WO2012150719A1 - 電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置 - Google Patents
電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置 Download PDFInfo
- Publication number
- WO2012150719A1 WO2012150719A1 PCT/JP2012/061609 JP2012061609W WO2012150719A1 WO 2012150719 A1 WO2012150719 A1 WO 2012150719A1 JP 2012061609 W JP2012061609 W JP 2012061609W WO 2012150719 A1 WO2012150719 A1 WO 2012150719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- etching
- solution
- glass substrate
- acidic
- acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
Definitions
- the present invention relates to a method for manufacturing a glass substrate of a cover glass for electronic equipment, a manufacturing apparatus therefor, a method for removing alkali fluoride fluoroaluminate, and a device therefor.
- This calcium fluoride scale may cause clogging of a reverse osmosis membrane in an ultrapure water production apparatus that reuses semiconductor production process recovery water.
- the calcium fluoride scale is removed by using a phosphoric acid-based chemical instead of the high concentration EDTA that has been conventionally used for removing the calcium fluoride scale.
- silica calcium fluoride, which is generated when gasifying coal or other ash-containing organic substances in a high-temperature, high-pressure partial oxidation quenching gasification system
- scale which contains magnesium fluoride as a component is also mentioned (for example, refer patent document 2).
- the scale is attached to the metal surface.
- the scale is removed while neutralizing the inorganic acid salt aqueous solution with the NaOH neutralization solution. By doing so, corrosion of the metal to which the scale is attached is prevented.
- a technique for processing a glass substrate by etching has recently been known.
- cover glass for electronic devices like cover glass for displays, glass for casings of portable electronic devices, etc. (hereinafter, these are collectively referred to as MCG) is rapidly increasing.
- MCG cover glass for electronic devices like cover glass for displays, glass for casings of portable electronic devices, etc.
- this application for example, in a portable electronic device including an image display panel such as a liquid crystal panel or an organic EL panel such as a mobile phone, there is a device for protecting the image display panel.
- Such MCG is produced, for example, as follows (for example, see Patent Documents 3 to 5). First, a glass substrate containing a metal oxide is cut into a predetermined shape by wet etching to produce a small plate-like glass substrate.
- this fragmented glass substrate is immersed in the molten salt.
- the alkali metal contained in the glass and the alkali metal ions contained in the molten salt are exchanged in the vicinity of the surface of the glass substrate.
- a compressive stress layer can be formed near the surface of the glass substrate.
- the surface of the chemically strengthened glass substrate is washed with water or an aqueous solution. Then, various functional films such as an antireflection film are formed on the surface of the chemically strengthened glass substrate as necessary. In this way, the MCG is formed.
- JP 2000-202445 A Special Table 2000-513048 JP 2010-168270 A International Publication No. 2009/078406 JP 2009-167086 A
- MCG is an exterior part, scratch resistance and excellent strength are required, so chemical strengthening treatment is essential. Therefore, a glass containing an alkali metal component such as Li 2 O or Na 2 O is used as a glass component constituting the MCG. Furthermore, in order to obtain better chemical strengthening properties (effects such as short-time treatment, deep compressive stress, and ion exchange rate improvement), it is necessary to add Al 2 O 3 to the glass composition at a relatively high concentration. is there. Therefore, unlike etching performed in a semiconductor manufacturing process or the like, in the manufacturing process of MCG, a glass composition containing a specific component is treated with an etching solution containing hydrofluoric acid (HF). Special by-products such as alkali metal aluminates are formed.
- HF hydrofluoric acid
- this by-product is inferred to be any one of Li 3 AlF 6 , Na 3 AlF 6 (cryolite), and Li 3 Na 3 (AlF 6 ) 2 (cryolithionite) or a combination thereof. Is done.
- This alkali metal fluoroaluminate salt scale is generated by alkali metal (Li or Na) and aluminum oxide (Al 2 O 3 ) contained in the glass substrate, and hydrofluoric acid (HF) used for etching the glass substrate. It is thought that. Hereinafter, these by-products are collectively referred to as “fluorinated aluminate scale”.
- fluoroaluminic acid scales generated by etching of the glass substrate are a major obstacle to the production process of MCG.
- This fluoroaluminate scale not only significantly reduces the efficiency of the manufacturing process, but also has the problem of risking wounds when removing the fluoroaluminate scale. This problem will be described in detail below.
- fluoroaluminic acid scale is deposited and deposited in the etching shower nozzle.
- the flow of the etching solution may be hindered and spraying failure may occur.
- the fluoroaluminic acid scale deposits also in the conveyance part, gear, and bearing of the glass substrate in an etching apparatus.
- the driving load in the etching apparatus increases, which may lead to poor conveyance and damage to the drive system.
- this fluoroaluminic acid scale is also deposited in the temperature control of an etching solution storage tank coated with Teflon (registered trademark). As a result, temperature control may be difficult.
- a fluorine-based etching solution such as hydrofluoric acid is used together with an acidic solution such as sulfuric acid or nitric acid to etch a glass substrate.
- an acidic solution such as sulfuric acid or nitric acid
- a fluoroaluminic acid scale is generated. That is, the fluoroaluminic acid scale is hardly soluble or insoluble in a mixed acid such as hydrofluoric acid, sulfuric acid, and nitric acid, and has spurred the difficulty of dissolution and removal.
- the fluoroaluminate scale alkali cannot be removed even with a commercially available detergent.
- many detergents contain an alkali component such as sodium, and the alkali component and ionized fluorinated aluminate ions are combined to generate salt, that is, scale.
- the liquidity is changed from acidic to neutral, so that precipitation of by-products increases.
- the mechanical removal is first withdrawn from the etching solution reservoir. Then, water is put into the etching solution storage tank and the etching apparatus is operated. Then, the pH in the etching apparatus is adjusted to such an extent that the cleaner can touch the fluoroaluminic acid scale. After that, the etching apparatus is disassembled and cleaned.
- this cleaning mechanical removal with a spatula, hammer, high-pressure water washing, etc. is performed.
- the outer shape of this fluoroaluminate scale is a sharp crystal, and during this cleaning, the fluoroaluminate scale may penetrate the protector's protective equipment and cause a deep scratch on the cleaner. is there.
- the time required for cleaning the fluoroaluminic acid scale requires one or more days of cleaning for one to two days of operation of the etching apparatus. This is because a fluoroaluminic acid scale of 10 to 40% of the amount of glass removed by etching is deposited and deposited. This is a calculation that an extremely large amount of fluorinated aluminate of several kilograms to several tens of kilograms is generated in one day when converted into one day of the working day of the etching apparatus.
- an object of the present invention is to provide an etching apparatus as a glass substrate manufacturing apparatus for an electronic device cover glass having a mechanism for removing the fluoroaluminic acid scale, so that it is not necessary to stop the operation of the etching apparatus. It is to remove the scale chemically and to clean the etching apparatus safely.
- Another object of the present invention is to continuously operate an etching apparatus to improve production efficiency.
- the present inventor has studied a method for manufacturing a glass substrate of a cover glass for an electronic device that can achieve the above-described object, a manufacturing apparatus therefor, a method for removing a fluoroaluminate scale, and a device therefor. At that time, the point that the fluoroaluminic acid scale does not dissolve under acidic conditions was examined.
- the fluoroaluminic acid scale does not dissolve under an acidic condition, but only dissolves with respect to a mixed acid, and it has been found that an acidic condition is necessary.
- the first aspect of the present invention is: An etching step of etching the glass substrate with an acidic etching solution; A removal step of removing the alkali metal fluorinated aluminate produced by the etching step and acidified by the etching step with an acidic electrolyte solution containing metal ions, which is a compound attached to an acid-resistant substance, It is a manufacturing method of the glass substrate of the cover glass for electronic devices characterized by having.
- a second aspect of the present invention is the invention according to the first aspect, The etching process is performed again after the removing process.
- a third aspect of the present invention is the invention according to the first or second aspect,
- the electrolyte solution is an aluminum sulfate aqueous solution or an aluminum nitrate aqueous solution.
- a fourth aspect of the present invention is the invention according to any one of the first to third aspects,
- the etching solution is a solution containing hydrofluoric acid and sulfuric acid.
- a fifth aspect of the present invention is the invention according to any one of the first to fourth aspects,
- the alkali fluoride fluoroaluminate is produced by etching the glass substrate containing aluminum oxide in an etching apparatus using a solution containing the hydrofluoric acid and sulfuric acid. The removing step is performed by circulating the electrolyte solution in the etching apparatus.
- a sixth aspect of the present invention is the invention according to any one of the first to fifth aspects,
- the alkali fluorinated aluminate is any one of Li 3 AlF 6 , Na 3 AlF 6 , and Li 3 Na 3 (AlF 6 ) 2 or a combination thereof.
- the seventh aspect of the present invention is Etching solution supply means for etching the glass substrate with an acidic etching solution;
- An eighth aspect of the present invention is the invention according to the seventh aspect, The method further comprises circulation means for independently circulating the etching solution and the electrolyte solution in the manufacturing apparatus.
- a ninth aspect of the present invention is the invention according to the seventh or eighth aspect,
- the etching solution is a solution containing hydrofluoric acid and sulfuric acid
- the glass substrate containing aluminum oxide is etched with a solution containing hydrofluoric acid and sulfuric acid.
- the tenth aspect of the present invention is An acid treatment step of treating an alkali fluoride fluoroaluminate adhering to an acid-resistant substance with an acidic solution;
- the eleventh aspect of the present invention is An acidic solution supply means for supplying an acidic solution to the alkali fluoride fluoroaluminate adhering to the acid-resistant substance; Removing means for removing the alkali fluoride fluoroaluminate that has become acidic by the acidic solution supplied from the acidic solution supply means with an acidic electrolyte solution containing metal ions; It is a removal apparatus of the alkali fluoride fluoroaluminate characterized by having.
- the etching apparatus as the glass substrate manufacturing apparatus for the cover glass for electronic equipment has a mechanism for removing the fluoroaluminic acid scale, so that it is not necessary to stop the operation of the etching apparatus. Can be removed chemically, and the etching apparatus can be safely cleaned. As a result, the etching apparatus can be operated continuously, and the production efficiency can be improved.
- FIG. 1 is first used as a diagram showing a basic configuration of a glass substrate manufacturing apparatus 10 (hereinafter also referred to as manufacturing apparatus 10) for a cover glass for electronic equipment, and the following description will be given.
- manufacturing apparatus 10 a glass substrate manufacturing apparatus 10 for a cover glass for electronic equipment
- processing of glass by etching is known as processing of glass by etching.
- a glass plate having a predetermined shape can be cut off into small pieces (outer shape processing).
- This external processing includes processing for removing a part of the surface by etching to such an extent that the glass plate is not separated.
- the damaged layer at the edge of the machined surface caused by machining can be removed by etching.
- the main surface of the fragmented glass plate can be processed by etching.
- a shower etching method for example, a shower etching method or an immersion method is known.
- the shower etching method is a method of etching a glass substrate by ejecting an etching solution with a shower nozzle from above and / or below while conveying the glass substrate with a roller.
- the shower etching method is suitable for the outer shape processing and main surface processing of the glass.
- the immersion method is a method in which a glass substrate is immersed in an etching solution in a treatment tank and etched.
- the dipping method is suitable for any of outer shape processing, chamfering processing, and main surface processing.
- the manufacturing method 10 and scale removal described below are not limited to the glass processing method and etching method described above as long as the alkali fluoride fluoroaluminate is generated by etching.
- Mechanism (scale removal method) can be applied.
- the fluorinated aluminate alkali salt is also simply referred to as “scale” in addition to the “fluorinated aluminate scale”.
- the manufacturing apparatus 10 in the present embodiment is an etching apparatus used for etching a glass substrate containing aluminum oxide with an etching solution containing hydrofluoric acid and sulfuric acid.
- the manufacturing apparatus 10 includes a processing tank 1, an etching solution tank 2, an electrolyte solution tank 3, a pump 4, a first valve 21, a second valve 22, a third valve 33, and a fourth valve 34.
- the pump 4 is for transporting the solution from the etching solution tank 2 or the electrolyte solution tank 3 to the treatment tank 1.
- a first valve 21 is provided between the etching solution tank 2 and the pump 4 in order to transport the etching solution from the etching solution tank 2 to the pump 4.
- a second valve 22 is provided to return the used etching solution from the processing tank 1 to the etching solution tank 2.
- a third valve 33 is provided between the electrolyte solution tank 3 and the pump 4 in order to transport the electrolyte solution from the electrolyte solution tank 3 to the pump 4.
- a fourth valve 34 is provided to return the used electrolyte solution from the treatment tank 1 to the electrolyte solution tank 3.
- the case where the etching solution is circulated and the case where the acidic electrolyte solution containing metal ions is circulated can be appropriately selected.
- any of the scales Li 3 AlF 6 , Na 3 AlF 6 (cryolite), and Li 3 Na 3 (AlF 6 ) 2 (cryolithionite) that should be deposited and deposited in the manufacturing apparatus 10 described above. Or a combination thereof) can be chemically dissolved and removed.
- the processing tank 1 in the present embodiment is a known one, and any system can be used as long as it can perform etching on glass.
- the case where the glass substrate used as the cover glass for electronic devices is etched in a processing tank as an example is demonstrated.
- the immersion method it is preferable from the viewpoint of improving working efficiency that a plurality of substrates are simultaneously immersed by overlapping the plurality of substrates.
- this glass substrate what is necessary is just to contain an aluminum oxide.
- a glass substrate having a composition such as 2 O—ZrO 2 is used.
- the treatment tank 1 communicates with the etching solution tank 2 and the electrolyte solution tank 3 and has an opening for guiding each solution into the treatment tank 1. At the same time, an opening for discharging the used solution out of the processing tank 1 after each solution is used in the processing tank 1 is also provided. For this opening, a tank communicating with the etching solution tank 2 and the electrolyte solution tank 3 can be selected.
- At least the main surface of the inner wall of the treatment tank 1 and related members is formed of an acid-resistant substance. This is because wet etching with an acidic etching solution is performed on the glass substrate, so that there is a possibility of contact with the acidic solution everywhere in the etching apparatus, and corrosion due to the acidic solution is prevented.
- Examples of the acid-resistant substance include those obtained by performing surface coating with Teflon (registered trademark) resin on metal parts. Further, the related member itself may be made of resin.
- the etching solution tank 2, the electrolyte solution tank 3, the pump 4, the first valve 21, the second valve 22, the third valve 33, and the fourth valve 34, which will be described later, may also come into contact with the acidic etching solution. If there is, at least the main surface is an acid-resistant substance. Conventionally, the scale adheres to the acid-resistant substance, which has a great influence on the manufacturing process of MCG, that is, a cover glass for electronic equipment.
- the etching solution supply means supplies not only the etching solution to the glass substrate, but also acid fluorinated aluminate alkali salt generated by the etching process and attached to the acid-resistant substance.
- the etching solution is supplied from the etching solution tank 2 to the processing tank 1 through the first valve 21 and the pump 4.
- this series of supply mechanisms is referred to as an etching solution supply unit.
- this etching solution can perform not only etching of a glass substrate containing aluminum oxide but also pretreatment for removing fluorinated aluminate scale.
- the etching solution is not particularly limited as long as it contains at least hydrofluoric acid.
- hydrofluoric acid for example, ammonium fluoride (NH 4 F), ammonium hydrogen fluoride (NH 5 F 2 ), and the like are included. Also good.
- hydrochloric acid generates chlorine gas, which is difficult to control, and nitric acid may corrode the resin that is an acid-resistant substance. It is preferable to select.
- the scale may be easily generated, and it can be expected that the effect of this embodiment can be further doubled.
- various additives, such as surfactant may be added as needed.
- the used etching solution used for etching in the processing tank 1 is transported from the processing tank 1 to the etching solution tank 2 through the second valve 22. Then, the etching solution is regenerated or discharged and added as necessary. Then, the etching solution is again supplied from the etching solution tank 2 to the processing tank 1 via the first valve 21 and the pump 4.
- the removal means has an electrolyte solution supply means.
- the electrolyte solution supply means has the same mechanism as the etching solution supply means, and the electrolyte solution supply means supplies an acidic electrolyte solution containing metal ions to the alkali fluoride fluoroaluminate.
- an acidic electrolyte solution containing metal ions is supplied from the electrolyte solution tank 3 to the treatment tank 1 via the third valve 33 and the pump 4.
- this series of supply mechanisms is called removal means.
- This electrolyte solution is a solution for dissolving and removing the fluorinated aluminate alkali salt contained in the scale.
- This solution is an acidic electrolyte solution containing metal ions.
- the “acidic electrolyte solution containing metal ions” in the present embodiment is also simply referred to as “electrolyte solution” for convenience of explanation.
- the metal ions are not particularly limited, it is iron ions or aluminum ions that have been confirmed to dissolve the scale at present. Of these, aluminum ions are more preferable in that the dissolution rate of the scale is high.
- the ions present together with the metal ions are not particularly limited as long as they are acidic ions, but at present, sulfate ions and nitrate ions have been confirmed to have an effect of dissolving the scale. As described above, it is more preferable to use sulfate ions in terms of resistance to corrosion of the resin. Therefore, as the “acidic electrolyte solution containing metal ions”, an aluminum sulfate aqueous solution or an aluminum nitrate aqueous solution is preferable, and an aluminum sulfate aqueous solution is particularly preferable. Note that, as in the case of the C) etching solution supply means, various additives such as a surfactant may be added as necessary.
- the used electrolyte solution used for removing the scale in the treatment tank 1 is transported from the treatment tank 1 to the electrolyte solution tank 3 through the fourth valve 34. Then, regeneration or discharge and addition of the electrolyte solution are performed as necessary. Then, the electrolyte solution is again supplied from the electrolyte solution tank 3 to the treatment tank 1 via the third valve 33 and the pump 4.
- the circulation means in the present embodiment refers to a mechanism for circulating the solution supplied from the C) etching solution supply means and the D) removal means in the manufacturing apparatus 10. That is, in FIG. 1, when operating the manufacturing apparatus 10 with an interface (such as a control panel) not shown, if the etching solution supply means is selected to operate, the first valve 21 and the second valve 22 are opened, and the third valve is opened. 33 and the fourth valve 34 are closed. Then, the pump 4 is operated, and the etching solution tank 2 ⁇ the first valve 21 ⁇ the pump 4 ⁇ the processing tank 1 ⁇ the second valve 22 ⁇ the etching solution tank 2 ⁇ the first valve 21 ⁇ . Circulate. As will be described later, at this time, the glass tank is etched in the processing tank 1. In the present embodiment, the mechanism through which the etching solution circulates is also referred to as “etching mode”.
- the removal means is selected to operate, the third valve 33 and the fourth valve 34 are opened, and the first valve 21 and the second valve 22 are closed. Then, the pump 4 is operated, and the electrolyte solution tank 3 ⁇ the third valve 33 ⁇ the pump 4 ⁇ the processing tank 1 ⁇ the fourth valve 34 ⁇ the electrolyte solution tank 3 ⁇ the third valve 33 ⁇ . Circulate. As will be described later, at this time, the fluoroaluminic acid scale generated in the etching process is removed.
- the mechanism through which the electrolyte solution circulates is also referred to as “removal mode”. In this embodiment, this series of circulation mechanisms is referred to as circulation means.
- the circulation means in the present embodiment circulates the etching solution and the electrolyte solution independently in the manufacturing apparatus 10. That is, in the manufacturing apparatus 10, an etching mode which is a part of the manufacturing process and a removal mode for removing scale can be switched by a valve or the like.
- the etching solution and the electrolyte solution are put into the etching solution tank 2 and the electrolyte solution tank 3, respectively.
- the etching solution put in the etching solution tank 2 may be the solution used in the previous etching process.
- the operation of the pump 4 is stopped, and the first valve 21 to the fourth valve 34 are all closed.
- the specific etching solution and electrolyte solution are as described above.
- an acid treatment step for acidifying the fluorinated aluminate scale may be provided.
- Scale removal step A scale removal step is performed following the etching step. At this time, the scale is maintained in an acidic state.
- washing with water may be appropriately added if necessary under the condition that the acidic state is maintained.
- the cleaning liquid may be circulated in the same manner as the electrolyte solution circulating means.
- etching solution tank and piping related to etching solution tank Next, the etching solution is discharged from the etching solution tank 2 (a discharge mechanism is not shown). In addition, before washing
- the electrolyte solution is transported from the electrolyte solution tank 3 to the etching solution tank 2 (the transport mechanism is not shown). Thereafter, the first valve 21 and the second valve 22 are opened, and the third valve 33 and the fourth valve 34 are closed. Then, the pump 4 is operated, and the “electrolyte solution” is referred to as etching solution tank 2 ⁇ first valve 21 ⁇ pump 4 ⁇ processing tank 1 ⁇ second valve 22 ⁇ etching solution tank 2 ⁇ first valve 21 ⁇ . Circulate so that.
- the electrolyte solution can be circulated in all the transport paths of the solution shown in FIG.
- the scale can be dissolved in all transport routes.
- the frequency of solution replacement and washing during the scale removal step is appropriately determined according to the amount of scale deposition.
- the solution may be discarded each time the scale is removed through a series of removal steps, or may be used multiple times.
- the frequency of cleaning may be periodically performed, or cleaning may be performed when a predetermined value is exceeded while monitoring the amount of deposited scale.
- Embodiment> The method for manufacturing the glass substrate of the cover glass for electronic equipment and the apparatus for manufacturing the same have been described above, and the method for removing the alkali fluoride fluoroaluminate generated by the etching step and the apparatus for the method have been described. In the following, the differences between the characteristic features and the prior art (particularly, Patent Documents 1 and 2) will be described in detail.
- alkali fluoride fluoroaluminates Li 3 AlF 6 , Na 3 AlF 6 , and Li 3 Na 3 (AlF 6 ) that have been considered extremely difficult to dissolve until now. 2
- the glass substrate containing aluminum oxide is etched using an etching solution containing hydrofluoric acid, the alkali fluoride fluoroaluminate precipitates, and countermeasures are required. .
- Patent Document 1 that removes the calcium fluoride scale generated due to the use of hydrofluoric acid, the calcium fluoride scale is removed using a phosphoric acid-based chemical.
- the scale (alkali fluorinated aluminate) in the present embodiment is not used unless the drug has a very high concentration. It is impossible to dissolve. Moreover, even if it can be dissolved, since the dissolution rate is too slow, the processing cannot keep up with the amount of scale generated by the etching process. Therefore, it cannot be put into practical use in the scale removal process in an actual etching apparatus.
- the etching apparatus As described above, at least the main surface of each member is coated with a resin as an acid-resistant substance. That is, if the chemical
- Patent Document 2 is a technique for removing scale attached to the surface of a metal such as titanium or stainless steel. Since the place where descaling is performed is the surface of titanium or stainless steel, an acidic solution cannot be used. If an acidic solution is used, corrosion occurs on the metal surface.
- alkali fluoride fluoroaluminate (Li 3 AlF 6 , Na, etc.) handled in this embodiment is used. 3 AlF 6 and Li 3 Na 3 (AlF 6 ) 2 ) are not generated. Therefore, even if it is said that the scale contains fluoride in Patent Document 2, the scale of the present embodiment is not generated from the description in Patent Document 2, so the above-described alkali fluoroaluminate (Li 3 AlF) 6 , Na 3 AlF 6 , and Li 3 Na 3 (AlF 6 ) 2 ) cannot be read at all. The same can be said for Patent Document 1.
- the fluorinated aluminate alkali salt is previously acidified (that is, pH ⁇ 7.0).
- acidic solutions such as sulfuric acid and nitric acid.
- an acid treatment for example, an etching treatment
- an acidic electrolyte solution containing metal ions was brought into contact with an alkali fluoride fluoroaluminate. That is, under the situation considered impossible by conventional common sense, the scale which is a fluoroaluminate alkali salt can be quickly removed from the etching apparatus as shown in the following examples.
- the method for manufacturing the glass substrate of the cover glass for electronic equipment and the manufacturing apparatus therefor have the following effects. That is, the fluoroaluminic acid scale deposited and deposited as a by-product when the glass substrate is etched is placed under acidic conditions that should not have been dissolved. After making preparations for the acidic condition, an acidic electrolyte solution containing metal ions is brought into contact with the fluorinated aluminate scale that should not have dissolved. As a result, the fluoroaluminic acid scale that hinders the etching process can be chemically removed.
- the etching apparatus as an example of the manufacturing apparatus of the glass substrate of the cover glass for electronic devices used in this embodiment is applicable with respect to the apparatus used for the wet etching with respect to a glass substrate.
- the glass substrate produced by this wet etching can be used for various uses. In particular, it is used as a portable electronic device including at least an image display panel and an MCG provided on the image display surface side of the image display panel, particularly as an MCG for a mobile phone.
- the glass substrate is exemplified, but the idea of the present invention can be applied even if it is not a separate substrate. That is, the present invention can also be applied to glass sheets, ingots, blocks, and the like containing aluminum oxide (Al 2 O 3 ). Furthermore, the idea of the present invention can be applied to any glass other than aluminum oxide and containing aluminum.
- the glass substrate in the present embodiment may be a single glass substrate, or a plurality of glass substrates may be laminated in advance and processed as a single glass substrate. good.
- the fluorinated aluminate scale is made acidic by the etching process to the glass substrate.
- the process of acidifying the fluorinated aluminate scale separately from the etching process (acid treatment process). ) May be provided.
- the common piping and the pump 4 may not be used, but it may have a completely independent configuration.
- a circulation means for circulating the etching solution used in the etching process and a circulation means for circulating the electrolyte solution used in the scale removal process may be provided separately.
- an apparatus for performing etching and an apparatus for removing scales may be provided separately and independently.
- An apparatus for performing such scale removal includes an acidic solution supply means and a removal means.
- the acidic solution supply means acidifies the fluorinated aluminate scale instead of the etching solution supply means.
- Such an apparatus is suitable, for example, for individually cleaning parts and the like to which a fluoroaluminate scale has adhered.
- Example 1 Hereinafter, ⁇ 2. This example will be described in accordance with the explanation of the scale removal mechanism (scale removal method) provided in the manufacturing apparatus.
- an etching apparatus was prepared after etching glass containing aluminum oxide with an acidic etching solution containing hydrofluoric acid and sulfuric acid. That is, an etching apparatus in which the etching process has already been completed was prepared.
- the hydrofluoric acid used here was 12 wt%
- the sulfuric acid was 8 wt%.
- the electrolyte solution in the present embodiment as described in Table 1, was used for 40 ° C. aluminum nitrate nonahydrate (Al (NO 3) 3 ⁇ 9H 2 O) aqueous solution of 30 g (concentration 41 wt%).
- the scale piece used in this example had a pH of 3.5 (less than pH 7), indicating acidity.
- Example 2 to 4 the dissolved amount of the scale pieces with respect to the elapsed time was examined in the same manner as in Example 1 except that the concentration of aluminum nitrate nonahydrate was changed as shown in Table 1.
- Comparative Examples 1 to 3 In Comparative Examples 1 to 3, an acidic solution other than aluminum nitrate nonahydrate and containing no metal ions was used instead of the electrolyte solution. And it was set as the density
- Example 5 to 8 In Examples 5 to 8, the weight of the aluminum nitrate nonahydrate (and thus the weight and concentration of the electrolyte solution, wt% and molar amount of aluminum nitrate) and the weight of the scale piece were changed as shown in Table 2. Except for the above, the dissolution amount of the scale pieces was examined in the same manner as in Example 1.
- Example 9 to 13 In Examples 9 to 13, instead of aluminum nitrate nonahydrate, the weight of aluminum sulfate 14 to 18 hydrate (and thus the weight and concentration of the electrolyte solution, wt% and molar amount of aluminum nitrate) and the scale piece Except for the point that the weight was changed as shown in Table 3, the amount of the scale piece dissolved with respect to the elapsed time was examined in the same manner as in Example 1.
- FIG. 2 is a graph showing the relationship between the amount of dissolved fluoroaluminate scale (vertical axis) and the elapsed time (horizontal axis) in Examples 1-13.
- 2A shows data of Examples 1 to 4
- FIG. 2B shows data of Examples 5 to 8
- FIG. 2C shows data of Examples 9 to 13.
- the scale pieces were well dissolved.
- the initial dissolution rate when the elapsed time was small did not vary much with respect to the concentration of the electrolyte solution.
- Comparative Examples 1 to 3 even when the elapsed time passed 20 hours, only 1/10 of the dissolution amount was shown compared to Examples 1 to 4, and the substantial dissolution of the scale pieces could not be confirmed.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
ガラス基板を酸性のエッチング溶液によりエッチングするエッチング工程と、耐酸性物質に付着した化合物であって、エッチング工程により生じ、かつエッチング工程により酸性となったフッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去工程と、を有することを特徴とする電子機器用カバーガラスのガラス基板の製造方法。ガラス基板を酸性のエッチング溶液によりエッチングするエッチング溶液供給手段と、耐酸性物質に付着した化合物であって、エッチング溶液との接触により生じ、かつエッチング溶液により酸性となったフッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去手段と、を有することを特徴とする電子機器用カバーガラスのガラス基板の製造装置。
Description
本発明は、電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置に関する。
一般に、物質の抽出、精製、又は製造においては、目的とする物質以外にも副生成物が発生するのが常である。それと同時に、この副生成物を除去する技術についても、物質の製造等を行う技術と同様、研究が進められている。
この副生成物は例を挙げると枚挙にいとまがないが、一例を挙げるとするならば、半導体製造工程において、フッ酸を使用することに起因して発生するフッ化カルシウムスケールが挙げられる(例えば特許文献1参照)。
このフッ化カルシウムスケールは、半導体製造工程回収水を再利用する超純水製造装置における逆浸透膜の目詰まりの原因となったりする。この特許文献1においては、従来、フッ化カルシウムスケールを除去するために使用されていた高濃度のEDTAに代わり、リン酸系の薬剤を用いてフッ化カルシウムスケールを除去している。
また、別の副生成物の例を挙げるとするならば、石炭又は他の灰分含有有機物質を高温・高圧の部分酸化急冷ガス化システムでガス化させる際に発生する、シリカ、フッ化カルシウム、及びフッ化マグネシウムを成分として含有するスケールも挙げられる(例えば特許文献2参照)。
特許文献2においては、上記のスケールは金属表面に付着している。このスケールに対し、無機酸塩水溶液をNaOH中和溶液で中和させながら、スケールを除去している。このようにすることにより、スケールが付着していた金属の腐食を防止している。
上記の技術以外にも、物質の製造を行う技術の一つとして、近年、ガラス基板をエッチングにより加工する技術が知られるようになっている。このガラス基板については、特にディスプレイ用カバーガラスや携帯電子機器等の筐体用ガラスのような電子機器用カバーガラス(以降、これらを総称してMCGとも言う。)としての用途が急増している。この用途としては、例えば、携帯電話などのように、液晶パネル、有機ELパネル等の画像表示パネルを備えた携帯型電子機器では、画像表示パネルを保護するためのものが挙げられる。
このようなMCGは、例えば、次のように作製される(例えば特許文献3~5参照)。まず、金属酸化物を含有するガラス基板をウエットエッチングにより所定形状に切断して、小片化された板状のガラス基板を作製する。
次に、この小片化されたガラス基板を熔融塩に浸漬する。ガラス基板をこの化学強化用の熔融塩に浸漬させることにより、ガラス基板の表面近傍において、ガラス中に含まれるアルカリ金属と熔融塩に含まれるアルカリ金属イオン同士の交換が行われる。その結果、ガラス基板の表面近傍に圧縮応力層を形成することができる。
このイオン交換の後、化学強化されたガラス基板の表面を水や水溶液で洗浄する。そして、化学強化されたガラス基板の表面に、必要に応じて、反射防止膜等の各種の機能膜を成膜する。このようにして、MCGは形成されている。
MCGは外装部品であるため、耐傷性や優れた強度が要求されることから、化学強化処理が必須となる。それゆえ、MCGを構成するガラス成分としてLi2OやNa2O等のアルカリ金属成分を含有するガラスが用いられる。さらに、より良好な化学強化特性(短時間での処理、深い圧縮応力、イオンの交換速度の向上といった効果)を得るため、ガラス組成にはAl2O3を比較的高濃度で添加する必要がある。したがって、半導体製造工程等で行われるエッチングとは異なり、MCGの製造過程にあっては、特定の成分を含むガラス組成物に対してフッ酸(HF)を含有するエッチング液で処理するため、フッ化アルミン酸アルカリ金属塩といった特殊な副生成物が形成される。
ここで挙げたMCGを製造する過程で生成された副生成物についてX線回折測定を行い、この副生成物が有するXRDパターンを分析した(図3)。その結果、この副生成物は、Li3AlF6、Na3AlF6(氷晶石)、及びLi3Na3(AlF6)2(クライオリチオナイト)のいずれか又はそれらの組み合わせであると推察される。
このフッ化アルミン酸アルカリ金属塩スケールは、ガラス基板中に含まれるアルカリ金属(LiやNa)及び酸化アルミニウム(Al2O3)、並びにガラス基板のエッチングに用いられるフッ酸(HF)により発生していると考えられる。
以下、これらの副生成物をまとめて「フッ化アルミン酸スケール」とも言う。
以下、これらの副生成物をまとめて「フッ化アルミン酸スケール」とも言う。
ガラス基板のエッチングにより発生するこれらのフッ化アルミン酸スケールは、MCGの製造工程を大きく阻害する原因となっている。このフッ化アルミン酸スケールは、製造工程の効率を著しく減少させるだけではなく、フッ化アルミン酸スケールの除去を行う際に創傷の危険を伴うという問題も抱えている。この問題について、以下、詳述する。
まず、シャワーエッチング方式によるエッチング装置において、フッ化アルミン酸スケールがエッチングシャワーノズル内に析出し、堆積する。その結果、エッチング溶液の流れを阻害し、噴霧不良を引き起こすおそれがある。
更に、シャワーノズル内のみならず、その外周部にも堆積する。そして、エッチング装置におけるガラス基板の搬送部、ギア及び軸受にもフッ化アルミン酸スケールが析出する。その結果、エッチング装置における駆動負荷が増加し、搬送不良や駆動系の破損に至るおそれがある。
また、このフッ化アルミン酸スケールは、テフロン(登録商標)被覆のエッチング溶液貯留槽の温調などにも析出する。その結果、温度制御が困難になるおそれがある。
それにとどまらず、配管内、流路切り替えバルブ、圧送ポンプ、流量計等あらゆる配管内に析出する可能性を有しており、実際に析出及び堆積が生じている。その結果、エッチング溶液の流量の減少やバルブの開閉不良等、深刻な問題を引き起こすおそれがある。
エッチング装置の制御不良の原因をこれだけ有する副生成物であるにもかかわらず、現在のところ、この副生成物を薬剤等で化学的に除去する有効な手段は見つかっていない。
通常、MCGの製造に用いられるエッチング装置は、ガラス基板をエッチングするためにフッ酸などフッ素系のエッチング溶液が硫酸や硝酸等の酸性溶液と共に使用される。そのような状況下で、フッ化アルミン酸スケールは発生している。つまり、フッ化アルミン酸スケールは、フッ酸、硫酸、硝酸などの混酸に対して難溶もしくは不溶となっており、溶解除去の困難性に拍車をかけている。
なお、フッ化アルミン酸スケールアルカリは、市販の洗剤でも除去することができない。それどころか、洗剤にはナトリウム等のアルカリ成分を含むものが多く、このアルカリ成分と電離したフッ化アルミン酸イオンとが結合して、塩すなわちスケールの発生が進行してしまう。さらに、水洗しただけでも、液性が酸性から中性になるため、副生成物の析出が増大する。
結局のところ、フッ化アルミン酸スケールを除去するためには、機械的な除去を行うほか手段がなかった。この機械的な除去について具体的に言うと、まず、エッチング溶液貯留槽からエッチング溶液を抜き取る。その後、エッチング溶液貯留槽に水を入れてエッチング装置を稼働する。そして、エッチング装置内のpHを、清掃者がフッ化アルミン酸スケールに触れても大丈夫な程度に調整する。そうした後、エッチング装置を分解清掃する。
この清掃においては、ヘラやハンマー、高圧水洗などによる機械的な除去を行っている。このフッ化アルミン酸スケールの外形は鋭利な結晶になっており、この清掃の最中に、フッ化アルミン酸スケールが清掃者の保護具を貫通し、清掃者に深い傷を与えてしまうおそれがある。
更に悪いことに、このフッ化アルミン酸スケールの清掃に要する時間としては、エッチング装置の稼働日1~2日間につき、1日以上もの清掃時間を要することになってしまう。なぜなら、エッチングで除去したガラスの量に対し10~40%もの量のフッ化アルミン酸スケールが析出・堆積することになってしまうためである。これは、エッチング装置の稼働日1日間あたりに換算すると、数キログラム~数十キログラムという極めて多量なフッ化アルミン酸スケールが1日間に生じるという計算になる。
つまり、清掃に要する時間が長くなればなるほど、エッチング装置の稼働を停止せざるを得なくなり、MCG製造の歩留まりが著しく低下してしまう。それと同時に、清掃者の創傷のリスクが著しく増大してしまう。
以上のように、MCGの製造、ひいてはガラスに対してエッチング処理を行う工程においては、従来の特許文献1や2で発生する副生成物に比べ、製造工程に対してはるかに悪影響を与える。そのため、ガラスに対してエッチングを用いる技術において、上記の課題の解決は喫緊の事項となっている。
そこで本発明の目的は、電子機器用カバーガラスのガラス基板の製造装置としてのエッチング装置がフッ化アルミン酸スケールを除去する機構を有することで、エッチング装置の稼働を停止する必要なくフッ化アルミン酸スケールを化学的に除去でき、しかもエッチング装置を安全に清掃することにある。また、本発明の目的は、エッチング装置を連続的に稼働させ、生産効率を向上させることにある。
本発明者は、上述の目的を達成できる電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸スケールの除去方法及びその装置について検討した。その際、フッ化アルミン酸スケールが酸性状況下では溶解しない点について検討した。
本発明者らが検討を重ねた結果、フッ化アルミン酸スケールは酸性状況下で溶解しないのではなく、単なる混酸に対して溶解しないだけであり、酸性状況は必要ではないかという知見を得た。そして、従来だと溶解できなかった酸性状況のまま、金属イオンを含む酸性の電解質溶液でフッ化アルミン酸スケールを処理することにより、フッ化アルミン酸スケールを化学的にしかも速やかに除去するという手段を想到した。
以上の知見に基づいて成された本発明の態様は、以下の通りである。
本発明の第1の形態は、
ガラス基板を酸性のエッチング溶液によりエッチングするエッチング工程と、
耐酸性物質に付着した化合物であって、前記エッチング工程により生じ、かつ前記エッチング工程により酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去工程と、
を有することを特徴とする電子機器用カバーガラスのガラス基板の製造方法である。
本発明の第2の形態は、第1の形態に記載の発明であって、
前記除去工程の後に、前記エッチング工程を再度行うことを特徴とする。
本発明の第3の形態は、第1又は第2の形態に記載の発明であって、
前記電解質溶液は、硫酸アルミニウム水溶液又は硝酸アルミニウム水溶液であることを特徴とする。
本発明の第4の形態は、第1ないし第3の形態のいずれかに記載の発明であって、
前記エッチング溶液は、フッ酸及び硫酸を含む溶液であることを特徴とする。
本発明の第5の形態は、第1ないし第4の形態のいずれかに記載の発明であって、
前記フッ化アルミン酸アルカリ塩は、前記フッ酸及び硫酸を含む溶液を用いて、酸化アルミニウムを含有する前記ガラス基板をエッチング装置内にてエッチングすることにより生じたものであり、
前記除去工程は、前記電解質溶液を前記エッチング装置内にて循環させることにより行われることを特徴とする。
本発明の第6の形態は、第1ないし第5の形態のいずれかに記載の発明であって、
前記フッ化アルミン酸アルカリ塩はLi3AlF6、Na3AlF6、及びLi3Na3(AlF6)2のいずれか又はその組み合わせであることを特徴とする。
本発明の第7の形態は、
ガラス基板を酸性のエッチング溶液によりエッチングするエッチング溶液供給手段と、
耐酸性物質に付着した化合物であって、前記エッチング溶液との接触により生じ、かつ前記エッチング溶液によって酸性となったフッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去手段と、
を有することを特徴とする電子機器用カバーガラスのガラス基板の製造装置である。
本発明の第8の形態は、第7の形態に記載の発明であって、
前記エッチング溶液及び前記電解質溶液を前記製造装置内にて各々独立して循環させる循環手段を更に有することを特徴とする。
本発明の第9の形態は、第7又は第8の形態に記載の発明であって、
前記エッチング溶液は、フッ酸及び硫酸を含む溶液であって、
前記フッ酸及び硫酸を含む溶液により、酸化アルミニウムを含有する前記ガラス基板をエッチングすることを特徴とする。
本発明の第10の形態は、
耐酸性物質に付着したフッ化アルミン酸アルカリ塩を酸性溶液により処理する酸処理工程と、
前記酸処理工程により酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去工程と、
を有することを特徴とするフッ化アルミン酸アルカリ塩の除去方法である。
本発明の第11の形態は、
耐酸性物質に付着したフッ化アルミン酸アルカリ塩に対して酸性溶液を供給する酸性溶液供給手段と、
前記酸性溶液供給手段から供給される前記酸性溶液によって酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去手段と、
を有することを特徴とするフッ化アルミン酸アルカリ塩の除去装置である。
本発明の第1の形態は、
ガラス基板を酸性のエッチング溶液によりエッチングするエッチング工程と、
耐酸性物質に付着した化合物であって、前記エッチング工程により生じ、かつ前記エッチング工程により酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去工程と、
を有することを特徴とする電子機器用カバーガラスのガラス基板の製造方法である。
本発明の第2の形態は、第1の形態に記載の発明であって、
前記除去工程の後に、前記エッチング工程を再度行うことを特徴とする。
本発明の第3の形態は、第1又は第2の形態に記載の発明であって、
前記電解質溶液は、硫酸アルミニウム水溶液又は硝酸アルミニウム水溶液であることを特徴とする。
本発明の第4の形態は、第1ないし第3の形態のいずれかに記載の発明であって、
前記エッチング溶液は、フッ酸及び硫酸を含む溶液であることを特徴とする。
本発明の第5の形態は、第1ないし第4の形態のいずれかに記載の発明であって、
前記フッ化アルミン酸アルカリ塩は、前記フッ酸及び硫酸を含む溶液を用いて、酸化アルミニウムを含有する前記ガラス基板をエッチング装置内にてエッチングすることにより生じたものであり、
前記除去工程は、前記電解質溶液を前記エッチング装置内にて循環させることにより行われることを特徴とする。
本発明の第6の形態は、第1ないし第5の形態のいずれかに記載の発明であって、
前記フッ化アルミン酸アルカリ塩はLi3AlF6、Na3AlF6、及びLi3Na3(AlF6)2のいずれか又はその組み合わせであることを特徴とする。
本発明の第7の形態は、
ガラス基板を酸性のエッチング溶液によりエッチングするエッチング溶液供給手段と、
耐酸性物質に付着した化合物であって、前記エッチング溶液との接触により生じ、かつ前記エッチング溶液によって酸性となったフッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去手段と、
を有することを特徴とする電子機器用カバーガラスのガラス基板の製造装置である。
本発明の第8の形態は、第7の形態に記載の発明であって、
前記エッチング溶液及び前記電解質溶液を前記製造装置内にて各々独立して循環させる循環手段を更に有することを特徴とする。
本発明の第9の形態は、第7又は第8の形態に記載の発明であって、
前記エッチング溶液は、フッ酸及び硫酸を含む溶液であって、
前記フッ酸及び硫酸を含む溶液により、酸化アルミニウムを含有する前記ガラス基板をエッチングすることを特徴とする。
本発明の第10の形態は、
耐酸性物質に付着したフッ化アルミン酸アルカリ塩を酸性溶液により処理する酸処理工程と、
前記酸処理工程により酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去工程と、
を有することを特徴とするフッ化アルミン酸アルカリ塩の除去方法である。
本発明の第11の形態は、
耐酸性物質に付着したフッ化アルミン酸アルカリ塩に対して酸性溶液を供給する酸性溶液供給手段と、
前記酸性溶液供給手段から供給される前記酸性溶液によって酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去手段と、
を有することを特徴とするフッ化アルミン酸アルカリ塩の除去装置である。
本発明によれば、電子機器用カバーガラスのガラス基板の製造装置としてのエッチング装置がフッ化アルミン酸スケールを除去する機構を有することで、エッチング装置の稼働を停止する必要なくフッ化アルミン酸スケールを化学的に除去することができ、しかも、エッチング装置を安全に清掃できる。その結果、エッチング装置を連続的に稼働させることができ、生産効率を向上させることができる。
[実施の形態1]
以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
本実施形態においては、電子機器用カバーガラスのガラス基板の製造装置10(以下製造装置10とも言う。)の基本構成を示す図として初めに図1を用い、次の順序で説明を行う。
1.電子機器用カバーガラスのガラス基板の製造装置の構成
A)製造装置の概要
B)エッチングを行う処理槽本体
C)エッチング溶液供給手段
D)除去手段
E)循環手段
2.製造装置が具備するスケールの除去機構(スケールの除去方法)の説明
A)溶液の準備
B)エッチング工程
C)スケールの除去工程
i)処理槽、及びエッチング溶液槽に関連しない配管の洗浄
ii)エッチング溶液槽、及びエッチング溶液槽に関連する配管の洗浄
D)再洗浄の準備
3.実施の形態における特徴部分の詳述
4.実施の形態による効果
5.変形例
以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。
本実施形態においては、電子機器用カバーガラスのガラス基板の製造装置10(以下製造装置10とも言う。)の基本構成を示す図として初めに図1を用い、次の順序で説明を行う。
1.電子機器用カバーガラスのガラス基板の製造装置の構成
A)製造装置の概要
B)エッチングを行う処理槽本体
C)エッチング溶液供給手段
D)除去手段
E)循環手段
2.製造装置が具備するスケールの除去機構(スケールの除去方法)の説明
A)溶液の準備
B)エッチング工程
C)スケールの除去工程
i)処理槽、及びエッチング溶液槽に関連しない配管の洗浄
ii)エッチング溶液槽、及びエッチング溶液槽に関連する配管の洗浄
D)再洗浄の準備
3.実施の形態における特徴部分の詳述
4.実施の形態による効果
5.変形例
なお、実際の製造装置においては、図1の記載の構成以外にも多くの構成が存在する(例えば、廃液ライン、新液供給ライン、各種フィルター、水洗用給水ライン、加熱ライン、冷却ライン、等々)。ただ、本実施形態の特徴を明確かつ簡潔に伝えるべく、電子機器用カバーガラスのガラス基板の製造装置の一例として、図1に記載のエッチング装置の構成に焦点を当てて説明する。
また、エッチングによるガラスの加工としては、種々の加工が知られている。例えば、一枚板のガラス板にマスクを施してエッチングすることで、所定の形状のガラス板が切離され小片化することができる(外形加工)。この外形加工には、ガラス板を切離しない程度に、エッチングにより表面の一部を除去する加工も含まれる。また、一枚板のガラス板を機械加工により小片化あるいは形状加工を行った後、機械加工に起因する加工面端部のダメージ層をエッチングにより除去できる。また、小片化されたガラス板の主表面を、エッチングにより加工できる。
さらに、エッチングの方式としては、例えば、シャワーエッチング方式や浸漬方式が知られている。シャワーエッチング方式は、例えば、ガラス基板をローラーで搬送しながら上方及び/又は下方から、シャワーノズルにてエッチング溶液を噴出させてガラス基板をエッチングする方式である。シャワーエッチング方式は、上記のガラスの外形加工や主表面加工に好適である。浸漬方式は、処理槽内のエッチング溶液中にガラス基板を浸漬させエッチングする方式である。浸漬方式は、外形加工、チャンファリング加工、主表面加工のいずれにも好適である。
本実施形態においては、エッチングにより上記のフッ化アルミン酸アルカリ塩が生成する工程であれば、上記のガラスの加工方法やエッチングの方式には限定されず、以下に示す製造装置10及びスケールの除去機構(スケールの除去方法)が適用できる。
また、以降の記載においては、説明の便宜上、フッ化アルミン酸アルカリ塩については、「フッ化アルミン酸スケール」以外にも、単に「スケール」とも言う。
また、以降の記載においては、説明の便宜上、フッ化アルミン酸アルカリ塩については、「フッ化アルミン酸スケール」以外にも、単に「スケール」とも言う。
<1.電子機器用カバーガラスのガラス基板の製造装置の構成>
A)製造装置の概要
まず、本実施形態における製造装置10は、酸化アルミニウムを含有するガラス基板をフッ酸及び硫酸を含むエッチング溶液によりエッチングするために用いられるエッチング装置である。
A)製造装置の概要
まず、本実施形態における製造装置10は、酸化アルミニウムを含有するガラス基板をフッ酸及び硫酸を含むエッチング溶液によりエッチングするために用いられるエッチング装置である。
この製造装置10は、処理槽1、エッチング溶液槽2、電解質溶液槽3、ポンプ4、第1バルブ21、第2バルブ22、第3バルブ33及び第4バルブ34を具備している。
なお、ポンプ4は、エッチング溶液槽2又は電解質溶液槽3から処理槽1へと溶液を輸送するためのものである。
また、エッチング溶液槽2からポンプ4へとエッチング溶液を輸送すべく、エッチング溶液槽2とポンプ4との間には第1バルブ21が設けられている。その上で、処理槽1からの使用済みエッチング溶液をエッチング溶液槽2へと戻すべく、第2バルブ22が設けられている。
それと同様に、電解質溶液槽3からポンプ4へと電解質溶液を輸送すべく、電解質溶液槽3とポンプ4との間には第3バルブ33が設けられている。その上で、処理槽1からの使用済み電解質溶液を電解質溶液槽3へと戻すべく、第4バルブ34が設けられている。
以上の構成により、製造装置10内において、エッチング溶液を循環させる場合と、金属イオンを含む酸性の電解質溶液を循環させる場合とを、適宜選択できる構成となっている。
その結果、上記の製造装置10にて析出及び堆積するはずのスケール(Li3AlF6、Na3AlF6(氷晶石)、及びLi3Na3(AlF6)2(クライオリチオナイト)のいずれか又はその組み合わせ)を、化学的に溶解除去することができる。
その結果、上記の製造装置10にて析出及び堆積するはずのスケール(Li3AlF6、Na3AlF6(氷晶石)、及びLi3Na3(AlF6)2(クライオリチオナイト)のいずれか又はその組み合わせ)を、化学的に溶解除去することができる。
B)エッチングを行う処理槽
本実施形態における処理槽1は、公知のものであり、ガラスに対するエッチングを行うことができるものであれば、どのような方式のものであっても構わない。本実施形態においては、一例として、電子機器用カバーガラスとなるガラス基板を処理槽内でエッチングする場合について説明する。なお、浸漬方式の場合、複数の基板を重ねることにより、複数の基板を同時に浸漬させるのが、作業効率の向上という点で好ましい。
本実施形態における処理槽1は、公知のものであり、ガラスに対するエッチングを行うことができるものであれば、どのような方式のものであっても構わない。本実施形態においては、一例として、電子機器用カバーガラスとなるガラス基板を処理槽内でエッチングする場合について説明する。なお、浸漬方式の場合、複数の基板を重ねることにより、複数の基板を同時に浸漬させるのが、作業効率の向上という点で好ましい。
このガラス基板の組成については、酸化アルミニウムを含有するものであれば良い。一例を挙げると、SiO2-Al2O3-Li2O-Na2O-ZrO2系、SiO2-Al2O3-Li2O-ZrO2系、SiO2-Al2O3-Na2O-ZrO2系等の組成を有するガラス基板が挙げられる。
上記処理槽1は、上記エッチング溶液槽2及び電解質溶液槽3と連通し、各々の溶液を処理槽1内に導くための開口を有している。それと同時に、上記処理槽1内にて各々の溶液が使用された後、使用済みの溶液を処理槽1外に排出するための開口も備えている。この開口は上記エッチング溶液槽2及び電解質溶液槽3と連通する槽を選択可能である。
なお、どの方式を用いるにせよ、処理槽1の内壁及び関連部材の少なくとも主表面は耐酸性物質によって形成されている。ガラス基板に対して酸性のエッチング溶液によるウエットエッチングを行うため、エッチング装置内のいたるところで酸性溶液と接触する可能性があり、酸性溶液による腐食を防止するためである。
この耐酸性物質としては、金属部品に対してテフロン(登録商標)樹脂による表面コーティングが行われたものが挙げられる。また、関連部材そのものを樹脂製にしても構わない。
なお、以降に説明するエッチング溶液槽2、電解質溶液槽3、ポンプ4、第1バルブ21、第2バルブ22、第3バルブ33及び第4バルブ34についても、酸性のエッチング溶液と接触する可能性がある場合、少なくとも主表面は耐酸性物質となっている。
従来だと、この耐酸性物質に上記スケールが付着し、MCG、即ち、電子機器用カバーガラスの製造工程に大きな影響を与えていた。
従来だと、この耐酸性物質に上記スケールが付着し、MCG、即ち、電子機器用カバーガラスの製造工程に大きな影響を与えていた。
C)エッチング溶液供給手段
本実施形態においては、エッチング溶液供給手段は、ガラス基板に対しエッチング溶液を供給することに加え、エッチング工程により生じて耐酸性物質に付着したフッ化アルミン酸アルカリ塩を酸性にする。図1を用いて具体的に説明すると、エッチング溶液槽2から、第1バルブ21そしてポンプ4を経由して、処理槽1へとエッチング溶液を供給する。本実施形態においては、この一連の供給機構を、エッチング溶液供給手段と言う。
本実施形態においては、エッチング溶液供給手段は、ガラス基板に対しエッチング溶液を供給することに加え、エッチング工程により生じて耐酸性物質に付着したフッ化アルミン酸アルカリ塩を酸性にする。図1を用いて具体的に説明すると、エッチング溶液槽2から、第1バルブ21そしてポンプ4を経由して、処理槽1へとエッチング溶液を供給する。本実施形態においては、この一連の供給機構を、エッチング溶液供給手段と言う。
本実施形態において、このエッチング溶液は、酸化アルミニウムを含有するガラス基板をエッチングするだけでなく、フッ化アルミン酸スケールを除去するための前処理を行うことができる。
このエッチング溶液は、具体的には、少なくともフッ酸を含むものであれば特に限定されず、例えば、フッ化アンモニウム(NH4F)、フッ化水素アンモニウム(NH5F2)等が含まれてもよい。ただ、フッ酸と混合させる酸性溶液については、塩酸だと塩素ガスが発生して制御が困難であること、硝酸だと耐酸性物質である樹脂を腐食させてしまうおそれがあることから、硫酸を選択するのが好ましい。また、フッ酸及び硫酸の混酸を用いた場合、上記スケールが発生しやすくなる可能性もあり、その方が本実施形態の効果をさらに倍増させられることも期待できる。なお、必要に応じて、界面活性剤等の各種の添加剤が添加されていてもよい。
一方、処理槽1にてエッチングに用いられた使用済みのエッチング溶液は、処理槽1から第2バルブ22を介してエッチング溶液槽2へと輸送されることになる。そして、必要に応じてエッチング溶液の再生又は排出と追加を行う。その上で、再び、エッチング溶液槽2から、第1バルブ21そしてポンプ4を経由して、処理槽1へとエッチング溶液を供給する。
D)除去手段
本実施形態においては、除去手段は電解質溶液供給手段を有している。電解質溶液供給手段は、エッチング溶液供給手段と同様の機構であり、この電解質溶液供給手段により、フッ化アルミン酸アルカリ塩に対して金属イオンを含む酸性の電解質溶液を供給する。図1を用いて具体的に説明すると、電解質溶液槽3から第3バルブ33そしてポンプ4を経由して、処理槽1へと、金属イオンを含む酸性の電解質溶液を供給する。本実施形態においては、この一連の供給機構を、除去手段と言う。
本実施形態においては、除去手段は電解質溶液供給手段を有している。電解質溶液供給手段は、エッチング溶液供給手段と同様の機構であり、この電解質溶液供給手段により、フッ化アルミン酸アルカリ塩に対して金属イオンを含む酸性の電解質溶液を供給する。図1を用いて具体的に説明すると、電解質溶液槽3から第3バルブ33そしてポンプ4を経由して、処理槽1へと、金属イオンを含む酸性の電解質溶液を供給する。本実施形態においては、この一連の供給機構を、除去手段と言う。
この電解質溶液は、上記スケールに含有されるフッ化アルミン酸アルカリ塩を溶解させて除去するための溶液である。そして、この溶液は、金属イオンを含む酸性の電解質溶液である。以降、本実施形態における「金属イオンを含む酸性の電解質溶液」を、説明の便宜上、単に「電解質溶液」とも言う。
この金属イオンとしては特に限定されないと考えられるが、現在のところスケールを溶解する効果が確認されているのは、鉄イオンやアルミニウムイオンである。この両者のうち、スケールの溶解速度が速いという点で、アルミニウムイオンが更に好ましい。
また、金属イオンと共に存在するイオンとしては、酸性となるイオンならば特に限定されないと考えられるが、現在のところスケールを溶解する効果が確認されているのは、硫酸イオンや硝酸イオンである。先にも述べたが、樹脂の腐食のしにくさという点で、硫酸イオンを用いるのが更に好ましい。
そのため、「金属イオンを含む酸性の電解質溶液」としては、硫酸アルミニウム水溶液や硝酸アルミニウム水溶液が好ましく、特に硫酸アルミニウム水溶液の方がより好ましい。
なお、C)エッチング溶液供給手段と同様、必要に応じて、界面活性剤等の各種の添加剤が添加されていてもよい。
そのため、「金属イオンを含む酸性の電解質溶液」としては、硫酸アルミニウム水溶液や硝酸アルミニウム水溶液が好ましく、特に硫酸アルミニウム水溶液の方がより好ましい。
なお、C)エッチング溶液供給手段と同様、必要に応じて、界面活性剤等の各種の添加剤が添加されていてもよい。
一方、処理槽1にてスケールの除去に用いられた使用済みの電解質溶液は、処理槽1から第4バルブ34を介して電解質溶液槽3へと輸送されることになる。そして、必要に応じて電解質溶液の再生又は排出と追加を行う。その上で、再び、電解質溶液槽3から、第3バルブ33そしてポンプ4を経由して、処理槽1へと電解質溶液を供給する。
E)循環手段
本実施形態における循環手段は、C)エッチング溶液供給手段やD)除去手段から供給される溶液を、製造装置10内にて循環させる機構のことを指す。つまり、図1において、図示しないインターフェイス(制御盤等)で製造装置10を操作する場合、エッチング溶液供給手段を稼働させることを選択すると、第1バルブ21及び第2バルブ22が開き、第3バルブ33及び第4バルブ34が閉じる。そして、ポンプ4が稼働し、エッチング溶液槽2→第1バルブ21→ポンプ4→処理槽1→第2バルブ22→エッチング溶液槽2→第1バルブ21→・・・というように、エッチング溶液が循環する。後述するが、このとき、処理槽1ではガラス基板に対するエッチングが行われる。本実施形態では、エッチング溶液が循環する機構を「エッチングモード」とも言う。
本実施形態における循環手段は、C)エッチング溶液供給手段やD)除去手段から供給される溶液を、製造装置10内にて循環させる機構のことを指す。つまり、図1において、図示しないインターフェイス(制御盤等)で製造装置10を操作する場合、エッチング溶液供給手段を稼働させることを選択すると、第1バルブ21及び第2バルブ22が開き、第3バルブ33及び第4バルブ34が閉じる。そして、ポンプ4が稼働し、エッチング溶液槽2→第1バルブ21→ポンプ4→処理槽1→第2バルブ22→エッチング溶液槽2→第1バルブ21→・・・というように、エッチング溶液が循環する。後述するが、このとき、処理槽1ではガラス基板に対するエッチングが行われる。本実施形態では、エッチング溶液が循環する機構を「エッチングモード」とも言う。
逆に、除去手段を稼働させることを選択すると、第3バルブ33及び第4バルブ34が開き、第1バルブ21及び第2バルブ22が閉じる。そして、ポンプ4が稼働し、電解質溶液槽3→第3バルブ33→ポンプ4→処理槽1→第4バルブ34→電解質溶液槽3→第3バルブ33→・・・というように、電解質溶液が循環する。後述するが、このとき、エッチング工程で生じたフッ化アルミン酸スケールの除去が行われる。本実施形態では、電解質溶液が循環する機構を「除去モード」とも言う。
また、本実施形態においては、この一連の循環機構を、循環手段と言う。本実施形態における循環手段は、エッチング溶液及び電解質溶液を製造装置10内にて各々独立して循環させている。すなわち、製造装置10内において、製造工程の一部であるエッチングモードとスケールを除去する除去モードとをバルブ等により切り替えることができる。
また、本実施形態においては、この一連の循環機構を、循環手段と言う。本実施形態における循環手段は、エッチング溶液及び電解質溶液を製造装置10内にて各々独立して循環させている。すなわち、製造装置10内において、製造工程の一部であるエッチングモードとスケールを除去する除去モードとをバルブ等により切り替えることができる。
<2.製造装置が具備するスケールの除去機構(スケールの除去方法)の説明>
以下、本実施形態に係る電子機器用カバーガラスのガラス基板の製造方法において用いられるスケールの除去方法について、上記にて説明した製造装置を用いて説明する。
以下、本実施形態に係る電子機器用カバーガラスのガラス基板の製造方法において用いられるスケールの除去方法について、上記にて説明した製造装置を用いて説明する。
A)溶液の準備
まず、エッチング溶液及び電解質溶液を、エッチング溶液槽2及び電解質溶液槽3に各々入れる。エッチング溶液槽2に入れられるエッチング溶液は前回のエッチング工程で用いられた溶液であっても良い。このとき、ポンプ4は稼働を停止させておき、第1バルブ21~第4バルブ34は全て閉じておく。なお、具体的なエッチング溶液及び電解質溶液については、上述の通りである。
まず、エッチング溶液及び電解質溶液を、エッチング溶液槽2及び電解質溶液槽3に各々入れる。エッチング溶液槽2に入れられるエッチング溶液は前回のエッチング工程で用いられた溶液であっても良い。このとき、ポンプ4は稼働を停止させておき、第1バルブ21~第4バルブ34は全て閉じておく。なお、具体的なエッチング溶液及び電解質溶液については、上述の通りである。
B)エッチング工程
溶液の準備を行った後、製造装置をエッチングモードに切り替え、ガラス基板に対しエッチング処理を行う。このとき、製造装置10内の各所には、前回のエッチング工程あるいは本エッチング工程によりフッ化アルミン酸アルカリ塩(スケール)が析出・堆積している。したがって、このエッチング工程において、析出・堆積したスケールとエッチング溶液とが接触する。エッチングモードにおけるポンプ4やバルブの具体的な動作については、E)循環手段で説明した通りである。
溶液の準備を行った後、製造装置をエッチングモードに切り替え、ガラス基板に対しエッチング処理を行う。このとき、製造装置10内の各所には、前回のエッチング工程あるいは本エッチング工程によりフッ化アルミン酸アルカリ塩(スケール)が析出・堆積している。したがって、このエッチング工程において、析出・堆積したスケールとエッチング溶液とが接触する。エッチングモードにおけるポンプ4やバルブの具体的な動作については、E)循環手段で説明した通りである。
このエッチング工程では、エッチング溶液としてフッ酸及び硫酸の混酸を用いるため、エッチング溶液と接触したフッ化アルミン酸スケールは酸性となる。したがって、ガラス基板へのエッチング工程が終了した後、そのまま後のC)スケールの除去工程を行うことができる。なお、エッチング工程とは別に、フッ化アルミン酸スケールを酸性とする酸処理工程を設けても良い。
C)スケールの除去工程
エッチング工程に引き続いて、スケールの除去工程を行う。この際、スケールは酸性状態に維持されている。
エッチング工程に引き続いて、スケールの除去工程を行う。この際、スケールは酸性状態に維持されている。
i)処理槽1、及びエッチング溶液槽2に関連しない配管の洗浄
まず、E)循環手段で説明した通り、製造装置をエッチングモードから除去モードへ切り替える。すなわち、第3バルブ33及び第4バルブ34を開き、第1バルブ21及び第2バルブ22を閉じる。そして、ポンプ4が稼働し、電解質溶液槽3→第3バルブ33→ポンプ4→処理槽1→第4バルブ34→電解質溶液槽3→第3バルブ33→・・・というように、電解質溶液を循環させる。この洗浄により、エッチング溶液槽2に関連する配管以外の部分に対し、万遍なく電解質溶液で洗浄を行う。なお、電解質溶液による洗浄の前に(エッチングモードから除去モードへの切り替えの際に)、酸性状態を維持するという条件付きで、必要なら適宜水による洗浄を加えても良い。その洗浄は、電解質溶液の循環手段と同様に洗浄液を循環させても良い。
まず、E)循環手段で説明した通り、製造装置をエッチングモードから除去モードへ切り替える。すなわち、第3バルブ33及び第4バルブ34を開き、第1バルブ21及び第2バルブ22を閉じる。そして、ポンプ4が稼働し、電解質溶液槽3→第3バルブ33→ポンプ4→処理槽1→第4バルブ34→電解質溶液槽3→第3バルブ33→・・・というように、電解質溶液を循環させる。この洗浄により、エッチング溶液槽2に関連する配管以外の部分に対し、万遍なく電解質溶液で洗浄を行う。なお、電解質溶液による洗浄の前に(エッチングモードから除去モードへの切り替えの際に)、酸性状態を維持するという条件付きで、必要なら適宜水による洗浄を加えても良い。その洗浄は、電解質溶液の循環手段と同様に洗浄液を循環させても良い。
ii)エッチング溶液槽、及びエッチング溶液槽に関連する配管の洗浄
次に、エッチング溶液槽2からエッチング溶液を排出する(排出機構は図示せず)。なお、電解質溶液によるエッチング溶液槽2の洗浄の前に、酸性状態を維持するという条件付きで、必要なら適宜水による洗浄を加えても良い。その洗浄は、エッチング溶液の循環手段と同様に洗浄液を循環させても良い。
次に、エッチング溶液槽2からエッチング溶液を排出する(排出機構は図示せず)。なお、電解質溶液によるエッチング溶液槽2の洗浄の前に、酸性状態を維持するという条件付きで、必要なら適宜水による洗浄を加えても良い。その洗浄は、エッチング溶液の循環手段と同様に洗浄液を循環させても良い。
適宜洗浄を加えた後、電解質溶液槽3からエッチング溶液槽2へと電解質溶液を輸送する(輸送機構は図示せず)。その後、第1バルブ21及び第2バルブ22を開き、第3バルブ33及び第4バルブ34を閉じる。そして、ポンプ4を稼働させ、「電解質溶液」を、エッチング溶液槽2→第1バルブ21→ポンプ4→処理槽1→第2バルブ22→エッチング溶液槽2→第1バルブ21→・・・というように循環させる。
このように除去装置10を除去モードで稼働させることにより、図1に示す溶液の全ての輸送経路において、電解質溶液を循環させることができる。その結果、全ての輸送経路において、スケールを溶解することができる。
なお、スケール除去工程の際の、溶液の入れ替え及び洗浄の頻度としては、スケールの析出量に応じて適宜決定される。例えば、溶液は一連の除去工程によりスケールが除去されると、その都度廃棄してもよいし、複数回使用することもできる。また、洗浄の頻度は定期的に実施してもよいし、スケールの析出量をモニタリングしながら、所定値を超えたときに洗浄するようにしてもよい。
D)再洗浄の準備
最後に、空になった電解質溶液槽3に「エッチング溶液」を補充する。そして、エッチング工程を再開して、電子機器用カバーガラスのガラス基板の製造を行う。つまり、洗浄の前では「エッチング溶液槽2」「電解質溶液槽3」だった構成が、再び洗浄を行う際には、その役割が逆転する。つまり、洗浄前後で中身の溶液を入れ替えることにより、「エッチング溶液槽2」と「電解質溶液槽3」の役割が入れ替わる。
以降、スケールの除去方法を実施する度に、上記のA)~D)の工程を繰り返す。
最後に、空になった電解質溶液槽3に「エッチング溶液」を補充する。そして、エッチング工程を再開して、電子機器用カバーガラスのガラス基板の製造を行う。つまり、洗浄の前では「エッチング溶液槽2」「電解質溶液槽3」だった構成が、再び洗浄を行う際には、その役割が逆転する。つまり、洗浄前後で中身の溶液を入れ替えることにより、「エッチング溶液槽2」と「電解質溶液槽3」の役割が入れ替わる。
以降、スケールの除去方法を実施する度に、上記のA)~D)の工程を繰り返す。
<3.実施の形態おける特徴部分の詳述>
以上、電子機器用カバーガラスのガラス基板の製造方法およびその製造装置について説明し、その中で、エッチング工程により生じたフッ化アルミン酸アルカリ塩の除去方法及びその装置について説明した。以下、それらにおいて特徴となる部分と、従来技術(特に特許文献1及び2)との相違について詳述する。
以上、電子機器用カバーガラスのガラス基板の製造方法およびその製造装置について説明し、その中で、エッチング工程により生じたフッ化アルミン酸アルカリ塩の除去方法及びその装置について説明した。以下、それらにおいて特徴となる部分と、従来技術(特に特許文献1及び2)との相違について詳述する。
まず、本実施形態における特徴部分の一つとして、これまで溶解が極めて困難と考えられていたフッ化アルミン酸アルカリ塩(Li3AlF6、Na3AlF6、及びLi3Na3(AlF6)2)を溶解対象としていることが挙げられる。本実施形態では、酸化アルミニウムを含有するガラス基板を、フッ酸を含むエッチング溶液を用いてエッチングしているため、フッ化アルミン酸アルカリ塩が析出してしまい、その対策が必要となるからである。
半導体製造工程に関し、フッ酸を使用することに起因して発生するフッ化カルシウムスケールを除去する特許文献1の技術においては、リン酸系の薬剤を用いてフッ化カルシウムスケールを除去している。
しかしながら、特許文献1の従来技術の位置づけのEDTAや、特許文献1に記載のリン酸系の薬剤では、よほどの高濃度の薬剤でないと、本実施形態におけるスケール(フッ化アルミン酸アルカリ塩)を溶解することは不可能である。しかも、仮に溶解できたとしても、溶解速度が遅すぎるため、エッチング工程によって発生するスケールの量に対し、処理が追いつかない。そのため、実際のエッチング装置におけるスケール除去工程において実用とすることができない。
一方、高濃度の薬剤を高温とすることで溶解速度を向上させることも考えられる。しかしながら、本実施形態におけるエッチング装置は、上述の通り、各部材の少なくとも主表面に対して耐酸性物質として樹脂がコーティングされている。つまり、特許文献1の薬剤を高温としてしまうと、エッチング装置内において耐熱性に劣る樹脂が使用されている部分において腐食や変形が発生してしまう。それにより、結局、エッチング装置の駆動が妨げられるおそれもある。
また、石炭又は他の灰分含有有機物質を高温・高圧の部分酸化急冷ガス化システムでガス化させる際の技術であって、その際に発生する、シリカ、フッ化カルシウム、及びフッ化マグネシウムを成分として含有するスケールを除去する特許文献2の技術においては、硝酸アルミニウム溶液を用いてスケールを溶解している。
しかしながら、特許文献2は、チタン又はステンレス鋼のような金属の表面に付着したスケールを除去するための技術である。スケール除去を行う場所がチタン又はステンレス鋼の表面である関係上、酸性溶液を用いることができない。仮に酸性溶液を用いてしまうと、金属表面に腐食が発生してしまう。
また、石炭又は他の灰分含有有機物質を高温・高圧の部分酸化急冷ガス化システムでガス化させる際の技術では、本実施形態で扱うようなフッ化アルミン酸アルカリ塩(Li3AlF6、Na3AlF6、及びLi3Na3(AlF6)2)が発生することがない。そのため、特許文献2においてフッ化物を含有するスケールと言っても、特許文献2の記載からでは本実施形態のスケールが生成されることはないから、上記のフッ化アルミン酸アルカリ塩(Li3AlF6、Na3AlF6、及びLi3Na3(AlF6)2)には対応できるとは到底読み取ることができない。なお、これは、特許文献1についても同様のことが言える。
そして、本実施形態における別の特徴部分は、フッ化アルミン酸アルカリ塩を予め酸性(即ちpH<7.0)にしておくことである。上述の通り、フッ化アルミン酸アルカリ塩は、硫酸や硝酸のような酸性溶液には不溶であることが知られていた。そのような状況下で、あえて、フッ化アルミン酸アルカリ塩を酸性になるような酸処理(例えば、エッチング処理)を行った。その上で、金属イオンを含む酸性の電解質溶液とフッ化アルミン酸アルカリ塩とを接触させたのである。
つまり、従来の常識では不可能と考えられていた状況下において、後述の実施例に示すように、フッ化アルミン酸アルカリ塩であるスケールを速やかにエッチング装置から除去することができる。
つまり、従来の常識では不可能と考えられていた状況下において、後述の実施例に示すように、フッ化アルミン酸アルカリ塩であるスケールを速やかにエッチング装置から除去することができる。
<4.実施の形態による効果>
ここで挙げた電子機器用カバーガラスのガラス基板の製造方法およびその製造装置においては、以下の効果を奏する。
即ち、ガラス基板に対してエッチング工程を行った際の副生成物として析出及び堆積されるフッ化アルミン酸スケールを、本来溶解しなかったはずの酸性条件下に置く。酸性条件にするという下ごしらえをした上で、金属イオンを含む酸性の電解質溶液に、同じく溶解しなかったはずの酸性条件のフッ化アルミン酸スケールを接触させる。
その結果、エッチング工程の支障となるフッ化アルミン酸スケールを化学的に除去することができる。
ここで挙げた電子機器用カバーガラスのガラス基板の製造方法およびその製造装置においては、以下の効果を奏する。
即ち、ガラス基板に対してエッチング工程を行った際の副生成物として析出及び堆積されるフッ化アルミン酸スケールを、本来溶解しなかったはずの酸性条件下に置く。酸性条件にするという下ごしらえをした上で、金属イオンを含む酸性の電解質溶液に、同じく溶解しなかったはずの酸性条件のフッ化アルミン酸スケールを接触させる。
その結果、エッチング工程の支障となるフッ化アルミン酸スケールを化学的に除去することができる。
しかも、金属イオンを含む酸性の電解質溶液をエッチング装置内にくまなく行きわたらせることにより、化学的なスケール除去が可能となる。そのため、分解除去が困難な装置内の部材であっても、それに付着したフッ化アルミン酸スケールを溶解除去することができる。また、エッチング装置において、「エッチングモード」と「除去モード」とを切り替えることにより、効率良くかつ容易にスケールを除去することができる。
ガラス基板に対してエッチングを用いる技術において、上記の課題の解決は喫緊の事項となっていた。しかしながら、本実施形態に記載の方法を行ったり装置を稼働したりすることにより、エッチング装置の稼働を停止する必要がなくなり、製造工程の効率を著しく向上させることができる。そればかりか、清掃者が機械的な除去を行わないで済むため、フッ化アルミン酸スケールの除去を行う際の創傷の危険を皆無とすることができる。
その結果、ガラス基板ひいては電子機器用カバーガラスの製造の歩留まりを向上させることが可能となり市場競争力を上昇させることができるという大きな効果を奏する。
なお、本実施形態において用いられる電子機器用カバーガラスのガラス基板の製造装置の一例としてのエッチング装置は、ガラス基板に対するウエットエッチングに用いられる装置に対して適用することができる。また、このウエットエッチングで作製されるガラス基板は、様々な用途に使用することができる。特に、画像表示パネルと、画像表示パネルの画像表示面側に設けられたMCGと、を少なくとも備えた携帯型電子機器、特に携帯電話のMCGとして用いられる。
<5.変形例>
なお、本発明の技術的範囲は、上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
本実施形態においては、上記の内容以外の変形例について列挙する。
なお、本発明の技術的範囲は、上述した実施の形態に限定されるものではなく、発明の構成要件やその組み合わせによって得られる特定の効果を導き出せる範囲において、種々の変更や改良を加えた形態も含む。
本実施形態においては、上記の内容以外の変形例について列挙する。
本実施形態においてはガラス基板を例示したが、別に基板でなくとも本発明の思想は適用し得る。つまり、酸化アルミニウム(Al2O3)を含むガラスシート、インゴット、ブロック等にも適用できる。更に言うと、酸化アルミニウム以外の化合物であってアルミニウムを含有するガラスであれば本発明の思想を適用し得る。
また、本実施形態におけるガラス基板は、1枚のガラス基板を加工対象としても良いし、予め複数枚のガラス基板を積層加工しておいて、それを1枚のガラス基板として加工を行っても良い。
また、本実施形態においては、ガラス基板へのエッチング工程によりフッ化アルミン酸スケールを酸性にする場合について述べたが、もちろんエッチング工程とは別にフッ化アルミン酸スケールを酸性にする工程(酸処理工程)を設けても良い。また、エッチング溶液槽2と電解質溶液槽3の溶液の輸送経路において、共通した配管及びポンプ4を用いるのではなく、完全に独立した構成を有していても構わない。つまり、エッチング工程で用いるエッチング溶液を循環させる循環手段と、スケール除去工程で用いる電解質溶液を循環させる循環手段とを別々に設けても構わない。更に言えば、エッチングを行うための装置と、スケールの除去を行うための装置を別個独立で設けていても構わない。このようなスケールの除去を行うための装置は、酸性溶液供給手段と、除去手段と、を有している。酸性溶液供給手段は、エッチング溶液供給手段の代わりに、フッ化アルミン酸スケールを酸性にする。このような装置は、例えば、フッ化アルミン酸スケールが付着した部品等を個別に洗浄するのに好適である。
(実施例1)
以下、実施の形態にて述べた<2.製造装置が具備するスケールの除去機構(スケールの除去方法)の説明>に従って、本実施例について説明する。
以下、実施の形態にて述べた<2.製造装置が具備するスケールの除去機構(スケールの除去方法)の説明>に従って、本実施例について説明する。
A)溶液の準備およびB)エッチング工程
まず、酸化アルミニウムを含有するガラスをフッ酸及び硫酸を含む酸性のエッチング溶液によりエッチングした後のエッチング装置を準備した。つまり、既にエッチング工程が終了しているエッチング装置を準備した。なお、ここで用いたフッ酸は12wt%、そして硫酸は8wt%としていた。
まず、酸化アルミニウムを含有するガラスをフッ酸及び硫酸を含む酸性のエッチング溶液によりエッチングした後のエッチング装置を準備した。つまり、既にエッチング工程が終了しているエッチング装置を準備した。なお、ここで用いたフッ酸は12wt%、そして硫酸は8wt%としていた。
C)スケールの除去工程
エッチング装置内に存在する厚さ1mmのスケール片を3gずつに分解し、電解質溶液中へと、そのスケール片を静置させ、経過時間に対するスケール片の溶解量を調べた。
なお、本実施例における電解質溶液は、表1に記載のように、40℃の硝酸アルミニウム九水和物(Al(NO3)3・9H2O)水溶液30g(濃度41wt%)を用いた。
また、本実施例にて用いたスケール片のpHは3.5(pH7未満)であり、酸性を示していた。
エッチング装置内に存在する厚さ1mmのスケール片を3gずつに分解し、電解質溶液中へと、そのスケール片を静置させ、経過時間に対するスケール片の溶解量を調べた。
なお、本実施例における電解質溶液は、表1に記載のように、40℃の硝酸アルミニウム九水和物(Al(NO3)3・9H2O)水溶液30g(濃度41wt%)を用いた。
また、本実施例にて用いたスケール片のpHは3.5(pH7未満)であり、酸性を示していた。
(比較例1~3)
比較例1~3においては、硝酸アルミニウム九水和物以外の物質であって、金属イオンを含まない酸性溶液を電解質溶液の代わりに用いた。そして、表1に記載の濃度とした。それ以外は、実施例1と同様の手法で、経過時間に対するスケール片の溶解量を調べた。
比較例1~3においては、硝酸アルミニウム九水和物以外の物質であって、金属イオンを含まない酸性溶液を電解質溶液の代わりに用いた。そして、表1に記載の濃度とした。それ以外は、実施例1と同様の手法で、経過時間に対するスケール片の溶解量を調べた。
(実施例5~8)
実施例5~8においては、硝酸アルミニウム九水和物の重量(ひいては電解質溶液の重量、濃度、硝酸アルミニウムのwt%及びモル量)並びにスケール片の重量を表2のように変更させた点を除き、実施例1と同様の手法でスケール片の溶解量を調べた。
実施例5~8においては、硝酸アルミニウム九水和物の重量(ひいては電解質溶液の重量、濃度、硝酸アルミニウムのwt%及びモル量)並びにスケール片の重量を表2のように変更させた点を除き、実施例1と同様の手法でスケール片の溶解量を調べた。
(実施例9~13)
実施例9~13においては、硝酸アルミニウム九水和物の代わりに、硫酸アルミニウム14~18水和物の重量(ひいては電解質溶液の重量、濃度、硝酸アルミニウムのwt%及びモル量)並びにスケール片の重量を表3のように変更させた点を除き、実施例1と同様の手法で、経過時間に対するスケール片の溶解量を調べた。
実施例9~13においては、硝酸アルミニウム九水和物の代わりに、硫酸アルミニウム14~18水和物の重量(ひいては電解質溶液の重量、濃度、硝酸アルミニウムのwt%及びモル量)並びにスケール片の重量を表3のように変更させた点を除き、実施例1と同様の手法で、経過時間に対するスケール片の溶解量を調べた。
(評価結果)
実施例1~13における、フッ化アルミン酸スケールの溶解量(縦軸)と経過時間(横軸)との関係を示すグラフを図2に示す。なお、図2(a)は実施例1~4のデータを示し、図2(b)は実施例5~8のデータを示し、図2(c)は実施例9~13のデータを示す。
いずれのデータにおいても、スケール片は良好に溶解していた。また、経過時間が小さいころの初期の溶解速度は、電解質溶液の濃度に対してあまり変動がないことがわかった。その結果、溶解するスケールの量に対して、十分多い量の硝酸アルミニウム又は硫酸アルミニウムを投入するのが効果的であることが分かった。
なお、比較例1~3においては、経過時間が20時間過ぎても、実施例1~4に比べて1/10の溶解量しか示さず、スケール片の実質的な溶解は確認できなかった。
実施例1~13における、フッ化アルミン酸スケールの溶解量(縦軸)と経過時間(横軸)との関係を示すグラフを図2に示す。なお、図2(a)は実施例1~4のデータを示し、図2(b)は実施例5~8のデータを示し、図2(c)は実施例9~13のデータを示す。
いずれのデータにおいても、スケール片は良好に溶解していた。また、経過時間が小さいころの初期の溶解速度は、電解質溶液の濃度に対してあまり変動がないことがわかった。その結果、溶解するスケールの量に対して、十分多い量の硝酸アルミニウム又は硫酸アルミニウムを投入するのが効果的であることが分かった。
なお、比較例1~3においては、経過時間が20時間過ぎても、実施例1~4に比べて1/10の溶解量しか示さず、スケール片の実質的な溶解は確認できなかった。
1 処理槽
2 エッチング溶液槽
21 第1バルブ
22 第2バルブ
3 電解質溶液槽
33 第3バルブ
34 第4バルブ
4 ポンプ
10 製造装置
2 エッチング溶液槽
21 第1バルブ
22 第2バルブ
3 電解質溶液槽
33 第3バルブ
34 第4バルブ
4 ポンプ
10 製造装置
Claims (11)
- ガラス基板を酸性のエッチング溶液によりエッチングするエッチング工程と、
耐酸性物質に付着した化合物であって、前記エッチング工程により生じ、かつ前記エッチング工程により酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去工程と、
を有することを特徴とする電子機器用カバーガラスのガラス基板の製造方法。 - 前記除去工程の後に、前記エッチング工程を再度行うことを特徴とする請求項1に記載の電子機器用カバーガラスのガラス基板の製造方法。
- 前記電解質溶液は、硫酸アルミニウム水溶液又は硝酸アルミニウム水溶液であることを特徴とする請求項1又は2に記載の電子機器用カバーガラスのガラス基板の製造方法。
- 前記エッチング溶液は、フッ酸及び硫酸を含む溶液であることを特徴とする請求項1ないし3のいずれかに記載の電子機器用カバーガラスのガラス基板の製造方法。
- 前記フッ化アルミン酸アルカリ塩は、前記フッ酸及び硫酸を含む溶液を用いて、酸化アルミニウムを含有する前記ガラス基板をエッチング装置内にてエッチングすることにより生じたものであり、
前記除去工程は、前記電解質溶液を前記エッチング装置内にて循環させることにより行われることを特徴とする請求項1ないし4のいずれかに記載の電子機器用カバーガラスのガラス基板の製造方法。 - 前記フッ化アルミン酸アルカリ塩はLi3AlF6、Na3AlF6、及びLi3Na3(AlF6)2のいずれか又はその組み合わせであることを特徴とする請求項1ないし5のいずれかに記載の電子機器用カバーガラスのガラス基板の製造方法。
- ガラス基板を酸性のエッチング溶液によりエッチングするエッチング溶液供給手段と、
耐酸性物質に付着した化合物であって、前記エッチング溶液との接触により生じ、かつ前記エッチング溶液によって酸性となったフッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去手段と、
を有することを特徴とする電子機器用カバーガラスのガラス基板の製造装置。 - 前記エッチング溶液及び前記電解質溶液を前記製造装置内にて各々独立して循環させる循環手段を更に有することを特徴とする請求項7に記載の電子機器用カバーガラスのガラス基板の製造装置。
- 前記エッチング溶液は、フッ酸及び硫酸を含む溶液であって、
前記フッ酸及び硫酸を含む溶液により、酸化アルミニウムを含む前記ガラス基板をエッチングすることを特徴とする請求項7又は8に記載の電子機器用カバーガラスのガラス基板の製造装置。 - 耐酸性物質に付着したフッ化アルミン酸アルカリ塩を酸性溶液により処理する酸処理工程と、
前記酸処理工程により酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去工程と、
を有することを特徴とするフッ化アルミン酸アルカリ塩の除去方法。 - 耐酸性物質に付着したフッ化アルミン酸アルカリ塩に対して酸性溶液を供給する酸性溶液供給手段と、
前記酸性溶液供給手段から供給される前記酸性溶液によって酸性となった前記フッ化アルミン酸アルカリ塩を、金属イオンを含む酸性の電解質溶液で除去する除去手段と、
を有することを特徴とするフッ化アルミン酸アルカリ塩の除去装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013513092A JP5746758B2 (ja) | 2011-05-02 | 2012-05-02 | 電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置 |
CN201280017630.9A CN103476725B (zh) | 2011-05-02 | 2012-05-02 | 电子设备用覆盖玻璃的玻璃基板的制造方法及其制造装置、以及氟铝酸碱金属盐的除去方法及其装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-102975 | 2011-05-02 | ||
JP2011102975 | 2011-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012150719A1 true WO2012150719A1 (ja) | 2012-11-08 |
Family
ID=47107904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061609 WO2012150719A1 (ja) | 2011-05-02 | 2012-05-02 | 電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5746758B2 (ja) |
CN (1) | CN103476725B (ja) |
TW (1) | TWI443074B (ja) |
WO (1) | WO2012150719A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015104778A (ja) * | 2013-11-29 | 2015-06-08 | Hoya株式会社 | 研磨用キャリアの製造方法および磁気ディスク用ガラス基板の製造方法 |
JP2015125788A (ja) * | 2013-12-26 | 2015-07-06 | Hoya株式会社 | 磁気ディスク用ガラス基板の製造方法 |
JP5910841B1 (ja) * | 2015-03-25 | 2016-04-27 | パナソニックIpマネジメント株式会社 | ガラス用研磨装置の洗浄液および洗浄方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107737764A (zh) * | 2017-10-25 | 2018-02-27 | 信利半导体有限公司 | 一种去除玻璃蚀刻残留物的方法 |
CN111943514B (zh) * | 2020-06-29 | 2022-04-05 | 成都光明光电股份有限公司 | 玻璃陶瓷和玻璃陶瓷制品 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000513048A (ja) * | 1996-07-17 | 2000-10-03 | テキサコ・デベロップメント・コーポレーション | アルミニウム塩溶液を使用するフッ化物含有スケールの除去 |
JP2003313049A (ja) * | 2002-04-19 | 2003-11-06 | Asahi Glass Co Ltd | エッチング液、ガラス基板のエッチング処理方法およびエッチング液の再生処理方法 |
JP2005206620A (ja) * | 2004-01-20 | 2005-08-04 | St Lcd Kk | 洗浄剤 |
JP2008189484A (ja) * | 2007-02-01 | 2008-08-21 | Morita Kagaku Kogyo Kk | フッ化水素酸およびケイフッ化水素酸を含有する廃液から酸成分を分離・回収する方法およびその装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB354909A (en) * | 1930-06-06 | 1931-08-20 | Corning Glass Works | Treating frosted glass articles |
SG121817A1 (en) * | 2002-11-22 | 2006-05-26 | Nishiyama Stainless Chemical Co Ltd | Glass substrate for flat planel display, and process for producing the same |
JP4599307B2 (ja) * | 2006-01-30 | 2010-12-15 | 森田化学工業株式会社 | フッ素含有廃液からのフッ素化合物の回収処理方法 |
-
2012
- 2012-05-02 CN CN201280017630.9A patent/CN103476725B/zh active Active
- 2012-05-02 JP JP2013513092A patent/JP5746758B2/ja active Active
- 2012-05-02 TW TW101115713A patent/TWI443074B/zh active
- 2012-05-02 WO PCT/JP2012/061609 patent/WO2012150719A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000513048A (ja) * | 1996-07-17 | 2000-10-03 | テキサコ・デベロップメント・コーポレーション | アルミニウム塩溶液を使用するフッ化物含有スケールの除去 |
JP2003313049A (ja) * | 2002-04-19 | 2003-11-06 | Asahi Glass Co Ltd | エッチング液、ガラス基板のエッチング処理方法およびエッチング液の再生処理方法 |
JP2005206620A (ja) * | 2004-01-20 | 2005-08-04 | St Lcd Kk | 洗浄剤 |
JP2008189484A (ja) * | 2007-02-01 | 2008-08-21 | Morita Kagaku Kogyo Kk | フッ化水素酸およびケイフッ化水素酸を含有する廃液から酸成分を分離・回収する方法およびその装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015104778A (ja) * | 2013-11-29 | 2015-06-08 | Hoya株式会社 | 研磨用キャリアの製造方法および磁気ディスク用ガラス基板の製造方法 |
JP2015125788A (ja) * | 2013-12-26 | 2015-07-06 | Hoya株式会社 | 磁気ディスク用ガラス基板の製造方法 |
JP5910841B1 (ja) * | 2015-03-25 | 2016-04-27 | パナソニックIpマネジメント株式会社 | ガラス用研磨装置の洗浄液および洗浄方法 |
WO2016151644A1 (ja) * | 2015-03-25 | 2016-09-29 | パナソニックIpマネジメント株式会社 | ガラス用研磨装置の洗浄液および洗浄方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103476725B (zh) | 2016-10-05 |
JPWO2012150719A1 (ja) | 2014-07-28 |
JP5746758B2 (ja) | 2015-07-08 |
TWI443074B (zh) | 2014-07-01 |
TW201302649A (zh) | 2013-01-16 |
CN103476725A (zh) | 2013-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5746758B2 (ja) | 電子機器用カバーガラスのガラス基板の製造方法及びその製造装置並びにフッ化アルミン酸アルカリ塩の除去方法及びその装置 | |
US10260153B2 (en) | Methods and compositions for acid treatment of a metal surface | |
JP6452673B2 (ja) | 金属基体用の洗浄組成物 | |
US5460694A (en) | Process for the treatment of aluminum based substrates for the purpose of anodic oxidation, bath used in said process and concentrate to prepare the bath | |
CN101864575A (zh) | 不锈钢设备专用清洗剂及其使用方法 | |
CN103525599A (zh) | 锅炉积垢去除剂 | |
CN113249731B (zh) | 一种发电机内冷水系统铜垢化学清洗剂 | |
IL248247A (en) | The process of stabilizing the surface of ferrous metals in the process of hot dip galvanizing | |
CN101899667B (zh) | 铝质设备专用清洗剂 | |
ES2718759T3 (es) | Integración de metales ligeros en procedimientos de decapado y de pretratamiento para acero | |
CN101457362A (zh) | 家具用铝型材三酸抛光整平抑雾剂及其抛光方法 | |
JP2006328516A (ja) | 表面処理方法 | |
CN108114608A (zh) | 一种处理含油废水管式陶瓷膜的清洗剂及清洗方法 | |
CN101622099A (zh) | 金属制构件的焊接部的表面处理方法 | |
CN104949570B (zh) | 锅炉的清洗方法 | |
CN113293386A (zh) | 一种海水淡化装置难溶垢化学清洗剂 | |
CN107988593A (zh) | 金属表面处理方法 | |
KR100322267B1 (ko) | 주석-동 화학 합금 도금방법 | |
JP2008153271A (ja) | 使用済み治具の洗浄方法および洗浄組成物 | |
CN105780020A (zh) | 一种管路的清洗方法 | |
KR101713598B1 (ko) | 실리콘계 스케일 제거용 세정액 조성물 | |
CN104451722A (zh) | 一种合金结构钢表面氧化皮的去除方法 | |
KR100936250B1 (ko) | 스크러버 장치 | |
CN107630221B (zh) | 钛聚焦环的清洗方法 | |
EA021844B1 (ru) | Чистка установок hf-алкилирования |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12779408 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013513092 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12779408 Country of ref document: EP Kind code of ref document: A1 |