WO2012153598A1 - 梱包構造体、梱包方法および搬送方法 - Google Patents
梱包構造体、梱包方法および搬送方法 Download PDFInfo
- Publication number
- WO2012153598A1 WO2012153598A1 PCT/JP2012/060052 JP2012060052W WO2012153598A1 WO 2012153598 A1 WO2012153598 A1 WO 2012153598A1 JP 2012060052 W JP2012060052 W JP 2012060052W WO 2012153598 A1 WO2012153598 A1 WO 2012153598A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- cell module
- frameless solar
- buffer member
- frameless
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/02—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
- B65D81/05—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
- B65D81/051—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using pillow-like elements filled with cushioning material, e.g. elastic foam, fabric
- B65D81/052—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using pillow-like elements filled with cushioning material, e.g. elastic foam, fabric filled with fluid, e.g. inflatable elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D81/00—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
- B65D81/02—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
- B65D81/05—Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
- B65D81/053—Corner, edge or end protectors
- B65D81/057—Protectors contacting four surfaces of the packaged article, e.g. four-sided corner protectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D85/00—Containers, packaging elements or packages, specially adapted for particular articles or materials
- B65D85/30—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure
- B65D85/48—Containers, packaging elements or packages, specially adapted for particular articles or materials for articles particularly sensitive to damage by shock or pressure for glass sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67346—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders characterized by being specially adapted for supporting a single substrate or by comprising a stack of such individual supports
Definitions
- the present invention relates to a packing structure for packing a frameless solar cell module that is not provided with a frame at an end, a packing method, and a transport method thereof.
- Patent Document 1 discloses a protective member including a cover that supports a corner portion of a frameless solar cell module and an adsorption member that is disposed between the cover and the frameless solar cell module.
- Protective members are provided at the four corners of the frameless solar cell module.
- One frameless solar cell module is supported by the four protective members.
- the protective members are stacked in the vertical direction, and the frameless solar cell module is supported by the stacked protective members.
- the frameless solar cell modules are stacked in a horizontal state at intervals in the vertical direction.
- interval of adjacent frameless solar cell modules is made more than the distance which a frameless solar cell module bends by the vibration of transport. Therefore, the frameless solar cell module is prevented from being damaged due to the vibration of transportation.
- Patent Document 1 With the conventional protective member disclosed in Patent Document 1, it is possible to prevent the frameless solar cell module from being damaged due to contact. However, there is a problem that it is difficult to reduce the interval between adjacent frameless solar cell modules because the interval between adjacent frameless solar cell modules needs to be greater than the distance at which the frameless solar cell module bends. is there.
- the present invention has been made to solve the above-described problems. Even when the interval between adjacent frameless solar cell modules is reduced, the frameless solar cell module is in contact with the frameless solar cell module during transportation. It is an object of the present invention to provide a packing structure, a packing method, and a conveying method that can suppress damage due to damage.
- a packing structure according to the present invention is a packing structure for packing a frameless solar cell module that is not provided with a frame at an end, and includes a support member that supports the frameless solar cell module, and the support member.
- a buffer member disposed on a light receiving surface of the frameless solar cell module to be supported or a back surface opposite to the light receiving surface, the buffer member including a bag body and a gas filled in the bag body; It is characterized by including.
- the weight reduction and cost reduction of a buffer member can be achieved by using the buffer member containing a bag body and the gas with which the bag body was filled.
- the bag of the cushioning member is divided into a plurality of parts.
- This configuration can suppress the escape of all the gas filled in the bag body when the hole is formed in the bag body, so that the buffer function of the buffer member can be prevented from being lost.
- the packing structure according to the present invention includes an engagement portion attached to an end portion of the buffer member, and the engagement portion is configured to engage with an end portion of the frameless solar cell module. It is characterized by.
- This configuration allows the buffer member to be attached to the frameless solar cell module.
- the packing structure according to the present invention includes an adhesive for attaching the buffer member to the frameless solar cell module.
- This configuration allows the buffer member to be attached to the frameless solar cell module.
- a concave portion is formed in the buffer member, and the convex portion of the frameless solar cell module supported by the support member is disposed in the concave portion of the buffer member. It is characterized by.
- the convex portion of the frameless solar cell module is a terminal box provided on the back surface of the frameless solar cell module.
- This configuration can suppress local application of force to the terminal box of the frameless solar cell module when the frameless solar cell module is bent.
- a packing method is a packing method for packing a frameless solar cell module in which no frame is provided at an end portion, and includes a cushioning member including a bag body and a gas filled in the bag body, A step of attaching to a light receiving surface of a frameless solar cell module or a back surface opposite to the light receiving surface; and a step of supporting the frameless solar cell module to which the buffer member is attached by a support member. To do.
- This configuration can prevent the frameless solar cell module from being bent by the buffer member when the packed frameless solar cell module is transported. For this reason, even when the space
- the transport method according to the present invention is characterized in that the frameless solar cell module is packed and transported using the packaging structure according to any one of the above.
- This configuration can prevent the frameless solar cell module from being bent by the buffer member when the packed frameless solar cell module is transported. For this reason, even when the space
- the frameless solar cell module contacts when the frameless solar cell module is transported even when the interval between adjacent frameless solar cell modules is reduced. Damage can be suppressed.
- FIG. 1 is a perspective view showing a state in which a frameless solar cell module is packed using the packing structure according to Embodiment 1 of the present invention.
- FIG. 2 is a perspective view of the frameless solar cell module supported by the packaging structure shown in FIG. 1 as viewed from the back side.
- FIG. 3A is a perspective view of the supporting member of the packaging structure shown in FIG. 1 as viewed obliquely from above.
- FIG. 3B is a perspective view of the supporting member of the packaging structure shown in FIG. 1 as viewed obliquely from below.
- FIG. 4 is a perspective view showing a buffer member of the packaging structure shown in FIG.
- FIG. 5 is a cross-sectional view taken along the line AA in FIG. FIG.
- FIG. 6 is a cross-sectional view showing the vicinity of the second bag portion of the packing structure shown in FIG.
- FIG. 7A is a view for explaining a frameless solar cell module packaging method using the packaging structure according to Embodiment 1 of the present invention, in which a buffer member is attached to the frameless solar cell module. It is the perspective view which showed.
- FIG. 7B is a view for explaining a frameless solar cell module packaging method using the packaging structure according to Embodiment 1 of the present invention, and is supported by the frameless solar cell module to which the buffer member is attached. It is the perspective view which showed the state in which the member was attached.
- FIG. 7A is a view for explaining a frameless solar cell module packaging method using the packaging structure according to Embodiment 1 of the present invention, in which a buffer member is attached to the frameless solar cell module. It is the perspective view which showed the state in which the member was attached.
- FIG. 7C is a diagram for explaining a packaging method of the frameless solar cell module using the packaging structure according to Embodiment 1 of the present invention, in which the first frameless solar cell module is placed on the pallet. It is the perspective view which showed the state aligned.
- FIG. 7D is a diagram for explaining a packaging method of the frameless solar cell module using the packaging structure according to Embodiment 1 of the present invention, and is for supporting the first frameless solar cell module. It is the perspective view which showed the state in which the support member of the step was attached on the pallet.
- FIG. 7E is a view for explaining a packaging method of the frameless solar cell module using the packaging structure according to Embodiment 1 of the present invention, in which the second frameless solar cell module is placed on the pallet.
- FIG. 8 is a perspective view showing a buffer member according to Modification 1 of Embodiment 1 of the present invention.
- FIG. 9 is a perspective view showing a buffer member according to Modification 2 of Embodiment 1 of the present invention.
- FIG. 10 is a perspective view showing a packaging structure according to Embodiment 2 of the present invention.
- FIG. 11 is a bottom view of the packaging structure shown in FIG. 12 is a cross-sectional view taken along the line BB in FIG.
- FIG. 13 is the perspective view which showed the state which packed the frameless solar cell module using the packing structure which concerns on Embodiment 3 of this invention.
- FIG. 14 is a partially enlarged view of the packaging structure shown in FIG. FIG.
- FIG. 15A is a diagram for explaining a packaging method of a frameless solar cell module using the packaging structure according to Embodiment 3 of the present invention, and the first frameless solar cell module is inserted. It is the perspective view which showed the state at the time.
- FIG. 15B is a diagram for explaining a packaging method of a frameless solar cell module using the packaging structure according to Embodiment 3 of the present invention, in which the first frameless solar cell module is supported by a support member. It is the perspective view which showed the state supported.
- FIG. 15C is a diagram for explaining a packaging method of the frameless solar cell module using the packaging structure according to Embodiment 3 of the present invention, and the second frameless solar cell module is inserted. It is the perspective view which showed the state at the time.
- FIG. 15B is a diagram for explaining a packaging method of a frameless solar cell module using the packaging structure according to Embodiment 3 of the present invention, in which the first frameless solar cell module is supported by a support member. It is
- FIG. 16 is a perspective view showing a state in which a frameless solar cell module is packed using the packing structure according to Embodiment 4 of the present invention.
- 17 is a partially enlarged view of the packaging structure shown in FIG.
- FIG. 18A is a diagram for explaining a packaging method of a frameless solar cell module using the packaging structure according to Embodiment 4 of the present invention, and the first frameless solar cell module is inserted. It is the perspective view which showed the state at the time.
- FIG. 18B is a view for explaining a frameless solar cell module packaging method using the packaging structure according to Embodiment 4 of the present invention, in which the first frameless solar cell module is supported by a support member. It is the perspective view which showed the state supported.
- FIG. 18C is a view for explaining a frameless solar cell module packaging method using the packaging structure according to Embodiment 4 of the present invention, in which the second frameless solar cell module is inserted. It is the perspective view which showed the state at the time.
- FIG. 1 is a perspective view showing a state in which a frameless solar cell module is packed using the packing structure according to Embodiment 1 of the present invention. With reference to FIG. 1, the outline of the packing structure 1 which concerns on Embodiment 1 is demonstrated.
- the packing structure 1 is disposed on a support member 2 that supports a frameless solar cell module 50 that is not provided with a frame at an end, and a back surface 50b opposite to the light receiving surface 50a of the frameless solar cell module 50. And a buffer member 3.
- the packing structure 1 stacks and packs the frameless solar cell modules 50 in a horizontal state.
- the four support members 2 are attached to the surface of the pallet 60.
- the four support members 2 are positioned with respect to the pallet 60.
- the four support members 2 support the four corners of the rectangular frameless solar cell module 50, respectively.
- a plurality of (9 in the example of FIG. 1) support members 2 are stacked in the vertical direction Z on the four support members 2 attached to the surface of the pallet 60.
- a single frameless solar cell module 50 is supported by the four support members 2 at each stage. That is, in the example of FIG. 1, ten frameless solar cell modules 50 are stacked in a horizontal state on the pallet 60.
- the buffer member 3 is disposed between adjacent frameless solar cell modules 50.
- FIG. 2 is a perspective view of the frameless solar cell module supported by the packaging structure shown in FIG. 1 as viewed from the back side. With reference to FIG. 2, the frameless solar cell module 50 supported by the packaging structure 1 according to Embodiment 1 will be described.
- the frameless solar cell module 50 is formed in a rectangular shape when seen in a plan view.
- a photovoltaic element (cell) is provided on a glass plate on the back surface side, and a glass plate on the front surface (light receiving surface) side is provided on the photovoltaic device.
- the terminal box 51 for taking out the electric power generated with the photovoltaic element is provided in the back surface 50b of the frameless solar cell module 50.
- the terminal box 51 corresponds to the “convex portion” of the frameless solar cell module in the present invention.
- FIG. 3A is a perspective view of the support member of the packaging structure shown in FIG. 1 as viewed from diagonally above
- FIG. 3B is a perspective view of the support member of the packaging structure shown in FIG. 1 as viewed from diagonally below. is there.
- FIG. 3A and FIG. 3B the structure of the supporting member 2 of the packing structure 1 which concerns on Embodiment 1 is demonstrated.
- the support member 2 includes a base portion 21, a support portion 22, a pressing portion 23, a fitting convex portion 24 (see FIG. 3A), and a fitting concave portion 25 (see FIG. 3B).
- the support member 2 is integrally formed of a resin such as PP (polypropylene) or ABS (acrylonitrile / butadiene / styrene copolymer).
- the base portion 21 is configured to be stacked in the vertical direction Z.
- the base portion 21 is formed in an L shape when seen in a plan view.
- the base portion 21 is configured to be disposed outside the corner portion of the frameless solar cell module 50 to be packed.
- the support portion 22 is formed so as to protrude in the horizontal direction from the side surface of the base portion 21. Specifically, the support portion 22 is formed on the inner surface of the L-shaped base portion 21 and is configured to support the frameless solar cell module 50 to be packed in a horizontal state.
- the pressing portion 23 is formed above the support portion 22 in order to sandwich the frameless solar cell module 50 with the support portion 22.
- the pressing portion 23 is formed so as to protrude in the horizontal direction from the inner surface of the L-shaped base portion 21.
- the support part 22 and the pressing part 23 are provided in the central part in the vertical direction Z of the base part 21.
- the support part 22 and the pressing part 23 are formed in a rectangular shape when seen in a plan view.
- the support portion 22 and the pressing portion 23 may be formed in a triangular shape or a circular arc shape when seen in a plan view. Further, the shapes of the support part 22 and the pressing part 23 in plan view may be different.
- a plurality of fitting protrusions 24 are provided on the upper end surface of the base portion 21 (two in FIG. 3A).
- the fitting convex part 24 is comprised so that the fitting recessed part 25 of the support member 2 on one adjacent may be fitted.
- a plurality of fitting recesses 25 are provided on the lower end surface of the base portion 21 (two in FIG. 3B).
- the fitting recess 25 is configured to fit with the fitting protrusion 24 of the adjacent lower support member 2.
- the fitting convex part 24 and the fitting concave part 25 are provided for attaching the adjacent supporting members 2 to each other when the supporting members 2 are stacked in the vertical direction Z.
- FIG. 4 is a perspective view showing a buffer member of the packaging structure shown in FIG. With reference to FIG. 4, the structure of the buffer member 3 of the packing structure 1 according to the first embodiment will be described.
- the buffer member 3 includes a bag body 31 divided into a plurality of pieces and a gas 32 filled in the bag body 31. That is, the buffer member 3 is an airbag.
- the bag body 31 is divided into a matrix shape (matrix shape) when seen in a plan view.
- the bag body 31 includes a plurality of first bag portions 33 and one second bag portion 34.
- the first bag portion 33 has a thickness (length in the vertical direction Z) T1 (see FIG. 5), and the second bag portion 34 has a thickness T2 (see FIG. 6) smaller than the thickness T1.
- the 2nd bag part 34 is arrange
- the buffer member 3 is formed with a recess 35 in a region corresponding to the terminal box 51 of the frameless solar cell module 50 supported by the support member 2.
- the first bag portion 33 and the second bag portion 34 are each independently filled with a gas 32. Therefore, for example, even when a hole is formed in any of the first bag portions 33 and the gas 32 of the first bag portion 33 in which the holes are formed has escaped, the other first bag portions 33 and second bags Since the gas 32 of the part 34 does not escape, it is possible to suppress the buffer function of the buffer member 3 from being lost.
- the first bag portion 33 and the second bag portion 34 are set to substantially the same air pressure.
- the bag body 31 is formed of a film made of, for example, polyethylene, soft polyvinyl chloride, or polyvinylidene chloride.
- the gas 32 is, for example, air.
- FIG. 5 is a cross-sectional view taken along the line AA in FIG.
- FIG. 6 is a cross-sectional view showing the vicinity of the second bag portion of the packing structure shown in FIG.
- FIG. 5 and FIG. 6 the structure of the packing structure 1 according to Embodiment 1 will be described.
- the support members 2 are stacked in the vertical direction Z.
- the adjacent support members 2 are attached to each other by fitting the fitting concave portion 25 into the fitting convex portion 24.
- the corner portion of the frameless solar cell module 50 is supported by the support portion 22 of the support member 2.
- the frameless solar cell module 50 is supported by the support member 2 with the light receiving surface 50a facing upward. Therefore, the back surface 50 b of the frameless solar cell module 50 is in contact with the support portion 22 of the support member 2.
- the buffer member 3 is attached to the back surface 50 b of the frameless solar cell module 50 by the adhesive 4.
- the adhesive 4 is, for example, a double-sided tape in which an acrylic pressure-sensitive adhesive is applied to both surfaces of a base material made of a nonwoven fabric.
- the thickness T1 of the first bag portion 33 of the buffer member 3 is the interval between the adjacent frameless solar cell modules 50. Therefore, the first bag portion 33 of the buffer member 3 is in contact with the light receiving surface 50a of the next lower frameless solar cell module 50 without applying a load to the lower frameless solar cell module 50. Yes.
- the terminal box 51 (see FIG. 6) of the frameless solar cell module 50 is disposed in the recess 35 (see FIG. 6) of the buffer member 3. Thereby, it can suppress that force is locally applied to the terminal box 51 of the frameless solar cell module 50.
- the thickness T2 of the second bag portion 34 (see FIG. 6) of the buffer member 3 is substantially the same as the distance between the lower end surface of the terminal box 51 and the light receiving surface 50a of the next frameless solar cell module 50. is there. For this reason, the second bag portion 34 of the buffer member 3 is in contact with the light receiving surface 50a of the next lower frameless solar cell module 50 without applying a load to the lower frameless solar cell module 50. Yes.
- FIGS. 7A to 7E are views for explaining a method of packing a frameless solar cell module using the packing structure according to Embodiment 1 of the present invention.
- FIGS. 7A to 7E a method of packing the frameless solar cell module 50 using the packing structure 1 according to Embodiment 1 will be described.
- the buffer member 3 (see FIG. 7A) is attached to the first frameless solar cell module 50 (see FIG. 7A) using the adhesive 4 (see FIG. 5).
- the terminal box 51 (see FIG. 2) of the frameless solar cell module 50 is disposed in the recess 35 (see FIG. 4) of the buffer member 3.
- the first-stage support member 2 (see FIG. 7B) is attached to the four corners of the first frameless solar cell module 50 to which the buffer member 3 is attached. Specifically, the space between the support portion 22 and the pressing portion 23 (see FIGS. 3A and 3B) of the support member 2 is fitted into the corner portion of the frameless solar cell module 50.
- the frameless solar cell module 50 (see FIG. 7C) to which the buffer member 3 and the support member 2 are attached is aligned at a predetermined position above the pallet 60.
- the predetermined position means that the fitting recess 25 (see FIG. 3B) of the first-stage support member 2 attached to the first frameless solar cell module 50 is a protrusion 61 provided on the pallet 60. It is a position arrange
- the frameless solar cell module 50 to which the buffer member 3 and the support member 2 are attached is moved downward. Therefore, the first-stage support member 2 is placed on the surface of the pallet 60 (see FIG. 7D).
- the first-stage support member 2 is attached to the pallet 60 by fitting the fitting recess 25 of the first-stage support member 2 to the convex part 61 of the pallet 60.
- the first frameless solar cell module 50 is supported by the four support members 2 in the first stage, and the buffer member 3 is interposed between the first frameless solar cell module 50 and the surface of the pallet 60. Be placed.
- the thickness of the buffer member 3 attached to the first frameless solar cell module 50 is about half the thickness of the buffer member 3 attached to the second and subsequent frameless solar cell modules 50. That is, the thickness of the buffer member 3 attached to the first frameless solar cell module 50 is substantially the same as the distance between the back surface 50b of the first frameless solar cell module 50 and the surface of the pallet 60. .
- the buffer member 3 is attached to the second frameless solar cell module 50 using the adhesive 4.
- the terminal box 51 of the frameless solar cell module 50 is disposed in the recess 35 of the buffer member 3.
- the second-stage support member 2 is attached to the four corners of the second frameless solar cell module 50 to which the buffer member 3 is attached.
- the frameless solar cell module 50 (see FIG. 7E) to which the buffer member 3 and the support member 2 are attached is aligned at a predetermined position above the pallet 60.
- the predetermined position means that the fitting concave portion 25 of the second-stage support member 2 attached to the second frameless solar cell module 50 is connected to the fitting convex portion 24 of the first-stage support member 2. It is a position arranged in the corresponding area.
- the frameless solar cell module 50 to which the buffer member 3 and the support member 2 are attached is moved downward.
- the second-stage support member 2 is stacked on the first-stage support member 2.
- the fitting concave portion 25 of the second-stage support member 2 is fitted into the fitting convex portion 24 of the first-stage support member 2, whereby the second-stage support member 2 becomes the first-stage support member. 2 is attached.
- the second frameless solar cell module 50 is supported by the four support members 2 in the second stage, and the back surface 50b of the second frameless solar cell module 50 and the first frameless solar cell module.
- the buffer member 3 is disposed between the 50 light receiving surfaces 50a.
- the buffer member 3 is attached to the back surface 50b of the frameless solar cell module 50 supported by the support member 2, and the buffer member 3 is filled in the bag body 31 and the bag body 31. Gas 32.
- the frameless solar cell module 50 it is possible to prevent the frameless solar cell module 50 from being bent by the buffer member 3 when the frameless solar cell module 50 is transported. For this reason, even when the space
- the 1st bag part 33 and the 2nd bag part 34 showed the example respectively set to substantially the same air pressure, not only this but the deflection amount of the frameless solar cell module 50 was shown.
- the air pressure of the first bag part 33 and the second bag part 34 may be adjusted accordingly. For example, the air pressure of the first bag portion 33 and the second bag portion 34 is increased from the first bag portion 33 positioned at the edge portion of the buffer member 3 toward the first bag portion 33 positioned at the center portion of the buffer member 3. You may make it become small in order. If comprised in this way, when the frameless solar cell module 50 bends, the force applied from the frameless solar cell module 50 can be received by the whole buffer member 3.
- the example in which the two fitting convex portions 24 and the fitting concave portions 25 are formed on the support member 2 has been described.
- the number of can be any number.
- the fitting convex part 24 and the fitting recessed part 25 do not need to be formed.
- the buffer member 3 attached to the back surface 50b of the frameless solar cell module 50 showed the example which contacts the light-receiving surface 50a of the frameless solar cell module 50 one level lower, The buffer member 3 attached to the back surface 50b of the frameless solar cell module 50 may be separated from the light receiving surface 50a of the next frameless solar cell module 50.
- Embodiment 1 although the example which attaches the support member 2 to the frameless solar cell module 50 after attaching the buffer member 3 to the frameless solar cell module 50 was shown, not only this but a frameless solar cell After attaching the support member 2 to the module 50, the buffer member 3 may be attached to the frameless solar cell module 50.
- FIG. 8 is a perspective view showing a buffer member according to Modification 1 of Embodiment 1 of the present invention. With reference to FIG. 8, the buffer member 3a according to the first modification of the first embodiment will be described.
- the buffer member 3a includes a bag body 31a divided into a plurality of parts and a gas 32a filled in the bag body 31a.
- the bag body 31a is divided into stripes (stripes) when seen in a plan view. Specifically, the bag body 31a includes a plurality of first bag portions 33a and one second bag portion 34a. In the second bag portion 34a, a recess 35a is formed in a region corresponding to the terminal box 51 (see FIG. 2) of the frameless solar cell module 50 supported by the support member 2.
- the other configuration of the buffer member 3a is the same as that of the buffer member 3 described above.
- FIG. 9 is a perspective view showing a buffer member according to Modification 2 of Embodiment 1 of the present invention. With reference to FIG. 9, the buffer member 3b according to the second modification of the first embodiment will be described.
- the buffer member 3b includes an undivided bag 31b and a gas 32b filled in the bag 31b.
- a recess 35b is formed in a region corresponding to the terminal box 51 of the frameless solar cell module 50 supported by the support member 2.
- the other configuration of the buffer member 3b is the same as that of the buffer member 3 described above.
- FIG. 10 is a perspective view showing a packaging structure according to Embodiment 2 of the present invention.
- FIG. 11 is a bottom view of the packaging structure shown in FIG. 12 is a cross-sectional view taken along the line BB in FIG.
- the structure of the packing structure 1c according to Embodiment 2 will be described with reference to FIGS.
- 10 to 12 show one frameless solar cell module 50 extracted from the stacked frameless solar cell modules 50 for the sake of simplicity.
- the packing structure 1c includes a support member 2 and a buffer member 3b, and an engagement portion 5a and an engagement portion 5b that engage with an end portion of the frameless solar cell module 50.
- the engaging portion 5a and the engaging portion 5b are, for example, foamed polystyrene having a U-shaped cross section.
- Two engaging portions 5b are provided, and are respectively attached to both ends of the buffer member 3b in the short direction. And a pair of engaging part 5b is opposingly arranged in the transversal direction of the buffer member 3b. Thereby, a pair of engaging part 5b attached to the buffer member 3b clamps the frameless solar cell module 50.
- the engaging portion 5 a and the engaging portion 5 b are provided for attaching the buffer member 3 b to the frameless solar cell module 50.
- the adhesive 4 (refer FIG. 5) which attaches the buffer member 3b with respect to the frameless solar cell module 50 is not provided.
- the engaging portion 5a and the engaging portion 5b are formed of foamed polystyrene.
- the present invention is not limited to this, and the engaging portion 5a and the engaging portion 5b are formed of an airbag or cardboard. May be.
- the present invention is not limited thereto, and any of the engaging portion 5a and the engaging portion 5b is attached to the buffer member 3b. Only one of them may be attached.
- an adhesive for attaching the buffer member 3b to the frameless solar cell module 50 may be provided.
- FIG. 13 is the perspective view which showed the state which packed the frameless solar cell module using the packing structure which concerns on Embodiment 3 of this invention.
- FIG. 14 is a partially enlarged view of the packaging structure shown in FIG. With reference to FIG. 13 and FIG. 14, the structure of the packing structure 1d according to Embodiment 3 will be described. In addition, below, the description which attaches
- the packing structure 1 d includes a support member 2 d that supports the frameless solar cell module 50 and a buffer member 3 that is disposed on the back surface 50 b of the frameless solar cell module 50.
- the packing structure 1d stacks and packs the frameless solar cell modules 50 in a horizontal state.
- Two support members 2d are provided, and are configured to support both ends of the horizontal direction of the frameless solar cell module 50 in the lateral direction. That is, the support member 2d is configured to support two opposing sides of the frameless solar cell module 50. Further, the support member 2d is disposed so as to sandwich the frameless solar cell module 50 in a horizontal state from the lateral direction.
- the support member 2d is integrally formed of a resin such as PP or ABS, for example.
- the support member 2d supports the entire length of the frameless solar cell module 50 in the longitudinal direction.
- the frameless solar cell module 50 supported by the support member 2d is wrapped by the cardboard 6.
- the support member 2d (see FIG. 14) includes a base portion 21d extending in the vertical direction Z and a support portion 22d extending in the horizontal direction from the base portion 21d.
- a plurality of support portions 22d are provided in the vertical direction Z at a predetermined interval. That is, the support member 2d is formed in a comb shape when viewed from the front.
- FIGS. 15A to 15C are views for explaining a method of packing a frameless solar cell module using the packing structure according to Embodiment 3 of the present invention. With reference to FIGS. 15A to 15C, a method of packing the frameless solar cell module 50 using the packing structure 1d according to Embodiment 3 will be described.
- the buffer member 3 is attached to the first frameless solar cell module 50 (see FIG. 15A) using the adhesive 4 (see FIG. 14). At this time, the terminal box 51 (see FIG. 2) of the frameless solar cell module 50 is disposed in the recess 35 (see FIG. 4) of the buffer member 3.
- the frameless solar cell module 50 to which the buffer member 3 is attached is inserted between the pair of support members 2d.
- the frameless solar cell module 50 to which the buffer member 3 is attached is inserted between the first stage support 22d and the second stage support 22d.
- both ends in the short direction of the first frameless solar cell module 50 are respectively supported by the first-stage support portions 22d of the support member 2d.
- the thickness of the buffer member 3 attached to the first frameless solar cell module 50 is about half the thickness of the buffer member 3 attached to the second and subsequent frameless solar cell modules 50.
- the buffer member 3 is attached to the second frameless solar cell module 50 (see FIG. 15C) using the adhesive 4.
- the terminal box 51 of the frameless solar cell module 50 is disposed in the recess 35 of the buffer member 3.
- the frameless solar cell module 50 to which the buffer member 3 is attached is inserted between the pair of support members 2d.
- the frameless solar cell module 50 to which the buffer member 3 is attached is inserted between the second stage support part 22d and the third stage support part 22d.
- the effect of the packing structure 1d according to the third embodiment is the same as that of the packing structure 1 according to the first embodiment.
- the present invention is not limited thereto, and a part of the frameless solar cell module 50 in the longitudinal direction is supported. May be supported.
- one support member 2d is arranged on one side of the frameless solar cell module 50.
- the present invention is not limited to this, and a plurality of support members 2d are arranged on one side of the frameless solar cell module 50. Support members may be arranged.
- the support member 2d supports both ends of the frameless solar cell module 50 in the short direction
- the present invention is not limited thereto, and the support member is the longitudinal length of the frameless solar cell module 50. You may make it support the both ends of a direction.
- the present invention is not limited to this, and the three sides of the frameless solar cell module 50 are the support members.
- the four sides of the frameless solar cell module 50 may be supported by a support member.
- the buffer member 3 may be attached to the light receiving surface 50a of the frameless solar cell module 50 supported by the uppermost support portion 22d of the support member 2d.
- FIG. 16 is a perspective view showing a state in which a frameless solar cell module is packed using the packing structure according to Embodiment 4 of the present invention.
- 17 is a partially enlarged view of the packaging structure shown in FIG. With reference to FIG. 16 and FIG. 17, the structure of the packing structure 1e which concerns on Embodiment 4 is demonstrated.
- subjects the same code
- the packing structure 1 e includes a support member 2 e that supports the frameless solar cell module 50 and a buffer member 3 that is disposed on the back surface 50 b of the frameless solar cell module 50.
- the packaging structure 1e is configured to package the frameless solar cell module 50 in a vertical state.
- Two support members 2e are provided, and support both ends of the frameless solar cell module 50 in the short-side direction in a vertical state. Further, the support member 2e is arranged so as to sandwich the frameless solar cell module 50 in a vertical state from the vertical direction.
- the support member 2e is integrally formed of a resin such as PP or ABS, for example.
- the support member 2e is disposed over the entire length in the longitudinal direction of the frameless solar cell module 50.
- the frameless solar cell module 50 supported by the support member 2 e is wrapped with the cardboard 6.
- the support member 2e (see FIG. 17) has a plate-like base portion 21e and a convex portion 22e extending in the vertical direction. A plurality of convex portions 22e are provided at a predetermined interval, and a groove-like portion 23e is formed by a pair of adjacent convex portions 22e.
- the support member 2e supports the frameless solar cell module 50 by inserting the end portion in the short direction of the frameless solar cell module 50 into the groove-like portion 23e.
- FIGS. 18A to 18C are views for explaining a method of packing a frameless solar cell module using the packing structure according to Embodiment 4 of the present invention. With reference to FIGS. 18A to 18C, a method of packing the frameless solar cell module 50 using the packing structure 1e according to Embodiment 4 will be described.
- the buffer member 3 is attached to the first frameless solar cell module 50 (see FIG. 18A) using the adhesive 4 (see FIG. 17).
- the terminal box 51 (see FIG. 2) of the frameless solar cell module 50 is disposed in the recess 35 (see FIG. 4) of the buffer member 3.
- the frameless solar cell module 50 to which the buffer member 3 is attached is inserted into the groove portion 23e of the support member 2e.
- the end of the first frameless solar cell module 50 in the short direction is supported by the support member 2e.
- the buffer member 3 is attached to the second frameless solar cell module 50 (see FIG. 18C) using the adhesive 4.
- the terminal box 51 of the frameless solar cell module 50 is disposed in the recess 35 of the buffer member 3.
- the frameless solar cell module 50 to which the buffer member 3 is attached is inserted into the groove portion 23e of the support member 2e. Thereby, the edge part of the transversal direction of the 2nd frameless solar cell module 50 is supported by the supporting member 2e.
- the effect of the packing structure 1e according to the fourth embodiment is the same as that of the packing structure 1 according to the first embodiment.
- the support member 2e is disposed over the entire length in the longitudinal direction of the frameless solar cell module 50 .
- the support member 2e is not limited thereto, and is supported by a part in the longitudinal direction of the frameless solar cell module 50. Members may be arranged.
- the buffer member 3 may be provided between the frameless solar cell module 50 and the cardboard 6.
- the upper support member 2e is arranged last.
- the present invention is not limited thereto, and the frameless solar cell module 50 is inserted between the pair of support members 2e. May be.
- the present invention is not limited to this, and the recess may not be formed in the buffer member.
- the buffer member is attached to the back surface 50b of the frameless solar cell module 50.
- the present invention is not limited to this, and the light receiving surface 50a of the frameless solar cell module 50 is provided.
- a buffer member may be attached.
- the buffer member is attached to the frameless solar cell module 50 by the adhesive or the engaging portion.
- the present invention is not limited to this, and the buffer member is the frameless solar cell.
- the battery module 50 may not be attached.
- a buffer member may be inserted between the frameless solar cell modules 50.
- the buffer member may be configured to be reusable. Specifically, the buffer member may be configured so that gas can be repeatedly filled and discharged from the bag body.
- the buffer member 3b In the second embodiment, the example in which the buffer member 3b is provided has been described. However, the present invention is not limited thereto, and the buffer member 3 or the buffer member 3a may be provided. Similarly, in the third embodiment and the fourth embodiment, the example in which the buffer member 3 is provided has been described. However, the present invention is not limited thereto, and the buffer member 3a or the buffer member 3b may be provided.
- the present invention can be suitably used as a packing structure for packing a frameless solar cell module, a packing method, and a conveying method thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Buffer Packaging (AREA)
- Packaging Frangible Articles (AREA)
- Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)
Abstract
梱包構造体(1)は、端部にフレームが設けられていないフレームレス太陽電池モジュール(50)を梱包する構造体である。梱包構造体(1)は、フレームレス太陽電池モジュール(50)を支持する支持部材(2)と、支持部材(2)に支持されるフレームレス太陽電池モジュール(50)の裏面(50b)に配置される緩衝部材(3)とを備える。緩衝部材(3)は、袋体(31)と、袋体(31)に充填された気体(32)とを含んで構成される。
Description
本発明は、端部にフレームが設けられていないフレームレス太陽電池モジュールを梱包する梱包構造体、梱包方法、およびその搬送方法に関する。
従来、フレームレス太陽電池モジュールを水平な状態で積み重ねて梱包する梱包構造体が知られている。
例えば、特許文献1には、フレームレス太陽電池モジュールの角部を支持するカバーと、カバーとフレームレス太陽電池モジュールとの間に配置される吸着部材とを備える保護部材が開示されている。
保護部材は、フレームレス太陽電池モジュールの4つの角部に設けられている。そして、4つの保護部材により、1枚のフレームレス太陽電池モジュールが支持されている。また、保護部材は垂直方向に積み重ねられており、積み重ねられる保護部材によりフレームレス太陽電池モジュールが支持されている。
これにより、フレームレス太陽電池モジュールが水平な状態で垂直方向に間隔を隔てて積み重ねられている。ここで、隣接するフレームレス太陽電池モジュールの間隔は、輸送の振動によりフレームレス太陽電池モジュールが撓む距離以上にされている。したがって、輸送の振動によりフレームレス太陽電池モジュールが接触して破損することが抑制されている。
特許文献1に開示された従来の保護部材では、フレームレス太陽電池モジュールが接触して破損することを抑制することは可能である。しかしながら、隣接するフレームレス太陽電池モジュールの間隔をフレームレス太陽電池モジュールが撓む距離以上にする必要があるので、隣接するフレームレス太陽電池モジュールの間隔を小さくすることが困難であるという問題点がある。
本発明は、上記の課題を解決するためになされたものであり、隣接するフレームレス太陽電池モジュールの間隔を小さくした場合にも、フレームレス太陽電池モジュールの搬送時にフレームレス太陽電池モジュールが接触して破損するのを抑制することが可能な梱包構造体、梱包方法および搬送方法を提供することを目的とする。
本発明に係る梱包構造体は、端部にフレームが設けられていないフレームレス太陽電池モジュールを梱包する梱包構造体であって、前記フレームレス太陽電池モジュールを支持する支持部材と、前記支持部材により支持される前記フレームレス太陽電池モジュールの受光面または前記受光面とは反対側の裏面に配置される緩衝部材とを備え、前記緩衝部材は、袋体と、前記袋体に充填された気体とを含むことを特徴とする。
この構成によって、フレームレス太陽電池モジュールの搬送時に、緩衝部材により、フレームレス太陽電池モジュールが撓むのを抑制することができる。このため、隣接するフレームレス太陽電池モジュールの間隔を小さくした場合にも、隣接するフレームレス太陽電池モジュールが接触して破損することを抑制することができる。また、袋体と、袋体に充填された気体とを含む緩衝部材を用いることによって、緩衝部材の軽量化および低コスト化を図ることができる。
本発明に係る梱包構造体では、前記緩衝部材の前記袋体は、複数に分割されていることを特徴とする。
この構成により、袋体に穴が形成された場合に、袋体に充填された気体が全て抜けるのを抑制することができるので、緩衝部材の緩衝機能が失われるのを抑制することができる。
本発明に係る梱包構造体では、前記緩衝部材の端部に取り付けられた係合部を備え、前記係合部は、前記フレームレス太陽電池モジュールの端部と係合する構成とされていることを特徴とする。
この構成により、緩衝部材をフレームレス太陽電池モジュールに取り付けることができる。
本発明に係る梱包構造体では、前記緩衝部材を前記フレームレス太陽電池モジュールに貼り付ける接着剤を備えることを特徴とする。
この構成により、緩衝部材をフレームレス太陽電池モジュールに取り付けることができる。
本発明に係る梱包構造体では、前記緩衝部材には、凹部が形成され、前記緩衝部材の前記凹部には、前記支持部材により支持される前記フレームレス太陽電池モジュールの凸部が配置されることを特徴とする。
この構成により、フレームレス太陽電池モジュールが撓んだ場合に、フレームレス太陽電池モジュールの凸部に局所的に力が加わるのを抑制することができる。
本発明に係る梱包構造体では、前記フレームレス太陽電池モジュールの前記凸部は、前記フレームレス太陽電池モジュールの前記裏面に設けられた端子ボックスであることを特徴とする。
この構成により、フレームレス太陽電池モジュールが撓んだ場合に、フレームレス太陽電池モジュールの端子ボックスに局所的に力が加わるのを抑制することができる。
本発明に係る梱包方法は、端部にフレームが設けられていないフレームレス太陽電池モジュールを梱包する梱包方法であって、袋体と前記袋体に充填された気体とを含む緩衝部材を、前記フレームレス太陽電池モジュールの受光面または前記受光面とは反対側の裏面に取り付ける工程と、前記緩衝部材が取り付けられた前記フレームレス太陽電池モジュールを支持部材により支持させる工程とを備えることを特徴とする。
この構成によって、梱包されたフレームレス太陽電池モジュールの搬送時に、緩衝部材により、フレームレス太陽電池モジュールが撓むのを抑制することができる。このため、隣接するフレームレス太陽電池モジュールの間隔を小さくした場合にも、隣接するフレームレス太陽電池モジュールが接触して破損することを抑制することができる。また、袋体と、袋体に充填された気体とを含む緩衝部材を用いることによって、緩衝部材の軽量化および低コスト化を図ることができる。
本発明に係る搬送方法は、上記のいずれか一つに記載の梱包構造体を用いてフレームレス太陽電池モジュールを梱包して搬送することを特徴とする。
この構成によって、梱包されたフレームレス太陽電池モジュールの搬送時に、緩衝部材により、フレームレス太陽電池モジュールが撓むのを抑制することができる。このため、隣接するフレームレス太陽電池モジュールの間隔を小さくした場合にも、隣接するフレームレス太陽電池モジュールが接触して破損することを抑制することができる。また、袋体と、袋体に充填された気体とを含む緩衝部材を用いることによって、緩衝部材の軽量化および低コスト化を図ることができる。
本発明に係る梱包構造体、梱包方法、および搬送方法によれば、隣接するフレームレス太陽電池モジュールの間隔を小さくした場合にも、フレームレス太陽電池モジュールの搬送時にフレームレス太陽電池モジュールが接触して破損することを抑制することができる。
以下、本発明の実施の形態について図面を参照して説明する。
<実施の形態1>
図1は、本発明の実施の形態1に係る梱包構造体を用いてフレームレス太陽電池モジュールを梱包した状態を示した斜視図である。図1を参照して、実施の形態1に係る梱包構造体1の概略について説明する。
図1は、本発明の実施の形態1に係る梱包構造体を用いてフレームレス太陽電池モジュールを梱包した状態を示した斜視図である。図1を参照して、実施の形態1に係る梱包構造体1の概略について説明する。
梱包構造体1は、端部にフレームが設けられていないフレームレス太陽電池モジュール50を支持する支持部材2と、フレームレス太陽電池モジュール50の受光面50aとは反対側の裏面50bに配置される緩衝部材3とを備えている。梱包構造体1は、フレームレス太陽電池モジュール50を水平な状態で積み重ねて梱包する。
支持部材2は、パレット60の表面に4個取り付けられている。この4個の支持部材2は、パレット60に対して位置決めされている。そして、4個の支持部材2は、それぞれ、矩形状のフレームレス太陽電池モジュール50の4つの角部を支持している。
また、パレット60の表面に取り付けられた4個の支持部材2には、垂直方向Zに複数(図1の例では、9個)の支持部材2が積み重ねられている。そして、各段の4個の支持部材2により、1枚のフレームレス太陽電池モジュール50が支持されている。すなわち、図1の例では、パレット60上に、10枚のフレームレス太陽電池モジュール50が水平な状態で積み重ねられている。
緩衝部材3は、隣接するフレームレス太陽電池モジュール50の間に配置されている。
図2は、図1に示した梱包構造体により支持されるフレームレス太陽電池モジュールを裏面側から見た斜視図である。図2を参照して、実施の形態1に係る梱包構造体1により支持されるフレームレス太陽電池モジュール50について説明する。
フレームレス太陽電池モジュール50は、平面的に見て矩形状に形成されている。フレームレス太陽電池モジュール50では、裏面側のガラス板の上に光起電力素子(セル)が設けられ、光起電力素子の上に表面(受光面)側のガラス板が設けられている。
フレームレス太陽電池モジュール50の裏面50bには、光起電力素子で発電した電力を取り出すための端子ボックス51が設けられている。なお、端子ボックス51は、本発明における、フレームレス太陽電池モジュールの「凸部」に相当する。
図3Aは、図1に示した梱包構造体の支持部材を斜め上方から見た斜視図であり、図3Bは、図1に示した梱包構造体の支持部材を斜め下方から見た斜視図である。図3Aおよび図3Bを参照して、実施の形態1に係る梱包構造体1の支持部材2の構造について説明する。
支持部材2は、基体部21と、支持部22と、押さえ部23と、嵌合凸部24(図3A参照)と、嵌合凹部25(図3B参照)とを含んでいる。支持部材2は、たとえば、PP(ポリプロピレン)やABS(アクリロニトリル・ブタジエン・スチレン共重合体)などの樹脂により一体的に形成されている。
基体部21は、垂直方向Zに積み重ねられるように構成されている。基体部21は、平面的に見てL字状に形成されている。基体部21は、梱包されるフレームレス太陽電池モジュール50の角部の外側に配置されるように構成されている。
支持部22は、基体部21の側面から水平方向に突出するように形成されている。具体的には、支持部22は、L字状の基体部21の内側面に形成されており、梱包されるフレームレス太陽電池モジュール50を水平な状態で支持するように構成されている。
押さえ部23は、フレームレス太陽電池モジュール50を支持部22と挟持するために支持部22の上方に形成されている。押さえ部23は、L字状の基体部21の内側面から水平方向に突出するように形成されている。
支持部22および押さえ部23は、基体部21の垂直方向Zにおける中央部に設けられている。支持部22および押さえ部23は、平面的に見て矩形状に形成されている。なお、支持部22および押さえ部23は、平面的に見て、三角形状に形成されていてもよいし、円弧状に形成されていてもよい。また、支持部22および押さえ部23の平面視の形状が異なっていてもよい。
嵌合凸部24は、基体部21の上端面に複数(図3Aでは、2個)設けられている。嵌合凸部24は、隣接する1つ上の支持部材2の嵌合凹部25と嵌合するように構成されている。
嵌合凹部25は、基体部21の下端面に複数(図3Bでは、2個)設けられている。嵌合凹部25は、隣接する1つ下の支持部材2の嵌合凸部24と嵌合するように構成されている。
すなわち、嵌合凸部24および嵌合凹部25は、支持部材2が垂直方向Zに積み重ねられるときに、隣接する支持部材2同士を取り付けるために設けられている。
図4は、図1に示した梱包構造体の緩衝部材を示した斜視図である。図4を参照して、実施の形態1に係る梱包構造体1の緩衝部材3の構造について説明する。
緩衝部材3は、複数に分割された袋体31と、袋体31の内部に充填された気体32とを含んでいる。すなわち、緩衝部材3は、エアバッグである。
袋体31は、平面的に見てマトリクス状(行列状)に分割されている。具体的には、袋体31は、複数の第1袋部33と、1個の第2袋部34とを含んでいる。第1袋部33は、厚み(垂直方向Zの長さ)T1(図5参照)を有し、第2袋部34は、厚みT1よりも小さい厚みT2(図6参照)を有する。第2袋部34は、支持部材2により支持されるフレームレス太陽電池モジュール50の端子ボックス51(図2参照)と対応する領域に配置されている。これにより、緩衝部材3には、支持部材2により支持されるフレームレス太陽電池モジュール50の端子ボックス51と対応する領域に凹部35が形成されている。
第1袋部33および第2袋部34には、それぞれ、独立して気体32が充填されている。したがって、たとえば、第1袋部33のいずれかに穴が形成され、その穴が形成された第1袋部33の気体32が抜けた場合にも、その他の第1袋部33および第2袋部34の気体32が抜けないので、緩衝部材3の緩衝機能が失われるのを抑制することができる。
第1袋部33および第2袋部34は、それぞれ、実質的に同じ空気圧に設定されている。袋体31は、たとえば、ポリエチレン、軟質ポリ塩化ビニル、または、ポリ塩化ビニリデンなどからなるフィルムにより形成されている。気体32は、たとえば、空気である。
図5は、図1のA-A断面図である。図6は、図1に示した梱包構造体の第2袋部近傍を示した断面図である。図5および図6を参照して、実施の形態1に係る梱包構造体1の構造について説明する。
梱包構造体1では、支持部材2が垂直方向Zに積み重ねられている。なお、隣接する支持部材2同士は、嵌合凸部24に嵌合凹部25が嵌合されることにより取り付けられている。
支持部材2の支持部22により、フレームレス太陽電池モジュール50の角部が支持されている。なお、フレームレス太陽電池モジュール50は、受光面50aが上を向く状態で支持部材2に支持されている。したがって、フレームレス太陽電池モジュール50の裏面50bが支持部材2の支持部22と接触している。
また、フレームレス太陽電池モジュール50の裏面50bには、接着剤4により緩衝部材3が取り付けられている。接着剤4は、たとえば、不織布からなる基材の両面にアクリル系粘着剤が塗布された両面テープである。
緩衝部材3の第1袋部33の厚みT1は、ほぼ隣接するフレームレス太陽電池モジュール50の間隔である。このため、緩衝部材3の第1袋部33は、1つ下のフレームレス太陽電池モジュール50にほぼ負荷を与えることなく、1つ下のフレームレス太陽電池モジュール50の受光面50aに接触している。
また、緩衝部材3の凹部35(図6参照)には、フレームレス太陽電池モジュール50の端子ボックス51(図6参照)が配置されている。これにより、フレームレス太陽電池モジュール50の端子ボックス51に局所的に力が加わるのを抑制することができる。
緩衝部材3の第2袋部34(図6参照)の厚みT2は、端子ボックス51の下端面と、1つ下のフレームレス太陽電池モジュール50の受光面50aとの間の距離とほぼ同じである。このため、緩衝部材3の第2袋部34は、1つ下のフレームレス太陽電池モジュール50にほぼ負荷を与えることなく、1つ下のフレームレス太陽電池モジュール50の受光面50aに接触している。
図7A~図7Eは、本発明の実施の形態1に係る梱包構造体を用いたフレームレス太陽電池モジュールの梱包方法を説明するための図である。図7A~図7Eを参照して、実施の形態1に係る梱包構造体1を用いたフレームレス太陽電池モジュール50の梱包方法について説明する。
まず、1枚目のフレームレス太陽電池モジュール50(図7A参照)に緩衝部材3(図7A参照)が接着剤4(図5参照)を用いて取り付けられる。このとき、フレームレス太陽電池モジュール50の端子ボックス51(図2参照)が緩衝部材3の凹部35(図4参照)に配置される。
そして、緩衝部材3が取り付けられた1枚目のフレームレス太陽電池モジュール50の4つの角部に1段目の支持部材2(図7B参照)が取り付けられる。具体的には、支持部材2の支持部22および押さえ部23(図3Aおよび図3B参照)の間が、フレームレス太陽電池モジュール50の角部に嵌め合わされる。
次に、緩衝部材3および支持部材2が取り付けられたフレームレス太陽電池モジュール50(図7C参照)が、パレット60の上方において所定の位置に位置合わせされる。なお、所定の位置とは、1枚目のフレームレス太陽電池モジュール50に取り付けられた1段目の支持部材2の嵌合凹部25(図3B参照)が、パレット60に設けられた凸部61と対応する領域に配置される位置である。
そして、緩衝部材3および支持部材2が取り付けられたフレームレス太陽電池モジュール50が下方向に移動される。このため、1段目の支持部材2がパレット60(図7D参照)の表面に載置される。
このとき、1段目の支持部材2の嵌合凹部25がパレット60の凸部61に嵌め合わされることにより、1段目の支持部材2がパレット60に取り付けられる。また、1段目の4個の支持部材2により1枚目のフレームレス太陽電池モジュール50が支持され、1枚目のフレームレス太陽電池モジュール50とパレット60の表面との間に緩衝部材3が配置される。
なお、1枚目のフレームレス太陽電池モジュール50に取り付けられる緩衝部材3の厚みは、2枚目以降のフレームレス太陽電池モジュール50に取り付けられる緩衝部材3の厚みの約半分である。すなわち、1枚目のフレームレス太陽電池モジュール50に取り付けられる緩衝部材3の厚みは、1枚目のフレームレス太陽電池モジュール50の裏面50bとパレット60の表面との間の距離とほぼ同じである。
次に、2枚目のフレームレス太陽電池モジュール50に緩衝部材3が接着剤4を用いて取り付けられる。このとき、フレームレス太陽電池モジュール50の端子ボックス51が緩衝部材3の凹部35に配置される。
そして、緩衝部材3が取り付けられた2枚目のフレームレス太陽電池モジュール50の4つの角部に2段目の支持部材2が取り付けられる。
次に、緩衝部材3および支持部材2が取り付けられたフレームレス太陽電池モジュール50(図7E参照)が、パレット60の上方において所定の位置に位置合わせされる。なお、所定の位置とは、2枚目のフレームレス太陽電池モジュール50に取り付けられた2段目の支持部材2の嵌合凹部25が、1段目の支持部材2の嵌合凸部24と対応する領域に配置される位置である。
そして、緩衝部材3および支持部材2が取り付けられたフレームレス太陽電池モジュール50が下方向に移動される。このため、2段目の支持部材2が1段目の支持部材2に積み重ねられる。
このとき、2段目の支持部材2の嵌合凹部25が1段目の支持部材2の嵌合凸部24に嵌め合わされることにより、2段目の支持部材2が1段目の支持部材2に取り付けられる。また、2段目の4個の支持部材2により2枚目のフレームレス太陽電池モジュール50が支持され、2枚目のフレームレス太陽電池モジュール50の裏面50bと1枚目のフレームレス太陽電池モジュール50の受光面50aとの間に緩衝部材3が配置される。
その後、同様の作業が繰り返し行われることにより、複数段の支持部材2が積み重ねられ、各段の4個の支持部材2により1枚のフレームレス太陽電池モジュール50(図1参照)が支持される。そして、隣接するフレームレス太陽電池モジュール50の間に緩衝部材3が配置される。その後、梱包構造体1を用いて梱包されたフレームレス太陽電池モジュール50が搬送される。
実施の形態1では、上記のように、支持部材2に支持されるフレームレス太陽電池モジュール50の裏面50bに緩衝部材3を取り付け、緩衝部材3は、袋体31と、袋体31に充填された気体32とを含んでいる。
このように構成することによって、フレームレス太陽電池モジュール50の搬送時に、緩衝部材3により、フレームレス太陽電池モジュール50が撓むのを抑制することができる。このため、隣接するフレームレス太陽電池モジュール50の間隔を小さくした場合にも、隣接するフレームレス太陽電池モジュール50が接触して破損するのを抑制することができる。その結果、隣接するフレームレス太陽電池モジュール50が接触して破損するのを抑制しながら、隣接するフレームレス太陽電池モジュール50の間隔を小さくして、フレームレス太陽電池モジュール50の搬送効率の向上を図ることができる。また、袋体31と、袋体31に充填された気体32とを含む緩衝部材3を用いることによって、緩衝部材3の軽量化および低コスト化を図ることができる。また、フレームレス太陽電池モジュール50の運送後においては、袋体31に充填された気体32を抜くことにより、梱包構造体1の体積を低減することができる。
実施の形態1では、第1袋部33および第2袋部34は、それぞれ、実質的に同じ空気圧に設定される例を示したが、これに限らず、フレームレス太陽電池モジュール50の撓み量に応じて、第1袋部33および第2袋部34の空気圧を調整するようにしてもよい。たとえば、緩衝部材3の縁部に位置する第1袋部33から、緩衝部材3の中央部に位置する第1袋部33に向けて、第1袋部33および第2袋部34の空気圧が順に小さくなるようにしてもよい。このように構成すれば、フレームレス太陽電池モジュール50が撓んだときに、フレームレス太陽電池モジュール50から加えられる力を緩衝部材3の全体で受けることができる。
また、実施の形態1では、支持部材2に2個の嵌合凸部24および嵌合凹部25が形成される例を示したが、これに限らず、嵌合凸部24および嵌合凹部25の数はいくつであってもよい。また、隣接する支持部材2同士を取り付け可能に構成すれば、嵌合凸部24および嵌合凹部25が形成されていなくてもよい。
また、実施の形態1では、フレームレス太陽電池モジュール50の裏面50bに取り付けられた緩衝部材3が1つ下のフレームレス太陽電池モジュール50の受光面50aと接触する例を示したが、これに限らず、フレームレス太陽電池モジュール50の裏面50bに取り付けられた緩衝部材3が1つ下のフレームレス太陽電池モジュール50の受光面50aと離間するようにしてもよい。
また、実施の形態1では、フレームレス太陽電池モジュール50に緩衝部材3を取り付けた後に、フレームレス太陽電池モジュール50に支持部材2を取り付ける例を示したが、これに限らず、フレームレス太陽電池モジュール50に支持部材2を取り付けた後に、フレームレス太陽電池モジュール50に緩衝部材3を取り付けるようにしてもよい。
図8は、本発明の実施の形態1の変形例1に係る緩衝部材を示した斜視図である。図8を参照して、実施の形態1の変形例1に係る緩衝部材3aについて説明する。
緩衝部材3aは、複数に分割された袋体31aと、袋体31aの内部に充填された気体32aとを含んでいる。
袋体31aは、平面的に見てストライプ状(縞状)に分割されている。具体的には、袋体31aは、複数の第1袋部33aと、1個の第2袋部34aとを含んでいる。第2袋部34aには、支持部材2により支持されるフレームレス太陽電池モジュール50の端子ボックス51(図2参照)と対応する領域に凹部35aが形成されている。
なお、緩衝部材3aのその他の構成は、上記した緩衝部材3と同様である。
図9は、本発明の実施の形態1の変形例2に係る緩衝部材を示した斜視図である。図9を参照して、実施の形態1の変形例2に係る緩衝部材3bについて説明する。
緩衝部材3bは、分割されていない袋体31bと、袋体31bの内部に充填された気体32bとを含んでいる。
緩衝部材3bには、支持部材2により支持されるフレームレス太陽電池モジュール50の端子ボックス51と対応する領域に凹部35bが形成されている。なお、緩衝部材3bのその他の構成は、上記した緩衝部材3と同様である。
<実施の形態2>
図10は、本発明の実施の形態2に係る梱包構造体を示した斜視図である。図11は、図10に示した梱包構造体の底面図である。図12は、図10のB-B断面図である。図10~図12を参照して、実施の形態2に係る梱包構造体1cの構造について説明する。なお、以下では、実施の形態1に係る梱包構造体1と同一部分には同一符号を付して重複する説明を省略する。また、図10~図12では、説明を簡略化するために、積み重ねられるフレームレス太陽電池モジュール50のうち1枚のフレームレス太陽電池モジュール50を抜き出して示した。
図10は、本発明の実施の形態2に係る梱包構造体を示した斜視図である。図11は、図10に示した梱包構造体の底面図である。図12は、図10のB-B断面図である。図10~図12を参照して、実施の形態2に係る梱包構造体1cの構造について説明する。なお、以下では、実施の形態1に係る梱包構造体1と同一部分には同一符号を付して重複する説明を省略する。また、図10~図12では、説明を簡略化するために、積み重ねられるフレームレス太陽電池モジュール50のうち1枚のフレームレス太陽電池モジュール50を抜き出して示した。
梱包構造体1cは、支持部材2および緩衝部材3bと、フレームレス太陽電池モジュール50の端部と係合する係合部5aおよび係合部5bとを備えている。係合部5aおよび係合部5bは、たとえば、断面U字状の発泡スチロールである。
係合部5aは、2個設けられており、緩衝部材3bの長手方向の両端部にそれぞれ取り付けられている。そして、一対の係合部5aは、緩衝部材3bの長手方向において対向配置されている。これにより、緩衝部材3bに取り付けられる一対の係合部5aは、フレームレス太陽電池モジュール50を挟持する。
係合部5bは、2個設けられており、緩衝部材3bの短手方向の両端部にそれぞれ取り付けられている。そして、一対の係合部5bは、緩衝部材3bの短手方向において対向配置されている。これにより、緩衝部材3bに取り付けられる一対の係合部5bは、フレームレス太陽電池モジュール50を挟持する。
係合部5aおよび係合部5bは、緩衝部材3bをフレームレス太陽電池モジュール50に取り付けるために設けられている。なお、図12に示すように、緩衝部材3bをフレームレス太陽電池モジュール50に対して取り付ける接着剤4(図5参照)が設けられていない。
実施の形態2による梱包構造体1cのその他の構造および効果は、実施の形態1による梱包構造体1と同様である。
実施の形態2では、係合部5aおよび係合部5bが発泡スチロールにより形成される例を示したが、これに限らず、係合部5aおよび係合部5bがエアバッグや段ボールにより形成されていてもよい。
また、実施の形態2では、緩衝部材3bに係合部5aおよび係合部5bが取り付けられる例を示したが、これに限らず、緩衝部材3bに係合部5aおよび係合部5bのいずれか一方のみが取り付けられていてもよい。
また、実施の形態2において、緩衝部材3bをフレームレス太陽電池モジュール50に対して取り付ける接着剤が設けられていてもよい。
<実施の形態3>
図13は、本発明の実施の形態3に係る梱包構造体を用いてフレームレス太陽電池モジュールを梱包した状態を示した斜視図である。図14は、図13に示した梱包構造体の部分拡大図である。図13および図14を参照して、実施の形態3に係る梱包構造体1dの構造について説明する。なお、以下では、実施の形態1に係る梱包構造体1と同一部分には同一符号を付して重複する説明を省略する。
図13は、本発明の実施の形態3に係る梱包構造体を用いてフレームレス太陽電池モジュールを梱包した状態を示した斜視図である。図14は、図13に示した梱包構造体の部分拡大図である。図13および図14を参照して、実施の形態3に係る梱包構造体1dの構造について説明する。なお、以下では、実施の形態1に係る梱包構造体1と同一部分には同一符号を付して重複する説明を省略する。
梱包構造体1dは、フレームレス太陽電池モジュール50を支持する支持部材2dと、フレームレス太陽電池モジュール50の裏面50bに配置される緩衝部材3とを備えている。梱包構造体1dは、フレームレス太陽電池モジュール50を水平な状態で積み重ねて梱包する。
支持部材2dは、2個設けられており、水平な状態のフレームレス太陽電池モジュール50の短手方向の両端部をそれぞれ支持するように構成されている。すなわち、支持部材2dは、フレームレス太陽電池モジュール50の対向する2辺を支持するように構成されている。また、支持部材2dは、水平な状態のフレームレス太陽電池モジュール50を横方向から挟み込むように配置されている。
支持部材2dは、たとえば、PPやABSなどの樹脂により一体的に形成されている。支持部材2dは、フレームレス太陽電池モジュール50の長手方向の全長を支持する。支持部材2dにより支持されるフレームレス太陽電池モジュール50は、段ボール6により包まれている。
支持部材2d(図14参照)は、垂直方向Zに延びる基体部21dと、基体部21dから水平方向に延びる支持部22dとを有する。支持部22dは、垂直方向Zに所定の間隔を隔てて複数設けられている。すなわち、支持部材2dは、正面から見て櫛状に形成されている。
実施の形態3による梱包構造体1dのその他の構造は、実施の形態1による梱包構造体1と同様である。
図15A~図15Cは、本発明の実施の形態3に係る梱包構造体を用いたフレームレス太陽電池モジュールの梱包方法を説明するための図である。図15A~図15Cを参照して、実施の形態3に係る梱包構造体1dを用いたフレームレス太陽電池モジュール50の梱包方法について説明する。
まず、1枚目のフレームレス太陽電池モジュール50(図15A参照)に緩衝部材3が接着剤4(図14参照)を用いて取り付けられる。このとき、フレームレス太陽電池モジュール50の端子ボックス51(図2参照)が緩衝部材3の凹部35(図4参照)に配置される。
そして、緩衝部材3が取り付けられたフレームレス太陽電池モジュール50が一対の支持部材2dの間に挿入される。具体的には、緩衝部材3が取り付けられたフレームレス太陽電池モジュール50は、1段目の支持部22dと2段目の支持部22dとの間に挿入される。これにより、図15Bに示すように、1枚目のフレームレス太陽電池モジュール50の短手方向の両端部がそれぞれ支持部材2dの1段目の支持部22dに支持される。
なお、1枚目のフレームレス太陽電池モジュール50に取り付けられる緩衝部材3の厚みは、2枚目以降のフレームレス太陽電池モジュール50に取り付けられる緩衝部材3の厚みの約半分である。
次に、2枚目のフレームレス太陽電池モジュール50(図15C参照)に緩衝部材3が接着剤4を用いて取り付けられる。このとき、フレームレス太陽電池モジュール50の端子ボックス51が緩衝部材3の凹部35に配置される。
そして、緩衝部材3が取り付けられたフレームレス太陽電池モジュール50が一対の支持部材2dの間に挿入される。具体的には、緩衝部材3が取り付けられたフレームレス太陽電池モジュール50は、2段目の支持部22dと3段目の支持部22dとの間に挿入される。これにより、2枚目のフレームレス太陽電池モジュール50の短手方向の両端部がそれぞれ支持部材2dの2段目の支持部22dに支持される。
その後、同様の作業が繰り返し行われることにより、支持部材2dの各段の支持部22dにより1枚のフレームレス太陽電池モジュール50(図13参照)が支持される。そして、支持部材2dにより支持されるフレームレス太陽電池モジュール50が段ボール6により包まれる。その後、梱包構造体1dを用いて梱包されたフレームレス太陽電池モジュール50が搬送される。
実施の形態3による梱包構造体1dの効果は、実施の形態1による梱包構造体1と同様である。
実施の形態3では、フレームレス太陽電池モジュール50の長手方向の全長を支持部材2dが支持する例を示したが、これに限らず、フレームレス太陽電池モジュール50の長手方向の一部を支持部材が支持するようにしてもよい。
また、実施の形態3では、フレームレス太陽電池モジュール50の1辺に1個の支持部材2dが配置される例を示したが、これに限らず、フレームレス太陽電池モジュール50の1辺に複数の支持部材が配置されていてもよい。
また、実施の形態3では、支持部材2dがフレームレス太陽電池モジュール50の短手方向の両端部を支持する例を示したが、これに限らず、支持部材がフレームレス太陽電池モジュール50の長手方向の両端部を支持するようにしてもよい。
また、実施の形態3では、フレームレス太陽電池モジュール50の対向する2辺が支持部材2dにより支持される例を示したが、これに限らず、フレームレス太陽電池モジュール50の3辺が支持部材により支持されるようにしてもよいし、フレームレス太陽電池モジュール50の4辺が支持部材により支持されるようにしてもよい。
また、実施の形態3において、支持部材2dの一番上の支持部22dに支持されるフレームレス太陽電池モジュール50の受光面50aに緩衝部材3が取り付けられていてもよい。
<実施の形態4>
図16は、本発明の実施の形態4に係る梱包構造体を用いてフレームレス太陽電池モジュールを梱包した状態を示した斜視図である。図17は、図16に示した梱包構造体の部分拡大図である。図16および図17を参照して、実施の形態4に係る梱包構造体1eの構造について説明する。なお、以下では、実施の形態1に係る梱包構造体1と同一部分には同一符号を付して重複する説明を省略する。
図16は、本発明の実施の形態4に係る梱包構造体を用いてフレームレス太陽電池モジュールを梱包した状態を示した斜視図である。図17は、図16に示した梱包構造体の部分拡大図である。図16および図17を参照して、実施の形態4に係る梱包構造体1eの構造について説明する。なお、以下では、実施の形態1に係る梱包構造体1と同一部分には同一符号を付して重複する説明を省略する。
梱包構造体1eは、フレームレス太陽電池モジュール50を支持する支持部材2eと、フレームレス太陽電池モジュール50の裏面50bに配置される緩衝部材3とを備えている。梱包構造体1eは、フレームレス太陽電池モジュール50を垂直な状態で梱包するように構成されている。
支持部材2eは、2個設けられており、垂直な状態のフレームレス太陽電池モジュール50の短手方向の両端部をそれぞれ支持する。また、支持部材2eは、垂直な状態のフレームレス太陽電池モジュール50を縦方向から挟み込むように配置されている。
支持部材2eは、たとえば、PPやABSなどの樹脂により一体的に形成されている。支持部材2eは、フレームレス太陽電池モジュール50の長手方向の全長にわたって配置されている。支持部材2eにより支持されるフレームレス太陽電池モジュール50は、段ボール6により包まれている。
支持部材2e(図17参照)は、板状の基体部21eと、垂直方向に延びる凸部22eとを有する。凸部22eは所定の間隔を隔てて複数設けられており、隣接する一対の凸部22eにより溝状部23eが形成されている。
支持部材2eは、フレームレス太陽電池モジュール50の短手方向の端部が溝状部23eに挿入されることにより、フレームレス太陽電池モジュール50を支持する。
実施の形態4による梱包構造体1eのその他の構造は、実施の形態1による梱包構造体1と同様である。
図18A~図18Cは、本発明の実施の形態4に係る梱包構造体を用いたフレームレス太陽電池モジュールの梱包方法を説明するための図である。図18A~図18Cを参照して、実施の形態4に係る梱包構造体1eを用いたフレームレス太陽電池モジュール50の梱包方法について説明する。
まず、1枚目のフレームレス太陽電池モジュール50(図18A参照)に緩衝部材3が接着剤4(図17参照)を用いて取り付けられる。このとき、フレームレス太陽電池モジュール50の端子ボックス51(図2参照)が緩衝部材3の凹部35(図4参照)に配置される。
そして、緩衝部材3が取り付けられたフレームレス太陽電池モジュール50が支持部材2eの溝状部23eに挿入される。これにより、図18Bに示すように、1枚目のフレームレス太陽電池モジュール50の短手方向の端部が支持部材2eにより支持される。
次に、2枚目のフレームレス太陽電池モジュール50(図18C参照)に緩衝部材3が接着剤4を用いて取り付けられる。このとき、フレームレス太陽電池モジュール50の端子ボックス51が緩衝部材3の凹部35に配置される。
そして、緩衝部材3が取り付けられたフレームレス太陽電池モジュール50が支持部材2eの溝状部23eに挿入される。これにより、2枚目のフレームレス太陽電池モジュール50の短手方向の端部が支持部材2eにより支持される。
その後、同様の作業が繰り返し行われることにより、支持部材2eの各溝状部23eにフレームレス太陽電池モジュール50(図16参照)が挿入される。そして、フレームレス太陽電池モジュール50の上方に支持部材2eが配置され、支持部材2eにより支持されるフレームレス太陽電池モジュール50が段ボール6(図16参照)により包まれる。その後、梱包構造体1eを用いて梱包されたフレームレス太陽電池モジュール50が搬送される。
実施の形態4による梱包構造体1eの効果は、実施の形態1による梱包構造体1と同様である。
実施の形態4では、フレームレス太陽電池モジュール50の長手方向の全長にわたって支持部材2eが配置される例を示したが、これに限らず、フレームレス太陽電池モジュール50の長手方向の一部に支持部材が配置されるようにしてもよい。
また、実施の形態4において、フレームレス太陽電池モジュール50と段ボール6との間に緩衝部材3が設けられていてもよい。
また、実施の形態4では、上側の支持部材2eが最後に配置される例を示したが、これに限らず、一対の支持部材2eの間にフレームレス太陽電池モジュール50が挿入されるようにしてもよい。
なお、今回開示した実施の形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施の形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、実施の形態1~実施の形態4では、緩衝部材に凹部が形成される例を示したが、これに限らず、緩衝部材に凹部が形成されていなくてもよい。
また、実施の形態1~実施の形態4では、フレームレス太陽電池モジュール50の裏面50bに緩衝部材が取り付けられる例を示したが、これに限らず、フレームレス太陽電池モジュール50の受光面50aに緩衝部材が取り付けられていてもよい。
また、実施の形態1~実施の形態4では、接着剤または係合部により、緩衝部材がフレームレス太陽電池モジュール50に取り付けられる例を示したが、これに限らず、緩衝部材がフレームレス太陽電池モジュール50に取り付けられていなくてもよい。この場合には、フレームレス太陽電池モジュール50が支持部材に支持された後に、フレームレス太陽電池モジュール50の間に緩衝部材を挿入するようにしてもよい。
また、実施の形態1~実施の形態4において、緩衝部材を再利用可能に構成してもよい。具体的には、袋体に対して気体の充填・排出を繰り返し行えるように緩衝部材を構成してもよい。
また、実施の形態2では、緩衝部材3bが設けられる例を示したが、これに限らず、緩衝部材3または緩衝部材3aが設けられていてもよい。同様に、実施の形態3および実施の形態4では、緩衝部材3が設けられる例を示したが、これに限らず、緩衝部材3aまたは緩衝部材3bが設けられていてもよい。
この出願は、2011年5月12日に日本で出願された特願2011-107296に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
本発明は、フレームレス太陽電池モジュールを梱包する梱包構造体、梱包方法、およびその搬送方法として好適に利用可能である。
1、1c、1d、1e 梱包構造体
2、2d、2e 支持部材
3、3a、3b 緩衝部材
4 接着剤
5a、5b 係合部
31、31a、31b 袋体
32、32a、32b 気体
35、35a、35b 凹部
50 フレームレス太陽電池モジュール
50a 受光面
50b 裏面
51 端子ボックス(凸部)
2、2d、2e 支持部材
3、3a、3b 緩衝部材
4 接着剤
5a、5b 係合部
31、31a、31b 袋体
32、32a、32b 気体
35、35a、35b 凹部
50 フレームレス太陽電池モジュール
50a 受光面
50b 裏面
51 端子ボックス(凸部)
Claims (8)
- 端部にフレームが設けられていないフレームレス太陽電池モジュールを梱包する梱包構造体であって、
前記フレームレス太陽電池モジュールを支持する支持部材と、
前記支持部材により支持される前記フレームレス太陽電池モジュールの受光面または前記受光面とは反対側の裏面に配置される緩衝部材とを備え、
前記緩衝部材は、袋体と、前記袋体に充填された気体とを含むこと
を特徴とする梱包構造体。 - 請求項1に記載の梱包構造体であって、
前記緩衝部材の前記袋体は、複数に分割されていること
を特徴とする梱包構造体。 - 請求項1または請求項2に記載の梱包構造体であって、
前記緩衝部材の端部に取り付けられた係合部を備え、
前記係合部は、前記フレームレス太陽電池モジュールの端部と係合する構成とされていること
を特徴とする梱包構造体。 - 請求項1から請求項3までのいずれか一つに記載の梱包構造体であって、
前記緩衝部材を前記フレームレス太陽電池モジュールに貼り付ける接着剤を備えること
を特徴とする梱包構造体。 - 請求項1から請求項4までのいずれか一つに記載の梱包構造体であって、
前記緩衝部材には、凹部が形成され、
前記緩衝部材の前記凹部には、前記支持部材により支持される前記フレームレス太陽電池モジュールの凸部が配置されること
を特徴とする梱包構造体。 - 請求項5に記載の梱包構造体であって、
前記フレームレス太陽電池モジュールの前記凸部は、前記フレームレス太陽電池モジュールの前記裏面に設けられた端子ボックスであること
を特徴とする梱包構造体。 - 端部にフレームが設けられていないフレームレス太陽電池モジュールを梱包する梱包方法であって、
袋体と前記袋体に充填された気体とを含む緩衝部材を、前記フレームレス太陽電池モジュールの受光面または前記受光面とは反対側の裏面に取り付ける工程と、
前記緩衝部材が取り付けられた前記フレームレス太陽電池モジュールを支持部材により支持させる工程とを備えること
を特徴とする梱包方法。 - 請求項1から請求項6までのいずれか一つに記載の梱包構造体を用いてフレームレス太陽電池モジュールを梱包して搬送すること
を特徴とする搬送方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-107296 | 2011-05-12 | ||
JP2011107296A JP5253542B2 (ja) | 2011-05-12 | 2011-05-12 | 梱包構造体、梱包方法および搬送方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012153598A1 true WO2012153598A1 (ja) | 2012-11-15 |
Family
ID=47139084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/060052 WO2012153598A1 (ja) | 2011-05-12 | 2012-04-12 | 梱包構造体、梱包方法および搬送方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5253542B2 (ja) |
WO (1) | WO2012153598A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015000190A1 (zh) * | 2013-07-01 | 2015-01-08 | 深圳市华星光电技术有限公司 | 一种卡匣及搬运玻璃基板的装置 |
CN107768291A (zh) * | 2017-09-19 | 2018-03-06 | 合肥流明新能源科技有限公司 | 一种用于光伏组件输送的支架 |
CN114023686A (zh) * | 2021-11-02 | 2022-02-08 | 宿迁晶光芒光伏科技有限公司 | 一种太阳能电池板外壳自动贴附装置及其使用方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6291870B2 (ja) * | 2014-01-30 | 2018-03-14 | 大同特殊鋼株式会社 | 太陽光発電モジュール積層体 |
JP2016075339A (ja) * | 2014-10-06 | 2016-05-12 | Necプラットフォームズ株式会社 | 緩衝材及びその使用方法 |
CN105584674B (zh) * | 2016-03-15 | 2018-08-14 | 苏州腾晖光伏技术有限公司 | 一种用于光伏太阳能组件的包装箱及其包装方法 |
KR101819136B1 (ko) * | 2016-03-30 | 2018-01-16 | 인하대학교 산학협력단 | 풍력타워 모듈부재용 운반 거치대 |
CN112793925A (zh) * | 2020-12-31 | 2021-05-14 | 锋尚绿品零碳物联技术(青岛)有限公司 | 太阳能光伏组件立放包装结构及包装方法 |
CN112849746B (zh) * | 2021-04-01 | 2022-03-18 | 菏泽城建工程发展集团有限公司 | 真空玻璃运输架 |
WO2023199985A1 (ja) * | 2022-04-13 | 2023-10-19 | 凸版印刷株式会社 | 調光シートの梱包体 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3144333U (ja) * | 2008-03-21 | 2008-08-28 | 株式会社光永 | 緩衝材タイガードk |
JP2009246017A (ja) * | 2008-03-28 | 2009-10-22 | Kyocera Corp | フレームレス太陽電池モジュールの保護部材 |
JP2011037474A (ja) * | 2009-08-10 | 2011-02-24 | Sekisui Plastics Co Ltd | 太陽電池パネル用梱包材 |
-
2011
- 2011-05-12 JP JP2011107296A patent/JP5253542B2/ja not_active Expired - Fee Related
-
2012
- 2012-04-12 WO PCT/JP2012/060052 patent/WO2012153598A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3144333U (ja) * | 2008-03-21 | 2008-08-28 | 株式会社光永 | 緩衝材タイガードk |
JP2009246017A (ja) * | 2008-03-28 | 2009-10-22 | Kyocera Corp | フレームレス太陽電池モジュールの保護部材 |
JP2011037474A (ja) * | 2009-08-10 | 2011-02-24 | Sekisui Plastics Co Ltd | 太陽電池パネル用梱包材 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015000190A1 (zh) * | 2013-07-01 | 2015-01-08 | 深圳市华星光电技术有限公司 | 一种卡匣及搬运玻璃基板的装置 |
CN107768291A (zh) * | 2017-09-19 | 2018-03-06 | 合肥流明新能源科技有限公司 | 一种用于光伏组件输送的支架 |
CN114023686A (zh) * | 2021-11-02 | 2022-02-08 | 宿迁晶光芒光伏科技有限公司 | 一种太阳能电池板外壳自动贴附装置及其使用方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2012236635A (ja) | 2012-12-06 |
JP5253542B2 (ja) | 2013-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5253542B2 (ja) | 梱包構造体、梱包方法および搬送方法 | |
JP5042819B2 (ja) | 太陽電池素子の梱包方法 | |
WO2013094317A1 (ja) | 支持構造体、積載梱包具、支持基板及び梱包方法 | |
WO2012029217A1 (ja) | 包装セット | |
CN104003050A (zh) | 一种栈板及包装箱 | |
JP2013169999A (ja) | 積載梱包具及び梱包方法 | |
JP5353787B2 (ja) | ガラス板パレット、ガラス板積載方法、ガラス板梱包体、およびガラス板の取り出し方法 | |
JP2014031191A (ja) | 梱包具 | |
JP5442531B2 (ja) | ガラス板梱包用パレット | |
JP5901961B2 (ja) | 支持構造体及び梱包方法 | |
WO2012147532A1 (ja) | 梱包構造体および梱包方法 | |
JP2004269026A (ja) | 梱包方法 | |
JP2013129444A (ja) | 保持構造体 | |
TWI826818B (zh) | 玻璃板捆包體 | |
JP5063796B1 (ja) | 梱包構造体および梱包方法 | |
CN210028343U (zh) | 板状物包装盒和板状物包装盒组 | |
JP5756007B2 (ja) | 支持基板及び梱包方法 | |
JP2013131648A (ja) | 積載梱包具及び梱包方法 | |
JP2013154928A (ja) | 太陽電池モジュール積載具及び太陽電池モジュール積載ユニット | |
JP6072915B2 (ja) | 太陽電池モジュール梱包体及び太陽電池モジュールの梱包方法 | |
JP2018083641A (ja) | 太陽電池モジュールの梱包構造及びスペース部材 | |
JP2017030832A (ja) | 太陽電池モジュール梱包体及び太陽電池モジュールの梱包方法 | |
JP2013133161A (ja) | 太陽電池モジュール積載ユニット | |
CN210213231U (zh) | 缓冲包装结构 | |
JP2010155624A (ja) | 組み立て式コンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12782447 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12782447 Country of ref document: EP Kind code of ref document: A1 |