WO2012157909A1 - 신규한 화합물 반도체 및 그 활용 - Google Patents

신규한 화합물 반도체 및 그 활용 Download PDF

Info

Publication number
WO2012157909A1
WO2012157909A1 PCT/KR2012/003732 KR2012003732W WO2012157909A1 WO 2012157909 A1 WO2012157909 A1 WO 2012157909A1 KR 2012003732 W KR2012003732 W KR 2012003732W WO 2012157909 A1 WO2012157909 A1 WO 2012157909A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound semiconductor
present
heat treatment
group
formula
Prior art date
Application number
PCT/KR2012/003732
Other languages
English (en)
French (fr)
Inventor
박철희
김태훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP12785800.9A priority Critical patent/EP2708500B1/en
Priority to JP2014505094A priority patent/JP5759616B2/ja
Priority to CN201280023009.3A priority patent/CN103534200B/zh
Priority to US13/617,064 priority patent/US8658063B2/en
Publication of WO2012157909A1 publication Critical patent/WO2012157909A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/006Compounds containing, besides cobalt, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a novel compound semiconductor material that can be used for solar cells, thermoelectric materials and the like, a method for producing the same, and a use thereof.
  • Compound A semiconductor is a compound which acts as a semiconductor by combining two or more elements rather than a single element such as silicon or germanium.
  • Various kinds of such compound semiconductors are currently developed and used in various fields.
  • a compound semiconductor may be used in a thermoelectric conversion element using a Peltier effect, a light emitting element such as a light emitting diode or a laser diode using the photoelectric conversion effect, and a solar cell.
  • thermoelectric conversion element may be applied to thermoelectric conversion power generation, thermoelectric conversion cooling, etc.
  • thermoelectric conversion power generation uses a thermoelectric power generated by providing a temperature difference to the thermoelectric conversion element, and converts thermal energy into electrical energy. to be.
  • thermoelectric conversion element The energy conversion efficiency of such a thermoelectric conversion element depends on ZT, which is a figure of merit value of the thermoelectric conversion material.
  • ZT is determined according to Seebeck coefficient, electrical conductivity and thermal conductivity, and more specifically, is proportional to the square of the Seebeck coefficient and electrical conductivity and inversely proportional to the thermal conductivity. Therefore, in order to increase the energy conversion efficiency of the thermoelectric conversion element, it is necessary to develop a thermoelectric conversion material having a high Seebeck coefficient or high electrical conductivity or low thermal conductivity.
  • the solar cell is a tandem solar cell in which two or more layers of a silicon solar cell mainly using a single element of silicon, a compound semiconductor solar cell using a compound semiconductor, and a solar cell having different bandgap energy are stacked. And the like.
  • compound semiconductor solar cells use compound semiconductors in the light absorption layer that absorbs sunlight to generate electron-hole pairs.
  • group III-V compound semiconductors such as GaAs, InP, GaAlAs, GaInAs, CdS, CdTe, Group II-VI compound semiconductors, such as ZnS, the group I-III-VI compound semiconductor represented by CuInSe 2 , etc. can be used.
  • the light absorbing layer of the solar cell is required to be excellent in long-term electrical and optical stability, high in photoelectric conversion efficiency, and to easily control band gap energy or conductivity by changing composition or doping.
  • requirements such as manufacturing cost and yield must also be satisfied.
  • many conventional compound semiconductors do not meet all of these requirements together.
  • thermoelectric conversion materials such as thermoelectric conversion materials, solar cells, etc. of thermoelectric conversion elements
  • thermoelectrics using the same It aims at providing a conversion element, a solar cell, etc.
  • the present inventors have succeeded in synthesizing the compound semiconductor represented by the following formula (1) after repeated studies on the compound semiconductor, and the compound is a thermoelectric conversion material of a thermoelectric conversion element, a light absorbing layer of a solar cell, It was confirmed that it can be used to complete the present invention.
  • M is Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy At least one selected from the group consisting of Ho, Er, Tm, Yb, and Lu, A is at least one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir, and Pt, and X is Si At least one selected from the group consisting of Ga, Ge, and Sn, and 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 9, 0 ⁇ z ⁇ 2, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 3 and 0 ⁇ n + z + b ⁇ 12.
  • x is 0 ⁇ x ⁇ 0.25.
  • x and y may be 0 ⁇ x + y ⁇ 1.
  • n and z may be 0 ⁇ n + z ⁇ 9.
  • the compound semiconductor manufacturing method according to the present invention for achieving the above object, In, Co, Sb and Te, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Mix any one or two or more elements thereof or oxides thereof selected from the group consisting of Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu Making; And heat treating the mixture formed in the mixing step.
  • the mixture formed in the mixing step further includes any one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir and Pt or two or more elements thereof or oxides thereof.
  • the mixture formed in the mixing step may further include any one selected from the group consisting of Si, Ga, Ge, and Sn or two or more elements thereof or oxides thereof.
  • the heat treatment step is performed at 400 °C to 800 °C.
  • the heat treatment step may include two or more heat treatment steps.
  • thermoelectric conversion element according to the present invention for achieving the above object includes the compound semiconductor described above.
  • the solar cell according to the present invention for achieving the above object includes the compound semiconductor described above.
  • a novel compound semiconductor material is provided.
  • such a novel compound semiconductor can be used as another material in place of or in addition to the conventional compound semiconductor.
  • thermoelectric conversion performance of the compound semiconductor is good, it can be usefully used in the thermoelectric conversion element.
  • the compound semiconductor according to the present invention may be improved in the thermal conductivity characteristics, ZT value of the thermoelectric performance index can be improved. Therefore, in the case of the compound semiconductor according to the present invention, it can be suitably used as a thermoelectric conversion material of the thermoelectric conversion element.
  • a compound semiconductor may be used in a solar cell.
  • the compound semiconductor according to the present invention can be used as a light absorption layer of a solar cell.
  • the compound semiconductor may be used in an IR window, an infrared sensor, a magnetic element, a memory, etc. for selectively passing infrared rays.
  • 1 is a graph illustrating thermal conductivity values according to temperature changes of compound semiconductors of Examples and Comparative Examples manufactured according to the present invention.
  • the present invention provides a novel compound semiconductor represented by the following formula (1).
  • M is Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy At least one selected from the group consisting of Ho, Er, Tm, Yb, and Lu, A is at least one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir, and Pt, and X is Si At least one selected from the group consisting of Ga, Ge, and Sn.
  • x, y, m, n, z, a and b are 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 9, 0 ⁇ z ⁇ 2, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 3 and 0 ⁇ n + z + b ⁇ 12 are satisfied.
  • x may satisfy a range of 0 ⁇ x ⁇ 0.25.
  • x and y may satisfy a range of 0 ⁇ x + y ⁇ 1.
  • n and z may satisfy 0 ⁇ n + z ⁇ 9.
  • a may satisfy a range of 0 ⁇ a ⁇ 0.5.
  • b may satisfy a range of 0 ⁇ b ⁇ 1.
  • b in Formula 1 satisfies the range of 0 ⁇ b ⁇ 0.5.
  • n, z, and b may satisfy a range of 0 ⁇ n + z + b ⁇ 3.
  • the compound semiconductor represented by Formula 1 may include a part of the secondary phase, the amount may vary depending on the heat treatment conditions.
  • the compound semiconductors described above include In, Co, Sb, and Te, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm Forming a mixture including any one selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, or an oxide thereof or an oxide thereof; And heat-treating the mixture.
  • the mixture may further include any one selected from the group consisting of Fe, Ni, Ru, Rh, Pd, Ir, and Pt or two or more elements thereof or oxides thereof.
  • the mixture may further include any one selected from the group consisting of Si, Ga, Ge, and Sn or two or more elements thereof or oxides thereof.
  • each raw material mixed in the mixture forming step may be in powder form, but the present invention is not necessarily limited to the specific type of such mixed raw material.
  • the heat treatment step may be performed while flowing a gas such as Ar, He, N 2 , which contains a part of hydrogen or does not include hydrogen, in a vacuum.
  • the heat treatment temperature may be 400 °C to 800 °C.
  • the heat treatment temperature may be 450 °C to 700 °C. More preferably, the heat treatment temperature may be 500 °C to 650 °C.
  • the heat treatment step may include two or more heat treatment steps.
  • the mixture formed in the step of forming the mixture that is, mixing the raw materials, may be subjected to a first heat treatment at a first temperature, and then to a second heat treatment at a second temperature.
  • some heat treatment steps of the plurality of heat treatment steps may be performed in the mixture forming step of mixing the raw materials.
  • the heat treatment step may include three heat treatment steps of a first heat treatment step, a second heat treatment step, and a third heat treatment (sintering) step.
  • the first heat treatment step may be performed at a temperature range of 400 ° C. to 600 ° C.
  • the second heat treatment step and the third heat treatment step may be performed at a temperature range of 600 ° C. to 800 ° C.
  • FIG. the first heat treatment step may be performed during the mixture formation step of mixing the raw materials, and the second heat treatment step and the third heat treatment step may be sequentially performed thereafter.
  • thermoelectric conversion element according to the present invention may include the compound semiconductor described above. That is, the compound semiconductor according to the present invention can be used as a thermoelectric conversion material of the thermoelectric conversion element.
  • the compound semiconductor according to the present invention has a large ZT which is a figure of merit of a thermoelectric conversion material.
  • the Seebeck coefficient and electrical conductivity are high, and the thermal conductivity is low, so the thermoelectric conversion performance is excellent. Therefore, the compound semiconductor according to the present invention can be usefully used in a thermoelectric conversion element in place of or in addition to a conventional thermoelectric conversion material.
  • the solar cell according to the present invention may include the compound semiconductor described above. That is, the compound semiconductor according to the present invention can be used as a light absorbing layer of solar cells, in particular solar cells.
  • the solar cell can be manufactured in a structure in which a front transparent electrode, a buffer layer, a light absorbing layer, a back electrode, a substrate, and the like are sequentially stacked from the side where sunlight is incident.
  • the bottommost substrate may be made of glass, and the back electrode formed on the entire surface may be formed by depositing a metal such as Mo.
  • the light absorbing layer may be formed by stacking the compound semiconductor according to the present invention on the back electrode by an electron beam deposition method, a sol-gel method, or a pulsed laser deposition (PLD) method.
  • PLD pulsed laser deposition
  • the buffer layer may be formed of a material such as CdS (Chemical Bath Deposition). It can be formed by depositing in the manner of.
  • a front transparent electrode may be formed on the buffer layer by a layered film of ZnO or ZnO and ITO by sputtering or the like.
  • the solar cell according to the present invention may be variously modified.
  • stacked the solar cell using the compound semiconductor which concerns on this invention as a light absorption layer can be manufactured.
  • stacked in this way can use the solar cell using silicon or another known compound semiconductor.
  • the band gap of the compound semiconductor of the present invention by changing the band gap of the compound semiconductor of the present invention, a plurality of solar cells using compound semiconductors having different band gaps as light absorbing layers can be laminated.
  • the band gap of the compound semiconductor according to the present invention can be controlled by changing the composition ratio of the constituent elements constituting the compound, in particular Te.
  • the compound semiconductor according to the present invention may be applied to an infrared window (IR window) or an infrared sensor for selectively passing infrared rays.
  • IR window infrared window
  • infrared sensor for selectively passing infrared rays.
  • Co and Sb were prepared as reagents, and these were mixed well using mortar to prepare a mixture of In 0.25 Co 4 Sb 12 composition in pellet form. Then, heating was performed at 500 ° C. for 15 hours while flowing H 2 (1.94%) and N 2 gas, and the temperature increase time was 1 hour 30 minutes. The mixed materials were put in a silica tube and vacuum sealed and heated at 650 ° C. for 36 hours, but the temperature rise time was 1 hour 30 minutes to obtain In 0.25 Co 4 Sb 12 powder.
  • the compound semiconductor of the embodiment represented by In 0.25 Zn 0.1 Co 3.6 Rh 0.3 Sb 10.2 Sn 0.5 Te is compared with the compound semiconductor of the comparative example represented by In 0.25 Co 4 Sb 12 . It can be seen that the thermal conductivity ⁇ is significantly low over the entire temperature measurement interval.
  • the ZT value which is a thermoelectric performance index, may be expressed as follows.
  • electrical conductivity
  • S Seebeck coefficient
  • T temperature
  • thermal conductivity
  • the compound semiconductor according to the present invention Since the compound semiconductor according to the present invention has low thermal conductivity, the ZT value may be improved. Therefore, the compound semiconductor according to the present invention can be said to have excellent thermoelectric performance, and can be very usefully used as a thermoelectric conversion material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명에 따른 화합물 반도체는, 다음의 화학식 1과 같이 표시될 수 있다. <화학식 1> InxMyCo4-m-aAmSb12-n-z-bXnTez 상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2, 0≤a≤1, 0<b≤3 및 0<n+z+b<12이다.

Description

신규한 화합물 반도체 및 그 활용
본 발명은 태양 전지, 열전 재료 등의 용도로 사용될 수 있는 신규한 화합물 반도체 물질 및 그 제조방법과, 이를 이용한 용도에 관한 것이다.
본 출원은 2011년 5월 13일자로 출원된 한국 특허출원번호 제10-2011-0045348호, 2011년 5월 13일자로 출원된 한국 특허출원번호 제10-2011-0045349호, 2011년 5월 25일자로 출원된 한국 특허출원번호 제10-2011-0049609호 및 2012년 5월 11일자로 출원된 한국 특허출원번호 제10-2012-0050258호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
화합물 반도체는 실리콘이나 게르마늄과 같은 단일 원소가 아닌 2종 이상의 원소가 결합되어 반도체로서 동작하는 화합물이다. 이러한 화합물 반도체는 현재 다양한 종류가 개발되어 다양한 분야에서 사용되고 있다. 대표적으로, 펠티어 효과(Peltier Effect)를 이용한 열전 변환 소자, 광전 변환 효과를 이용한 발광 다이오드나 레이저 다이오드 등의 발광 소자와 태양 전지 등에 화합물 반도체가 이용될 수 있다.
이 중 열전 변환 소자는 열전 변환 발전이나 열전 변환 냉각 등에 적용될 수 있는데, 이 중 열전 변환 발전은 열전 변환 소자에 온도차를 둠으로써 발생하는 열기전력을 이용하여, 열 에너지를 전기 에너지로 변환시키는 발전 형태이다.
이러한 열전 변환 소자의 에너지 변환 효율은 열전 변환 재료의 성능 지수 값인 ZT에 의존한다. 여기서, ZT는 제벡(Seebeck) 계수, 전기 전도도 및 열 전도도 등에 따라 결정되는데, 보다 구체적으로는 제벡 계수의 제곱 및 전기 전도도에 비례하며, 열 전도도에 반비례한다. 따라서, 열전 변환 소자의 에너지 변환 효율을 높이기 위하여, 제백 계수 또는 전기 전도도가 높거나 열 전도도가 낮은 열전 변환 재료의 개발이 필요하다.
한편, 태양 전지는 자연에 존재하는 태양광 이외에 별도의 에너지원을 필요로 하지 않는다는 점에서 친환경적이므로, 미래의 대체 에너지원으로 활발히 연구되고 있다. 태양 전지는, 주로 실리콘의 단일 원소를 이용하는 실리콘 태양 전지와, 화합물 반도체를 이용하는 화합물 반도체 태양 전지, 그리고 서로 다른 밴드갭 에너지(bandgap energy)를 갖는 태양 전지를 둘 이상 적층한 적층형(tandem) 태양 전지 등으로 구별될 수 있다.
이 중 화합물 반도체 태양 전지는, 태양광을 흡수하여 전자-정공 쌍을 생성하는 광흡수층에 화합물 반도체를 사용하는데, 특히 GaAs, InP, GaAlAs, GaInAs 등의 Ⅲ-Ⅴ족 화합물 반도체, CdS, CdTe, ZnS 등의 Ⅱ-Ⅵ족 화합물 반도체, CuInSe2로 대표되는 Ⅰ-Ⅲ-Ⅵ족 화합물 반도체 등을 사용할 수 있다.
태양 전지의 광흡수층은, 장기적인 전기, 광학적 안정성이 우수하고, 광전 변환 효율이 높으며, 조성의 변화나 도핑에 의해 밴드갭 에너지나 도전형을 조절하기가 용이할 것 등이 요구된다. 또한, 실용화를 위해서는 제조 비용이나 수율 등의 요건도 만족해야 한다. 그러나, 종래의 여러 화합물 반도체들은 이러한 요건들을 모두 함께 만족시키지는 못하고 있다.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 열전 변환 소자의 열전 변환 재료, 태양 전지 등과 같이 다양한 용도로 활용될 수 있는 신규한 화합물 반도체 물질과 그 제조 방법, 및 이를 이용한 열전 변환 소자나 태양 전지 등을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기와 같은 목적을 달성하기 위해, 본 발명자는 화합물 반도체에 관한 거듭된 연구 끝에 하기 화학식 1로 표시되는 화합물 반도체를 합성하는데 성공하고, 이 화합물이 열전 변환 소자의 열전 변환 재료나 태양 전지의 광 흡수층 등에 사용될 수 있음을 확인하여 본 발명을 완성하였다.
<화학식 1>
InxMyCo4-m-aAmSb12-n-z-bXnTez
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2, 0≤a≤1, 0<b≤3 및 0<n+z+b<12이다.
바람직하게는, 상기 화학식 1에서 x는, 0<x≤0.25이다.
또한 바람직하게는, 상기 화학식 1에서 x 및 y는, 0<x+y≤1이다.
또한 바람직하게는, 상기 화학식 1에서 n 및 z는, 0<n+z<9이다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 화합물 반도체 제조 방법은, In, Co, Sb 및 Te와, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 혼합하는 단계; 및 상기 혼합 단계에서 형성된 혼합물을 열처리하는 단계를 포함한다.
바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
또한 바람직하게는, 상기 혼합 단계에서 형성된 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함한다.
바람직하게는, 상기 열처리 단계는, 400℃ 내지 800℃에서 수행된다.
또한 바람직하게는, 상기 열처리 단계는, 둘 이상의 열처리 단계를 포함할 수 있다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함한다.
또한 상기와 같은 목적을 달성하기 위한 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함한다.
본 발명에 의하면, 신규한 화합물 반도체 물질이 제공된다.
본 발명의 일 측면에 의하면, 이러한 신규한 화합물 반도체는 종래의 화합물 반도체를 대체하거나 종래의 화합물 반도체에 더하여 또 다른 하나의 소재로서 사용될 수 있다.
더욱이, 본 발명의 일 측면에 의하면, 화합물 반도체의 열전 변환 성능이 양호하여 열전 변환 소자에 유용하게 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 열 전도도 특성이 개선되어, 열전 성능 지수인 ZT값이 향상될 수 있다. 따라서, 본 발명에 따른 화합물 반도체의 경우, 열전 변환 소자의 열전 변환 재료로 적합하게 이용될 수 있다.
또한, 본 발명의 다른 측면에 의하면, 화합물 반도체가 태양 전지에 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 태양 전지의 광흡수층으로 이용될 수 있다.
뿐만 아니라, 본 발명의 또 다른 측면에 의하면, 화합물 반도체가 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서, 마그네틱 소자, 메모리 등에도 이용될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술하는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명에 따라 제조한 실시예 및 비교예의 화합물 반도체의 온도 변화에 따른 열 전도도 값을 도시한 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상에 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명은 다음과 같은 화학식 1로 표시되는 신규한 화합물 반도체를 제공한다.
<화학식 1>
InxMyCo4-m-aAmSb12-n-z-bXnTez
상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이다.
또한, 상기 화학식 1에서, x, y, m, n, z, a 및 b는, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2, 0≤a≤1, 0<b≤3 및 0<n+z+b<12의 범위를 만족한다.
바람직하게는, 상기 화학식 1에서 x는, 0<x≤0.25의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 x 및 y는, 0<x+y≤1의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 n 및 z는, 0<n+z<9의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 a는, 0≤a≤0.5의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 b는, 0<b≤1의 범위를 만족하는 것이 좋다.
더욱 바람직하게는, 상기 화학식 1에서 b는, 0<b≤0.5의 범위를 만족하는 것이 좋다.
또한 바람직하게는, 상기 화학식 1에서 n, z 및 b는, 0<n+z+b<3의 범위를 만족하는 것이 좋다.
한편, 상기 화학식 1로 표시되는 화합물 반도체에는, 2차상이 일부 포함될 수 있으며, 그 양은 열처리 조건에 따라 달라질 수 있다.
상술한 화합물 반도체는, In, Co, Sb 및 Te와, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 포함하는 혼합물을 형성하는 단계; 및 상기 혼합물을 열처리하는 단계를 포함하여 제조될 수 있다.
바람직하게는, 상기 혼합물 형성 단계에서 상기 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
또한 바람직하게는, 상기 혼합물 형성 단계에서 상기 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함할 수 있다.
한편, 상기 혼합물 형성 단계에서 혼합되는 각 원료는 분말 형태일 수 있으나, 본 발명이 반드시 이러한 혼합 원료의 특정 형태에 의해 제한되는 것은 아니다.
또한 바람직하게는, 상기 열처리 단계는, 진공 중 또는 수소를 일부 포함하고 있거나 수소를 포함하지 않는 Ar, He, N2 등의 기체를 흘리면서 수행될 수 있다.
이때, 열처리 온도는 400℃ 내지 800℃일 수 있다. 바람직하게는, 상기 열처리 온도는 450℃ 내지 700℃일 수 있다. 더욱 바람직하게는, 상기 열처리 온도는 500℃ 내지 650℃일 수 있다.
한편, 상기 열처리 단계는, 둘 이상의 열처리 단계를 포함할 수 있다. 예를 들어, 상기 혼합물을 형성하는 단계, 즉 원료를 혼합하는 단계에서 형성된 혼합물에 대하여, 제1 온도에서 1차 열처리를 수행한 후, 제2 온도에서 2차 열처리를 수행할 수도 있다.
이 경우, 상기 복수의 열처리 단계 중 일부 열처리 단계는, 원료를 혼합하는 상기 혼합물 형성 단계에서 수행될 수 있다.
예를 들어, 상기 열처리 단계는, 1차 열처리 단계, 2차 열처리 단계 및 3차 열처리(소결) 단계의 3개의 열처리 단계를 포함할 수 있다. 그리고, 1차 열처리 단계는 400℃ 내지 600℃의 온도 범위에서 수행될 수 있고, 2차 열처리 단계 및 3차 열처리 단계는 600℃ 내지 800℃의 온도 범위에서 수행될 수 있다. 이때, 1차 열처리 단계는 원료가 혼합되는 혼합물 형성 단계 중에 수행되고, 2차 열처리 단계 및 3차 열처리 단계는 그 이후에 순차적으로 수행될 수 있다.
본 발명에 따른 열전 변환 소자는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 열전 변환 소자의 열전 변환 재료로 이용될 수 있다. 특히, 본 발명에 따른 화합물 반도체는 열전 변환 재료의 성능 지수값인 ZT가 크다. 또한, 제백 계수 및 전기 전도도가 크고, 열 전도도가 낮아 열전 변환 성능이 우수하다. 따라서, 본 발명에 따른 화합물 반도체는, 종래의 열전 변환 재료를 대체하거나 종래의 화합물 반도체에 더하여 열전 변환 소자에 유용하게 이용될 수 있다.
또한, 본 발명에 따른 태양 전지는, 상술한 화합물 반도체를 포함할 수 있다. 즉, 본 발명에 따른 화합물 반도체는 태양 전지, 특히 태양 전지의 광 흡수층으로 이용될 수 있다.
태양 전지는, 태양광이 입사되는 쪽에서부터 순차적으로, 전면 투명 전극, 버퍼층, 광 흡수층, 배면 전극 및 기판 등이 적층된 구조로 제조할 수 있다. 가장 아래에 위치하는 기판은 유리로 이루어질 수 있으며, 그 위에 전면적으로 형성되는 배면 전극은 Mo 등의 금속을 증착함으로써 형성될 수 있다.
이어서, 배면 전극 상부에 본 발명에 따른 화합물 반도체를 전자빔 증착법, 졸-겔(sol-gel)법, PLD(Pulsed Laser Deposition) 등의 방법으로 적층함으로써 상기 광 흡수층을 형성할 수 있다. 이러한 광 흡수층의 상부에는, 전면 투명 전극으로 사용되는 ZnO층과 광 흡수층 간의 격자 상수 차이 및 밴드갭 차이를 완충하는 버퍼층이 존재할 수 있는데, 이러한 버퍼층은 CdS 등의 재료를 CBD(Chemical Bath Deposition) 등의 방법으로 증착함으로써 형성될 수 있다. 다음으로, 버퍼층 위에 ZnO나 ZnO 및 ITO의 적층막으로 전면 투명 전극이 스퍼터링 등의 방법으로 형성될 수 있다.
본 발명에 따른 태양 전지는 다양한 변형이 가능할 수 있다. 예를 들어, 본 발명에 따른 화합물 반도체를 광 흡수층으로 사용한 태양 전지를 적층한 적층형 태양 전지를 제조할 수 있다. 그리고, 이와 같이 적층된 다른 태양 전지는 실리콘이나 다른 알려진 화합물 반도체를 이용한 태양 전지를 사용할 수 있다.
또한, 본 발명의 화합물 반도체의 밴드 갭을 변화시킴으로써 서로 다른 밴드갭을 가지는 화합물 반도체를 광 흡수층으로 사용하는 복수의 태양 전지를 적층할 수도 있다. 본 발명에 따른 화합물 반도체의 밴드 갭은 이 화합물을 이루는 구성 원소, 특히 Te의 조성비를 변화시킴으로써 조절이 가능할 수 있다.
또한, 본 발명에 따른 화합물 반도체는 적외선을 선택적으로 통과시키는 적외선 윈도우(IR window)나 적외선 센서 등에도 적용될 수 있다.
이하, 본 발명을 보다 구체적으로 설명하기 위해 실시예 및 비교예를 들어 상세하게 설명하기로 한다. 다만, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예
시약으로 In 0.0504g, Zn 0.0115g, Co 0.3728g, Rh 0.0543g, Sb 2.1825g, Sn 0.1043g, Te 0.2242g을 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합한다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Zn0.1Co3.6Rh0.3Sb10.2Sn0.5Te 분말을 얻었다.
이와 같이 합성된 실시예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열전도도를 소정 온도 간격으로 측정하였고, 그 결과를 실시예로서 도 1에 도시하였다.
비교예
시약으로 In, Co 및 Sb를 준비하고, 이들을 몰타르(mortar)를 이용하여 잘 혼합하여 In0.25Co4Sb12 조성의 혼합물을 펠렛 형태로 제작하였다. 그리고, H2(1.94%) 및 N2 가스를 흘리면서 500℃에서 15시간 가열하였으며, 이때 승온 시간은 1시간 30분으로 하였다. 이와 같이 혼합된 재료는 실리카 튜브(silica tube) 안에 넣고 진공 밀봉하여 650℃에서 36시간 가열하되 승온 시간은 1시간 30분으로 하여, In0.25Co4Sb12 분말을 얻었다.
이와 같이 합성된 비교예 시료 중 일부를 직경 10 mm, 두께 1 mm의 원판으로 성형한 다음, CIP를 사용하여 200MPa로 압력을 가하였다. 이어서, 얻어진 결과물을 석영관에 넣고 12시간 동안 진공 소결하였다. 소결한 원판에 대해서는 LFA457(Netzsch, Inc)를 사용하여 열전도도를 소정 온도 간격으로 측정하였고, 그 결과를 비교예로서 도 1에 도시하였다.
도 1의 결과를 참조하면, In0.25Zn0.1Co3.6Rh0.3Sb10.2Sn0.5Te로 표시되는 본 발명에 따른 실시예의 화합물 반도체는, In0.25Co4Sb12로 표시되는 비교예의 화합물 반도체에 비해, 전체 온도 측정 구간에 걸쳐 열 전도도(κ)가 현저하게 낮다는 것을 알 수 있다.
그리고, 열전 성능지수인 ZT값은 다음과 같이 표시될 수 있다.
ZT = σS2T/κ
여기서, σ는 전기 전도도, S는 제벡 계수, T는 온도, κ는 열 전도도를 나타낸다.
본 발명에 따른 화합물 반도체는, 열 전도도가 낮으므로 ZT값이 향상될 수 있다. 그러므로, 본 발명에 따른 화합물 반도체는 열전 성능이 뛰어나다고 할 수 있으며, 열전 변환 재료로서 매우 유용하게 이용될 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물 반도체.
    <화학식 1>
    InxMyCo4-m-aAmSb12-n-z-bXnTez
    상기 화학식 1에서, M은 Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, A는 Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이며, X는 Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 적어도 어느 하나 이상이고, 0<x<1, 0<y<1, 0≤m≤1, 0≤n<9, 0<z≤2, 0≤a≤1, 0<b≤3 및 0<n+z+b<12이다.
  2. 제1항에 있어서,
    상기 화학식 1의 x는, 0<x≤0.25인 것을 특징으로 하는 화합물 반도체.
  3. 제1항에 있어서,
    상기 화학식 1의 x 및 y는, 0<x+y≤1인 것을 특징으로 하는 화합물 반도체.
  4. 제1항에 있어서,
    상기 화학식 1의 n 및 z는, 0<n+z<9인 것을 특징으로 하는 화합물 반도체.
  5. In, Co, Sb 및 Te와, Ca, Sr, Ba, Ti, V, Cr, Mn, Cu, Zn, Ag, Cd, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb 및 Lu으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 포함하는 혼합물을 형성하는 단계; 및
    상기 혼합물을 열처리하는 단계
    를 포함하는 제1항의 화합물 반도체의 제조 방법.
  6. 제5항에 있어서,
    상기 혼합물은, Fe, Ni, Ru, Rh, Pd, Ir 및 Pt로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  7. 제5항에 있어서,
    상기 혼합물은, Si, Ga, Ge 및 Sn으로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 원소 또는 그 산화물을 더 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  8. 제5항에 있어서,
    상기 열처리 단계는, 400℃ 내지 800℃에서 수행되는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  9. 제5항에 있어서,
    상기 열처리 단계는, 둘 이상의 열처리 단계를 포함하는 것을 특징으로 하는 화합물 반도체의 제조 방법.
  10. 제1항 내지 제4항 중 어느 한 항에 따른 화합물 반도체를 포함하는 열전 변환 소자.
  11. 제1항 내지 제4항 중 어느 한 항에 따른 화합물 반도체를 포함하는 태양 전지.
PCT/KR2012/003732 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용 WO2012157909A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12785800.9A EP2708500B1 (en) 2011-05-13 2012-05-11 Novel compound semiconductor and usage for same
JP2014505094A JP5759616B2 (ja) 2011-05-13 2012-05-11 新規な化合物半導体及びその活用
CN201280023009.3A CN103534200B (zh) 2011-05-13 2012-05-11 化合物半导体及其用途
US13/617,064 US8658063B2 (en) 2011-05-13 2012-09-14 Compound semiconductors and their application

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20110045349 2011-05-13
KR20110045348 2011-05-13
KR10-2011-0045349 2011-05-13
KR10-2011-0045348 2011-05-13
KR20110049609 2011-05-25
KR10-2011-0049609 2011-05-25
KR1020120050258A KR101366712B1 (ko) 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용
KR10-2012-0050258 2012-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/617,064 Continuation US8658063B2 (en) 2011-05-13 2012-09-14 Compound semiconductors and their application

Publications (1)

Publication Number Publication Date
WO2012157909A1 true WO2012157909A1 (ko) 2012-11-22

Family

ID=47177146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/003732 WO2012157909A1 (ko) 2011-05-13 2012-05-11 신규한 화합물 반도체 및 그 활용

Country Status (7)

Country Link
US (1) US8658063B2 (ko)
EP (1) EP2708500B1 (ko)
JP (1) JP5759616B2 (ko)
KR (1) KR101366712B1 (ko)
CN (1) CN103534200B (ko)
TW (1) TWI469925B (ko)
WO (1) WO2012157909A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157916A1 (ko) * 2011-05-13 2012-11-22 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
JP6893344B2 (ja) * 2016-10-18 2021-06-23 国立研究開発法人物質・材料研究機構 銅ガリウムテルル系p型熱電半導体、及びそれを用いた熱電発電素子
KR102122573B1 (ko) * 2017-03-09 2020-06-12 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용
US11692364B2 (en) * 2017-06-07 2023-07-04 B-Cor Innovative Solutions LLC Pry bar

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125789A (ko) * 2003-12-08 2006-12-06 이 아이 듀폰 디 네모아 앤드 캄파니 고성능 열전 물질 인듐-코발트-안티몬의 제조 방법
KR20070015543A (ko) * 2004-04-14 2007-02-05 이 아이 듀폰 디 네모아 앤드 캄파니 고성능 열전 물질 및 그의 제조 방법
KR20090026665A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 CoSb3 스커테루다이트계 열전재료 및 그 제조방법
KR20110016113A (ko) * 2009-08-11 2011-02-17 충주대학교 산학협력단 In-Co-Ni-Sb 계 스커테루다이트 열전재료 및 그 제조방법
KR20110016115A (ko) * 2009-08-11 2011-02-17 충주대학교 산학협력단 In-Co-Fe-Sb 계 스커테루다이트 열전재료 및 그 제조방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2307231C (en) * 1997-10-24 2006-06-20 Sumitomo Special Metals Co., Ltd. Silicon based conductive material and process for production thereof
KR100341669B1 (ko) * 1997-12-27 2002-06-24 오카모토 유지 열전 변환 소자
CN100452466C (zh) * 2003-09-12 2009-01-14 密歇根州州立大学托管委员会 热电材料及其制备方法、热电元件以及从热能生成电流的方法
WO2008142768A1 (ja) * 2007-05-21 2008-11-27 Renesas Technology Corp. 半導体装置およびその製造方法
US10508324B2 (en) * 2008-01-23 2019-12-17 Furukawa Co., Ltd. Thermoelectric conversion material and thermoelectric conversion module
CN101397612B (zh) * 2008-10-21 2011-05-25 同济大学 一种方钴矿基热电块体材料的制备方法
JP5774130B2 (ja) * 2011-04-28 2015-09-02 エルジー・ケム・リミテッド 新規な化合物半導体及びその活用
WO2012157916A1 (ko) * 2011-05-13 2012-11-22 주식회사 엘지화학 신규한 화합물 반도체 및 그 활용

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125789A (ko) * 2003-12-08 2006-12-06 이 아이 듀폰 디 네모아 앤드 캄파니 고성능 열전 물질 인듐-코발트-안티몬의 제조 방법
KR20070015543A (ko) * 2004-04-14 2007-02-05 이 아이 듀폰 디 네모아 앤드 캄파니 고성능 열전 물질 및 그의 제조 방법
KR20090026665A (ko) * 2007-09-10 2009-03-13 충주대학교 산학협력단 CoSb3 스커테루다이트계 열전재료 및 그 제조방법
KR20110016113A (ko) * 2009-08-11 2011-02-17 충주대학교 산학협력단 In-Co-Ni-Sb 계 스커테루다이트 열전재료 및 그 제조방법
KR20110016115A (ko) * 2009-08-11 2011-02-17 충주대학교 산학협력단 In-Co-Fe-Sb 계 스커테루다이트 열전재료 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2708500A4 *

Also Published As

Publication number Publication date
TW201309593A (zh) 2013-03-01
KR20120127301A (ko) 2012-11-21
EP2708500A4 (en) 2015-03-25
US8658063B2 (en) 2014-02-25
JP2014522358A (ja) 2014-09-04
CN103534200B (zh) 2017-02-08
KR101366712B1 (ko) 2014-02-24
EP2708500A1 (en) 2014-03-19
CN103534200A (zh) 2014-01-22
EP2708500B1 (en) 2017-01-18
US20130009108A1 (en) 2013-01-10
JP5759616B2 (ja) 2015-08-05
TWI469925B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2012157913A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157904A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157917A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012148197A2 (ko) 신규한 화합물 반도체 및 그 활용
WO2015050420A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2015080527A1 (ko) 신규한 화합물 반도체 및 그 활용
JP2014522562A (ja) 新規な化合物半導体及びその活用
WO2015046810A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157910A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157914A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157909A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157911A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157907A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157905A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012157915A1 (ko) 신규한 화합물 반도체 및 그 활용
WO2012148198A2 (ko) 신규한 화합물 반도체 및 그 활용
KR101372523B1 (ko) 신규한 화합물 반도체 및 그 활용
US11127891B2 (en) Compound semiconductor and use thereof
KR20120127322A (ko) 신규한 화합물 반도체 및 그 활용

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785800

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012785800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012785800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014505094

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE