WO2012153487A1 - リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法 - Google Patents

リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法 Download PDF

Info

Publication number
WO2012153487A1
WO2012153487A1 PCT/JP2012/002902 JP2012002902W WO2012153487A1 WO 2012153487 A1 WO2012153487 A1 WO 2012153487A1 JP 2012002902 W JP2012002902 W JP 2012002902W WO 2012153487 A1 WO2012153487 A1 WO 2012153487A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
lithium ion
negative electrode
electrode active
ion secondary
Prior art date
Application number
PCT/JP2012/002902
Other languages
English (en)
French (fr)
Inventor
承澤 明
直人 安田
村瀬 仁俊
Original Assignee
株式会社豊田自動織機
国立大学法人岩手大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機, 国立大学法人岩手大学 filed Critical 株式会社豊田自動織機
Publication of WO2012153487A1 publication Critical patent/WO2012153487A1/ja
Priority to US14/072,197 priority Critical patent/US20140093779A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/24Oxygen compounds of fluorine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/02Halides of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a negative electrode active material for a lithium ion secondary battery, a negative electrode active material produced by the production method, a method for producing a lithium ion secondary battery using the negative electrode active material, and The present invention relates to a lithium ion secondary battery using this negative electrode active material.
  • Lithium ion secondary batteries are widely used as secondary batteries for mobile phones, notebook computers, and the like because of their small size and large capacity. In recent years, applications as batteries for electric vehicles and hybrid vehicles have also been proposed.
  • the lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) in the positive electrode and the negative electrode.
  • a lithium ion secondary battery operates by movement between both electrodes of lithium ions.
  • Lithium ion secondary batteries are required to have higher capacity and higher output.
  • it has been proposed to use Li 4 Ti 5 O 12 having a spinel structure as a negative electrode active material of a lithium ion secondary battery see, for example, Patent Document 1).
  • the capacity of Li 4 Ti 5 O 12 is not so large as about 170 mAh / g. Therefore, a negative electrode active material that can further increase the capacity of the lithium ion secondary battery is desired.
  • TiO 2 has received much attention in recent years because it is inexpensive and can be charged and discharged at high speed.
  • anatase-type TiO 2 As the crystal structure of TiO 2 , plural types such as a rutile type and an anatase type are known. Of these, anatase-type TiO 2 is said to have relatively high reversibility and high capacity. However, it is difficult to produce a lithium ion secondary battery capable of high capacity and high speed charge / discharge simply by using anatase TiO 2 as a negative electrode active material.
  • the present invention has been made in view of the above-described circumstances, and for lithium ion secondary batteries that contain Ti and can further charge and discharge a lithium ion secondary battery with higher capacity when used as a negative electrode active material.
  • An object of the present invention is to provide a negative electrode active material, a method for producing the same, a lithium ion secondary battery using the negative electrode active material, and a method for producing the same.
  • the inventors of the present invention fluorinated anatase-type TiO 2 using hydrofluoric acid, and the obtained titanium oxyfluoride was used as a negative electrode active material, resulting in high capacity and high speed. It has been found that a chargeable / dischargeable lithium ion secondary battery can be obtained.
  • a mixed raw material containing a mixture of anatase TiO 2 and hydrofluoric acid is heated at 70 ° C. or higher to fluorinate titanium oxyfluoride A heating step to obtain
  • the mixed raw material is characterized in that the anatase TiO 2 contains more than 2 moles of hydrogen fluoride (HF) per mole.
  • the negative electrode active material for a lithium ion secondary battery of the present invention that solves the above problems includes titanium (Ti) and fluorine (F),
  • the fluorine (F) content per mole of titanium (Ti) exceeds 1 mole.
  • the negative electrode active material for lithium ion secondary batteries of the present invention that solves the above problems is manufactured by the method for manufacturing a negative electrode active material for lithium ion secondary batteries of the present invention, Including titanium (Ti) and fluorine (F), The fluorine (F) content per mole of titanium (Ti) exceeds 1 mole.
  • the lithium ion secondary battery of the present invention that solves the above-described problems is characterized in that the negative electrode active material of the present invention is included in the negative electrode.
  • the manufacturing method of the lithium ion secondary battery of this invention which solves the said subject uses the titanium oxyfluoride manufactured by the manufacturing method of the negative electrode active material for lithium ion secondary batteries of this invention as a negative electrode active material. It is characterized by.
  • the method for producing a negative electrode active material for a lithium ion secondary battery of the present invention is simply abbreviated as the production method of the present invention.
  • the negative electrode active material for lithium ion secondary batteries of the present invention is simply abbreviated as the negative electrode active material of the present invention.
  • the production method of the present invention it is possible to produce a negative electrode active material that can make a lithium ion secondary battery have a high capacity and can be charged and discharged at high speed. Moreover, according to the negative electrode active material of the present invention, the capacity of the lithium ion secondary battery can be increased, and high-speed charge / discharge can be achieved. Furthermore, the lithium ion secondary battery of the present invention has a high capacity and can be charged and discharged at high speed.
  • the production method of the present invention uses anatase TiO 2 and hydrofluoric acid (hydrofluoric acid).
  • anatase TiO 2 is simply abbreviated as TiO 2 .
  • the anatase TiO 2 may be used those produced by known methods.
  • anatase TiO 2 can be produced by using a method called a homogeneous precipitation method and a hydrothermal synthesis method.
  • the uniform precipitation method is a method in which a precipitate is uniformly formed in the entire reaction solution by a chemical reaction.
  • the cation release method redox method, complex decomposition method
  • the anion release method urea hydrolysis method, amide hydrolysis.
  • ester hydrolysis method oxidation-reduction method
  • the urea hydrolysis method can produce fine anatase TiO 2 having a particle size of 1 ⁇ m or less, and is therefore suitable for producing anatase TiO 2 as a raw material for the negative electrode active material.
  • the urea hydrolysis method is a method in which urea is heated and hydrolyzed to generate ammonia in the reaction solution, and the pH of the reaction solution is gradually changed to precipitate the object.
  • the anatase type TiO 2 used in the present invention is not limited to that manufactured by this method, and may be manufactured by any method.
  • the hydrofluoric acid only needs to be able to fluorinate the anatase TiO 2 , but as described later, there is a preferable range for the concentration of hydrogen fluoride in the mixed raw material.
  • hydrogen fluoride (HF) in the mixed raw material may contain TiO 2 in an amount exceeding 2 mol per mol. When the amount of hydrogen fluoride in the mixed raw material is within this range, TiOF 2 is sufficiently fluorinated and titanium oxyfluoride can be obtained.
  • the hydrogen fluoride (HF) in the mixed raw material is preferably 2 moles or more, more preferably 10 moles or more, per mole of TiO 2 .
  • the titanium oxyfluoride obtained by this method is in the form of particles.
  • the titanium oxyfluoride particles as the negative electrode active material the better.
  • the particle size of the negative electrode active material is small, the Li moving distance during charging / discharging may be short, so that the lithium ion secondary battery can be provided with a property capable of rapid charging.
  • the titanium oxyfluoride is in the form of fine particles having a particle size of about 1 nm to 50 nm.
  • the negative electrode of the lithium ion secondary battery of the present invention contains the negative electrode active material described above.
  • the negative electrode includes a current collector and an active material layer bound on the current collector.
  • the active material layer may include known materials constituting the negative electrode material such as a conductive additive and a binder resin in addition to the negative electrode active material.
  • the negative electrode in the lithium ion secondary battery of the present invention is a slurry prepared by adding an organic solvent to these materials, such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, a curtain coating method, etc. It can produce by apply
  • a shape such as a foil or a plate can be adopted, but it is not particularly limited as long as it has a shape suitable for the purpose.
  • a copper foil or an aluminum foil can be suitably used as the current collector.
  • Conductive aid is added to increase the conductivity of the electrode.
  • the amount of the conductive auxiliary agent used is not particularly limited, but in general, it can be about 20 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the binder resin is used as a binder for binding the negative electrode active material and the conductive additive to the current collector.
  • the binder resin is required to bind the negative electrode active material or the like in as little amount as possible.
  • the blending amount of the binder resin is preferably 0.5 to 50% by mass when the total amount of the negative electrode active material, the conductive auxiliary agent and the binder resin is 100% by mass. When the amount of the binder resin is less than 0.5% by mass, the moldability of the electrode is deteriorated.
  • binder resin is not limited, but fluorine polymers such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), rubbers such as styrene butadiene rubber (SBR), imide polymers such as polyimide, and alkoxy silyl Examples thereof include a group-containing resin, polyacrylic acid (PAA), polymethacrylic acid, and polyitaconic acid.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • imide polymers such as polyimide
  • alkoxy silyl examples thereof include a group-containing resin, polyacrylic acid (PAA), polymethacrylic acid, and polyitaconic acid.
  • the lithium ion secondary battery of the present invention using the above-described negative electrode can use a known positive electrode, electrolyte, and separator that are not particularly limited.
  • the positive electrode may be anything that can be used in a lithium ion secondary battery.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer includes a positive electrode active material and a binder, and may further include a conductive additive.
  • the positive electrode active material, the conductive additive, and the binder are not particularly limited as long as they can be used in the lithium ion secondary battery.
  • the positive electrode active material metallic lithium, LiMO 2 (where M is at least one selected from the group consisting of Ni, Co, and Mn, and when M includes a plurality selected from this group, the sum is 1) in a), Li 1 + xMn 2 -x -yMyO spinel-type lithium manganese oxide represented by 4, LiFePO 4, LiMnPO 4, and the like.
  • the conductive auxiliary agent and the binder the same materials as those described for the negative electrode can be used.
  • the electrolytic solution is not particularly limited, but it is preferable to use an electrolytic solution in which an Li metal salt as an electrolyte is dissolved in an organic solvent.
  • an aprotic organic solvent such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC) or the like is used.
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • a Li metal salt that is soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 , LiCF 3 SO 3 can be used.
  • an Li metal salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 or the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate is about 0.5 mol / L to 1.7 mol / L.
  • an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate is about 0.5 mol / L to 1.7 mol / L.
  • a solution dissolved in a concentration can be used.
  • the separator is not particularly limited as long as it can be used for a lithium ion secondary battery.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a stacked shape, and a coin shape can be adopted. Whatever shape is used, a separator is sandwiched between a positive electrode and a negative electrode to form an electrode body, and between the positive electrode current collector and the negative electrode current collector, the positive electrode terminal and the negative electrode terminal are used for current collection. After connecting using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • Example 1 Provide of lithium ion secondary battery> [Synthesis of anatase TiO 2 ] A mixture in which distilled water, titanium tetrachloride, urea, ammonium sulfate, and ethanol were mixed at 4: 0.99: 1: 0.01: 4 (mass ratio) was stirred in an ice bath for 2 hours.
  • the mixture after stirring was hydrothermally treated at 120 ° C. for 5 hours. After the hot water treatment, the solid content was washed with distilled water and dried at 80 ° C. for 12 hours to obtain anatase TiO 2 .
  • the obtained anatase TiO 2 was a nanoparticle (average particle size of about 30 nm).
  • This titanium oxyfluoride is considered to be TiOF 2 as described later. Then, solid content was wash
  • the graphite (KS6) 7.5 parts by mass and PAA 5 parts by mass as a binder were mixed to prepare a negative electrode mixture.
  • This negative electrode mixture was applied to the surface of an aluminum foil having a thickness of 20 ⁇ m so as to have a thickness of 50 ⁇ m, and dried at 120 ° C. for 8 hours. After drying, it was punched into a predetermined shape to obtain a negative electrode having a size of 10 ⁇ 10 mm square and a thickness of 70 ⁇ m.
  • a metal lithium foil (2 ⁇ 2 mm square, thickness 70 ⁇ m) was used for the counter electrode (positive electrode).
  • a laminate square cell was produced. Specifically, a rectangular sheet (40 ⁇ 40 mm square, 30 ⁇ m thickness) made of polypropylene resin as a separator was sandwiched between the positive electrode and the negative electrode to form an electrode plate group. The electrode plate group was covered with a set of two laminated films, and the three sides were sealed, and then the above electrolyte was poured into the bag-like laminated film. Thereafter, the remaining one side was sealed to obtain a laminate cell in which the four sides were hermetically sealed and the electrode plate group and the electrolyte were sealed.
  • the positive electrode and the negative electrode have a tab that can be electrically connected to the outside, and a part of the tab extends to the outside of the laminate cell.
  • Comparative Example 2 The manufacturing method of the comparative example 2 is the same method as an Example except the HF density
  • Other manufacturing methods are the same as those in the examples.
  • the lithium ion secondary battery of Comparative Example 2 is the same as the example except for the negative electrode active material.
  • FIG. 1 is a graph showing the charge / discharge curve of the lithium ion secondary battery of an Example.
  • FIG. 2 is a graph showing cycle characteristics of the lithium ion secondary battery of the example.
  • 3 is a graph showing a charge / discharge curve of the lithium ion secondary battery of Comparative Example 1.
  • the charge / discharge curves of the lithium ion secondary battery of the example are greatly different between the first cycle and the second cycle and thereafter.
  • the discharge capacity (initial discharge capacity) at the first cycle was 800 mAh / g
  • the charge capacity (initial charge capacity) was 535 mAh / g.
  • the discharge capacity and charge capacity at the second cycle were about 450 mAh / g, and were almost the same values after the third cycle.
  • a long plateau occurred in the vicinity of 1.0 V only in the first cycle. From this result, it is considered that some reaction occurs in the negative electrode active material of the lithium ion secondary battery of the example at the first discharge. And since the big change of a capacity
  • the charge / discharge capacity of the lithium ion secondary battery of the example was sufficiently large at about 400 mAh / g after the second cycle. Therefore, it can be said that the lithium ion secondary battery of an Example has a high capacity. And according to the negative electrode active material of an Example, it can be said that the capacity
  • the lithium ion secondary battery of the example did not substantially decrease in capacity even after 50 cycles (about 400 mAh / g), and was excellent in cycle characteristics.
  • the capacity of the lithium ion secondary battery of Comparative Example 1 was about 200 mAh / g, and the capacity of the lithium ion secondary battery of Comparative Example 2 was about 350 mAh / g.
  • the capacity of the lithium ion secondary battery of Example and Comparative Example 2 is larger than the capacity of the lithium ion secondary battery of Comparative Example 1.
  • a lithium-ion secondary batteries of Examples which included hydrogen fluoride and TiO 2 (HF) and 1:10 (molar ratio), and hydrogen fluoride TiO 2 and (HF) 1 : Much higher capacity than the lithium ion secondary battery of Comparative Example 2 contained at 2 (molar ratio). From this result, it is understood that a negative electrode active material capable of increasing the capacity of a lithium ion secondary battery can be manufactured by using a material containing more than 2 moles of hydrogen fluoride (HF) per mole of TiO 2 as a mixed raw material. .
  • a material containing 5 moles or more of hydrogen fluoride (HF) per mole of TiO 2 more preferably 10 moles or more of hydrogen fluoride (HF). It can also be seen that it is better to use. If the amount of hydrogen fluoride in the mixed raw material is too small (0.01 to 2 mol), TiO 2 is not sufficiently fluorinated, and titanium oxyfluoride and TiO 2 are mixed in the negative electrode active material. Therefore, it is considered difficult to sufficiently increase the capacity of the lithium ion secondary battery.
  • FIGS. 4 shows the rate characteristics of the lithium ion secondary battery of the example
  • FIG. 5 shows the rate characteristics of the lithium ion secondary battery of Comparative Example 1.
  • the lithium ion secondary battery of the example had a high capacity of about 300 mAh / g even when the C and C rates were very large. From this result, it can be seen that the lithium ion secondary battery can be charged and discharged at high speed according to the negative electrode active material of the example. On the other hand, the lithium ion secondary battery of Comparative Example 1 showed a slightly smaller capacity than the lithium ion secondary battery of the example even at the same current density. From this result, it is understood that the rate characteristics of the lithium ion secondary battery can be improved by using titanium oxyfluoride as a negative electrode active material instead of mere titanium oxide.
  • the negative electrode active material (titanium oxyfluoride) of the example was subjected to SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope), XRD (X-ray diffraction; X-ray diffraction). And analyzed.
  • the negative electrode active material of the example contained substantially prismatic (substantially cubic, rectangular plate-shaped) secondary particles and spherical primary particles.
  • Ten negative electrode active materials in this SEM image were extracted arbitrarily, and the particle size of each negative electrode active material was measured using a ruler with reference to the length described as 1 ⁇ m in FIG. And the average value of the negative electrode active material was computed from the obtained length.
  • the average particle diameter of the primary particles of the negative electrode active material of the example was about 30 nm, and the average particle diameter of the secondary particles was less than 1 ⁇ m (that is, nanoparticles).
  • the negative electrode active material of the Example was analyzed by XRD.
  • X-ray diffraction measurement was performed using CuK ⁇ rays with a powder X-ray diffractometer (manufactured by MAC Science, model number: M06XCE).
  • the measurement conditions were voltage: 40 kV, current: 100 mA, scan speed: 4 ° / min, sampling: 0.02 °, number of integrations: 1, measurement range: diffraction angle (2 ⁇ ) 15 ° -80 °.
  • the result of XRD is shown in FIG. As shown in FIG.
  • the anatase TiO 2 used as the negative electrode active material in the examples was subjected to XRD analysis, and the analysis result was referred to the JCPDS card (# 21-1272).
  • the anatase TiO 2 that is, the uniform precipitation method It was confirmed that the synthesized product obtained by the hydrothermal method belongs to anatase TiO 2 .
  • the lithium ion secondary battery of the example is gradually changed from 3.0V ⁇ 1.30V ⁇ 0.93V ⁇ 0.92V ⁇ 0.88V ⁇ 0.70V ⁇ 0.35V ⁇ 0.25V.
  • the structure of the negative electrode active material at each stage was subjected to XRD analysis.
  • the lithium ion secondary battery of the example after the initial discharge is gradually charged as 0.5V ⁇ 1.15V ⁇ 1.60V ⁇ 2.12V ⁇ 3.0V.
  • the structure of the negative electrode active material was analyzed by XRD.
  • the negative electrode active material can be obtained at each stage. Included compounds were identified. LiTiOF 2 was identified by the space group R3c.
  • the half-value width of the negative electrode active material increased from 3.0 V ⁇ 0.93 V ⁇ 0.92 V ⁇ 0.25 V as the discharge progressed. For this reason, it is presumed that at least a part of the negative electrode active material that was crystalline in the early stage of discharge was amorphous at the end of the discharge.
  • XPS ex-situ mode, XPS, ULVAC-PHI 5600
  • changes in the structure of the negative electrode active material during the first discharge, the first charge, the second discharge, and the second charge in the lithium ion secondary battery of the example was analyzed.
  • the negative electrode-like Ti2p spectrum by XPS was analyzed.
  • the result of XPS analysis at the time of the first discharge is shown in FIG.
  • the result of the XPS analysis at the first charge is shown in FIG.
  • the result of XPS at the time of the second discharge is shown in FIG.
  • the result of XPS at the time of the second charge is shown in FIG.
  • the Ti valence decreases as the discharge reaction of TiOF2 proceeds during the first discharge (Ti trivalence and divalence), even if the discharge reaction reaches the end point. It can be seen that the valence of Ti does not become zero. The valence of Ti at the end of the charging reaction was the same tetravalence in the first cycle and the second cycle.
  • the state is Ti II O + 2LiF + 2Li + + e ⁇ , and at the end of the reaction 4 (less than 1 V, 700 to 800 mAh / g), at least a part of Ti 0 It is considered to be in the state of + 2LiF + Li 2 O.
  • the reversible reaction of Ti IV O 2 + 2Li + + 2e ⁇ ⁇ ⁇ Ti II O + 2LiF + 2Li + + + e ⁇ ⁇ ⁇ Ti 0 + 2LiF + Li 2 O is repeated. That is, it is considered that titanium oxyfluoride (TiOF 2 ), which is a negative electrode active material, reacts irreversibly during the first discharge, and titanium oxide (TiO) is generated. This is supported by the XRD results described above.
  • Titanium oxyfluoride (TiOF 2 ) contains 2 mol of fluorine (F) per 1 mol of titanium (Ti). Since the molar ratio of Ti and F does not change even after charging and discharging, it can be said that the negative electrode active material of the example contains 2 moles of fluorine (F) per 1 mole of titanium (Ti). That is, the negative electrode active material of the example includes 2 moles of fluorine (F) per 1 mole of titanium (Ti), thereby providing the above-described excellent charge / discharge capacity to the lithium ion secondary battery and high-speed charge. It is thought that discharge is possible.
  • the negative electrode active material of the present invention only needs to contain more than 1 mol of fluorine (F) with respect to 1 mol of titanium (Ti).
  • the negative electrode active material at each stage of the initial discharge A (3 V), the middle discharge B (0.93 V), and the final discharge C (0.25 V) at the first discharge was imaged by an electron diffraction method. Further, the negative electrode active material at the end of discharge C was imaged by TEM. Further, elemental analysis of the negative electrode active material at the end of discharge C was performed by EDX.
  • An electron diffraction image is shown in FIG. More specifically, an electron diffraction image of the negative electrode active material in the initial discharge A (3 V) is shown in the upper part of FIG. 16, and an electron diffraction image of the negative electrode active material in the middle discharge B (0.93 V) is shown in the middle of FIG. An electron diffraction image of the negative electrode active material at the end of discharge C (0.25 V) is shown in the lower part of FIG.
  • TEM images are shown in FIGS. 17 and 18, and the results of EDX are shown in FIGS.
  • the negative electrode active material is considered to be TiOF 2 particles.
  • the crystal structure of the negative electrode active material gradually collapses when the discharge proceeds during the first discharge.
  • a part of the negative electrode active material becomes amorphous at the end of discharge C. Since Li enters the negative electrode active material in the middle of the discharge, it is considered that the titanium oxyfluoride of the negative electrode active material is LiTiOF 2 particles.
  • the negative electrode active material does not contain fluorine (F) but oxide particles containing titanium (Ti) (FIG. 17) and fluorine ( It is thought that it is separated into lithium fluoride particles containing F) (FIG. 18).
  • F fluorine
  • FIG. 17 oxide particles containing titanium (Ti)
  • fluorine It is thought that it is separated into lithium fluoride particles containing F) (FIG. 18).
  • FIG. 17 an amorphous layer is formed on the surface of the oxide particle, and the inside of the oxide particle maintains a crystal structure.
  • the inside of the oxide particles and the amorphous layer are considered to be mainly composed of titanium oxide (TiO and / or TiO 2 ).
  • Li 2 O is considered to have entered the negative electrode active material.
  • the reaction that the lithium fluoride particles generate is considered to be a conversion reaction, that is, an irreversible reaction. Therefore, it is considered that the lithium fluoride particles in the negative electrode active material do not contribute to charging and discharging.
  • lithium fluoride particles As shown in FIG. 19, only Ti and O were detected from the oxide particles of FIG. 17, and F was not detected. Further, as shown in FIG. 20, only F was detected and no Ti was detected from the lithium fluoride particles of FIG. Note that lithium (Li) cannot be detected by EDX, but it is presumed that lithium fluoride particles contain Li, and it is considered that the oxide particles also contain Li unless they are completely charged.
  • the amorphous layer should just be formed in at least one part of the surface of an oxide particle, and may be formed only in a part of the surface of an oxide particle.
  • not all oxide particles may have an amorphous layer.
  • TiOF 2 in the negative electrode active material has a crystal structure shown in FIG.
  • Ti IV OF 2 , LiTi III OF 2 , and Ti II O in the negative electrode active material each have a crystal structure shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明の目的はリチウムイオン二次電池を高容量にでき、かつ、高速充放電可能にできるリチウムイオン二次電池用負極活物質を提供することである。本発明の製造方法においては、アナターゼ型TiOとフッ酸との混合物を含む混合原料を70℃以上で加熱して酸化フッ化チタンを得る(加熱工程)。この混合原料は、アナターゼ型TiOが1モルあたり2モルを超えるフッ化水素(HF)を含む。この製造方法で得られた酸化フッ化チタンをリチウムイオン二次電池の負極活物質として用いると、高容量かつ急速充電可能なリチウムイオン二次電池が得られる。

Description

リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法
 本発明は、リチウムイオン二次電池用負極活物質の製造方法、および、この製造方法で製造された負極活物質、並びに、この負極活物質を用いたリチウムイオン二次電池の製造方法、および、この負極活物質を用いたリチウムイオン二次電池に関するものである。
 リチウムイオン二次電池は、小型で大容量であるため、携帯電話やノートパソコン等の二次電池として広く用いられている。近年では、電気自動車やハイブリッド自動車等のバッテリとしての用途も提案されている。
 リチウムイオン二次電池は、リチウム(Li)を挿入および脱離できる活物質を正極と負極とに持つ。リチウムイオン二次電池は、リチウムイオンの両極間の移動によって動作する。
 リチウムイオン二次電池には高容量化、高出力化が要求されている。これらの特性を向上させるため、リチウムイオン二次電池の負極活物質として、スピネル構造のLiTi12を用いることが提案されている(例えば、特許文献1参照)。しかしLiTi12の容量は、170mAh/g程度とあまり大きくない。このため、リチウムイオン二次電池を更に高容量化できる負極活物質が望まれている。TiOは、チタン(Ti)を含む負極活物質のなかでは、安価でありかつ高速充放電が可能であるため、近年、大きな注目を浴びている。
 TiOの結晶構造としては、ルチル型、アナターゼ型等の複数が知られている。このうちアナターゼ型のTiOは比較的可逆性に優れ、高容量であるとされている。しかし、単にアナターゼ型TiOを負極活物質として用いるだけでは、高容量かつ高速充放電可能なリチウムイオン二次電池を製造することは困難であった。
特開2009-199793号公報
 本発明は、上記した事情に鑑みてなされたものであり、Tiを含み、負極活物質として用いたときにリチウムイオン二次電池をさらに高容量・高速充放電可能とするリチウムイオン二次電池用負極活物質およびその製造方法、並びに、この負極活物質を用いたリチウムイオン二次電池およびその製造方法を提供することを目的とする。
 本発明の発明者等は、鋭意研究の結果、フッ酸を用いてアナターゼ型TiOをフッ化し、得られた酸化フッ化チタンを負極活物質として用いることで、高容量であり、かつ、高速充放電可能なリチウムイオン二次電池が得られることを見出した。
 すなわち、上記課題を解決する本発明のリチウムイオン二次電池用負極活物質の製造方法は、アナターゼ型TiOとフッ酸との混合物を含む混合原料を70℃以上で加熱して酸化フッ化チタンを得る加熱工程を備え、
 該混合原料は、該アナターゼ型TiOが1モルあたり2モルを超えるフッ化水素(HF)を含むことを特徴とする。
 上記課題を解決する本発明のリチウムイオン二次電池用負極活物質は、チタン(Ti)と、フッ素(F)と、を含み、
 チタン(Ti)1モルあたりのフッ素(F)の含有量は1モルを超えることを特徴とする。
 また、上記課題を解決する本発明のリチウムイオン二次電池用負極活物質は、本発明のリチウムイオン二次電池用負極活物質の製造方法で製造され、
 チタン(Ti)と、フッ素(F)と、を含み、
 チタン(Ti)1モルあたりのフッ素(F)の含有量は1モルを超えることを特徴とする。
 また、上記課題を解決する本発明のリチウムイオン二次電池は、本発明の負極活物質を負極に含むことを特徴とする。
 また、上記課題を解決する本発明のリチウムイオン二次電池の製造方法は、本発明のリチウムイオン二次電池用負極活物質の製造方法で製造された酸化フッ化チタンを負極活物質として用いることを特徴とする。
 以下、本発明のリチウムイオン二次電池用負極活物質の製造方法を、単に本発明の製造方法と略する。また、本発明のリチウムイオン二次電池用負極活物質を、単に本発明の負極活物質と略する。
 本発明の製造方法によると、リチウムイオン二次電池を高容量かつ高速充放電可能にできる負極活物質を製造できる。また、本発明の負極活物質によると、リチウムイオン二次電池を高容量化でき、かつ、高速充放電可能にできる。さらに、本発明のリチウムイオン二次電池は、高容量であり、かつ、高速充放電可能である。
実施例のリチウムイオン二次電池の充放電曲線を表すグラフである。 実施例のリチウムイオン二次電池のサイクル特性を表すグラフである。 比較例1のリチウムイオン二次電池の充放電曲線を表すグラフである。 実施例のリチウムイオン二次電池のレート特性を表すグラフである。 比較例1のリチウムイオン二次電池のレート特性を表すグラフである。 実施例の負極活物質のSEM像である。 実施例の負極活物質をXRD分析した結果を表すグラフである。 初回放電時の各段階において実施例の負極活物質をXRD分析した結果を表すグラフである。 図8の要部拡大図である。 初回充電時の各段階において実施例の負極活物質をXRD分析した結果を表すグラフである。 初回放電時の各段階において実施例の負極活物質をXPS分析した結果を表すグラフである。 初回充電時の各段階において実施例の負極活物質をXPS分析した結果を表すグラフである。 2回目放電時の各段階において実施例の負極活物質をXPS分析した結果を表すグラフである。 2回目充電時の各段階において実施例の負極活物質をXPS分析した結果を表すグラフである。 初回放電時の各段階における実施例の負極活物質の構造変化を表す説明図である。 放電初期A(3V)、放電中期B(0.93V)、放電終期C(0.25V)の各段階における負極活物質の電子回折像である。 放電終期Cにおける負極活物質のTEM像である。 放電終期Cにおける負極活物質のTEM像である。 図17に示す放電終期Cにおける負極活物質をEDX分析した結果を表すグラフである。 図18に示す放電終期Cにおける負極活物質をEDX分析した結果を表すグラフである。 負極活物質中のTiOFの結晶構造を模式的に表す図である。 負極活物質中のTiIVOF、LiTiIIIOF、TiIIOの結晶構造をそれぞれ模式的に表す図である。
 本発明の製造方法は、アナターゼ型TiOと、フッ酸(フッ化水素酸)を用いる。以下、特に断りのない場合、アナターゼ型TiOを単にTiOと略する。
 アナターゼ型TiOとしては、既知の方法で製造されたものを用いれば良い。例えば、アナターゼ型TiOは、均一沈殿法および水熱合成法と呼ばれる方法を用いて製造できることが知られている。均一沈殿法とは、化学反応により反応液全体に均一に沈殿を生成させる方法であり、陽イオン放出法(酸化還元法、錯体分解法)、陰イオン放出法(尿素加水分解法、アミド加水分解法、エステル加水分解法、酸化還元法)等が知られている。このうち尿素加水分解法は、粒径1μm以下の微細なアナターゼ型TiOを製造できるため、負極活物質の原料となるアナターゼ型TiOを製造するのに適している。参考までに、尿素加水分解法とは、尿素を加熱し加水分解をおこなうことで、反応液中にアンモニアを発生させ、反応液のpHを緩やかに変化させて対象物を沈殿させる方法である。なお、本発明で用いるアナターゼ型TiOは、この方法で製造されたものに限定されず、如何なる方法で製造されたものであっても良い。
 フッ酸は、アナターゼ型TiOをフッ化出来れば良いが、後述するように、混合原料中のフッ化水素の濃度には好ましい範囲が存在する。具体的には、混合原料中のフッ化水素(HF)は、TiOが1モルあたり2モルを超える量含まれれば良い。混合原料中のフッ化水素量がこの範囲内であれば、TiOF2が充分にフッ化され、酸化フッ化チタンを得ることができる。なお、混合原料中のフッ化水素(HF)は、TiOが1モルあたり2モル以上であるのが好ましく、10モル以上であるのがさらに好ましい。この方法で得られた酸化フッ化チタンは粒子状である。負極活物質としての酸化フッ化チタン粒子の粒径は、小さい方が好ましい。負極活物質の粒径が小さいと、充放電時におけるLiの移動距離が短くて済むため、リチウムイオン二次電池に急速充電可能な特性を付与できる。好ましくは、酸化フッ化チタンは、粒径1nm~50nm程度の微細な粒子状であるのが良い。
 本発明のリチウムイオン二次電池の負極は、上述した負極活物質を含む。この負極は、集電体と、集電体上に結着された活物質層と、を有する。活物質層は、負極活物質の他に、導電助剤、バインダー樹脂等の負極材料を構成する既知の材料を含み得る。本発明のリチウムイオン二次電池における負極は、これらの材料に有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で負極活物質上に塗布し、バインダー樹脂を硬化させることによって作製することができる。
 集電体としては、箔、板等の形状を採用することが出来るが、目的に応じた形状であれば特に限定されない。集電体として、例えば銅箔やアルミニウム箔等を好適に用いることができる。
 導電助剤は、電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック(CB)、黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等を単独でまたは二種以上組み合わせて添加することが出来る。導電助剤の使用量については、特に限定的ではないが、一般的には、負極活物質100質量部に対して、20~100質量部程度とすることができる。
 バインダー樹脂は、負極活物質及び導電助剤を集電体に結着するための結着剤として用いられる。バインダー樹脂はなるべく少ない量で負極活物質等を結着させることが求められる。バインダー樹脂の配合量は、負極活物質、導電助剤、及びバインダー樹脂の合計量を100質量%としたときに、0.5~50質量%であるのが好ましい。バインダー樹脂量が0.5質量%未満では電極の成形性が低下し、50質量%を超えると電極のエネルギー密度が低くなる。バインダー樹脂の種類は限定的ではないが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴム(SBR)等のゴム、ポリイミド等のイミド系ポリマー、アルコキシルシリル基含有樹脂、ポリアクリル酸(PAA)、ポリメタクリル酸、ポリイタコン酸などが例示される。
 上記した負極を用いる本発明のリチウムイオン二次電池は、特に限定されない公知の正極、電解液、セパレータを用いることが出来る。正極は、リチウムイオン二次電池で使用可能なものであれば良い。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助材およびバインダーは、特に限定はなく、リチウムイオン二次電池で使用可能なものであれば良い。
 正極活物質としては、金属リチウム、LiMO(但し、MはNi、Co、Mnからなる群から選ばれる少なくとも1種であり、Mがこの群から選ばれる複数を含む場合にはその総和が1である)、Li+xMn-x-yMyOで表されるスピネル型リチウムマンガン酸化物、LiFePO、LiMnPO等が挙げられる。集電体は、アルミニウム、ニッケル、ステンレス鋼等、リチウムイオン二次電池の正極用集電体として一般的なものを用いれば良い。導電助剤およびバインダーは、上記の負極で記載したものと同様のものを使用できる。
 電解液は、特に限定されないが、有機溶媒に電解質であるLi金属塩を溶解させたものを用いるのが好ましい。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF、LiBF、LiAsF、LiI、LiClO、LiCFSO等の有機溶媒に可溶なLi金属塩を用いることができる。
 例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO、LiPF、LiBF、LiCFSO等のLi金属塩を0.5mol/L~1.7mol/L程度の濃度で溶解させた溶液を使用することができる。
 セパレータは、リチウムイオン二次電池に使用されることが出来るものであれば特に限定されない。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
 本発明のリチウムイオン二次電池は、形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。何れの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。
 以下、実施例を挙げて本発明を更に詳しく説明する。
 (実施例1)
 <リチウムイオン二次電池の作製>
  〔アナターゼ型TiOの合成〕
 蒸留水、四塩化チタン、尿素、硫酸アンモニウム、エタノールを4:0.99:1:0.01:4(質量比)で混合した混合物を、氷槽中で2時間攪拌した。
 攪拌後の混合物を120℃で5時間水熱処理した。熱水処理後、固形分を蒸留水で洗浄し、80℃で12時間乾燥して、アナターゼ型TiOを得た。得られたアナターゼ型TiOはナノ粒子(平均粒径約30nm程度)であった。
  〔酸化フッ化チタンの合成〕
 上記の工程で得られたTiOナノ粒子と、46質量%HF溶液とを、TiO:HF=1:10(モル比)で混合し、混合原料を得た。この混合原料を80℃で24時間攪拌した。攪拌後の混合原料を減圧下、80℃で加熱した(加熱工程)。この加熱工程は、溶媒(水)等の揮発成分が揮発するまで行った。なお加熱工程を80℃以下(例えば、70℃)で行う場合は加熱時間を長くすればよい。加熱工程により、混合原料中のTiO2とHFとが反応し酸化フッ化チタンが生成した。この酸化フッ化チタンは、後述するようにTiOFであると考えられる。その後、固形分を蒸留水で洗浄し、80℃で12時間乾燥することで、粒子状の酸化フッ化チタンを得た。この粒子状の酸化フッ化チタンもまたナノ粒子(粒径約5nm~40nm程度)であった。この工程で得られた酸化フッ化チタンは、実施例の負極活物質である。
  〔負極〕
 上記の工程で得られた実施例の負極活物質80質量部と、導電助剤としてのCB(ティムカル・グラファイト・アンド・カーボン社製、Super-P)7.5質量部と、導電助剤としてのグラファイト(KS6)7.5質量部と、バインダーとしてのPAA5質量部とを、混合し、負極合材を調製した。この負極合材を厚さ20μmのアルミニウム箔表面に厚さ50μmとなるように塗布し、120℃で8時間乾燥させた。乾燥後、所定の形状に打ち抜いて、10×10mm角、厚さ70μmの負極を得た。
  〔その他の構成〕
 対極(正極)には金属リチウム箔(2×2mm角、厚さ70μm)を用いた。電解液にはEC(エチレンカーボネート)、DMC(ジメチルカーボネート)、EMC(エチルメチルカーボネート)=1:1:1(体積比)の混合溶液にLiBETI(リチウムイミド電解質、Li(CSO2N)を1モル/Lとなる濃度で溶解したものを用いた。なお、LiBETIは、アルミ箔中のアルミニウムとリチウムとの合金化を防ぐ為に添加した。
  〔リチウムイオン二次電池〕
 上記の正極および負極を用いて、ラミネート角セルを製作した。詳しくは、正極および負極の間に、セパレータとしてポリプロピレン樹脂からなる矩形状シート(40×40mm角、厚さ30μm)を挟装して極板群とした。この極板群を二枚一組のラミネートフィルムで覆い、三辺をシールした後、袋状となったラミネートフィルムに上記の電解液を注入した。その後、残りの一辺をシールすることで、四辺が気密にシールされ、極板群および電解液が密閉されたラミネートセルを得た。なお、正極および負極は外部と電気的に接続可能なタブを備え、このタブの一部はラミネートセルの外側に延出している。以上の工程で、ラミネートセル(2極ポーチセル)状のリチウムイオン二次電池を得た。
 (比較例1)
 実施例で用いたものと同じとTiOを負極活物質として用いたこと以外は、実施例と同様にリチウムイオン二次電池を製作した。
 (比較例2)
 比較例2の製造方法は、混合原料中のHF濃度以外は実施例と同じ方法である。詳しくは、比較例2においては、負極活物質である酸化フッ化チタンを合成する際に、実施例と同じTiOナノ粒子と、46質量%HF溶液とを、TiO:HF=1:2(モル比)で混合し、混合原料を得た。その他の製造方法は実施例と同じである。また、比較例2のリチウムイオン二次電池は、負極活物質以外は実施例と同じものである。
 <リチウムイオン二次電池の充放電特性>
 上述した実施例および比較例1~2のリチウムイオン二次電池について充放電試験を行った。充放電条件は、定電流(20mA/g)、電圧範囲0.25-3.0V、測定温度30℃であった。「放電」は評価極の活物質がLiを吸蔵する方向、「充電」は評価極の活物質がLiを放出する方向、である。充放電試験の結果を図1~3に示す。なお、図1は実施例のリチウムイオン二次電池の充放電曲線を表すグラフである。図2は実施例のリチウムイオン二次電池のサイクル特性を表すグラフである。図3は比較例1のリチウムイオン二次電池の充放電曲線を表すグラフである。
 図1に示すように、実施例のリチウムイオン二次電池の充放電曲線は、1サイクル目と2サイクル目以降とで大きく異なっている。具体的には、1サイクル目の放電容量(初期放電容量)は800mAh/g、充電容量(初期充電容量)は535mAh/gであった。2サイクル目の放電容量および充電容量は約450mAh/gであり、3サイクル目以降もほぼ同じ値であった。また、1サイクル目に限り、1.0V付近に長いプラトー(高水準安定)が発生した。この結果から、実施例のリチウムイオン二次電池の負極活物質には、初回放電時に何らかの反応が生じていると考えられる。そして、2サイクル目以降の放電時には容量の大きな変化が見られないことから、この反応はコンバージョン反応を含むと推測される。
 しかしながら、実施例のリチウムイオン二次電池の充放電容量は、2サイクル目以降にも400mAh/g程度と充分に大きかった。したがって、実施例のリチウムイオン二次電池は高容量であるといえる。そして、実施例の負極活物質によると、リチウムイオン二次電池を高容量化できるといえる。
 また、図2に示すように、実施例のリチウムイオン二次電池は、50サイクル後にも容量が殆ど低下せず(約400mAh/g)、サイクル特性にも優れていた。
 これに対して、比較例1のリチウムイオン二次電池の容量は200mAh/g程度であり、比較例2のリチウムイオン二次電池の容量は350mAh/g程度であった。実施例および比較例2のリチウムイオン二次電池の容量は、比較例1のリチウムイオン二次電池の容量に比べて大きい。この結果から、単なるアナターゼ型TiOを負極活物質として用いるのではなく、アナターゼ型TiOをフッ化した酸化フッ化チタンを負極活物質として用いることで、リチウムイオン二次電池を高容量化できることがわかる。また、混合原料において、TiOとフッ化水素(HF)とを1:10(モル比)で含んでいた実施例のリチウムイオン二次電池は、TiOとフッ化水素(HF)とを1:2(モル比)で含んでいた比較例2のリチウムイオン二次電池に比べて、遙かに高容量である。この結果から、混合原料として、1モルのTiOあたり2モルを超えるフッ化水素(HF)を含むものを用いることで、リチウムイオン二次電池を高容量化できる負極活物質を製造できることがわかる。また、好ましくは、混合原料として、1モルのTiOあたり5モル以上のフッ化水素(HF)を含むものを用いるのが良く、より好ましくは10モル以上のフッ化水素(HF)を含むものを用いるのが良いこともわかる。なお、混合原料中のフッ化水素の量が過小(0.01~2モル)であれば、TiOが充分にフッ化されず、負極活物質中に酸化フッ化チタンとTiOとが混在した状態となるため、リチウムイオン二次電池を充分に高容量化し難いと考えられる。
  〔レート特性評価試験〕
 実施例および比較例1のリチウムイオン二次電池のレート特性を測定した。詳しくは、1C=400mA/gとしたときに、0.05C(20mA/g)、0.125C(50mA/g)、0.25C(100mA/g)、0.5C(200mA/g)、1C(400mA/g)、2C(800mA/g)、3C(1200mA/g)、4C(1600mA/g)、6C(2400mA/g)、8C(3200mA/g)と変化させ、繰り返し充放電を行った。このときのカットオフ電圧は0.25V~3.0Vであった。温度は30℃であった。レート特性試験の結果を図4、図5に示す。なお図4は実施例のリチウムイオン二次電池のレート特性を表し、図5は比較例1のリチウムイオン二次電池のレート特性を表す。
 実施例のリチウムイオン二次電池は、8CとCレートが非常に大きい場合にも、300mAh/g程度と高容量であった。この結果から、実施例の負極活物質によるとリチウムイオン二次電池を高速充放電可能にできることがわかる。これに対して、比較例1のリチウムイオン二次電池は、同じ電流密度であっても実施例のリチウムイオン二次電池に比べて多少小さい容量を示した。この結果から、単なる酸化チタンでなく酸化フッ化チタンを負極活物質に用いることで、リチウムイオン二次電池のレート特性を向上させ得ることがわかる。
 <負極活物質の物性>
 実施例の負極活物質(酸化フッ化チタン)を、SEM(Scanning Electron Microscope;走査型電子顕微鏡)、TEM(Transmission Electron Microscope;透過型電子顕微鏡)、XRD(X-ray diffraction;X線回折)を用いて分析した。
  〔SEM分析〕
 実施例の負極活物質をSEMにより20000倍で撮像した。このときの加速電圧は15KVであり、コーティングには白金を用いた。実施例の負極活物質のSEM像を図6に示す。
 図6に示すように実施例の負極活物質は略角柱状(略立方体状、矩形の板状)の2次粒子と、球状の1次粒子とを含んでいた。このSEM像中の負極活物質を任意に10個抽出し、図6中1μmと記載されている長さを基準とし、定規を用いて各負極活物質の粒径を測定した。そして、得られた長さから、負極活物質の平均値を算出した。その結果、実施例の負極活物質の1次粒子の平均粒径は約30nm、2次粒子の平均粒径は1μm未満(すなわちナノ粒子)であった。
  〔XRD分析〕
 実施例の負極活物質をXRD分析した。このときのX線回折装置としては、粉末X線回折装置(MAC Science社製、型番:M06XCE)により、CuKα線を用いてX線回折測定を行なった。測定条件は、電圧:40kV、電流:100mA、スキャン速度:4°/分、サンプリング:0.02°、積算回数:1回、測定範囲:回折角(2θ)15°~80°であった。XRDの結果を図7に示す。図7に示すように、回折角(2θ)15~80°の範囲では、23.6°、33.5°、53.4°、59.1°、69.5°、および、74.2°付近にピーク位置を有するブロードなピークが確認された。
 なお、実施例において負極活物質の原料として用いたアナターゼ型TiOをXRD分析し、その分析結果をJCPDSカード(#21-1272)に参照した結果、このアナターゼ型TiO、すなわち、均一沈殿法と水熱法により得られた合成物は、アナターゼ型TiOに帰属することが確認された。
  〔電池中の負極活物質の構造変化〕
   〈XRD分析〉
 XRD(ex-situ XRD)により、実施例のリチウムイオン二次電池における初回放電時および初回充電時の負極活物質の構造の変化を分析した。初回放電時のXRDの結果を図8および図9に示す。初回充電時のXRDの結果を図10に示す。
 図8に示すように、実施例のリチウムイオン二次電池を3.0V→1.30V→0.93V→0.92V→0.88V→0.70V→0.35V→0.25Vと徐々に放電し、各段階における負極活物質の構造をXRD分析した。また、図10に示すように、初回放電後の実施例のリチウムイオン二次電池を0.5V→1.15V→1.60V→2.12V→3.0Vと徐々に充電し、各段階における負極活物質の構造をXRD分析した。そして、これらのXRDの分析結果をJCPDSカード(#21-1272;アナターゼ型TiO2、#08-0117;TiO、#12-0254;LiO)に参照することで、各段階で負極活物質に含まれる化合物を同定した。LiTiOFに関しては、空間群R3cにより同定した。
 図8に示すように、放電初期にはLiTiOFのピークが確認されたが、このピークは放電後期には消失した。そのかわりに、放電初期には認められなかったTiOのピークが放電中期から後期にかけて現れた。図10に示すように、このLiTiOFのピークは、初回充電時には出現しなかった。さらに、図8に示すように、LiTiOに帰属する60°付近のピークが放電終期に出現した。図10に示すように、このLiTiOのピークは充電時には増大した。
 さらに、図9に要部拡大図を示すように、負極活物質の半値幅は3.0V→0.93V→0.92V→0.25Vと放電が進行するにつれて大きくなった。このため、放電初期においては結晶であった負極活物質は、放電終期においては、少なくとも一部がアモルファス状になっていると推測される。
   〈XPS分析〉
 XPS(ex-situモード、XPS,ULVAC-PHI 5600)により、実施例のリチウムイオン二次電池における初回放電時、初回充電時、2回目放電時および2回目充電時の負極活物質の構造の変化を分析した。具体的には、XPSによる負極状のTi2pスペクトルを分析した。初回放電時のXPS分析の結果を図11に示す。初回充電時のXPS分析の結果を図12に示す。2回目放電時のXPSの結果を図13に示す。2回目充電時のXPSの結果を図14に示す。
 図11~14に示されるように、XPS測定の結果からは、初回放電時にTiOF2の放電反応が進むにつれてTiの価数は減少するが(Ti3価と2価)放電反応が終点に達してもTiの価数が0にはならないことがわかる。充電反応の終点のTiの価数は、1サイクル目と2サイクル目とで同じ4価であった。
 上記したように、XRDの結果(図8)から、1サイクル目の放電において、TiOF固有のピークは放電初期~中期(3.0V~0.93V)にかけて減少し、その後に消失(あるいはほぼ消失)した。これらを勘案すると、リチウム化の初期にはリチウムのインターカレーション反応が進行し、0.93V以下の電位におけるプラトーでコンバージョン反応が進行したと推測された。また、同様にXRDの結果から、LiTiOに帰属する60°付近のピークが放電時の0.35Vから検出され(図8)、充電時にはこのピークが増大した(図10)。これらの結果から、TiOFの反応機構は放電初期にインターカレーション反応が進行し、引き続きLiTiOへのコンバージョン反応が起こり、初期充電反応以降では新たに生成したLiTiOがインターカレーション反応を起こすと推測された。
 この結果をリチウムイオン二次電池の放電曲線に当てはめると、図15に示すように、放電初期1(3V~1V付近、0~100mAh/g付近)において、負極活物質中のTiおよびFは、TiIVOF+Li+eの状態で存在している。そして、放電中期2(1V付近、100~400mAh/g付近)においては、LiTiIIIOF+Li+eの状態であると考えられる。放電後期3(1V付近、400~700mAh/g付近)においては、TiIIO+2LiF+2Li+eの状態であり、反応終期4(1V未満、700~800mAh/g)においては、少なくとも一部がTi+2LiF+LiOの状態にあると考えられる。そして、初回充放電以降は、TiIV+2Li+2e←→TiIIO+2LiF+2Li+e←→Ti+2LiF+LiOの可逆反応が繰り返されると考えられる。つまり、負極活物質である酸化フッ化チタン(TiOF)は、初回放電時に不可逆的に反応し、チタン酸化物(TiO)が生じると考えられる。これは、上記したXRDの結果から裏づけられる。
 なお、酸化フッ化チタン(TiOF)には、チタン(Ti)1モルに対し2モルのフッ素(F)が含まれている。TiおよびFのモル比は充放電後にも変化しないため、実施例の負極活物質中には、チタン(Ti)1モルに対し2モルのフッ素(F)が含まれているといえる。つまり、実施例の負極活物質は、チタン(Ti)1モルに対し2モルのフッ素(F)を含むことで、リチウムイオン二次電池に上述した優れた充放電容量を付与し、かつ高速充放電を可能としていると考えられる。なお、チタン(Ti)1モルに対し1モルを超えるフッ素(F)が含まれていれば、負極活物質の少なくとも一部が上記の負極活物質として作用しているといえる。つまり、本発明の負極活物質は、チタン(Ti)1モルに対し1モルを超えるフッ素(F)が含まれていれば良い。
  〔電池中の負極活物質の結晶構造〕
 実施例の負極活物質を、初回放電時の各段階においてTEM分析した。この分析により初回放電時の各段階における負極活物質の結晶構造を観察した。
 詳しくは、初回放電時の放電初期A(3V)、放電中期B(0.93V)、放電終期C(0.25V)の各段階における負極活物質を電子回折法により撮像した。また、放電終期Cにおける負極活物質をTEMにより撮像した。さらに、EDXにより放電終期Cにおける負極活物質を元素分析した。電子回折像を図16に示す。より詳しくは、放電初期A(3V)における負極活物質の電子回折像を図16の上部に示し、放電中期B(0.93V)における負極活物質の電子回折像を図16の中部に示し、放電終期C(0.25V)における負極活物質の電子回折像を図16の下部に示す。また、TEM像を図17、18に示し、EDXの結果を図19、20に示す。
 図16の上部に示すように、放電初期Aにおいて負極活物質には結晶構造が確認される。上述したように、放電初期Aでは負極活物質はTiOF粒子であると考えられる。図16の中部および下部に示すように、初回放電時に放電が進行すると、負極活物質の結晶構造は徐々に崩れると考えられる。そして図17に示すように、放電終期Cにおいては負極活物質の一部がアモルファス状になると考えられる。放電中期において負極活物質にはLiが入るため、負極活物質の酸化フッ化チタンはLiTiOF粒子になっていると考えられる。上述したように、放電終期Cにおいては酸化フッ化チタンからフッ素が脱離するため、負極活物質はフッ素(F)を含まずチタン(Ti)を含む酸化物粒子(図17)と、フッ素(F)を含むフッ化リチウム粒子(図18)と、に分離すると考えられる。図17に示すように、酸化物粒子の表面には、アモルファス層が形成され、酸化物粒子の内部は結晶構造を保っている。この酸化物粒子の内部およびアモルファス層は、主として酸化チタン(TiOおよび/またはTiO)で構成されていると考えられる。LiOは、この負極活物質の内部に入り込んでいると考えられる。なお、上述したように、フッ化リチウム粒子が生成する反応はコンバージョン反応すなわち不可逆反応であると考えられるため、負極活物質中のフッ化リチウム粒子は充放電に寄与しないと考えられる。
 図19に示すように、図17の酸化物粒子からはTiおよびOのみが検出され、Fは検出されなかった。また、図20に示すように、図18のフッ化リチウム粒子からは、Fのみが検出され、Tiは検出されなかった。なお、EDXではリチウム(Li)は検出できないが、フッ化リチウム粒にはLiが含まれると推測され、完全に充電されない限り酸化物粒子にもまたLiが含まれると考えられる。
 なお、アモルファス層は酸化物粒子の表面の少なくとも一部に形成されていれば良く、酸化物粒子の表面の一部にのみ形成される場合もある。また、本発明の負極活物質においては、全ての酸化物粒子がアモルファス層を持たなくても良い。
 参考までに、負極活物質中のTiOFは図21に示す結晶構造を持つと考えられる。また、負極活物質中のTiIVOF、LiTiIIIOF、TiIIOはそれぞれ、図22に示す結晶構造を持つと考えられる。

Claims (12)

  1.  チタン(Ti)と、フッ素(F)と、を含み、
     チタン(Ti)1モルあたりのフッ素(F)の含有量は1モルを超えることを特徴とするリチウムイオン二次電池用負極活物質。
  2.  チタン(Ti)1モルあたりのフッ素(F)の含有量は2モル以上である請求項1に記載のリチウムイオン二次電池用負極活物質。
  3.  初回充放電以降に、前記チタン(Ti)を酸化物粒子として含み、前記フッ素(F)をフッ化リチウム粒子として含み、
     少なくとも一部の該酸化物粒子の表面には、アモルファス層が存在する請求項1または2に記載のリチウムイオン二次電池用負極活物質。
  4.  初回充放電以降に、酸化チタン(TiO)を含む請求項1または2に記載のリチウムイオン二次電池用負極活物質。
  5.  請求項1~4の何れか一つに記載のリチウムイオン二次電池用負極活物質を負極に含むことを特徴とするリチウムイオン二次電池。
  6.  請求項5に記載のリチウムイオン二次電池を搭載していることを特徴とする車両。
  7.  アナターゼ型TiOとフッ酸との混合物を含む混合原料を70℃以上で加熱して酸化フッ化チタンを得る加熱工程を備え、
     該混合原料は、1モルあたりの該アナターゼ型TiOにつき、2モルを超えるフッ化水素(HF)を含むことを特徴とするリチウムイオン二次電池用負極活物質の製造方法。
  8.  前記混合原料は、1モルあたりの前記アナターゼ型TiOにつき、10モル以上のフッ化水素(HF)を含む請求項7に記載のリチウムイオン二次電池用負極活物質の製造方法。
  9.  前記加熱工程は80℃以上でおこなう請求項7または8に記載のリチウムイオン二次電池用負極活物質の製造方法。
  10.  前記加熱工程前に、前記混合原料を10時間以上攪拌する攪拌工程を備える請求項7~9の何れか一つに記載のリチウムイオン二次電池用負極活物質の製造方法。
  11.  請求項7~10の何れか一つに記載のリチウムイオン二次電池用負極活物質の製造方法で製造された酸化フッ化チタンを負極活物質として用いることを特徴とするリチウムイオン二次電池の製造方法。
  12.  請求項7~10の何れか一つに記載のリチウムイオン二次電池用負極活物質の製造方法で製造され、
     チタン(Ti)と、フッ素(F)と、を含み、
     チタン(Ti)1モルあたりのフッ素(F)の含有量は1モルを超えることを特徴とするリチウムイオン二次電池用負極活物質。
PCT/JP2012/002902 2011-05-06 2012-04-27 リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法 WO2012153487A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/072,197 US20140093779A1 (en) 2011-05-06 2013-11-05 Negative-electrode active material for lithium-ion secondary battery and process for producing the same as well as lithium-ion secondary battery and process for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-103765 2011-05-06
JP2011103765A JP5208244B2 (ja) 2011-05-06 2011-05-06 リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/072,197 Continuation-In-Part US20140093779A1 (en) 2011-05-06 2013-11-05 Negative-electrode active material for lithium-ion secondary battery and process for producing the same as well as lithium-ion secondary battery and process for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012153487A1 true WO2012153487A1 (ja) 2012-11-15

Family

ID=47138976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002902 WO2012153487A1 (ja) 2011-05-06 2012-04-27 リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法

Country Status (3)

Country Link
US (1) US20140093779A1 (ja)
JP (1) JP5208244B2 (ja)
WO (1) WO2012153487A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638258A (zh) * 2018-12-18 2019-04-16 中科廊坊过程工程研究院 一种正极材料及其制备方法和用途

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077033B2 (en) * 2012-04-16 2015-07-07 Lg Chem, Ltd. Anode active material and lithium secondary battery comprising the same
JP2014063702A (ja) * 2012-09-24 2014-04-10 Kaneka Corp 負極活物質の製造方法及び非水電解質二次電池
JP6692810B2 (ja) 2014-11-20 2020-05-13 ハイドロ−ケベック カチオン空孔によるナノメータアナターゼ格子、その生成方法、およびその使用
US9696782B2 (en) 2015-02-09 2017-07-04 Microsoft Technology Licensing, Llc Battery parameter-based power management for suppressing power spikes
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
US9748765B2 (en) 2015-02-26 2017-08-29 Microsoft Technology Licensing, Llc Load allocation for multi-battery devices
JP6096984B2 (ja) * 2015-03-19 2017-03-15 株式会社東芝 負極活物質、非水電解質電池、電池パック及び車
US9939862B2 (en) 2015-11-13 2018-04-10 Microsoft Technology Licensing, Llc Latency-based energy storage device selection
US10061366B2 (en) 2015-11-17 2018-08-28 Microsoft Technology Licensing, Llc Schedule-based energy storage device selection
US9793570B2 (en) 2015-12-04 2017-10-17 Microsoft Technology Licensing, Llc Shared electrode battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300205A (ja) * 1991-03-27 1992-10-23 Mitsubishi Kasei Corp 黒鉛層間化合物
JP2003187796A (ja) * 2001-12-19 2003-07-04 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2005302601A (ja) * 2004-04-14 2005-10-27 Matsushita Electric Ind Co Ltd 電池用負極活物質、その製造方法および非水電解質二次電池
JP2009064707A (ja) * 2007-09-07 2009-03-26 Panasonic Corp 非水電解液二次電池用活物質及びそれを用いた電池
JP2009117259A (ja) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp 非水電解質二次電池用電極材、非水電解質二次電池用電極及びそれを用いた非水電解質二次電池
WO2010013726A1 (ja) * 2008-07-30 2010-02-04 石原産業株式会社 蓄電デバイス
JP2010231960A (ja) * 2009-03-26 2010-10-14 Toshiba Corp 非水電解質電池
JP2012033355A (ja) * 2010-07-29 2012-02-16 Toshiba Corp 電池用活物質、非水電解質電池、電池パック、及び自動車

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300205A (ja) * 1991-03-27 1992-10-23 Mitsubishi Kasei Corp 黒鉛層間化合物
JP2003187796A (ja) * 2001-12-19 2003-07-04 Nichia Chem Ind Ltd リチウムイオン二次電池用正極活物質
JP2005302601A (ja) * 2004-04-14 2005-10-27 Matsushita Electric Ind Co Ltd 電池用負極活物質、その製造方法および非水電解質二次電池
JP2009064707A (ja) * 2007-09-07 2009-03-26 Panasonic Corp 非水電解液二次電池用活物質及びそれを用いた電池
JP2009117259A (ja) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp 非水電解質二次電池用電極材、非水電解質二次電池用電極及びそれを用いた非水電解質二次電池
WO2010013726A1 (ja) * 2008-07-30 2010-02-04 石原産業株式会社 蓄電デバイス
JP2010231960A (ja) * 2009-03-26 2010-10-14 Toshiba Corp 非水電解質電池
JP2012033355A (ja) * 2010-07-29 2012-02-16 Toshiba Corp 電池用活物質、非水電解質電池、電池パック、及び自動車

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638258A (zh) * 2018-12-18 2019-04-16 中科廊坊过程工程研究院 一种正极材料及其制备方法和用途
CN109638258B (zh) * 2018-12-18 2021-09-14 中科廊坊过程工程研究院 一种正极材料及其制备方法和用途

Also Published As

Publication number Publication date
US20140093779A1 (en) 2014-04-03
JP2012234746A (ja) 2012-11-29
JP5208244B2 (ja) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5208244B2 (ja) リチウムイオン二次電池用負極活物質およびその製造方法、並びにリチウムイオン二次電池およびその製造方法
CN107408686B (zh) 用于锂离子二次电池的阴极活性物质、其制造方法及包含其的锂离子二次电池
JP6197029B2 (ja) 非水電解質蓄電素子用活物質
JP5682172B2 (ja) 活物質、活物質の製造方法及びリチウムイオン二次電池
EP2471134B1 (en) Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
JP5174730B2 (ja) 結晶性チタン酸リチウムの製造方法および結晶性チタン酸リチウム
JP5812190B2 (ja) リチウムイオン二次電池用活物質及びリチウムイオン二次電池
US8926938B2 (en) Method of preparing crystalline titanium dioxide powder, method of preparing a negative active material, negative active material, and rechargebale lithium battery
JP6407515B2 (ja) 正極活物質、非水電解質二次電池、電池パック及び車
JP6493409B2 (ja) 非水電解質二次電池
JP6396270B2 (ja) 非水電解質二次電池用負極活物質、負極、非水電解質二次電池、電池パック及び車
JP2011070789A (ja) 非水電解質二次電池
JP5858289B2 (ja) 二次電池用負極活物質、その製造方法、二次電池用負極、二次電池、及びSi−酸化物固体電解質複合体
WO2014030298A1 (ja) 全固体リチウムイオン電池及び正極合材
WO2012121220A1 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
WO2013119571A1 (en) Mixed phase lithium metal oxide compositions with desirable battery performance
JP6483723B2 (ja) 正極活物質及びそれを含むリチウム二次電池
Feng et al. Enhanced cycling stability of Co3 (PO4) 2-coated LiMn2O4 cathode materials for lithium ion batteries
CN108352564A (zh) 非水电解质二次电池
KR102233771B1 (ko) 리튬 이차 전지용 복합 양극 활물질 및 이를 함유하는 리튬 이차 전지용 양극을 포함한 리튬 이차 전지
WO2016067522A1 (ja) 非水電解質二次電池
JP5586549B2 (ja) 電池用活物質、非水電解質電池および電池パック
JP2013211112A (ja) 蓄電デバイス用負極活物質及びその製造方法、蓄電デバイス並びに車両
JP6094372B2 (ja) 複合金属酸化物、並びにこれを用いたリチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP2015109227A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782920

Country of ref document: EP

Kind code of ref document: A1