistance value of the impedance switching circuit 131 becomes high, the instantaneous current is limited by the impedance switching circuit 131, and it is possible to suppress an excessive instantaneous current from flowing through the power supply wiring TGL.
  • the impedance switching control pulses ⁇ RSW1, ⁇ RSW2 are both set to a high level (H) to turn on the transistors M1, M2, thereby reducing the resistance value of the impedance switching circuit 131.
  • H high level
  • the example in which the pixel cell 101 has two PDs has been described above, but only one PD may be provided for each pixel cell, or three or more PDs may be provided. When three or more PDs are provided, they may be connected to a common FD.
  • FIG. 11 is a diagram illustrating an example of an MPX circuit for transfer pulses in the multiplexer (MPX) circuit 204 that controls the driver circuit 203 in the solid-state imaging device according to the second embodiment.
  • MPX multiplexer
  • the MPX circuit 204 for transfer pulses includes an OR circuit provided for each transfer control line, an OR circuit connected in series to the output terminal of the OR circuit, an AND circuit, and two INVs.
  • a plurality of circuits, row selection pulses ⁇ VSR_OUT (2N), ⁇ VSR_OUT (2N ⁇ 1), ⁇ VSR_OUT (2M), ⁇ VSR_OUT (2M ⁇ 1) are inputted from the vertical scanning circuit 105, and an all reset pulse ⁇ ALLRST and TG109 The transfer pulse ⁇ TGIN is input.
  • the all reset pulse ⁇ ALLRST is at a low level (L)
  • the row selection pulse ⁇ VSR_OUT (2N) is at a high level (H)
  • the transfer pulse ⁇ TGIN Becomes a high level (H).
  • a high level (H) is output from the transfer pulse output line TGIN (2N).
  • a low level (L) is output from the transfer pulse output line.
  • the impedance switching control pulse ⁇ SW1 (N) becomes high level (H) and ⁇ SW2 (N) becomes low level (H) in the 2Nth row which is a reading row. L).
  • a high level (H) is output as the all reset pulse ⁇ ALLRST, and a high level (H) is output as the transfer pulse ⁇ TGIN, so that the high level (H) ) Is output.
  • the impedance switching control pulse ⁇ SW1 is at a low level (L) and ⁇ SW2 is at a high level (H) in all rows.
  • FIG. 12 is a diagram illustrating an example of the pixel array unit 102 and the driver circuit 203 in the solid-state imaging device according to the second embodiment of the present invention. In the figure, an all reset operation is shown.
  • the pixel cell in the light irradiation column is the pixel cell 101a
  • the constant current source is the constant current source 106a
  • the pixel cell in the dark column is the pixel cell 101b
  • the constant current source is the constant current source 106b.
  • FIG. 12 shows a pixel array unit 102, a driver circuit 203, an impedance switching circuit 134 having a resistance element (impedance element) R2, a power supply terminal PAD 110, an external capacitor Cout, constant current sources 106a and 106b, It is shown.
  • the buffer circuit DRV of the driver circuit 203 is arranged for each row, and there are two paths of the low level (L) power supply wirings TGLa and TGLb of the buffer circuit DRV.
  • the buffer circuit DRV to which ⁇ TGIN (2N) is supplied is connected to the power supply wiring TGLa from the buffer circuit DRV through the transistor (switch) Na1, and is connected to the power supply wiring TGLb through the transistor (switch) Nb1.
  • the impedance switching control pulse ⁇ SW1 output from the MPX circuit 204 is input to the gate electrode of the transistor Na1, and the impedance switching control pulse ⁇ SW2 is supplied to the gate electrode of the transistor Nb1.
  • the low level (L) power supply wiring TGLb of the buffer circuit DRV is provided with a resistance element R2 between the branch point to the transistor and the PAD 110 for the power supply terminal.
  • the impedance switching control pulse ⁇ SW1 becomes the low level (L), and the transistor Na connected to the power supply wiring TGLa is turned off. Further, the impedance switching control pulse ⁇ SW2 is at a high level (H), and the transistor Nb connected to the power supply wiring TGLb is turned on. Accordingly, during the all reset operation, the low level (L) potential of the buffer circuit DRV is supplied from the power supply wiring TGLb in which the resistance element R2 is connected between the PADs, and thus an excessive instantaneous current flows through the resistance element R2. Can be suppressed. Note that the instantaneous current may be limited by using a transistor as a resistance element. This is not limited to the driver circuit for the transfer pulse, and the same configuration is effective for the driver circuit for the reset pulse ⁇ RS and the driver circuit for the reset power supply ⁇ VDDCELL.
  • FIG. 13 is a diagram illustrating an example of the pixel array unit 102 and the driver circuit 203 in the solid-state imaging device according to the second embodiment of the present invention. This figure shows a pixel readout operation.
  • FIG. 13 the same components as those in the circuit shown in FIG. 12 are denoted by the same reference numerals and description thereof is omitted.
  • differences from the circuit shown in FIG. Since the pixel readout operation is in progress, the row to which the transfer pulse ⁇ TGIN (2N) is input is selected as the selected row selected as the pixel readout operation.
  • the transfer pulse ⁇ TGIN (2N ⁇ 1) is applied to the gate electrode.
  • a row to which the transfer pulse ⁇ TG (N) is input is a selected row, and a row to which the transfer pulse ⁇ TG (N ⁇ 1) is input is a non-selected row.
  • Other lines are also unselected lines.
  • a high level (H) is input as the selected row and the non-selected row connected to the common FD 126a, and the impedance switching control pulse ⁇ SW1 (N), the transistors Na1 and Na2 are turned on, and the power supply wiring TGLa
  • the buffer circuit DRV is in a conductive state.
  • the impedance switching control pulse ⁇ SW2 (N) becomes low level (L), the transistors Nb1 and Nb2 are turned off, and the power supply wiring TGLb and the buffer circuit DRV are turned off.
  • the impedance switching control pulse ⁇ SW1 is at a low level (L), the transistor Na is turned off, and the power supply wiring TGLa and the buffer circuit DRV are turned off. Further, the impedance switching control pulse ⁇ SW2 is at a high level (H), the transistor Nb is turned on, and the power supply wiring TGLb and the buffer circuit DRV are brought into conduction.
  • the number of transfer control lines 111 and 112 for controlling the transfer transistors is equal to the number of rows according to the number of pixels. Since the transfer control lines 111 and 112 are wired in the horizontal direction and the vertical signal line VL is wired in the vertical direction, each wiring has a point that intersects at least the number of rows, and a parasitic capacitance is generated at the intersection. Due to this parasitic capacitance, the potential drop of the vertical signal line VLa is propagated to the transfer control lines 111 and 112, and the low level (L) potential of the transfer pulse supplied to the transfer control lines 111 and 112 is lowered.
  • the resistance element R2 is inserted between the PAD 110 and the potential fluctuation of the transfer control lines 111 and 112 of the non-selected row
  • the time constant of the transfer control lines 111 and 112 of the non-selected row as viewed from the external capacitor Cout is Combined with the parasitic capacitance generated in the pixel array portion 102, the potential variation becomes so large that the potential fluctuation cannot be converged within the read operation period.
  • the transfer control lines 111 and 112 are connected to the power supply wiring TGLa in which no resistive element is provided in the selected row, the PAD 110 is transferred from the transfer control lines 111 and 112 in the selected row and the transfer control lines 111 and 112 in the non-selected row.
  • the common impedance value that is, the impedance value of the power supply wiring
  • the common impedance value that is, the impedance value of the power supply wiring
  • L low level
  • the common impedance value (that is, the impedance value of the power supply wiring) from the control line (reset control line 113, reset power supply line 114) of the pixel cell 101 to the power supply terminal (PAD110) is read during the read operation. It can be made smaller than the common impedance value.
  • the low-level (L) power supply wiring of the buffer circuit DRV that is a negative voltage, the ground power supply side to the anode, and the low-level ( The diode element may be arranged so that the power supply wiring side of L) becomes the cathode.
  • the potential fluctuation of the vertical signal line VL as described above propagates to the reset control line 113 and the reset power supply line 114 due to parasitic capacitance.
  • the driver circuit that supplies the reset pulse ⁇ RS and the driver circuit that supplies the pixel reset power supply ⁇ VDDCELL the potential fluctuation of the vertical signal line VL as described above propagates to the reset control line 113 and the reset power supply line 114 due to parasitic capacitance.
  • FIGS. 14A and 14B show other examples of the impedance switching circuit 134 for the solid-state imaging device according to the second embodiment of the present invention.
  • the low-level (L) power supply wiring TGLa of the buffer circuit DRV is directly connected to the PAD 110, and the transistor M5 and the resistance element R2 are connected in series between the power supply wiring TGLb and the PAD110. It is connected.
  • An impedance switching control pulse ⁇ RSW5 for controlling the transistor M5 is connected to the gate electrode of the transistor M5.
  • the transistor M5 is turned on, and the power is supplied from the external capacitor Cout to the power supply wiring TGLb.
  • the transistor M5 is turned off, and the path of the power supply wirings TGLa and TGLb is completely disconnected. As a result, it is possible to prevent noise generated in the power supply wiring TGLb from wrapping around the power supply wiring TGLa, and thus it is possible to suppress deterioration in characteristics of the solid-state imaging device.
  • the pixel signal reset operation for performing “PD reset / FD non-selection potential writing” and the pixel readout operation after the exposure are performed.
  • the transistor M5 is turned off, and the power supply lines TGLa and TGLb Disconnect the path completely.
  • the transistor M5 is turned on, and power is supplied to the non-selected pixels from the external capacitor Cout.
  • the low-level (L) power supply wiring TGLa of the buffer circuit DRV is directly connected to the PAD 120, and the resistor element R2 is connected in series between the power supply wiring TGLb and the PAD110.
  • a transistor M6 that connects the PAD110 and PAD120 is provided, and an impedance switching control pulse ⁇ RSW6 that controls the transistor M6 is connected to the gate electrode of the transistor M6.
  • the transistor M6 is turned on, and power is supplied to the power supply wiring TGLb from the external capacitor Cout1 in addition to the external capacitor Cout.
  • the transistor M6 is turned off, and the path of the power supply wirings TGLa and TGLb is completely disconnected. As a result, it is possible to prevent noise generated in the power supply wiring TGLb from wrapping around the power supply wiring TGLa, and thus it is possible to suppress deterioration in characteristics of the solid-state imaging device.
  • the transistor M6 In the pixel readout operation of the rolling shutter operation, the transistor M6 is turned off, the path of the power supply wirings TGLa and TGLb is completely disconnected, and in the pixel signal reset operation, the transistor M6 is turned on, and external capacitors Cout and Cout1 are connected to the unselected pixels. Supply power from.
  • the solid-state imaging device of the first or second embodiment (including each modification example) is incorporated in, for example, a video camera capable of shooting a moving image or a digital still camera for shooting a still image. This is applied to a photographing apparatus such as a camera.
  • FIG. 15 is a block diagram showing a configuration of the photographing apparatus according to the present embodiment.
  • the imaging device 140 of this embodiment processes a solid-state imaging device 141, an imaging optical system 142 that guides incident light from a subject to the solid-state imaging device 141, and an output signal from the solid-state imaging device 141.
  • a signal processing unit 143 that drives the solid-state imaging device 141, and a system control unit 145 that controls the driving circuit 144.
  • the solid-state imaging device of the first or second embodiment (including the respective modifications) described above is used as the solid-state imaging device 141.
  • the drive circuit 144 receives a control signal corresponding to the drive mode from the system control unit 145, and supplies the drive mode signal to the solid-state imaging device 141.
  • the timing generation circuit (TG 109 shown in FIG. 1) generates a driving pulse corresponding to the driving mode signal and applies the driving pulse to each block in the solid-state imaging device 141. Supply pulses.
  • the signal processing unit 143 receives the image signal output from the solid-state imaging device 141 and performs various signal processing on the image signal.
  • the solid-state imaging apparatus according to the first or second embodiment (including each modification) described above is used. Therefore, in the solid-state imaging device, the noise caused by the potential fluctuation of the control line is suppressed by suppressing the potential fluctuation of the control line that drives the pixel during the pixel reading operation while suppressing the instantaneous current at the time of all reset. can do. Therefore, according to the imaging apparatus of the present embodiment, the image quality of the captured image can be further improved.
  • the solid-state imaging device and the driving method thereof according to an example of the present invention are suitably used for various imaging devices such as a video camera and a digital still camera.
  • Solid-state imaging device 101 Pixel cell 102 Pixel array unit 103, 203 Driver circuit 104, 204 MPX circuit 105 Vertical scanning circuit 106 Constant current source 106a, 106b Constant current source 107 Column readout circuit 108 Horizontal scanning circuit 109 TG 110 PAD 111, 112 Transfer control line 113 Reset control line 114 Reset power supply line 115 Selection control line 120, 121, 121a PD 122, 122a, 123, 123a Transfer transistor 124 Reset transistor 125, 125a Amplification transistor 126, 126a FD 127 Selection transistor 130, 131, 132, 133 Impedance switching circuit 140 Imaging device 142 Imaging optical system 143 Signal processing unit 144 Drive circuit 145 System control unit M0, M1, M2, Na1, Na2, Nb1, Nb2 transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 固体撮像装置は、画素アレイ部と、画素行ごとに設けられ、転送トランジスタ等の動作を制御する制御線TGと、制御線TGを介して転送トランジスタの動作を制御し、電源配線TGLに接続されたドライバ回路103とを備える。固体撮像装置は、ドライバ回路103により、全画素の信号電荷がリセットされるオールリセット動作と、画素行ごとの画素信号の読み出し動作とが行われ、読み出し動作時における電源配線TGLのインピーダンス値を、オールリセット動作時における電源配線TGLのインピーダンス値よりも小さくするインピーダンス制御手段130をさらに備えている。

Description

固体撮像装置及び撮像装置
 本明細書に記載された技術は、固体撮像装置及び撮像装置に関する。
 近年、固体撮像装置を内蔵したデジタルカメラ等が広く普及している。
 図16は、従来の固体撮像装置の構成を示す図である。同図に示すように、従来の固体撮像装置10は、画素アレイ部11、行選択回路(Vdec)12、カラム読出し回路(AFE)13、シャッターモード対応部14、シャッターモード切替部15を備えている。画素アレイ部11には、行選択回路12から画素部を駆動するための制御線(LRST、LTRG、LSEL)が接続されている。
 画素アレイ部11は、行列状に配置された画素で構成されている。各画素には、光電変換を行うフォトダイオード(PD)、電荷を蓄積するフローティングディフュージョン(FD)、転送トランジスタ、リセットトランジスタ、増幅トランジスタなどが設けられている。
 カラム読出し回路13は、行選択回路12により読出し制御された画素からのデータを一行ずつ信号出力線LSGNを介して受け取り、後段の信号処理回路に転送する。カラム読出し回路13は、相関二重サンプリング回路(CDS:Correlated Double Sampling)やアナログデジタルコンバータ(ADC)を含む。
 また、行選択回路12には、シャッターモード切替部15から出力されたシャッターモード切替信号SHRMODEが入力されており、行選択回路12と電源VDD、及びグランドVSSの間には抵抗RVDDが設けられている。
 固体撮像装置の露光方式としては、動画の撮影で広く採用されているローリングシャッター方式と、静止画の撮影などで広く採用されているグローバルシャッター方式が知られている。
 ローリングシャッター方式では、同一の行に配置された画素のリセット、露光、読出しの動作を同時に行う。このため行間で露光するタイミングが異なり、像のゆがみが発生する。
 一方、グローバルシャッター方式は、全画素についてリセットと露光を同時に行う。そのため、行間で像のゆがみが発生しない。
 このグローバルシャッター方式では、全ての画素の露光を同時に行う必要がある。例えば、液晶もしくは機械式シャッターとの組み合わせでグローバルシャッター方式を実現する場合、シャッターを開いた状態で全画素のPDをリセットする。これを「オールリセット動作」と呼ぶ。
 そして、所定の露光時間が経過した後にシャッターを閉じて、画素のPDに光が当たらないようにすることで、全画素の露光を同時に行う。
 グローバルシャッター方式では、全画素のPDを同時にリセットするため、全てのリセット信号RSTが同時に切り替えられる。グローバルシャッター方式における読出しは、ローリングシャッター方式と同様である。
 しかし、グローバルシャッター方式を採用すると、全てのリセット信号RSTと転送信号TRG(転送トランジスタの制御信号)の電位を同時に切り替える(オールリセット動作する)必要がある。そのため、グローバルシャッター方式では、過大な瞬時電流が流れることとなり、電源のノイズ対策が必要になるという不利益がある。また、電源能力が十分でない場合には、この瞬時電流によって引き起こされる瞬間的な電圧の変化によってラッチアップが引き起こされ、固体撮像素子が破壊されてしまうおそれもある。
 そこで、従来技術では、画素駆動回路とその電源端子の間にインピーダンス素子(図16に示すRVDDなど)を挿入することで、オールリセット動作時の過大な瞬時電流を抑制し、電源のノイズの対策を行っている。
特開2009-296400号公報
 しかし、従来の固体撮像装置では、行選択回路12の中にある画素駆動回路とその電源端子との間にインピーダンス素子の挿入することにより、読出し動作時に画素を駆動する制御線と電源間の時定数が増加する。そのため、制御線の電位が揺らいだとき、電位の揺れを収束させる時間が延びてしまうことが懸念される。この制御線の電位の揺れが選択行のFDへ回りこむと電位の揺れが信号成分と合わさって出力されるため、ノイズとなり、画質の劣化を招いてしまう。
 本発明の目的は、読み出し動作に影響を与えることなくオールリセット動作時の過大な瞬時電流を抑えることが可能な固体撮像装置を提供することにある。
 前記の目的を達成するために、本発明の一例に係る固体撮像装置は、入射光を信号電荷に変換する光電変換素子と、フローティングディフュージョンと、前記光電変換素子で生成された前記信号電荷を前記フローティングディフュージョンに転送する転送トランジスタと、前記フローティングディフュージョンに転送された前記信号電荷を電圧信号である画素信号に変換して出力する増幅トランジスタと、前記フローティングディフュージョンにリセット電位を供給するリセットトランジスタとをそれぞれ有する複数の画素が行列状に配置されてなる画素アレイ部と、前記画素アレイ部における画素行ごとに設けられた複数の制御線を介して前記転送トランジスタ及び前記リセットトランジスタの動作を制御し、電源配線に接続されたドライバ回路とを備え、前記ドライバ回路により、全ての前記複数の画素の前記信号電荷がリセットされるオールリセット動作と、前記画素アレイ部における画素の行ごとに前記画素信号の読み出し動作とが行われ、前記読み出し動作時における前記電源配線のインピーダンス値を、前記オールリセット動作時における前記電源配線のインピーダンス値よりも小さくするインピーダンス制御手段をさらに備えている。
 この構成により、オールリセット動作時には電源配線のインピーダンス値が比較的大きくなるので、電源配線に過大な瞬時電流が流れるのを抑制することができ、破壊されにくくなっている。また、読み出し動作時には電源配線のインピーダンス値が比較的小さくなるので、制御線の電位の揺れを緩和することができ、ノイズの発生を低減することができる。また、回路面積が大幅に増大することもない。
 前記インピーダンス制御手段として、前記電源配線に接続され、切替可能な2以上の電流経路を有するインピーダンス切替回路を備えていてもよい。
 また、前記電源配線は、第1の電源配線と第2の電源配線とを有しており、前記ドライバ回路は、前記画素の列ごとに設けられ、前記第1及び第2の電源配線に接続された複数のバッファ回路を有しており、前記第2の電源配線上に設けられた第2のインピーダンス素子と、前記第1の電源配線と前記バッファ回路との間に設けられた第1のスイッチと、前記第2の電源配線と前記バッファ回路との間に設けられた第2のスイッチとをさらに備え、前記インピーダンス制御手段は、前記第1の電源配線、前記第2の電源配線、前記第1のスイッチ、前記第2のスイッチ、及び前記第2のインピーダンス素子を有していてもよい。
 本発明の一例に係る撮像装置は、入射光に応じた画素信号を出力する固体撮像装置と、前記固体撮像装置に前記入射光を導く撮像光学系と、前記固体撮像装置から出力された前記画素信号を処理する信号処理部とを備えている。そして、前記固体撮像装置は、前記入射光を信号電荷に変換する光電変換素子と、フローティングディフュージョンと、前記光電変換素子で生成された前記信号電荷を前記フローティングディフュージョンに転送する転送トランジスタと、前記フローティングディフュージョンに転送された前記信号電荷を電圧信号である前記画素信号に変換して出力する増幅トランジスタと、前記フローティングディフュージョンにリセット電位を供給するリセットトランジスタとをそれぞれ有する複数の画素が行列状に配置されてなる画素アレイ部と、前記画素アレイ部における画素行ごとに設けられた複数の制御線を介して前記転送トランジスタ及び前記リセットトランジスタの動作を制御し、電源配線に接続されたドライバ回路とを有している。固体撮像装置では、前記ドライバ回路により、全ての前記複数の画素の前記信号電荷がリセットされるオールリセット動作と、前記画素アレイ部における画素の行ごとに前記画素信号の読み出し動作とが行われ、前記読み出し動作時における前記電源配線のインピーダンス値を、前記オールリセット動作時における前記電源配線のインピーダンス値よりも小さくするインピーダンス制御手段をさらに有している。
 この構成によれば、上述のように固体撮像装置が瞬時電流によって破壊されにくくなっており、且つ固体撮像装置から出力される画素信号に含まれるノイズが低減されるので、信頼性が高く、良好な画像を得ることができる。
 本発明の一例に係る固体撮像装置及びその撮像装置では、回路規模を大幅に増加させず、読み出し動作に影響を与えることなく、オールリセット動作時の過大な瞬時電流を抑えることが可能である。
図1は、第1の実施形態に係る固体撮像装置の構成を示す図である。 図2は、第1の実施形態に係る固体撮像装置において、画素セルの回路構成の一例を示す回路図である。 図3は、第1の実施形態に係る固体撮像装置において、画素セルの回路構成の他例を示す回路図である。 図4は、図2に示す画素セルを採用した固体撮像装置において、ローリングシャッター方式の動作を示すタイミングチャートである。 図5は、第1の実施形態に係る固体撮像装置において、液晶シャッター若しくは機械式シャッターを用いたグローバルシャッター方式の動作を示すタイミングチャートである。 図6は、第1の実施形態に係る固体撮像装置において、ドライバ回路を制御するMPX回路のうち転送パルス用のMPX回路の一例を示す図である。 図7は、第1の実施形態に係る固体撮像装置において、画素部の転送トランジスタを駆動するための回路の一例を示す図である。 図8は、第1の実施形態に係る固体撮像装置において、画素部のリセット電源φVDDCELLを供給するための回路の一例を示す図である。 図9は、第1の実施形態に係る固体撮像装置において、画素部のリセットパルスφRSを供給するための回路の一例を示す図である。 図10は、第1の実施形態に係る固体撮像装置において、画素部の転送トランジスタを駆動するための回路の別例を示す図である。 図11は、第2の実施形態に係る固体撮像装置において、ドライバ回路を制御するMPX回路のうち転送パルス用のMPX回路の一例を示す図である。 図12は、第2の実施形態に係る固体撮像装置において、画素アレイ部とドライバ回路の一例を示す図である。 図13は、第2の実施形態に係る固体撮像装置において、画素アレイ部とドライバ回路の一例を示す図である。 図14(a)、(b)は、第2の実施形態に係る固体撮像装置において、インピーダンス切替回路の一例をそれぞれ示す図である。 図15は、第3の実施形態に係る撮影装置の構成を示すブロック図である。 図16は、従来の固体撮像装置の構成を示す図である。
  (第1の実施形態)
 以下、本発明の第1の実施形態に係る固体撮像装置及びその駆動方法について、図面を参照しながら説明する。
 図1は、第1の実施形態に係る固体撮像装置の構成を示す図である。
 同図に示すように、本実施形態に係る固体撮像装置100は、光電変換を行うフォトダイオード(光電変換素子)とトランジスタとからなる画素セル101が行列状に多数配置されてなる画素アレイ部102と、画素アレイ部102を駆動するドライバ回路103と、マルチプレクサ(MPX)回路104と、垂直走査回路105と、画素セル101から読み出された画素信号を各列回路に伝達する垂直信号線VLa、VLb…(以下垂直信号線VLと表記)と、垂直信号線VLに接続された定電流源106と、定電流源106を介して垂直信号線VLにより伝達された画素信号を受けるカラム読出し回路107と、カラム読出し回路107における画素信号の水平方向の伝達を制御する水平走査回路108と、垂直走査回路105、MPX回路104、ドライバ回路103、カラム読出し回路107、及び水平走査回路108に制御用パルスを供給するタイミング発生回路(TG)109とを備えている。
 カラム読出し回路107は、1列の画素信号を受け、且つ差分手段を有するノイズキャンセラ(CDS)回路と、CDS回路からの画素信号を受けるアナログデジタル変換回路(ADC)とを含む。そして、水平走査回路108により選択された列のアナログデジタル変換されたデータが固体撮像装置の外へ順次出力される。また、ドライバ回路103には電源端子用のPAD110が接続されている。
 カラム読出し回路107に含まれるCDS回路は、例えば画素アレイ部102に行列状に配列されている単位画素(画素セル101)の列ごとに接続されている。また、CDS回路は、垂直走査回路105によって選択された行の画素セル101から垂直信号線VLを通って出力される画素信号に対して、CDS(相関二重サンプリング)処理を行う。これにより、画素セル101で発生するリセットノイズや、トランジスタのしきい値バラツキに起因する画素固有の固定パターンノイズが除去されると共に、信号処理後の画素信号がCDS回路に一時的に保持される。
 アナログデジタル変換回路(ADC)は、AGC(Auto Gain Control)機能と、アナログデジタル変換機能とを備えており、ADCによって、CDS回路に保持されたアナログ信号である画素信号がデジタル信号に変換される。
 図2は、画素セル101の回路構成の一例を示す回路図である。同図に示すように、画素セル101は、光電変換を行う素子、例えばフォトダイオード120、121と、転送トランジスタ122、123と、リセットトランジスタ124と、増幅トランジスタ125とを有している。転送トランジスタ122、123、リセットトランジスタ124、及び増幅トランジスタ125としては、例えばNチャネル型のMOSトランジスタを用いることができる。
 転送トランジスタ122は、フォトダイオード120のカソード電極とフローティングディフュージョン(FD)126との間に接続されている。転送トランジスタ123も同様に、フォトダイオード121のカソード電極とFD126との間に接続されている。すなわち、本実施形態では、例えば2つの転送トランジスタ122、123が同一のFD126に接続されている回路構成が採用されている。
 転送トランジスタ122のゲート電極には転送制御線111が、転送トランジスタ123のゲート電極には転送制御線112が接続されている。転送トランジスタ122のゲート電極に転送制御線111から転送パルスφTG(2n-1)が与えられると、転送トランジスタ122がオン状態となり、フォトダイオード120で光電変換されてフォトダイオード120に蓄積された信号電荷(具体的には電子)がFD126へ転送される。転送トランジスタ123のゲート電極に転送制御線112から転送パルスφTG(2n)が与えられると、転送トランジスタ123がオン状態となり、フォトダイオード121で光電変換されてフォトダイオード121に蓄積された信号電荷がFD126へ転送される。
 リセットトランジスタ124については、ゲート電極にリセット制御線113が接続され、画素のリセット電源φVDDCELLを供給するリセット電源線114がドレイン電極に接続され、ソース電極にFD126が接続されている。フォトダイオード120からFD126へ信号電荷を転送する前に、リセットトランジスタ124のゲート電極にリセット制御線113からリセットパルスφRS(n)が与えられると、リセットトランジスタ124がオン状態となり、画素のリセット電源φVDDCELL(n)の電位を電源電位Vddとして、FD126の電位が電源電位Vddにリセットされる。
 増幅トランジスタ125については、ゲート電極がFD126に接続され、ドレイン電極が画素電源AVDDPに続され、ソース電極が垂直信号線VLに接続されている。増幅トランジスタ125は、リセットトランジスタ124によってリセットされた後のFD126の電位をリセットレベルとして垂直信号線VLへ出力し、さらに、転送トランジスタ122、123によって信号電荷が転送された後のFD126の電位に応じた電圧を信号レベルとして垂直信号線VLへ出力する。
 なお、転送パルスφTG、リセットパルスφRS、及びリセット電源φVDDCELLは、ドライバ回路103から供給される。
 図3は、画素セル101の回路構成の他例を示す回路図である。同図において、図2に示す回路と同じ構成要素には同じ符号を付して説明を省略し、以下、図2に示す回路との相違点について主に説明する。
 増幅トランジスタ125のドレイン電極には画素電源の電圧AVDDPが印加されており、増幅トランジスタ125のソース電極には選択トランジスタ127のドレイン電極が接続されている。選択トランジスタ127のゲート電極は選択制御線115と接続しており、選択制御線115から選択パルスφSEL(n)が与えられる。選択トランジスタ127のソース電極には垂直信号線VLが接続されており、増幅トランジスタ125で増幅された画素信号が選択トランジスタ127を通じて垂直信号線VLに出力される。
 また、本実施形態では、画素セル101として、フォトダイオード及び転送トランジスタをそれぞれ2つ含む構成を用いたが、これに限られず、フォトダイオード及び転送トランジスタをそれぞれ1つ含む構成や、フォトダイオード及び転送トランジスタをそれぞれ4つ含む構成等を用いることも可能である。また、図2、3に示す例ではリセット電源φVDDCELLと画素電源が分かれていたが、両者が互いに接続される構成を用いることも可能である。
 図4は、図2に示したいわゆる3Tr型画素回路を採用した固体撮像装置において、ローリングシャッター方式の動作を示すタイミングチャートである。
 3Tr型の画素セル101を採用した固体撮像装置の撮像を行う場合の各画素の動作は、「PDリセット/FD非選択電位書き込み」→「露光」→「FDリセットおよび信号読出し」→「PDからFDに電荷転送および信号読出し」→「FD非選択電位書き込み」、という順で動作が制御される。
 3Tr型画素セル101では、例えば2n-1行目のPD120とFD126とは転送トランジスタ122によって電気的に分離されていて、PD120をリセットする際には、リセットトランジスタ124だけでなく転送トランジスタ122もオン状態にする必要がある。そして、FD非選択電位の書き込み時は、画素のリセット電源φVDDCELLがローレベル(L)となり、リセットトランジスタ124がオン状態として、FD126にリセット電源φVDDCELLのLレベルを書き込みすることで、増幅トランジスタ125をオフ状態とする。この動作は画素読出し後でも同様に実施する必要がある。なお、ローリングシャッター時はオールリセット動作を行うオールリセットパルスφALLRSTはローレベル(L)に固定される。
 図5は、3Tr型画素セル101を採用した固体撮像装置と液晶シャッター若しくは機械式シャッターとを組み合わせたグローバルシャッター方式の動作を示すタイミングチャートである。
 この場合、シャッターを開いた状態で、全画素同時にPDリセットするオールリセット動作を行い、液晶シャッター若しくは機械式シャッターを閉じることで、全画素の露光を同時に行っている。
 3Tr型画素セル101でPDリセットを行うためには、全画素のリセットパルスφRSと転送パルスφTGを同時にハイレベル(H)にする必要がある。よって、図5に示す通り、全画素PDリセットでは、全ての画素のリセットパルスφRSと転送パルスφTGを同時に切り替えている。なお、リセットパルスφRSが転送パルスφTGをオーバーラップするようにパルスを制御してもよい。
 その後、FD非選択電位の書き込みとして、全行の画素のリセット電源φVDDCELLがローレベル(L)となり、全行のリセットトランジスタ124がオン状態となることで、全画素セルのフローティングディフュージョンFDにリセット電源φVDDCELLのローレベル(L)を書き込む。これにより、増幅トランジスタ125をオフ状態となる。なお、全画素同時にPDリセットし、全画素のフローティングディフュージョンFD126を非選択電位の書き込みまで、TG109よりオールリセットパルスφALLRSTはハイレベル(H)としている。FD126に非選択電位が書き込まれた後、オールリセットパルスφALLRSTはローレベルになる。その後、シャッターが閉じて、露光時間が終了する。続いて、FD126のリセットを行ってからPDに蓄積された電荷をFDに転送する。画素からの信号の読み出しは、行ごとに順次に行う。すなわち、読出し動作はローリングシャッター方式と同様である。
 図6は、本実施形態の固体撮像装置において、ドライバ回路103を制御するMPX回路104のうち転送パルス用のMPX回路の一例を示す図である。
 図6に示すように、転送パルス用のMPX回路104は、画素の行にそれぞれ対応するAND回路とOR回路を有しており、垂直走査回路105から出力された行選択パルスφVSR_OUT(2N)、φVSR_OUT(2N-1)…が入力され、TG109から出力されたオールリセットパルスφALLRSTと転送パルスφTGINが入力される。なお、2N行目が読出し行である場合には、行選択パルスφVSR_OUT(2N)にハイレベル(H)が出力され、転送パルスφTGINがハイレベル(H)になると、転送パルス出力線TGIN(2N)からハイレベル(H)が出力される。それ以外の行では転送パルス出力線からローレベル(L)が出力される。
 また、オールリセット動作時には、オールリセットパルスφALLRSTがハイレベル(H)となり、転送パルスφTGINがハイレベル(H)になると、全行の転送パルス出力線TGINからハイレベル(H)が出力される。
 図7は、本実施形態の画素部の転送トランジスタを駆動するための回路の一例を示す図である。同図には、ドライバ回路103と、MPX回路104と、垂直走査回路105と、インピーダンス切替回路(インピーダンス制御手段)130と、電源端子用のPAD110と、固体撮像装置のチップ外部に設けられた外部容量Coutとが示されている。MPX回路104には、垂直走査回路105から行選択パルスφVST_OUTが入力され、選択行と非選択行の判定がなされる(図6参照)。TG109からは、オールリセット動作時にオールリセットパルスφALLRSTがMPX回路104に入力され、転送トランジスタを制御する転送パルスφTGINがMPX回路104に入力される。
 また、ドライバ回路103のバッファ回路DRVは行毎に配置され、バッファ回路DRVのローレベル(L)用の電源配線は、インピーダンス切替回路130に接続されている。そして、インピーダンス切替回路130は、電源端子用のPAD110を介して外部容量Coutに接続されている。バッファ回路DRVの入力端には対応する転送パルス出力線TGIN(2N)、TGIN(2N-1)…が接続されている。バッファ回路DRVの出力端からは転送パルスφTG(2N)、φTG(2N-1)…が出力される。
 インピーダンス切替回路130は、互いに並列に接続された抵抗素子(インピーダンス素子)R1とトランジスタM0とを有している。トランジスタM0のゲート電極には、インピーダンス切替制御パルスφRSWが入力されている。このインピーダンス切替制御パルスφRSWは、オールリセット動作時にローレベル(L)となり、画素セル101の制御線(転送制御線111、112)から電源端子(PAD110)までの電流経路を抵抗素子R1のみにすることにより、インピーダンス切替回路130における抵抗値を増加させ、過大な瞬時電流が流れるのを抑制する。
 一方、オールリセット動作が完了した後の、画素の読出し動作時には、インピーダンス切替制御パルスφRSWはハイレベル(H)となり、画素部の制御線(転送制御線111、112)から電源端子(PAD110)までの電流経路を抵抗素子R1とトランジスタM0とすることにより、オールリセット動作時よりも抵抗値を低下させ、前述した読出し動作時の制御線(転送制御線111、112)の電位の変動を抑制することで、ノイズの発生を抑制することができる。また、電圧変化を緩和できるので、ラッチアップを生じるおそれを大幅に低減することができる。なお、オールリセット動作以外、例えばローリングシャッター動作における複数行の画素の信号電荷をリセットする電子シャッター動作等において、複数行のバッファ回路DRVに転送パルスTGINが入力された際に、一時的にインピーダンス切替制御パルスφRSWをローレベルからハイレベルとして、過大な瞬時電流が流れるのを抑制してもよい。
 本実施形態の固体撮像装置では、読出し動作時における画素セル101の制御線(転送制御線111、112)から見た電源端子(あるいは電源配線)までの共通インピーダンス値がオールリセット動作時よりも小さくなる。ここで、「共通インピーダンス値」とは、読み出される行の画素セル101の制御線から電源端子(PAD110)までの配線と、ある任意の非選択行の画素セル101の制御線から電源端子までの配線(及び回路)の共通部分のインピーダンス値をいうものとする。
 言い換えれば、本実施形態の固体撮像装置によれば、インピーダンス切替回路130を設けることにより、オールリセット動作時と読出し動作時で、画素セル101の制御線(ここでは転送制御線111、112)から見たインピーダンスをそれぞれに最適なインピーダンス値に調整することができる。例えば、オールリセット動作時には過大な瞬時電流を抑制するために、抵抗値を100Ω以上にしたいが、読出し動作時には転送制御線111、112の電位変動を抑制するため、抵抗値を10Ω未満にしたいとした場合、抵抗素子R1として100Ω以上の抵抗素子を用い、トランジスタM0のオン時の抵抗値を10Ω未満とすることで容易にインピーダンスの調整をすることができる。また、インピーダンス切替回路130はドライバ回路103の近傍に配置されていればよく、行毎に配置される必要がない。すなわち、ドライバ回路103に対してインピーダンス切替回路130は1つのみ設けられていればよいので、チップ面積の拡大を招かない。
 なお、バッファ回路DRVに接続される電源配線TGLの電位が負電圧であっても、同様にオールリセット動作時の電源配線TGLには過大な瞬時電流がさらに流れやすくなるため、インピーダンス切替回路130は瞬時電流の低減に有効な手段である。また、この場合、過大な瞬時電流が1つの経路に集中することを防ぐため、電源配線TGLのバッファ回路DRVへの分岐点とPAD110との間に、抵抗素子R1及びトランジスタM0と並列に接続されたダイオード素子を配置してもよい。また、電源配線TGLのバッファ回路DRVとグランド電源間に接続されたダイオード素子を配置してもよい。これにより、オールリセット動作時に、抵抗成分と瞬時電流による電位勾配の発生により電位上昇することでダイオードがオン状態となるため、瞬時電流が流れるときだけ、グランド電源に瞬時電流を流す経路が形成できる。これにより、瞬時電流を流す経路を分散することができ、ある特定の配線に過大な瞬時電流が流れるのを抑制することができる。
 なお、リセットパルスφRSを供給するドライバ回路および画素のリセット電源φVDDCELLを供給するドライバ回路においても、上述した例と同様にインピーダンス切替回路を設けることが有効である。
 インピーダンス切替回路を設けない場合、転送パルスφTG、リセットパルスφRS、及びリセット電源φVDDCELLを供給するための制御線(転送制御線111、リセット制御線113、リセット電源線114)は垂直信号線VLと交差するので、PD121からFD126に電荷を転送する際、これらの配線間に寄生容量が発生する。転送制御線111と垂直信号線VLとの間に生じる寄生容量により、垂直信号線の電位低下が転送制御線111に伝搬し、転送パルスφTGのローレベルの電位が低下する。この転送制御線111の電位変動は全行で発生するため、ドライバ回路103を通じて電源配線に伝搬する。ここで、転送制御線111は転送トランジスタ123のゲート電極に接続されているので、FD126と転送制御線111との間にはゲート-ソース間のオーバーラップ容量が存在する。これにより、転送パルスφTGのローレベルの電位変動がゲートオーバーラップ容量により別のFD126に伝搬し、FD126の電位が揺らぐ。このFD126の電位の揺れが増幅トランジスタ125を通して垂直信号線VLに伝達され、ノイズとなる。
 従って、選択行のダーク画素のFD126への寄生容量を介した電位変動の伝搬を防ぐため、リセットパルスφRSを供給するドライバ回路および画素のリセット電源φVDDCELLを供給するドライバ回路においてもインピーダンス切替回路を設けることがノイズの低減に有効である。
 図8は、本実施形態の画素部のリセット電源φVDDCELLを供給するための回路の一例を示す図である。同図で示すドライバ回路103Bは、図1に示すドライバ回路103の一部である。
 図8に示すように、ドライバ回路103Bは、単位画素セルに対応して設けられ、MPX回路104から出力された信号VDDCELL_IN(N)、VDDCELL_IN(N-1)…がそれぞれ入力された複数のバッファ回路DRVを有している。この複数のバッファ回路DRVは、共通の電源配線VDDCELL_Lに接続されているとともに、リセット電源線114を介してリセット電圧φVDDCELL(N)、φVDDCELL(N-1)…をリセットトランジスタ124のドレイン電極に供給する。
 電源配線VDDCELL_Lは外部容量Cout_Bに接続されたPAD110Bに接続されており、PAD110Bとバッファ回路DRVとの間における電源配線VDDCELL_Lには、図7に示すインピーダンス切替回路130と同様の構成を有するインピーダンス切替回路132が設けられている。すなわち、インピーダンス切替回路132は、並列接続された抵抗素子R3とトランジスタM3とを有する。トランジスタM3の動作は、インピーダンス切替制御パルスφRSW3により制御される。
 インピーダンス切替制御パルスφRSW3は、オールリセット動作時にローレベル(L)となり、画素セル101の制御線(リセット電源線114)から電源端子(PAD110B)までの電流経路を抵抗素子R3のみにすることにより、インピーダンス切替回路132における抵抗値を増加させ、過大な瞬時電流が流れるのを抑制する。
 一方、オールリセット動作が完了した後の、画素の読出し動作時には、インピーダンス切替制御パルスφRSW3はハイレベル(H)となり、画素部の制御線(リセット電源線114)から電源端子(PAD110B)までの電流経路を抵抗素子R3とトランジスタM3とすることにより、オールリセット動作時よりも抵抗値を低下させ、前述した読出し動作時の制御線(リセット電源線114)の電位の変動を抑制することで、ノイズの発生を抑制することができる。また、電圧変化を緩和できるので、ラッチアップを生じるおそれを大幅に低減することができる。
 図9は、本実施形態の画素部のリセットパルスφRSを供給するための回路の一例を示す図である。同図で示すドライバ回路103Cは、図1に示すドライバ回路103の一部である。
 図9に示すように、ドライバ回路103Cは、単位画素セルに対応して設けられ、MPX回路104から出力された信号RS_IN(N)、RS_IN(N-1)…がそれぞれ入力された複数のバッファ回路DRVを有している。この複数のバッファ回路DRVは、共通の電源配線RS_Lに接続されているとともに、リセット電源線114を介してリセットパルスφRS(N)、φRS(N-1)…をリセットトランジスタ124のゲート電極に供給する。
 電源配線VDDCELL_Lは外部容量Cout_Cに接続されたPAD110Cに接続されており、PAD110Cとバッファ回路DRVとの間における電源配線RS_Lには、図7に示すインピーダンス切替回路130と同様の構成を有するインピーダンス切替回路133が設けられている。すなわち、インピーダンス切替回路133は、並列接続された抵抗素子R4とトランジスタM4とを有する。トランジスタM4の動作は、インピーダンス切替制御パルスφRSW4により制御される。
 インピーダンス切替制御パルスφRSW4は、オールリセット動作時にローレベル(L)となり、画素セル101の制御線(リセット制御線113)から電源端子(PAD110C)までの電流経路を抵抗素子R4のみにすることにより、インピーダンス切替回路133における抵抗値を増加させ、過大な瞬時電流が流れるのを抑制する。
 一方、オールリセット動作が完了した後の、画素の読出し動作時には、インピーダンス切替制御パルスφRSW4はハイレベル(H)となり、画素部の制御線(リセット制御線113)から電源端子(PAD110C)までの電流経路を抵抗素子R4とトランジスタM4とすることにより、オールリセット動作時よりも抵抗値を低下させ、前述した読出し動作時の制御線(リセット制御線113)の電位の変動を抑制することで、ノイズの発生を抑制することができる。また、電圧変化を緩和できるので、ラッチアップを生じるおそれを大幅に低減することができる。
 以上のように、インピーダンス切替回路を設けることで、読出し動作時における画素セル101の制御線(リセット制御線113、リセット電源線114)から見た電源端子(あるいは電源配線)までの共通インピーダンス値がオールリセット動作時よりも小さくなる。すなわち、読出し動作時における電源配線のインピーダンス値がオールリセット動作時よりも小さくなる。
 なお、オールリセット動作を行うグローバルシャッター方式は主に静止画撮像時に使用され、オールリセット動作時にはインピーダンス切替回路130の抵抗値がより大きくなるよう制御される。動画撮像時にはシャッタ動作はローリングシャッタ方式であり、この場合は、読出し動作と同様に行単位で画素セルをアクセスするため、インピーダンス切替回路130の抵抗値はオールリセット動作時よりも低く制御される。
 図10は、本実施形態の画素部の転送トランジスタを駆動するための回路の別例を示す図である。なお、図7に示す回路と同じ構成要素には同じ符号を付して説明を省略し、以下、図7に示す回路との相違点について主として説明する。
 図10に示す変形例では、インピーダンス切替回路131が、トランジスタM1とトランジスタM2とが並列に接続された形で構成され、トランジスタM1のゲート電極にはインピーダンス切替制御パルスφRSW1が、トランジスタM2のゲート電極にはインピーダンス切替制御パルスφRSW2が入力されている。
 オールリセット動作時には、例えばインピーダンス切替制御パルスφRSW1をハイレベル(H)にしてトランジスタM1をオン状態とし、インピーダンス切替制御パルスφRSW2をローレベル(L)にすることでトランジスタM2をオフ状態とする。これにより、インピーダンス切替回路131の抵抗値が高くなり、瞬時電流はインピーダンス切替回路131によって制限され、電源配線TGLに過大な瞬時電流が流れるのを抑制することができる。
 読出し動作時には、インピーダンス切替制御パルスφRSW1、φRSW2を共にハイレベル(H)としてトランジスタM1、M2をオン状態とすることでインピーダンス切替回路131の抵抗値を低減する。これにより、前述した読出し動作時の制御線(転送制御線111、112)の電位の揺れが抑えられるので、ノイズの発生を抑制することができる。
 なお、図7、図10ではインピーダンス切替回路130、131における電流経路は2つである例を示したが、電流経路は3つ以上であってもよい。
 また、以上では画素セル101が2つのPDを有する例について説明したが、PDは画素セルにつき1つのみ設けられていてもよく、3つ以上設けられていてもよい。3つ以上のPDが設けられている場合は、共通のFDに接続されていてもよい。
  (第2の実施形態)
 以下、本発明の第2の実施形態に係る固体撮像装置について、図面を参照しながら説明する。なお、前述した第1の実施形態に係る固体撮像装置と異なる点を中心に説明する。
 図11は、第2の実施形態に係る固体撮像装置において、ドライバ回路203を制御するマルチプレクサ(MPX)回路204のうち転送パルス用のMPX回路の一例を示す図である。
 同図に示すように、転送パルス用のMPX回路204は、転送制御線ごとに設けられたOR回路と、当該OR回路の出力端に直列に接続されたOR回路、AND回路、及び2つのINV回路を複数有しており、垂直走査回路105から行選択パルスφVSR_OUT(2N)、φVSR_OUT(2N-1)、φVSR_OUT(2M)、φVSR_OUT(2M-1)が入力され、TG109からオールリセットパルスφALLRSTと転送パルスφTGINとが入力されている。
 なお、画素の読出し動作時に2N行目が読出し行である場合には、オールリセットパルスφALLRSTはローレベル(L)であり、行選択パルスφVSR_OUT(2N)がハイレベル(H)となり、転送パルスφTGINがハイレベル(H)となる。このとき、転送パルス出力線TGIN(2N)からハイレベル(H)が出力される。それ以外の行では転送パルス出力線からローレベル(L)が出力される。このとき、ドライバ回路203のインピーダンス切替制御パルスであるφSW1とφSW2について、読出し行である2N行目でインピーダンス切替制御パルスφSW1(N)はハイレベル(H)となり、φSW2(N)はローレベル(L)となる。
 また、オールリセット動作時には、オールリセットパルスφALLRSTとしてハイレベル(H)が出力され、転送パルスφTGINとしてハイレベル(H)が出力されることで、全行の転送パルス出力線TGINからハイレベル(H)が出力される。このとき、ドライバ回路203のインピーダンス切替制御パルスであるφSW1とφSW2について、全行ともにインピーダンス切替制御パルスφSW1はローレベル(L)となり、φSW2はハイレベル(H)となる。
 図12は、本発明の第2の実施形態に係る固体撮像装置について、画素アレイ部102とドライバ回路203の一例を示す図である。同図では、オールリセット動作時を示している。図12では、光照射列の画素セルを画素セル101a、定電流源を定電流源106aとし、ダーク列の画素セルを画素セル101b、定電流源を定電流源106bとする。
 図12には、画素アレイ部102と、ドライバ回路203と、抵抗素子(インピーダンス素子)R2を有するインピーダンス切替回路134と、電源端子用のPAD110と、外部容量Coutと、定電流源106a、106bとが示されている。ドライバ回路203のバッファ回路DRVは行毎に配置され、バッファ回路DRVのローレベル(L)用の電源配線TGLaとTGLbの2経路存在する。
 例えば、φTGIN(2N)が供給されているバッファ回路DRVは、バッファ回路DRVからトランジスタ(スイッチ)Na1を介して電源配線TGLaと接続され、トランジスタ(スイッチ)Nb1を介して電源配線TGLbと接続されている。トランジスタNa1のゲート電極にはMPX回路204から出力されるインピーダンス切替制御パルスφSW1が入力され、トランジスタNb1のゲート電極には、インピーダンス切替制御パルスφSW2が供給される。
 また、バッファ回路DRVのローレベル(L)用の電源配線TGLbには、トランジスタへの分岐点と電源端子用のPAD110との間に抵抗素子R2が設けられている。
 ここで、オールリセット動作時には、インピーダンス切替制御パルスφSW1がローレベル(L)となり、電源配線TGLaと接続するトランジスタNaはオフ状態となる。また、インピーダンス切替制御パルスφSW2はハイレベル(H)となり、電源配線TGLbと接続するトランジスタNbはオン状態となる。これにより、オールリセット動作時には、バッファ回路DRVのローレベル(L)の電位は抵抗素子R2をPAD間で接続された電源配線TGLbから供給されるため、抵抗素子R2により過大な瞬時電流が流れるのを抑制することができる。なお、トランジスタを抵抗素子として用いて瞬時電流を制限してもよい。また、これは転送パルス用のドライバ回路に限ったことではなく、同様の構成は、リセットパルスφRS用のドライバ回路や、リセット電源φVDDCELL用のドライバ回路に対しても有効である。
 図13は、本発明の第2の実施形態に係る固体撮像装置について、画素アレイ部102とドライバ回路203の一例を示す図である。同図は、画素読出し動作時を示している。
 図13において、図12に示す回路と同じ構成要素には同じ符号を付して説明を省略し、以下、図12に示す回路との相違点について主として説明する。画素の読出し動作時であるため、転送パルスφTGIN(2N)が入力されている行を画素の読出し動作として選択された選択行とする。
 画素セル101(画素セル101a)において、選択行における転送トランジスタ123aと接続されたフローティングディフュージョンFD(N)126aと接続されている隣接行の転送トランジスタ122aでは、ゲート電極に転送パルスφTGIN(2N-1)が供給される。転送パルスφTG(N)が入力される行を選択行とし、転送パルスφTG(N-1)が入力される行を非選択行とする。その他の行も非選択行とする。
 画素の読出し動作時には、共通のFD126aに接続された選択行及び非選択行、インピーダンス切替制御パルスφSW1(N)としてハイレベル(H)が入力され、トランジスタNa1、Na2がオン状態となり、電源配線TGLaとバッファ回路DRVとは導通状態となる。また、インピーダンス切替制御パルスφSW2(N)はローレベル(L)となって、トランジスタNb1、Nb2がオフ状態となり、電源配線TGLbとバッファ回路DRVとは非導通状態となる。
 一方、その他の非選択行では、インピーダンス切替制御パルスφSW1はローレベル(L)となり、トランジスタNaがオフ状態となり、電源配線TGLaとバッファ回路DRVとは非導通状態となる。また、インピーダンス切替制御パルスφSW2はハイレベル(H)となり、トランジスタNbがオン状態となり、電源配線TGLbとバッファ回路DRVとは導通状態となる。
 このとき、光照射画素である画素セル101aにおいて、PD121aからFD126aに電荷転送が行われると、電荷はここでは電子であるため、FD126aの電位が低下する。これに伴い、増幅トランジスタ125aのソース電極に接続された垂直信号線VLaの電位もまた低下する。
 ここで、転送トランジスタは画素数に応じた個数存在するため、転送トランジスタを制御する転送制御線111、112は画素数に応じた行数分の本数が存在する。転送制御線111、112は水平方向に、垂直信号線VLは垂直方向に配線されるため、各配線は少なくとも行数分は交差するポイントがあり、交差点において寄生容量が発生する。この寄生容量により、垂直信号線VLaの電位低下が、転送制御線111、112に伝搬し、転送制御線111、112に供給されていた転送パルスのローレベル(L)の電位が低下する。
 このとき、選択行においては、PAD110まで抵抗素子が設けられない電源配線TGLaによって電源が供給されるため、転送制御線111、112の変動が生じても時定数は小さく、電源配線TGLaの電位変動は外部容量Coutにより抑制される。
 一方、非選択行の転送制御線111、112の電位変動はPAD110までの間に抵抗素子R2が挿入されているため、外部容量Coutからみた非選択行の転送制御線111、112の時定数は画素アレイ部102内に生じる寄生容量と合わさって、読出し動作期間内では電位変動を収束できないほど大きくなる。しかし、選択行においては抵抗素子が設けられない電源配線TGLaに転送制御線111、112が接続されるため、選択行の転送制御線111、112と非選択行の転送制御線111、112からPAD110までみた共通インピーダンス値(すなわち電源配線のインピーダンス値)が小さく抑えられる。そのため、非選択行における転送パルスのローレベル(L)の電位変動が、選択行に回り込む(選択行に伝搬する)のを抑制することができる。結果として、画素の読出し動作時には、転送制御線111、112の電位変動によるノイズの発生を抑制することができ、かつオールリセット動作時には、過大な瞬時電流が流れるのを抑制することができる。
 なお、バッファ回路DRVのローレベル(L)が負電圧の場合でも、同様にオールリセット動作時に過大な瞬時電流がさらに流れやすくなるため、本実施形態のドライバ回路203を設けるのが有効である。これにより、読出し動作時に画素セル101の制御線(リセット制御線113、リセット電源線114)から見た電源端子(PAD110)までの共通インピーダンス値(すなわち、電源配線のインピーダンス値)をオールリセット動作時における共通インピーダンス値よりも小さくすることができる。この場合、過大な瞬時電流が1つの経路に集中することを防ぐため、負電圧であるバッファ回路DRVのローレベル(L)の電源配線に、グランド電源側がアノードに、バッファ回路DRVのローレベル(L)の電源配線側がカソードとなるようにダイオード素子を配置してもよい。これにより、オールリセット動作時に、抵抗成分と瞬時電流による電位上昇によりダイオードがオン状態となり、瞬時電流が流れるときだけ、グランド電源に瞬時電流を流す経路が形成できる。これにより、瞬時電流を流す経路を分散することができ、ある特定の配線に過大な瞬時電流が流れるのを抑制することができる。
 なお、リセットパルスφRSを供給するドライバ回路および画素のリセット電源φVDDCELLを供給するドライバ回路においても、前述したような垂直信号線VLの電位変動が寄生容量によりリセット制御線113、リセット電源線114に伝搬し、選択行のダーク画素のFDへ寄生容量を介して伝搬する可能性があるため、図13に示すのと同様のドライバ回路203を設けることが有効である。
 図14(a)、(b)は、本発明の第2の実施形態に係る固体撮像装置について、インピーダンス切替回路134の別例をそれぞれ示している。
 図14(a)が示す例では、バッファ回路DRVのローレベル(L)用の電源配線TGLaはそのままPAD110と接続し、電源配線TGLbとPAD110との間にトランジスタM5と抵抗素子R2とが直列に接続されている。また、トランジスタM5を制御するインピーダンス切替制御パルスφRSW5がトランジスタM5のゲート電極に接続されている。
 ここで、オールリセット動作時にはトランジスタM5がオンし、電源配線TGLbに外部容量Coutから電源が供給される。
 次に、画素の読出し動作時にはトランジスタM5がオフし、電源配線TGLaとTGLbの経路を完全に切り離す。これにより、電源配線TGLbで発生したノイズが電源配線TGLaに回り込むのを防ぐことができるので、固体撮像装置の特性劣化を抑制することができる。
 なお、ローリングシャッター動作時には、「PDリセット/FD非選択電位書き込み」を行う画素信号リセット動作と露光以降の画素読出し動作とを行うが、画素読出し動作時にはトランジスタM5はオフし、電源配線TGLaとTGLbの経路を完全に切り離す。画素信号リセット動作時にはトランジスタM5をオンし、非選択画素に外部容量Coutから電源を供給する。
 図14(b)に示す例では、バッファ回路DRVのローレベル(L)用の電源配線TGLaはそのままPAD120と接続し、電源配線TGLbとPAD110との間に直列に抵抗素子R2が接続されている。また、PAD110とPAD120を接続するトランジスタM6が設けられ、トランジスタM6を制御するインピーダンス切替制御パルスφRSW6はトランジスタM6のゲート電極に接続されている。
 ここで、オールリセット動作時には、トランジスタM6がオンし、電源配線TGLbに外部容量Coutに加えて外部容量Cout1からも電源が供給される。
 次に、画素の読出し動作時には、トランジスタM6がオフし、電源配線TGLaとTGLbの経路を完全に切り離す。これにより、電源配線TGLbで発生したノイズが電源配線TGLaに回り込むのを防ぐことができるので、固体撮像装置の特性劣化を抑制することができる。
 なお、ローリングシャッター動作の画素読出し動作時には、トランジスタM6はオフし、電源配線TGLaとTGLbの経路を完全に切り離し、画素信号リセット動作時はトランジスタM6をオンし、非選択画素に外部容量CoutとCout1から電源を供給する。
  (第3の実施形態)
 以下、本発明の第3の実施形態に係る撮像装置について、図面を参照しながら説明する。なお、本実施形態は、前述の第1又は第2の実施形態(各変形例を含む)の固体撮像装置を、例えば、動画撮影可能なビデオカメラや静止画撮影用のデジタルスチルカメラに内蔵されるカメラ等の撮影装置に適用したものである。
 図15は、本実施形態に係る撮影装置の構成を示すブロック図である。同図に示すように、本実施形態の撮像装置140は、固体撮像装置141と、固体撮像装置141に被写体からの入射光を導く撮像光学系142と、固体撮像装置141からの出力信号を処理する信号処理部143と、固体撮像装置141を駆動する駆動回路144と、駆動回路144を制御するシステム制御部145とを備えている。
 ここで、図15に示す撮像装置140において、固体撮像装置141として、前述の第1又は第2の実施形態(各変形例を含む)の固体撮像装置が使用される。
 また、駆動回路144は、システム制御部145から駆動モードに応じた制御信号を受け、固体撮像装置141に駆動モード信号を供給する。駆動モード信号を供給された固体撮像装置141においては、タイミング発生回路(図1に示すTG109)が、駆動モード信号に対応した駆動パルスを生成して、固体撮像装置141内の各ブロックに当該駆動パルスを供給する。
 また、信号処理部143は、固体撮像装置141から出力された画像信号を受けて、当該画像信号に対して各種の信号処理を行う。
 以上のように、ビデオカメラやデジタルスチルカメラなどに用いられる本実施形態の撮影装置においては、前述の第1又は第2の実施形態(各変形例を含む)の固体撮像装置が用いられているため、当該固体撮影装置では、オールリセット時の瞬時電流を抑制しつつ、画素読出し動作時に、画素を駆動する制御線の電位変動を抑制することで、制御線の電位変動に起因するノイズを抑制することができる。そのため、本実施形態の撮像装置によれば、撮像画像の画質をより向上させることができる。
 なお、以上で説明した固体撮像装置及び撮像装置の回路構成や駆動方法などは、本発明の趣旨を逸脱しない範囲内において適宜変更可能である。
 本発明の一例に係る固体撮像装置及びその駆動方法はビデオカメラ、デジタルスチルカメラ等の種々の撮像装置に好適に用いられる。
100、141   固体撮像装置
101   画素セル
102   画素アレイ部
103、203   ドライバ回路
104、204   MPX回路
105   垂直走査回路
106   定電流源
106a、106b   定電流源
107   カラム読出し回路
108   水平走査回路
109   TG
110   PAD 
111、112  転送制御線
113   リセット制御線
114   リセット電源線
115   選択制御線
120、121、121a   PD
122、122a、123、123a  転送トランジスタ
124   リセットトランジスタ
125、125a   増幅トランジスタ
126、126a   FD
127   選択トランジスタ
130、131、132、133   インピーダンス切替回路
140   撮像装置
142   撮像光学系
143   信号処理部
144   駆動回路
145   システム制御部
M0、M1、M2、Na1、Na2、Nb1、Nb2   トランジスタ

Claims (14)

  1.  入射光を信号電荷に変換する光電変換素子と、フローティングディフュージョンと、前記光電変換素子で生成された前記信号電荷を前記フローティングディフュージョンに転送する転送トランジスタと、前記フローティングディフュージョンに転送された前記信号電荷を電圧信号である画素信号に変換して出力する増幅トランジスタと、前記フローティングディフュージョンにリセット電位を供給するリセットトランジスタとをそれぞれ有する複数の画素が行列状に配置されてなる画素アレイ部と、
     前記画素アレイ部における画素行ごとに設けられた複数の制御線を介して前記転送トランジスタ及び前記リセットトランジスタの動作を制御し、電源配線に接続されたドライバ回路とを備え、
     前記ドライバ回路により、全ての前記複数の画素の前記信号電荷がリセットされるオールリセット動作と、前記画素アレイ部における画素の行ごとに前記画素信号の読み出し動作とが行われ、
     前記読み出し動作時における前記電源配線のインピーダンス値を、前記オールリセット動作時における前記電源配線のインピーダンス値よりも小さくするインピーダンス制御手段をさらに備えている固体撮像装置。
  2.  請求項1に記載の固体撮像装置において、
     前記インピーダンス制御手段として、前記電源配線に接続され、切替可能な2以上の電流経路を有するインピーダンス切替回路を備えていることを特徴とする固体撮像装置。
  3.  請求項2に記載の固体撮像装置において、
     前記インピーダンス切替回路は、前記電源配線に対して互いに並列に接続された第1のトランジスタと第1のインピーダンス素子とを有しており、
     前記オールリセット動作時には前記第1のトランジスタはオフにされ、前記読み出し動作時には前記第1のトランジスタはオンにされることを特徴とする固体撮像装置。
  4.  請求項2に記載の固体撮像装置において、
     前記インピーダンス切替回路は、前記電源配線に対して互いに並列に接続された第2のトランジスタと第3のトランジスタとを有していることを特徴とする固体撮像装置。
  5.  請求項1~3のうちいずれか1つに記載の固体撮像装置において、
     前記読み出し動作時には、前記画素アレイ部における画素の行のいずれかの行が順次選択され、
     前記読み出し動作時に選択された行の前記画素に接続された前記制御線及び前記電源配線のうち、非選択の行の前記画素に接続された前記制御線及び前記電源配線との共通部分の前記読み出し動作時におけるインピーダンス値は、前記オールリセット動作時における前記共通部分のインピーダンス値よりも小さいことを特徴とする固体撮像装置。
  6.  請求項1~5のうちいずれか1つに記載の固体撮像装置において、
     前記複数の制御線は、前記転送トランジスタのゲート電極に接続された第1の制御線を含んでおり、
     前記電源配線は、前記転送トランジスタを非導通状態にするための電位を前記第1の制御線に供給する配線であり、
     前記インピーダンス制御手段は、前記読み出し動作時における前記電源配線のインピーダンス値を、前記オールリセット動作時における前記電源配線のインピーダンス値よりも小さくすることを特徴とする固体撮像装置。
  7.  請求項1~6のうちいずれか1つに記載の固体撮像装置において、
     前記電源配線は負電位を供給することを特徴とする固体撮像装置。
  8.  請求項1に記載の固体撮像装置において、
     前記電源配線は、第1の電源配線と第2の電源配線とを有しており、
     前記ドライバ回路は、前記画素の行ごとに設けられ、前記第1及び第2の電源配線に接続された複数のバッファ回路を有しており、
     前記第2の電源配線上に設けられた第2のインピーダンス素子と、
     前記第1の電源配線と前記バッファ回路との間に設けられた第1のスイッチと、
     前記第2の電源配線と前記バッファ回路との間に設けられた第2のスイッチとをさらに備え、
     前記インピーダンス制御手段は、前記第1の電源配線、前記第2の電源配線、前記第1のスイッチ、前記第2のスイッチ、及び前記第2のインピーダンス素子を有していることを特徴とする固体撮像装置。
  9.  請求項8に記載の固体撮像装置において、
     前記第1の電源配線と、前記第2の電源配線との間に接続を制御する第3のスイッチを有していることを特徴とする固体撮像装置。
  10.  請求項8又は9に記載の固体撮像装置において、
     前記複数の制御線は、前記転送トランジスタのゲート電極に接続された第2の制御線を含んでおり、
     前記第1の電源配線又は前記第2の電源配線は、前記転送トランジスタを非導通状態にするための電位を前記第2の制御線に供給する配線であり、
     前記インピーダンス制御手段は、前記読み出し動作時における前記電源配線のインピーダンス値を、前記オールリセット動作時における前記電源配線のインピーダンス値よりも小さくすることを特徴とする固体撮像装置。
  11.  請求項10に記載の固体撮像装置において、
     前記オールリセット動作時には、前記第1のスイッチはオフ、前記第2のスイッチはオンにされ、
     前記読み出し動作時には、前記画素信号を読み出すために選択された列では前記第1のスイッチはオン、前記第2のスイッチはオフにされ、選択されない列では前記第1のスイッチはオフ、前記第2のスイッチはオンにされることを特徴とする固体撮像装置。
  12.  請求項1~11のうちいずれか1つに記載の固体撮像装置において、
     前記複数の画素の各々には、複数の前記転送トランジスタが設けられており、
     前記フローティングディフュージョンには、複数の前記転送トランジスタが接続されていることを特徴とする固体撮像装置。
  13.  入射光に応じた画素信号を出力する固体撮像装置と、
     前記固体撮像装置に前記入射光を導く撮像光学系と、
     前記固体撮像装置から出力された前記画素信号を処理する信号処理部とを備え、
     前記固体撮像装置は、
     前記入射光を信号電荷に変換する光電変換素子と、フローティングディフュージョンと、前記光電変換素子で生成された前記信号電荷を前記フローティングディフュージョンに転送する転送トランジスタと、前記フローティングディフュージョンに転送された前記信号電荷を電圧信号である前記画素信号に変換して出力する増幅トランジスタと、前記フローティングディフュージョンにリセット電位を供給するリセットトランジスタとをそれぞれ有する複数の画素が行列状に配置されてなる画素アレイ部と、
     前記画素アレイ部における画素列ごとに設けられた複数の制御線を介して前記転送トランジスタ及び前記リセットトランジスタの動作を制御し、電源配線に接続されたドライバ回路とを有し、
     前記ドライバ回路により、全ての前記複数の画素の前記信号電荷がリセットされるオールリセット動作と、前記画素アレイ部における画素の行ごとに前記画素信号の読み出し動作とが行われ、
     前記読み出し動作時における前記電源配線のインピーダンス値を、前記オールリセット動作時における前記電源配線のインピーダンス値よりも小さくするインピーダンス制御手段をさらに有している撮像装置。
  14.  請求項13に記載の撮像装置において、
     前記固体撮像装置の外部に配置された容量をさらに備え、
     前記固体撮像装置は、前記電源配線及び前記容量のそれぞれに接続されたパッドをさらに有していることを特徴とする撮像装置。
PCT/JP2012/003164 2011-05-26 2012-05-15 固体撮像装置及び撮像装置 WO2012160775A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013516191A JP6057218B2 (ja) 2011-05-26 2012-05-15 固体撮像装置及び撮像装置
US14/084,381 US9172893B2 (en) 2011-05-26 2013-11-19 Solid-state imaging device and imaging apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011118098 2011-05-26
JP2011-118098 2011-05-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/084,381 Continuation US9172893B2 (en) 2011-05-26 2013-11-19 Solid-state imaging device and imaging apparatus

Publications (1)

Publication Number Publication Date
WO2012160775A1 true WO2012160775A1 (ja) 2012-11-29

Family

ID=47216869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003164 WO2012160775A1 (ja) 2011-05-26 2012-05-15 固体撮像装置及び撮像装置

Country Status (3)

Country Link
US (1) US9172893B2 (ja)
JP (1) JP6057218B2 (ja)
WO (1) WO2012160775A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726550A (zh) * 2020-08-05 2020-09-29 锐芯微电子股份有限公司 图像传感器像素电路及图像传感器像素电路的工作方法
US11832010B2 (en) 2021-04-02 2023-11-28 Canon Kabushiki Kaisha Conversion apparatus, apparatus, and substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5478905B2 (ja) * 2009-01-30 2014-04-23 キヤノン株式会社 固体撮像装置
JP2015198315A (ja) * 2014-04-01 2015-11-09 キヤノン株式会社 固体撮像装置及び撮像システム
TWI559771B (zh) * 2014-07-31 2016-11-21 義隆電子股份有限公司 主動式像素感測裝置及其操作方法
KR102365594B1 (ko) * 2015-03-26 2022-02-22 주식회사 메타바이오메드 외과용 클립
JP2018046447A (ja) * 2016-09-15 2018-03-22 ソニーセミコンダクタソリューションズ株式会社 撮像素子および駆動方法、並びに電子機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113208A (ja) * 1992-09-30 1994-04-22 Canon Inc 固体撮像素子の信号読み出し方法及び固体撮像素子
JP2006319684A (ja) * 2005-05-13 2006-11-24 Sony Corp 撮像装置と撮像装置用の電源供給方法
JP2009296400A (ja) * 2008-06-06 2009-12-17 Sony Corp 固体撮像素子およびカメラシステム
JP2010263343A (ja) * 2009-05-01 2010-11-18 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06113208A (ja) * 1992-09-30 1994-04-22 Canon Inc 固体撮像素子の信号読み出し方法及び固体撮像素子
JP2006319684A (ja) * 2005-05-13 2006-11-24 Sony Corp 撮像装置と撮像装置用の電源供給方法
JP2009296400A (ja) * 2008-06-06 2009-12-17 Sony Corp 固体撮像素子およびカメラシステム
JP2010263343A (ja) * 2009-05-01 2010-11-18 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111726550A (zh) * 2020-08-05 2020-09-29 锐芯微电子股份有限公司 图像传感器像素电路及图像传感器像素电路的工作方法
US11832010B2 (en) 2021-04-02 2023-11-28 Canon Kabushiki Kaisha Conversion apparatus, apparatus, and substrate

Also Published As

Publication number Publication date
JP6057218B2 (ja) 2017-01-11
JPWO2012160775A1 (ja) 2014-07-31
US20140078363A1 (en) 2014-03-20
US9172893B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
EP3681148B1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
US9961262B2 (en) Solid-state imaging device having a switchable conversion gain in the floating diffusion, method for driving solid-state imaging device, and electronic apparatus
JP6057218B2 (ja) 固体撮像装置及び撮像装置
US9253425B2 (en) Photo-electric conversion device for current fluctuation suppression
TWI478578B (zh) 固態影像拾取器件、驅動其之方法、用於其之信號處理方法、以及影像拾取裝置
TWI412271B (zh) 固態成像裝置、相機、及電子裝置
JP6052622B2 (ja) 固体撮像装置及びその駆動方法
US20130126710A1 (en) Solid-state imaging device and imaging device
JP6172608B2 (ja) 固体撮像装置、その駆動方法及び撮影装置
JP2013051674A (ja) 周辺回路を配置しチップ面積増大を抑制した撮像素子及び撮像装置
JP2011114324A (ja) 固体撮像装置及び電子機器
JP2008042239A (ja) 光電変換装置及びそれを用いた撮像システム
WO2020059580A1 (ja) 固体撮像装置及び電子機器
US9426391B2 (en) Solid-state imaging apparatus, method of controlling the same, and imaging system
JP2014041972A (ja) 固体撮像装置および撮像装置
US20230353898A1 (en) Solid-state imaging device, method for driving solid-state imaging device, and electronic apparatus
JP2017092990A (ja) 撮像素子及び撮像装置
JP2009225301A (ja) 光電変換装置の駆動方法
JP2017188842A (ja) 固体撮像装置及び撮像システム
JP2021028989A (ja) 撮像装置、撮像システム、および撮像装置の駆動方法
JP7160129B2 (ja) 撮像素子および撮像装置
JP5142694B2 (ja) 撮像装置、撮像装置の駆動方法、及び撮像システム
JP2018088717A (ja) 固体撮像装置
WO2015111370A1 (ja) 固体撮像装置及び撮像装置
JP2004179902A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788954

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12788954

Country of ref document: EP

Kind code of ref document: A1