WO2012157705A1 - 作業機械の油圧駆動装置 - Google Patents
作業機械の油圧駆動装置 Download PDFInfo
- Publication number
- WO2012157705A1 WO2012157705A1 PCT/JP2012/062660 JP2012062660W WO2012157705A1 WO 2012157705 A1 WO2012157705 A1 WO 2012157705A1 JP 2012062660 W JP2012062660 W JP 2012062660W WO 2012157705 A1 WO2012157705 A1 WO 2012157705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydraulic pump
- control valve
- boom
- arm
- direction control
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B15/00—Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
- F15B15/20—Other details, e.g. assembly with regulating devices
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/08—Superstructures; Supports for superstructures
- E02F9/10—Supports for movable superstructures mounted on travelling or walking gears or on other superstructures
- E02F9/12—Slewing or traversing gears
- E02F9/121—Turntables, i.e. structure rotatable about 360°
- E02F9/123—Drives or control devices specially adapted therefor
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2217—Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2221—Control of flow rate; Load sensing arrangements
- E02F9/2239—Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
- E02F9/2242—Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2285—Pilot-operated systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2292—Systems with two or more pumps
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2278—Hydraulic circuits
- E02F9/2296—Systems with a variable displacement pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/02—Systems essentially incorporating special features for controlling the speed or actuating force of an output member
Definitions
- the present invention relates to a hydraulic drive device for a work machine that includes a work device having a boom and an arm connected to the boom, and is capable of boom raising and arm cloud combined operation.
- Patent Document 1 includes a vehicle body including a revolving body and a working device attached to the revolving body.
- the working device is connected to the revolving body so as to be pivotable in the vertical direction;
- a work machine for example, a hydraulic excavator, including an arm that is pivotably connected in the vertical direction, a boom cylinder that drives a boom, and an arm cylinder that drives the arm.
- a hydraulic circuit device provided in the hydraulic excavator that is, a hydraulic drive device, a first hydraulic pump and a second hydraulic pump that supply pressure oil that respectively operates a boom cylinder and an arm cylinder;
- a first boom direction control valve that is connected in parallel to the first hydraulic pump and controls the flow of pressure oil supplied to the boom cylinder, and a second arm direction control that controls the flow of pressure oil supplied to the arm cylinder.
- a valve and a second arm that is connected in parallel to the second hydraulic pump and controls the flow of pressure oil supplied to the boom cylinder and a first arm that controls the flow of pressure oil supplied to the arm cylinder
- a configuration including a directional control valve for use is disclosed.
- Patent Document 1 As a hydraulic drive device provided in a work machine such as a hydraulic excavator, in consideration of operability during boom raising and arm cloud combined operation, It is conventionally known to provide a fixed throttle upstream of the arm directional control valve. There exists a thing shown by patent document 2 as this type of prior art.
- Patent Document 1 As a hydraulic drive device provided in a work machine such as a hydraulic excavator, the arm cylinder rod is squeezed by narrowing the return pipe when performing an arm cloud operation for lowering the arm by its own weight.
- a hydraulic drive device including a regeneration circuit having a throttle that regenerates and supplies oil discharged from a chamber to a bottom chamber is known.
- Patent Document 3 there is one disclosed in Patent Document 3, for example.
- Patent Document 1 a technique that takes into account a conventionally known technique as shown in Patent Document 2, that is, in order to ensure the operability of boom raising and arm cloud combined operation.
- Patent Document 2 a technique that takes into account a conventionally known technique as shown in Patent Document 2, that is, in order to ensure the operability of boom raising and arm cloud combined operation.
- the pressure loss due to the narrowing of the pipe line is large, which causes a large load on the hydraulic pump and lowers the pump efficiency It's easy to do. Therefore, in order to increase the operation speed and improve workability, the engine output must be increased. This increases fuel efficiency. In other words, it has been difficult for the prior art to achieve a greater energy saving effect while improving workability.
- Patent Document 3 a technique known in the art as shown in Patent Document 3 is considered, that is, reproduction in the arm cloud is performed by narrowing the return pipeline.
- the present invention was made from the actual situation in the above-described prior art, and its purpose is that the boom raising and the arm cloud combined operation can be carried out without providing a diaphragm, and a reproducing circuit having a diaphragm is provided. It is an object of the present invention to provide a hydraulic drive device for a work machine that can perform the same arm cloud operation.
- the present invention includes a vehicle body and a working device attached to the vehicle body.
- the working device includes a boom connected to the vehicle body so as to be pivotable in the vertical direction, and the boom.
- a work machine including an arm that is pivotally connected to the tip in a vertical direction, a boom cylinder that drives the boom, and an arm cylinder that drives the arm, and operates the boom cylinder and the arm cylinder, respectively.
- a third hydraulic pump that supplies pressure oil for operating the boom cylinder and the arm cylinder, respectively, and a third hydraulic pump that is connected to the third hydraulic pump and controls the flow of the pressure oil supplied to the boom cylinder.
- a boom direction control valve and a third arm direction control valve that is tandemly connected to the third boom direction control valve and controls the flow of pressure oil supplied to the arm cylinder are provided.
- the third boom in which the pressure oil of the third hydraulic pump is tandemly connected to the upstream side of the third arm direction control valve for the boom cylinder.
- the direction control valve is preferentially supplied and the boom cylinder is operated to raise the boom.
- the pressure oil of the first hydraulic pump is supplied to the direction control valve for the second arm.
- the pressure oil of the two hydraulic pumps can be supplied to the first arm direction control valve, that is, a sufficient flow rate can be supplied to operate the arm cylinder to perform the arm crowding.
- the pressure oil can be supplied to the boom direction control valve without reducing the pressure oil supplied to the arm direction control valve.
- a throttle is provided upstream of the arm direction control valve. Therefore, the boom can be raised and the arm cloud combined operation can be performed, and the arm cloud operation can be performed without providing a regeneration circuit having an aperture. Therefore, the boom raising, the pressure loss in the arm cloud combined operation, and the pressure loss in the arm cloud operation can be reduced, and the pump efficiency can be improved.
- the vehicle body includes a revolving body, and is connected to a revolving motor that drives the revolving body and the third hydraulic pump, and controls the flow of pressure oil supplied to the revolving motor. And a directional control valve for turning.
- the hydraulic oil of the third hydraulic pump is supplied to the turning motor via the turning direction control valve and the boom via the third boom direction control valve in the combined operation of turning, boom and arm.
- the pressure oil from the first hydraulic pump is supplied to the boom cylinder via the first boom directional control valve or to the arm cylinder via the second arm directional control valve.
- Pressure oil is supplied to the boom cylinder via the second boom direction control valve, or is supplied to the arm cylinder via the first arm direction control valve. Can be secured.
- the third boom direction control valve may be a boom raising switching position that is a switching position for rotating the boom upward, and a switching position for rotating the boom downward. And a blocking port for blocking the supply of pressure oil discharged from the third hydraulic pump to the boom cylinder at the boom lowering switching position.
- the pressure oil guided from the third hydraulic pump to the third boom direction control valve during the boom lowering and turning combined operation prevents the boom lowering switching position of the third boom direction control valve. Since it is blocked by the port, the pressure oil of the third hydraulic pump can be supplied only to the swing motor via the swing direction control valve. That is, the turn can be performed independently without being influenced by the boom lowering operation, and good turning acceleration can be ensured.
- the present invention is characterized in that, in the above invention, the turning direction control valve and the third boom direction control valve are connected in parallel.
- the present invention configured as described above supplies pressure oil of the third hydraulic pump to both the boom cylinder and the swing motor via the third boom direction control valve and the turn direction control valve during the boom raising and turning combined operation. It becomes possible to do. Accordingly, the boom can be raised while suppressing the turning speed, and the boom raising and turning combined operability suitable for actual work can be ensured.
- the present invention is the above invention, wherein the work device includes a bucket connected to the tip of the arm so as to be pivotable in the vertical direction, and a bucket cylinder for operating the bucket, and pressure supplied to the bucket cylinder.
- a bucket direction control valve for controlling the flow of oil is provided, and the first boom direction control valve, the second arm direction control valve, and the bucket direction control valve are connected in parallel. .
- the present invention configured as described above supplies pressure oil from the third hydraulic pump to the boom cylinder via the third boom directional control valve during boom raising, arm cloud, and bucket cloud combined operations.
- Pressure oil is supplied to the arm cylinder via the first arm direction control valve, and pressure oil of the first hydraulic pump is supplied to the bucket cylinder via the bucket direction control valve to raise the boom, arm cloud, bucket cloud Combined operations can be performed. That is, this boom raising, arm cloud, and bucket cloud combined operation can be performed without interposing a throttle, and the pressure loss during this combined operation can be reduced.
- a first preliminary directional control valve connected to the second hydraulic pump and pressure oil discharged from the first hydraulic pump can be supplied to the first preliminary directional control valve. It is characterized by having a preparatory junction valve.
- a first special attachment is connected to an arm, a first actuator for driving the first special attachment is provided, and the first actuator is controlled by a first preliminary direction control valve.
- the pressure oil of the second hydraulic pump can be supplied to the first actuator via the first preliminary direction control valve to drive the first special attachment.
- the auxiliary merging valve is switched, and the pressure oil of the first hydraulic pump is changed to the first via the auxiliary merging valve and the first auxiliary directional control valve.
- One actuator can be supplied. That is, the pressure oil of the first hydraulic pump and the pressure oil of the second hydraulic pump are merged and supplied to the first actuator via the first preliminary direction control valve to drive the first special attachment at a high operating speed. Can do.
- pressure oil from the second hydraulic pump is supplied to the first preliminary direction control valve, or the first hydraulic pump and the second hydraulic pressure are supplied.
- the pressure oil of the pump is joined to operate the first actuator to drive the first special attachment, and the pressure oil of the third hydraulic pump is boomed via the third boom direction control valve and the third arm direction control valve.
- the boom or arm can be driven by supplying to the cylinder or to the arm cylinder. That is, in the combined operation of the first special attachment, the boom, and the arm, the combined operation can be performed without interposing the restrictor, and therefore pressure loss due to the restrictor does not occur.
- the present invention is characterized in that, in the above-mentioned invention, a second preliminary directional control valve connected to the third hydraulic pump is provided.
- a second special attachment is connected to an arm, a second actuator for driving the second special attachment is provided, and the second actuator is controlled by a second preliminary directional control valve.
- the pressure oil of the third hydraulic pump can be supplied to the second actuator via the second preliminary direction control valve to drive the second special attachment.
- the second preliminary directional control valve can be easily replaced with a second bucket directional control valve for increasing the speed of the bucket.
- the first hydraulic pump supplies the pressure oil of the third hydraulic pump via the second bucket direction control valve.
- the pressure oil can be combined and supplied to the bucket cylinder, and the operation speed of the bucket can be increased.
- the present invention is characterized in that, in the above invention, the turning direction control valve, the third boom direction control valve, and the second preliminary direction control valve are connected in parallel.
- the pressure oil of the third hydraulic pump is supplied to the turning motor via the turning direction control valve, and is also supplied to the second actuator via the second preliminary direction control valve.
- the second special attachment compound operation can be performed.
- the present invention is characterized in that, in the above-mentioned invention, the second preliminary directional control valve has an additional pump port that enables connection of an additional hydraulic pump.
- the additional hydraulic pump is connected to the additional pump port of the second preliminary directional control valve via a pipe, so that the pressure oil of the additional hydraulic pump is supplied to the second preliminary directional control valve, It can be supplied to the second special attachment via the second actuator. That is, the second special attachment can be driven independently of the turning, boom, and arm operations.
- the present invention is characterized in that, in the above invention, the second boom direction control valve, the first arm direction control valve, and the first preliminary direction control valve are connected in parallel.
- the pressure oil of the second hydraulic pump is supplied to the first auxiliary directional control valve, or the pressure oil of the first hydraulic pump and the second hydraulic pump are merged.
- the first special attachment can be driven by supplying the directional control valve, for example, by operating the first actuator controlled by the first preliminary directional control valve, and easily, if necessary, turning direction control
- the arrangement of the valve and the first preliminary direction control valve can be interchanged.
- the first preliminary direction control valve and the second preliminary direction control valve are connected to the third hydraulic pump.
- the pressure oil of the second hydraulic pump can be supplied to the turning motor via the turning direction control valve to turn the turning body, and controlled by the first and second preliminary direction control valves.
- the drive circuits of the first and second special attachments can be made independent and driven by the pressure oil of the third hydraulic pump.
- the oil discharged from the bottom chamber of the boom cylinder during the boom lowering operation is regenerated and supplied to the rod chamber of the boom cylinder at the boom lowering switching position of the third boom direction control valve.
- a third boom directional control valve is held at the boom lowering switching position when the bottom pressure of the boom cylinder is equal to or higher than a predetermined pressure during the boom lowering operation.
- the third boom directional control valve is Holding the boom lowering switching position
- the first boom directional control valve is controlled by the boom cylinder for the pressure oil discharged from the first hydraulic pump.
- the second boom direction control valve is held at a boom lowering switching position that enables supply to the cylinder chamber, and the pressure oil discharged from the second hydraulic pump can be supplied to the rod chamber of the boom cylinder.
- Boom direction control valve control means for holding at the boom lowering switching position is provided.
- the boom direction control valve control means holds the third boom direction control valve at the boom lowering switching position, and holds the first boom direction control valve and the second boom direction control valve at the neutral position. . Accordingly, the oil discharged from the bottom chamber of the boom cylinder is regenerated and supplied to the rod chamber of the boom cylinder through the regeneration circuit provided at the boom lowering switching position of the third boom direction control valve, and the boom cylinder contracts by this. The boom can be lowered.
- pressure oil from the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump is not supplied to the boom cylinder, and a minimum flow rate is obtained from the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump. In this way, energy consumption can be minimized.
- the bottom pressure of the boom cylinder becomes a low pressure that does not satisfy the above-described predetermined pressure.
- the third boom direction control valve is switched to the boom lowering switching position, and each of the first boom direction control valve and the second boom direction control valve is set. Is switched to the boom lowering switching position. Accordingly, the pressure oil of the first hydraulic pump is supplied to the boom cylinder via the first boom direction control valve, and the pressure oil of the second hydraulic pump is supplied to the boom cylinder via the second boom direction control valve. A desired jack-up operation can be performed.
- a return line that communicates at least one of the first arm direction control valve, the second arm direction control valve, and the third arm direction control valve with the tank.
- an opening valve is provided that keeps the opening amount small when the arm is not operated, and increases the opening amount as the arm operating amount becomes large when the arm cloud is operated.
- the present invention configured as described above is configured to pass through the corresponding arm direction control valve and release valve from the rod chamber of the arm cylinder.
- the amount of oil returned to the tank is small, and the operating speed of the arm cloud is slowed down by the pressure oil supplied from the corresponding hydraulic pump of the first, second and third hydraulic pumps to the bottom chamber of the arm cylinder.
- the arm begins to descend slowly. Thereby, generation
- the opening amount of the release valve increases, the amount of oil returned from the arm cylinder rod chamber to the tank via the corresponding arm direction control valve and release valve increases, and the arm cloud operates. As the speed increases, the arm descends quickly. Thereby, the favorable operativity of an arm cloud is securable. Note that when the opening amount of the release valve increases after the start of the arm cloud operation, the rod pressure of the arm cylinder decreases to the same level as the tank pressure, so that the thrust force for operating the arm cylinder is small. That is, the load pressure of the arm cloud operation can be reduced, and accordingly, the pump efficiency of the corresponding hydraulic pump can be improved.
- the present invention is characterized in that, in the above invention, a first variable throttle is provided upstream of the second arm direction control valve.
- the first variable throttle restricts the supply to the second arm directional control valve that forms the low pressure side of the pressure oil of the first hydraulic pump.
- the pressure oil of the first hydraulic pump can be preferentially supplied to the bucket cylinder via the bucket direction control valve and operated.
- the arm cylinder is operated by supplying the pressure oil of the second hydraulic pump via the first arm directional control valve and the pressure oil of the third hydraulic pump via the third arm directional control valve. be able to. That is, it is possible to increase the operation speed of the bucket while ensuring the arm speed.
- the present invention is characterized in that, in the above invention, a second variable throttle is provided upstream of the first arm direction control valve.
- a first special attachment is connected to an arm, a first actuator for driving the first special attachment is provided, and the first actuator is controlled by a first preliminary directional control valve.
- the second variable throttle provides a first arm direction control valve that forms the low pressure side of the hydraulic fluid of the second hydraulic pump. Inflow can be supplied to the first actuator via the first preliminary direction control valve and operated. That is, the pressure oil of the first hydraulic pump is supplied to the bucket cylinder with priority via the bucket direction control valve, and the pressure oil of the second hydraulic pump is supplied via the second variable throttle and the first arm direction control valve.
- the pressure oil of the second hydraulic pump is supplied to the first actuator via the first preliminary direction control valve, and the pressure oil of the third hydraulic pump is supplied to the third boom direction control valve.
- the boom cylinder four combined operations of boom raising, arm cloud, bucket cloud, and first special attachment can be performed.
- At least a discharge pressure of the second hydraulic pump is detected from among a discharge pressure of the first hydraulic pump, a discharge pressure of the second hydraulic pump, and a discharge pressure of the third hydraulic pump.
- Discharge pressure detecting means and a directional control valve for holding the third boom directional control valve and the third arm directional control valve in a neutral position when the discharge pressure detected by the discharge pressure detecting means is equal to or higher than a predetermined pressure.
- a neutral holding means and a pump control invalidating means for invalidating the tilt control for the third hydraulic pump when the discharge pressure is equal to or higher than a predetermined pressure are provided.
- the discharge pressure of the hydraulic pump detected by the discharge pressure detection unit is equal to or higher than a predetermined pressure.
- the third boom directional control valve and the third arm directional control valve are held at the neutral position by the directional control valve neutral holding means, and the tilt control for the third hydraulic pump is disabled by the pump control invalidating means. Is done. Therefore, the pressure oil of the first hydraulic pump is supplied to the bucket cylinder preferentially via the bucket direction control valve, and the pressure oil of the second hydraulic pump is supplied to the arm cylinder via the first arm direction control valve.
- the combined operation of arm cloud and bucket cloud during heavy excavation work can be achieved by controlling the first hydraulic pump and tilting the second hydraulic pump without deteriorating the pump efficiency while ensuring good operability. Can be implemented.
- an engine is provided, and at least the third hydraulic pump among the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump is variable driven by the engine. It comprises a displacement type hydraulic pump, and is characterized by comprising third hydraulic pump tilt control means for keeping tilt control of the third hydraulic pump inoperable when the arm operation is an arm cloud operation. .
- the tilt control of the third hydraulic pump is not performed by the third hydraulic pump tilt control means during the arm cloud operation. Therefore, the pressure oil of the first hydraulic pump is supplied to the arm cylinder via the second arm directional control valve, and the pressure oil of the second hydraulic pump is supplied to the arm cylinder via the first arm directional control valve, By this, the arm cylinder can be operated to perform the arm cloud. That is, this arm cloud operation can be performed without deteriorating pump efficiency while ensuring good operability.
- an engine wherein at least the first hydraulic pump among the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump is driven by the engine.
- a first hydraulic pump tilt control means configured to increase the tilt angle of the first hydraulic pump when the bottom pressure of the boom cylinder is less than a predetermined pressure during the boom lowering operation. It is characterized by having prepared.
- the tilt angle of the first hydraulic pump is controlled by the first hydraulic pump tilt control means when the bottom pressure of the boom cylinder does not reach a predetermined pressure during the boom raising operation, that is, during the jack-up operation. That is, control for increasing the flow rate is performed, and the increased flow rate is supplied to the boom cylinder via the first boom direction control valve.
- the jack-up operation can be performed while keeping the influence on the pump efficiency to a minimum.
- the flow rate discharged from the first hydraulic pump is limited to a predetermined amount smaller than a maximum flow rate that can be discharged by the first hydraulic pump.
- a second flow rate limiting means for limiting the flow rate discharged from the hydraulic pump to a predetermined amount smaller than the maximum flow rate that can be discharged by the second hydraulic pump; and the flow rate discharged from the third hydraulic pump.
- a third flow rate limiting means for limiting the flow rate to a predetermined amount smaller than the maximum flow rate that can be discharged by the hydraulic pump.
- the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump are selectively operated by selectively operating the first flow restriction means, the second flow restriction means, and the third flow restriction means.
- desired combined operation such as combined operation of arm and special attachment or combined operation of bucket and special attachment can be performed at the minimum required flow rate.
- the pump efficiency can be improved.
- the first torque control means capable of variably controlling the pump torque of the first hydraulic pump
- the second torque control means capable of variably controlling the pump torque of the second hydraulic pump
- third torque control means capable of variably controlling the pump torque of the third hydraulic pump.
- the present invention configured as described above selectively operates the first torque control means, the second torque control means, and the third torque control means to thereby provide the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump.
- the pump torque of the corresponding hydraulic pump is controlled so that the total value of the pump torque does not exceed the engine output torque.
- the flow rate distribution of the pressure oil discharged from the corresponding hydraulic pump can be suitably maintained, and the pump efficiency can be improved while ensuring good composite operability.
- the first torque control means capable of variably controlling the pump torque of the first hydraulic pump and the pump torque of the second hydraulic pump simultaneously, and the pump torque of the third hydraulic pump.
- a second torque control means capable of variably controlling the torque.
- the first torque control unit and the second torque control unit are selectively operated, and the corresponding hydraulic pressure among the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump is obtained.
- the pump torque of the pump By controlling the pump torque of the pump, the first hydraulic pump and the second hydraulic pressure are maintained while the total torque of the pump torque of the three hydraulic pumps does not exceed the engine output torque by the two torque control means.
- the flow rate distribution of the pressure oil discharged from the corresponding hydraulic pump among the pump and the third hydraulic pump can be suitably maintained, and the pump efficiency can be improved while ensuring good composite operability.
- the control target may be two torque control means, it is easy to construct a control circuit.
- the present invention is the bucket cylinder according to the above invention, comprising an engine, wherein the working device includes a bucket that is pivotably connected to a tip of the arm in a vertical direction, and a bucket cylinder that operates the bucket.
- a directional control valve for a bucket that controls the flow of pressure oil supplied to the engine, each of the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump being driven by the engine
- a first torque control means comprising a hydraulic pump and capable of variably controlling the pump torque of the first hydraulic pump; a second torque control means capable of variably controlling the pump torque of the second hydraulic pump; and the third
- a third torque control means capable of variably controlling the pump torque of the hydraulic pump, wherein the first torque is combined with the swivel body and the bucket.
- Control means is characterized by performing control to increase the pump torque of the first hydraulic pump.
- the present invention configured as described above is a case where, for example, turning, excavation of earth and sand, etc., and earthing of excavated earth and sand are performed through a bucket combined operation, and the swiveling body and the bucket are swung from the earthing position to the excavation position.
- the pump torque of the first hydraulic pump is increased by the first torque control means, the flow rate of the pressure oil supplied from the first hydraulic pump to the bucket cylinder is increased, and the operating speed of the bucket cylinder is increased. Can do.
- the bucket cloud operation is performed at a high operating speed while the swing body and the bucket return to the excavation position, and the bucket is returned to a preferable working posture at the time of excavation in which the cutting edge has a predetermined bite angle with respect to the ground. Can do. Thereby, the work efficiency of excavation work can be improved.
- the present invention is the bucket cylinder according to the above invention, comprising an engine, wherein the working device includes a bucket that is pivotably connected to a tip of the arm in a vertical direction, and a bucket cylinder that operates the bucket.
- a directional control valve for a bucket that controls the flow of pressure oil supplied to the engine, each of the first hydraulic pump, the second hydraulic pump, and the third hydraulic pump being driven by the engine
- a first torque control means comprising a hydraulic pump and capable of variably controlling the pump torque of the first hydraulic pump and the pump torque of the second hydraulic pump; and variably controlling the pump torque of the third hydraulic pump.
- Second torque control means and when the swivel body and the bucket are combined, the first torque control means includes the first hydraulic pressure control means. It is characterized by performing control for increasing the flop and the pump torque of the second hydraulic pump.
- the pump torque of the first and second hydraulic pumps is increased by the first torque control means, and the flow rate of the pressure oil supplied from the first hydraulic pump to the bucket cylinder is increased.
- the operating speed can be increased. That is, while the swivel body and the bucket return to the excavation position, the bucket cloud operation is performed at a high operating speed, and the bucket is returned to a preferable working posture at the time of excavation in which the cutting edge has a predetermined bite angle with respect to the ground. Can do. Thereby, the work efficiency of excavation work can be improved.
- the present invention relates to a first boom direction control valve and a second arm direction control valve that are connected in parallel to a first hydraulic pump, a second boom direction control valve that is connected in parallel to a second hydraulic pump, and
- the first arm directional control valve is provided with a third hydraulic pump, a third boom directional control valve is connected to the third hydraulic pump, and the third boom directional control valve is connected to a third hydraulic pump.
- the directional control valve for the arm is connected in tandem.
- the present invention allows the boom to be raised by the pressure oil of the third hydraulic pump during the boom raising and arm cloud combined operation, and a sufficient flow rate is supplied by the pressure oil of the first hydraulic pump and the second hydraulic pump.
- Arm cloud can be performed. That is, according to the present invention, the boom raising and the arm cloud combined operation can be performed without providing a throttle upstream of the directional control valve for the arm as in the prior art. Further, according to the present invention, in the arm cloud operation, the arm cloud operation can be performed by the pressure oil of the first hydraulic pump and the second hydraulic pump as described above. That is, according to the present invention, the arm cloud operation can be performed without providing a reproducing circuit having a diaphragm as in the prior art when performing the arm cloud operation. Therefore, this invention can reduce the pressure loss in boom raising, arm cloud compound operation, and the pressure loss in arm cloud operation compared with the past. Thereby, this invention can improve pump efficiency compared with the past, can reduce fuel consumption, and can implement
- 1 is a side view showing a hydraulic excavator cited as an example of a work machine provided with a first embodiment of a hydraulic drive device according to the present invention.
- 1 is an electro-hydraulic circuit diagram showing a first embodiment of the present invention. It is an electro-hydraulic circuit diagram showing a second embodiment of the present invention.
- the hydraulic drive device is, for example, a hydraulic excavator capable of excavating earth and sand.
- the hydraulic excavator includes a traveling body 1, a revolving body 2 disposed on the traveling body 1, and a work device 3 attached to the revolving body 2.
- the traveling body 1 and the revolving body 2 constitute a vehicle body.
- the working device 3 includes a boom 4 that is connected to the swing body 2 so as to be rotatable in the vertical direction, an arm 5 that is connected to the tip of the boom 4 so as to be rotatable in the vertical direction, and a vertical motion at the tip of the arm 5.
- a bucket 6 that is pivotably connected in the direction.
- the working device 3 includes a boom cylinder 7 that drives the boom 4, an arm cylinder 8 that drives the arm 5, and a bucket cylinder 9 that drives the bucket 6.
- a driver's cab 10 is disposed on the swivel body 2, and an engine chamber 2 a in which an engine and a hydraulic pump described later are accommodated is provided in a rear portion of the driver's cab 10.
- the hydraulic drive apparatus includes three main hydraulic pumps driven by an engine (not shown), for example, variable displacement hydraulic pumps, as shown in FIG. 1 hydraulic pump 11, 2nd hydraulic pump 12, and 3rd hydraulic pump 13 are provided.
- a pilot pump 14 driven by an engine (not shown) is provided, and first to third hydraulic pumps 11 to 13 and a tank 15 for supplying oil to the pilot pump 14 are provided.
- the tilt angle of the first hydraulic pump 11 is controlled by a regulator attached to the first hydraulic pump 11.
- the regulator of the first hydraulic pump 11 includes a control piston 11a, a torque adjustment valve 11b, and a flow rate adjustment valve 11c.
- the tilt angle of the second hydraulic pump 12 is controlled by a regulator attached to the second hydraulic pump 12.
- the regulator of the second hydraulic pump 12 includes a control piston 12a, a torque adjustment valve 12b, and a flow rate adjustment valve 12c.
- the tilt angle of the third hydraulic pump 13 is controlled by a regulator attached to the third hydraulic pump 13.
- the regulator of the third hydraulic pump 13 includes a control piston 13a, a torque adjustment valve 13b, and a flow rate adjustment valve 13c.
- the first hydraulic pump 11 is connected with a right traveling direction control valve 16 for controlling the driving of a right traveling motor (not shown) out of a pair of traveling motors that drive the traveling body 1 in the uppermost stream.
- a bucket direction control valve 17 Downstream of the right travel direction control valve 16, a bucket direction control valve 17 that controls the flow of pressure oil connected to the bucket cylinder 9, and a second that controls the flow of pressure oil supplied to the arm cylinder 8.
- the arm direction control valve 18 is connected to a first boom direction control valve 19 that controls the flow of pressure oil supplied to the boom cylinder 7.
- the bucket direction control valve 17, the second arm direction control valve 18, and the first boom direction control valve 19 include a pipe line 20 connected to the right traveling direction control valve 16, and the pipe line 20. They are connected in parallel to each other via a connected pipe line 21.
- the second hydraulic pump 12 includes a second boom direction control valve 22 that controls the flow of pressure oil supplied to the boom cylinder 7 and a first arm control that controls the flow of pressure oil supplied to the arm cylinder 8.
- a first preliminary directional control valve 24 for controlling the flow of pressure oil supplied to a directional control valve 23 and a first actuator (not shown) that drives a first special attachment such as a split machine provided in place of the bucket 6, for example.
- a left travel direction control valve 25 that controls driving of a left travel motor (not shown) of the pair of travel motors that drive the travel body 1 is connected.
- the second boom direction control valve 22, the first arm direction control valve 23, the first auxiliary direction control valve 24, and the left travel direction control valve 25 are connected to the second hydraulic pump 12. 26 and pipes 27, 28 and 29 connected to the pipe 26 are connected in parallel to each other.
- the first hydraulic pump 11 and the input port of the first auxiliary directional control valve 24 are connected by a pipeline 46 connected to the first hydraulic pump 11, and this pipeline 46 is connected to the first hydraulic pump 11 from the first hydraulic pump 11.
- a spare merging valve 30 is provided that enables the discharged pressure oil to be supplied to the first spare directional control valve 24.
- the preliminary merging valve 30 is provided with a standby switch when the first preliminary operating device is operated in conjunction with the operation by supplying an operation signal (pilot pressure) of a first preliminary operating device (not shown).
- the merging valve 30 may be switched to the closed position 30a, or may be switched by operating a separately provided switch or the like.
- the third hydraulic pump 13 controls the turning direction control valve 32 for controlling the flow of pressure oil supplied to the turning motor 31 that drives the turning body 2 and the flow of pressure oil supplied to the boom cylinder 7.
- the third arm direction control valve 34 for controlling the flow of pressure oil supplied to the arm cylinder 8, and the first special attachment
- a second control for controlling the flow of pressure oil supplied to a second actuator (not shown) when a second special attachment having two hydraulic actuators, that is, a first actuator and a second actuator, is mounted instead of the special actuator.
- a spare direction control valve 35 is connected.
- the turning direction control valve 32, the third boom direction control valve 33, and the second auxiliary direction control valve 35 are connected to the pipe line 36 connected to the third hydraulic pump 13 and the pipe line 36. Are connected in parallel to each other via a pipe line 37.
- the third arm direction control valve 34 is connected to the third boom direction control valve 33 in tandem downstream.
- a variable throttle 64 is provided in the pipe line 36 portion on the meter-in side of the second preliminary direction control valve 35.
- the second preliminary direction control valve 35 includes an additional pump port that enables connection of an additional pump (not shown).
- a check valve is provided upstream of the additional pump port, and a tank port is provided further upstream of the check valve. This check valve is a tank port for pressure oil supplied from the additional pump port. It is intended to prevent distribution to
- the third boom direction control valve 33 includes a boom raising switching position 33a that is a switching position for rotating the boom 4 upward, a boom lowering switching position 33b that is a switching position for rotating the boom 4 downward, It has a neutral position in which an oil passage is formed that shuts off the communication between the third hydraulic pump 13 and the boom cylinder 7 and guides the pressure oil discharged from the third hydraulic pump 13 to the third arm direction control valve 34. Yes.
- a blocking port 33b1 for blocking the supply of pressure oil discharged from the third hydraulic pump 13 to the boom cylinder 7 is provided.
- the oil discharged from the bottom chamber 7a of the boom cylinder 7 in response to the boom lowering operation is regenerated and supplied from the third hydraulic pump 13 to the rod chamber 7b.
- An oil passage for guiding the pressure oil to be supplied to the third arm control valve 34 is provided.
- the first embodiment includes a boom operation device 40 capable of switching each of the first boom direction control valve 19, the second boom direction control valve 22, and the third boom direction control valve 33;
- the arm directional control valve 23, the second arm directional control valve 18, and the third arm directional control valve 34 are each provided with an arm operating device 41 capable of switching operation.
- the arm operating device 41 is provided with a pressure sensor 61 (pilot pressure sensor) that detects that an arm cloud operation has been performed.
- the bucket operation device for switching the bucket direction control valve 17, the turning operation device for switching the turning direction control valve 32, and the right running direction control valve 16 are switched. Operation device for right travel, left travel operation device for switching left travel direction control valve 25, first spare operation device for switching first spare direction control valve 24, and second spare direction control valve The second preliminary operating device that switches 35 is not shown.
- the first embodiment holds the third boom direction control valve 33 at the boom lowering switching position 33b when the bottom pressure of the boom cylinder 7 is equal to or higher than a predetermined pressure when the boom is lowered in the air.
- the first boom direction control valve 19 and the second boom direction control valve 22 are held in the neutral positions and the boom lowering operation in the grounded state, that is, the jack-up operation, the bottom pressure of the boom cylinder 7 is increased as described above.
- the third boom direction control valve 33 is held at the neutral position, and the first boom direction control valve 19 is rod chamber of the boom cylinder 7 of the pressure oil discharged from the first hydraulic pump 11.
- the second boom directional control valve 22 is held at the boom lowering switching position that enables supply to 7b, and the boom cylinder 7 of the hydraulic oil discharged from the second hydraulic pump 12 is locked.
- the switching valve 42 When the bottom pressure of the boom cylinder 7 exceeds a predetermined pressure, the switching valve 42 is switched to the closed position 42b against the spring force by the bottom pressure. Thereby, when the boom operation device 40 is operated to the boom lowering side, the third boom direction control valve 33 is held at the boom lowering switching position 33b, and the first boom direction control valve 19 and the second boom direction control valve 19 are held. The direction control valve 22 is held in a neutral position. When the bottom pressure of the boom cylinder 7 is less than the predetermined pressure, the switching valve 42 is switched to the open position 42a by the spring force. Thus, when the boom operation device 40 is operated to the boom lowering side, the third boom direction control valve 33 is held at the neutral position, and the first boom direction control valve 19 and the second boom direction control valve are retained. Each of 22 is held at the boom lowering switching position.
- the return pipe that communicates the tank 15 with at least one of the first arm direction control valve 23, the second arm direction control valve 18, and the third arm direction control valve 34 In the return line 47 that connects the first arm direction control valve 23 and the tank 15, for example, the opening amount is kept small when the arm 5 is not operated, and the operation amount of the arm 5 when the arm cloud is increased becomes larger.
- An open valve 43 for increasing the opening amount is provided.
- An electromagnetic valve 44 that opens and closes the pipe 48 is provided in a pipe 48 that connects the pilot pump 14 and the control unit of the release valve 43, and is held so that the solenoid valve 44 is closed by a signal output from the controller 70.
- the release valve 43 is held in the right position 43b having a throttle.
- the solenoid valve 44 is switched to open by a signal output from the controller 70, the pilot pressure of the pilot pump 14 is supplied to the control unit of the release valve 43, whereby the release valve 43 is in the fully open position. 43a.
- the first embodiment detects at least the discharge pressure of the second hydraulic pump 12 among the discharge pressure of the first hydraulic pump 11, the discharge pressure of the second hydraulic pump 12, and the discharge pressure of the third hydraulic pump 13.
- Discharge pressure detecting means that is, a discharge pressure sensor 45 is provided.
- the controller 70 controls the third boom direction control valve 33 and the third arm direction control valve 34.
- the directional control valve neutral holding means for outputting the signal for holding the neutral to the electromagnetic valve 62 and the electromagnetic valve 63 schematically illustrated in FIG.
- this first embodiment is a pump control (not shown) that disables the tilt control for the third hydraulic pump 13 when the discharge pressure of the second hydraulic pump 12 is equal to or higher than the above-described predetermined pressure, that is, during heavy excavation work. Includes invalid means.
- the first embodiment also includes a third hydraulic pump tilt control means (not shown) that keeps the tilt control of the third hydraulic pump 13 ineffective during arm cloud operation.
- the first flow rate restricting means for restricting the flow rate discharged from the first hydraulic pump 11 to a predetermined flow rate smaller than the maximum flow rate that can be discharged by the first hydraulic pump 11 is used, for example, for a boom.
- the first flow restriction valve 54 is provided.
- second flow rate limiting means for limiting the flow rate discharged from the second hydraulic pump 12 to a predetermined flow rate that is smaller than the maximum flow rate that can be discharged by the second hydraulic pump 12, for example, the boom operating device 40, the arm operation.
- a second flow rate restriction valve 55 comprising an electromagnetic valve that is provided in a pipe line 81 that communicates various operation devices including the device 41 and the control unit of the flow rate adjustment valve 12 c and that operates according to a control signal output from the controller 70. It has. Further, third flow rate limiting means for limiting the flow rate discharged from the third hydraulic pump 13 to a predetermined flow rate that is smaller than the maximum flow rate that can be discharged by the third hydraulic pump 13, for example, the boom operating device 40, arm operation A third flow restriction valve 56 is provided in a pipe line 82 that communicates various operation devices including the device 41 and the control unit of the flow rate adjustment valve 13 c and is configured by an electromagnetic valve that operates according to a control signal output from the controller 70. It has.
- a first torque control means capable of variably controlling the pump torque of the first hydraulic pump 11, for example, a pipe 85 connecting the pilot pump 14 and the control unit of the torque adjustment valve 11b is provided.
- the first torque control valve 51 including an electromagnetic valve that controls the opening amount of the pipe 85 in accordance with a control signal output from the controller 70 is provided.
- a second torque control means that can variably control the pump torque of the second hydraulic pump 12, for example, a pipe 86 that connects the pilot pump 14 and the control unit of the torque adjustment valve 12 b, is output from the controller 70.
- a second torque control valve 52 comprising an electromagnetic valve for controlling the opening amount of the pipe 86 in accordance with the control signal.
- third torque control means capable of variably controlling the pump torque of the third hydraulic pump 13, for example, a pipe line 87 connecting the pilot pump 14 and the control unit of the torque adjustment valve 13 b, is output from the controller 70.
- a third torque control valve 53 comprising an electromagnetic valve for controlling the opening amount of the pipe line 87 in accordance with the control signal.
- each operation and control as described below can be performed.
- the first boom direction control valve 19 and the second boom direction control valve 22 are: The third boom direction control valve 33 is switched to the boom raising switching position 33a.
- Each of the first arm direction control valve 23, the second arm direction control valve 18, and the third arm direction control valve 34 is switched to an arm cloud switching position (not shown).
- First boom direction control valve 19 and second arm direction control valve 18, second boom direction control valve 22 and first arm direction control valve 23 for first and second hydraulic pumps 11 and 12, Are connected in parallel, but the third boom direction control valve 33 and the second arm direction control valve 34 are upstream of the third hydraulic pump 13.
- the pressure oil discharged from the third hydraulic pump 13 can flow preferentially to the third boom direction control valve 33.
- the pressure oil of the third hydraulic pump 13 is supplied to the bottom chamber 7a of the boom cylinder 7 via the boom raising switching position 33a of the third boom direction control valve 33 to raise the boom, and the first hydraulic pressure is raised.
- the pressure oil of the pump 11 is supplied through the second arm direction control valve 18, and the pressure oil of the second hydraulic pump 12 is supplied through the first arm direction control valve 23, and a sufficient flow rate is supplied to the bottom of the arm cylinder 8
- the arm cloud can be performed by supplying the chamber 8a.
- the boom can be raised and the arm cloud combined operation can be performed without providing a throttle upstream of the directional control valve for the arm, and the arm cloud operation can be performed without providing a regeneration circuit having a throttle. Therefore, it is possible to reduce the boom loss, the pressure loss in the arm cloud combined operation, and the pressure loss in the arm cloud operation, and it is possible to ensure good operability while improving the pump efficiency.
- the third arm direction control valve 34 is tandemly connected to the downstream side, the pressure oil of the third hydraulic pump 13 is supplied to the turning motor 31 via the turning direction control valve 32 and to the third boom. It is supplied to the boom cylinder 7 via the direction control valve 33. Since the swing motor 31 is an inertial body with a large swing body 2, the load at the time of startup is large, but the load tends to decrease with acceleration after the startup, and the boom cylinder 7 has a large load as described above.
- Pressure oil discharged from the third hydraulic pump 13 based on the relationship between these loads is supplied to the turning motor 31 and the boom cylinder 7 from the turning direction control valve 32 and the third boom direction control valve 33, and 1, the pressure oil of the second hydraulic pumps 11 and 12 is also the first boom direction control valve 19 and the second arm direction control valve 18, and the second boom direction control valve 22 and the first arm direction control valve 23.
- the pressure oil of the first hydraulic pump 11 is supplied to the boom cylinder 7 via the first boom direction control valve 19 in accordance with the loads of the boom cylinder 7 and the arm cylinder 8. Or it is supplied to the arm cylinder 8 via the second arm directional control valve 18.
- the pressure oil of the second hydraulic pump 12 is supplied to the boom cylinder 7 via the second boom direction control valve 22 or is supplied to the arm cylinder 8 via the first arm direction control valve 23.
- the pressure oil of the third hydraulic pump 13 can be supplied only to the turning motor 31 via the turning direction control valve 32. For this reason, the independence of the turning motor is ensured, that is, the turning can be operated independently without being influenced by the boom lowering operation, and good turning acceleration and operability can be ensured.
- the turning motor 31 since the turning motor 31 has a large load at the time of starting, a part of the pressure oil that could not be supplied to the turning motor 31 among the pressure oil discharged from the third hydraulic pump 13 is It will be supplied to the third boom direction control valve 33 through the pipe line 37.
- the boom raising and turning combined operation can be performed while suppressing the turning speed from being too high with respect to the boom raising, and good operability of the boom raising and turning combined operation can be ensured.
- the pressure oil of the third hydraulic pump 13 is supplied only to the turning direction control valve 32. Therefore, the independence of the turning motor is ensured, that is, the turning can be independently operated without being affected by the arm operation, and the favorable turning acceleration and operability can be ensured.
- the third boom direction control valve 33 and the third arm direction control valve 34 are tandem-connected to the third hydraulic pump 13, and the third boom direction control valve 33 is Since it is provided on the upstream side of the three-arm direction control valve 34, the pressure oil of the third hydraulic pump is supplied only to the third boom direction control valve 33 regardless of the load.
- the pressure oil of the first hydraulic pump 11 is supplied to the bucket directional control valve 17, the second arm directional control valve 18, and the first boom directional control valve 19 that are connected in parallel.
- the second boom direction control valve 22 and the first arm direction control valve 23 which are connected in parallel, in accordance with the load.
- the first preliminary directional control valve 24 is switched by operating a first preliminary operating device (not shown). At this time, the preliminary merging valve 30 is held at the closed position 30a.
- the first preliminary directional control valve 24 may be switched in a state where the preliminary merging valve 30 is switched to the open position 30b.
- the pressure oil of the first hydraulic pump 11 is joined to the pressure oil of the second hydraulic pump 12 and supplied to the first preliminary direction control valve 24 via the conduit 46 and the preliminary confluence valve 30. That is, the pressure oil merged by the first hydraulic pump 11 and the second hydraulic pump 12 can be supplied to a first actuator (not shown), and the first special attachment can be driven at a high operating speed.
- the pressure oil of the second hydraulic pump 12 is supplied to the first preliminary direction control valve 24, or the first hydraulic pump 11
- the pressure oil of the second hydraulic pump 12 is supplied to the first preliminary directional control valve 24 by merging and supplying, the first actuator is operated, the first special attachment is driven, and the pressure oil of the third hydraulic pump 13 is supplied to the first hydraulic pump 13.
- the boom 4 or the arm 5 can be driven by being supplied to the boom cylinder 7 or the arm cylinder 8 via the 3-boom direction control valve 33 and the third arm direction control valve 34. That is, in the combined operation of the first special attachment, the boom 4 and the arm 5, the combined operation can be performed without interposing a diaphragm. Therefore, there is no pressure loss caused by the restriction.
- the second preliminary directional control valve 35 is switched, and the pressure oil of the third hydraulic pump 13 is supplied to the second preliminary directional control valve 35.
- the second special attachment can be driven by supplying to a second actuator (not shown) via.
- the second preliminary direction control valve 35 is connected to the third hydraulic pump in parallel connection with the turning direction control valve 32 and the third boom direction control valve 35, even if the turning and the boom are operated simultaneously. It is possible to operate. Further, the second preliminary directional control valve 35 can be easily replaced with a second bucket directional control valve for increasing the speed of the bucket 6 without requiring additional piping.
- the pressure oil of the third hydraulic pump 13 is supplied to the first via the second bucket direction control valve.
- the pressure oil of the hydraulic pump 11 can be merged and supplied to the bucket cylinder 9, and the operation speed of the bucket 6 can be increased.
- the supply flow rate of the swing motor 31 and the second actuator is appropriately distributed by adjusting the opening amount of the variable throttle 64 according to the level of the load pressure of the second actuator with respect to the load pressure of the swing motor 31. And good composite operability can be ensured.
- a second boom directional control valve 22 connected to the second hydraulic pump 12, a first arm directional control valve 23, and a first preliminary directional control valve 24 are connected in parallel. Therefore, the arrangement of the turning direction control valve 32 and the first preliminary direction control valve 24 can be easily replaced without requiring additional piping.
- the first preliminary direction control valve 24 and the second preliminary direction control valve 35 are added to the third hydraulic pump 13. And the pressure oil of the third hydraulic pump 13 can be used exclusively for the first and second special attachments, and the pressure oil of the second hydraulic pump 12 is swung via the turning direction control valve 32.
- the revolving body 2 can be turned by supplying it to the motor 31, and the drive circuits for the first and second special attachments controlled by the first and second preliminary directional control valves 24 and 35 can be made independent. 3 It can be driven by the pressure oil of the hydraulic pump 13.
- the pilot pressure can be supplied to the control unit of the third boom direction control valve 33 in accordance with the operation of the boom operation device 40, and the third boom direction control valve 33 is in the boom lowering switching position. 33b. Accordingly, the pressure oil discharged from the third hydraulic pump 13 is blocked from being supplied to the boom cylinder 7 by the blocking port 33b1 provided at the boom lowering switching position 33b of the third boom direction control valve 33, and the boom cylinder 7 The pressure oil discharged from the bottom chamber 7a is regenerated and supplied to the rod chamber 7b of the boom cylinder 7 via the regeneration circuit 33b2. Accordingly, the boom cylinder 7 can be contracted and the boom can be lowered without supplying pressure oil from the third hydraulic pump 13.
- the pressure oil discharged from the first hydraulic pump 11, the second hydraulic pump 12, and the third hydraulic pump 13 is not supplied to the boom cylinder 7, and these hydraulic pumps are held at the minimum tilt angle.
- a minimum flow rate can be discharged, and in this way, energy consumption can be minimized.
- the pilot pressure is also supplied to the control unit of the 3-boom direction control valve 33, and the third boom-direction control valve 33 is switched to the boom lowering switching position 33b.
- a blocking port 33b1 for blocking the supply of the pressure oil from the third hydraulic pump 13 to the boom cylinder 7 and the oil flowing the supplied pressure oil to the third arm direction control valve 34 side. Since the road is provided, even if the third boom direction control valve 33 is switched to the boom lowering switching position 33b, the third hydraulic pump 13 is not operated unless another direction control valve connected to the third hydraulic pump 13 is operated. The discharge pressure becomes a low pressure state close to the tank pressure.
- the pressure oil of the first hydraulic pump 11 is supplied to the rod chamber 7b of the boom cylinder 7 via the first boom direction control valve 19, and the pressure oil of the second hydraulic pump 12 is supplied to the second boom.
- a desired jack-up operation can be performed by the pressure oil of the two hydraulic pumps supplied to the rod chamber 7b of the boom cylinder 7 via the use direction control valve 22.
- the controller 70 controls the solenoid valve 44 to open, and accordingly, the pilot pressure of the pilot pump 14 is given to the control unit of the release valve 43 via the solenoid valve 44.
- the opening valve 43 tends to be switched to the left position 43a side according to the size of.
- the rod chamber 8b of the arm cylinder 8 passes through the first arm direction control valve 23 and the release valve 43.
- the amount of oil returned to the tank 15 is small. Accordingly, the arm cloud operating speed is suppressed so as to become slow, and the arm 5 is pressed by the pressure oil supplied from the second hydraulic pump 12 to the bottom chamber 8a of the arm cylinder 8 through the first arm direction control valve 23. Begins to fall slowly. Thereby, generation
- the operation amount of the arm operation device 41 is increased, the value of the signal supplied from the controller 70 to the electromagnetic valve 44 is increased, the opening amount of the electromagnetic valve 44 is increased, and the release valve 43 is in the fully open position. It is switched to position 43a.
- the amount of oil returned from the rod chamber 8b of the arm cylinder 8 to the tank 15 through the first arm direction control valve 23 and the release valve 43 increases, and the operating speed of the arm cloud increases and the arm 5 Decline quickly.
- the arm cloud operation is performed, good operability can be ensured while reducing the influence of the impact force on the boom 4 and the bucket 6 of the work device 3 or the revolving structure 2 and the traveling structure 1.
- the rod pressure of the arm cylinder 8 decreases to the same level as the tank pressure, so that compared with the case where a regeneration circuit having a throttle is provided.
- the thrust for operating the arm cylinder 8 is reduced. That is, in this 1st Embodiment, the load pressure of the arm cylinder 8 at the time of arm cloud operation can be made small. Thereby, the pump efficiency of the second hydraulic pump 12 can be improved.
- only the first arm direction control valve 23 among the first arm direction control valve 23, the second arm direction control valve 18, and the third arm direction control valve 34 is connected to the tank.
- a meter-out port is provided as a port.
- the operation is performed by the pressure oil of the first hydraulic pump 11 and the second hydraulic pump 12 as described above.
- the volumetric efficiency of a hydraulic pump decreases as the discharge pressure increases.
- the discharge pressure of the second hydraulic pump 12 detected by the discharge pressure sensor 45 becomes equal to or higher than a predetermined pressure corresponding to the heavy excavation operation. Therefore, the directional control valve neutral holding means included in the controller 70 in response to the signal output from the discharge pressure sensor 45 is configured so that when the discharge pressure detected by the discharge pressure sensor 45 exceeds a predetermined pressure, the electromagnetic valves 62 and 63 are used.
- a third hydraulic pump tilt control means (not shown) is activated in accordance with the operation, and the pilot pressure to the control unit of the flow rate adjusting valve 13c included in the regulator of the third hydraulic pump 13 is operated.
- the supply of That is, the tilt control of the third hydraulic pump is not performed.
- the pressure oil of the first hydraulic pump 11 is supplied to the bottom chamber 8a of the arm cylinder 8 via the second arm direction control valve 18, and the pressure oil of the second hydraulic pump 12 is supplied to the first arm direction control valve 23. Is supplied to the bottom chamber 8a of the arm cylinder 8 through these, and the arm cylinder 8 can be operated by these to perform the arm cloud. That is, this arm cloud operation can be performed by tilt control of the first hydraulic pump 11 and the second hydraulic pump 12 without deteriorating pump efficiency while ensuring good operability.
- the first hydraulic pump 11 is operated by selectively operating the first flow restriction valve 54, the second flow restriction valve 55, and the third flow restriction valve 56 by a signal output from the controller 70.
- the second hydraulic pump 12, and the third hydraulic pump 13 that is, the pressure oil discharged from the corresponding hydraulic pump.
- the torque included in the regulator of the first hydraulic pump 11 by selectively operating the first torque control valve 51, the second torque control valve 52, and the third torque control valve 53 according to the signal output from the controller 70.
- the pilot pressure applied to each of the control unit of the adjustment valve 11b, the control unit of the torque adjustment valve 12b included in the regulator of the second hydraulic pump 12, and the control unit of the torque adjustment valve 13b included in the regulator of the third hydraulic pump 13 By controlling and controlling the pump torque of the corresponding hydraulic pump among the first hydraulic pump 11, the second hydraulic pump 12, and the third hydraulic pump 13, the total value of the pump torque does not exceed the engine output torque.
- the corresponding hydraulic pressure among the first hydraulic pump 11, the second hydraulic pump 12, and the third hydraulic pump 13 is maintained.
- Preferably maintaining the flow distribution of the pressure oil discharged from the pump it is possible to improve the pumping efficiency to ensure good operability in the combined operation.
- the boom when the boom is raised and the arm cloud combined operation is performed, the boom is raised by the pressure oil of the third hydraulic pump 13, and the first hydraulic pump Since the arm crowding is performed by the pressure oil of the first and second hydraulic pumps 12, the boom raising and the arm crowding combined operation can be performed without providing an aperture.
- the arm cloud operation can be performed without providing a reproduction circuit having a diaphragm during the arm cloud operation. Therefore, this 1st Embodiment can reduce the pressure loss in boom raising, arm cloud compound operation, and arm cloud operation. Thereby, pump efficiency can be improved, fuel consumption can be reduced, and energy saving can be realized.
- the hydraulic drive apparatus performs pump torque control of the first hydraulic pump and pump torque control of the second hydraulic pump 12 by the second torque control valve 52, as shown in FIG.
- the configuration is such that the first torque control valve 51 in the first embodiment is excluded.
- the pump torque control of the first hydraulic pump 11 and the pump torque control of the second hydraulic pump 12 are performed by one second torque control valve 52, the number of torque control valves to be controlled can be reduced. Therefore, the pump torque control by the controller 70 can be performed more easily than in the first embodiment.
- Other configurations are the same as those of the first embodiment.
- the accuracy of the pump torque control is slightly inferior to that of the first embodiment, but the pump control is performed with little trouble during actual work. Can do.
- the second embodiment configured as described above is basically configured in the same manner as the first embodiment, a boom is raised and an arm cloud combined operation is provided with a throttle as in the first embodiment.
- the same arm cloud operation as that provided with a reproducing circuit having a diaphragm can be performed.
- the same functions and effects as those of the first embodiment can be obtained.
- the first variable throttle 100 is provided in the pipe line 21 located upstream of the second arm directional control valve 18 connected to the first hydraulic pump 11. Also good. This state is shown in FIG. 3 for reference.
- Supply of the pressure oil from the first hydraulic pump 11 to the control valve 18 can be limited by the first variable throttle 100, and the pressure oil from the first hydraulic pump 11 is given priority via the bucket direction control valve 17.
- the cylinder 9 can be supplied and operated. Further, the pressure oil of the second hydraulic pump 12 is supplied to the arm cylinder 8 via the first arm direction control valve 23, and the pressure oil of the third hydraulic pump 13 is supplied to the arm cylinder 8 via the third arm direction control valve 33, respectively.
- the arm cylinder 8 can be operated. That is, the operation speed of the bucket 6 can be increased while ensuring the operation speed of the arm 5.
- the second variable throttle 101 may be provided in the pipe line 28 upstream of the first arm directional control valve 23 connected to the second hydraulic pump 12. This state is shown in FIG. 3 for reference.
- the first special attachment is connected to the arm 5 and the first actuator for driving the first special attachment is provided as described above, and this first actuator is used as the first preliminary directional control valve 24.
- the return pipe 47 of the first arm direction control valve 23 is connected to the return line 47 by the second variable throttle 101, for example, in the case of four combined operations of boom raising, arm cloud, bucket cloud, and first special attachment.
- the pressure of the second hydraulic pump 12 is suppressed while suppressing the inflow of the pressure oil of the second hydraulic pump 12 to the first arm direction control valve 23 forming the low pressure side by providing the release valve 43 as described above. Oil can be supplied to the first actuator via the first preliminary directional control valve 24 to activate the first special attachment.
- the pressure oil of the first hydraulic pump 11 is preferentially supplied to the bottom chamber 9a of the bucket cylinder 9 via the bucket direction control valve 17, and the pressure oil of the second hydraulic pump 12 is supplied to the second variable throttle and the first.
- the pressure oil of the second hydraulic pump 12 is supplied to the first actuator via the first preliminary direction control valve 24, and
- the hydraulic oil of the three hydraulic pumps 13 is supplied to the bottom chamber 7a of the boom cylinder 7 via the boom raising switching position 33a of the third boom direction control valve 33 to raise the boom, the arm cloud, the bucket cloud, and the first special attachment.
- the four complex operations can be implemented.
- the first hydraulic pressure is controlled to increase the tilt angle of the first hydraulic pump during the jack-up operation when the bottom pressure of the boom cylinder 7 does not reach a predetermined pressure during the boom lowering operation. You may make it the structure provided with the pump inclination control means.
- the first hydraulic pump tilt control means controls to increase the pilot pressure supplied to the control unit of the flow rate adjusting valve 11c included in the regulator of the first hydraulic pump 11.
- the tilt angle of the first hydraulic pump 11 is increased. That is, control is performed to increase the flow rate of the first hydraulic pump 11, and the increased flow rate is supplied to the rod chamber 7 b of the boom cylinder 7 via the first boom direction control valve 19 to perform the jackup operation.
- the increase control is not performed on the flow rate of the pressure oil of the second hydraulic pump 12.
- the tilt control of the third hydraulic pump 13 is kept in an inoperative state.
- the jack-up operation is performed by increasing the flow rate of the first hydraulic pump 11. Can be carried out without hindrance. Therefore, the jack-up operation can be performed while keeping the influence on the pump efficiency to a minimum.
- the pump torque of the first hydraulic pump 11 is increased by the first torque control valve 51 serving as the first torque control means by the signal output from the controller 70 during the turning and bucket combined operation. It may be configured to control as described above.
- the second torque control valve 52 which is the second torque control means, is caused to increase the pump torque of the first hydraulic pump 11 by a signal output from the controller 70 during turning and bucket combined operation. You may make it the structure controlled to.
- the bucket cloud operation is performed at a high operating speed, and the bucket 6 is quickly brought into an excavation posture in which the cutting edge has a desired bite angle with respect to the ground. Can be restored.
- the excavation work by the bucket 6 can be performed immediately, and the efficiency of such excavation work can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Operation Control Of Excavators (AREA)
- Fluid-Pressure Circuits (AREA)
Abstract
Description
この第1実施形態は、ブーム上げ、アームクラウド複合操作に際して、ブーム用操作装置40及びアーム用操作装置41を操作すると、第1ブーム用方向制御弁19、第2ブーム用方向制御弁22は、不図示のブーム上げ切り換え位置に切り換えられ、第3ブーム用方向制御弁33はブーム上げ切換位置33aに切り換えられる。第1アーム用方向制御弁23、第2アーム用方向制御弁18及び、第3アーム用方向制御弁34のそれぞれは、不図示のアームクラウド切換位置に切り換えられる。第1、第2油圧ポンプ11,12に対して第1ブーム用方向制御弁19と第2アーム用方向制御弁18及び、第2ブーム用方向制御弁22と第1アーム用方向制御弁23とは、それぞれパラレル接続されているが、第第3油圧ポンプ13に対して第3ブーム用方向制御弁33と第2アーム用方向制御弁34とは、第3ブーム用方向制御弁33が上流側でタンデム接続されているから、第3油圧ポンプ13から吐出される圧油を、第3ブーム用方向制御弁33に優先的に流すことができる。これにより、第3油圧ポンプ13の圧油は、第3ブーム用方向制御弁33のブーム上げ切換位置33aを介してブームシリンダ7のボトム室7aに供給されてブーム上げを行わせ、第1油圧ポンプ11の圧油を第2アーム用方向制御弁18を介して、また第2油圧ポンプ12の圧油を第1アーム用方向制御弁23を介して、それぞれ十分な流量をアームシリンダ8のボトム室8aに供給してアームクラウドを行わせることができる。すなわち、アーム用方向制御弁の上流に絞りを設けることなくブーム上げ、アームクラウド複合操作を実施でき、また絞りを有する再生回路を設けることなくアームクラウド操作を実施できる。したがって、ブーム上げ、アームクラウド複合操作における圧損、及びアームクラウド操作における圧損を低減でき、ポンプ効率を向上させつつ、良好な操作性を確保することができる。
この第1実施形態は、旋回、ブーム、アームの複合操作に際して、図示しない旋回用操作装置、ブーム用操作装置40、及びアーム用操作装置41を操作すると、旋回用方向制御弁32、第1~第3ブーム用方向制御弁19,22,33、及び第1~第3アーム用方向制御弁23,18,34が操作方向に応じた切換位置に切り換えられる。このとき、第3油圧ポンプ13に対して、旋回用方向制御弁32と第3ブーム用方向制御弁33とはパラレル接続されており、旋回用方向制御弁32および第3ブーム用方向制御弁33に対して第3アーム用方向制御弁34が下流側でタンデム接続されているから、第3油圧ポンプ13の圧油が旋回用方向制御弁32を介して旋回モータ31に、また第3ブーム用方向制御弁33を介してブームシリンダ7に供給される。旋回モータ31は旋回体2が大きい慣性体であるため、起動時の負荷は大きいものの起動後は加速に伴って負荷が小さくなる傾向があり、ブームシリンダ7は前述したように負荷が大きいため、それらの負荷の関係に基づいて第3油圧ポンプ13から吐出される圧油は、旋回用方向制御弁32および第3ブーム方向制御弁33から旋回モータ31、ブームシリンダ7に供給され、また、第1、第2油圧ポンプ11、12の圧油も、第1ブーム用方向制御弁19と第2アーム用方向制御弁18、および第2ブーム用方向制御弁22と第1アーム用方向制御弁23とがそれぞれパラレル接続されているからブームシリンダ7、アームシリンダ8の負荷に応じて、第1油圧ポンプ11の圧油が第1ブーム用方向制御弁19を介してブームシリンダ7に、あるいは第2アーム用方向制御弁18を介してアームシリンダ8に供給される。さらに、第2油圧ポンプ12の圧油が第2ブーム用方向制御弁22介してブームシリンダ7に供給され、あるいは第1アーム用方向制御弁23を介してアームシリンダ8に供給される。これらにより、旋回、ブーム、アーム複合操作の良好な操作性を確保することができる。
この第1実施形態は、ブーム下げ、旋回複合操作に際して、図示しない旋回用操作装置と、ブーム用操作装置40とを操作すると、旋回用方向制御弁32が切り換えられ、また第3ブーム用方向制御弁33がブーム下げ切換位置33bに切り換えられる。第3油圧ポンプ13に対して、旋回用方向制御弁32と第3ブーム用方向制御弁33とはパラレル接続されるものの、第3ブーム用方向制御弁33のブーム下げ切換位置33bには、阻止ポート33b1が設けられ、第3油圧ポンプ13から供給される圧油は、阻止ポート33b1によって阻止されるので、旋回用方向制御弁32には、第3油圧ポンプ13の吐出油の全量が供給されることになり、この第3油圧ポンプ13の圧油を旋回用方向制御弁32を介して旋回モータ31のみに供給することができる。このため旋回モータの独立性が確保され、すなわち、旋回をブーム下げ操作に影響されずに独立して操作させることができ、良好な旋回の加速性、操作性を確保することができる。
この第1実施形態は、ブーム上げ、旋回複合操作に際して、ブーム用操作装置40と、図示しない旋回用操作装置とを操作すると、第1~第3ブーム用方向制御弁19,22,33がブーム上げ切換位置33aに切り換えられ、また旋回用方向制御弁32が切り換えられる。第1、第2油圧ポンプ11,12の圧油は、それぞれ第1、第2ブーム用方向制御弁19,22の不図示のブーム上げ切り換え位置に供給され、第3油圧ポンプ13の圧油は、パラレル接続される第3ブーム用方向制御弁33のブーム上げ切換位置33aと、旋回用方向制御弁32とに供給され、それらを介してブームシリンダ7、旋回モータ31の双方に供給可能になる。この際、上述したように旋回モータ31は、起動時の負荷が大きいから、第3油圧ポンプ13から吐出された圧油のうち、旋回モータ31に供給され得なかった圧油の一部は、管路37を通って第3ブーム用方向制御弁33に供給されることになる。これによって、ブーム上げに対して旋回速度を速すぎないように抑えながらブーム上げ、旋回複合操作を実施することができ、このブーム上げ、旋回複合操作の良好な操作性を確保することができる。
この第1実施形態は、アームのクラウド、ダンプ操作と、旋回複合操作に際して、アーム用操作装置41と、図示しない旋回用操作装置とを操作すると、第1~第3アーム用方向制御弁23,18,34は、操作された不図示のアームクラウド切換位置またはアームダンプ切換位置に切り換えられ、旋回用方向制御弁32は、操作された所定の切換位置に切り換えられる。第1、第2油圧ポンプ11,12の圧油は、それぞれ第1、第2アーム用方向制御弁23、18に供給される。旋回用方向制御弁32と第3アーム用方向制御弁34とは、タンデム接続され、第3油圧ポンプ13に対して旋回用方向制御弁32は、第3アーム用方向制御弁34よりも上流側に設けられるから、第3油圧ポンプ13の圧油は、旋回用方向制御弁32にのみ供給されることになる。そのため、旋回モータの独立性が確保され、すなわち、旋回をアーム操作に影響されずに独立して操作させることができ、良好な旋回の加速性、操作性を確保することができる。
この第1実施形態は、ブーム上げ、アームクラウド、バケットクラウド複合操作に際して、ブーム用操作装置40、アーム用操作装置41、及び図示しないバケット用操作装置を操作すると、第1、第2ブーム用方向制御弁19、22が不図示のブーム上げ切換位置に切り換えられ、第3ブーム用方向制御弁33がブーム上げ切換位置33aに切り換えられ、第1~第3アーム用方向制御弁23,18,34が不図示のアームクラウド切換位置に切り換えられ、バケット用方向制御弁17がバケットクラウド切換位置に切り換えられる。上述したように、第3油圧ポンプ13に対して第3ブーム用方向制御弁33と第3アーム用方向制御弁34とは、タンデム接続されており、第3ブーム用方向制御弁33は、第3アーム用方向制御弁34の上流側に設けられるから、第3油圧ポンプの圧油は、負荷に関わらず、第3ブーム用方向制御弁33にのみ供給される。
この第1実施形態は、走行とブーム上げの複合操作に際して、不図示の走行用操作装置及びブーム用操作装置40を操作すると、右走行用方向制御弁16および左走行用方向制御弁25が、操作に応じて前進切換位置または後進切換位置のいずれかに切り換えられ、第1、第2ブーム用方向制御弁19,22が不図示のブーム上げ切換位置に切り換えられ、第3ブーム用方向制御弁33がブーム上げ切換位置33aに切り換えられる。第3油圧ポンプ13には、第3ブーム用方向制御弁33が、左右の走行用方向制御弁16,25と独立して設けられるから、ブームシリンダ7には、ブームは走行負荷の影響に関わりなく、圧油が供給されるため、走行とブーム上げの良好な複合操作が可能になる。
この第1実施形態は、図示しない第1予備用操作装置を操作することにより、第1予備用方向制御弁24が切り換えられるが、このとき予備用合流弁30が閉位置30aに保持されているときは、第2油圧ポンプ12の圧油を第1予備用方向制御弁24を介して図示しない第1アクチュエータに供給し、この第1アクチュエータの作動によって第1特殊アタッチメントを駆動させることができる。また、第1特殊アタッチメントを速い作動速度で駆動する場合には、予備用合流弁30を開位置30bに切り換えた状態で第1予備用方向制御弁24を切り換えればよい。これにより、第1油圧ポンプ11の圧油が管路46及び予備用合流弁30を介して第1予備用方向制御弁24に、第2油圧ポンプ12の圧油に合流して供給される。すなわち、第1油圧ポンプ11と第2油圧ポンプ12の合流した圧油を図示しない第1アクチュエータに供給し、第1特殊アタッチメントを速い作動速度で駆動させることができる。
この第1実施形態は、図示しない第2予備用操作装置を操作することにより、第2予備用方向制御弁35が切り換えられ、第3油圧ポンプ13の圧油を第2予備用方向制御弁35を介して図示しない第2アクチュエータに供給して、第2特殊アタッチメントを駆動させることができる。しかも、第2予備用方向制御弁35は、旋回用方向制御弁32、第3ブーム用方向制御弁35とパラレル接続で第3油圧ポンプに接続されるから、旋回およびブームが同時に操作されても動作可能である。また、この第2予備用方向制御弁35は、配管の増設を要することなく、バケット6を増速させるための第2バケット用方向制御弁に容易に交換することが可能である。このように、第2予備用方向制御弁35に代えて第2バケット用方向制御弁を設けた場合には、第3油圧ポンプ13の圧油を第2バケット用方向制御弁を介して第1油圧ポンプ11の圧油に合流させてバケットシリンダ9に供給することができ、バケット6の作動速度の高速化を実現させることができる。
この第1実施形態は、図示しない旋回用操作装置、及び図示しない第2予備用操作装置を操作すると、旋回用方向制御弁33と第2予備用方向制御弁35が切り換えられる。したがって、第3油圧ポンプ13の圧油がパラレルに接続された旋回用方向制御弁32と、第2予備用方向制御弁35の双方に供給され、旋回モータ31が作動して旋回体2が旋回し、図示しない第2アクチュエータが作動して第2特殊アタッチメントが駆動し、旋回、第2特殊アクチュエータの複合操作を実施することができる。またこのとき、旋回モータ31の負荷圧に対する第2アクチュエータの負荷圧の高低に応じて、可変絞り64の開口量を調整することにより、旋回モータ31と第2アクチュエータの供給流量を適切に配分することができ、良好な複合操作性を確保することができる。
この第1実施形態は、第3油圧ポンプ13と第2予備用方向制御弁35とを接続する管路部分を遮断し、第2予備用方向制御弁35の追加用ポンプポートに配管を介して図示しない追加用油圧ポンプを接続することにより、追加用油圧ポンプの圧油を第2予備用方向制御弁35を介して図示しない第2アクチュエータに供給して第2特殊アタッチメントを駆動させることができる。すなわち、第2特殊アタッチメントの駆動を、旋回操作、ブーム操作、及びアーム操作とは独立して実施させることができる。
この第1実施形態は、第2油圧ポンプ12に接続される第2ブーム用方向制御弁22と、第1アーム用方向制御弁23と、第1予備用方向制御弁24とをパラレルに接続してあることから、配管の増設を要することなく容易に旋回用方向制御弁32と、第1予備用方向制御弁24の配置を入れ替えることができる。このように旋回用方向制御弁32と、第1予備用方向制御弁24とを入れ替えたものでは、第3油圧ポンプ13に第1予備用方向制御弁24と、第2予備用方向制御弁35とが接続されることにより、第3油圧ポンプ13の圧油を第1,第2特殊アタッチメント専用に用いることができ、第2油圧ポンプ12の圧油は旋回用方向制御弁32を介して旋回モータ31に供給して旋回体2を旋回させることができるとともに、第1,第2予備用方向制御弁24,35で制御される第1,第2特殊アタッチメントの駆動回路を独立させて、第3油圧ポンプ13の圧油によって駆動させることができる。
この第1実施形態は、ブーム4が空中において保持されている状態から、ブーム用操作装置40が操作されてブーム下げが実施されたときには、ブーム4は自重によって下降するが、このとき、ブームシリンダ7のボトム圧はブームの保持により所定圧以上となる。この所定圧以上のボトム圧によって上述したように切換弁42が閉位置42bに切り換えられ、この切換弁42の閉位置42bへの切り換えにより第1ブーム用方向制御弁19の制御部、及び第2ブーム用方向制御弁22の制御部へのパイロット圧の供給が阻止されて、第1ブーム用方向制御弁19及び第2ブーム用方向制御弁22は中立位置に保持されるようになっている。このとき、ブーム用操作装置40の操作に伴って第3ブーム用方向制御弁33の制御部へのパイロット圧の供給は可能となっており、第3ブーム用方向制御弁33はブーム下げ切換位置33bに切り換えられる。したがって、第3油圧ポンプ13から吐出される圧油は、第3ブーム用方向制御弁33のブーム下げ切換位置33bに設けた阻止ポート33b1によってブームシリンダ7への供給が阻止され、ブームシリンダ7のボトム室7aから排出された圧油は、再生回路33b2を介してブームシリンダ7のロッド室7bに再生供給される。これによって第3油圧ポンプ13からの圧油の供給なしに、ブームシリンダ7が収縮してブーム下げを実施することができる。すなわち、第1油圧ポンプ11、第2油圧ポンプ12、及び第3油圧ポンプ13から吐出される圧油は、ブームシリンダ7に供給されることがなく、それら油圧ポンプを最小傾転角に保持して最小流量が吐出されるようにすることができ、このようにすればエネルギ消費を最小限に抑えることができる。
また、接地等の状態でブーム下げが実施されたとき、すなわちジャッキアップ操作時には、ブームシリンダ7のボトム圧は上述の所定圧に満たないタンク圧程度の低圧となる。このとき、上述したように切換弁42はばねの力により開位置42aとなり、第1ブーム用方向制御弁19の制御部へのパイロット圧の供給、及び第2ブーム用方向制御弁22の制御部へのパイロット圧の供給が可能になり、ブーム用操作装置40の操作に伴って、第1ブーム用方向制御弁19及び第2ブーム用方向制御弁22はそれぞれブーム下げ切換位置に切り換えられ、第3ブーム用方向制御弁33の制御部へもパイロット圧が供給されて第3ブーム用方向制御弁33はブーム下げ切換位置33bに切り換えられた状態になる。ブーム下げ切換位置33bには、第3油圧ポンプ13からの圧油のブームシリンダ7への供給を阻止する阻止ポート33b1と、供給される圧油を第3アーム用方向制御弁34側に流す油路が設けられるため、第3ブーム用方向制御弁33がブーム下げ切換位置33bに切り換えられても第3油圧ポンプ13に接続される他の方向制御弁が操作されなければ、第3油圧ポンプ13の吐出圧はタンク圧に近い低圧状態となる。したがって、ジャッキアップ時には、第1油圧ポンプ11の圧油が第1ブーム用方向制御弁19を介してブームシリンダ7のロッド室7bに供給され、また第2油圧ポンプ12の圧油が第2ブーム用方向制御弁22を介してブームシリンダ7のロッド室7bに供給されて、2つの油圧ポンプの圧油により所望のジャッキアップ操作を実施することができる。
この第1実施形態は、アーム用操作装置41を操作し、例えばアーム5が空中に保持されている状態からアームクラウドが実施されようとする際に、操作前のアーム用操作装置41の非操作状態では、圧力センサ61から検出信号が出力されないことに伴ってコントローラ70の制御により電磁弁44は閉じられた状態となっている。したがって、第1アーム用方向制御弁23の戻り管路47に設けた開放弁43は絞りを有する右位置43bに保持された状態にある。この状態から、アーム用操作装置41を操作すると、第1アーム用方向制御弁23はアームクラウド切換位置に切り換えられるとともに、アームクラウド操作であることが圧力センサ61で検出される。この圧力センサ61の信号によって、コントローラ70は電磁弁44を開くように制御し、これに伴ってパイロットポンプ14のパイロット圧が電磁弁44を介して開放弁43の制御部に与えられ、パイロット圧の大きさ応じて開放弁43は左位置43a側に切り換えられる傾向となる。
この第1実施形態は重掘削時には上述のように、第1油圧ポンプ11と第2油圧ポンプ12の圧油によって作業が実施される。一般に油圧ポンプは、吐出圧力が高くなるほど容積効率が低下する。例えばアーム、バケット複合操作によって大きな掘削力を要する重掘削作業が実施されるときには、吐出圧センサ45で検出される第2油圧ポンプ12の吐出圧が重掘削作業に相応する所定圧以上となる。そのため、吐出圧センサ45から出力される信号に応じてコントローラ70に含まれる方向制御弁中立保持手段は、吐出圧センサ45によって検出される吐出圧が所定圧以上となるときには、電磁弁62,63を制御して第3ブーム用方向制御弁33及び第3アーム用方向制御弁34を中立位置に保持する。また、このような重掘削作業時には、図示しないポンプ制御無効手段によって、第3油圧ポンプ13のレギュレータに含まれる流量調整弁13cの制御部へのパイロット圧の供給が阻止されるようになっている。これによって第3油圧ポンプ13の傾転角は最小傾転角に保持され、第3油圧ポンプ13からは最小流量が吐出される。したがって、第1油圧ポンプ11の圧油がバケット用方向制御弁17を介してバケットシリンダ9のボトム室9aに優先して供給され、第2油圧ポンプ12の圧油がアームシリンダ8のボトム室8aに供給される。これにより、この重掘削作業時におけるアーム、バケット複合操作を、良好な操作性を確保しながらもポンプ効率の悪化を招くことなく、第1油圧ポンプ11の傾転制御と第2油圧ポンプ12の傾転制御によって実施させることができる。
地面のならし作業のように、アームクラウド操作時にブーム操作を少し入れて地面を水平にならす作業が行なわれることがある。アーム用操作装置41を操作すると第1、第2アーム用方向制御弁23,18とともに、第3アーム用方向制御弁34もアームクラウド切換位置に切り換る。この場合、第3油圧ポンプ13の圧油は全量が第3アーム用方向制御弁34に供給されて、アームシリンダ8に供給される。この状態において、作業に合わせてブーム用操作装置40を少し操作すると、第3ブーム用方向制御弁33と第3アーム用方向制御弁34とがタンデムに接続されているために、第3油圧ポンプ13の吐出圧が一気に上昇する。上述したようにポンプは吐出圧が上昇すると容積効率が低下する。そのため、アームクラウド操作がされたときには、その操作に伴って図示しない第3油圧ポンプ傾転制御手段が作動し、第3油圧ポンプ13のレギュレータに含まれる流量調整弁13cの制御部へのパイロット圧の供給を阻止する。すなわち、第3油圧ポンプの傾転制御が実施されることがない。したがって、第1油圧ポンプ11の圧油が第2アーム用方向制御弁18を介してアームシリンダ8のボトム室8aに供給され、第2油圧ポンプ12の圧油が第1アーム用方向制御弁23を介してアームシリンダ8のボトム室8aに供給され、これらによってアームシリンダ8が作動してアームクラウドを実施することができる。すなわち、このアームクラウド操作を、良好な操作性を確保しながらもポンプ効率の悪化を招くことなく、第1油圧ポンプ11と第2油圧ポンプ12の傾転制御によって実施させることができる。
この第1実施形態は、コントローラ70から出力される信号によって、第1流量制限弁54、第2流量制限弁55、及び第3流量制限弁56を選択的に作動させて、第1油圧ポンプ11のレギュレータに含まれる流量調整弁11cの制御部、第2油圧ポンプ12のレギュレータに含まれる流量調整弁12cの制御部、第3油圧ポンプ13のレギュレータに含まれる流量調整弁13cの制御部のそれぞれに与えられるパイロット圧を制御し、第1油圧ポンプ11、第2油圧ポンプ12、及び第3油圧ポンプ13のうちの該当する油圧ポンプの傾転角、すなわち該当する油圧ポンプから吐出される圧油の流量を制御することにより、アーム5やバケット6と第1特殊アタッチメントとの複合操作、アーム5やバケット6と第2特殊アタッチメントとの複合操作を、必要最小の流量で実施させることができ、ポンプ効率を向上させることができる。
3 作業装置
4 ブーム
5 アーム
6 バケット
7 ブームシリンダ
7a ボトム室
7b ロッド室
8 アームシリンダ
8a ボトム室
8b ロッド室
9 バケットシリンダ
9a ボトム室
11 第1油圧ポンプ
12 第2油圧ポンプ
13 第3油圧ポンプ
14 パイロットポンプ
15 タンク
17 バケット用方向制御弁
18 第2アーム用方向制御弁
19 第1ブーム用方向制御弁
20 管路
21 管路
22 第2ブーム用方向制御弁
23 第1アーム用方向制御弁
24 第1予備用方向制御弁
26 管路
27 管路
28 管路
29 管路
30 予備用合流弁
30a 閉位置
30b 開位置
31 旋回モータ
32 旋回用方向制御弁
33 第3ブーム用方向制御弁
33a ブーム上げ切換位置
33b ブーム下げ切換位置
33b1 阻止ポート
33b2 再生回路
34 第3アーム用方向制御弁
35 第2予備用方向制御弁
36 管路
37 管路
40 ブーム用操作装置
41 アーム用操作装置
42 切換弁(ブーム用方向制御弁制御手段)
43 開放弁
43a 左位置
43b 右位置
44 電磁弁
45 吐出圧センサ(吐出圧検出手段)
46 管路
47 戻り管路
48 管路
51 第1トルク制御弁(第1トルク制御手段)
52 第2トルク制御弁(第2トルク制御手段)
53 第3トルク制御弁(第3トルク制御手段)
54 第1流量制限弁(第1流量制限手段)
55 第2流量制限弁(第2流量制限手段)
56 第3流量制限弁(第3流量制限手段)
61 圧力センサ
62 電磁弁
63 電磁弁
64 可変絞り
70 コントローラ
80 管路
81 管路
82 管路
85 管路
86 管路
87 管路
Claims (22)
- 車体と、この車体に取り付けられる作業装置とを備え、この作業装置は、上記車体に上下方向の回動可能に接続されるブームと、このブームの先端に上下方向の回動可能に接続されるアームと、上記ブームを駆動するブームシリンダと、上記アームを駆動するアームシリンダとを含む作業機械に設けられ、
上記ブームシリンダ及び上記アームシリンダをそれぞれ作動させる圧油を供給する第1油圧ポンプ及び第2油圧ポンプと、上記第1油圧ポンプに対しパラレル接続され、上記ブームシリンダに供給される圧油の流れを制御する第1ブーム用方向制御弁及び上記アームシリンダに供給される圧油の流れを制御する第2アーム用方向制御弁と、上記第2油圧ポンプに対しパラレル接続され、上記ブームシリンダに供給される圧油の流れを制御する第2ブーム用方向制御弁及び上記アームシリンダに供給される圧油の流れを制御する第1アーム用方向制御弁とを備えた作業機械の油圧駆動装置において、
上記ブームシリンダ及び上記アームシリンダをそれぞれ作動させる圧油を供給する第3油圧ポンプと、この第3油圧ポンプに接続され、上記ブームシリンダに供給される圧油の流れを制御する第3ブーム用方向制御弁と、この第3ブーム用方向制御弁にタンデム接続され、上記アームシリンダに供給される圧油の流れを制御する第3アーム用方向制御弁を備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項1に記載の作業機械の油圧駆動装置において、
上記車体が旋回体を含み、
この旋回体を駆動する旋回モータと、上記第3油圧ポンプに接続され、上記旋回モータに供給される圧油の流れを制御する旋回用方向制御弁とを備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項1または2に記載の作業機械の油圧駆動装置において、
上記第3ブーム用方向制御弁は、上記ブームを上方向に回動させる切換位置であるブーム上げ切換位置と、上記ブームを下方向に回動させる切換位置であるブーム下げ切換位置とを有し、上記ブーム下げ切換位置に、上記第3油圧ポンプから吐出される圧油の上記ブームシリンダへの供給を阻止する阻止ポートを設けたことを特徴とする作業機械の油圧駆動装置。 - 請求項2に記載の作業機械の油圧駆動装置において、
上記旋回用方向制御弁と、上記第3ブーム用方向制御弁とをパラレル接続したことを特徴とする作業機械の油圧駆動装置。 - 請求項2に記載の作業機械の油圧駆動装置において、
上記作業装置が、上記アームの先端に上下方向の回動可能に接続されるバケットと、このバケットを作動させるバケットシリンダとを含み、
上記バケットシリンダに供給される圧油の流れを制御するバケット用方向制御弁を備え、
上記第1ブーム用方向制御弁と、上記第2アーム用方向制御弁と、上記バケット用方向制御弁とをパラレル接続したことを特徴とする作業機械の油圧駆動装置。 - 請求項2~5のいずれか1項に記載の作業機械の油圧駆動装置において、
上記第2油圧ポンプに接続される第1予備用方向制御弁と、
上記第1油圧ポンプから吐出される圧油を上記第1予備用方向制御弁に供給可能にする予備用合流弁を備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項5または6に記載の作業機械の油圧駆動装置において、
上記第3油圧ポンプに接続される第2予備用方向制御弁を備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項7に記載の作業機械の油圧駆動装置において、
上記旋回用方向制御弁と、上記第3ブーム用方向制御弁と、上記第2予備用方向制御弁とをパラレル接続したことを特徴とする作業機械の油圧駆動装置。 - 請求項8に記載の作業機械の油圧駆動装置において、
上記第2予備用方向制御弁は、追加油圧ポンプの接続を可能にする追加用ポンプポートを有することを特徴とする作業機械の油圧駆動装置。 - 請求項6に記載の作業機械の油圧駆動装置において、
上記第2ブーム用方向制御弁と、上記第1アーム用方向制御弁と、上記第1予備用方向制御弁とをパラレル接続したことを特徴とする作業機械の油圧駆動装置。 - 請求項3に記載の作業機械の油圧駆動装置において、
上記第3ブーム用方向制御弁のブーム下げ切換位置に、上記ブーム下げ操作時に上記ブームシリンダのボトム室から排出される油を上記ブームシリンダのロッド室に再生供給可能な再生回路を設けるとともに、
上記ブーム下げ操作に際して上記ブームシリンダのボトム圧が所定圧以上のときに、上記第3ブーム用方向制御弁を上記ブーム下げ切換位置に保持し、上記第1ブーム用方向制御弁及び上記第2ブーム用方向制御弁を中立位置に保持し、上記ブーム下げ操作に際して上記ブームシリンダのボトム圧が上記所定圧に満たないときに、上記第3ブーム用方向制御弁を上記ブーム下げ切換位置に保持し、上記第1ブーム用方向制御弁を上記第1油圧ポンプから吐出される圧油の上記ブームシリンダのロッド室への供給を可能にするブーム下げ切換位置に保持し、上記第2ブーム用方向制御弁を上記第2油圧ポンプから吐出される圧油の上記ブームシリンダのロッド室への供給を可能にするブーム下げ切換位置に保持するブーム用方向制御弁制御手段を備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項1に記載の作業機械の油圧駆動装置において、
上記第1アーム用方向制御弁、上記第2アーム用方向制御弁、及び上記第3アーム用方向制御弁のうちの少なくとも1つとタンクとを連絡する戻り管路に、上記アームの非操作時に開口量を小さく保持し、アームクラウド操作時の上記アームの操作量が大きくなるに従って開口量を大きくする開放弁を設けたことを特徴とする作業機械の油圧駆動装置。 - 請求項5に記載の作業機械の油圧駆動装置において、
上記第2アーム用方向制御弁の上流に、第1可変絞りを設けたことを特徴とする作業機械の油圧駆動装置。 - 請求項10に記載の作業機械の油圧駆動装置において、
上記第1アーム用方向制御弁の上流に第2可変絞りを設けたことを特徴とする作業機械の油圧駆動装置。 - 請求項1に記載の作業機械の油圧駆動装置において、
上記第1油圧ポンプの吐出圧、上記第2油圧ポンプの吐出圧、上記第3油圧ポンプの吐出圧のうちの少なくとも上記第2油圧ポンプの吐出圧を検出する吐出圧検出手段と、
この吐出圧検出手段で検出された吐出圧が所定圧以上のときに上記第3ブーム用方向制御弁及び上記第3アーム用方向制御弁を中立位置に保持する方向制御弁中立保持手段と、
上記吐出圧が所定圧以上のときに上記第3油圧ポンプに対する傾転制御を無効にするポンプ制御無効手段とを備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項1~13のいずれか1項に記載の作業機械の油圧駆動装置において、
エンジンを備え、
上記第1油圧ポンプ、上記第2油圧ポンプ、及び上記第3油圧ポンプのうち、少なくとも上記第3油圧ポンプは、上記エンジンによって駆動される可変容量型油圧ポンプから成り、
上記アームの操作がアームクラウド操作であるときに、上記第3油圧ポンプの傾転制御を不実施に保つ第3油圧ポンプ傾転制御手段を備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項1~13のいずれか1項に記載の作業機械の油圧駆動装置において、
エンジンを備え、
上記第1油圧ポンプ、上記第2油圧ポンプ、及び上記第3油圧ポンプのうち、少なくとも上記第1油圧ポンプは、上記エンジンによって駆動される可変容量型油圧ポンプから成り、
上記ブーム下げ操作に際して上記ブームシリンダのボトム圧が所定圧に満たないときに、上記第1油圧ポンプの傾転角を増加させる制御を行う第1油圧ポンプ傾転制御手段を備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項1~13のいずれか1項に記載の作業機械の油圧駆動装置において、
上記第1油圧ポンプから吐出される流量を、この第1油圧ポンプで吐出可能な最大流量よりも少ない所定量に制限する第1流量制限手段と、
上記第2油圧ポンプから吐出される流量を、この第2油圧ポンプで吐出可能な最大流量よりも少ない所定量に制限する第2流量制限手段と、
上記第3油圧ポンプから吐出される流量を、この第3油圧ポンプで吐出可能な最大流量よりも少ない所定量に制限する第3流量制限手段とを備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項16に記載の作業機械の油圧駆動装置において、
上記第1油圧ポンプのポンプトルクを可変に制御可能な第1トルク制御手段と、
上記第2油圧ポンプのポンプトルクを可変に制御可能な第2トルク制御手段と、
上記第3油圧ポンプのポンプトルクを可変に制御可能な第3トルク制御手段とを備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項16に記載の作業機械の油圧駆動装置において、
上記第1油圧ポンプのポンプトルクおよび上記第2油圧ポンプのポンプトルクを同時に可変に制御可能な第1トルク制御手段と、
上記第3の油圧ポンプのポンプトルクを可変に制御可能な第2トルク制御手段とを備えたことを特徴とする作業機械の油圧駆動装置。 - 請求項2に記載の作業機械の油圧駆動装置において、
エンジンを備え、
上記作業装置が、上記アームの先端に上下方向の回動可能に接続されるバケットと、このバケットを作動させるバケットシリンダとを含み、
上記バケットシリンダに供給される圧油の流れを制御するバケット用方向制御弁を備え、
上記第1油圧ポンプ、上記第2油圧ポンプ、及び上記第3油圧ポンプのそれぞれは、上記エンジンによって駆動される可変容量型油圧ポンプから成り、
上記第1油圧ポンプのポンプトルクを可変に制御可能な第1トルク制御手段と、上記第2油圧ポンプのポンプトルクを可変に制御可能な第2トルク制御手段と、上記第3油圧ポンプのポンプトルクを可変に制御可能な第3トルク制御手段とを備え、
上記旋回体と上記バケットの複合操作時に、上記第1トルク制御手段は、上記第1油圧ポンプのポンプトルクを増加させる制御を行うことを特徴とする作業機械の油圧駆動装置。 - 請求項2に記載の作業機械の油圧駆動装置において、
エンジンを備え、
上記作業装置が、上記アームの先端に上下方向の回動可能に接続されるバケットと、このバケットを作動させるバケットシリンダとを含み、
上記バケットシリンダに供給される圧油の流れを制御するバケット用方向制御弁を備え、
上記第1油圧ポンプ、上記第2油圧ポンプ、及び上記第3油圧ポンプのそれぞれは、上記エンジンによって駆動される可変容量型油圧ポンプから成り、
上記第1油圧ポンプのポンプトルクおよび上記第2油圧ポンプのポンプトルクを同時に可変に制御可能な第1トルク制御手段と、上記第3油圧ポンプのポンプトルクを可変に制御可能な第2トルク制御手段とを備え、
上記旋回体と上記バケットの複合操作時に、上記第1トルク制御手段は、上記第1油圧ポンプおよび上記第2油圧ポンプのポンプトルクを増加させる制御を行うことを特徴とする作業機械の油圧駆動装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12786437.9A EP2711559B1 (en) | 2011-05-19 | 2012-05-17 | Hydraulic drive device for working machine |
KR1020137032726A KR101932304B1 (ko) | 2011-05-19 | 2012-05-17 | 작업 기계의 유압 구동 장치 |
US14/118,141 US9341198B2 (en) | 2011-05-19 | 2012-05-17 | Hydraulic drive device for working machine |
CN201280024245.7A CN103562564B (zh) | 2011-05-19 | 2012-05-17 | 作业机械的液压驱动装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-112626 | 2011-05-19 | ||
JP2011112626A JP5572586B2 (ja) | 2011-05-19 | 2011-05-19 | 作業機械の油圧駆動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012157705A1 true WO2012157705A1 (ja) | 2012-11-22 |
Family
ID=47177022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/062660 WO2012157705A1 (ja) | 2011-05-19 | 2012-05-17 | 作業機械の油圧駆動装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9341198B2 (ja) |
EP (1) | EP2711559B1 (ja) |
JP (1) | JP5572586B2 (ja) |
KR (1) | KR101932304B1 (ja) |
CN (1) | CN103562564B (ja) |
WO (1) | WO2012157705A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2803770A4 (en) * | 2012-01-11 | 2015-08-19 | Kobelco Constr Mach Co Ltd | HYDRAULIC CONTROL DEVICE AND CONSTRUCTION MACHINE THEREWITH |
JP2015172393A (ja) * | 2014-03-11 | 2015-10-01 | 住友重機械工業株式会社 | ショベル |
CN105074097A (zh) * | 2013-03-28 | 2015-11-18 | 株式会社神户制钢所 | 液压挖掘机 |
CN105864132A (zh) * | 2015-01-23 | 2016-08-17 | 鞍钢股份有限公司 | 一种恒压变量泵系统及节能方法 |
EP3118465A4 (en) * | 2014-03-11 | 2017-03-08 | Sumitomo Heavy Industries, Ltd. | Shovel |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6220227B2 (ja) * | 2013-10-31 | 2017-10-25 | 川崎重工業株式会社 | 油圧ショベル駆動システム |
KR101658326B1 (ko) * | 2014-09-10 | 2016-09-22 | 가부시키가이샤 고마쓰 세이사쿠쇼 | 작업 차량 및 작업 차량의 제어 방법 |
JP6212009B2 (ja) | 2014-09-12 | 2017-10-11 | 日立建機株式会社 | 作業機械の油圧制御装置 |
JP6453898B2 (ja) * | 2014-10-02 | 2019-01-16 | 日立建機株式会社 | 作業機械の油圧駆動システム |
CN104674867B (zh) * | 2014-12-31 | 2017-02-22 | 青岛雷沃挖掘机有限公司 | 挖掘机斗杆动作液压控制系统及方法 |
WO2016157531A1 (ja) | 2015-04-03 | 2016-10-06 | 日立建機株式会社 | 作業機械の油圧制御装置 |
JP6555709B2 (ja) * | 2015-04-17 | 2019-08-07 | キャタピラー エス エー アール エル | 流体圧回路および作業機械 |
DE112016000084B4 (de) * | 2016-07-29 | 2019-09-12 | Komatsu Ltd. | Steuersystem, Arbeitsmaschine und Steuerverfahren |
KR102571079B1 (ko) * | 2016-09-06 | 2023-09-06 | 에이치디현대인프라코어 주식회사 | 굴삭기의 메인 컨트롤 밸브 제어 방법 및 이를 수행하기 위한 장치 |
JP2018128127A (ja) * | 2017-02-10 | 2018-08-16 | 川崎重工業株式会社 | 液圧駆動システム |
JP6731387B2 (ja) * | 2017-09-29 | 2020-07-29 | 株式会社日立建機ティエラ | 建設機械の油圧駆動装置 |
JP6940403B2 (ja) | 2017-12-28 | 2021-09-29 | 日立建機株式会社 | 作業機械の油圧駆動装置 |
CN110506165B (zh) * | 2018-03-19 | 2021-01-08 | 日立建机株式会社 | 工程机械 |
JP7165016B2 (ja) * | 2018-10-02 | 2022-11-02 | 川崎重工業株式会社 | 油圧ショベル駆動システム |
JP6703585B2 (ja) | 2018-11-01 | 2020-06-03 | Kyb株式会社 | 流体圧制御装置 |
US11053958B2 (en) | 2019-03-19 | 2021-07-06 | Caterpillar Inc. | Regeneration valve for a hydraulic circuit |
JP7182579B2 (ja) | 2020-03-27 | 2022-12-02 | 日立建機株式会社 | 作業機械 |
WO2021222532A1 (en) * | 2020-05-01 | 2021-11-04 | Cummins Inc. | Distributed pump architecture for multifunctional machines |
JP7461802B2 (ja) | 2020-06-10 | 2024-04-04 | 川崎重工業株式会社 | 油圧ショベル駆動システム |
JP7389728B2 (ja) * | 2020-09-09 | 2023-11-30 | 川崎重工業株式会社 | 油圧ショベル駆動システム |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5587821U (ja) * | 1978-12-14 | 1980-06-17 | ||
JPH0813547A (ja) | 1994-06-28 | 1996-01-16 | Hitachi Constr Mach Co Ltd | 油圧掘削機の油圧回路装置 |
JPH08219107A (ja) | 1995-02-13 | 1996-08-27 | Hitachi Constr Mach Co Ltd | 油圧機械の油圧再生装置 |
JPH1182416A (ja) | 1997-09-05 | 1999-03-26 | Hitachi Constr Mach Co Ltd | 油圧作業機の油圧回路装置 |
JP2003113809A (ja) * | 2001-10-01 | 2003-04-18 | Hitachi Constr Mach Co Ltd | 建設機械の油圧駆動装置及び建設機械 |
JP2003184815A (ja) * | 2001-12-17 | 2003-07-03 | Hitachi Constr Mach Co Ltd | 建設機械の油圧制御装置及び油圧ショベルの油圧制御装置 |
JP2005232961A (ja) * | 2005-03-18 | 2005-09-02 | Yanmar Co Ltd | 掘削旋回作業機の油圧回路 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5922045B2 (ja) | 1978-12-22 | 1984-05-24 | ヤンマーディーゼル株式会社 | 内燃機関の吸気装置 |
SE448762B (sv) * | 1979-02-26 | 1987-03-16 | Hitachi Construction Machinery | Hydraulisk drivanordning for konstruktionsmaskinerier, innefattande ett flertal slutna hydraulkretsar |
US4207740A (en) * | 1979-06-12 | 1980-06-17 | Akermans Verkstad Ab | Valve blocks, in particular for hydraulic excavators |
US4561824A (en) * | 1981-03-03 | 1985-12-31 | Hitachi, Ltd. | Hydraulic drive system for civil engineering and construction machinery |
JPS60203744A (ja) * | 1984-03-27 | 1985-10-15 | Sekitan Rotenbori Kikai Gijutsu Kenkyu Kumiai | 液圧操作方法 |
EP0593782B1 (en) * | 1992-04-20 | 1998-07-01 | Hitachi Construction Machinery Co., Ltd. | Hydraulic circuit device for construction machines |
DE69302012T2 (de) * | 1992-12-04 | 1996-09-05 | Hitachi Construction Machinery Co., Ltd., Tokio/Tokyo | Hydraulischer regenerator |
JP3076210B2 (ja) * | 1995-02-17 | 2000-08-14 | 日立建機株式会社 | 建設機械の油圧駆動装置 |
JPH10299027A (ja) * | 1997-04-25 | 1998-11-10 | Hitachi Constr Mach Co Ltd | 建設機械の油圧駆動装置 |
US5940997A (en) * | 1997-09-05 | 1999-08-24 | Hitachi Construction Machinery Co., Ltd. | Hydraulic circuit system for hydraulic working machine |
JP3777114B2 (ja) * | 2001-11-05 | 2006-05-24 | 日立建機株式会社 | 油圧作業機の油圧回路装置 |
US7607245B2 (en) * | 2002-09-26 | 2009-10-27 | Hitachi Construction Machinery Co., Ltd. | Construction machine |
US7562615B2 (en) * | 2003-01-14 | 2009-07-21 | Hitachi Construction Machinery Co., Ltd. | Hydraulic working machine |
JP4734196B2 (ja) * | 2006-08-10 | 2011-07-27 | 日立建機株式会社 | 大型油圧ショベルの油圧駆動装置 |
US7905088B2 (en) | 2006-11-14 | 2011-03-15 | Incova Technologies, Inc. | Energy recovery and reuse techniques for a hydraulic system |
-
2011
- 2011-05-19 JP JP2011112626A patent/JP5572586B2/ja active Active
-
2012
- 2012-05-17 WO PCT/JP2012/062660 patent/WO2012157705A1/ja active Application Filing
- 2012-05-17 KR KR1020137032726A patent/KR101932304B1/ko active IP Right Grant
- 2012-05-17 EP EP12786437.9A patent/EP2711559B1/en active Active
- 2012-05-17 CN CN201280024245.7A patent/CN103562564B/zh active Active
- 2012-05-17 US US14/118,141 patent/US9341198B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5587821U (ja) * | 1978-12-14 | 1980-06-17 | ||
JPH0813547A (ja) | 1994-06-28 | 1996-01-16 | Hitachi Constr Mach Co Ltd | 油圧掘削機の油圧回路装置 |
JPH08219107A (ja) | 1995-02-13 | 1996-08-27 | Hitachi Constr Mach Co Ltd | 油圧機械の油圧再生装置 |
JPH1182416A (ja) | 1997-09-05 | 1999-03-26 | Hitachi Constr Mach Co Ltd | 油圧作業機の油圧回路装置 |
JP2003113809A (ja) * | 2001-10-01 | 2003-04-18 | Hitachi Constr Mach Co Ltd | 建設機械の油圧駆動装置及び建設機械 |
JP2003184815A (ja) * | 2001-12-17 | 2003-07-03 | Hitachi Constr Mach Co Ltd | 建設機械の油圧制御装置及び油圧ショベルの油圧制御装置 |
JP2005232961A (ja) * | 2005-03-18 | 2005-09-02 | Yanmar Co Ltd | 掘削旋回作業機の油圧回路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2711559A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2803770A4 (en) * | 2012-01-11 | 2015-08-19 | Kobelco Constr Mach Co Ltd | HYDRAULIC CONTROL DEVICE AND CONSTRUCTION MACHINE THEREWITH |
US9790665B2 (en) | 2012-01-11 | 2017-10-17 | Kobelco Construction Machinery Co., Ltd. | Hydraulic control device and construction machine provided with same |
CN105074097A (zh) * | 2013-03-28 | 2015-11-18 | 株式会社神户制钢所 | 液压挖掘机 |
EP2980325A4 (en) * | 2013-03-28 | 2016-06-08 | Kobe Steel Ltd | HYDRAULIC SCOOP |
US9790659B2 (en) | 2013-03-28 | 2017-10-17 | Kobe Steel, Ltd. | Hydraulic shovel |
JP2015172393A (ja) * | 2014-03-11 | 2015-10-01 | 住友重機械工業株式会社 | ショベル |
EP3118465A4 (en) * | 2014-03-11 | 2017-03-08 | Sumitomo Heavy Industries, Ltd. | Shovel |
US10604916B2 (en) | 2014-03-11 | 2020-03-31 | Sumitomo Heavy Industries, Ltd. | Shovel |
CN105864132A (zh) * | 2015-01-23 | 2016-08-17 | 鞍钢股份有限公司 | 一种恒压变量泵系统及节能方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2711559B1 (en) | 2017-12-13 |
KR20140034214A (ko) | 2014-03-19 |
US9341198B2 (en) | 2016-05-17 |
EP2711559A4 (en) | 2015-03-04 |
CN103562564A (zh) | 2014-02-05 |
EP2711559A1 (en) | 2014-03-26 |
US20140090369A1 (en) | 2014-04-03 |
JP2012241803A (ja) | 2012-12-10 |
JP5572586B2 (ja) | 2014-08-13 |
KR101932304B1 (ko) | 2018-12-24 |
CN103562564B (zh) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5572586B2 (ja) | 作業機械の油圧駆動装置 | |
JP5388787B2 (ja) | 作業機械の油圧システム | |
JP2019052702A (ja) | 建設機械の油圧駆動システム | |
WO2015137329A1 (ja) | ショベル | |
WO2005042983A1 (en) | Hydraulic system for a work machine | |
JP2010078035A (ja) | 作業機械の油圧シリンダ制御回路 | |
US10006472B2 (en) | Construction machine | |
JP4480565B2 (ja) | バックホウの油圧回路構造 | |
JP2021181789A (ja) | 油圧ショベル駆動システム | |
JP2015172400A (ja) | ショベル | |
JP6324933B2 (ja) | 作業機械の油圧駆動装置 | |
JP4509874B2 (ja) | 作業機械のハイブリッドシステム | |
JP6591370B2 (ja) | 建設機械の油圧制御装置 | |
JP6580301B2 (ja) | ショベル | |
JP2012021311A (ja) | 建設機械の油圧駆動装置 | |
JP2004092247A (ja) | 建設機械の油圧駆動装置 | |
JP2015172396A (ja) | ショベル | |
JP3680689B2 (ja) | ショベルのドーザ制御装置 | |
JP7389728B2 (ja) | 油圧ショベル駆動システム | |
JP6964106B2 (ja) | 建設機械の油圧回路 | |
WO2022172636A1 (ja) | 油圧ショベル駆動システム | |
JP3119293B2 (ja) | 作業機械の油圧回路 | |
JP2015172397A (ja) | ショベル | |
JP2015172398A (ja) | ショベル | |
JP2015021276A (ja) | 作業機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12786437 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14118141 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137032726 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012786437 Country of ref document: EP |