WO2012147690A1 - 合成杭および合成杭の製造方法 - Google Patents

合成杭および合成杭の製造方法 Download PDF

Info

Publication number
WO2012147690A1
WO2012147690A1 PCT/JP2012/060856 JP2012060856W WO2012147690A1 WO 2012147690 A1 WO2012147690 A1 WO 2012147690A1 JP 2012060856 W JP2012060856 W JP 2012060856W WO 2012147690 A1 WO2012147690 A1 WO 2012147690A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
steel pipe
phc
synthetic
phc pile
Prior art date
Application number
PCT/JP2012/060856
Other languages
English (en)
French (fr)
Inventor
正昭 加倉井
文夫 桑原
林 隆浩
Original Assignee
パイルフォーラム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイルフォーラム株式会社 filed Critical パイルフォーラム株式会社
Priority to JP2013512353A priority Critical patent/JP5805182B2/ja
Publication of WO2012147690A1 publication Critical patent/WO2012147690A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/30Prefabricated piles made of concrete or reinforced concrete or made of steel and concrete

Definitions

  • the present invention concrete strength is 85N / mm 2 or more (preferably 100 N / mm 2 or more) of concrete piles to exert high strength (hereinafter, referred to as PHC pile.),
  • PHC pile high strength
  • the present invention relates to a synthetic pile suitable for the above and a method for producing the synthetic pile.
  • Concrete piles can retain large axial stress (compressive force), but they are brittlely broken against horizontal forces (bending stress and shear stress), so structures (especially high-rise structures) It is difficult to sufficiently withstand the horizontal resistance when used as the foundation of high-rise buildings).
  • steel pipe piles have high bending strength and shear strength, but in order to maintain a large axial stress, a thick-walled pile must be used, which is economical. There is also a problem that local buckling occurs when the pile diameter increases.
  • SC pile an outer shell steel pipe
  • This SC pile is manufactured integrally by injecting high-strength concrete into the hollow portion of the steel pipe and centrifugally forming (centrifugal compaction), and resists axial stress, bending stress and shear stress as a unit.
  • This SC pile has the advantages of a concrete pile that is strong against axial stress and the strength of a steel pipe that is strong against bending stress and shear stress. Even if a large bending deformation occurs, the concrete prevents local buckling of the steel pipe. Since it is restrained by the steel pipe, there is an advantage of having a large toughness, and its demand has been increasing in recent years.
  • the SC pile is configured to integrally resist axial stress, bending stress, and shear stress, it is necessary to bend the concrete pile constituting the SC pile in addition to axial stress. Stress and shear stress are also borne. Specifically, when a horizontal force (short-term load) such as an earthquake is applied to the structure, the concrete pile bears the axial stress (long-term vertical load) of the structure, bending stress and shear stress. It was unclear how much the concrete pile inside the SC pile bears bending stress and shear stress. As a result, the destructive property of the concrete pile was unknown.
  • the SC pile has a problem that the role sharing (function sharing) that the concrete stress is borne by the concrete pile and the steel pipe is borne by the bending stress and the shear stress is not clear.
  • a high-rise structure or a super-high-rise structure requires a secondary design (holding horizontal strength method, time history response analysis), and evaluates not only the allowable stress level of the structure but also ultimate strength, toughness, etc. Is an important design item. Therefore, there is a problem that it is difficult to design a pile member whose performance as a member is unknown (ambiguous) and cannot be designed with a certain design policy.
  • Patent Documents 1 to 5 various inventions for constructing a pile using a concrete pile and a steel pipe in combination are disclosed (for example, see Patent Documents 1 to 5).
  • the inventions according to Patent Documents 1 to 5 are not intended to clarify the roles of axial stress, bending stress, and shear stress as described below, and are not configured. There is still no pile with a structure that can clarify the role sharing that the concrete pile bears, and the bending stress and shear stress bear the steel pipe.
  • Patent Document 1 a core pile (concrete pile) that reaches the support layer and receives the tip resistance force is installed at the center of the steel pipe pile with a slight gap between the steel pipe pile and preloading.
  • the gap between a given core pile and steel pipe pile is filled with a viscoelastic body, and the peripheral frictional resistance when the core pile receives an overload is transmitted to the ground via the viscoelastic body and the steel pipe pile.
  • the technology according to Patent Document 1 aims to provide a highly reliable pile that can be effectively and economically designed and constructed for a practical load support function of the pile, and a core pile and a steel pipe pile.
  • the steel pipe pile is not a configuration that can actively resist horizontal force from the building or the ground. Therefore, the pile according to Patent Document 1 may cause local buckling when a large bending deformation occurs in the steel pipe pile, and is implemented with a configuration utilizing the characteristics (advantages) of the steel pipe pile that is strong in bending strength and shear stress. However, it is impossible to expect the strength (proof strength) to be able to share the role that the axial stress is borne by the concrete pile and the bending stress and shear stress are borne by the steel pipe.
  • Patent Document 2 a pile main body embedded in the ground from the ground surface, a frame body (steel pipe) provided so as to surround at least the outer peripheral surface of the pile main body, and between the frame main body and the frame body.
  • a seismic isolation pile comprising an interstitial viscous material is disclosed (refer to the description of claim 1, FIG. 1, etc.).
  • the technology according to Patent Document 2 is implemented with a configuration in which a viscous material is interposed between the pile body and the steel pipe, the steel pipe can positively resist horizontal force from the building or the ground. Not a configuration.
  • the seismic isolation pile according to Patent Document 2 may cause local buckling when a large bending deformation occurs in the steel pipe, similarly to Patent Document 1, and has the characteristics of a steel pipe that is strong in bending strength and shear strength. It is not implemented in a configuration that makes full use of it, and it is impossible to expect strength (proof strength) that can be shared so that axial stress is borne by concrete piles, and bending stress and shear stress are borne by steel pipes.
  • the foundation pile concerning the above-mentioned patent documents 3 is carried out in the composition where a foundation pile and a steel pipe pinch a vibration isolator between, the steel pipe is in the composition which resists the horizontal force from a building or the ground positively Clearly not. Therefore, the foundation pile according to Patent Document 3 is also likely to cause local buckling when large bending deformation occurs in the steel pipe, as in Patent Documents 1 and 2, and the steel pile pile that is strong in bending strength and shear strength. It is not implemented in a configuration that takes advantage of the characteristics, and it is impossible to expect strength (proof strength) that can be shared so that axial stress is borne by concrete piles, and bending stress and shear stress are borne by steel pipes.
  • Patent Document 4 a steel pipe is fitted into an existing pile placed in a place where an existing building is removed in a remodeling work of a building, and a high-strength mortar is provided in a gap between the steel pipe and the existing pile.
  • a pile using an existing pile formed by filling them together is disclosed (see the description of claim 1).
  • the technology according to Patent Document 4 is an invention that increases the strength of a pile when reusing an existing pile, and since the gap portion is filled with high-strength mortar, the steel pipe is used as a part of the pile. It is required to function. Therefore, the new pile completed by filling with high-strength mortar is only what expected the function of a normal pile.
  • Patent Document 5 a donut-shaped end plate is fixed to both ends of a steel pipe, and after peeling means is formed on the inner surface of the steel pipe, concrete is poured into the steel pipe, and centrifugal molding is performed to inject the inner surface of the peeling means.
  • a steel pipe-covered concrete pile is disclosed which is formed by forming a cylindrical concrete portion on the side and fixing both end faces of the cylindrical concrete portion to the inner surface of the end plate (claims 1 and 1). Etc.).
  • the technique according to Patent Document 5 is provided with a peeling means between the outer surface of the concrete and the inner surface of the steel pipe, the both ends of the concrete and the both ends of the steel pipe are fixed via end plates.
  • An object of the present invention is to provide a synthetic pile that can clarify the role sharing between axial stress, bending stress, and shear stress in a synthetic pile in which a PHC pile and a steel pipe are combined, and a method for manufacturing the synthetic pile.
  • a further object of the present invention is to guarantee the performance of a pile body that can sufficiently cope with the secondary design (holding horizontal strength method, time history response analysis), and not only low-rise structures but also high-rise structures or super-high-rise structures. It is providing the synthetic pile applicable also to the foundation pile of this, and the manufacturing method of this synthetic pile.
  • the composite pile according to the invention described in claim 1 includes a PHC pile, a steel pipe provided in a concentric arrangement with a clearance on the outer periphery of the PHC pile, A synthetic pile consisting of a filler filled in the gap, The upper end of the steel pipe is joined so as to be able to transmit a horizontal force with the foundation of the structure, and the lower end of the steel pipe is edged with the PHC pile.
  • the filler is made of a material having strength and rigidity capable of preventing local buckling of the steel pipe even when bending deformation occurs in the steel pipe, and having strength and rigidity smaller than those of the PHC pile.
  • the invention described in claim 2 is the composite pile according to claim 1, wherein the upper portion of the gap is closed by a flat plate member provided at the upper end opening of the steel pipe, and the flat plate member is the upper end of the PHC pile. Or the upper end of the steel pipe.
  • the upper portion of the gap is closed with a large-diameter end plate whose end plate at the upper end of the PHC pile is larger in diameter than the pile diameter. It is characterized by.
  • the invention described in claim 4 is the composite pile according to any one of claims 1 to 3, wherein the steel pipe is shorter than the PHC pile and has a length capable of effectively resisting the horizontal force. It is characterized by having.
  • the invention described in claim 5 is the synthetic pile according to any one of claims 1 to 4, wherein the filler is cement milk, mortar, resin mortar, or asphalt concrete.
  • the invention described in claim 6 is the composite pile according to any one of claims 1 to 5, wherein the strength of the filler is about 20 to 50 N / mm 2 .
  • the invention described in claim 7 is the composite pile described in any one of claims 1 to 6, wherein the PHC pile is a support pile.
  • the invention described in claim 8 is the composite pile according to any one of claims 1 to 7, wherein the structure is a high-rise structure or a super-high-rise structure.
  • the manufacturing method of the synthetic pile which concerns on the invention described in Claim 9 consists of a PHC pile, the steel pipe provided in a concentric arrangement
  • a method for manufacturing a synthetic pile On the flat part, the PHC pile and the steel pipe are erected vertically in a concentric arrangement, and the gap formed between the outer peripheral surface of the PHC pile and the inner peripheral surface of the steel pipe, from above, Filling the steel pipe with a filling material made of a material having strength and rigidity that can prevent local buckling of the steel pipe even if bending deformation occurs in the steel pipe, and having strength and rigidity smaller than the PHC pile, The filler is cured.
  • the invention described in claim 10 is the method for manufacturing a composite pile according to claim 9, wherein the composite pile has the PHC on a flat portion in a composite pile manufacturing pit having a predetermined width and depth.
  • the pile and the steel pipe are manufactured by standing vertically in a concentric arrangement.
  • the invention described in claim 11 is the synthetic pile manufacturing method according to claim 9 or 10, wherein a peeling plate is placed on the upper surface of the flat portion, and the PHC pile, the steel pipe, Are vertically arranged in a concentric arrangement.
  • the invention described in claim 12 is the synthetic pile manufacturing method according to claim 9 or 10, wherein the steel pipe is a bottomed steel pipe having a flat plate member joined to the bottom thereof, and the bottomed steel pipe is After standing upright on the flat part in the vertical direction, the PHC pile is dropped into the steel pipe in a concentric arrangement with the steel pipe and is raised upright on the flat plate member.
  • the invention described in claim 13 is the synthetic pile manufacturing method according to claim 9 or 10, wherein the PHC pile is joined to a plate member having a diameter larger than the pile diameter at an end plate of one end thereof, After the plate member is directed downward on the flat part in a vertical direction, the steel pipe is dropped so as to surround the PHC pile in a concentric arrangement with the PHC pile, and the plate member is vertically raised on the flat plate member. It is characterized by that.
  • the invention described in claim 14 is the synthetic pile manufacturing method according to claim 9 or 10, wherein the PHC pile is a large-diameter end plate whose end plate is larger in diameter than the pile diameter. After the large-diameter end plate is directed downward on the flat portion in a vertical direction, the steel pipe is dropped so as to surround the PHC pile in a concentric arrangement with the PHC pile, and is placed on the large-diameter end plate. It is characterized by standing in the vertical direction.
  • the invention described in claim 15 is the synthetic pile manufacturing method according to any one of claims 9 to 14, wherein the outer peripheral surface of the PHC pile or the inner peripheral surface of the steel pipe is positioned concentrically. An interval holding member is provided.
  • the composite pile according to the present invention has the following effects. 1) Since the upper end of the steel pipe 2 is joined to the foundation of the structure so as to be able to transmit a horizontal force (short-term load) such as an earthquake, and the lower end of the steel pipe 2 is cut off from the PHC pile 1, the steel pipe 2 The axial load of the friction resistance generated in the steel pipe 2 itself is sufficient, and the load of the axial stress (long-term vertical load) of the structure is small. Therefore, the steel pipe 2 can be configured to bear exclusively the bending stress and shear stress resulting from the horizontal force.
  • the properties of the filler 3 filling the gap formed by the PHC pile 1 and the steel pipe 2 that is, the strength and rigidity capable of preventing local buckling of the steel pipe 2 even if bending deformation occurs in the steel pipe 2.
  • the steel pipe 2 can positively resist the bending stress and the shear stress without causing local buckling due to the characteristics made of a material having lower strength and rigidity than the PHC pile 1.
  • the steel pipe 2 constituting the composite pile 10 (20, 30, 40) according to the present invention mainly acts on bending stress and shear stress and prevents local buckling, so that its bending performance is sufficient. Toughness performance.
  • the synthetic pile 10 (20, 30, 40) according to the present invention is a rational use of the advantages of the PHC pile 1 that is extremely resistant to axial stress and the steel pipe 2 that is resistant to bending stress and shear stress.
  • the PHC pile 1 exclusively bears the axial stress
  • the steel pipe 2 exclusively bears the bending stress and the shear stress. Therefore, it is possible to realize the composite pile 10 (20, 30, 40) with a clear role assignment.
  • the steel pipe 2 does not need to withstand a vertical load and can prevent local buckling. Therefore, even a relatively thin steel pipe (commercially available) can sufficiently exhibit its performance and is economical.
  • the synthetic pile manufacturing method according to the present invention has the following effects. 5) In the state where the PHC pile 1 and the steel pipe 2 are erected in the vertical direction, the filler 3 can be filled into the gap formed by the PHC pile 1 and the steel pipe 2 from above. And can be evenly filled. Therefore, it is excellent in workability and can manufacture the high-quality synthetic pile 10 (20, 30, 40). 6) Further, when the synthetic pile 10 (20, 30, 40) is manufactured in a synthetic pile manufacturing pit having a predetermined width and depth, the height work can be reduced by the depth of the pit. The working efficiency of the filling work of the filler 3 and the lifting work of heavy machinery can be enhanced.
  • A is an elevation view showing the composite pile according to the first embodiment
  • B is a cross-sectional view taken along line BB of A
  • C is a plan view of the composite pile of A.
  • FIGS. 8A to 8C are work process diagrams showing the synthetic pile manufacturing method according to the first embodiment in stages.
  • A is an elevation view showing the composite pile according to the second embodiment
  • B is a cross-sectional view taken along line BB of A
  • C is a plan view of the composite pile of A.
  • FIGS. 8A to 8C are work process diagrams showing the synthetic pile manufacturing method according to the second embodiment step by step.
  • A is an elevational view showing a composite pile according to Example 3
  • B is a cross-sectional view taken along line BB of A
  • C is a plan view of the composite pile of A.
  • FIGS. 8A to 8C are work process diagrams showing the synthetic pile manufacturing method according to the third embodiment step by step.
  • A is an elevation view showing a composite pile according to Example 4
  • B is a cross-sectional view taken along line BB of A
  • C is a plan view of A composite pile.
  • FIGS. 8A to 8C are work process diagrams showing the synthetic pile manufacturing method according to the fourth embodiment step by step.
  • FIG. 1A-C show an embodiment of a composite pile according to the present invention.
  • This synthetic pile 10 is composed of a PHC pile 1, a steel pipe 2 provided in a concentric arrangement with a clearance on the outer periphery of the PHC pile 1, and a filler 3 filled in the gap, and is built in the ground 6. And the foundation of the structure (not shown) is constructed thereon.
  • the upper end of the steel pipe 2 is joined to the foundation of the structure so that a horizontal force can be transmitted, and the lower end of the steel pipe 2 is edged with the PHC pile 1.
  • the filler 3 is made of a material having strength and rigidity capable of preventing local buckling of the steel pipe 2 even when bending deformation occurs in the steel pipe 2 and having lower strength and rigidity than the PHC pile 1.
  • FIG. 1 shows an embodiment in which the composite pile 10 is applied as a support pile to the support layer S having a deep depth from the ground 6 (for example, about 30 m).
  • a normal PHC pile 1 is added below the synthetic pile 10.
  • combination pile 10 and the upper end part of the steel pipe 2 are arrange
  • the structure may be a low-rise structure, a high-rise structure, or a super-high-rise structure.
  • the synthetic pile 10 can also be implemented with a configuration that does not reach the support layer S. Examples 2 to 4 below have the same technical idea.
  • the PHC pile 1 constituting the composite pile 10 is provided with ring-shaped end plates 1a at both ends in the axial direction, and preferably has a strength (Fc) of 100 N / mm 2 or more capable of supporting a large vertical load. Used for.
  • the PHC pile 1 preferably has an outer diameter (D) of about 600 to 1400 mm and a length (L) of about 10 to 20 m.
  • D outer diameter
  • L length
  • the size of the PHC pile 1 is not limited to this, and the design can be appropriately changed according to the form of the structure to be supported or the properties of the ground 6.
  • the steel pipe 2 constituting the composite pile 10 is a commercial product having an outer diameter (D) of about 620 to 1600 mm, a thickness (t) of about 9 to 25 mm, and a length (L) of about 5 to 15 m. Preferably used. Specifically, when the PHC pile 1 having an outer diameter of about 600 mm is used, the steel pipe 2 having an outer diameter of about 620 to 800 mm is used. When the PHC pile 1 having an outer diameter of about 1400 mm is used, the outer diameter is 1420 to The steel pipe 2 is arranged in a concentric arrangement in which a gap (diameter) for filling the filler 3 from the outer peripheral surface of the PHC pile 1 is secured about 10 to 100 mm.
  • the length of the steel pipe 2 is a length that can effectively resist the form of the structure supported by the composite pile 10 or the horizontal force (bending stress and shear stress) acting on the structure.
  • the length of the steel pipe 2 is preferably shorter than that of the PHC pile 1. The reason for this is not only economical, but when the depth to the support layer S is deep and it is necessary to add a normal PHC pile 1 and a synthetic pile 10 manufactured in a factory or the like, This is because smooth addition work that does not get in the way can be performed.
  • the gap for filling the filler 3 is not limited to about 10 to 100 mm, and the design is appropriately changed according to the level of horizontal force (bending stress and shear stress) acting on the composite pile 10.
  • the filler 3 constituting the synthetic pile 10 is densely filled in the gap formed by the outer peripheral surface of the PHC pile 1 and the inner peripheral surface of the steel pipe 2 over almost the entire length of the steel pipe 2.
  • the filler 3 is made of a material having a lower strength and rigidity than the PHC pile 1 (as a guide, a strength of about 20 to 50 N / mm 2 ). Of course, it is necessary to have a certain toughness and strength and rigidity to prevent local buckling of the steel pipe 2.
  • cement milk, mortar, resin mortar, asphalt concrete, or closely packed sand having a relative density of 80% or more is preferably used.
  • these fillers 3 are properly used depending on the size of the gap to be filled. For example, a material having good fluidity such as cement milk is suitably used when the gap is as narrow as about 10 mm, and mortar is suitably used when the gap is as wide as about 50 mm.
  • the filler 3 made of such material effectively absorbs the bending stress (bending moment) and shear stress of the steel pipe 2 by having a material smaller than the strength and rigidity of the PHC pile 1 and adjacent PHC.
  • the structure which makes it difficult to transmit to the pile 1 is realizable.
  • the said filler 3 has rigidity (vertical rigidity) smaller than the PHC pile 1, the structure which bears most vertical loads of a structure only with the PHC pile 1 is realizable.
  • the synthetic pile 10 according to the present invention can be constructed at the site, or can be manufactured in advance at a factory or the like and carried into the site. However, since about several tens of the synthetic piles 10 are usually used, it is preferable to manufacture in advance at a factory or the like in consideration of labor saving in field work and being not affected by the weather.
  • the steel pipe 2 is built by a medium digging method using an excavator, the steel pipe 2 is positioned at a predetermined depth, and then the PHC pile is placed in the hollow portion. 1 is installed in a concentric arrangement with the steel pipe 2, and it is built with appropriate addition until its tip reaches the support layer S.
  • the filler 3 is densely filled from above into the gap (groove portion) formed by the inner peripheral surface of the steel pipe 2, the outer peripheral surface of the PHC pile 1, and the ground located at the lower end of the steel pipe 2. Thereafter, the upper end portion of the steel pipe 2 is joined to the foundation of the structure so that a horizontal force can be transmitted.
  • a release plate 5 having a diameter larger than that of the steel pipe 2 is placed on the upper surface of the flat portion 7 such as ground or concrete as shown in steps in FIGS. 2A to 2C.
  • the steel pipe 2 is erected on the upper surface of the peeling plate 5 with a heavy machine or the like in the vertical direction (FIG. 2A).
  • one PHC pile 1 is placed concentrically with the steel pipe 2 and dropped into the steel pipe 2 with a heavy machine or the like, and is vertically raised on the peeling plate 5 (FIG. 2B).
  • the filler 3 is filled to the same height as the steel pipe 2 in the gap formed between the inner peripheral surface of the steel pipe 2 and the outer peripheral surface of the PHC pile 1,
  • the synthetic pile 10 is manufactured by curing (FIG. 3C). After curing, the synthetic pile 10 can be easily peeled off from the peeling plate 5 by lifting it with a heavy machine or the like.
  • a manufacturing procedure is not limited to this, After raising the said PHC pile 1, you may make the steel pipe 2 stand up.
  • the synthetic pile 10 manufactured at a factory or the like is carried to the site and built by a medium digging method using an excavator.
  • the depth from the ground 6 to the support layer S is as deep as about 20 to 40 m, it is added to the uppermost stage of the penetrated PHC pile 1 and installed. Thereafter, the upper end portion of the steel pipe 2 constituting the synthetic pile 10 is joined to the foundation of the structure so as to be able to transmit a horizontal force.
  • piles are often manufactured in a state of being placed sideways, and it has been difficult to uniformly fill the filler between the steel pipe and the PHC pile. For this reason, although the device which inclines a pile and raises a filling property was given, it was difficult for positioning work etc. of a pile, and it was not able to raise manufacturing efficiency.
  • a cement-based material such as cement milk or mortar is used as the filler, it is difficult to evenly fill, and it is necessary to ensure fluidity, and there are concerns about the occurrence of voids due to breathing.
  • the steel pipe 2 and the PHC pile 1 are vertically erected in the gap formed by the steel pipe 2 and the PHC pile 1 from above. Since the filler 3 can be filled, it can be filled easily, surely and evenly. Therefore, it is excellent in workability and a high quality synthetic pile 10 can be manufactured.
  • the filler 3 can be simply dropped from above the gap and filled, or an injection tube is inserted to the lower end of the gap. Also, more reliable filling can be achieved. It is of course possible to provide a sensor inside the gap and perform automatic injection management. It is preferable from the viewpoint of work that the pipe diameter of the injection pipe is properly used according to the size of the gap. Examples 2 to 4 described below have the same technical idea. About the method of positioning the PHC pile 1 and the steel pipe 2 in a concentric arrangement, when an interval holding member (not shown) such as a separator or a spacer is provided on the outer peripheral surface of the PHC pile 1 or the inner peripheral surface of the steel pipe 2 Smooth positioning work can be performed.
  • an interval holding member such as a separator or a spacer
  • the spacing member when the steel pipe 2 is erected first, the spacing member is provided on the outer peripheral surface of the upper end portion of the steel pipe 2 or the outer peripheral surface of the lower end portion of the PHC pile 1. .
  • the spacing member When the PHC pile 1 is raised first, the spacing member is provided on the outer peripheral surface of the upper end portion of the PHC pile 1 or the outer peripheral surface of the lower end portion of the steel pipe 2.
  • Examples 2 to 4 described below have the same technical idea.
  • the synthetic pile 10 when the synthetic pile 10 is manufactured in a synthetic pile manufacturing pit having a predetermined width and depth, the height work can be reduced by the depth of the pit, and the filling work of the filler 3 and heavy machinery It is possible to increase the work efficiency of the lifting work.
  • the width of this synthetic pile manufacturing pit is appropriately changed in design according to the number of synthetic piles 10 to be manufactured, and the depth is preferably about the height of the steel pipe 2 in terms of filling work. Examples 2 to 4 described below have the same technical idea.
  • the composite pile 20 according to the second embodiment is different from the first embodiment in that the flat plate member 2a that closes the upper end opening is joined to the upper end opening of the steel pipe 2 such as welding (full circumference fillet welding). The difference is that they are integrally joined by means. Since the forms of the PHC pile 1, the steel pipe 2, the filler 3, and the like are the same as those in the first embodiment, the same reference numerals are given and the description thereof is omitted as appropriate.
  • the second embodiment uses the synthetic pile 20 manufactured in advance in a factory or the like, and the flat plate member 2a is provided to improve the efficiency of the filling work of the filler 3 and the quality of the synthetic pile 20. It was.
  • the steel pipe 2 and the bottomed steel pipe in which the flat plate member 2a is joined and integrated to the bottom thereof are integrated.
  • 2 and the bottomed steel pipe 2 is erected in the vertical direction on the upper surface of the flat portion 7 by a heavy machine or the like (FIG. 4A).
  • one PHC pile 1 is dropped into the steel pipe 2 by a heavy machine or the like in a concentric arrangement with the steel pipe 2, and is erected on the flat plate member 2a in the vertical direction (FIG. 4B).
  • the filler 3 is equivalent to the steel pipe 2 from above in a gap (groove) formed between the inner peripheral surface of the steel pipe 2, the outer peripheral surface of the PHC pile 1, and the upper surface of the flat plate member 2a.
  • the synthetic pile 20 is manufactured by filling up to a height and curing the filler 3 (FIG. 3C).
  • the synthetic pile 20 manufactured at a factory or the like is carried to the site and built by a medium digging method using an excavator.
  • the depth from the ground 6 to the support layer S is as deep as about 20 to 40 m, it is added to the uppermost stage of the penetrated PHC pile 1 and installed. Thereafter, the upper end of the steel pipe 2 constituting the composite pile 20 is joined to the foundation of the structure so as to be able to transmit a horizontal force.
  • the filler 3 and the PHC pile 1 are erected in the vertical direction in the gap formed by the steel pipe 2 and the PHC pile 1 from above. Can be filled in a simple, reliable and even manner as in the first embodiment. Therefore, it is excellent in workability and a high quality synthetic pile 20 can be manufactured.
  • the synthetic pile 20 which concerns on this Example 2, although the flat plate member 2a is provided in the upper-end opening part of the steel pipe 2 compared with the said Example 1, other structures are completely the same as the said Example 1. The same is true (compare FIGS. 1A-C with FIGS. 3A-C). Therefore, the composite pile 10 according to the second embodiment has the same effects as the synthetic pile 10 according to the first embodiment.
  • the composite pile 30 according to the third embodiment is provided with a flat plate member 4 that closes the opening at the upper end opening of the steel pipe 3, and the flat plate member 4 is connected to the PHC pile. It is different in that it is integrally joined to the upper end of the joint by a joining means such as welding. Since the forms of the PHC pile 1, the steel pipe 2, the filler 3, and the like are the same as those in the first embodiment, the same reference numerals are given and the description thereof is omitted as appropriate.
  • the third embodiment uses a synthetic pile 30 manufactured in advance in a factory or the like, and the flat plate member 4 is provided in order to improve the efficiency of the filling work of the filler 3 and the quality of the synthetic pile 30. It was.
  • the flat plate member 4 having a diameter larger than the pile diameter is integrally joined to the end plate 1a at one end.
  • the PHC pile 1 is erected in the vertical direction on the upper surface of the flat portion 7 with a heavy machine or the like with the flat plate member 4 facing downward (FIG. 6A).
  • the steel pipe 2 is dropped with a heavy machine or the like so as to surround the PHC pile 1 in a concentric arrangement with the PHC pile 1, and is erected on the flat plate member 4 in the vertical direction (FIG. 6B).
  • the lower end portion of the steel pipe 2 and the flat plate member 4 may be joined.
  • the filler 3 is equivalent to the steel pipe 2 from above in a gap (groove) formed between the outer peripheral surface of the PHC pile 1, the inner peripheral surface of the steel pipe 2, and the upper surface of the flat plate member 4.
  • the synthetic pile 30 is manufactured by filling up to a height and curing the filler 3 (FIG. 6C).
  • the synthetic pile 30 manufactured at a factory or the like is carried into the site and built by a medium digging method using an excavator.
  • the depth from the ground 6 to the support layer S is as deep as about 20 to 40 m, it is added to the uppermost stage of the penetrated PHC pile 1 and installed.
  • the flat plate member 4 integrally joined to the PHC pile 1 is a disk shape having a size that matches the outer peripheral surface shape of the steel pipe 2 when viewed from the plane direction. It is not limited to this. As long as the steel pipe 2 can be covered, it may be larger than the outer diameter of the steel pipe 2 or may be implemented similarly in a rectangular shape.
  • the filler 3 is formed from above into the gap formed by the PHC pile 1 and the steel pipe 2 while the PHC pile 1 and the steel pipe 2 are erected in the vertical direction. Can be filled in a simple, reliable and even manner as in the first embodiment. Therefore, it is excellent in workability and a high quality synthetic pile 30 can be manufactured.
  • the synthetic pile 30 which concerns on this Example 3 compared with the said Example 1, although the flat plate member 4 is provided in the upper-end opening part of the steel pipe 2, other structures are completely the same as the said Example 1. The same is true (compare FIGS. 1A-C with FIGS. 5A-C). Therefore, the composite pile 30 according to the third embodiment has the same effects as the synthetic pile 10 according to the first embodiment.
  • the synthetic pile 40 according to the fourth embodiment is different from the first embodiment in that the end plate 1a at one end of the PHC pile 1 is a large-diameter end plate 1a ′ having a larger diameter than the pile diameter. . Since the forms of the PHC pile 1, the steel pipe 2, the filler 3, and the like are the same as those in the first embodiment, the same reference numerals are given and the description thereof is omitted as appropriate.
  • the fourth embodiment uses the synthetic pile 40 manufactured in advance in a factory or the like, and the large-diameter end plate 1a ′ increases the efficiency of the filling operation of the filler 3 and the quality of the synthetic pile 40. Provided for.
  • the end plate 1a at one end is a large diameter end plate 1a ′ having a larger diameter than the pile diameter.
  • the pile 1 is erected in the vertical direction on the upper surface of the flat portion 7 with a heavy machine or the like with the large-diameter end plate 1a ′ facing downward (FIG. 8A).
  • the steel pipe 2 is dropped with a heavy machine or the like so as to surround the PHC pile 1 in a concentric arrangement with the PHC pile 1, and is erected in the vertical direction on the large-diameter end plate 1a ′ (FIG. 8B).
  • the lower end portion of the steel pipe 2 and the large-diameter end plate 1a ′ may be joined.
  • the filler 3 is placed from above into the gap (groove) formed between the outer peripheral surface of the PHC pile 1, the inner peripheral surface of the steel pipe 2, and the upper surface of the large-diameter end plate 1 a ′. 2 to a height equivalent to 2, and curing the filler 3 to produce a synthetic pile 40 (FIG. 8C).
  • the synthetic pile 40 manufactured in a factory or the like is carried to the site and built by a medium digging method using an excavator.
  • the depth from the ground 6 to the support layer S is as deep as about 20 to 40 m, it is added to the uppermost stage of the penetrated PHC pile 1 and installed. Thereafter, the upper end portion of the steel pipe 2 constituting the composite pile 40 is joined to the foundation of the structure so that a horizontal force can be transmitted.
  • the filler 3 is formed from above into the gap formed by the PHC pile 1 and the steel pipe 2 in a state where the PHC pile 1 and the steel pipe 2 are erected in the vertical direction. Can be filled in a simple, reliable and even manner as in the first embodiment. Therefore, it is excellent in workability and a high quality synthetic pile 40 can be manufactured.
  • the synthetic pile 40 which concerns on this Example 4, although the end plate 1a of the upper end part of the PHC pile 1 is formed in the large diameter end plate 1a 'compared with the said Example 1, other structures Is exactly the same as in Example 1 above (see FIGS. 1A-C and FIGS. 7A-C in comparison). Therefore, the synthetic pile 40 according to the fourth embodiment has the same effects as the synthetic pile 10 according to the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

PHC杭と鋼管とを組み合わせた合成杭において、軸応力と、曲げ応力及びせん断応力との役割分担を明確化できる合成杭および該合成杭の製造方法を提供する。 PHC杭1と、PHC杭1の外周に隙間を確保して同心の配置に設けられる鋼管2と、前記隙間に充填される充填材3とからなる合成杭であって、前記鋼管2は、その上端部が構造物の基礎と水平力を伝達可能に接合され、その下端部が前記PHC杭1と縁切りされている。前記充填材3は、前記鋼管2に曲げ変形が生じても当該鋼管2の局部座屈を防止できる強度及び剛性を有し、かつ前記PHC杭1よりも強度及び剛性が小さい材料からなる。

Description

合成杭および合成杭の製造方法
 この発明は、コンクリート強度が85N/mm2以上(好ましくは100N/mm2以上)の高強度を発揮するコンクリート杭(以下、PHC杭という。)と、同PHC杭の外周に隙間を確保して同心の配置に設けられる鋼管と、前記隙間に充填される充填材とからなる合成杭および該合成杭の製造方法の技術分野に属し、さらに言えば、高層構造物又は超高層構造物を支持するのに好適な合成杭および該合成杭の製造方法に関する。
 コンクリート杭(PHC杭含む。)は、大きな軸応力(圧縮力)を保持できるものの、水平力(曲げ応力とせん断応力)に対しては脆性的に破壊するため、構造物(特には高層構造物、超高層建物)の基礎として使用した場合の水平抵抗に十分耐えるようにするのは難しい。
 一方、鋼管杭は、曲げ強度とせん断強度は大きいが、大きな軸応力を保持するためには厚肉のものを使用しなければならず、経済的な問題がある。また、杭径が大きくなると局部座屈が発生するなどの問題もある。
 そこで、これらの問題点を補う方法の一つとして、コンクリート杭と鋼管とを組み合わせてなる外殻鋼管付きコンクリート杭(以下適宜、SC杭という。)がある。
 このSC杭は、高強度コンクリートを鋼管の中空部に注入し、遠心成形法(遠心締固め)によって一体的に製造され、軸応力と曲げ応力とせん断応力に対し一体として抵抗する。
 このSC杭は、軸応力に強いコンクリート杭の長所と曲げ応力、せん断応力に強い鋼管の長所とを併せもち、大きな曲げ変形を生じても、コンクリートが鋼管の局部座屈を防止し、コンクリートは鋼管により拘束されているので大きな靭性を有する利点があり、近年その需要も増大している。
 しかし、前記SC杭は、上述したように、軸応力と曲げ応力とせん断応力に対し一体として抵抗する構成であるが故に、必然的に、SC杭を構成するコンクリート杭に、軸応力のほか曲げ応力及びせん断応力も負担させることになる。具体的には、構造物に地震等の水平力(短期荷重)が作用した場合、前記コンクリート杭は、構造物の軸応力(長期鉛直荷重)を負担している状態で、曲げ応力及びせん断応力を負担することとなり、SC杭内部のコンクリート杭が、曲げ応力やせん断応力をどの程度負担しているのか不明であった。ひいては前記コンクリート杭の破壊性状が不明であった。
 よって、前記SC杭は、軸応力はコンクリート杭が負担し、曲げ応力及びせん断応力は鋼管が負担するという役割分担(機能分担)が明確でないという問題があった。
 建築構造物において、高層構造物又は超高層構造物は、2次設計(保有水平耐力法、時刻歴応答解析)が必須であり、構造物の許容応力度だけでなく終局耐力、靱性の評価等が設計上の重要項目となっている。そのため、杭の部材としての性能が不明(曖昧)なものは設計が難しく、且つ確たる設計方針での設計ができないという問題があった。
 要するに、前記SC杭は、軸応力はコンクリート杭が負担し、曲げ応力及びせん断応力は鋼管が負担するという役割分担(機能分担)が明確でない以上、2次設計に十分対応できるだけの杭体の性能保証がされていない状況にあった。
 ところで、上述したSC杭のほかに、コンクリート杭と鋼管とを併用して杭を施工する発明は、種々開示されている(例えば、特許文献1~5参照)。
 しかしながら、前記特許文献1~5に係る発明は、下記するように、軸応力、曲げ応力、及びせん断応力の役割分担を明確にすることを目的(課題)、構成としておらず、よって、軸応力はコンクリート杭が負担し、曲げ応力及びせん断応力は鋼管が負担するという役割分担を明確化できる構成の杭は、未だ存在しない。
特開平9-170232号公報 特開昭61-176717号公報 特開平5-280046号公報 特開平7-11636号公報 特開2010-265702号公報
 上記特許文献1には、鋼管杭の中心部に、支持層に到達して先端抵抗力を受ける芯杭(コンクリート杭)が前記鋼管杭との間に若干の間隙をあけて設置され、プレロードを与えられた芯杭と鋼管杭との間隙に粘弾性体が充填されており、芯杭が上載荷重を受けた際の周面摩擦抵抗力は粘弾性体及び鋼管杭を介して地面に伝達される構成が開示されている(請求項1、図1の記載等参照)。
 しかし、この特許文献1に係る技術は、杭の実際的な荷重支持機能に有効で経済的な設計、施工が可能な高信頼性の杭を提供することを目的とし、芯杭と鋼管杭との間に粘弾性体を介在させた構成で実施しているので、鋼管杭は、建物や地盤からの水平力に対し積極的に抵抗できる構成ではない。
 よって、この特許文献1に係る杭は、前記鋼管杭に大きな曲げ変形が生じると局部座屈を起こす虞があり、曲げ強度及びせん断応力に強い鋼管杭の特性(長所)を活かした構成で実施されておらず、軸応力はコンクリート杭が負担し、曲げ応力及びせん断応力は鋼管が負担するという役割分担ができるほどの強度(耐力)を期待することなど到底できない。
 上記特許文献2には、地表から地中に埋設した杭本体と、この杭本体の少なくとも上部の外周面を取り囲むように設けた枠体(鋼管)と、上記枠本体と枠体との間に介在させた粘性材料とを備えてなる免震杭が開示されている(請求項1、第1図の記載等参照)。
 しかし、この特許文献2に係る技術は、杭本体と鋼管との間に粘性材料を介在させた構成で実施しているので、鋼管は、建物や地盤からの水平力に対し積極的に抵抗できる構成ではない。
 よって、この特許文献2に係る免震杭も、上記特許文献1と同様に、前記鋼管に大きな曲げ変形が生じると局部座屈を起こす虞があり、曲げ強度及びせん断強度に強い鋼管の特性を活かした構成で実施されておらず、軸応力はコンクリート杭が負担し、曲げ応力及びせん断応力は鋼管が負担するという役割分担ができるほどの強度(耐力)を期待することなど到底できない。
 上記特許文献3に係る基礎杭は、基礎杭と鋼管とが防振材を間に挟む構成で実施しているので、鋼管は、建物や地盤からの水平力に対し積極的に抵抗する構成ではないことは明らかである。
 よって、この特許文献3に係る基礎杭も、上記特許文献1、2と同様に、前記鋼管に大きな曲げ変形が生じると局部座屈を起こす虞があり、曲げ強度及びせん断強度に強い鋼管杭の特性を活かした構成で実施されておらず、軸応力はコンクリート杭が負担し、曲げ応力及びせん断応力は鋼管が負担するという役割分担ができるほどの強度(耐力)を期待することなど到底できない。
 上記特許文献4には、建造物の改造工事において、既存の建造物を取り除いた箇所に打設された既存杭に鋼管を被嵌し、該鋼管と既存杭との間隙部に高強度モルタルを充填せしめてこれらを一体化してなる既存杭を用いた杭が開示されている(請求項1の記載等参照)。
 しかし、この特許文献4に係る技術は、既存杭を再利用する場合の杭の強度を増加する発明であり、前記間隙部に高強度モルタルを充填することから、鋼管は、杭の一部として機能することが求められている。よって、高強度モルタルを充填して完成した新設杭は、通常の杭の機能を期待したものにすぎない。
 上記特許文献5には、鋼管の両端部にドーナツ状の端板を固定すると共に、鋼管の内面に剥離手段を形成した後、前記鋼管内にコンクリートを注入し遠心成形して前記剥離手段の内面側に円筒状コンクリート部を形成し、該円筒状コンクリート部の両端面を前記端板の内面に定着して成形してなる鋼管被覆コンクリート杭が開示されている(請求項1、図1の記載等参照)。
 しかし、この特許文献5に係る技術は、コンクリートの外面と鋼管の内面との間に剥離手段が施されているものの、該コンクリートの両端部と鋼管の両端部とは、端板を介して固定されるので、軸応力と曲げ応力とせん断応力に対し一体として抵抗する前記SC杭と、性能においてほとんど差がない。
 よって、この特許文献5に係る鋼管被覆コンクリート杭は、上述したSC杭の場合と同様に、軸応力はコンクリート杭が負担し、曲げ応力及びせん断応力は鋼管が負担するという役割分担(機能分担)ができない問題は、依然として解決されないままである。
 以上、要するに、コンクリート杭と鋼管とを併用して杭を施工する技術は、SC杭のほか、上記特許文献1~5のように種々開示されているが、軸応力と、曲げ応力及びせん断応力との役割分担を明確化できる杭は、未だ存在しない。
 よって、前記役割分担が明確でない以上、前記2次設計(保有水平耐力法、時刻歴応答解析)に十分対応できるだけの杭体の性能保証ができなかった。
 本発明の目的は、PHC杭と鋼管とを組み合わせた合成杭において、軸応力と、曲げ応力及びせん断応力との役割分担を明確化できる合成杭および該合成杭の製造方法を提供することにある。
 本発明の更なる目的は、前記2次設計(保有水平耐力法、時刻歴応答解析)に十分対応できるだけの杭体の性能保証ができ、低層構造物はもとより、高層構造物あるいは超高層構造物の基礎杭にも適用できる合成杭および該合成杭の製造方法を提供することにある。
 上記背景技術の課題を解決するための手段として、請求項1に記載した発明に係る合成杭は、PHC杭と、PHC杭の外周に隙間を確保して同心の配置に設けられる鋼管と、前記隙間に充填される充填材とからなる合成杭であって、
 前記鋼管は、その上端部が構造物の基礎と水平力を伝達可能に接合され、その下端部が前記PHC杭と縁切りされていること、
 前記充填材は、前記鋼管に曲げ変形が生じても当該鋼管の局部座屈を防止できる強度及び剛性を有し、かつ前記PHC杭よりも強度及び剛性が小さい材料からなることを特徴とする。
 請求項2に記載した発明は、請求項1に記載した合成杭において、前記隙間の上部は、前記鋼管の上端開口部に設けた平板部材で閉塞され、当該平板部材は、前記PHC杭の上端部又は前記鋼管の上端部に接合されていることを特徴とする。
 請求項3に記載した発明は、請求項1に記載した合成杭において、前記隙間の上部は、前記PHC杭の上端部の端板を杭径よりも大径とした大径端板で閉塞されていることを特徴とする。
 請求項4に記載した発明は、請求項1~3のいずれか一に記載した合成杭において、前記鋼管は、前記PHC杭よりも短尺で、前記水平力に対し効果的に抵抗できる長さを有することを特徴とする。
 請求項5に記載した発明は、請求項1~4のいずれか一に記載した合成杭において、前記充填材は、セメントミルク、モルタル、樹脂モルタル、又はアスファルトコンクリートであることを特徴とする。
 請求項6に記載した発明は、請求項1~5のいずれか一に記載した合成杭において、前記充填材の強度は、20~50N/mm2程度であることを特徴とする。
 請求項7に記載した発明は、請求項1~6のいずれか一に記載した合成杭において、前記PHC杭は支持杭であることを特徴とする。
 請求項8に記載した発明は、請求項1~7のいずれか一に記載した合成杭において、前記構造物は、高層構造物又は超高層構造物であることを特徴とする。
 請求項9に記載した発明に係る合成杭の製造方法は、PHC杭と、PHC杭の外周に隙間を確保して同心の配置に設けられる鋼管と、前記隙間に充填される充填材とからなる合成杭の製造方法であって、
 前記PHC杭と前記鋼管とを、平坦部上に、同心の配置で鉛直方向に起立させ、前記PHC杭の外周面と前記鋼管の内周面との間に形成した隙間に、上方から、前記鋼管に曲げ変形が生じても当該鋼管の局部座屈を防止できる強度及び剛性を有し、かつ前記PHC杭よりも強度及び剛性が小さい材料からなる充填材を前記鋼管と同等高さまで充填し、当該充填材を養生させてなることを特徴とする。
 請求項10に記載した発明は、請求項9に記載した合成杭の製造方法において、前記合成杭は、所定の広さと深さを備えた合成杭製造用ピット内の平坦部上に、前記PHC杭と前記鋼管とを同心の配置で鉛直方向に起立させて製造することを特徴とする。
 請求項11に記載した発明は、請求項9又は10に記載した合成杭の製造方法において、前記平坦部の上面に剥離板を載置し、該剥離板の上面に前記PHC杭と前記鋼管とを同心の配置で鉛直方向に起立させることを特徴とする。
 請求項12に記載した発明は、請求項9又は10に記載した合成杭の製造方法において、前記鋼管は、その底部に平板部材が接合された有底の鋼管とし、当該有底の鋼管を、前記平坦部上に鉛直方向に起立させた後、前記PHC杭を、前記鋼管と同心の配置で該鋼管の内部に落とし込み、前記平板部材上に鉛直方向に起立させることを特徴とする。
 請求項13に記載した発明は、請求項9又は10に記載した合成杭の製造方法において、前記PHC杭は、その一端部の端板に杭径よりも大径の平板部材を接合し、該平板部材を下向きにして前記平坦部上に鉛直方向に起立させた後、前記鋼管を、前記PHC杭と同心の配置で該PHC杭を取り囲むように落とし込み、前記平板部材上に鉛直方向に起立させることを特徴とする。
 請求項14に記載した発明は、請求項9又は10に記載した合成杭の製造方法において、前記PHC杭は、その一端部の端板を杭径よりも大径にした大径端板とし、該大径端板を下向きにして前記平坦部上に鉛直方向に起立させた後、前記鋼管を、前記PHC杭と同心の配置で該PHC杭を取り囲むように落とし込み、前記大径端板上に鉛直方向に起立させることを特徴とする。
 請求項15に記載した発明は、請求項9~14のいずれか一に記載した合成杭の製造方法において、前記PHC杭の外周面、又は前記鋼管の内周面には、同心の配置に位置決めするための間隔保持部材が設けられていることを特徴とする。
 本発明に係る合成杭によれば、以下の効果を奏する。
1)鋼管2は、その上端部が構造物の基礎と地震等の水平力(短期荷重)を伝達可能に接合され、その下端部がPHC杭1と縁切りされた構成なので、鋼管2は、該鋼管2自体に生じる摩擦抵抗程度の軸力負担で済み、構造物の軸応力(長期鉛直荷重)の負担は小さい。よって、鋼管2は、前記水平力に起因する曲げ応力とせん断応力を専ら負担する構成にできる。
 加えて、PHC杭1と鋼管2とが形成する間隙に充填する充填材3の特性、すなわち前記鋼管2に曲げ変形が生じても当該鋼管2の局部座屈を防止できる強度及び剛性を有し、かつ前記PHC杭1よりも強度及び剛性が小さい材料からなる特性により、前記鋼管2は、局部座屈を生じることなく前記曲げ応力とせん断応力に対して積極的に抵抗できる。
 要するに、本発明に係る合成杭10(20、30、40)を構成する鋼管2は、曲げ応力とせん断応力が主体的に作用し、しかも局部座屈が防止されるので、その曲げ性能は十分な靱性性能を有することができる。
2)一方、構造物の軸応力(長期鉛直荷重)を負担するPHC杭1については、構造物に前記水平力が発生した場合、前記鋼管2が前記曲げ応力とせん断力に抵抗することに加え、前記充填材3が当該曲げ応力とせん断力のエネルギーを効果的に吸収するので、該鋼管2及び充填材3の内方に位置するPHC杭1への曲げ応力とせん断力の伝達は小さい。また、前記充填材3は、PHC杭1より剛性(鉛直剛性)が小さいので、構造物の鉛直荷重の大部分をPHC杭1のみで負担させる構成を実現できる。PHC杭1は高強度であるから構造物の鉛直荷重を十分に負担できる。
3)よって、本発明に係る合成杭10(20、30、40)は、軸応力に非常に強いPHC杭1と、曲げ応力、せん断応力に強い鋼管2のそれぞれの長所を活用した合理的な構造となり、もって、PHC杭1は軸応力を専ら負担し、鋼管2は曲げ応力、せん断応力を専ら負担するので、役割分担が明確な合成杭10(20、30、40)を実現できる。
 また、前記鋼管2は鉛直荷重に耐える必要がなく、かつ局部座屈を防ぐことができるので、比較的薄い鋼管(市販品)でもその性能を十分に発揮することができ、経済的である。
4)したがって、軸応力と、曲げ応力及びせん断応力との役割分担を明確化できるので、2次設計(保有水平耐力法、時刻歴応答解析)に十分対応できるだけの杭体の性能保証ができるほか、構造物の許容応力度、終局耐力、靱性の評価等の設計上の重要項目も構造設計することができ、低層構造物はもとより、高層構造物又は超高層構造物を好適に支持できる合成杭を実現できる。
 本発明に係る合成杭の製造方法によれば、以下の効果を奏する。
5)前記PHC杭1と前記鋼管2とを鉛直方向に起立させた状態で、該PHC杭1と鋼管2とが形成する間隙に、上方から前記充填材3を充填できるので、簡易、確実、かつ均等に充填することができる。よって、施工性に優れ、高品質の合成杭10(20、30、40)を製造できる。
6)また、前記合成杭10(20、30、40)を、所定の広さと深さを備えた合成杭製造用ピット内で製造すると、該ピットの深さ分だけ高所作業を低減化でき、充填材3の充填作業、重機の吊り上げ作業等の作業効率を高めることができる。
Aは、実施例1に係る合成杭を示した立面図であり、Bは、AのB-B線矢視断面図であり、Cは、Aの合成杭の平面図である。 A~Cは、実施例1に係る合成杭の製造方法を段階的に示した作業工程図である。 Aは、実施例2に係る合成杭を示した立面図であり、Bは、AのB-B線矢視断面図であり、Cは、Aの合成杭の平面図である。 A~Cは、実施例2に係る合成杭の製造方法を段階的に示した作業工程図である。 Aは、実施例3に係る合成杭を示した立面図であり、Bは、AのB-B線矢視断面図であり、Cは、Aの合成杭の平面図である。 A~Cは、実施例3に係る合成杭の製造方法を段階的に示した作業工程図である。 Aは、実施例4に係る合成杭を示した立面図であり、Bは、AのB-B線矢視断面図であり、Cは、Aの合成杭の平面図である。 A~Cは、実施例4に係る合成杭の製造方法を段階的に示した作業工程図である。
 次に、本発明に係る合成杭および合成杭の製造方法の実施例を図面に基づいて説明する。
 図1A~Cは、本発明に係る合成杭の実施例を示している。
 この合成杭10は、PHC杭1と、PHC杭1の外周に隙間を確保して同心の配置に設けられる鋼管2と、前記隙間に充填される充填材3とからなり、地盤6中に建て込まれ、その上に構造物の基礎(図示省略)が構築される。
 前記鋼管2は、その上端部が構造物の基礎と水平力を伝達可能に接合され、その下端部が前記PHC杭1と縁切りされている。鋼管2の上端部を構造物の基礎に接合する手段は種々あるが、例えば、前記鋼管2の上端部の外周面に上方へ突き出す鉄筋(ひげ鉄筋)を溶接接合し、基礎コンクリートを打設して、鋼管2の上端部と構造物の基礎とを水平力を伝達可能に接合する。
 前記充填材3は、前記鋼管2に曲げ変形が生じても当該鋼管2の局部座屈を防止できる強度及び剛性を有し、かつ前記PHC杭1よりも強度及び剛性が小さい材料からなる。
 ちなみに図1は、合成杭10を、地盤6からの深さが深い(例えば30m程度の)支持層Sに支持杭として適用する場合の実施例を示している。この場合、前記合成杭10の下方には、通常のPHC杭1が継ぎ足されている。また、前記合成杭10を構成するPHC杭1と鋼管2の上端部は同等高さに揃えられ、地盤6の上面から突き出した構成で実施しているがこれに限定されない。その上部に構築される構造物の基礎の施工法に応じ、例えば地盤レベルの高さに揃えて実施することもできる。前記構造物は、低層構造物でも、高層構造物あるいは超高層構造物でもよい。前記合成杭10は、支持層Sに到達しない構成でも実施できる。以下の実施例2~4についても同様の技術的思想とする。
 前記合成杭10を構成するPHC杭1は、その軸方向両端部にリング状の端板1aを備えており、大きな鉛直荷重を支持できる100N/mm2以上の強度(Fc)を有するものが好適に用いられる。前記PHC杭1は、外径(D)が600~1400mm程度、長さ(L)が10~20m程度の大きさが好適とされる。
 なお、前記PHC杭1の大きさは勿論これに限定されず、支持する構造物の形態、或いは地盤6の性状等に応じて適宜設計変更可能である。
 前記合成杭10を構成する鋼管2は、外径(D)が620~1600mm程度、厚さ(t)が9~25mm程度、長さ(L)が5~15m程度の大きさの市販品が好適に用いられる。
 具体的には、外径が600mm程度のPHC杭1を用いるときは、外径が620~800mm程度の鋼管2を、外径が1400mm程度のPHC杭1を用いるときは、外径が1420~1600mm程度の鋼管2を、とPHC杭1の外周面から充填材3を充填する隙間(径)を10~100mm程度確保した同心配置に鋼管2を配設する。
 なお、前記鋼管2の長さは、合成杭10が支持する構造物の形態、或いは構造物に作用する水平力(曲げ応力及びせん断応力)に対し、効果的に抵抗できる長さとされる。目安として、PHC杭1の杭径の5倍程度が好ましいとされるが、地盤6の性状に応じて適宜設計変更される。
 ただし、前記鋼管2の長さは、前記PHC杭1よりも短尺で実施することが好ましい。その理由は、経済的であることは勿論のこと、支持層Sまでの深さが深くて通常のPHC杭1と工場等で製造した合成杭10とを継ぎ足す必要がある場合、鋼管2が邪魔にならないスムーズな継ぎ足し作業を行い得るからである。
 また、充填材3を充填する隙間は、前記10~100mm程度に限定されるものではなく、当該合成杭10に作用する水平力(曲げ応力及びせん断応力)の大きさに応じて適宜設計変更される。
 前記合成杭10を構成する充填材3は、前記PHC杭1の外周面と前記鋼管2の内周面とが形成する隙間に、当該鋼管2のほぼ全長にわたって密実に充填されている。
 前記充填材3は、前記PHC杭1よりも強度及び剛性が低い材料(目安として20~50N/mm2程度の強度)からなる。もちろん、一定の靱性をもち、鋼管2の局部座屈を防止できる程度の強度及び剛性を有する必要もある。
 本実施例に係る充填材3は、セメントミルク、モルタル、樹脂モルタル、アスファルトコンクリート、又は相対密度が80%以上の密詰めの砂が好適に用いられる。前記充填材3として塑性性能を有する樹脂モルタルを用いれば、エネルギー吸収材としての機能をさらに期待できる。また、前記密詰めの砂であれば圧縮特性は高く、かつ鋼管2とPHC杭1の間で発生するせん断応力に対してダイレタンシー効果によって体積圧縮を防ぐこともできる。
 その他、これらの充填材3は、充填する隙間の大きさ等に応じて適宜使い分けられる。例えば、10mm程度の狭い隙間のときはセメントミルクなどの流動性のよい材料が好適に用いられ、50mm程度の広い隙間のときはモルタルが好適に用いられる。
 このような材料からなる前記充填材3は、PHC杭1の強度及び剛性よりも小さな材質を有することで鋼管2の曲げ応力(曲げモーメント)、及びせん断応力を効果的に吸収し、隣接するPHC杭1へ伝達し難くする構成を実現できる。また、前記充填材3は、PHC杭1よりも剛性(鉛直剛性)が小さいので、構造物の鉛直荷重の大部分をPHC杭1のみで負担させる構成を実現できる。
 本発明に係る合成杭10は、現場で構築することもできるし、予め工場等で製造しておき現場へ搬入することもできる。ただし、合成杭10は通常、数十本程度用いられるので、現場作業の省力化、天候に作用されない点を考慮すると予め工場等で製造することが好ましい。
 前記合成杭10を現場で構築する場合は、一例として、掘削機を用いた中掘り工法により鋼管2の建て込みを行い、鋼管2を所定の深さに位置決めした後、その中空部にPHC杭1を該鋼管2と同心の配置で設置し、その先端が支持層Sへ到達するまで適宜継ぎ足して建て込む。次に、鋼管2の内周面とPHC杭1の外周面と鋼管2の下端部に位置する地盤とが形成する隙間(溝部)へ、上方から充填材3を密実に充填する。しかる後、鋼管2の上端部を構造物の基礎と水平力を伝達可能に接合する。
 前記合成杭10を工場等で製造する場合は、図2A~Cに段階的に示したように、地盤やコンクリート等の平坦部7の上面に、鋼管2よりも大径の剥離板5を載置し、剥離板5の上面に、重機等で鋼管2を鉛直方向に起立させる(図2A)。続いて、1本のPHC杭1を、該鋼管2と同心の配置で、該鋼管2の内部に重機等で落とし込み前記剥離板5上に鉛直方向に起立させる(図2B)。続いて、前記鋼管2の内周面と前記PHC杭1の外周面との間に形成した隙間に、上方から、前記充填材3を前記鋼管2と同等高さまで充填し、当該充填材3を養生させて合成杭10を製造する(図3C)。養生後、前記合成杭10は、重機等で吊り上げると剥離板5から容易に引き剥がすことができる。なお、製造手順はこれに限定されず、前記PHC杭1を起立させた後に、鋼管2を起立させてもよい。
 かくして、工場等で製造した前記合成杭10は現場へ搬入され、掘削機を用いた中掘り工法により建て込まれる。地盤6から支持層Sまでの深さが20~40m程度と深い場合には、貫入されたPHC杭1の最上段に継ぎ足して設置する。しかる後、前記合成杭10を構成する鋼管2の上端部を、構造物の基礎と水平力を伝達可能に接合するのである。
 従来、杭の製造は、横向きに置いた状態で製造することが多く、充填材を鋼管とPHC杭の間に均等に充填することは難しかった。このため、杭を傾斜させて充填性を高める工夫が施されてはいたが、杭の位置決め作業等に難渋し、製造効率を上げることができなかった。特に、充填材にセメントミルクやモルタル等のセメント系の材料を使う場合には均等な充填が難しく、流動性の確保が必要になったり、ブリージングによる空隙の発生も懸念された。
 この点、上記構成の合成杭10の製造方法によれば、前記鋼管2とPHC杭1とを鉛直方向に起立させた状態で、該鋼管2とPHC杭1とが形成する隙間に、上方から充填材3を充填できるので、簡易、確実、かつ均等に充填することができる。よって、施工性に優れ、高品質の合成杭10を製造できる。
 具体的に、充填材3を前記隙間に充填する手法について、例えば、前記隙間の上方から充填材3を単に落下させて充填することもできるし、前記隙間の下端部まで注入管を挿入して、より確実な充填を図ることもできる。また、前記隙間の内部にセンサーを設け、自動的な注入管理をすることも勿論できる。注入管の管径は、前記隙間の大きさに応じて使い分けることが作業上好ましい。以下に説明する実施例2~4についても同様の技術的思想とする。
 前記PHC杭1と鋼管2とを同心の配置に位置決めする手法について、PHC杭1の外周面、又は前記鋼管2の内周面に、セパレータ、スペーサー等の間隔保持部材(図示省略)を設けるとスムーズな位置決め作業を行うことができる。例えば、図2A~Cに示すように、鋼管2を先に起立させる場合は、前記間隔保持部材を、鋼管2の上端部の外周面、又はPHC杭1の下端部の外周面に設けて行う。PHC杭1を先に起立させる場合は、前記間隔保持部材を、PHC杭1の上端部の外周面、又は鋼管2の下端部の外周面に設けて行う。以下に説明する実施例2~4についても同様の技術的思想とする。
 また、前記合成杭10を、所定の広さと深さを備えた合成杭製造用ピット内で製造すると、該ピットの深さ分だけ高所作業を低減化でき、充填材3の充填作業、重機の吊り上げ作業等の作業効率を高めることができる。この合成杭製造用ピットの広さは、製造する合成杭10の本数に応じて適宜設計変更され、深さは鋼管2の高さ程度が充填作業上好ましい。以下に説明する実施例2~4についても同様の技術的思想とする。
 図3A~Cは、本発明に係る合成杭の異なる実施例を示している。
 この実施例2に係る合成杭20は、上記実施例1と比し、前記鋼管2の上端開口部に、該上端開口部を塞ぐ平板部材2aが、溶接(全周隅肉溶接)等の接合手段で一体的に接合されている点が相違する。PHC杭1、鋼管2、充填材3等の形態は、上記実施例1と同様なので同一の符号を付してその説明を適宜省略する。
 要するに、この実施例2は、予め工場等で製造された合成杭20を利用したもので、前記平板部材2aは、前記充填材3の充填作業の効率、合成杭20の品質を高めるために設けられた。
 この実施例2に係る合成杭20の製造方法は、図4A~Cに段階的に示したように、前記鋼管2を、その底部に前記平板部材2aが接合され一体化された有底の鋼管2とし、当該有底の鋼管2を、重機等で平坦部7の上面に鉛直方向に起立させる(図4A)。続いて、1本のPHC杭1を、前記鋼管2と同心の配置で該鋼管2の内部に重機等で落とし込み、前記平板部材2a上に鉛直方向に起立させる(図4B)。続いて、前記鋼管2の内周面と前記PHC杭1の外周面と前記平板部材2aの上面との間に形成した隙間(溝部)に、上方から、前記充填材3を前記鋼管2と同等高さまで充填し、当該充填材3を養生して合成杭20を製造する(図3C)。
 かくして、工場等で製造した前記合成杭20は現場へ搬入され、掘削機を用いた中掘り工法により建て込まれる。地盤6から支持層Sまでの深さが20~40m程度と深い場合には、貫入されたPHC杭1の最上段に継ぎ足して設置する。しかる後、前記合成杭20を構成する鋼管2の上端部を、構造物の基礎と水平力を伝達可能に接合する。
 上記構成の合成杭20の製造方法によれば、前記鋼管2とPHC杭1とを鉛直方向に起立させた状態で、該鋼管2とPHC杭1とが形成する隙間に、上方から充填材3を充填できるので、上記実施例1と同様に、簡易、確実、かつ均等に充填することができる。よって、施工性に優れ、高品質の合成杭20を製造できる。
 また、この実施例2に係る合成杭20によれば、上記実施例1と比し、鋼管2の上端開口部に平板部材2aが設けられているものの、その他の構成は上記実施例1とまったく同様である(図1A~Cと図3A~Cとを対比して参照)。よって、この実施例2に係る合成杭10は、上記実施例1に係る合成杭10と同様の作用効果を奏する。
 図5A~Cは、本発明に係る合成杭の異なる実施例を示している。
 この実施例3に係る合成杭30は、上記実施例1と比し、前記鋼管3の上端開口部に、該開口部を塞ぐ平板部材4が載置され、該平板部材4が、前記PHC杭の上端部と溶接等の接合手段で一体的に接合されている点が相違する。PHC杭1、鋼管2、充填材3等の形態は、上記実施例1と同様なので同一の符号を付してその説明を適宜省略する。
 要するに、この実施例3は、予め工場等で製造された合成杭30を利用したもので、前記平板部材4は、前記充填材3の充填作業の効率、合成杭30の品質を高めるために設けられた。
 この実施例3に係る合成杭30の製造方法は、図6A~Cに段階的に示したように、一端部の端板1aに杭径よりも大径の平板部材4を一体的に接合したPHC杭1を、該平板部材4を下向きにして、重機等で平坦部7の上面に鉛直方向に起立させる(図6A)。続いて、前記鋼管2を、前記PHC杭1と同心の配置で該PHC杭1を取り囲むように重機等で落とし込み、前記平板部材4上に鉛直方向に起立させる(図6B)。この段階で、前記鋼管2の下端部と前記平板部材4とを接合してもよい。続いて、前記PHC杭1の外周面と前記鋼管2の内周面と前記平板部材4の上面との間に形成した隙間(溝部)に、上方から、前記充填材3を前記鋼管2と同等高さまで充填し、当該充填材3を養生して合成杭30を製造する(図6C)。
 かくして、工場等で製造した前記合成杭30は現場へ搬入され、掘削機を用いた中掘り工法により建て込まれる。地盤6から支持層Sまでの深さが20~40m程度と深い場合には、貫入されたPHC杭1の最上段に継ぎ足して設置する。しかる後、前記合成杭30を構成する鋼管2の上端部を、構造物の基礎と水平力を伝達可能に接合する。
 なお、前記PHC杭1に一体的に接合した前記平板部材4は、平面方向からみて、前記鋼管2の外周面形状と一致する大きさの円板状とされているが、大きさ及び形状はこれに限定されない。鋼管2を覆うことができれば、鋼管2の外径よりも大きくてもよいし、矩形状でも同様に実施できる。
 上記構成の合成杭30の製造方法によれば、前記PHC杭1と鋼管2とを鉛直方向に起立させた状態で、該PHC杭1と鋼管2とが形成する隙間に、上方から充填材3を充填できるので、上記実施例1と同様に、簡易、確実、かつ均等に充填することができる。よって、施工性に優れ、高品質の合成杭30を製造できる。
 また、この実施例3に係る合成杭30によれば、上記実施例1と比し、鋼管2の上端開口部に平板部材4が設けられているものの、その他の構成は上記実施例1とまったく同様である(図1A~Cと図5A~Cとを対比して参照)。よって、この実施例3に係る合成杭30は、上記実施例1に係る合成杭10と同様の作用効果を奏する。
 図7A~Cは、本発明に係る合成杭の異なる実施例を示している。
 この実施例4に係る合成杭40は、上記実施例1と比し、前記PHC杭1の一端部の端板1aを杭径よりも大径の大径端板1a’としている点が相違する。PHC杭1、鋼管2、充填材3等の形態は、上記実施例1と同様なので同一の符号を付してその説明を適宜省略する。
 要するに、この実施例4は、予め工場等で製造された合成杭40を利用したもので、前記大径端板1a’は、前記充填材3の充填作業の効率、合成杭40の品質を高めるために設けられた。
 この実施例4に係る合成杭40の製造方法は、図8A~Cに段階的に示したように、一端部の端板1aを杭径よりも大径の大径端板1a’としたPHC杭1を、該大径端板1a’を下向きにして、重機等で平坦部7の上面に鉛直方向に起立させる(図8A)。続いて、前記鋼管2を、前記PHC杭1と同心の配置で該PHC杭1を取り囲むように重機等で落とし込み、前記大径端板1a’上に鉛直方向に起立させる(図8B)。この段階で、前記鋼管2の下端部と前記大径端板1a’とを接合してもよい。続いて、前記PHC杭1の外周面と前記鋼管2の内周面と前記大径端板1a’の上面との間に形成した隙間(溝部)に、上方から、前記充填材3を前記鋼管2と同等高さまで充填し、当該充填材3を養生して合成杭40を製造する(図8C)。
 かくして、工場等で製造した前記合成杭40は現場へ搬入され、掘削機を用いた中掘り工法により建て込まれる。地盤6から支持層Sまでの深さが20~40m程度と深い場合には、貫入されたPHC杭1の最上段に継ぎ足して設置する。しかる後、前記合成杭40を構成する鋼管2の上端部を、構造物の基礎と水平力を伝達可能に接合する。
 上記構成の合成杭40の製造方法によれば、前記PHC杭1と鋼管2とを鉛直方向に起立させた状態で、該PHC杭1と鋼管2とが形成する隙間に、上方から充填材3を充填できるので、上記実施例1と同様に、簡易、確実、かつ均等に充填することができる。よって、施工性に優れ、高品質の合成杭40を製造できる。
 また、この実施例4に係る合成杭40によれば、上記実施例1と比し、PHC杭1の上端部の端板1aを大径端板1a’に形成しているものの、その他の構成は上記実施例1とまったく同様である(図1A~Cと図7A~Cとを対比して参照)。よって、この実施例4に係る合成杭40は、上記実施例1に係る合成杭10と同様の作用効果を奏する。
 以上、実施例を図面に基づいて説明したが、本発明は、図示例の限りではなく、その技術的思想を逸脱しない範囲において、当業者が通常に行う設計変更、応用のバリエーションの範囲を含むことを念のために言及する。
  1  PHC杭
  1a 端板
  2  鋼管
  2a 平板部材
  3  充填材
  4  平板部材
  5  剥離板
  6  地盤
  7  平坦部
 10、20、30、40  合成杭
  S  支持層

Claims (15)

  1.  PHC杭と、PHC杭の外周に隙間を確保して同心の配置に設けられる鋼管と、前記隙間に充填される充填材とからなる合成杭であって、
     前記鋼管は、その上端部が構造物の基礎と水平力を伝達可能に接合され、その下端部が前記PHC杭と縁切りされていること、
     前記充填材は、前記鋼管に曲げ変形が生じても当該鋼管の局部座屈を防止できる強度及び剛性を有し、かつ前記PHC杭よりも強度及び剛性が小さい材料からなることを特徴とする、合成杭。
  2.  前記隙間の上部は、前記鋼管の上端開口部に設けた平板部材で閉塞され、当該平板部材は、前記PHC杭の上端部又は前記鋼管の上端部に接合されていることを特徴とする、請求項1に記載した合成杭。
  3.  前記隙間の上部は、前記PHC杭の上端部の端板を杭径よりも大径とした大径端板で閉塞されていることを特徴とする、請求項1に記載した合成杭。
  4.  前記鋼管は、前記PHC杭よりも短尺で、前記水平力に対し効果的に抵抗できる長さを有することを特徴とする、請求項1~3のいずれか一に記載した合成杭。
  5.  前記充填材は、セメントミルク、モルタル、樹脂モルタル、又はアスファルトコンクリートであることを特徴とする、請求項1~4のいずれか一に記載した合成杭。
  6.  前記充填材の強度は、20~50N/mm2程度であることを特徴とする、請求項1~5のいずれか一に記載した合成杭。
  7.  前記PHC杭は支持杭であることを特徴とする、請求項1~6のいずれか一に記載した合成杭。
  8.  前記構造物は、高層構造物又は超高層構造物であることを特徴とする、請求項1~7のいずれか一に記載した合成杭。
  9.  PHC杭と、PHC杭の外周に隙間を確保して同心の配置に設けられる鋼管と、前記隙間に充填される充填材とからなる合成杭の製造方法であって、
     前記PHC杭と前記鋼管とを、平坦部上に、同心の配置で鉛直方向に起立させ、前記PHC杭の外周面と前記鋼管の内周面との間に形成した隙間に、上方から、前記鋼管に曲げ変形が生じても当該鋼管の局部座屈を防止できる強度及び剛性を有し、かつ前記PHC杭よりも強度及び剛性が小さい材料からなる充填材を前記鋼管と同等高さまで充填し、当該充填材を養生させてなることを特徴とする、合成杭の製造方法。
  10.  前記合成杭は、所定の広さと深さを備えた合成杭製造用ピット内の平坦部上に、前記PHC杭と前記鋼管とを同心の配置で鉛直方向に起立させて製造することを特徴とする、請求項9に記載した合成杭の製造方法。
  11.  前記平坦部の上面に剥離板を載置し、該剥離板の上面に前記PHC杭と前記鋼管とを同心の配置で鉛直方向に起立させることを特徴とする、請求項9又は10に記載した合成杭の製造方法。
  12.  前記鋼管は、その底部に平板部材が接合された有底の鋼管とし、当該有底の鋼管を、前記平坦部上に鉛直方向に起立させた後、前記PHC杭を、前記鋼管と同心の配置で該鋼管の内部に落とし込み、前記平板部材上に鉛直方向に起立させることを特徴とする、請求項9又は10に記載した合成杭の製造方法。
  13.  前記PHC杭は、その一端部の端板に杭径よりも大径の平板部材を接合し、該平板部材を下向きにして前記平坦部上に鉛直方向に起立させた後、前記鋼管を、前記PHC杭と同心の配置で該PHC杭を取り囲むように落とし込み、前記平板部材上に鉛直方向に起立させることを特徴とする、請求項9又は10に記載した合成杭の製造方法。
  14.  前記PHC杭は、その一端部の端板を杭径よりも大径にした大径端板とし、該大径端板を下向きにして前記平坦部上に鉛直方向に起立させた後、前記鋼管を、前記PHC杭と同心の配置で該PHC杭を取り囲むように落とし込み、前記大径端板上に鉛直方向に起立させることを特徴とする、請求項9又は10に記載した合成杭の製造方法。
  15.  前記PHC杭の外周面、又は前記鋼管の内周面には、同心の配置に位置決めするための間隔保持部材が設けられていることを特徴とする、請求項9~14のいずれか一に記載した合成杭の製造方法。
PCT/JP2012/060856 2011-04-27 2012-04-23 合成杭および合成杭の製造方法 WO2012147690A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013512353A JP5805182B2 (ja) 2011-04-27 2012-04-23 合成杭の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099409 2011-04-27
JP2011-099409 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147690A1 true WO2012147690A1 (ja) 2012-11-01

Family

ID=47072209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060856 WO2012147690A1 (ja) 2011-04-27 2012-04-23 合成杭および合成杭の製造方法

Country Status (2)

Country Link
JP (1) JP5805182B2 (ja)
WO (1) WO2012147690A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102818A (ko) * 2015-02-23 2016-08-31 인천대학교 산학협력단 수평변위 저감형 분리형 강관말뚝
KR20160102816A (ko) * 2015-02-23 2016-08-31 인천대학교 산학협력단 수평변위 저감형 강관말뚝
JP2016205038A (ja) * 2015-04-27 2016-12-08 パイルフォーラム株式会社 杭の設計方法および構造物の支持構造
JP2017197984A (ja) * 2016-04-28 2017-11-02 清水建設株式会社 Phc杭と鉄骨柱の接合構造
JP2018048505A (ja) * 2016-09-23 2018-03-29 パイルフォーラム株式会社 充填材漏れ防止治具および同治具を用いた合成杭の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149023A (ja) * 1984-08-14 1986-03-10 Nippon Koatsu Concrete Kk 既製コンクリ−ト杭の補強方法
JPS61151325A (ja) * 1984-12-25 1986-07-10 Tomoegumi Iron Works Ltd 水平力に対する杭頭部補強工法
JP2000265478A (ja) * 1999-03-16 2000-09-26 Hooricchi Kensetsu Kk 耐震人工地盤付基礎及び耐震人工地盤付基礎施工方法
JP2001107356A (ja) * 1999-10-08 2001-04-17 Tenox Corp 異径組合せ杭及びその施工方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850400B2 (ja) * 2003-09-12 2006-11-29 住友重機械工業株式会社 杭と柱との杭頭接合構造および同杭頭接合構造の施工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6149023A (ja) * 1984-08-14 1986-03-10 Nippon Koatsu Concrete Kk 既製コンクリ−ト杭の補強方法
JPS61151325A (ja) * 1984-12-25 1986-07-10 Tomoegumi Iron Works Ltd 水平力に対する杭頭部補強工法
JP2000265478A (ja) * 1999-03-16 2000-09-26 Hooricchi Kensetsu Kk 耐震人工地盤付基礎及び耐震人工地盤付基礎施工方法
JP2001107356A (ja) * 1999-10-08 2001-04-17 Tenox Corp 異径組合せ杭及びその施工方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102818A (ko) * 2015-02-23 2016-08-31 인천대학교 산학협력단 수평변위 저감형 분리형 강관말뚝
KR20160102816A (ko) * 2015-02-23 2016-08-31 인천대학교 산학협력단 수평변위 저감형 강관말뚝
KR101687657B1 (ko) * 2015-02-23 2016-12-21 인천대학교 산학협력단 수평변위 저감형 분리형 강관말뚝
KR101714604B1 (ko) * 2015-02-23 2017-03-09 인천대학교 산학협력단 수평변위 저감형 강관말뚝
JP2016205038A (ja) * 2015-04-27 2016-12-08 パイルフォーラム株式会社 杭の設計方法および構造物の支持構造
JP2017197984A (ja) * 2016-04-28 2017-11-02 清水建設株式会社 Phc杭と鉄骨柱の接合構造
JP2018048505A (ja) * 2016-09-23 2018-03-29 パイルフォーラム株式会社 充填材漏れ防止治具および同治具を用いた合成杭の製造方法

Also Published As

Publication number Publication date
JPWO2012147690A1 (ja) 2014-07-28
JP5805182B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2012147690A1 (ja) 合成杭および合成杭の製造方法
KR101777760B1 (ko) 보강용 나선철근이 포함된 매입형 원심력 철근 콘크리트 파일 및 이를 이용하여 콘크리트 파일을 매입 시공하는 방법
US8757933B2 (en) Grouting cabin structure of a grouted connection in a foundation of an offshore wind turbine generator
JP3764729B2 (ja) コンクリート拘束接合部材を用いた鉄塔基礎の構築方法
KR101658020B1 (ko) 콘크리트 구조물용 파일 접합 구조체
CN108086134B (zh) 一种装配式空心钢管约束钢筋混凝土柱高墩
Cha et al. Cyclic response of a precast composite hollow reinforced concrete column using longitudinal rebars and base plate
JP2019100070A (ja) 洋上風力発電施設の基礎構造およびその施工方法
JP6703466B2 (ja) 充填材漏れ防止治具および同治具を用いた合成杭の製造方法
JP5865567B2 (ja) 連結用スラブ及びその構築方法
CN105951863B (zh) 一种主动装配式沉井的施工设备的施工方法
WO2016136980A1 (ja) 柱と杭の接合方法および接合構造
JP5509374B1 (ja) 既存建物の耐震補強構造及び耐震補強方法
JP5207108B2 (ja) 橋脚とフーチングとの接合構造及び方法
CN106337512A (zh) 底部加强型钢管混凝土边框高强混凝土组合剪力墙及制作方法
CN203905036U (zh) 预应力混凝土管桩劲性填芯结构
CN212477709U (zh) 一种高承载大直径装配式复合工程桩
JP2002256571A (ja) 建物の建て替え方法および既存杭の利用方法ならびに建物
CN210031773U (zh) 一种土木建筑工程用预制桩基
JP4538100B2 (ja) 地下空間施設及びその構築方法
KR102051386B1 (ko) 휨 및 전단성능이 보강된 고강도 콘크리트파일에 두부보강용 강관캡이 구비된 파일 시공 방법
JP5891121B2 (ja) 構真柱および構真柱の製造方法
CN102226343A (zh) 锚杆静压组合桩
CN216664179U (zh) 一种适用于滑坡区管道工程的支护结构
JP2015063878A (ja) 鋼管杭の施工方法および鋼管杭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777043

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013512353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12777043

Country of ref document: EP

Kind code of ref document: A1