WO2012157192A1 - 運転不安定度判定装置 - Google Patents

運転不安定度判定装置 Download PDF

Info

Publication number
WO2012157192A1
WO2012157192A1 PCT/JP2012/002815 JP2012002815W WO2012157192A1 WO 2012157192 A1 WO2012157192 A1 WO 2012157192A1 JP 2012002815 W JP2012002815 W JP 2012002815W WO 2012157192 A1 WO2012157192 A1 WO 2012157192A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
state
specific
distribution
determination
Prior art date
Application number
PCT/JP2012/002815
Other languages
English (en)
French (fr)
Inventor
近藤 崇之
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12785252.3A priority Critical patent/EP2711910A1/en
Priority to JP2013514972A priority patent/JP5621921B2/ja
Priority to US13/820,105 priority patent/US8577566B2/en
Priority to CN201280003177.6A priority patent/CN103140883B/zh
Publication of WO2012157192A1 publication Critical patent/WO2012157192A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • B60K28/066Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver actuating a signalling device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/20Direction indicator values
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/26Incapacity

Definitions

  • the present invention relates to a technique for determining driving instability related to an unstable driving state of a driver.
  • Patent Document 1 In the vehicle driving support device described in Patent Document 1, based on the steering operation, a long-time driving state distribution corresponding to a normal driving characteristic and a short-time driving state distribution corresponding to a current driving characteristic are calculated, The unstable operation state is determined from the magnitude of the difference between the calculated two distributions. Patent Document 1 describes that according to this method, an unstable state can be accurately detected regardless of the difference in traffic environment.
  • Patent Document 1 it is desired to detect a steering operation indicating only the driver's driving anxiety state.
  • the steering operation is disturbed due to other factors different from driving instability, the driving unstable state is correspondingly reduced. Detection accuracy is degraded.
  • the present invention focuses on the above points, and an object of the present invention is to improve the detection accuracy of driving instability.
  • the second traveling state distribution in the second temporal range based on the traveling state data and the first temporal range longer than the second temporal range are provided.
  • a driving state distribution calculating unit that calculates the first driving state distribution and a first driving state distribution and a second driving state distribution calculated by the driving state distribution calculating unit are compared to determine the degree of driving instability.
  • the driving state distribution calculating unit is a specific driving state in which the driving state is set in advance (the driving state in which the current driving state is estimated to deteriorate the reliability of the driving state data acquired by the driving state acquisition unit). Excluding the traveling state data for the determined period, at least a second traveling state distribution is calculated from the first traveling state distribution and the second traveling state distribution.
  • At least the second traveling state distribution is calculated based on traveling state data in a driving state other than the specific driving state. Therefore, it is possible to improve the detection accuracy of the driving anxiety level.
  • FIG. 1 is a diagram showing a configuration of a vehicle equipped with a vehicle information providing apparatus according to the present embodiment.
  • the vehicle according to this embodiment includes an accelerator pedal opening sensor 1, a brake pedal operation amount sensor 2, a steering angle sensor 3, a wheel speed sensor 4, a blinker detection sensor 5, a meter display 6, and a navigation device 7. , G sensor 8, shift sensor 12, forward vehicle detection device 9, and controller 100.
  • the vehicle to which the present invention is applied need not be equipped with all the above sensors and the like.
  • the sensors used in other embodiments are also described together.
  • the accelerator pedal opening sensor 1 detects the opening amount (acceleration instruction amount) of the accelerator pedal. The detected opening amount is output to the controller 100.
  • the brake pedal operation amount sensor 2 detects an operation amount (braking instruction amount) of the brake pedal as a braking instruction amount. The detected operation amount is output to the controller 100.
  • the steering angle sensor 3 is an angle sensor attached near a steering column or a steering wheel (not shown), for example, and detects the steering angle by the driver's steering from the rotation of the steering shaft. The detected steering angle is output to the controller 100.
  • the wheel speed sensor 4 detects the vehicle speed by detecting the number of rotations of the wheel, for example.
  • the detected vehicle speed is output to the controller 100.
  • the wheel speed sensor 4 may detect the vehicle speed based on a signal to the meter display 6.
  • the turn signal detection sensor 5 detects the turn signal state of the turn signal lever.
  • the detected blinker state is output to the controller 100.
  • the shift sensor 12 is provided in a shift lever or a transmission and detects shift position information (shift information).
  • the detected shift position information is output to the controller.
  • the information presenting device outputs an alarm or other presentation by sound or image in accordance with a control signal from the controller 100.
  • the information presentation apparatus includes, for example, a speaker 10 that provides information to the driver by a buzzer sound or voice, and a display unit that provides information by displaying an image or text.
  • the display unit for example, the display monitor of the navigation device 7 may be used.
  • the navigation device 7 includes a GPS receiver, a map database, a display monitor, and the like, and is a system that performs route search, route guidance, and the like.
  • the navigation device 7 can acquire information such as the type of road on which the host vehicle is traveling and the road width based on the current position of the host vehicle obtained from the GPS receiver and the road information stored in the map database.
  • the G sensor 8 detects longitudinal acceleration and lateral acceleration generated in the vehicle. The detected acceleration is output to the controller 100.
  • the forward vehicle detection device 9 detects information on other vehicles and other obstacles existing in front of the traveling direction of the vehicle. In this embodiment, the distance to the obstacle is detected.
  • the forward vehicle detection device 9 is composed of a laser distance meter, for example.
  • the detected distance is output to the controller 100 as information for determining the inter-vehicle distance, inter-vehicle time, relative speed, and the like.
  • the controller 100 is an electronic control unit that includes a CPU and CPU peripheral components such as a ROM and a RAM.
  • the controller 100 includes a driving support unit 100A that performs driving instability determination processing for providing information to the driver.
  • the driving support unit 100A analyzes the driving characteristics of the driver based on signals detected by the accelerator pedal opening sensor 1, the brake pedal operation amount sensor 2, the steering angle sensor 3, and the like. The degree of driving instability such as the messiness of driving operation is determined. Then, a warning or other information is presented to the driver in accordance with the degree of driving instability, and processing for alerting the driver is performed.
  • FIG. 2 is a diagram illustrating a system configuration example of the vehicle information providing apparatus including the driving support unit 100A of the present embodiment. That is, the vehicle information providing apparatus of the present embodiment uses information from the steering angle sensor 3 as travel state data as shown in FIG. Moreover, the visual information presentation apparatus and the auditory information presentation apparatus are illustrated as an information presentation apparatus.
  • the visual information presentation device is, for example, a display unit of the meter display 6 or the navigation device 7.
  • the auditory information presentation device is, for example, a speaker 10.
  • the driving support unit 100A includes a traveling state acquisition unit 110, a driving state determination unit 120, a traveling state distribution calculation unit 130, a driving instability determination unit 140, and an information presentation unit 150, as shown in FIG.
  • the traveling state acquisition unit 110 acquires traveling state data including at least one of an operation state of a driving operator that can be operated by the driver and a vehicle state.
  • steering information which is information on the operating state of a driving operator that can be operated by the driver, is used as the driving state data that is detected in order to determine driving characteristics. That is, the traveling state acquisition unit 110 of the present embodiment calculates traveling state data using the steering angle information as traveling state data.
  • examples of information that can be travel state data include steering information, vehicle-to-vehicle information (distance between vehicles and time), and acceleration / deceleration information based on operation of an accelerator pedal and a brake pedal, as will be described later. I can do it. It should be noted that the running state distribution using these running state data and the calculation of the difference between the distributions are publicly known as described in, for example, International Publication No. WO2009 / 013815 (Japanese Patent Application No. 2009-524342). It is sufficient to calculate by this method.
  • the driving status determination unit 120 determines the driving status that is currently running. Specifically, the driving situation determination unit 120 is an operator other than the steering angle information serving as the driving condition data, and determines the driving situation from the operation state of the driving operator operable by the driver and the road environment. . The driving situation determination unit 120 determines the road environment from at least one of the vehicle state and navigation device information. The navigation device acquires information around the vehicle. Information around the vehicle may be acquired by a camera.
  • the driving state determination unit 120 determines that the determined current driving state is a specific driving state in which the operation state and vehicle state information of the driving operator that becomes the driving state data is estimated to be disturbed, that is, the driving state. It is determined whether or not there is a specific driving situation presumed that the information serving as the state data is disturbed.
  • the driving situation determination unit 120 determines whether or not a specific driving situation is estimated that the steering angle information is disturbed.
  • the first driving situation and the second driving situation are set as “the specific driving situation in which the steering angle information is estimated to be disturbed”.
  • the first driving situation is a driving situation that occurs by traveling in a specific road environment set in advance.
  • the second driving situation is a driving situation that occurs by operating a specific driving operator preset by the driver.
  • the operation of the specific driving operator that can generate the second driving situation is at least one of lane change operation, acceleration operation, braking operation, shift operation, and navigation device operation.
  • the specific road environment that generates the first driving situation is as follows: road surface shape, inside of tunnel, junction of driving road, curve of driving road, vicinity of toll gate, presence of other vehicle interruption to own vehicle destination, highway It is at least one road environment of type and congestion.
  • the driving state determination unit 120 of the present embodiment performs lane change operation, accelerator pedal operation, brake pedal operation, turn signal operation, navigation device operation, audio operation, and operation information of a specific driving operator. Get as.
  • the driving state determination unit 120 of the present embodiment includes a junction road (junction / junction point) such as a road surface input, a tunnel, a junction (JCT), or the like more than a preset road or other road. (A section taking a predetermined distance before and after), a curved road, a predetermined section including a toll booth, and a slope higher than a predetermined gradient are acquired as information on a specific road environment.
  • the steering angle information which is the driving state data
  • the steering angle information is disturbed by factors other than the steering angle operation itself based on the operation information of the specific driving operation and the information of the specific road environment. It is determined whether or not the specific driving situation is estimated to be performed. In other words, it is determined whether or not the driving state is an operation that deteriorates the reliability of the steering information as the driving state data, that is, the measurement of the unstable driving state.
  • the disturbance of the steering angle information means that the accuracy of the steering angle information (traveling state data) deteriorates due to the disturbance of the steering operation due to other factors different from the instability of driving.
  • the lane change operation may detect whether the lane change operation is being performed by detecting the blinker operation, the lane position, the own vehicle position, and the traveling direction of the own vehicle.
  • the accelerator pedal operation is determined based on the detection value of the accelerator pedal opening sensor.
  • the brake pedal operation is determined based on the detection value of the brake pedal operation amount sensor.
  • the winker operation is determined based on the detection by the winker detection sensor 5.
  • the operation of the navigation device is determined based on a signal from the navigation device.
  • the audio operation is determined based on a signal from the audio device.
  • Presence or absence of road surface input exceeding the preset value is determined based on the detection value of the wheel speed sensor. For example, the determination is made based on the degree of disturbance of the detection value from the wheel speed sensor. Specifically, the road surface input is performed by comparing the wheel speed measured at a predetermined time interval (for example, 10 ms) with a current value and a previous value, and when the difference is equal to or greater than a predetermined threshold value, Judge that there is.
  • the presence or absence of road surface input exceeding the set value may be determined by a known process other than the detection by the vehicle speed sensor.
  • a sensor that detects the behavior of the roof such as an acceleration sensor installed on the vehicle body, a sensor that detects the amount of expansion / contraction of the shock absorber of the suspension, and the road surface
  • the input may be detected.
  • the curved road is detected from the navigation device or the steering angle. For example, when it is determined that a state of a predetermined steering angle or more has continued for a preset duration, it is determined as a curved road.
  • the slope is detected from the road surface gradient detected by the G sensor.
  • the first driving situation is a specific driving situation in which disturbance is input to the measurement of the unstable driving state, that is, the driving situation in which the accuracy of the steering angle information is deteriorated.
  • the second driving situation are set.
  • the first driving situation is a driving situation in which, even if there is a specific driving situation that disturbs the steering angle information, the driving state of the driver before the specific driving situation occurs is assumed after the specific driving situation disappears.
  • the second driving situation is a driving situation in which it is assumed that the driving state of the driver changes after the specific driving situation disappears and before the specific driving situation occurs due to the specific driving situation that disturbs the steering angle information.
  • the specific driving situation determined based on the road environment system is set as the first driving situation as shown in FIG.
  • the specific driving situation determined based on the second driving situation is due to the following reason.
  • the driving state of the driver when determining the degree of instability by obtaining the running state distribution based on the steering angle, if the driver actively performs some operation different from the steering angle, then the driving state of the driver will change. Conceivable. For example, considering the case where the lane is changed, there are factors other than the driver's anxiety (stabilization) during the lane change period, as well as the steering operation immediately before this lane change. There is a high possibility that the information value also contains an amount of change due to factors other than the degree of instability to be detected. That is, when changing lanes, the driver performs the act of confirming the rear and sides with the mirror immediately before, or twisting his / her body for visual observation.
  • the reliability as the steering operation information is low during the confirmation period before the lane change. For this reason, it is preferable to exclude the steering operation information of the immediately preceding period in addition to the period of the specific driving situation in which the lane change is being performed. However, since it is difficult to accurately determine when it is difficult to detect when to check the lane, etc., it is necessary to obtain in advance the start of the confirmation period that occurs before this lane change. Is difficult. For this reason, when determining the second driving situation based on the steering information, it is highly likely that the steering operation information before determining the second driving situation is also low in reliability.
  • the driving state distribution calculation unit 130 calculates a plurality of driving state distributions having different time ranges based on the driving state data acquired by the driving state acquisition unit 110 and the driving state determined by the driving state determination unit 120.
  • the traveling state distribution calculation unit 130 has a first traveling state distribution obtained from the steering angle information acquired in a first relatively long time range set in advance, and a temporal relationship that is longer than the first traveling state distribution. A second running state distribution in a second temporal range with a short range is calculated.
  • the traveling state distribution calculation unit 130 of the present embodiment excludes the traveling state data during the period in which the driving state is determined as the specific driving state based on the driving state determined by the driving state determination unit 120, and The second running state distribution is calculated.
  • the traveling state distribution calculation unit 130 of the present embodiment may be configured to calculate the first traveling state distribution by excluding traveling state data for a period in which it is determined as a specific driving situation. Even when the driving state data during the period when the driving state is determined to be the specific driving state is excluded, the length of the time range for obtaining the second driving state distribution should be the same as the second time range. Is preferred. However, when excluding the driving state data during the period when the driving state is determined as the specific driving state, the length of the time range for obtaining the second driving state distribution is different from the second time range, For example, a time range longer than the second time range may be set.
  • the relatively long first time range set in advance is a time range in which normal driving characteristics of the target driver can be acquired, and is set to a value of, for example, 30 minutes or more.
  • the second time range of the second running state distribution is a time range in which the current driving characteristics (the latest driving characteristics) can be determined, for example, a time range from about 3 minutes before the current time.
  • Each time range described above is an example, and may be set from experiments, theory, and the like based on the acquisition period of the steering information.
  • the steering angle is set at every preset sampling interval (100 msec). Get information.
  • the travel state distribution calculation unit 130 stores data stored for calculating each travel state distribution (frequency distribution or the like) every time a steering angle as travel state data is acquired for each travel state distribution.
  • each running state distribution is updated (calculated).
  • at least the second traveling state distribution is calculated from the first and second traveling state distributions by excluding the traveling state data during the period when the driving state is determined as the specific driving state.
  • the processing for excluding the driving state data during the period in which the driving situation is determined to be the specific driving situation is the data before the specific driving situation and the data before the determination is determined, as described later. This is realized by overwriting or stopping the update of the data when it is determined as a specific operation state.
  • the driving conditions determined by the driving condition determination unit 120 are three types of driving conditions, ie, a first driving condition, a second driving condition, or a normal driving condition that is not the first and second driving conditions.
  • the first driving situation and the second driving situation are specific driving situations as described above.
  • the travel state distribution calculation unit 130 includes a first travel state distribution calculation unit 130A, a second travel state distribution calculation unit 130B, a distribution storage unit 130C, a distribution selection unit 130D, and a distribution setting. Unit 130E.
  • the first traveling state distribution calculation unit 130A calculates the first traveling state distribution in the first time range that is relatively long as described above, based on the data that is sequentially updated as described above.
  • the second traveling state distribution calculation unit 130B calculates the second traveling state distribution in the second temporal range that is relatively short as described above based on the data that is sequentially updated as described above.
  • the distribution storage unit 130C repeatedly calculates the third traveling state distribution in the time range at a preset third time interval (for example, every 5 seconds), and stores the calculated third traveling state distribution in the storage unit. To do.
  • the distribution selection unit 130D determines whether the determined specific driving condition is the first driving condition or the second driving condition. Either the third traveling state distribution stored before the detection of the driving state or the first traveling state distribution is selected.
  • the distribution setting unit 130E changes the second traveling state distribution with the third traveling state distribution or the first traveling state distribution that is the traveling state distribution selected by the distribution selecting unit 130D. Specifically, when the determined specific driving situation is the first driving situation, the distribution setting unit 130E overwrites the second running state distribution with the first running state distribution. When the determined specific driving situation is the second driving situation, the second running condition distribution is replaced with the third running condition distribution.
  • the traveling state distribution calculation unit 130 obtains traveling state data in a time range of the period determined as the second driving state. Then, it is replaced with the running state data obtained in the latest time range of the same length before the second driving situation is determined.
  • the traveling state data instead of performing the replacement of the driving state data, updating of the data stored for calculating the second driving state distribution (frequency distribution or the like) is prohibited while the second driving state is determined. You may make it perform the process to perform.
  • the travel state data in the time range before the determination as the second operation state is performed until the determination in the second operation state ends and the time in the second time range elapses.
  • the second driving state distribution is calculated from both the driving state data of the time range after being determined as the second driving state, and the time range before the determination as the specific driving state and the specific driving state are determined.
  • the time obtained by adding up the subsequent time ranges is set to be equal to the time in the second time range.
  • the driving instability determination unit 140 determines the driving instability based on the amount of difference between the first driving state distribution calculated by the driving state distribution calculation unit 130 and the second driving state distribution.
  • the information presenting unit 150 performs a process of presenting information to the driver based on the driving instability determined by the driving instability determining unit 140.
  • step S1010 the driving support unit 100A acquires the following data as vehicle information data. That is, as described above, information on the steering angle, the accelerator pedal / brake pedal operation, the blinker operation, the shift operation, and the navigation / audio operation is acquired as the operation information of the driver's driving operator. Moreover, the information of a vehicle speed, the front-back G, the side G, and a wheel speed is acquired as information of the vehicle data system which shows a vehicle state.
  • step S1020 the driving support unit 100A obtains information on, for example, a toll gate, a tunnel, a junction, a curve, and a road surface inclination from the navigation device as traffic environment information and other road environment information that is information around the vehicle. get. For these pieces of information, map database information of the navigation device may be used.
  • step S1030 the driving situation determination unit 120 determines the driving situation.
  • this driving situation determination it is determined whether or not there is road input, tunnel, branching / merging, curve, toll gate, road slope (front and rear G), lane change, accelerator / brake pedal operation, turn signal operation, navigation / audio operation. If there is, then the instability calculation method described later is selected. Specifically, based on FIG. 4, it is determined whether the driving situation is one of the first driving situation, the second driving situation, and the normal driving situation. Here, when both the first driving situation and the second driving situation are detected at the same time as the specific driving situation, the second driving situation is prioritized.
  • step S1040 the distribution storage unit 130C performs the calculation and storage process of the third running state distribution. That is, the distribution storage unit 130C has a counter, and stores the count value of the counter and traveling state data for creating a traveling information distribution every time the process of step S1040 is executed. When the counter reaches a preset counter value, the third traveling state distribution is created and stored based on the traveling state data stored at the time of the current counter counting, and the counter is cleared.
  • step S1030 for each preset third time interval (for example, 5 seconds), the third travel state distribution with the third time interval as a time range is calculated, and the calculated third travel state is calculated. Processing to save the distribution in the storage unit is performed.
  • step S1050 the distribution selection unit 130D selects a travel state distribution to be adopted based on the driving situation determined by the driving situation determination unit 120. Specifically, in step S1050, it is determined whether the driving situation corresponds to one of a normal driving situation, a first driving situation, and a second driving situation. And when it determines with it being a normal driving
  • step S1060 the first traveling state distribution and the second traveling state distribution calculated by the first traveling state distribution calculating unit 130A and the second traveling state calculating unit 130B are selected as described above. Thereafter, the process proceeds to step S1090.
  • Step S1070 the second running state distribution is replaced by overwriting the second running state distribution with the first running state distribution. Thereafter, the process proceeds to step S1090.
  • step S1080 the second travel state distribution is replaced with a third travel state distribution in which the second travel state distribution is stored. Thereafter, the process proceeds to step S1090.
  • the first traveling state distribution calculation unit 130A and the second traveling state calculation unit 130B acquire the steering angle information that is the traveling state data from the first traveling state distribution and the second traveling state distribution. Update every time.
  • step S1090 the amount of difference (relative entropy) between the distributions of the first traveling state distribution and the second traveling state distribution (or the second traveling state distribution after replacement if replaced) is calculated by the steering entropy method. . Thereafter, the process proceeds to step S1100.
  • step S1090 based on the steering angle signal when the driver performs the steering operation, how the driver's current driving operation is different from the normal driving operation, that is, the normal driving operation and A difference amount for determining whether or not the state is unstable is calculated. That is, in step S1090, relative entropy (feature amount, instability) is calculated as a value representing the unsmoothness of the driving operation.
  • relative entropy feature amount, instability
  • the relative entropy RHp is calculated using this characteristic.
  • the steering error distribution (running state distribution) accumulated for a long time before the past or the present, and the current driver's steering error distribution (running state distribution) acquired in a short time, that is, a temporal range.
  • a plurality of running state distributions having different values are calculated.
  • the relative entropy RHp is calculated from the long-time steering error distribution that is regarded as a normal driving characteristic as a comparison reference and the long-time steering error distribution and the current short-time operation error distribution.
  • the relative entropy RHp is a physical quantity representing a difference amount (distance) between two steering error distributions (traveling state distributions), and the degree of difference between the two steering error distributions, that is, how far the two steering error distributions are separated. Indicates whether or not Based on the calculated relative entropy value, it is possible to evaluate the stability of the current latest driving state with respect to the past long-time driving state (normal driving characteristics).
  • step S1100 the unstable operation state is determined based on the difference amount.
  • the difference amount calculated in step S1090 is compared with a preset determination threshold value. And when a difference amount is larger than a determination threshold value, it determines with an unstable driving
  • step S1110 when the state determined to be the unstable operation state in step S1100 continues for a time equal to or longer than a preset unstable determination threshold value (for example, 5 seconds), information presentation processing is performed. In addition, you may interrupt information presentation during the period determined to be a specific driving
  • a preset unstable determination threshold value for example, 5 seconds
  • information presentation processing is performed. In addition, you may interrupt information presentation during the period determined to be a specific driving
  • An example of information presentation is shown in FIG. In this example, a warning is displayed and a warning is displayed with a voice such as “Driving is disturbed.
  • step S10 in order to determine whether or not it is a travel scene in which relative entropy RHp can be calculated, a travel scene in which the host vehicle is traveling is estimated (detected).
  • a preset vehicle speed range for example, 40 to 120 km / h.
  • step S20 it is determined whether or not the current host vehicle speed V detected by the wheel speed sensor 4 is within a preset vehicle speed range. If it is determined that the host vehicle speed V is within the preset vehicle speed range and the driving scene is capable of calculating the relative entropy RHp, the process proceeds to step S30 to calculate the relative entropy RHp. On the other hand, if the vehicle speed V is not within the predetermined range, this process is terminated.
  • step S30 the current steering angle signal ⁇ detected by the steering angle sensor is read as the driving operation amount of the driver to be detected for detecting an unstable state of the driving operation of the driver.
  • step S31 a steering angle prediction error ⁇ e is calculated from the read value of the steering angle ⁇ .
  • FIG. 9 shows special symbols used for calculating the relative entropy RHp and their names.
  • the steering angle smooth value ⁇ n-tilde is a steering angle in which the influence of quantization noise is reduced.
  • the estimated value ⁇ n-hat of the steering angle is a value obtained by estimating the steering angle at the time of sampling on the assumption that the steering is operated smoothly.
  • the estimated steering angle ⁇ n-hat is obtained by performing a second-order Taylor expansion on the steering angle smooth value ⁇ n-tilde as shown in the following (Equation 1).
  • tn is a sampling time of the steering angle ⁇ n.
  • the steering angle smooth value ⁇ n-tilde is calculated from the following (Equation 2) as an average value of three adjacent steering angles ⁇ n in order to reduce the influence of quantization noise.
  • l is the steering angle included in 150 msec when the calculation time interval of the steering angle smooth value ⁇ n-tilde is 150 msec, that is, the minimum time interval that can be intermittently operated by humans in manual operation. This represents the number of samples of ⁇ n.
  • the sampling interval of the steering angle ⁇ n Ts
  • the steering angle prediction error ⁇ e at the sampling time can be calculated from the following (Equation 4) as the difference between the estimated steering angle ⁇ n ⁇ hat and the actual steering angle ⁇ n when it is assumed that the steering operation is performed smoothly.
  • the steering angle prediction error ⁇ e is calculated only with respect to the steering angle ⁇ n every 150 msec, which is the minimum time interval at which a human can intermittently operate.
  • a specific method for calculating the steering angle prediction error ⁇ e will be described below.
  • the sampling interval Ts of the steering angle signal ⁇ is, for example, 50 msec.
  • three steering angle smooth values ⁇ n-tilde are calculated from the above (Equation 2) using three adjacent steering angles ⁇ n at intervals of 150 msec.
  • the three steering angle smooth values ⁇ n-tilde are expressed by the following (formula 5).
  • an estimated value ⁇ n-hat of the steering angle is calculated from the above (Equation 1).
  • the estimated value ⁇ n-hat is expressed by the following (formula 6).
  • the steering error ⁇ e is calculated from the above (Equation 4).
  • the current value of the steering angle prediction error ⁇ e calculated in step S31 is added to the data of the steering angle prediction error ⁇ e for a predetermined time T seconds that has been calculated and accumulated in the memory of the controller 100. Update. That is, the oldest data T seconds before of the accumulated steering angle prediction error ⁇ e is discarded, and the current value calculated in step S31 is input as the latest steering angle prediction error ⁇ e data instead. As a result, data of the steering angle prediction error ⁇ e from the current value to T seconds before is accumulated.
  • a steering angle prediction error distribution 1 for the past or a long time which is a reference for comparing the steering prediction error distribution.
  • the past steering angle prediction error distribution is calculated using data for 180 seconds from data T seconds before.
  • the calculated past distribution is used as a comparison reference for the steering prediction error distribution.
  • the range of the prediction error category bi is set in advance so as to be constant for all the categories b1 to b9.
  • the calculated past distribution (or long-time distribution) is set as a past (or long-time) steering angle prediction error distribution 1 as a comparison reference.
  • step S51 the current steering angle prediction error distribution 2 is calculated.
  • the relative entropy RHp is obtained using the past (or long-time) steering angle prediction error distribution 1 and the current steering angle prediction error distribution 2.
  • the relative entropy RHp is a difference amount (distance) of the current steering angle prediction error distribution 2 with respect to the past (or long-time) steering angle prediction error distribution 1 that is a comparison reference.
  • the relative entropy RHp can be calculated from the following calculation formula (Formula 7).
  • the value of RHp increases as qi deviates.
  • the range of the prediction error classification bi for calculating the past (or long-time) steering angle prediction error distribution 1 and the current steering angle prediction error distribution 2 represents the ambiguity (uncertainty) of the steering error distribution. It can also be set based on the ⁇ value used when calculating the steering entropy value Hp.
  • the ⁇ value is obtained based on the time series data of the steering angle, and the difference between the steering error within a fixed time, that is, the estimated steering angle when the steering is operated smoothly and the actual steering angle is obtained.
  • the steering error distribution (variation) is measured to calculate a 90 percent tile value (a distribution range including 90% of the steering error).
  • the ⁇ value is calculated based on the past or long-time steering angle error distribution, and the past (or long-time) steering angle prediction error distribution 1 and the current steering angle prediction error distribution 2 are the same from the calculated ⁇ value.
  • the range of the prediction error classification bi is set.
  • FIG. 9 shows the range of the steering angle prediction error ⁇ e of each section bi set using the ⁇ value.
  • the degree of instability is calculated using the steering entropy method.
  • the amount of difference between the first traveling state distribution representing the driving characteristics of the driver at the normal time and the second traveling state distribution representing the latest driving characteristics is calculated, and the unstable driving state is calculated from the magnitude of the difference amount. Determine.
  • the steering angle information (running state data) for evaluating the driver's instability due to the driver's operation, but the driver's intentional steering or steering change caused by the road environment, etc.
  • the steering operation may be disturbed in the driving situation. If the running state distribution using the steering angle information including this disturbance is used, the detection accuracy of driving instability may be deteriorated. In particular, since the second running state distribution has a short time range, it is easily affected by the driving situation.
  • the driving state distribution calculation unit 130 of the present embodiment does not use the driving state data when the driving state determination unit 120 determines that the specific driving state is used.
  • the running state distribution is calculated. Specifically, when it is determined as the specific driving situation, the first driving state distribution according to the driving situation, or the third driving state distribution not including the driving state data when the specific driving situation is determined. Then, the second running state distribution is overwritten, that is, replaced to determine driving instability. This can prevent erroneous detection of an unstable driving state due to the influence of a specific driving situation.
  • the first driving state is adopted in the second driving situation
  • the third running state distribution is adopted in the first driving situation to replace the second running state distribution.
  • the travel state distribution to be replaced is changed depending on the driving situation. That is, when the detected driving situation is the first driving situation, that is, when it is assumed that the driving state of the driver continues before and after the period determined as the specific driving situation, before the first driving situation occurs.
  • the third running state distribution obtained in the latest third time range is replaced with the second running state distribution.
  • the unstable state can be determined in the state before the first driving situation occurs.
  • the driving state data causing the false detection is removed by replacing the driving state data when the first driving situation occurs with the previous driving state data. Specifically, data replacement is performed in units of the third time range.
  • the second driving situation occurs. Since the previously acquired second traveling state distribution cannot be used, the second traveling state distribution is reset by replacing the second traveling state distribution with the first traveling state distribution having a relatively long time range. In this case, since the first traveling state distribution and the second traveling state distribution coincide with each other, the relative entropy is “0”. In this case, it may be set so that data collection for the second running state distribution is newly started from the start of the next third time range after the occurrence of the second driving situation is finished. .
  • the driving state data of the time range before the determination of the first driving state is performed.
  • the second traveling state distribution are calculated from both the traveling state data in the temporal range after the determination of the first driving state is completed.
  • the time obtained by adding the time range before the determination as the specific operation situation and the time range after the determination as the specific operation situation is a value equal to the time in the second time range.
  • the specific driving situation (first driving situation) that occurs due to traveling in a specific road environment is the specific driving situation that disturbs the steering angle information. It is assumed that the driver's driving state continues. For this reason, immediately after the determination of the first driving situation, the second traveling state can be accurately obtained from the data before and after the occurrence of the first driving situation.
  • the steering operation information before the second driving situation is likely to be low in reliability. Without using this information, the information is reset once, the timer is counted after the end of the second driving situation, and when the time of the second time range has elapsed, the second running state distribution is not It becomes possible to calculate with high accuracy.
  • the steering angle information is used as the traveling state data
  • the steering angle prediction error distribution is used as the traveling state distribution.
  • the running state data and the running state distribution are not limited to this. Traveling state data and traveling state data as described in Japanese Patent Application No. 2009-524342 may be used.
  • the driving state data is an index representing driving characteristics.
  • the driving support unit 100A detects the accelerator pedal operation amount as the running state data, and uses the detected accelerator pedal operation amount, the accelerator pedal opening entropy representing the degree of instability of the accelerator pedal operation by the driver. May be calculated.
  • the driving support unit 100A may adopt a margin time between the host vehicle and the preceding vehicle when the accelerator pedal is released as the traveling state data.
  • the driving support unit 100A may adopt the lane departure time until the host vehicle deviates from the traveling lane when the correction steering is performed as the traveling state data.
  • the driving support unit 100A may adopt the host vehicle speed when traveling alone as the traveling state data.
  • the driving support unit 100A may adopt the maximum acceleration when the host vehicle starts as the running state data.
  • the driving support unit 100A may adopt the minimum margin time between the host vehicle and the preceding vehicle at the time of the brake operation as the driving state data.
  • the driving support unit 100A may adopt the minimum inter-vehicle distance between the vehicle being overtaken and the preceding vehicle as the traveling state data.
  • the driving support unit 100A employs inter-vehicle information (inter-vehicle time and inter-vehicle distance) between the host vehicle and the preceding vehicle when the host vehicle travels following the preceding vehicle as traveling state data.
  • the driving instability is calculated by calculating the running state distribution from the inter-vehicle distance distribution.
  • the calculation method in this case is to create a distribution of the inter-vehicle distance assuming a normal distribution from the average value and the standard deviation of the two inter-vehicle distances having different time ranges, and to set a ratio of the inter-vehicle distance set in advance (for example, left of 1 ⁇ ) The ratio of the outer side is calculated as the difference amount.
  • a known calculation method as described in Japanese Patent Application No. 2009-524342 may be adopted. Then, when the state where the difference amount exceeds the preset threshold value continues for a preset time or longer, an alarm or other information presentation may be performed.
  • the driving state determination unit 120 of the second modification acquires, as operation information, an accelerator pedal operation at a speed higher than a preset speed, a brake pedal operation at a speed higher than a preset speed, and a winker operation.
  • the driving state determination unit 120 acquires, as road environment information, an interruption ahead of the host vehicle by another vehicle, a change of the expressway type, a preset section including a toll booth, and traffic jam information.
  • the driving situation determination unit 120 of the second modified example includes an accelerator pedal operation at a speed higher than a preset speed, a brake pedal operation at a speed higher than a preset speed, a winker operation, an interruption ahead of the host vehicle by another vehicle, a high speed
  • a specific driving situation is determined.
  • the driving state determination unit 120 sets the first driving state and the second driving state as shown in FIG.
  • an accelerator pedal operation or a brake pedal operation at a speed higher than a preset speed is determined by a differential value of a detection value of the accelerator pedal opening sensor 1 or the brake pedal operation amount sensor 2.
  • the interruption to the front of the host vehicle by another vehicle is determined by the forward detection by the forward vehicle detection device 9.
  • the switching of the expressway type is determined, for example, based on “own vehicle position information and road information from the navigation device. Further, a lane change may be detected based on a steering angle or the like.
  • the traffic jam information is determined by, for example, road-to-vehicle communication.
  • the operation information which is the accelerator pedal operation more than the preset speed, the brake pedal operation more than the preset speed, and the blinker operation is set as the second driving situation.
  • the first driving situation is defined as an interruption ahead of the host vehicle by another vehicle, a change in the type of highway, a preset section including a toll booth, and road environment information that is traffic jam information.
  • FIG. 14 shows processing of the driving support unit 100A in the third modification.
  • the processing of the driving support unit 100A of the third modification shown in FIG. 14 is the same as the processing of the driving support unit 100A in the first embodiment shown in FIG. That is, the processes in steps S3010 to S3030 are the same as the processes in steps S1010 to S1030. Further, the processing in steps S3040 to S3110 is basically the same as the processing in steps S1040 to S1110. However, in this modification, the process of step S3035 is added.
  • step S3035 when it is determined in step S303030 that the driving state has detected the first driving state or the second driving state, the time counter starts measuring time. On the other hand, when the driving state does not detect the first driving state and the second driving state in step S3030, the time counter is returned to zero. Then, when the time counter is larger than the preset time and the ongoing driving situation is the first driving situation, the first driving situation is regarded as the second driving situation as shown in the change column of FIG. This determination may be performed in step S3050 or the like.
  • the second driving situation may be regarded as the first driving situation. In the case of a short-time operation, the driver may have operated by mistake, and in this case, it is assumed that the driving characteristics of the driver before and after the second driving situation can be considered to continue.
  • the traveling state acquisition unit 110 acquires traveling state data including at least one of an operation state of a driving operator that can be operated by the driver and a vehicle state.
  • the traveling state distribution calculating unit 130 is based on the traveling state data acquired by the traveling state acquiring unit 110, and the second traveling state distribution in the second time range set in advance and the time period longer than the second temporal range.
  • a first traveling state distribution in a first temporal range having a long range is calculated.
  • the driving instability determination unit 140 determines the driving instability by comparing the first driving state distribution and the second driving state distribution calculated by the driving state distribution calculation unit.
  • the driving situation determination unit 120 determines whether a current driving situation is a specific driving operator set in advance based on at least one of an operation state of the driving operator that can be operated by the driver, a vehicle state, and information around the vehicle. It is determined whether or not it is a specific driving situation that is at least one of a driving situation that is generated by operating and a driving situation that is generated by traveling in a specific road environment set in advance. And if the said driving
  • the time range before the determination as the specific driving state is performed until the traveling state distribution calculation unit 130 ends the determination with the second driving state and the time of the second time range elapses.
  • the second running state distribution is calculated from both the running state data and the running state data in the temporal range after the end of the determination of the specific driving situation.
  • the sum of the time range before the determination as the specific driving situation and the time range after the determination as the specific driving situation is equal to the time in the second time range. According to this configuration, the second running state distribution can be obtained with high accuracy after the specific driving situation is completed.
  • the driving state distribution calculating unit 130 determines the specific driving state.
  • the second traveling state distribution is calculated by excluding the traveling state data for the period. According to this configuration, the second traveling state distribution with a short time range is easily affected by the driving situation. Thus, the accuracy of the second traveling state distribution is improved by taking the driving situation into consideration.
  • the traveling state distribution calculating unit 130 calculates the second traveling state distribution from the traveling state data of the temporal range after determining the specific driving state, and the temporal range after determining the specific driving state is It is equal to the time of the second time range. According to this configuration, it is possible to calculate the second traveling state distribution without using data in a specific driving situation.
  • the driving state distribution calculation unit 130 determines that the driving state determination unit is a driving state generated by operating a specific driving operator, the period during which the driving state distribution determination unit 130 determines the specific driving state
  • the second travel state distribution is calculated except for the travel state data. According to this configuration, the second running state distribution with a short time range is easily affected by the driving situation, but the data of the specific driving situation is not reliably used, and the accuracy of the second running state distribution is improved. .
  • the driving state distribution calculation unit 130 determines that the driving state determination unit 120 is a specific driving state generated by driving in a specific road environment. Until the time of the second time range elapses, the driving state data in the time range before the determination as the specific driving situation and the driving state data in the time range after the determination as the specific driving situation are made.
  • the second running state distribution is calculated from both, and the sum of the time range before the determination as the specific driving situation and the time range after the determination as the specific driving condition is the second time range.
  • the driving situation determination unit 120 determines that the driving situation determination unit is a specific driving situation generated by operating a specific driving operator, it is determined as a specific driving situation.
  • Later time range run Calculates a second running state distribution from the state data, it sets the time range after determining that the particular driving situation to be equal to the time of the second time range. According to this configuration, the second traveling state can be appropriately calculated according to the specific driving situation.
  • the operation of the specific driving operator is at least one of lane change operation, acceleration operation, braking operation, shift operation, and navigation device operation. This makes it possible to determine a specific driving situation based on the driving operation.
  • the specific road environment includes road surface shapes, tunnels, road junctions, road curves, nearby toll gates, other vehicle interruptions to the destination, expressway types, and traffic congestion At least one road environment. This makes it possible to determine the specific driving situation based on the road environment.
  • the operation amount of the steering operation is calculated as travel state data. By detecting from a steering operation that requires continuous operation, the driver's state can be detected with high accuracy. (10) The calculation of the difference amount from the operation amount of the steering operation uses a steering entropy method. By using the steering entropy method, improvement in detection performance can be expected.
  • the travel state distribution is calculated as travel state data with respect to the preceding vehicle. By detecting from changes in the vehicle inspection time during which continuous information can be acquired, the driver state can be detected with high accuracy. (12)
  • the difference amount from the inter-vehicle information is calculated from the preset ratio of the inter-vehicle time. The detection performance can be improved by using the ratio of the inter-vehicle time.
  • driving support unit 110 driving state acquisition unit 120 driving state determination unit 130 driving state distribution calculation unit 130A first driving state distribution calculation unit 130B second driving state distribution calculation unit 130C distribution storage unit 130D distribution selection unit 130E distribution setting unit 140 Driving instability determination unit 150 Information presentation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)

Abstract

 運転不安定度の検出精度を向上することを目的とする。運転状況判定部(120)は、走行状態データとなる運転操作子の操作状態及び車両状態の情報が乱されると推定される特定運転状況かを判定する。走行状態分布算出部(130)は、運転者の不安定状態を検出するための走行状態データに基づき、特定運転状況と判定しているときの走行状態データを除外して、時間的範囲の異なる第1及び第2走行状態分布を算出する。運転不安定度判定部(140)は、その算出した2つの走行状態分布の分布間の相違量から運転の不安定度を判定する。

Description

運転不安定度判定装置
 本発明は、運転者の運転の不安定状態に係る運転不安定度を判定する技術に関する。
 特許文献1に記載の車両用運転支援装置では、ステアリング操作に基づき、普段の運転特性に対応した長時間の走行状態分布と現在の運転特性に対応する短時間の走行状態分布とを算出し、その算出した2つの分布間の相違量の大きさから不安定運転状態を判定する。特許文献1には、この方法によれば交通環境の違いによらず不安定な状態を精度よく検出することができると記載されている。
特開2009-9495号公報
 特許文献1の技術では、運転者の運転不安状態だけを示すステアリング操作を検出したいが、運転の不安定性とは異なる他の要因によってステアリング操作に乱れが発生すると、その分、運転不安定状態の検出精度が悪くなる。
 本発明は、上記のような点に着目したもので、運転不安定度の検出精度を向上することを目的とする。
 上記課題を解決するために、本発明の一態様は、走行状態データに基づき第2の時間的範囲の第2走行状態分布と、第2の時間的範囲よりも長い第1の時間的範囲の第1走行状態分布とを算出する走行状態分布算出部と、走行状態分布算出部が算出する第1走行状態分布と第2走行状態分布とを比較することで、運転の不安定度を判定する運転不安定度判定部とを備える。上記走行状態分布算出部は、運転状況が予め設定した特定運転状況(現在の運転状況が、上記走行状態取得部が取得する走行状態データの信頼度を悪くすると推定される運転状況)であると判定される期間の走行状態データを除いて、上記第1走行状態分布及び第2走行状態分布のうち少なくとも第2走行状態分布を算出する。
 本発明の一態様によれば、特定運転状況以外の運転状況での走行状態データに基づき、少なくとも第2走行状態分布を算出する。これによって、運転不安度の検出精度を向上することが可能となる。
本発明に基づく実施形態に係る車両構成を示す図である。 車両用情報提供装置の構成例を示す図である。 運転支援部の構成を示す図である。 運転状況と分布の選択との関係を示す図である。 走行状態分布算出部の構成を説明する図である。 本発明に基づく第1実施形態に係る運転支援部の処理を説明する図である。 情報呈示の例を説明する図である。 相対エントロピーを利用した走行状態分布の算出例を示す図である。 相対エントロピー算出に利用する記号を説明する図である。 操舵角予測誤差データから過去若しくは長時間の分布、及び直近の分布を算出する方法を説明する図である。 相対エントロピー算出方法を説明する図である。 操舵角予測誤差の区分を示す図である。 本発明に基づく第2変形例での運転状況と分布の選択との関係を示す図である。 本発明に基づく第3変形例に係る運転支援部の処理を説明する図である。 本発明に基づく第3変形例における運転状況と分布の選択との関係を示す図である。
「第1実施形態」
 まず、本発明に係る第1実施形態について図面を参照しつつ説明する。
(構成)
 図1は、本実施形態に係る車両用情報提供装置を搭載した車両の構成を示す図である。
 本実施形態の車両は、図1に示すように、アクセルペダル開度センサ1、ブレーキペダル操作量センサ2、操舵角センサ3、車輪速センサ4、ウインカ検出センサ5、メータディスプレイ6、ナビゲーション装置7、Gセンサ8、シフトセンサ12、前方車両検出装置9、コントローラ100を備える。なお、本発明を適用する車両は、以上のセンサ類その他を全て装備している必要はない。他の実施形態で使用するセンサ類についても併せて説明したものである。
 アクセルペダル開度センサ1はアクセルペダルの開度量(加速指示量)を検出する。検出された開度量はコントローラ100に出力される。
 ブレーキペダル操作量センサ2は、制動指示量としてブレーキペダルの操作量(制動指示量)を検出する。検出した操作量は、コントローラ100に出力される。
 操舵角センサ3は、例えばステアリングコラムもしくはステアリングホイール(不図示)付近に取り付けられた角度センサであり、ステアリングシャフトの回転から運転者の操舵による操舵角を検出する。検出した操舵角は、コントローラ100に出力される。
 車輪速センサ4は、例えば車輪の回転数を検出することで車速を検出する。検出した車速はコントローラ100に出力される。車輪速センサ4は、メータディスプレイ6への信号に基づき車速を検出しても良い。
 ウインカ検出センサ5は、ウインカレバーのウインカ状態を検出する。検出したウインカ状態は、コントローラ100に出力される。
 シフトセンサ12は、シフトレバーや変速機に設けられて、シフト位置情報(変速情報)を検出する。検出したシフト位置情報はコントローラに出力される。
 情報呈示装置は、コントローラ100からの制御信号に応じて警報その他の呈示を音声や画像によって出力する。情報呈示装置は、例えば、ブザー音や音声により運転者への情報提供を行うスピーカ10と、画像やテキストの表示により情報提供を行う表示ユニットとを備える。表示ユニットは、例えばナビゲーション装置7の表示モニタを流用しても良い。
 ナビゲーション装置7は、GPS受信機、地図データベース、および表示モニタ等を備えており、経路探索および経路案内等を行うシステムである。ナビゲーション装置7は、GPS受信機から得られる自車両の現在位置と地図データベースに格納された道路情報に基づいて、自車両が走行する道路の種別や道路幅員等の情報を取得することができる。
 Gセンサ8は、車両に発生する前後加速度や横加速度を検出する。検出された加速度は、コントローラ100に出力される。
 前方車両検出装置9は、車両の進行方向前方に存在する他の車両その他の障害物の情報を検出する。本実施形態では障害物までの距離を検出する。前方車両検出装置9は、例えばレーザ距離計からなる。検出された距離は車間距離、車間時間、相対速度などを求める情報としてコントローラ100に出力される。
 コントローラ100は、CPUと、ROMおよびRAM等のCPU周辺部品とから構成される電子制御ユニットである。そのコントローラ100は、運転者に情報提供のために運転不安定度判定処理を行う運転支援部100Aを備える。コントローラ100の処理のうち運転支援部100Aは、アクセルペダル開度センサ1、ブレーキペダル操作量センサ2、操舵角センサ3等で検出される信号に基づいて運転者の運転特性を分析し、運転者の運転操作の乱雑さなどの運転不安定の度合を判定する。そして、運転の不安定の度合に応じて警報その他の情報を運転者に呈示して、運転者の注意を喚起する処理を行う。
 図2は、本実施形態の運転支援部100Aを含む車両用情報提供装置のシステム構成例を示す図である。すなわち、本実施形態の車両用情報提供装置は、図2に示すように、操舵角センサ3からの情報を走行状態データとする。また、情報呈示装置として、視覚情報呈示装置及び聴覚情報呈示装置を例示している。視覚情報呈示装置は、例えばメータディスプレイ6やナビゲーション装置7の表示部である。聴覚情報呈示装置は例えばスピーカ10である。
 また、上記運転支援部100Aは、図3に示すように、走行状態取得部110、運転状況判定部120、走行状態分布算出部130、運転不安定度判定部140、情報呈示部150を備える。
 走行状態取得部110は、運転者が操作可能な運転操作子の操作状態及び車両状態の少なくとも一方からなる走行状態データを取得する。本実施形態では、運転特性を判定するために検出する走行状態データとして、運転者が操作可能な運転操作子の操作状態の情報である操舵情報を使用する場合を例にして説明する。すなわち、本実施形態の走行状態取得部110は、操舵角情報を走行状態データとして走行状態データを算出する。
 ここで、走行状態データとなりうる情報としては、操舵情報のほか、後述のように、前方車両に対する車間情報(車間距離や車間時間)、アクセルペダルやブレーキペダルの操作に基づく加減速情報などが例示出来る。なお、これらの走行状態データを使用した走行状態分布及び分布間の相違量の算出は、例えば国際公開番号WO2009/013815(特願2009-524342号)の公報などに記載されているような、公知の方法によって算出すれば良い。
 運転状況判定部120は、現在走行中の運転状況を判定する。具体的には、運転状況判定部120は、走行状態データとなる操舵角情報以外の操作子であって、運転者が操作可能な運転操作子の操作状態、及び道路環境から運転状況を判定する。運転状況判定部120は、上記道路環境を、車両状態及びナビゲーション装置の情報の少なくとも一方から判定する。ナビゲーション装置は、車両周囲の情報を取得する。カメラによって車両周囲の情報を取得しても良い。
 更に、上記運転状況判定部120は、判定した現在の運転状況が、上記走行状態データとなる運転操作子の操作状態及び車両状態の情報が乱されると推定される特定運転状況、つまり上記走行状態データとなる情報が乱されると推定される特定運転状況か否かを判定する。本実施形態の運転状況判定部120では、操舵角情報が乱されると推定される特定運転状況か否かを判定する。
 上記本実施形態では、「操舵角情報が乱されると推定される特定運転状況」として、第1運転状況と第2運転状況を設定する。第1運転状況は、予め設定した特定の道路環境を走行することで発生する運転状況である。第2運転状況は、運転者が予め設定した特定の運転操作子を操作することで発生する運転状況である。
 上記第2運転状況を発生しうる特定の運転操作子の操作は、車線変更操作、加速操作、制動操作、シフト操作、ナビゲーション装置の操作の少なくとも一つの操作である。上記第1運転状況を発生する特定の道路環境は、路面形状、トンネル内、走行路の合分岐部、走行路のカーブ、料金所近傍、自車先方への他車両の割り込み有無、高速道路の種別、渋滞状態の少なくとも一つの道路環境である。
 本実施形態の運転状況判定部120では、図4に示すように、車線変更操作、アクセルペダル操作、ブレーキペダル操作、ウインカ操作、ナビゲーション装置の操作、オーディオ操作を、特定の運転操作子の操作情報として取得する。また、本実施形態の運転状況判定部120は、図4に示すように、轍路その他の予め設定した以上の路面入力、トンネル内、ジャンクション(JCT)などの合分岐路(合分流点を含む前後に予め設定した距離をとった区間)、カーブ路、料金所を含む予め設定した区間、予め設定した勾配以上の坂道を、特定の道路環境の情報として取得する。
 本実施形態の運転状況判定部120では、これらの特定の運転操作の操作情報及び特定の道路環境の情報に基づき、走行状態データである操舵角情報が操舵角操作自体以外の他の要因で乱されると推定される特定運転状況か否かを判定する。すなわち、運転の不安定状態の計測、つまり走行状態データとしての操舵情報の信頼度を悪くする運転状況か否かを判定する。操舵角情報が乱されるとは、運転の不安定性とは異なる他の要因によってステアリング操作に乱れが発生することによって、操舵角情報(走行状態データ)の精度が悪くなることを指す。
 ここで、車線変更操作は、ウインカ操作や、車線位置及び自車位置や自車の進行方向を検出することで、車線変更操作中か否かを検出すればよい。
 アクセルペダル操作は、アクセルペダル開度センサの検出値に基づき判定する。
 ブレーキペダル操作は、ブレーキペダル操作量センサの検出値に基づき判定する。
 ウインカ操作は、ウインカ検出センサ5の検出に基づき判定する。
 ナビゲーション装置の操作は、ナビゲーション装置からの信号に基づき判定する。
 オーディオ操作は、オーディオ装置からの信号に基づき判定する。
 予め設定した以上の路面入力の有無は、車輪速センサの検出値に基づき判定する。例えば車輪速センサからの検出値の乱れ度によって判定する。具体的には、路面入力は、予め設定した所定時間毎(たとえば10ms)に計測した車輪速を、今回値と前回値とを比較し、その差異が予め設定した閾値以上の場合に路面入力があると判定する。設定した以上の路面入力の有無は、車速センサの検出以外の公知の処理によって判定しても良い。例えば、車体に設置した加速度センサ、サスペンションのショックアブソーバの伸縮量を検出するセンサなどの上屋挙動を検出するセンサの検出値に基づき予め設定した閾値以上のバウンスが発生したことを検知して路面入力を検出したりしても良い。
 トンネル内、合分流点、料金所の情報は、ナビゲーション装置から取得する。
 カーブ路は、ナビゲーション装置若しくは操舵角から検出する。例えば、予め設定した一定の操舵角以上の状態が予め設定した継続時間以上継続したと判定するとカーブ路と判定する。
 坂道は、Gセンサが検出する路面勾配から検出する。
 ここで、運転の不安定状態の計測に対して外乱が入力される、つまり操舵角情報の精度が悪くなる運転状況である特定運転状況として、上述の通り、本実施形態では、第1運転状況と第2運転状況とを設定している。第1運転状況は、操舵角情報を乱す特定運転状況があっても、その特定運転状況でなくなった後に、特定運転状況発生前の運転者の運転状態が継続すると想定される運転状況である。第2運転状況は、操舵角情報を乱す特定運転状況によって、その特定運転状況でなくなった後と特定運転状況発生前とは運転者の運転状態が変わってしまうと想定される運転状況である。そして、少なくとも操舵角に基づき走行状態分布を求めて不安定度を計測する場合には、図4に示すように、道路環境系に基づき判定した特定運転状況を第1運転状況とし、操作系に基づき判定した特定運転状況を第2運転状況としている。これは次の理由による。
 すなわち、操舵角に基づき走行状態分布を求めて不安定度を判定する場合には、運転者が積極的に操舵角と異なる何らかの操作を行うと、その後、運転者の運転状態が変わってしまうと考えられる。例えば、車線変更するような場合を考えると、車線変更している期間に運転者の不安程度(ふらつき)以外の要因の要素が入っているのはもちろんのこと、この車線変更する直前の操舵操作情報の値にも本来検出したい不安定度以外の要因の要素による変化量が入っている可能性が高い。すなわち、車線変更する場合には、運転者は、その直前のミラーで後方や側方を確認したり、身体を捻って目視をしたりする行為を行う。この行為がステアリング操作に悪影響することで、この車線変更の前の確認期間も、操舵操作情報としては信頼度が低い。このために、車線変更を行っている特定運転状況の期間に加えて、この直前の期間の操舵操作情報も除くことが好ましい。しかし、いつ車線変更のための目視を実施しているかなどの検出が困難であるか正確に求めることが難しいことから、この車線変更前に発生する確認期間の開始のときを、事前に求めることが困難である。このようなことから、操舵情報に基づき第2運転状況と判定する場合には、その第2運転状況と判定する前の操舵操作情報も信用度が低いおそれが高い。
 また、道路環境によって特定運転状況となった場合は、一時的な運転状況の変化が想定され、その特定運転状況終了後は、道路環境による特定運転状況前の運転者の運転状態が継続すると考えられる。このため道路環境に基づき第1運転状況と判定した場合には、当該特定運転状況の判定前の操舵操作情報の信用度が高いと想定される。
 走行状態分布算出部130は、走行状態取得部110が取得した走行状態データと運転状況判定部120が判定する運転状況に基づき、時間的範囲の異なる複数の走行状態分布を算出する。本実施形態の走行状態分布算出部130は、予め設定した相対的に長い第1の時間的範囲で取得した操舵角情報によって求めた第1走行状態分布と、第1走行状態分布よりも時間的範囲が短い第2の時間的範囲の第2走行状態分布とを算出する。
 このとき、本実施形態の走行状態分布算出部130は、運転状況判定部120が判定する運転状況に基づき、運転状況が特定運転状況と判定している期間の走行状態データを除外して、上記第2走行状態分布の算出を行う。本実施形態の走行状態分布算出部130は、特定運転状況と判定している期間の走行状態データを除外して、第1走行状態分布を算出する構成であっても良い。なお、運転状況が特定運転状況と判定している期間の走行状態データを除外する場合でも、第2走行状態分布を求める時間的範囲の長さは第2の時間的範囲と同じ長さとすることが好ましい。もっとも、運転状況が特定運転状況と判定している期間の走行状態データを除外する場合には、第2走行状態分布を求める時間的範囲の長さを第2の時間的範囲と異なる長さ、例えば第2の時間的範囲よりも長い時間的範囲に設定しても良い。
 ここで、予め設定した相対的に長い第1の時間的範囲は、対象とする運転者についての通常の運転特性を取得可能な時間的範囲であり、例えば30分以上の値に設定する。また、第2走行状態分布の第2の時間的範囲は、現在の運転特性(直近の運転特性)を判定可能な時間的範囲であり、例えば現在時刻から3分程度前までの時間的範囲とする。なお、上述の各時間的範囲は、例示であり、操舵情報の取得周期などに基づき、実験や理論などから設定すればよい、本実施形態では、予め設定したサンプリング間隔(100msec)毎に操舵角情報を取得する。
 また、走行状態分布算出部130は、各走行状態分布毎に、走行状態データとしての操舵角を取得する度に、各走行状態分布(頻度分布など)を算出するために記憶しているデータを更新すると共に、各走行状態分布を更新(算出)する。ただし、運転状況が特定運転状況と判定している期間の走行状態データを除外して、第1及び第2走行状態分布のうち少なくとも第2走行状態分布を算出する。運転状況が特定運転状況と判定している期間の上記走行状態データを除外する処理は、後述のように、特定運転状況と判定前のデータで、特定運転状況と判定しているときのデータを上書きしたり、特定運転状況と判定しているときに上記データの更新を停止したりすることで実現する。
 ここで、運転状況判定部120が判定する運転状況は、第1運転状況、第2運転状況、若しくは第1及び第2運転状況でない通常運転状況の3種類の運転状況とする。第1運転状況、第2運転状況は、上述のように特定運転状況である。
 上記走行状態分布算出部130は、図5に示すように、第1走行状態分布算出部130Aと、第2走行状態分布算出部130Bと、分布記憶部130Cと、分布選択部130Dと、分布設定部130Eと、を備える。
 第1走行状態分布算出部130Aは、上記のように逐次更新しているデータに基づき、上述のように比較的長い第1の時間的範囲の第1走行状態分布を算出する。
 第2走行状態分布算出部130Bは、上記のように逐次更新しているデータに基づき、上述のように比較的短い第2の時間的範囲の第2走行状態分布を算出する。
 分布記憶部130Cは、予め設定した第3の時間間隔(例えば5秒間隔)毎にその時間的範囲の第3走行状態分布を繰り返し算出し、算出した第3走行状態分布を、記憶部に記憶する。
 分布選択部130Dは、運転状況判定部120が上記第1運転状況及び第2運転状況の一方の特定運転状況と判定すると、判定した特定運転状況が第1運転状況か第2運転状況かによって、当該運転状況を検出したときよりも前に記憶した第3走行状態分布又は上記第1走行状態分布のいずれかを選択する。
 分布設定部130Eは、上記分布選択部130Dが選択した走行状態分布である第3走行状態分布若しくは第1走行状態分布で、上記第2走行状態分布を変更する。具体的には、分布設定部130Eは、判定した特定運転状況が第1運転状況の場合には、第1走行状態分布で上記第2走行状態分布を上書きする。判定した特定運転状況が第2運転状況の場合には、上記第3走行状態分布で上記第2走行状態分布を置き換える。
 また、走行状態分布算出部130は、上記第2走行状態分布を第3走行状態分布に置き換えた場合には、上記第2運転状況と判定している期間の時間的範囲での走行状態データを、第2運転状況と判定する前の直近の同じ長さの時間的範囲で求めている走行状態データに置き換える。ここで、この走行状態データの置き換えを行う代わりに、第2走行状態分布(頻度分布など)を算出するために記憶しているデータの更新を、第2運転状況と判定している間、禁止する処理を行うようにしても良い。これらのように処理することで、第2運転状況との判定が終了して第2の時間的範囲の時間が経過するまでは、第2運転状況と判定する前の時間的範囲の走行状態データと第2運転状況と判定した後の時間的範囲の走行状態データの両方から第2走行状態分布を算出し、且つ上記特定運転状況と判定する前の時間的範囲と上記特定運転状況と判定した後の時間的範囲を合算した時間が上記第2の時間的範囲の時間に等しくなるように設定されることとなる。
 運転不安定度判定部140は、上記走行状態分布算出部130が算出する第1走行状態分布と上記第2走行状態分布との分布間の相違量に基づき運転の不安定度を判定する。
 情報呈示部150は、運転不安定度判定部140が判定する運転の不安定度に基づき、運転者に情報呈示する処理を行う。
 次に、上記運転支援部100Aの処理を、図6を参照しつつ説明する。運転支援部100Aの処理は、予め設定された制御周期(例えば100msec毎)で実施される。
 ステップS1010では、運転支援部100Aが、車両情報データとして以下のデータを取得する。
 すなわち、運転者の運転操作子の操作情報として、上述のように、操舵角、アクセルペダル・ブレーキペダルの操作、ウインカ操作、シフト操作、ナビ・オーディオ操作の情報を取得する。また、車両状態を示す車両データ系の情報として、車速、前後G、横G、車輪速の情報を取得する。
 次に、ステップS1020では、運転支援部100Aは、車両周囲の情報である、交通環境情報その他の道路環境情報として、ナビゲーション装置から、例えば料金所、トンネル、分合流、カーブ、路面傾斜の情報を取得する。これらの情報は、ナビゲーション装置の地図データベース情報を使用すればよい。
 次に、ステップS1030では、運転状況判定部120は、運転状況の判定を行う。
 この運転状況の判定では、路面入力、トンネル、分合流、カーブ、料金所、路面傾斜(前後G)、車線変更、アクセルペダル・ブレーキペダルの操作、ウインカ操作、ナビ・オーディオ操作の有無を判定し、有りの場合に後述する不安定度算出方法を選択することになる。具体的には、図4に基づき、運転状況が、第1運転状況、第2運転状況、通常運転状況のいずれかの運転状況か判定する。ここで、特定運転状況として第1運転状況と第2運転状況の両方が同時期に検出された場合には、第2運転状況を優先する。
 次に、ステップS1040では、分布記憶部130Cが、第3走行状態分布の算出及び保存処理を行う。すなわち、分布記憶部130Cはカウンタを有し、ステップS1040の処理が実行される度に、カウンタのカウンタアップ及び、走行情報分布を作成するための走行状態データを記憶する。そして、カウンタが予め設定したカウンタ値になると、今回のカウンタ計数時に保存した走行状態データによって、第3走行状態分布を作成して保存すると共に、カウンタクリアする。
 このように、ステップS1030では、予め設定した第3の時間間隔(例えば5秒)毎に、第3の時間間隔を時間的範囲とした第3走行状態分布を算出し、算出した第3走行状態分布を記憶部に保存する処理を行う。
 次に、ステップS1050では、分布選択部130Dが、運転状況判定部120が判定した運転状況に基づき、採用する走行状態分布を選択する。具体的には、ステップS1050では、運転状況が、通常運転状況、第1運転状況、及び第2運転状況のいずれかに該当するか判定する。そして、通常運転状況と判定した場合には、ステップS1060に移行する。第1運転状況と判定した場合にはステップS1080に移行する。第2運転状況と判定した場合にはステップS1070に移行する。
 なお、予め設定した時間的範囲の第1及び第2走行状態分布が検出出来ていない場合には、そのまま復帰する。
 次にステップS1060では、上述のように第1走行状態分布算出部130A及び第2走行状態算出部130Bが算出した第1走行状態分布及び第2走行状態分布を選択する。その後ステップS1090に移行する。
 またステップS1070では、第2走行状態分布を第1走行状態分布で上書きすることで、第2走行状態分布を置き換える。その後、ステップS1090に移行する。
 またステップS1080では、第2走行状態分布を、第2走行状態分布を保存してある第3走行状態分布と置き換える。その後ステップS1090に移行する。
 ここで、上述のように、第1走行状態分布算出部130A及び第2走行状態算出部130Bは、第1走行状態分布及び第2走行状態分布を、走行状態データである操舵角情報を取得する度に更新する。
 ステップS1090では、ステアリングエントロピー法によって、第1走行状態分布及び第2走行状態分布(置き換えられた場合には、置き換え後の第2走行状態分布)の分布間の相違量(相対エントロピー)を算出する。その後ステップS1100に移行する。
 具体的には、ステップS1090では、運転者がステアリング操作を行う際の操舵角信号に基づいて、運転者の現在の運転操作が普段の運転操作と比べてどう違うか、つまり普段の運転操作と比べて不安定な状態であるかを判定するための相違量を算出する。すなわち、ステップS1090では、運転操作の滑らかでない乱雑さを表す値として、相対エントロピー(特徴量、不安定度)を算出する。一般的に、運転者の注意が運転に集中していない状態では、操舵が行われない時間が運転に集中した正常運転時よりも長くなり、大きな操舵角の誤差が蓄積される。したがって、運転者の注意が運転に戻ったときの修正操舵量が大きくなる。本実施形態では、この特性を利用して相対エントロピーRHpを算出する。具体的には、過去あるいは現在よりも前の長時間に蓄積された操舵誤差分布(走行状態分布)と、短時間取得された現在の運転者の操舵誤差分布(走行状態分布)つまり時間的範囲が異なる複数の走行状態分布をそれぞれ算出する。そして、普段の運転特性とみなるだけの長時間の操舵誤差分布を比較基準とし、その長時間の操舵誤差分布と、現在の短時間の操作誤差分布とから相対エントロピーRHpを算出する。
 ここで、相対エントロピーRHpは、2つの操舵誤差分布(走行状態分布)の相違量(距離)を表す物理量であり、2つの操舵誤差分布の違いの度合、すなわち2つの操舵誤差分布がどれくらい離れているかを表す。算出した相対エントロピーの値により、過去の長時間の走行状態(普段の運転特性)に対する、現在の直近の走行状態の安定性を評価できる。
 相対的に長時間に蓄積された第1走行状態分布(操舵誤差分布)、相対的に短時間取得された現在の運転者の第2走行状態分布(操舵誤差分布)、及びそれを使用した分布間の相違量(相対エントロピー)の算出例については、後述する。
 次に、ステップS1100では、相違量に基づき不安定運転状態の判定を行う。本実施形態のステップS1100では、ステップS1090で算出された相違量と予め設定した判定閾値と比較する。そして、相違量が判定閾値よりも大きい場合に、不安定運転状態と判定する。その後ステップS1110に移行する。
 ステップS1110では、ステップS1100で不安定運転状態と判定された状態が、予め設定した不安定判定閾値(例えば5秒)以上だけ時間継続した場合には、情報呈示の処理を行う。なお、特定運転状況と判定している期間は、情報呈示を中断しても良い。
 情報呈示の例を図7に示す。この例では、警告表示を行うと共に「運転が乱れています。注意して運転しましょう」などと音声で警告の呈示を行う。
 次に、長時間に蓄積された操舵誤差分布(走行状態分布)、短時間取得された現在の運転者の操舵誤差分布(走行状態分布)、及びそれを使用した分布間の相違量(相対エントロピー)の算出処理の例について、図8を参照しつつ説明する。
 本処理内容は、一定間隔、例えば50msec毎に連続的に行われる。
 ステップS10では、相対エントロピーRHpを算出可能な走行場面であるか否かを判断するために、自車両が走行している走行場面の推定(検出)を行う。ここでは、自車速Vが予め設定した車速範囲(例えば40~120km/h)内にある場合に、相対エントロピーRHpを算出可能な走行場面とする。すなわち、操舵角信号を用いた効果的な相対エントロピーRHpの算出を行うために、車速が極端に遅い場合および極端に速い場合を算出可能な走行場面から除外する。
 ステップS20では、車輪速センサ4で検出される現在の自車速Vが予め設定した車速範囲内にあるか否かを判定する。自車速Vが予め設定した車速範囲内にあり、相対エントロピーRHpを算出可能な走行場面であると判定されると、相対エントロピーRHpの算出を行うためにステップS30へ進む。一方、自車速Vが所定範囲内にない場合は、この処理を終了する。
 ステップS30では、運転者の運転操作の不安定な状態を検出するための検出対象となる運転者の運転操作量として、舵角センサで検出される現在の操舵角信号θを読み込む。ステップS31では、読み込んだ操舵角θの値から、操舵角予測誤差θeを算出する。
 ここで、図9に、相対エントロピーRHpを算出するために用いる特殊記号とその名称を示す。操舵角円滑値θn-tildeは、量子化ノイズの影響を低減した操舵角である。操舵角の推定値θn-hatは、ステアリングが滑らかに操作されたと仮定してサンプリング時点における操舵角を推定した値である。操舵角推定値θn-hatは、以下の(式1)に示すように、操舵角円滑値θn-tildeに対して2次のテイラー展開を施して得られる。
Figure JPOXMLDOC01-appb-M000001
(式1)において、tnは操舵角θnのサンプリング時刻である。
 操舵角円滑値θn-tildeは、量子化ノイズの影響を低減するために、3個の隣接操舵角θnの平均値として以下の(式2)から算出される。
Figure JPOXMLDOC01-appb-M000002
(式2)において、lは、操舵角円滑値θn-tildeの算出時間間隔を150msec、すなわち手動操作において人間が断続的に操作可能な最小時間間隔とした場合に、150msec内に含まれる操舵角θnのサンプル数を表す。
 操舵角θnのサンプリング間隔をTsとすると、サンプル数lは、以下の(式3)で表される。
   l=round(0.15/Ts) ・・・(式3)
 (式3)において、k=1,2,3の値をとり、(k*1)により150msec間隔の操舵角とそれに隣接する合計3個の操舵角θnに基づいて、円滑値θn-tildeを求めることができる。したがって、このような円滑値θn-tildeに基づいて算出される推定値θn-hatは、実質的に150msec間隔で得られた操舵角θにより算出されたことになる。
 サンプリング時点における操舵角予測誤差θeは、ステアリング操作が滑らかに行われたと仮定した場合の操舵角推定値θn-hatと実際の操舵角θnとの差として、以下の(式4)から算出できる。
Figure JPOXMLDOC01-appb-M000003
 ただし、操舵角予測誤差θeは、人間が断続的に操作可能な最小時間間隔、150msecごとの操舵角θnに対してのみ算出するものとする。
 以下に、操舵角予測誤差θeの具体的な算出方法を説明する。なお、操舵角信号θのサンプリング間隔Tsは、例えば50msecとする。まず、150msec間隔の隣接する3個の操舵角θnを用いて、上記(式2)から3個の操舵角円滑値θn-tildeを算出する。3個の操舵角円滑値θn-tildeは、以下の(式5)で表される。
Figure JPOXMLDOC01-appb-M000004
 次に、算出した3個の操舵角円滑値θn-tildeを用いて、上記(式1)から操舵角の推定値θn-hatを算出する。推定値θn-hatは、以下の(式6)で表される。
Figure JPOXMLDOC01-appb-M000005
 そして、算出した操舵角推定値θn-hatと実際の操舵角信号θnとを用いて、上記(式4)から操舵誤差θeを算出する。
 続くステップS40では、現時点までに算出され、コントローラ100のメモリ内に蓄積されていた所定時間T秒間の操舵角予測誤差θeのデータを、ステップS31で算出した操舵角予測誤差θeの現在値を加えて更新する。すなわち、蓄積されている操舵角予測誤差θeのデータのうち最も古いT秒前のデータを捨てて、代わりに最新の操舵角予測誤差θeのデータとして、ステップS31で算出した現在値を入力する。これにより、現在値からT秒前までの操舵角予測誤差θeのデータが蓄積されることになる。なお、所定時間Tは、現在の運転操作の不安定な状態を判定するための比較基準となる長時間の誤差分布を算出するために十分な長期間のデータを蓄えられるように、例えばT=3600秒(=1時間)程度に設定する。
 ステップS50では、操舵予測誤差分布の比較基準となる、過去あるいは長時間の操舵角予測誤差分布1を算出する。ここでは、図10に示すように、例えばT秒前のデータから180秒分のデータを使って過去の操舵角予測誤差分布を算出する。具体的には、蓄積された過去の操舵角予測誤差θeを、9つの予測誤差区分b1~b9に分類し、各区分biに含まれる操舵角予測誤差θeの度数の全度数に対する確率pi(=p1~p9)を求める。そして、算出した過去の分布を操舵予測誤差分布の比較基準として利用する。なお、予測誤差区分biの範囲は、全区分b1~b9で一定となるように予め設定しておく。
 長時間の操舵角予測誤差分布を算出する場合は、T秒前から現在までの3600秒分の全てのデータを用いる。具体的には、蓄積された長時間の操舵角予測誤差θeを、9つの予測誤差区分b1~b9に分類し、各区分biに含まれる操舵角予測誤差θeの度数の全度数に対する確率pi(=p1~p9)を求める。算出した過去の分布(または長時間の分布)を比較基準となる過去(または長時間)の操舵角予測誤差分布1とする。
 ステップS51では、現在の操舵角予測誤差分布2を算出する。ここでは、図10に示すように現在から直近の180秒分のデータを使って現在の操舵角予測誤差分布2を算出する。具体的には、直近の180秒分の操舵角予測誤差θeのデータを、9つの予測誤差区分b1~b9に分類し、各区分biに含まれる操舵角予測誤差θeの度数の全度数に対する確率qi(=q1~q9)を求める。
 以上を繰り返し、逐次更新する。
 以上が走行状態分布としての操舵角予測誤差分布の算出方法である。
 また、分布間の相違量は次のようにして算出する。
 すなわち、過去(または長時間)の操舵角予測誤差分布1および現在の操舵角予測誤差分布2を用いて、相対エントロピーRHpを求める。図11に示すように相対エントロピーRHpは、比較基準である過去(または長時間)の操舵角予測誤差分布1に対する現在の操舵角予測誤差分布2の相違量(距離)である。相対エントロピーRHpは、以下の算出式(式7)から算出することができる。
Figure JPOXMLDOC01-appb-M000006
 ここで、相対エントロピーRHpは、過去(または長時間)の操舵角予測誤差分布1の確率piと現在の操舵角予測誤差分布2の確率qiが等しい場合にRHp=0となり、これらの確率piとqiがずれるほどRHpの値が大きくなる。
 なお、過去(または長時間)の操舵角予測誤差分布1および現在の操舵角予測誤差分布2を算出するための予測誤差区分biの範囲を、操舵誤差分布のあいまいさ(不確実性)を表すステアリングエントロピー値Hpを算出する際に用いるα値に基づいて設定することもできる。ここで、α値は、操舵角の時系列データに基づいて一定時間内の操舵誤差、すなわちステアリングが滑らかに操作されたと仮定した場合の操舵角の推定値と実際の操舵角との差を求め、操舵誤差の分布(ばらつき)を測定して90パーセントタイル値(操舵誤差の90%が含まれる分布の範囲)を算出したものである。
 そこで、過去あるいは長時間の操舵角誤差分布に基づいてα値を算出し、算出したα値から、過去(または長時間)の操舵角予測誤差分布1および現在の操舵角予測誤差分布2について同じ予測誤差区分biの範囲を設定する。図9に、α値を用いて設定される各区分biの操舵角予測誤差θeの範囲を示す。
(動作その他)
 データ収集を始めてからの走行時間に基づき運転者の普段の運転特性が取得できたと見なせる場合には、ステアリングエントロピー法を用いた不安定度の算出が実施される。
 このとき、通常時の運転者の運転特性を表す第1走行状態分布と、直近の運転特性を表す第2走行状態分布の間の相違量を算出し、相違量の大きさから不安定運転状態を判定する。これにより、交通環境の違いによらず不安定な走行状態を精度よく検出することが可能となる。すなわち、交通環境の違いによらず、個人の普段の特性に適応して、不安定な状態を精度よく検出することができる。
 このとき、運転者の操作による運転者の不安定度を評価するための操舵角情報(走行状態データ)だけを検出したいが、運転者の意図的な操舵や道路環境に起因する操舵変化などの運転状況でステアリング操作に乱れが発生する場合がある。この乱れを含んだ操舵角情報を使用した走行状態分布を使用すると、運転不安定の検出精度が悪くなるおそれがある。特に、第2走行状態分布は時間的範囲が短いため、上記運転状況による影響を受けやすい。
 これに対し、本実施形態の走行状態分布算出部130は、運転状況判定部120が特定運転状況と判定すると、その特定運転状況と判定しているときの走行状態データを使用しないで上記第2走行状態分布を算出する。具体的には、特定運転状況と判定していう場合には、運転状況に応じて第1走行状態分布、若しくは上記特定運転状況と判定しているときの走行状態データを含まない第3走行状態分布で、第2走行状態分布を上書き、つまり置き換えて運転不安定を判定する。これによって、特定運転状況の影響によって運転不安定状態と誤検知することを防止出来る。
 また本実施形態では、特定運転状況に基づき、第2運転状況では第1走行状態を採用し、第1運転状況では第3走行状態分布を採用して、第2走行状態分布を置き換える。このように、運転状況によって置き換える走行状態分布を変更している。
 すなわち、検出した運転状況が第1運転状況の場合、つまり特定運転状況と判定した期間の前後で運転者の運転状態が継続すると想定される場合には、当該第1運転状況が発生する前であって直近の第3時間的範囲で求めた第3走行状態分布を第2走行状態分布に置き換える。これによって、第1運転状況が発生する前の状態で不安定状態を判定可能となる。なお、この場合には、当該第1運転状況が発生したときの走行状態データを、その前の走行状態データで置き換える事で、誤検知の原因となる走行状態データが除去される。具体的には、第3時間的範囲単位でデータの入れ替えを実施する。
 一方、検出した運転状況が第2運転状況の場合、つまり特定運転状況と判定した期間の前後で運転者の運転状態が変わってしまうと想定される場合には、当該第2運転状況が発生する前に取得した第2走行状態分布が使用出来なくなるので、第2走行状態分布を、相対的に時間的範囲が長い第1走行状態分布と置き換えて、第2走行状態分布をリセットする。この場合には、第1走行状態分布と第2走行状態分布とが一致するので、相対エントロピーは「0」となる。なお、この場合には、第2運転状況の発生が終了した後の次の第3時間的範囲の開始から、第2走行状態分布用のデータ収集を新たに開始するように設定しても良い。
 また、特定運転状況のうち第1運転状況との判定が終了して第2の時間的範囲の時間が経過するまでの間は、第1運転状況と判定する前の時間的範囲の走行状態データと第1運転状況との判定が終了した後の時間的範囲の走行状態データの両方から第2走行状態分布を算出する。なお、上記特定運転状況と判定する前の時間的範囲と上記特定運転状況と判定した後の時間的範囲を合算した時間は、上記第2の時間的範囲の時間に等しい値となっている。
 特定の道路環境を走行することで発生する特定運転状況(第1運転状況)は、操舵角情報を乱す特定運転状況が発生しても、その特定運転状況でなくなった後に、特定運転状況発生前の運転者の運転状態が継続すると想定される。このため、第1運転状況の判定直後から、第1運転状況の発生前後のデータによって第2走行状態を正確に求めることが可能となる。
 一方、また、特定運転状況のうち第2運転状況と判定した場合には、第2運転状況と判定する前の操舵操作情報も信用度が低いおそれが高いことから、第2運転状況と判定する前の情報を使用することをしないで、情報を一旦リセットして、第2運転状況の終了後にタイマのカウントを行って、第2の時間的範囲の時間だけ経過したら、初めて第2走行状態分布が精度良く計算可能となる。
 また、実際に特定運転状況が発生してから、その特定運転状況と判定(検出)するまでに時間遅れがある。これに対し、本実施形態では、運転不安定度判定部140が運転不安定と判定している状態が予め設定した時間継続する場合にだけ、情報呈示を実施している。これによって、特定運転状況の検出遅れによる誤検知も抑制出来る。上記時間継続の時間は、当該運転状況の検出遅れよりも大きな時間に設定しておく。
 「変形例」
(第1変形例)
 次に、第1変形例について説明する。
 上記第1実施形態の説明では、走行状態データとして操舵角情報を使用し、走行状態分布として操舵角予測誤差分布を使用した場合を例示している。但し、走行状態データ及び走行状態分布はこれに限定されない。特願2009-524342号公報などに記載されているような、走行状態データ及び走行状態分を使用しても良い。なお、運転状態データは、運転特性を表す指標となる。
 すなわち、運転支援部100Aは、走行状態データとしてアクセルペダル操作量を検出し、その検出されたアクセルペダル操作量を用いて、前記運転者によるアクセルペダル操作の不安定度を表すアクセルペダル開度エントロピーを算出しても良い。
 また、運転支援部100Aは、走行状態データとしてアクセルペダルが解放されたときの自車両と先行車との余裕時間を採用しても良い。
 また、運転支援部100Aは、走行状態データとして修正操舵が行われたときの、自車両が走行レーンから逸脱するまでのレーン逸脱時間を採用しても良い。
 また、運転支援部100Aは、走行状態データとして、単独走行時の自車速を採用しても良い。
 また、運転支援部100Aは、走行状態データとして、自車両発進時の最大加速度を採用しても良い。
 また、運転支援部100Aは、走行状態データとして、ブレーキ操作時の自車両と先行車との最低余裕時間を採用しても良い。
 また、運転支援部100Aは、走行状態データとして、追越し中の自車両と先行車との最低車間距離を採用しても良い。
 (第2変形例)
 次に、第2変形例について説明する。
 本第2変形例の基本構成は、上記第1実施形態と同様である。
 ただし、運転支援部100Aは、走行状態データとして自車両が先行車に追従して走行する場合の前記自車両と前記先行車との車間情報(車間時間や車間距離)を採用する。
 この場合には、走行状態分布を車間距離の分布から算出することで、運転不安定度を算出する。
 この場合の算出方法は、2種類の時間的範囲が異なる車間距離の平均値と標準偏差から、正規分布を仮定した車間距離の分布を作成し、予め設定した車間距離の割合(たとえば1σより左外側)の割合を相違量として算出する。この算出方法は、特願2009-524342号などに記載のような、公知の算出方法を採用すればよい。
 そして、相違量が予め設定した閾値を越えている状態が、予め設定した時間以上継続して場合に、警報その他の情報呈示を実施すればよい。
 この第2変形例の運転状況判定部120は、予め設定した速度以上でのアクセルペダル操作、予め設定した速度以上でのブレーキペダル操作、ウインカ操作を、操作情報として取得する。また、本実施形態の運転状況判定部120は、他車両による自車前方への割り込み、高速道路種別の切り替わり、料金所を含む予め設定した区間、渋滞情報を、道路環境情報として取得する。
 そして、第2変形例の運転状況判定部120は、予め設定した速度以上でのアクセルペダル操作、予め設定した速度以上でのブレーキペダル操作、ウインカ操作、他車両による自車前方への割り込み、高速道路種別の切り替わり、料金所を含む予め設定した区間、渋滞情報を検出すると特定運転状況と判定する。
 走行状態データとして車間時間を採用する場合には、運転状況判定部120は、図13に示すように、第1運転状況及び第2運転状況を設定する。
 ここで、予め設定した速度以上でのアクセルペダル操作またはブレーキペダル操作は、アクセルペダル開度センサ1またはブレーキペダル操作量センサ2の検出値の微分値で判定する。
 他車両による自車前方への割り込みは、前方車両検出装置9による前方の検出によって判定する。この場合には、前方車両検出装置9として前方を撮像するカメラを備えると良い。
 高速道路種別の切り替わりは、例えば、「自車位置情報とナビゲーション装置からの道路情報で判定する。また、操舵角などに基づき車線変更を検出するようにしても良い。
 渋滞情報は、例えば路車間通信をすることによって判定する。
 そして、図13に示すように、予め設定した速度以上でのアクセルペダル操作、予め設定した速度以上でのブレーキペダル操作、ウインカ操作である操作情報を、第2運転状況とする。また、他車両による自車前方への割り込み、高速道路種別の切り替わり、料金所を含む予め設定した区間、渋滞情報である道路環境情報を、第1運転状況とする。
 (第3変形例)
 次に、第3変形例について説明する。
 本第3変形例の基本構成は、上記第1実施形態と同様である。
 図14に、第3変形例における運転支援部100Aの処理を示す。この図14に示す第3変形例の運転支援部100Aの処理は、図3に示す第1実施形態における運転支援部100Aの処理と同じである。
 すなわち、ステップS3010~S3030の処理は、ステップS1010~S1030の処理と同じである。また、ステップS3040~S3110の処理は、ステップS1040~S1110の処理と基本的に同様な処理を行う。
 但し、本変形例では、ステップS3035の処理が追加されている。
 上記ステップS3035では、ステップS3030で運転状況が第1運転状況若しくは第2運転状況を検出したと判定すると、タイムカウンタで時間の計測を開始する。一方、ステップS3030で運転状況が第1運転状況及び第2運転状況を検出しない場合には、タイムカウンタを、ゼロに戻す。
 そして、タイムカウンタが予め設定した時間より大きく、且つ継続中の運転状況が第1運転状況の場合には、図15の変更欄のように、当該第1運転状況を第2運転状況とみなす。なお、この判定をステップS3050などで実施しても良い。
 第1運転状況の前後の運転者の運転特性が継続すると想定される場合であっても、その第1運転状況が予め設定した時間よりも長く継続する場合には、第1運転状況の前後で運転者の運転特性が変わる可能性が高くなる。このため、第1運転状況が予め設定した時間よりも長く継続する場合には、第2運転状況とみなす事とした。
 ここで、第2運転状況が予め設定した時間未満だけ継続する場合には、第2運転状況を第1運転状況とみなすようにしても良い。短時間の操作の場合、誤って運転者が操作したなどの場合があり、この場合には、第2運転状況の前後の運転者の運転特性が継続するとみなせると想定される。
 (実施形態の効果)
 以上の実施形態及び変形例によって次の効果を奏する。
 (1)走行状態取得部110は、運転者が操作可能な運転操作子の操作状態及び車両状態の少なくとも一方からなる走行状態データを取得する。走行状態分布算出部130は、上記走行状態取得部110が取得した走行状態データに基づき、予め設定した第2の時間的範囲の第2走行状態分布と、第2の時間的範囲よりも時間的範囲が長い第1の時間的範囲の第1走行状態分布とを算出する。運転不安定度判定部140は、上記走行状態分布算出部が算出する第1走行状態分布と第2走行状態分布とを比較することで、運転の不安定度を判定する。運転状況判定部120は、運転者が操作可能な運転操作子の操作状態、車両状態、及び車両周囲の情報の少なくとも一つに基づき、現在の運転状況が、予め設定した特定の運転操作子を操作することで発生している運転状況及び予め設定した特定の道路環境を走行することで発生している運転状況の少なくとも一方の運転状況である特定運転状況であるか否かを判定する。そして、上記走行状態分布算出部130は、上記運転状況判定部120が特定運転状況であると判定すると、当該特定運転状況と判定している期間の上記走行状態データを除いて、上記第1走行状態分布及び第2走行状態分布のうち少なくとも第2走行状態分布を算出する。
 このような構成によれば、精度の低い走行状態データを使用する事がないので、運転不不安定度の検出精度を向上することが可能となる。
 (2)上記走行状態分布算出部130は、第2運転状況との判定が終了して第2の時間的範囲の時間が経過するまでの間は、特定運転状況と判定する前の時間的範囲の走行状態データと特定運転状況との判定終了後の時間的範囲の走行状態データの両方から第2走行状態分布を算出する。上記特定運転状況と判定する前の時間的範囲と上記特定運転状況と判定した後の時間的範囲を合算した時間が上記第2の時間的範囲の時間に等しい。
 この構成によれば、特定運転状況終了後から精度良く第2走行状態分布を求めることが出来る。
 (3)上記走行状態分布算出部130は、上記運転状況判定部120が特定の道路環境を走行することで発生している特定運転状況であると判定すると、当該特定運転状況と判定している期間の上記走行状態データを除いて、上記第2走行状態分布を算出する。
 この構成によれば、時間的範囲の短い第2走行状態分布は、運転状況の影響を受けやすいが、このように、運転状況を考慮することで、第2走行状態分布の精度が向上する。
 (4)上記走行状態分布算出部130は、特定運転状況と判定した後の時間的範囲の走行状態データから第2走行状態分布を算出し、その特定運転状況と判定した後の時間的範囲が上記第2の時間的範囲の時間に等しいことを特徴とする。
 この構成によれば、特定運転状況時のデータを使用することなく、第2走行状態分布を算出することが可能となる。
 (5)上記走行状態分布算出部130は、上記運転状況判定部が特定の運転操作子を操作することで発生している運転状況であると判定すると、当該特定運転状況と判定している期間の上記走行状態データを除いて、上記第2走行状態分布を算出する。
 この構成によれば、時間的範囲の短い第2走行状態分布は、運転状況の影響を受けやすいが、確実に特定運転状況のデータを使用することなくなり、第2走行状態分布の精度が向上する。
 (6)上記走行状態分布算出部130は、上記運転状況判定部120が特定の道路環境を走行することで発生している特定運転状況であると判定すると、第2運転状況との判定が終了して第2の時間的範囲の時間が経過するまでの間は、特定運転状況と判定する前の時間的範囲の走行状態データと特定運転状況と判定した後の時間的範囲の走行状態データの両方から第2走行状態分布を算出し、且つ上記特定運転状況と判定する前の時間的範囲と上記特定運転状況と判定した後の時間的範囲を合算した時間を上記第2の時間的範囲の時間に等しくなるように設定し、上記運転状況判定部120が運転状況判定部が特定の運転操作子を操作することで発生している特定運転状況であると判定すると、特定運転状況と判定した後の時間的範囲の走行状態データから第2走行状態分布を算出し、その特定運転状況と判定した後の時間的範囲を上記第2の時間的範囲の時間に等しくなるように設定する。
 この構成によれば、特定運転状況に応じて適切に第2走行状態を算出することが可能となる。
 (7)上記特定運転操作子の操作は、車線変更操作、加速操作、制動操作、シフト操作、ナビゲーション装置の操作の少なくとも一つの操作である。
 これによって、運転操作に基づく特定運転状況を判定可能となる。
 (8)上記特定の道路環境は、路面形状、トンネル内、走行路の合分岐部、走行路のカーブ、料金所近傍、自車先方への他車両の割り込み、高速道路の種別、渋滞状態の少なくとも一つの道路環境である。
 これによって、道路環境に基づく特定運転状況を判定可能となる。
 (9)上記走行状態分布は、ステアリング操作の操作量を走行状態データとして算出する。
 連続操作が要求されるステアリング操作から検出することで、運転者状態を精度よく検出できる。
 (10)上記ステアリング操作の操作量からの相違量の算出は、ステアリングエントロピー法を用いる。
 ステアリングエントロピー法を用いることで、検出性能の向上が期待できる。
 (11)上記走行状態分布は、先行車に対する車間情報を走行状態データとして算出する。
 連続的な情報を取得可能な車検時間の変化から検出することで、運転者状態を精度よく検出できる。
 (12)上記車間情報からの相違量の算出は、予め設定した車間時間の割合の大きさから算出する。
 車間時間の割合の大きさを使用することで、検出性能の向上が期待できる。
 以上、本願が優先権を主張する日本国特許出願2011-111914(2011年5月18日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
100 コントローラ
100A 運転支援部
110 走行状態取得部
120 運転状況判定部
130 走行状態分布算出部
130A 第1走行状態分布算出部
130B 第2走行状態分布算出部
130C 分布記憶部
130D 分布選択部
130E 分布設定部
140 運転不安定度判定部
150 情報呈示部

Claims (12)

  1.  運転者が操作可能な運転操作子の操作状態及び車両状態の少なくとも一方からなる走行状態データを取得する走行状態取得部と、
     上記走行状態取得部が取得した走行状態データに基づき、予め設定した第2の時間的範囲の第2走行状態分布と、第2の時間的範囲よりも時間的範囲が長い第1の時間的範囲の第1走行状態分布とを算出する走行状態分布算出部と、
     上記走行状態分布算出部が算出する第1走行状態分布と第2走行状態分布とを比較することで、運転の不安定度を判定する運転不安定度判定部と、
     運転者が操作可能な運転操作子の操作状態、車両状態、及び車両周囲の情報の少なくとも一つに基づき、現在の運転状況が、上記走行状態取得部が取得する走行状態データの信頼度を悪くすると推定される特定運転状況であるか否かを判定する運転状況判定部と、
     上記走行状態分布算出部は、上記運転状況判定部が特定運転状況であると判定すると、当該特定運転状況と判定している期間の上記走行状態データを除いて、上記第1走行状態分布及び第2走行状態分布のうち少なくとも第2走行状態分布を算出することを特徴とする運転不安定度判定装置。
  2.  上記走行状態分布算出部は、特定運転状況との判定が終了して第2の時間的範囲の長さの時間が経過するまでの間は、特定運転状況と判定する前の時間的範囲の走行状態データと特定運転状況との判定終了後の時間的範囲の走行状態データの両方から第2走行状態分布を算出し、上記特定運転状況と判定する前の時間的範囲と上記特定運転状況との判定終了後の時間的範囲を合算した時間が上記第2の時間的範囲の時間に等しいことを特徴とする請求項1に記載した運転不安程度判定装置。
  3.  上記運転状況判定部は、予め設定した特定の道路環境を走行していることを検出すると、当該特定運転状況と判定することを特徴とする請求項2に記載した運転不安程度判定装置。
  4.  上記走行状態分布算出部は、特定運転状況と判定した後の時間的範囲の走行状態データから第2走行状態分布を算出し、その特定運転状況との判定終了後の時間的範囲が上記第2の時間的範囲の時間に等しいことを特徴とする請求項1に記載した運転不安程度判定装置。
  5.  上記運転状況判定部は、予め設定した特定の運転操作子の操作を検出すると特定運転状況と判定することを特徴とする請求項4に記載した運転不安程度判定装置。
  6.  上記運転状況判定部は、予め設定した特定の道路環境の走行を検出すると第1の特定運転状況であると判定し、予め設定した特定の運転操作子の操作を検出すると第2の特定運転状況をあると判定し、
     上記走行状態分布算出部は、第1の特定運転状況であると判定すると、第1の特定運転状況との判定が終了して第2の時間的範囲の長さの時間が経過するまでの間は、第1の特定運転状況と判定する前の時間的範囲の走行状態データと第1の特定運転状況と判定した後の時間的範囲の走行状態データの両方から第2走行状態分布を算出し、且つ上記第1の特定運転状況と判定する前の時間的範囲と上記第1の特定運転状況との判定終了後の時間的範囲を合算した時間を上記第2の時間的範囲の時間に等しくなるように設定し、
     第2の特定運転状況であると判定すると、特定運転状況と判定した後の時間的範囲の走行状態データから第2走行状態分布を算出し、その特定運転状況との判定終了後の時間的範囲を上記第2の時間的範囲の時間に等しくなるように設定することを特徴とする請求項1に記載した運転不安程度判定装置。
  7.  上記特定の運転操作子の操作は、車線変更操作、加速操作、制動操作、シフト操作、ナビゲーション装置の操作の少なくとも一つの操作であることを特徴とする請求項3又は請求項6に記載した運転不安定度判定装置。
  8.  上記特定の道路環境は、路面形状、トンネル内、走行路の合分岐部、走行路のカーブ、料金所近傍、自車先方への他車両の割り込み、高速道路の種別、渋滞状態の少なくとも一つの道路環境であることを特徴とする請求項5又は請求項6に記載した運転不安定度判定装置。
  9.  上記走行状態分布は、ステアリング操作の操作量を走行状態データとして算出することを特徴とする請求項1~請求項8のいずれか1項に記載した運転不安定度判定装置。
  10.  上記ステアリング操作の操作量からの相違量の算出は、ステアリングエントロピー法を用いることを特徴とする請求項9に記載した運転不安定度判定装置。
  11.  上記走行状態分布は、先行車に対する車間情報を走行状態データとして算出することを特徴とする請求項1~請求項8のいずれか1項に記載した運転不安定度判定装置。
  12.  上記車間情報からの相違量の算出は、予め設定した車間時間の割合の大きさから算出することを特徴とする請求項11に記載した運転不安定度判定装置。
PCT/JP2012/002815 2011-05-18 2012-04-24 運転不安定度判定装置 WO2012157192A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12785252.3A EP2711910A1 (en) 2011-05-18 2012-04-24 Driving instablity determination device
JP2013514972A JP5621921B2 (ja) 2011-05-18 2012-04-24 運転不安定度判定装置
US13/820,105 US8577566B2 (en) 2011-05-18 2012-04-24 Driving instability determination device
CN201280003177.6A CN103140883B (zh) 2011-05-18 2012-04-24 驾驶不稳定性判断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-111914 2011-05-18
JP2011111914 2011-05-18

Publications (1)

Publication Number Publication Date
WO2012157192A1 true WO2012157192A1 (ja) 2012-11-22

Family

ID=47176546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002815 WO2012157192A1 (ja) 2011-05-18 2012-04-24 運転不安定度判定装置

Country Status (5)

Country Link
US (1) US8577566B2 (ja)
EP (1) EP2711910A1 (ja)
JP (1) JP5621921B2 (ja)
CN (1) CN103140883B (ja)
WO (1) WO2012157192A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190753A1 (ja) * 2012-06-20 2013-12-27 日産自動車株式会社 運転状態推定装置
WO2013190754A1 (ja) * 2012-06-20 2013-12-27 日産自動車株式会社 車両用情報提供装置
WO2015008418A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 車両用情報提供装置
WO2015008420A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 運転状態推定装置
WO2015008419A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 運転状態推定装置
JP2015076057A (ja) * 2013-10-11 2015-04-20 日産自動車株式会社 車両用情報提供装置
US10509122B2 (en) 2014-09-18 2019-12-17 Denso Corporation Driving burden estimation device and driving burden estimation method
WO2020000191A1 (en) * 2018-06-26 2020-01-02 Psa Automobiles Sa Method for driver identification based on car following modeling
CN114516340A (zh) * 2022-02-27 2022-05-20 重庆长安汽车股份有限公司 基于用户驾驶习惯的驾驶员失能判定方法
WO2023188276A1 (ja) * 2022-03-31 2023-10-05 本田技研工業株式会社 運転能力判定システムおよび運転能力判定方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8836544B1 (en) * 2011-02-17 2014-09-16 Brunswick Corporation Multifunctional displays and display systems for marine vessels
JP2016128178A (ja) * 2015-01-09 2016-07-14 株式会社Ihi 摩擦撹拌接合方法
US9775128B2 (en) * 2016-01-21 2017-09-26 Ford Global Technologies, Llc Vehicular connectivity map
CN109835410B (zh) * 2017-11-28 2022-02-01 湖南中车时代电动汽车股份有限公司 一种车辆行驶的经验数据提取方法及相关装置
JP6933179B2 (ja) * 2018-03-29 2021-09-08 トヨタ自動車株式会社 自動運転システム
KR102485350B1 (ko) * 2018-07-19 2023-01-06 현대자동차주식회사 저크 기반 부주의 운전 상태 판단 장치 및 방법, 그리고 차량 시스템
CN110393531A (zh) * 2019-05-23 2019-11-01 重庆大学 一种基于智能设备的疲劳驾驶检测方法及系统
CN110984020B (zh) * 2019-11-22 2021-11-02 万翼科技有限公司 智能危险源警示雪糕筒及相关产品
CN115667050A (zh) * 2020-04-20 2023-01-31 蒂森克虏伯普利斯坦股份公司 用于线控转向系统的降级概念

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343904A (ja) * 2005-06-08 2006-12-21 Xanavi Informatics Corp 運転支援装置
JP2008243031A (ja) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc 漫然運転判定装置
JP2009009495A (ja) 2007-06-29 2009-01-15 Nissan Motor Co Ltd 車両用運転支援装置および車両用運転支援装置を備える車両
WO2009013815A1 (ja) 2007-07-24 2009-01-29 Nissan Motor Co., Ltd. 車両用運転支援装置および車両用運転支援装置を備える車両
JP2009524342A (ja) 2006-01-23 2009-06-25 サムスン エレクトロニクス カンパニー リミテッド Csi端末によるimsドメインを介して受信されたリアルタイムサービスのための要求を含むims端末の呼要求の処理方法及び装置
JP2009175929A (ja) * 2008-01-23 2009-08-06 Toyota Central R&D Labs Inc ドライバ状態推定装置及びプログラム
JP2011059857A (ja) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd 車両用運転状態検出装置、車両用運転状態検出方法および自動車
JP2011059856A (ja) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd 車両用運転特性検出装置、車両用運転特性検出方法および自動車
JP2011111914A (ja) 2009-11-24 2011-06-09 Silver Kk 洗剤供給用ポンプ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463347A (en) * 1980-09-22 1984-07-31 Nissan Motor Company, Ltd. Drowsiness alarm system for a vehicle
DE4480341T1 (de) * 1993-12-28 1996-03-21 Mitsubishi Motors Corp Sicherheitsfahrsystem
JP3070384B2 (ja) * 1994-04-26 2000-07-31 三菱自動車工業株式会社 運転注意力判別方法
JP3513937B2 (ja) * 1994-10-21 2004-03-31 トヨタ自動車株式会社 自動変速機の変速制御装置
JP3358403B2 (ja) * 1995-09-11 2002-12-16 トヨタ自動車株式会社 隊列走行制御装置
DE10261799A1 (de) * 2002-12-30 2004-07-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Signalisierung einer Deaktivierung eines Fahrerassistenzsystems
CN100400332C (zh) * 2004-11-17 2008-07-09 丰田自动车株式会社 车辆以及车辆的控制方法
WO2007047414A2 (en) * 2005-10-12 2007-04-26 The Penn State Research Foundation Vigilance monitoring technique for vehicle operators
JP5640542B2 (ja) * 2010-08-10 2014-12-17 日産自動車株式会社 安定状態表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343904A (ja) * 2005-06-08 2006-12-21 Xanavi Informatics Corp 運転支援装置
JP2009524342A (ja) 2006-01-23 2009-06-25 サムスン エレクトロニクス カンパニー リミテッド Csi端末によるimsドメインを介して受信されたリアルタイムサービスのための要求を含むims端末の呼要求の処理方法及び装置
JP2008243031A (ja) * 2007-03-28 2008-10-09 Toyota Central R&D Labs Inc 漫然運転判定装置
JP2009009495A (ja) 2007-06-29 2009-01-15 Nissan Motor Co Ltd 車両用運転支援装置および車両用運転支援装置を備える車両
WO2009013815A1 (ja) 2007-07-24 2009-01-29 Nissan Motor Co., Ltd. 車両用運転支援装置および車両用運転支援装置を備える車両
JP2009175929A (ja) * 2008-01-23 2009-08-06 Toyota Central R&D Labs Inc ドライバ状態推定装置及びプログラム
JP2011059857A (ja) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd 車両用運転状態検出装置、車両用運転状態検出方法および自動車
JP2011059856A (ja) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd 車両用運転特性検出装置、車両用運転特性検出方法および自動車
JP2011111914A (ja) 2009-11-24 2011-06-09 Silver Kk 洗剤供給用ポンプ

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013190754A1 (ja) * 2012-06-20 2016-02-08 日産自動車株式会社 車両用情報提供装置
WO2013190754A1 (ja) * 2012-06-20 2013-12-27 日産自動車株式会社 車両用情報提供装置
WO2013190753A1 (ja) * 2012-06-20 2013-12-27 日産自動車株式会社 運転状態推定装置
JP6008050B2 (ja) * 2013-07-19 2016-10-19 日産自動車株式会社 運転状態推定装置
JPWO2015008420A1 (ja) * 2013-07-19 2017-03-02 日産自動車株式会社 運転状態推定装置
JPWO2015008419A1 (ja) * 2013-07-19 2017-03-02 日産自動車株式会社 運転状態推定装置
WO2015008420A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 運転状態推定装置
JP6008049B2 (ja) * 2013-07-19 2016-10-19 日産自動車株式会社 車両用情報提供装置
WO2015008418A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 車両用情報提供装置
JP6075453B2 (ja) * 2013-07-19 2017-02-08 日産自動車株式会社 運転状態推定装置
WO2015008419A1 (ja) * 2013-07-19 2015-01-22 日産自動車株式会社 運転状態推定装置
JP2015076057A (ja) * 2013-10-11 2015-04-20 日産自動車株式会社 車両用情報提供装置
US10509122B2 (en) 2014-09-18 2019-12-17 Denso Corporation Driving burden estimation device and driving burden estimation method
WO2020000191A1 (en) * 2018-06-26 2020-01-02 Psa Automobiles Sa Method for driver identification based on car following modeling
CN114516340A (zh) * 2022-02-27 2022-05-20 重庆长安汽车股份有限公司 基于用户驾驶习惯的驾驶员失能判定方法
CN114516340B (zh) * 2022-02-27 2023-09-12 重庆长安汽车股份有限公司 基于用户驾驶习惯的驾驶员失能判定方法
WO2023188276A1 (ja) * 2022-03-31 2023-10-05 本田技研工業株式会社 運転能力判定システムおよび運転能力判定方法

Also Published As

Publication number Publication date
JP5621921B2 (ja) 2014-11-12
US20130166159A1 (en) 2013-06-27
CN103140883A (zh) 2013-06-05
EP2711910A1 (en) 2014-03-26
CN103140883B (zh) 2015-02-04
JPWO2012157192A1 (ja) 2014-07-31
US8577566B2 (en) 2013-11-05

Similar Documents

Publication Publication Date Title
JP5621921B2 (ja) 運転不安定度判定装置
US9428057B2 (en) Information provision device for use in vehicle
JP6008050B2 (ja) 運転状態推定装置
JP6161942B2 (ja) カーブ形状モデル化装置、車両情報処理システム、カーブ形状モデル化方法、及びカーブ形状モデル化プログラム
US9666066B2 (en) Unexpectedness prediction sensitivity determination apparatus
US9412212B2 (en) Unexpectedness prediction sensitivity determination apparatus
JP5446313B2 (ja) 車両用情報提供装置及び車両用情報提供方法
JP6075453B2 (ja) 運転状態推定装置
JP4789367B2 (ja) 運転心理判定装置及び運転心理判定方法、並びに運転支援装置及び運転支援方法
JP6008049B2 (ja) 車両用情報提供装置
JP5854135B2 (ja) 車両用情報提供装置
JP6015754B2 (ja) 運転状態推定装置
JP6458634B2 (ja) 事象検出装置
JP2020181281A (ja) 視線方向推定装置、視線方向推定装置の較正方法、およびプログラム
JP2015076057A (ja) 車両用情報提供装置
JP6619306B2 (ja) 運転者行動評価装置及び運転者行動評価方法
JP3983727B2 (ja) 車両運動制御装置
JP6287332B2 (ja) 運転支援システム、方法およびプログラム
JP2018101319A (ja) 運転状態判定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280003177.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13820105

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012785252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012785252

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013514972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE