WO2012147376A1 - 排気ガス浄化装置 - Google Patents

排気ガス浄化装置 Download PDF

Info

Publication number
WO2012147376A1
WO2012147376A1 PCT/JP2012/050314 JP2012050314W WO2012147376A1 WO 2012147376 A1 WO2012147376 A1 WO 2012147376A1 JP 2012050314 W JP2012050314 W JP 2012050314W WO 2012147376 A1 WO2012147376 A1 WO 2012147376A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
doc
exhaust gas
platinum
component
Prior art date
Application number
PCT/JP2012/050314
Other languages
English (en)
French (fr)
Inventor
武之 免出
岡島 利典
靖幸 伴野
永田 誠
Original Assignee
エヌ・イー ケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イー ケムキャット株式会社 filed Critical エヌ・イー ケムキャット株式会社
Priority to CN201280020403.1A priority Critical patent/CN103582523B/zh
Priority to JP2013511954A priority patent/JP5937067B2/ja
Priority to EP12777161.6A priority patent/EP2703077A4/en
Priority to US14/114,108 priority patent/US9523302B2/en
Publication of WO2012147376A1 publication Critical patent/WO2012147376A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7215Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification device, and more particularly, to efficiently purify particulate components such as hydrocarbons, carbon monoxide, nitrogen oxides and soot contained in exhaust gas from a lean combustion engine for a long period of time.
  • the present invention relates to an exhaust gas purification catalyst device using a possible oxidation catalyst and a selective reduction catalyst.
  • Exhaust gas emitted from lean combustion engines such as boilers, gas turbines, lean burn gasoline engines, and diesel engines contains various harmful substances derived from fuel and combustion air.
  • harmful substances include hydrocarbons (HC), soluble organic fractions (also referred to as SOF), soot, carbon monoxide (CO), and nitrogen oxides (NOx).
  • HC hydrocarbons
  • SOF soluble organic fractions
  • SOF soot
  • CO carbon monoxide
  • NOx nitrogen oxides
  • a diesel engine is a combustion engine with good fuel consumption and low CO 2 emission, but the exhaust gas contains a large amount of NOx.
  • NOx emissions In order to suppress NOx emissions in diesel engines, it is conceivable to reduce the air-fuel ratio and supply a large amount of fuel that is also a reducing component to the engine, but this leads to deterioration of fuel consumption and increased CO 2 emissions. End up.
  • combustion control makes it impossible to take advantage of the diesel engine that fuel efficiency is good.
  • exhaust gas containing NOx is mainly composed of titanium oxide, vanadium oxide, zeolite, etc. in the presence of ammonia (NH 3 ) component.
  • a technique of reducing denitration by contacting with a selective reduction catalyst is known as a selective reduction method or a selective catalytic reduction (hereinafter also referred to as SCR) method.
  • NOx is finally reduced to N 2 mainly by the following reaction formulas (1) to (3).
  • the NH 3 / NOx molar ratio may theoretically be 1.0, but a transient engine during operation of the diesel engine If operating conditions or, or space velocity, temperature of the exhaust gas, when the temperature of the catalyst surface are not suitable, the choice but to increase the NH 3 / NOx ratio of the NH 3 component supplied to obtain sufficient denitration performance In some cases, unreacted NH 3 leaked out, resulting in the risk of causing secondary pollution such as new environmental pollution. Hereinafter, the leaked NH 3 may be referred to as slip or NH 3 slip.
  • NH 3 gas may be used as a reducing component.
  • urea is introduced from the upstream of the denitration catalyst instead of NH 3 gas.
  • the reaction formula for obtaining NH 3 by such decomposition of urea is as follows (4) to (6).
  • (4) is urea thermal decomposition reaction
  • (5) is isocyanate hydrolysis
  • (6) is urea hydrolysis.
  • Urea is spray-supplied as urea water from the upstream of the SCR catalyst.
  • NH 3 mainly contributes to the reduction and purification of NOx
  • the reaction of NOx in the SCR catalyst is affected by the decomposition efficiency of urea. If the decomposition efficiency of urea is low, not only the efficiency of NOx purification is lowered, but also the amount of urea used increases, and there is a possibility that NH 3 slip is induced by unreacted urea.
  • Non-patent Document 1 In the purification of NOx by NH 3 component, the reaction is promoted in an atmosphere containing approximately half of NO and NO 2 as in the above formula (3) (Non-patent Document 1).
  • NO nitric oxide
  • Patent Document 2 In order to efficiently purify NOx, it has been proposed to dispose NO oxidation means in the exhaust gas flow path in order to increase the concentration of the NO 2 component in the exhaust gas (Patent Document 2).
  • Patent Document 3 An oxidation catalyst is disposed in the exhaust gas flow path, a filter is disposed in the subsequent stage, an ammonia component is sprayed in the subsequent stage, and an SCR catalyst is disposed in the subsequent stage.
  • soot and SOF (hereinafter collectively referred to as “particulate component” or PM: Particulate Matter) purification technology also has an effect on improving the fuel efficiency of diesel engines.
  • the fine particle component a method in which a heat resistant filter (DPF) is disposed in the exhaust gas flow path, and the fine particle component is filtered by this filter has been put into practical use.
  • the fine particle component filtered out is deposited on the filter, but if the fine particle component continues to accumulate on the filter, the filter is clogged and the output of the engine is reduced.
  • PPF heat resistant filter
  • a DPF is disposed after the DOC, and particulate components deposited on the filter are removed by combustion using NO 2 in addition to oxygen.
  • NO 2 the particulate component starts to combust from a low temperature, so that combustion removal of the particulate component is promoted and the combustion temperature is lowered to prevent the filter from melting.
  • the DPF coated with the catalyst component is also called CSF (Catalyzed Soot Filter).
  • Patent Documents 2 and 4 a purification method that combusts and removes particulate components simultaneously with NOx purification has been proposed.
  • a selective reduction catalyst and a filter for filtering particulate components arranged in this order in the flow of exhaust gas Patent Documents 5 and 6.
  • CSF obtained by catalyzing DPF is sometimes used to promote combustion of particulate components.
  • NO in the exhaust gas can be oxidized to NO 2 by the oxidation catalyst, and the combustion removal of the particulate component and the reduction purification of NOx can be performed simultaneously in one catalyst system.
  • a platinum component is said to be effective as an oxidation catalyst component for NO (Patent Document 4, Non-Patent Document 4).
  • Nissan Diesel's FLENDS (Friends) system which is used for diesel vehicles, and Daimler's Bluetech, etc., have been developed and spread. Yes.
  • As a reducing component there is a standardized urea aqueous solution having a concentration of 31.8 to 33.3% by weight, which is distributed under the trade name Adblue.
  • DOC has a precious metal component such as platinum (Pt) and palladium (Pd) for the purpose of oxidizing and removing HC and CO in exhaust gas
  • CSF is for the purpose of oxidizing and purifying soot and SOF in exhaust gas.
  • DOC also has an action of oxidizing NO in exhaust gas to NO 2 as described above.
  • the exhaust gas whose NO 2 amount is increased promotes NOx reduction purification in the rear SCR and combustion of particulate components in the DPF and CSF.
  • increasing the temperature of the exhaust gas by using HC in the exhaust gas at the DOC is effective for promoting the combustion removal of the particulate component deposited on the DPF or CSF disposed behind the DOC.
  • the HC component may be supplied to the DOC and the HC component may be burned (oxidized).
  • the HC component may be supplied to the DOC and the HC component may be burned (oxidized).
  • the HC component may be supplied to the DOC and the HC component may be burned (oxidized).
  • the diesel engine is a combustion engine with good fuel efficiency and low CO 2 emission.
  • fuel is used for the purpose of increasing the temperature of exhaust gas, the fuel consumption is deteriorated and the CO 2 emission is increased. End up.
  • the temperature of the exhaust gas of a diesel engine is often 400 ° C. or less, and the temperature is low in order to burn and remove the particulate component deposited on the DPF with the exhaust gas as it is (hereinafter sometimes referred to as DPF regeneration). Therefore, the exhaust gas may be heated to 600 ° C. or higher in order to promote the combustion of the particulate component, particularly the soot component (Japanese Patent Laid-Open No. 2003-148141, paragraph 0012, etc.).
  • the particulate component In order to efficiently burn the particulate component deposited on the DPF or CSF and regenerate the DPF or CSF, the particulate component needs to be repeated frequently every time the particulate component is deposited on the DPF or CSF, resulting in deterioration of fuel consumption.
  • the fuel when supplying DPF or CSF regeneration fuel into the cylinder after ignition, the fuel is mixed into the engine oil by frequently supplying the fuel, and the engine oil is diluted (Oil Dilution). When Oil Dilution occurs, the engine output decreases due to a decrease in the lubrication function of the engine oil and an increase in the amount of engine oil.
  • the particulate component deposited on the DPF or CSF is promoted to promote the combustion of the particulate component deposited on the DPF or CSF, and the fuel consumption is not lowered as much as possible so as not to reduce the fuel consumption as much as possible while promoting the combustion of the particulate component. It is conceivable to reduce the number of combustion removals. By reducing the number of regenerations, the temperature rise in the exhaust gas can be suppressed, the amount of fuel can be reduced, and fuel consumption can be prevented from deteriorating. However, when the number of regenerations of DPF or CSF is reduced, a large amount of fine particle components are deposited on the DPF or CSF.
  • the noble metal in the catalyst can take various states such as oxide, alloy, and complex oxide with other metals, so it is clear why the noble metal in the catalyst volatilizes.
  • the platinum component can be considered as follows. Originally, if platinum is in a metal state, the temperature at which it volatilizes in an inert gas atmosphere is very high at 2090 ° C. (temperature at which the vapor pressure becomes 10 ⁇ 2 Torr). It is a metal that is not easily oxidized. However, when exposed to a high temperature of 850 ° C. or higher in the presence of oxygen or air, platinum is known to oxidize the metal surface atoms and become platinum oxide (PtO 2 ) molecules and volatilize little by little. Patent Document 5).
  • a three-way catalyst for simultaneously purifying HC, CO, NOx in exhaust gas discharged from a gasoline engine.
  • TWC Three Way Catalyst
  • a porous support is immersed in a noble metal solution to support a catalyst noble metal, the noble metal support is immersed in an organic solution, and the organic support is heat-treated under a condition in which the organic material is carbonized. The movement of components to the gas phase is suppressed.
  • This conventional technology heat-treats under the condition that the organic matter in the catalyst raw material is carbonized, and the anchor effect that suppresses the movement of the catalyst noble metal as a wedge by the catalyst noble metal and carbonized carbon entering the gap between the porous support and the catalyst noble metal. And the effect of sterically fixing the catalyst noble metal to the porous body by shrinking the pores of the porous carrier by a high-temperature heat treatment of 700 ° C. or higher, and a base metal such as Fe, Ni, Co, etc. having excellent heat resistance. The movement of the platinum component to the gas phase is suppressed by three effects of suppressing the movement of the catalyst noble metal as an obstacle.
  • this prior art is not practical because it is extremely difficult to leave the necessary carbon component in the catalyst production process.
  • NOx purification in TWC is performed by the following steam reforming reaction using rhodium (Rh) component in the catalyst and HC in the exhaust gas.
  • Rh rhodium
  • the steam reforming reaction is promoted (Republished 2000/027508, paragraph 14).
  • the NOx purification in the exhaust gas of the gasoline engine and the NOx purification in which the exhaust gas of the diesel engine is treated with the ammonia component of the reducing agent and the SCR catalyst are fundamentally different in the reaction process.
  • the catalyst technology in TWC cannot be used as it is as a NOx purification technology for diesel engines.
  • it is also considered not to use a Pt component as a noble metal component.
  • the Pt component is not used, the NO 2 concentration in the exhaust gas decreases, and there may be a case where the reduction and purification of NOx in the SCR cannot be sufficiently obtained. The decrease in the NO 2 concentration also increases the regeneration efficiency of DPF and CSF. make worse.
  • an SCR catalyst component that is durable against precious metal contamination and maintains high NOx purification performance
  • vanadium oxide is mainly used. It can be considered as an ingredient.
  • vanadium is a hazardous heavy metal and is not desirable for automotive applications.
  • Various types of zeolite are widely used in SCR, but zeolite significantly deteriorates SCR performance due to contamination with noble metals.
  • JP 05-38420 A (Claim 1, paragraphs 0012, 0013, 0014) Japanese Patent Laid-Open No. 08-103636 (Claim 1, paragraphs 0002 and 0012) Japanese Patent Laid-Open No. 01-318715 Japanese translation of PCT publication No. 2002-502927 (Claim 1, paragraphs 0007 and 0008) US Pat. No. 6,823,663 US Pat. No. 6,928,806 Japanese Patent Laid-Open No. 08-38897 Japanese Patent Laid-Open No. 09-262467
  • An object of the present invention is to efficiently purify particulate components such as hydrocarbons, carbon monoxide, nitrogen oxides, soot and the like contained in exhaust gas from a lean combustion engine for a long period of time in view of the problems of the above prior art. It is an object of the present invention to provide an exhaust gas purifying catalyst device using an oxidation catalyst and a selective reduction catalyst that can perform the above-described process.
  • the present inventors have arranged an SCR catalyst behind the DOC, and provided NH3 component supply means as a reducing component between the DOC and the SCR catalyst.
  • the noble metal component of DOC contains Pt and Pd and the particle diameter of the noble metal or the ratio of the Pt particles existing alone is specified, the scattering of Pt is suppressed, and the DOC catalyst It was found that the NOx purification performance of the SCR catalyst can be maintained even when the bed temperature is as high as 900 ° C, and that the reducing component can be used effectively.
  • the exhaust means that the supply means of NH3 component as a reducing component is arranged in front of the SCR catalyst and the catalyst bed temperature of DPF or CSF becomes extremely high as 900 ° C.
  • the precious metal component of DOC and / or CSF contains Pt and Pd, and if the particle size of the precious metal or the ratio of Pt particles existing alone is specified, a remarkable effect can be obtained similarly. As a result, the present invention has been completed.
  • the noble metal component of the oxidation catalyst (DOC) contains platinum and palladium, and the ratio of platinum particles present alone is 20% or less, or the noble metal average particles Selective return by suppressing volatilization of platinum from the oxidation catalyst (DOC) even when the catalyst bed temperature of the oxidation catalyst (DOC) rises to 900 ° C by setting the diameter to 4 nm or more.
  • Exhaust gas purification apparatus characterized by maintaining the activity of the catalyst (SCR) is provided.
  • the particulate component (PM) in the exhaust gas is further captured behind the oxidation catalyst (DOC) and in front of the reducing agent spraying means.
  • DOC oxidation catalyst
  • DPF combustion filter not containing a noble metal component for collecting and removing combustion (oxidation) is disposed.
  • the selective reduction catalyst collects particulate matter (PM) in the exhaust gas and removes it by combustion (oxidation).
  • an exhaust gas purification device characterized by being a selective catalytic reduction combustion filter (SCRF) applied to a combustion filter (DPF) that does not contain a noble metal component.
  • a noble metal component for further combustion (oxidation) removal is provided behind the oxidation catalyst (DOC) and in front of the reducing agent spraying means.
  • a catalytic combustion filter (CSF) containing the catalyst, and the noble metal component of the catalytic combustion filter (CSF) contains platinum and palladium, and the ratio of platinum particles present alone is 3% or less. It is characterized by maintaining the activity of the selective reduction catalyst (SCR) by suppressing the volatilization of platinum from the catalytic combustion filter (CSF) even when the catalyst bed temperature of the catalytic combustion filter (CSF) rises to 900 ° C.
  • An exhaust gas purification device is provided.
  • the selective reduction catalyst (SCR) component does not include a noble metal component but includes zeolite or crystalline metal aluminophosphate.
  • An exhaust gas purifying device is provided.
  • the oxidation catalyst (DOC) has a noble metal loading of 0.5 to 4.0 g / L in terms of metal.
  • an exhaust gas purifying device characterized in that.
  • the oxidation catalyst (DOC) has a ratio of platinum to palladium of 1: 1 to 11: 2 in terms of weight.
  • An exhaust gas purifying device is provided.
  • the oxidation catalyst (DOC) has a coating amount of the oxidation component constituting the catalyst layer of 100 to 300 g / L.
  • An exhaust gas purifying device is provided.
  • the amount of platinum that volatilizes from the oxidation catalyst (DOC) and adheres to the selective reduction catalyst (SCR) is 20 hours elapsed. Later, an exhaust gas purification device characterized by being 12 ppm or less is provided.
  • the catalytic combustion filter (CSF) is characterized in that the ratio of platinum to palladium is 1: 1 to 11: 4 in terms of weight.
  • An exhaust gas purification device is provided.
  • the catalyzed combustion filter (CSF) is characterized in that the amount of noble metal supported is 0.1 to 2.0 g / L in terms of metal.
  • An exhaust gas purifying apparatus is provided.
  • the catalyzed combustion filter (CSF) is characterized in that the coating amount of the oxidizing component constituting the catalyst layer is 5 to 150 g / L.
  • An exhaust gas purification device is provided. According to the thirteenth aspect of the present invention, in the fourth aspect, after the elapse of 20 hours, the amount of platinum that volatilizes from the catalyzed combustion filter (CSF) and adheres to the selective reduction catalyst (SCR) An exhaust gas purification device characterized by being 12 ppm or less is provided.
  • an exhaust gas purifying apparatus according to any one of the first to fourth aspects, wherein the noble metal component is supported on a carrier having an integral structure.
  • the exhaust gas purification device according to the fourteenth aspect, wherein the carrier having an integral structure is a flow-through honeycomb structure and / or a wall flow honeycomb structure.
  • An apparatus is provided.
  • the exhaust gas purifying apparatus according to any one of the first to fourth aspects, further comprising an ammonia oxidation catalyst (AMOX) disposed after the selective reduction catalyst (SCR). Is provided.
  • AMOX ammonia oxidation catalyst
  • the noble metal component of DOC Contains Pt and Pd and specifies the particle size of the noble metal or the ratio of Pt particles present alone, so that the scattering of Pt can be suppressed, and the catalyst bed temperature of DOC becomes extremely high at 900 ° C. Even in such a state, the NOx purification performance of the SCR catalyst can be maintained, and the reducing component can be used effectively.
  • a filter (DPF or CSF) is additionally arranged behind the DOC, NH 3 component supply means is arranged as a reducing component before the DOC and SCR catalyst, and the catalyst bed temperature of the filter (DPF or CSF) is 900 ° C.
  • the noble metal component of DOC and / or CSF contains Pt and Pd and the particle diameter of the noble metal or the ratio of Pt particles present alone is specified, the SCR The NOx purification performance in the catalyst can be maintained, and the reducing component can be used effectively.
  • FIG. 1 is an explanatory view schematically showing a configuration in which an oxidation catalyst (DOC), a reducing component supply means, and a selective reduction catalyst (SCR) are arranged in this order in the exhaust gas purification catalyst device of the present invention.
  • FIG. 2 schematically shows a configuration in which an oxidation catalyst (DOC), a combustion filter (DPF), a reducing component supply means, and a selective reduction catalyst (SCR) are arranged in this order in the exhaust gas purification catalyst device of the present invention. It is explanatory drawing.
  • FIG. 1 is an explanatory view schematically showing a configuration in which an oxidation catalyst (DOC), a combustion filter (DPF), a reducing component supply means, and a selective reduction catalyst (SCR) are arranged in this order in the exhaust gas purification catalyst device of the present invention. It is explanatory drawing.
  • FIG. 3 schematically shows a configuration in which an oxidation catalyst (DOC), a reducing component supply means, and a combustion filter (SCRF) coated with a selective reduction catalyst (SCR) are arranged in this order in the exhaust gas purification catalyst device of the present invention.
  • FIG. 4 schematically shows a configuration in which an oxidation catalyst (DOC), a catalytic filter (CSF), a reducing component supply means, and a selective reduction catalyst (SCR) are arranged in this order in the exhaust gas purification catalyst device of the present invention. It is explanatory drawing shown.
  • FIG. 5 is an explanatory view schematically showing a device configuration used in the durability test of the exhaust gas purification catalyst in the present invention.
  • exhaust gas purification catalyst device (DOC + SCR)
  • the supply means for the DOC and SCR and the reducing component are essential components.
  • a reducing agent spraying means 3 is provided behind an oxidation catalyst (DOC) 4 in an exhaust gas flow path 2 from a diesel engine 1, and a selective reduction catalyst (SCR) is placed behind the injection means 3.
  • DOC oxidation catalyst
  • SCR selective reduction catalyst
  • ) 5 is an exhaust gas purification catalyst device (hereinafter also simply referred to as catalyst device I).
  • NOx reduction catalyst that suppresses platinum component leakage (slip) from DOC to SCR and uses urea aqueous solution or aqueous ammonia solution (hereinafter sometimes referred to as ammonia component or NH 3 component) in SCR arranged behind DOC It is intended to prevent the performance degradation of.
  • the DOC used in the present invention is an oxidation catalyst containing a noble metal component that oxidizes HC and CO in exhaust gas, and contains at least a platinum component and a paradium component as the noble metal component.
  • a platinum component is generally used as a noble metal component, and a paradium component may also be used. If only Pd is used, it is possible to eliminate volatilization of Pt from the DOC. However, it is difficult to obtain sufficient NO oxidation activity with only the Pd component. Further, it is predicted that the surface of the noble metal component in the catalyst is oxidized with time in the high-temperature exhaust gas. Pd oxide has a high melting point and is less volatile than Pt oxide.
  • the Pd component that is less volatile has the action of adsorbing the volatilized Pt component and the action of suppressing the volatilization of Pt by alloying the Pt component and the Pd component.
  • the DOC includes a Pd component together with a Pt component as an essential component. By adding the Pd component, the amount of expensive Pt component used can be reduced.
  • the amount of Pt component in the noble metal component is preferably 50 wt% or more, more preferably 60 wt% or more in terms of metal.
  • Such a noble metal component is supported on an inorganic oxide (base material), mixed with other catalyst components as necessary, and coated on a structural support as a catalyst composition.
  • a known catalyst material in the field of exhaust gas purification catalyst can be used.
  • Such an inorganic material is preferably a porous inorganic oxide that has high heat resistance and has a large specific surface area, which can stably and highly disperse the noble metal component.
  • the porous inorganic oxide can be appropriately selected from known inorganic oxides. Specifically, various types of alumina, zirconia, ceria, silica, silica-alumina, titania, zeolite and the like can be used. These main components may be used alone or as a mixture of two or more kinds or as a composite oxide of two or more.
  • the base material used as a single, mixed, or complex oxide may be a pure metal oxide, but other elements may be added in order to adjust heat resistance and catalytic activity. Examples of the additive include various rare earth metal components and various transition metal components, which may be added alone or in combination of two or more components. Of these inorganic oxides, alumina is preferred in the present invention.
  • Examples of alumina include ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, with ⁇ -alumina being preferred.
  • ⁇ -alumina ⁇ -alumina added with lanthanum is particularly preferable.
  • the ⁇ -alumina to which lanthanum is added has excellent heat resistance, and when a noble metal component such as a platinum component or a palladium component is supported, high catalytic activity can be maintained even at high temperatures (Japanese Patent Laid-Open No. 2004-290827). ).
  • the specific surface area of such ⁇ -alumina or lanthanum-added ⁇ -alumina is preferably 80 to 250 m 2 / g, and more preferably 200 to 250 m 2 / g. Is more preferable.
  • the specific surface area value of ⁇ -alumina is 250 m 2 / g or less, the heat resistance of the catalyst is good and the dispersion state of the noble metal component can be stabilized, and when it is 80 m 2 / g or more, the noble metal component can be highly dispersed. .
  • the main problem of the present invention is that the platinum supported on the above inorganic oxide (inorganic matrix) is not volatilized even if it is exposed to an air atmosphere containing water vapor at a high temperature for a long period of time. This is to maintain the denitration performance of the type catalyst (SCR).
  • the oxidation catalyst (DOC) enhances the oxidation activity of NOx, so that noble metal components such as platinum supported on the inorganic oxide increase the number of active sites where the reaction of NOx and oxygen (O 2 ) occurs. Therefore, it is devised to disperse as high as possible, and therefore, the particle diameter of noble metals such as platinum is required to be smaller, which increases the specific surface area of the entire noble metal and comes into contact with oxygen (O 2 ).
  • the noble metal component of the oxidation catalyst (DOC) contains platinum and palladium, and the ratio of platinum particles present alone is 20% or less, or the average particle diameter of the noble metal is 4 nm or more, thereby suppressing the volatilization of platinum when the catalyst bed temperature of the oxidation catalyst (DOC) rises to 900 ° C. and maintaining the activity of the selective reduction catalyst (SCR). .
  • an ethanolamine solution of platinum (IV) hydroxide, tetraammineplatinum (II) acetate, tetraammineplatinum (II ) Carbonate, tetraammineplatinum (II) nitrate, nitric acid solution of platinum hydroxide (IV) acid, platinum nitrate, dinitrodiamineplatinum nitrate, platinum chloride (IV) acid, etc., and tetraammine as the starting salt of palladium Palladium (II) acetate, tetraammine palladium (II) carbonate, tetraammine palladium (II) nitrate, dinitrodiammine palladium, palladium nitrate, palladium chloride and the like can be used.
  • Preferred platinum starting salts are ethanolamine solution of platinum hydroxide (IV) acid, platinum nitrate, dinitrodiamine platinum nitrate, tetraammineplatinum (II) nitrate, etc.
  • Components other than noble metals can be easily treated by heat treatment during catalyst preparation. Those which volatilize in the water are preferred.
  • chloride is used as a starting salt, chlorine may remain depending on the production method, which may adversely affect catalyst activity.
  • drying and baking can be appropriately performed by a known method.
  • both aqueous solutions can be mixed without any precipitation and remain in a uniform solution.
  • Platinum particles and palladium particles are present in a mixed state, and it is difficult for each to exist alone. However, if the ratio of platinum to palladium becomes too large, platinum tends to exist alone.
  • the properties of the starting salts of platinum and palladium are different (acidic and alkaline), precipitation will occur when both aqueous solutions are mixed, so if the inorganic base material can only be supported alone, platinum particles and The proportion of palladium particles existing alone is high.
  • the volatilization rate of platinum from the surface of the noble metal can be suppressed by increasing the particle diameter of the noble metal particles and reducing the specific surface area of the noble metal particles.
  • a method for enlarging the precious metal particles supported on the inorganic material without being oxidized generally, a method of treating at high temperature in an inert gas (nitrogen, argon, etc.), or oxidation-reduction at a high temperature as described above.
  • An iterative method Japanese Patent Laid-Open No. 9-262467
  • this method is not preferable in terms of resource and energy saving because it requires equipment for sealing the gas, and an inert gas, an oxidizing gas, and a reducing gas.
  • a flammable substance is added in advance when a slurry is produced by adding a catalyst component, and the catalyst component is baked on the carrier when the slurry is coated on a carrier having an integral structure and then fired.
  • the particle size of the noble metal component such as platinum is increased by causing the combustible substance to burn and generate heat and generate a high temperature.
  • the flammable substance burns (oxidizes) in the vicinity of the catalyst surface, oxygen in the air is consumed, so the catalyst surface may be in a reduced state. It can be expected that the noble metal becomes a reducing atmosphere at a high temperature, and that the particles grow while the noble metal such as platinum is kept in the metal state.
  • an inexpensive and carbon-containing material is preferable, and examples include, in addition to purified sugar, monosaccharides such as fructose, glucose, and brain sugar, and disaccharides such as sucrose, maltose, and lactose.
  • monosaccharides such as fructose, glucose, and brain sugar
  • disaccharides such as sucrose, maltose, and lactose.
  • These materials are safe as materials, have excellent solubility, have an ignition temperature of 350 ° C., and not only burn well under the conditions when the catalyst component is applied to the honeycomb structure and fired, but also the number of carbons that form molecules Since it is as small as 6 to 12, it is easy to burn completely even when burned, and it is difficult for residues such as soot to remain, making it suitable as a flammable substance.
  • a carrier having integral structure that is, a honeycomb structure (hereinafter also referred to as a honeycomb carrier) is used in order to carry a noble metal component with good dispersibility.
  • the honeycomb structure is a honeycomb-shaped structure in which a large number of through holes are concentrated.
  • stainless steel, silica, alumina, silicon carbide, cordierite, or the like can be used as the material of such a honeycomb structure.
  • any structure of the honeycomb structure can be used in the present invention.
  • honeycomb structure For such a honeycomb structure, it is desirable to use a flow-through type honeycomb structure in which through holes having both ends opened are integrated into a honeycomb shape, not only for DOC, but also for SCR applications described later.
  • a wall flow type honeycomb structure in which one through hole opening portion and the other through hole are integrated into a honeycomb shape is used.
  • one honeycomb structure may be coated with a catalyst composition dedicated to each honeycomb structure type catalyst.
  • Such a honeycomb carrier can be selected from known honeycomb structure-type carriers, and the overall shape thereof is also arbitrary, depending on the structure of the exhaust system to be applied, such as a cylindrical shape, a quadrangular prism shape, or a hexagonal casting shape. It can be selected as appropriate.
  • the number of holes in the opening is determined in consideration of the type of exhaust gas to be processed, gas flow rate, pressure loss or removal efficiency, etc. The number is preferably about 100 to 1500 per square inch (6.45 cm 2 ), and more preferably 100 to 900. If the cell density per square inch (6.45 cm 2 ) is 10 or more, the contact area between the exhaust gas and the catalyst can be secured, and a sufficient exhaust gas purification function can be obtained.
  • the thickness of the cell wall of the honeycomb carrier is preferably 2 to 12 mil (milli inch) (0.05 to 0.3 mm), more preferably 3 to 8 mil (0.076 to 0.2 mm).
  • a wash coat method is generally used.
  • a catalyst material and a honeycomb carrier are prepared.
  • the catalyst material is optionally mixed with water or a solvent obtained by adding a water-soluble organic solvent to water to form a slurry mixture, and then applied to the honeycomb carrier, followed by drying, Manufactured by firing. That is, a slurry mixture is obtained by mixing the catalyst material and water or a solvent obtained by adding a water-soluble organic solvent to water at a predetermined ratio.
  • the aqueous medium may be used in such an amount that each catalyst component can be uniformly dispersed in the slurry.
  • aqueous medium water or a solvent obtained by adding a water-soluble organic solvent to water is hereinafter referred to as “aqueous medium”.
  • the catalyst material contains a noble metal component containing at least platinum as an inorganic base material.
  • the noble metal component can also be supported on an inorganic base material in advance.
  • the metal catalyst component and the inorganic base material are mixed in an aqueous medium to prepare a slurry.
  • a known method can be employed as appropriate. An example thereof is as follows.
  • compounds such as nitrates, carbonates, acetates and chlorides, specifically, ethanolamine solutions of platinum hydroxide (IV) acid, tetraammineplatinum (II) acetate, tetraammineplatinum (II) Carbonate, tetraammineplatinum (II) nitrate, nitric acid solution of platinum (IV) hydroxide, platinum nitrate, dinitrodiamineplatinum nitrate, platinum chloride (IV) acid, etc.
  • this noble metal component raw material solution is mixed with an inorganic base material together with an aqueous medium, dried at 50 to 200 ° C. to remove the solvent, and then fired at 300 to 1200 ° C.
  • a known catalyst material may be blended as a binder or the like.
  • known catalyst materials include alumina, silica, titania, zirconia, silica-alumina, ceria, alkali metal materials, alkaline earth metal materials, transition metal materials, rare earth metal materials, silver, silver salts, and the like. If necessary, a dispersant and a pH adjuster can be used in combination.
  • the catalyst composition is applied as a slurry mixture.
  • the catalyst composition may be a single layer or may be applied so as to have two or more layers.
  • drying and firing are performed.
  • the drying temperature is preferably from 100 to 300 ° C, more preferably from 100 to 200 ° C.
  • the firing temperature is preferably from 300 to 700 ° C, particularly preferably from 400 to 600 ° C.
  • the drying time is preferably 0.5 to 2 hours, and the firing time is preferably 1 to 3 hours.
  • a heating means it can carry out by well-known heating means, such as an electric furnace and a gas furnace.
  • the exhaust gas purifying catalyst device of the present invention uses a DOC containing a Pt component as an essential component. Most of the NOx contained in the exhaust gas from the engine is NO. In conventional exhaust gas purification catalyst devices, it has been desirable to make NO and NO 2 have an appropriate ratio in order to promote NOx purification in the SCR catalyst. This NO: NO 2 ratio is about 1: 1 in terms of molar ratio in an SCR catalyst containing zeolite such as Fe- ⁇ or MFI as a main component. Also in the exhaust gas purification apparatus of the present invention, a DOC is disposed in front of the SCR catalyst to oxidize NO to NO 2 and increase the NO 2 concentration in NOx.
  • the Pd component is easily poisoned by a sulfur component in light oil or heavy oil, which is a fuel of a diesel engine, and may be deactivated after long-term use. For this reason, in this invention, when using Pd component for DOC, it is preferable to make the mixing ratio into 50 wt% or less.
  • the loading amount of the precious metal component of the DOC is preferably 0.5 to 4.0 g / L in terms of metal per volume of the monolithic structure type carrier, and is 0.8 g / L to 3.0 g / L. It is more preferable.
  • the ratio of platinum to palladium in the noble metal component of the DOC is preferably 1: 1 to 11: 2 in terms of weight, and more preferably 3: 2 to 11: 2. If the ratio is less than 1: 1, the decrease in the oxidation activity of HC, CO, NO, etc.
  • the coating amount of the oxidizing component constituting the catalyst layer of the oxidation catalyst (DOC) is preferably 100 to 300 g / L, more preferably 150 to 250 g / L.
  • the coating amount of the oxidizing component is less than 100 g / L, the dispersibility of the supported noble metal such as platinum is deteriorated, so that the oxidation activity is lowered, and when it exceeds 300 g / L, the inside of the cell is narrowed. Since pressure loss increases, it is not preferable.
  • SCR catalyst selective reduction catalyst
  • the SCR catalyst used in the exhaust gas purification apparatus of the present invention is for reducing and purifying NOx in exhaust gas using an ammonia component as a reducing agent.
  • SCR catalyst materials include zeolite and zeolite-like compounds (crystalline metal aluminophosphates) described later, transition metal oxides such as vanadium oxide, titania, zirconia, tungsten oxide, ceria, lanthanum, praseodymium, samarium, gadolinium And various inorganic materials such as rare earth oxides such as neodymium, stealth metal oxides such as gallium oxide and tin oxide, and composite oxides thereof.
  • the SCR catalyst preferably contains zeolite or crystalline metal aluminophosphate.
  • noble metal components such as Pt and Pd are preferably not included because they oxidize the ammonia component to generate NOx.
  • Zeolite is a generic name for aluminosilicates having fine pores in the crystal, and molecules can be selectively taken into the pores to promote the reaction.
  • Such zeolite and the above inorganic materials have excellent NOx reduction and purification performance as an SCR material, but when they are contaminated with noble metals, the NOx reduction and purification performance is significantly reduced.
  • the precious metal component Pt in the DOC is supported on the honeycomb structure in a state in which it is difficult to scatter even when exposed to high temperatures, thereby preventing contamination of zeolite and the inorganic material.
  • the NOx reduction and purification performance excellent as an SCR catalyst can be stably exhibited over a long period of time.
  • the SCR catalyst is preferably a monolithic structure type carrier such as a flow-through honeycomb structure or a wall flow honeycomb structure.
  • the zeolite is not particularly limited, but Y type, ⁇ type, MFI type, CHA type, USY type, SUZ type, MCM type, PSH type, SSZ type, ERB type, ITQ type, mordenite, ferrierite. It can be selected as appropriate. Further, crystalline metal aluminophosphate having a layered structure similar to that of zeolite is mentioned (Japanese Patent Laid-Open No. 60-86011).
  • crystalline metal aluminophosphates As such crystalline metal aluminophosphates, crystalline aluminum phosphate (ALPO) and crystalline aluminum silicate phosphate (SAPO) are known, and are also studied as SCR catalyst materials ( US 2008/0241060).
  • APO crystalline aluminum phosphate
  • SAPO crystalline aluminum silicate phosphate
  • Such zeolites and zeolite-like compounds may be used alone, or two or more kinds of materials may be mixed, or a plurality of materials may be coated on the surface of the structure type carrier.
  • the zeolite and the zeolite-like compound may be those obtained by ion exchange of transition metal components such as iron and copper and rare earth components such as cerium and lanthanum at the cation sites.
  • ⁇ -type zeolite is preferably used as the SCR catalyst material in the present invention.
  • ⁇ -type zeolite has a relatively complicated three-dimensional pore structure composed of linear pores having relatively large diameters arranged in one direction and curved pores intersecting with these pores. Diffusion and diffusion of gas molecules such as NH 3 are easy, and the property is excellent in reactivity and durability.
  • zeolite has acid sites that can adsorb basic compounds such as NH 3 , and the number of acid sites varies depending on the Si / Al ratio.
  • zeolite with a low Si / Al ratio has a large number of acid points, but the degree of deterioration is large in durability in the presence of water vapor. There are few.
  • NH 3 is adsorbed on the acid sites of the zeolite, which becomes the active sites and reduces and removes nitrogen oxides such as NO 2, so the one with more acid sites (Si / Al ratio is smaller). The lower one is advantageous for the denitration reaction.
  • the Si / Al ratio has a trade-off relationship between durability and activity, but considering these, the Si / Al ratio of zeolite is preferably 5 to 500, more preferably 10 to 100, and more preferably 15 to 50 is more preferable. Such characteristics are similarly possessed by ⁇ -type zeolites suitable for SCR catalysts and MFI-type zeolites.
  • ⁇ -type zeolite in which iron elements are ion-exchanged at the cation sites of the zeolite as the SCR catalyst material.
  • the iron in which the iron element is ion-exchanged may contain iron oxide as an iron component.
  • the zeolite containing an iron element has a high NH 3 adsorption / desorption rate and high activity as an SCR, it is preferably contained as a main component.
  • the main component means 50 wt% or more of the total amount of zeolite specified for the catalyst composition coated on the support of the SCR catalyst.
  • ⁇ -type zeolite has a three-dimensional pore structure as described above, and can easily diffuse cations during ion exchange and gas molecules such as NH 3 .
  • ⁇ -type zeolite has a unique structure and a complicated vacancy structure. It is an effective material for automobile catalysts because it is less likely to cause structural breakdown due to heat and has high stability.
  • zeolite has a cation as a counter ion as a solid acid point.
  • cation ammonium ion or proton is generally used, but ⁇ -type zeolite to which an iron element is added as a cation species (hereinafter sometimes referred to as “Fe- ⁇ ”) is preferable.
  • the rate at which ⁇ -type zeolite is ion-exchanged by iron element is such that one iron element (ion) and two [AlO 4/2 ] -units which are monovalent ion-exchange sites in the zeolite form an ion pair. Based on the formation, it is preferably represented by the following formula (9).
  • the ion exchange rate is preferably 10 to 100%, more preferably 12 to 92%, still more preferably 30 to 70%.
  • the ion exchange rate is 92% or less, the framework structure of the zeolite is further stabilized, the heat resistance of the catalyst and thus the life of the catalyst is improved, and more stable catalytic activity can be obtained.
  • the ion exchange rate is too low and less than 10%, sufficient denitration performance may not be obtained.
  • the said ion exchange rate 100%, it means that all the cation seed
  • the ion-exchanged zeolite exhibits excellent purification ability.
  • inorganic materials include transition metal oxides such as titania, zirconia, and tungsten oxide, rare earth oxides such as ceria, lanthanum, praseodymium, samarium, gadolinium, and neodymium, and stealth metal oxides such as gallium oxide and tin oxide. Or a composite oxide thereof or the like.
  • alumina and silica modified with alumina and silica, and rare earths, alkali metals, alkaline earths, etc. are excellent in heat resistance and have a larger specific surface area than the above oxides. This is more preferable because the specific surface area of the oxide itself can be increased.
  • ceria is known as a NOx adsorption functional material, and also has a function of promoting the SCR reaction between NH 3 and NOx by promoting NOx adsorption in the present invention.
  • zirconia can be expected to have an effect as a dispersion holding material for highly dispersing other components in a thermally stable state.
  • tungsten oxide is highly acidic and has a large adsorptive power for urea and ammonia, which are alkaline components, the use of tungsten oxide can be expected to have the effect of increasing denitration performance.
  • the oxides are preferably used alone or in combination or in combination. These oxides and their composite oxides are not particularly limited depending on the composition, structure, and production method.
  • starting materials having forms such as nitrates, sulfates, carbonates, acetates, and chlorides containing the above elements are dissolved in an aqueous solution and then mixed and precipitated as precipitates by pH adjustment or evaporated to dryness.
  • the solid material obtained by solidifying may be fired, or when mixing or complexing, a plurality of these metal salts may be solubilized at once and the above treatment may be performed. After forming the oxide by performing the above treatment on one or more metal salts, the remaining metal salts may be supported all at once or sequentially.
  • Zeolite and the inorganic material exhibit excellent NOx reduction and purification performance, but as described above, the activity may be significantly reduced when contaminated with noble metal components such as Pt.
  • the SCR catalyst is prevented from being contaminated by the Pt component, and NOx reduction by the SCR catalyst is performed using NO 2 generated by the DOC.
  • the purification performance can be improved.
  • the presence or absence of noble metal is not particularly limited for the catalyst arranged behind the SCR, and a catalyst containing a noble metal component may be arranged.
  • a catalyst containing a noble metal component may be arranged.
  • the relationship between the DOC and the SCR catalyst has been described above, the same can be considered when a DPF or CSF is disposed between the DOC and the SCR.
  • the catalyst bed temperature of the oxidation catalyst (DOC) rises to 900 ° C.
  • the amount of platinum that volatilizes from the oxidation catalyst (DOC) and adheres to the selective reduction catalyst (SCR) is 20 hours later. It is preferably 12 ppm or less, and more preferably 10 ppm or less.
  • the amount of platinum that volatilizes from the DOC and adheres to the selective reduction catalyst (SCR) is not measured and evaluated after 20 hours. Even the oxidation catalyst (DOC), which is considered to have high performance, was 20 to 40 ppm. Also from such a thing, it is very remarkable that the amount of platinum adhering to the selective reduction catalyst (SCR) becomes 12 ppm or less after 20 hours in the catalyst device I using the oxidation catalyst (DOC) of the present invention. It can be said that it is an effect.
  • the reducing agent spraying means In the exhaust gas purifying catalyst device of the present invention, the reducing agent spraying means (Injection) supplies a reducing agent selected from a urea component or an ammonia component. Consists of an attached spray nozzle.
  • the position of the reducing agent spraying means is installed behind the oxidation catalyst (DOC) and in front of the selective reduction catalyst (SCR) for reducing nitrogen oxide (NOx) in contact with the reducing agent.
  • DOC oxidation catalyst
  • SCR selective reduction catalyst
  • the kind of reducing component is selected from a urea component or an ammonia component.
  • urea component a standardized urea aqueous solution having a concentration of 31.8 to 33.3% by weight, for example, the trade name Adblue, can be used. If the ammonia component is used, ammonia gas is used in addition to ammonia water. May be. However, NH 3 which is a reducing component itself has a harmful effect such as an irritating odor. Therefore, urea water is added from the upstream of the denitration catalyst rather than using the NH 3 component as the reducing component as it is. A system in which NH 3 is generated by decomposition or hydrolysis and this acts as a reducing agent is preferable.
  • the exhaust gas purification catalyst device of the present invention is selected from an oxidation catalyst (DOC) containing a noble metal component for oxidizing nitrogen oxide (NO) in exhaust gas discharged from a diesel engine, and a urea component or an ammonia component.
  • DOC oxidation catalyst
  • a reducing agent spraying means for supplying a reducing agent, and a selective reduction catalyst (SCR) containing no noble metal for reducing and removing nitrogen oxide (NOx) in contact with the reducing agent are arranged in this order from the upstream side of the exhaust gas passage.
  • this exhaust gas purification catalyst device (DOC + DPF + SCR) is also referred to as catalyst device II. That is, as shown in FIG. 2, the catalyst device II of the present invention has the reducing agent spraying means 3 disposed behind the oxidation catalyst (DOC) 4 and the combustion filter (DPF) 6 in the exhaust gas flow path 2 from the diesel engine 1.
  • An exhaust gas purifying catalyst device provided and having a selective reduction catalyst (SCR) 5 disposed behind the injection means 3.
  • the combustion filter (DPF) is based on a wall flow honeycomb structure in which one of the above-described through hole openings is opened and the other through holes are integrated to form a honeycomb. Yes, it is used as a structure that does not contain a noble metal component for collecting and burning (oxidizing) removing particulate components (PM) in exhaust gas.
  • the noble metal component of the oxidation catalyst (DOC) contains platinum and palladium, and the ratio of platinum particles present alone is 20% or less, or the average particle diameter of the noble metal is 4 nm or more.
  • the catalyst device I Since the catalyst device I combines a DOC + SCR catalyst, it exhibits excellent activity for the purification of HC, CO and NOx, but may be slightly inferior to the combustion purification of suspended particulate matter such as soot and SOF. Is done. In fact, in large diesel engines, there may be a lot of NOx and suspended particulate matter generated in the exhaust gas from the engine due to the control method. If there is a lot of suspended particulate matter, suspended particulate matter is generated by DPF. Need to be removed.
  • the DPF has a wall flow type honeycomb structure that does not contain a noble metal component, and the filter cell wall has innumerable pores having an average pore diameter of 20 to 40 ⁇ m.
  • a DPF is installed behind the DOC so that soot and SOF are trapped by the filter cell wall of the DPF.
  • soot and SOF are accumulated to some extent, heating is performed, and soot and SOF can be completely burnt (oxidized) and removed at once.
  • the trap effect due to the countless open pores in the filter cell wall of the DPF is effective not only for trapping not only SOF and soot but also precious metal components such as Pt scattered from the DOC.
  • the cell hole through which the gas of the flow-through honeycomb structure passes is a square or hexagon with a length of several mm, whereas the DPF having the wall-flow honeycomb structure has a pore of 20 to 40 nm, so its trap effect It is much better. Therefore, the amount of noble metal such as Pt that scatters from the DOC and adheres to the SCR can be considerably reduced by placing the DPF between them as compared with the case of the catalyst device I (DOC + SCR).
  • DOC + SCRF exhaust gas purification catalyst device
  • reduction is performed by supplying an oxidation catalyst (DOC) containing a noble metal component for oxidizing nitrogen oxide (NO) in exhaust gas discharged from a diesel engine, and a reducing agent selected from a urea component or an ammonia component.
  • DOC oxidation catalyst
  • NO nitrogen oxide
  • Exhaust gas purification in which an agent spraying means and a selective reduction catalyst (SCR) containing no noble metal for reducing and removing nitrogen oxide (NOx) in contact with a reducing agent are arranged in this order from the upstream side of the exhaust gas passage
  • the selective reduction catalyst SCR
  • the selective reduction catalyst is included in a combustion filter (DPF) that does not contain a noble metal component for collecting particulate matter (PM) in exhaust gas and removing it by combustion (oxidation).
  • An applied selective catalytic reduction combustion filter (SCRF) can be used.
  • this exhaust gas purification catalyst device DOC + SCRF
  • DOC + SCRF is also referred to as catalyst device III.
  • the catalyst device III of the present invention is provided with a reducing agent spraying means 3 behind the oxidation catalyst (DOC) 4 in the exhaust gas flow path 2 from the diesel engine 1 as shown in FIG.
  • DOC oxidation catalyst
  • SCRF combustion filter
  • the SCRF catalyst combustion filter coated with selective reduction catalyst
  • the SCRF catalyst is a combustion filter coated with a selective reduction catalyst, and a selective reduction catalyst (SCR) containing no noble metal for reducing and removing nitrogen oxides (NOx) by contacting with a reducing agent.
  • SCR selective reduction catalyst
  • DPF combustion filter
  • the catalytic device I exhibits excellent activity for the purification of HC, CO and NOx, but the oxidation purification of soot and SOF may be insufficient, so a DPF is installed behind the DOC.
  • soot and SOF are trapped by the filter cell wall of the DPF.
  • soot and SOF are heated to a certain extent and the soot and SOF are completely burnt (oxidized) and removed at once.
  • this increases the installation space by the amount of the DPF.
  • a combustion filter (SCRF catalyst) coated with a selective reduction catalyst is arranged, and selective reduction is performed in a limited space.
  • the catalyst (SCR) function and the combustion filter (DPF) function are combined.
  • the noble metal component contains platinum and palladium, and the ratio of platinum particles present alone is 20% or less, or the average particle diameter of the noble metal is 4 nm or more.
  • the activity of the selective reduction catalyst (SCR) can be maintained by suppressing the volatilization of platinum.
  • SCRF DPF coated with SCR
  • SCRF is a wall flow type obtained by making a sintered body of inorganic oxide such as silica, alumina, silicon carbide, cordierite, etc. porous. It is desirable to use a low pressure loss / high porosity DPF which is a honeycomb structure and has an increased number of pores in the filter cell wall. By using this low pressure loss / high porosity DPF, it is possible to apply the same amount of SCR catalyst component as that of a normal flow-through type honeycomb structure without impairing pressure loss.
  • the inorganic base material all of the zeolites and porous inorganic oxides described in detail in the SCR section can be used.
  • DOC + DPF + SCR and DOC + CSF + SCR which will be described later, are very preferable because all the harmful components in exhaust gas, such as HC, CO, NOx, soot and SOF, are purified. In some cases, not all of the catalyst can be installed.
  • the above-described DOC + SCR requires less storage space, but there is some concern for purification of soot and SOF. Therefore, it is effective to arrange SCRF (applying SCR catalyst component to DPF) combined with DPF and SCR behind DOC.
  • SCRF applying SCR catalyst component to DPF
  • the activity when contaminated with noble metal components such as Pt, the activity may be significantly reduced.
  • the precious metal component of the oxidation catalyst (DOC) contains platinum and palladium, and the ratio of platinum particles present alone is 20% or less, or the average particle diameter of the precious metal is 4 nm.
  • the catalyst disposed behind the SCRF is not particularly limited, and a catalyst containing a noble metal component may be disposed.
  • the present invention collects an oxidation catalyst (DOC) containing a noble metal component for oxidizing nitrogen oxide (NO) in exhaust gas discharged from a diesel engine, and a particulate component (PM) in exhaust gas, A catalytic combustion filter (CSF) containing a noble metal component for removing combustion (oxidation), a reducing agent spraying means for supplying a reducing agent selected from a urea component or an ammonia component, and nitrogen oxide (NOx) as a reducing agent
  • This is an exhaust gas purification device in which selective reduction catalysts (SCR) that do not contain precious metals for contact and reduction removal are arranged in this order from the upstream side of the exhaust gas flow path, and this exhaust gas purification catalyst device (DOC + CSF + SCR) is a catalyst device.
  • the catalyst device IV of the present invention has a reducing agent spraying means disposed behind the oxidation catalyst (DOC) 4 and the catalytic combustion filter (CSF) 8 in the exhaust gas flow path 2 from the diesel engine 1.
  • DOC oxidation catalyst
  • CSF catalytic combustion filter
  • 3 is an exhaust gas purification catalyst device in which a selective reduction catalyst (SCR) 5 is disposed behind the injection means 3.
  • the catalyzed combustion filter is a catalyzed combustion filter containing a noble metal component for collecting particulate matter (PM) in exhaust gas discharged from a diesel engine and removing it by combustion (oxidation). It is.
  • the CSF may be a bag filter having high heat resistance, but is a wall flow type obtained by making a sintered body of an inorganic oxide such as silica, alumina, silicon carbide, cordierite, etc. porous. It is desirable to use the honeycomb type structure as a catalyst.
  • CSF contains at least a platinum component and a paradium component as noble metal components.
  • Pt component By containing the Pt component, even CSF can exhibit NO oxidation performance, increase the NO 2 concentration in the exhaust gas, and improve the NOx reduction and purification capacity of the SCR catalyst in the latter stage of CSF. Further, by adding the Pd component to the Pt component, it can be expected to suppress volatilization of the Pt component.
  • the ratio of platinum to palladium is preferably 1: 1 to 11: 4, more preferably 3: 2 to 11: 4 in terms of weight. Outside this range, it is not preferable as in the case of the DOC. If the ratio is less than 1: 1, the decrease in the oxidation activity of HC, CO, NO, etc.
  • the supported amount of platinum is preferably 0.1 to 2.0 g / L, more preferably 0.3 to 1.5 g / L in terms of metal.
  • the coating amount of the oxidizing component constituting the catalyst layer of the catalyzed combustion filter (CSF) is preferably 5 to 150 g / L, and more preferably 10 to 100 g / L.
  • the coating amount of the oxidizing component is less than 5 g / L, the dispersibility of the supported noble metal such as platinum is deteriorated, and the oxidation activity is lowered.
  • the coating amount exceeds 150 g / L, the filter cell wall opens innumerably. It is not preferable because the pressure loss increases due to the narrow pores.
  • such a CSF can be said to be a “structure coated with an oxidation catalyst composition” similar to DOC.
  • a honeycomb structure is also used for the CSF.
  • a wall flow type carrier in which one of the through-hole openings is opened and the other through-holes are integrated to form a honeycomb.
  • the wall flow type carrier the wall of the through hole is made of a porous material, and the particulate component enters the through hole through the through hole opening together with the exhaust gas, and the exhaust gas passes through the porous hole of the through hole wall. Then, it is discharged backward, and the particulate component is deposited in the closed through hole. The particulate component thus deposited is burned and removed as described above, whereby the CSF is regenerated, and the particulate component can be captured again from the exhaust gas.
  • the catalyst component used as CSF has the same function as DOC.
  • a function different from DOC is also required.
  • the same amount of catalyst component as the flow-through honeycomb structure is applied to the wall-flow honeycomb structure, the pressure loss increases abnormally even though the walls of the through holes are made of porous material. The output of is significantly reduced. Therefore, when the catalyst component is applied to the wall flow type honeycomb structure, the amount of the catalyst component is preferably half or less than that of the flow through type honeycomb structure.
  • the amount of noble metal such as platinum needs to be halved or less.
  • the amount of noble metal is reduced to less than half, high purification performance is required for NOx oxidation performance, and therefore, dispersibility of DOC or higher is required for the dispersion state of noble metals such as platinum.
  • the precious metal component contains platinum and palladium, and the ratio of platinum particles present alone is 3% or less, thereby suppressing the volatilization of platinum when the catalyst bed temperature of CSF rises to 900 ° C.
  • the activity of the selective catalytic reduction catalyst (SCR) is maintained.
  • the amount of platinum that volatilizes from the catalytic combustion filter (CSF) and adheres to the selective reduction catalyst (SCR) is 12 ppm or less after 20 hours. It is preferable that it is 10 ppm or less.
  • the inorganic base material all the porous inorganic oxides described in detail in the DOC section can be used.
  • CSF has an oxidation catalyst component applied to the filter cell wall of DPF (wall flow type honeycomb structure), compared to DOC (an oxidation catalyst applied to the cell wall of the flow through type honeycomb structure), the oxidation catalyst component Is more easily brought into contact with HC, CO, NO, etc.
  • CSF since CSF generates heat by oxidizing HC, CO, and NO, it ignites at a lower temperature than DPF not coated with an oxidation catalyst, so the amount of fuel added to burn soot and SOF is small. Less is required, which is preferable in terms of fuel consumption.
  • the SCR catalyst zeolite and the above inorganic materials exhibit excellent NOx reduction and purification performance, but as described above, the activity may be significantly reduced when contaminated with Pt.
  • the precious metal component of CSF contains platinum and palladium, and the ratio of platinum particles present alone is 3% or less, so that the catalyst bed temperature of CSF is up to 900 ° C. Even when it rises, volatilization of platinum is suppressed and the activity of the selective reduction catalyst (SCR) is maintained. In other words, by suppressing the scattering of Pt from the CSF, the SCR catalyst is prevented from being contaminated by Pt components, and the NOx reduction purification performance of the SCR catalyst is improved by using NO2 generated by DOC and CSF.
  • the DOC catalyst bed temperature in the DOC + CSF + SCR catalyst system is the DOC in the DOC + DPF + SCR catalyst system.
  • the amount of scattered Pt is significantly reduced. Since the amount of Pt scattered from the DOC is very small, the scattered Pt hardly passes through the CSF and adheres to the catalytic component of the SCR disposed behind the CSF. That is, all Pt assumed to adhere to the SCR can be considered as CSF-derived Pt.
  • the carrier used is a wall flow type honeycomb structure, and in order to suppress pressure loss, the amount of applied catalyst is halved compared to DOC using a low pressure loss flow through type honeycomb structure.
  • the amount of noble metal is also halved, the high NOx oxidation activity is maintained, so that the dispersibility of the noble metal must be increased. That is, the particle diameter of the noble metal must be reduced compared to DOC.
  • a method of suppressing the scattering of Pt by setting the average particle diameter of the noble metal to 4 nm or more was possible.
  • the catalyst device IV of the present invention this is the case.
  • the precious metal component of the catalyzed combustion filter contains platinum and palladium, and the ratio of platinum particles existing alone needs to be 3% or less.
  • the ratio of platinum particles present alone is preferably 2.5% or less, and more preferably 2.0% or less.
  • the inorganic base material all the porous inorganic oxides described in detail in the DOC section can be used.
  • all the raw materials described in detail in the DOC section can be used for starting salts of noble metals such as platinum.
  • the properties (acidity and alkalinity) of the respective starting salts of platinum and palladium must be matched. It is necessary to mix both and mix with the inorganic base material in a homogeneous mixed solution.
  • positioned behind SCR You may arrange
  • the amount of platinum that volatilizes from the catalytic combustion filter (CSF) and adheres to the selective reduction catalyst (SCR) is 20 hours. After the passage, it is preferably 12 ppm or less, and more preferably 10 ppm or less.
  • the amount of platinum that volatilizes from the CSF and adheres to the selective reduction catalyst (SCR) has not been measured and evaluated after 20 hours.
  • a conventional type oxidation catalyst may be used as the oxidation catalyst (DOC). That is, the precious metal component of the oxidation catalyst (DOC) contains platinum and does not contain palladium, or even if the precious metal component contains platinum and palladium, the ratio of platinum particles present alone exceeds 20%, or the precious metal
  • DOC oxidation catalyst
  • the use of an oxidation catalyst (DOC) having an average particle diameter of less than 4 nm is not limited.
  • the conventional type of catalyst does not take into account the suppression of Pt scattering at high temperatures, it volatilizes from the oxidation catalyst (DOC) when the catalyst bed temperature of the oxidation catalyst (DOC) rises to 900 ° C.
  • the amount of platinum adhering to the selective reduction catalyst (SCR) cannot be reduced to 12 ppm or less after 20 hours.
  • AMOX Ammonia oxidation catalyst
  • an ammonia oxidation catalyst can be further disposed after the SCR, if necessary.
  • AMOX is additionally used when NOx and NH3 cannot be purified to below the regulation value in the SCR. Therefore, the AMOX another catalyst having an oxidation function of NH 3, is also included a catalyst component having a NOx purification function.
  • a catalyst having an oxidation function of NH 3 as a noble metal component, one or more elements selected from platinum, palladium, rhodium and the like are supported on an inorganic material made of one or more of alumina, silica, titania, zirconia and the like. Is preferred.
  • an inorganic material whose heat resistance is improved by adding a promoter such as rare earth, alkali metal, or alkaline earth metal.
  • platinum and palladium exhibit particularly excellent oxidation activity. Therefore, by using the above inorganic material having a high specific surface area and high heat resistance, it becomes difficult to sinter the noble metal component and the specific surface area of the noble metal.
  • the catalyst having a NOx purification function all of the zeolites and oxides described in the SCR section can be used. These two types of catalysts may be mixed uniformly and applied to a honeycomb structure having an integral type, but a catalyst having an oxidation function of NH 3 is applied to the lower layer, and a catalyst having a NOx purification function is applied to the upper layer. Also good.
  • DOC oxidation catalyst
  • CSF catalyzed combustion filter
  • SCR selective reduction catalyst
  • Free Pt particle ratio (%) [Pt single particle number] / [total measured particle number] ⁇ 100
  • Particle size of initial noble metal component (nm) Only a part of the catalyst washcoat was scraped off and observed with a scanning transmission electron microscope (STEM) at a magnification (300 to 500,000 times) that clearly shows how precious metal particles are distributed on the base material. . From the observed image, the equivalent circle diameter of about 300 noble metal particles was determined using image analysis software. These average values were calculated as the particle diameter of the initial noble metal component.
  • the NOx purification rate decreases, the higher the temperature, the higher the NH 3 oxidizing ability by platinum, and therefore the NOx purification rate is particularly reduced at 500 ° C. more than 300 ° C.
  • the amount of platinum contained in the selective reduction catalyst (SCR) increases, the N 2 O emission concentration at 300 ° C. increases. Therefore, the larger the value of C300 / C500 and the smaller the value of N 2 O @ 300 ° C., the higher the effect of suppressing Pt scattering.
  • the platinum concentration contained in the SCR used in the denitration performance test was measured using an ICP emission spectrometer. The results are shown in Table 2. It was evaluated that the smaller the platinum concentration contained in the SCR after the denitration performance test, the higher the effect of suppressing Pt scattering.
  • ⁇ Selective reduction catalyst (SCR)> ⁇ -type zeolite ion-exchanged with iron element (iron element conversion: concentration 2 wt%, ion exchange amount: 70%, SAR 35) and silica as a binder are milled using a ball mill after adjusting the concentration with water.
  • the ratio of Fe ion exchange ⁇ zeolite and silica was 10: 1 by weight.
  • a monolithic structure carrier that is, a honeycomb flow-through cordierite carrier (300 cells / 5 mil, ⁇ 24 mm ⁇ 20 mm length) is immersed in this slurry so that the catalyst loading amount per unit volume is 220 g / L. It was applied by a wash coat method, dried, and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain an SCR catalyst.
  • DOC oxidation catalyst
  • CSF catalyzed filter
  • SCR selective reduction catalyst
  • the distance between the oxidation catalyst (DOC) or the catalyzed filter (CSF) and the SCR catalyst when the durability test was performed was 100 mm, and the catalyst bed temperature was measured with thermometers 13 and 14 installed at measurement locations. Under the above conditions, the denitration performance of SCR was measured using model gas. Further, the platinum concentration of the SCR after the test was measured.
  • C300 means the NOx purification rate at 300 ° C.
  • C500 means the NOx purification rate at 500 ° C.
  • N 2 O @ 300 ° C. means the N 2 O emission concentration (ppm) at 300 ° C.
  • an integral structure carrier that is, a honeycomb flow-through cordierite carrier (300 cells / 8 mil, ⁇ 24 mm ⁇ 66 mm length) is immersed in this slurry so that the amount of catalyst supported per unit volume becomes 110 g / L. It was applied by a wash coat method. Then, it was dried at 150 ° C. for 1 hour and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain a DOC (2) lower layer coated catalyst.
  • the ratio (%) of free Pt particles in the obtained oxidation catalyst DOC (2) was measured by the method described above, and the results are shown in Table 1. Next, a Pt scattering test and then a Pt concentration measurement were performed. Specifically, the same apparatus configuration and processing conditions as in Example 1 were used. The results are shown in Table 2.
  • Example 3 An aqueous platinum nitrate solution and an aqueous palladium nitrate solution were mixed as a noble metal component raw material to obtain a Pt—Pd mixed solution.
  • the ratio of platinum and palladium was 3: 1 by weight.
  • the Pt—Pd-supported alumina powder was obtained by impregnating and supporting the Pt—Pd mixed solution in an amount of 1.0% by weight in terms of noble metal in 300 g of the alumina powder of Example 1 as a base material.
  • an oxidation catalyst DOC (3) (noble metal amount: 2.0 g / L) was obtained in the same manner as DOC (1) of Example 1 except that the purified sugar was removed from the slurry component raw material.
  • the ratio (%) of free Pt particles in the obtained oxidation catalyst DOC (3) was measured by the method described above, and the results are shown in Table 1. Next, a Pt scattering test and then a Pt concentration measurement were performed. Specifically, the same apparatus configuration and processing conditions as in Example 1 were used. The results are shown in Table 2.
  • the oxidation catalyst DOC (5) (noble metal amount: 2.0 g / L) was used in the same manner as DOC (2) of Example 2 except that the ratio of platinum and palladium was 6.2: 1 by weight. Obtained.
  • the ratio (%) of free Pt particles in the obtained oxidation catalyst DOC (5) was measured by the method described above, and the results are shown in Table 1. Next, a Pt scattering test and then a Pt concentration measurement were performed. Specifically, the same apparatus configuration and processing conditions as in Example 1 were used. The results are shown in Table 2.
  • Example 4 ⁇ Manufacture of catalyzed combustion filter CSF (1)> A platinum nitrate aqueous solution and a palladium nitrate aqueous solution as a noble metal component raw material were mixed to obtain a Pt—Pd mixed solution. Here, the ratio of platinum and palladium was 2: 1 by weight. Next, the Pt—Pd mixed solution was impregnated and supported on 300 g of the alumina powder of Example 1 as a base material so as to be 3.0 wt% in terms of Pt and Pd, thereby obtaining a Pt—Pd supported alumina powder.
  • an integral structure carrier that is, a honeycomb wall flow cordierite carrier (200 cells / 12 mil, ⁇ 24 mm ⁇ 66 mm length) is immersed in this slurry so that the catalyst loading per unit volume becomes 28 g / L. It was applied by a wash coat method. Then, it was dried at 150 ° C. for 1 hour and calcined at 500 ° C. for 2 hours in an air atmosphere to obtain CSF (1) (precious metal amount: 0.84 g / L).
  • the ratio (%) of free Pt particles in the obtained catalytic combustion filter CSF (1) was measured by the above method, and the results are shown in Table 1.
  • a Pt scattering test and then a Pt concentration measurement were performed.
  • the same apparatus configuration and processing conditions as in Example 1 were used, except that a catalytic combustion filter CSF (1) was used instead of the oxidation catalyst DOC (1).
  • the results are shown in Table 2.
  • Example 5 Catalytic combustion filter CSF (2) (precious metal amount: 0.84 g / L) in the same manner as CSF (1) of Example 4 except that the ratio of platinum and palladium was 1.5: 1 by weight. Got. The obtained Pt particle ratio (%) of the catalytic combustion filter CSF (2) was measured by the method described above, and the results are shown in Table 1. Next, a Pt scattering test and then a Pt concentration measurement were performed. Specifically, the same apparatus configuration and processing conditions as in Example 4 were used. The results are shown in Table 2.
  • Example 6 A catalyzed combustion filter CSF (3) was obtained in the same manner as the CSF (1) of Example 4 except that a nitric acid aqueous solution of dinitrodiammine platinum was used as the noble metal component raw material instead of the aqueous platinum nitrate solution.
  • the ratio (%) of free Pt particles in the obtained catalytic combustion filter CSF (3) was measured by the above method, and the results are shown in Table 1.
  • a Pt scattering test and then a Pt concentration measurement were performed. Specifically, the same apparatus configuration and processing conditions as in Example 4 were used. The results are shown in Table 2.
  • Example 7 Catalytic combustion filter CSF (4) (precious metal amount: 0.84 g / L) in the same manner as CSF (1) of Example 4 except that the ratio of platinum to palladium was 2.35: 1 by weight. Got. The ratio of free Pt particles (%) of the obtained catalytic combustion filter CSF (4) was measured by the above method, and the results are shown in Table 1. Next, a Pt scattering test and then a Pt concentration measurement were performed. Specifically, the same apparatus configuration and processing conditions as in Example 4 were used. The results are shown in Table 2.
  • catalyst preparation after slurry preparation was performed in the same manner as CSF (1) of Example 4 to obtain a catalyzed combustion filter CSF (6) (precious metal amount: 0.84 g / L).
  • the ratio of free Pt particles (%) of the obtained catalytic combustion filter CSF (6) was measured by the above method, and the results are shown in Table 1.
  • a Pt scattering test and then a Pt concentration measurement were performed.
  • the same apparatus configuration and processing conditions as in Example 4 were used, except that a comparative catalytic combustion filter CSF (6) was used. The results are shown in Table 2.
  • a catalyzed combustion filter CSF (7) (precious metal amount: 0.84 g / L) was obtained in the same manner as CSF (1) of Example 4 except that the ratio of platinum and palladium was 3: 1 by weight. It was. The ratio of free Pt particles (%) of the obtained catalytic combustion filter CSF (7) was measured by the above method, and the results are shown in Table 1. Next, a Pt scattering test and then a Pt concentration measurement were performed. Specifically, the same apparatus configuration and processing conditions as in Example 4 were used except that a comparative catalytic combustion filter CSF (7) was used. The results are shown in Table 2.
  • Catalytic combustion filter CSF (9) (precious metal amount: 0.84 g / L) in the same manner as CSF (1) of Example 4 except that the ratio of platinum to palladium was 2.5: 1. )
  • the ratio of free Pt particles (%) of the obtained catalytic combustion filter CSF (9) was measured by the above method, and the results are shown in Table 1.
  • a Pt scattering test and then a Pt concentration measurement were performed.
  • the apparatus configuration and processing conditions were the same as in Example 4 except that the comparative catalytic combustion filter CSF (9) was used. The results are shown in Table 2.
  • the conventional type oxidation catalyst (DOC) or catalyzed combustion filter (CSF), that is, the noble metal component does not contain palladium or platinum. Even if palladium is contained, since the ratio of platinum particles present alone is larger than a specific percentage, when the catalyst bed temperature rises to 900 ° C., the oxidation catalyst (DOC) or catalyzed combustion filter (CSF) generates platinum. Volatilization cannot be suppressed and the activity of the selective reduction catalyst (SCR) cannot be maintained.
  • DOC oxidation catalyst
  • CSF catalyzed combustion filter
  • the present invention can be used for purification technology of NOx generated by lean combustion, for example, diesel vehicles, mobile vehicles such as gasoline vehicles, ships, and stationary applications such as generators.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 希薄燃焼機関からの排気ガスに含まれる炭化水素、一酸化炭素、窒素酸化物、煤などの微粒子成分を長期間効率的に除去することが可能な排気ガス浄化触媒装置の提供。 ディーゼルエンジンから排出される排気ガス中の窒素酸化物(NO)を酸化するための貴金属成分を含む酸化触媒(DOC)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化触媒装置において、酸化触媒(DOC)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を20%以下とするか、又は貴金属の平均粒子径を4nm以上とすることにより、酸化触媒(DOC)の触媒床温度が900℃まで上昇しても酸化触媒(DOC)からの白金の揮発を抑制することで選択還元触媒(SCR)の活性を維持することを特徴とする排気ガス浄化装置などにより提供。

Description

排気ガス浄化装置
 本発明は、排気ガス浄化装置に関し、より詳しくは、希薄燃焼機関からの排気ガスに含まれる炭化水素、一酸化炭素、窒素酸化物、煤などの微粒子成分を長期間効率的に浄化することが可能な酸化触媒及び選択還元触媒を用いた排気ガス浄化触媒装置に関する。
 ボイラー、ガスタービン、またリーンバーン型ガソリンエンジン、ディーゼルエンジン等希薄燃焼機関から排出される排気ガスには、燃料や燃焼空気に由来した様々な有害物質が含まれる。このような有害物質としては炭化水素(HC)、可溶性有機成分(Soluble Organic Fraction:SOFともいう)、煤(Soot)、一酸化炭素(CO)、窒素酸化物(NOx)などがある。これら有害成分の排出量に対する規制は年々強化されており、それら有害成分の浄化方法として、排気ガスを触媒に接触させて浄化する方法が実用化されている。
 このような希薄燃焼機関では、燃料の種類や供給量や供給のタイミング、空気の量等を制御して有害物質の発生量を抑制することも検討されている。しかし、従来の触媒や制御方法では満足の行く排気ガスの浄化はできていなかった。特に、希薄燃焼機関では、窒素酸化物が排出されやすく、その規制は益々強化されているが、既存のNOx浄化技術では、自動車に搭載されるディーゼルエンジンの場合、その稼動条件が常に変化することから、有害物質の排出を抑制することは困難である。
 更に、近年、温室効果ガスである二酸化炭素(CO)の排出量の規制も強化されている。COの排出量は、エンジンの稼動に使用する燃料の量に比例するため、燃焼機関では使用する燃料が少なく燃費の良いことが望まれる。ディーゼルエンジンは、燃費がよく、COの排出量の少ない燃焼機関であるが、排気ガスには多量のNOxが含まれる。
 ディーゼルエンジンにおけるNOxの排出を抑制するには、空燃比を小さくし、エンジンに還元成分でもある燃料を多量に供給することも考えられるが、これにより燃費の悪化を招き、COの排出も増やしてしまう。また、このような燃焼制御では、燃費が良いというディーゼルエンジンの利点を生かせなくなる。
 NOxの浄化(以下、脱硝、またはDe-NOxということがある)技術として、NOxを含む排気ガスを、アンモニア(NH)成分の存在下で、酸化チタン、酸化バナジウム、ゼオライト等を主成分とする選択還元触媒と接触させて還元脱硝する技術が、選択還元法、または選択的触媒還元(Selective Catalytic Reduction:以下、SCRということがある)法として知られている。
 このNH成分を還元剤として用いるSCRでは、主として次に示す反応式(1)~(3)によって、NOxを最終的にNに還元する。
  4NO + 4NH + O → 4N + 6HO  …(1)
  6NO + 8NH     → 7N + 12HO …(2)
  NO + NO + 2NH → 2N + 3HO  …(3)
 排気ガス中の脱硝に際しては、前記脱硝反応式(1)~(3)において、理論上はNH/NOxモル比が1.0であれば良いが、ディーゼルエンジンの稼動時における過渡的なエンジン運転条件の場合や、空間速度や、排気ガスの温度、触媒表面の温度が適していない場合に、充分な脱硝性能を得るために供給するNH成分のNH/NOx比率を大きくせざるを得ない場合があり、結果的に未反応のNHが漏出し、新たな環境汚染などの二次公害を引き起こす危険性が指摘されていた。以下、漏出するNHをスリップ、またはNHスリップということがある。
 このような脱硝触媒システムには、還元成分としてNHガスを用いても良いが、NHはそれ自体、刺激臭や有害性があるため、NHガスの代わりに、脱硝触媒の上流から尿素水を添加して、熱分解や加水分解によりNHを発生させ、これを還元剤として作用させ脱硝性能を発現する方式が提案されている。
 このような尿素の分解でNHを得る反応式は、以下の(4)~(6)のとおりである。ここで、(4)は尿素熱分解反応、(5)はイソシアン酸加水分解、(6)は尿素加水分解である。
  NH-CO-NH → NH + HNCO      (4)
  HNCO + HO → NH + CO       (5)
  NH-CO-NH + HO → 2NH + CO (6)
 尿素はSCR触媒の上流から尿素水として噴霧供給される。前述のとおり、NOxの還元浄化に貢献するのは主にNHであることから、SCR触媒におけるNOxの反応は、尿素の分解効率によって影響を受ける。尿素の分解効率が低いとNOx浄化の効率が低下することはもちろん、尿素の使用量が増え、未反応の尿素によってNHスリップを誘発する恐れがある。
 このようなNHスリップに対しては、SCR触媒の後段にスリップしたNHを酸化して浄化するために、酸化触媒を配置する必要があった。しかし、このようなNHスリップ浄化用の触媒を配置することは、コスト増につながり、特に自動車では触媒の搭載場所を確保することが難しかった。
 また、スリップするNHの量が多くなると、触媒に高い酸化能力が要求され、活性種である白金など高価な貴金属を多量に使用する必要があった。
 また、NH成分によるNOxの浄化では、上記式(3)のようにNOとNOが概ね半分ずつ含まれる雰囲気で反応が促進する(非特許文献1)。しかしながら、希薄燃焼機関から排出されるNOx成分の殆どは一酸化窒素(NO)である(特許文献1)。そのため、NOxの効率的な浄化のため、排気ガス中のNO成分の濃度を増すために、排気ガス流路にNO酸化手段を配置することが提案されている(特許文献2)。
 このようなNO酸化手段を利用して、有害微粒子成分、NOxを一つの触媒系で同時に浄化する方法も提案されている。その一つが、排気ガス流路中に酸化触媒を配置し、その後段にフィルターを配置し、その後段でアンモニア成分を噴霧し、その後段にSCR触媒を配置するものである(特許文献3)。
 また、ディーゼルエンジンの燃費向上には、煤やSOF(これらをまとめて、以下「微粒子成分」またはPM:Particulate Matterということがある)の浄化技術も影響を与える。微粒子成分は、排気ガスの流路中に耐熱性フィルター(DPF:Diesel Patticulate Filter)を配置し、このフィルターで微粒子成分を濾し取る方法が実用化されている。濾し取られた微粒子成分は、フィルターに堆積するがフィルターに微粒子成分が堆積し続けると、フィルターが目詰まりを起こし、エンジンの出力低下を招いてしまう。そこで、フィルターに堆積した微粒子成分を燃焼除去してフィルターを再生することが検討されている(特許文献3、特許文献4)。
 特許文献3、特許文献4のシステムでは、DOCの後段にDPFを配置し、フィルターに堆積した微粒子成分を酸素の他、NOを使用して燃焼除去している。NOを使用すると低温から微粒子成分が燃焼し始めるので、微粒子成分の燃焼除去が促進されると共に燃焼温度を低下させてフィルターの溶融を防ぐことができる。このように微粒子成分を捕集して燃焼除去するフィルターのうち、触媒成分を被覆したDPFはCSF(Catalyzed Soot Filter)ともいわれている。
 また、NOxの浄化と同時に、微粒子成分を燃焼除去する浄化方法も提案されている(特許文献2、特許文献4)。この方法では、酸化触媒、微粒子成分を濾し取るフィルター、アンモニア成分の供給手段、選択型還元触媒を、排気ガスの流れの中にこの順番に配置するものや、酸化触媒、アンモニア成分の供給手段、選択型還元触媒、微粒子成分を濾し取るフィルターを、排気ガスの流れの中にこの順番に配置するものが提案されている(特許文献5、特許文献6)。そして、これらのシステムのなかにも、微粒子成分の燃焼を促進するためDPFを触媒化したCSFが使用されることがある。
 このような配置では、酸化触媒により排気ガス中のNOをNOに酸化し、微粒子成分の燃焼除去と、NOxの還元浄化を一つの触媒系で同時に行うことができる。そして、このNOの酸化触媒成分として白金成分が有効であるとされている(特許文献4、非特許文献4)。
 このようなNOxの浄化と、微粒子成分の燃焼除去を同時に行う浄化方法として、ディーゼル自動車用途である日産ディーゼル(株)のFLENDS(フレンズ)システムや、ダイムラー社のBluetechなどが開発され普及が進んでいる。また、還元成分としては、濃度31.8~33.3重量%の規格化された尿素水溶液があり、商品名アドブルー(Adblue)として流通している。
 このように、NOxの浄化、微粒子成分の浄化手段が提案されているが、いずれの場合もSCRの前方にDOCを配置し、排気ガス中のNO濃度を増してSCRにおけるNOx浄化の効率化を図るものである。
 また、近年、排気ガス規制の強化と共に希薄燃焼機関からの排気ガスに対応する排気ガス浄化システムに用いられる触媒の数が増加する傾向にある。特に移動式内燃機関である自動車用の場合、装置の搭載スペースの問題や低燃費化・高出力化の要請がある。これらの要請に対して、1個当たりの触媒を軽量化・小型化することが求められ、また圧力損失を低減する必要がある。上記特許文献は、このような問題への検討がなされておらず、排気ガス浄化触媒として実用的とはいえない。
 近年、酸化触媒によってNOの濃度を増加させ、尿素水溶液などの還元成分を使用してNOxの浄化を図る排気ガス浄化システムでは、燃費向上を要因として新たな課題が生じてきている。それは、DOC及び/又はCSFに使用している白金成分が、後方のSCRに漏出してSCRに付着しNOxの還元性能の低下をもたらすという問題である。
 DOCには排気ガス中のHCやCOを酸化除去する目的で、またCSFには排気ガス中の煤やSOFを酸化浄化する目的で、各々白金(Pt)やパラジウム(Pd)等の貴金属成分が使用されているが、DOCは前述のように排気ガス中のNOをNOに酸化する作用も有する。NO量を増加した排気ガスは、後方のSCRにおけるNOx還元浄化や、DPFやCSFにおける微粒子成分の燃焼を促進する。
 また、DOCで排気ガス中のHCを使用して排気ガスの温度を上昇させることは、DOCの後方に配置したDPF又はCSFに堆積した微粒子成分の燃焼除去を促進するのに有効である。そのため、ディーゼルエンジンの排気ガス浄化システムでは、DOCにHC成分を供給し、HC成分を燃焼(酸化)させることがある。このような排気ガス温度の上昇のためにHC成分を使用する手段としては、エンジンに燃料を多めに供給し、未燃焼のHCを発生させてDOCに供給する方法や、DOCに燃料を直接噴霧して供給する方法がある。
 前述のとおり、ディーゼルエンジンは、燃費の良いCOの排出量の少ない燃焼機関であるが、排気ガスの温度の上昇を目的として燃料を使用すると燃費を悪くしてCOの排出量を増やしてしまう。しかし、ディーゼルエンジンの排気ガスの温度は400℃以下であることも多く、排気ガスそのままでDPF又に堆積した微粒子成分を燃焼除去(以下、DPFの再生ということがある)するには温度が低すぎるため、微粒子成分、特に煤成分の燃焼を促進するために、排気ガスを600℃以上に加熱する場合もある(特開2003-148141、段落0012等)。DPF又はCSFに堆積した微粒子成分を効率的に燃焼してDPF又はCSFを再生するには、DPF又はCSFに微粒子成分が堆積する度に頻繁に繰り返す必要があり燃費の悪化をまねく。また、DPF又はCSFの再生用燃料を、着火後のシリンダー内部に供給する場合、頻繁に燃料を供給することでエンジンオイルの中に燃料が混入し、エンジンオイルが希釈される(Oil Dilution)。Oil Dilutionが発生するとエンジンオイルの潤滑機能の低下や、エンジンオイルの量が増えることでエンジンの出力が低下してしまう。
 そこで、微粒子成分の燃焼を促進しつつ、できるだけ燃費を低下させないように、DPF又はCSFに堆積した微粒子成分の燃焼を促進しつつ、できるだけ燃費が低下しないように、DPF又はCSFに堆積した微粒子成分の燃焼除去の回数を減らすことが考えられる。再生回数を減らすことで、排気ガス中の温度上昇を抑制し燃料の量を減らすことができ、燃費の悪化を防ぐことができる。しかし、DPF又はCSFの再生回数を減らすと、DPF又はCSFに多量の微粒子成分が堆積するので、DPF又はCSFの再生にあたって、高温で多量の微粒子成分を酸化除去する必要が出てくる。
 このように、従来以上の高温にして微粒子成分を燃焼除去すれば、一度に多量の微粒子成分を燃焼除去することが可能になる。ただし、多量のHC成分をもってDOCの発熱を促すと、DOCがディーゼルエンジン排気ガス中で、800℃を超えるような高温雰囲気に短時間ではあるが晒されることになる。その際、ディーゼルエンジン車は一般のガソリンエンジン車に比べ長距離を走行することが多いため、相当回数、DPF又はCSFの再生を繰り返すことになり、結果として長時間高温に晒され、DOC中の白金が揮発してしまうという新たな問題が生じてくる。同様にしてCSFでも、内部に保持した微粒子成分を燃焼除去する際、CSFの触媒成分が高温雰囲気下に長時間晒されることになり、CSFの触媒成分中の白金が揮発してしまうという新たな問題が生じてくる。
 白金は高温で酸化され、揮発して、DOCおよびCSFの後方に配置されたSCRの表面に付着して触媒の還元性能を低下してしまう(非特許文献2、非特許文献3)。そして、このようなDOCおよびCSFの後方に配置されたSCRにおける揮発した白金成分の影響は、SCR触媒にゼオライトを使用した場合に特に顕著であると言われている。
 このように揮発した白金成分によってSCR触媒の活性が低下した場合、尿素やアンモニア成分などの還元剤の供給量を増やすことが必要になる。しかし、多量の尿素やアンモニア成分を供給すると、SCR触媒からアンモニアが漏出(Slip)する恐れがある。
 触媒中の貴金属は、酸化物の状態、合金の状態、他の金属との複合酸化物の状態など様々な状態をとりうるため、どのような理由で触媒中の貴金属が揮発するのを明らかにすることは容易ではないが、白金成分については凡そ以下の様に考えることができる。
 元来、白金はメタル状態であれば、不活性ガス雰囲気下で揮発する温度は2090℃(蒸気圧が10-2Torrになる温度)と非常に高く、空気共存下、高温で処理しても容易には酸化されない金属である。しかし、酸素又は空気共存下、850℃以上の高温に曝されると白金はメタル表面の原子が酸化され、酸化白金(PtO)分子になって少しずつ揮発することが知られている(非特許文献5)。
 ディーゼルエンジンでは燃料は多量の空気と共にシリンダー内に供給され燃焼されるので、排気ガス中にも大量の酸素が含まれる。また、ディーゼルエンジンの排気ガスの温度は低いとはいえ、DOCへのHC成分供給時にはDOCの触媒床温度が700℃を超え、ときに900℃に達する場合もあり、白金成分は酸化し揮発し易い状態で存在していることになる。
 更に、触媒中の白金成分は、酸化活性の向上を図るために、小粒径化して大きな表面積を維持しているから、DOC中のPt成分は酸化成分が増えやすい状態であり、触媒中のPt成分の揮発が懸念される。
 このような、高温時における貴金属成分の揮発の抑制に対しては、ガソリンエンジンから排出される排気ガス中のHC、CO、NOxを同時に浄化するための三元触媒(TWC:Three Way Catalyst)においては既に検討されている(特許文献7参照)。この技術では、多孔質担体を貴金属溶液中に浸漬して触媒貴金属を担持し、貴金属担持担体を有機物溶液中に浸漬し、この有機担持担体を有機物が炭素化する条件で熱処理することで、Pt成分の気相への移動を抑制している。
 この従来技術は、触媒原料中の有機物が炭素化する条件で熱処理し、触媒貴金属と炭素化したカーボンが多孔質担体と触媒貴金属との隙間に入り込み、楔として触媒貴金属の移動を抑制するアンカー効果と、700℃以上という高温の熱処理により多孔質担体の細孔を収縮させることで触媒貴金属が多孔質体に立体的に固定される効果と、耐熱性に優れるFe、Ni、Co等の卑金属を障害物として触媒貴金属の移動を抑制する効果の3つの効果によって白金成分の気相への移動を抑制するものである。
 しかし、この従来技術は、触媒の製造工程で、必要な炭素成分を燃やし残すことが極めて困難であり現実的とはいえない。また、たとえ製造時に炭素成分が燃え残ったとしても触媒使用時には高温の排気ガスに触れると容易に燃焼してしまうので、効果の長時間持続は望めない。また、焼成による多孔質体の収縮は、多孔質担体の比表面積値(BET値)を低下させ、貴金属成分の分散性を悪化させ触媒の活性を低下させてしまう。また、Fe、Ni、Co等の卑金属は助触媒成分であり、触媒設計上必ずしも全ての触媒に使用される成分ではなく、特にNi、Coは健康被害も想定される成分であり自動車用の触媒に使用することは好ましくない。
 また、TWCにおけるNOxの浄化は、触媒中のロジウム(Rh)成分と、排気ガス中のHCを使用して、以下のスチームリフォーミング反応により行われるものである。そして、ジルコニウム酸化物をRh成分と共に用いると、スチームリフォーミング反応が促進される(再公表2000/027508号公報、14項)。
 HC+HO --------→ COx+H ……  (7)
 H+NOx --------→ N+HO  …… (8)
 このようなTWCにおけるガソリンエンジンの排気ガス中のNOx浄化と、ディーゼルエンジンの排気ガスを還元剤のアンモニア成分とSCR触媒で処理するNOxの浄化では、根本的にその反応工程が異なる。従って、TWCにおける触媒技術が、そのままディーゼルエンジンのNOx浄化技術として使用できるものではない。
 また、DOCからの貴金属成分の揮発を抑制するためには、貴金属成分としてPt成分を使用しないことも考えられる。しかし、Pt成分を使用しないと、排気ガス中のNO濃度が低下し、SCRにおけるNOxの還元浄化が充分に得られない場合があり、NO濃度の低下は、DPF、CSFの再生効率も悪化させる。
 また、DOCやCSFから揮発する貴金属成分によるSCR性能の低下を排除する方法としては、貴金属による汚染に耐久性を有し、高いNOx浄化性能を維持できるSCR触媒成分、例えば、バナジウム酸化物を主成分とすることが考えられる。しかし、バナジウムは有害な重金属なので、自動車用途では望ましくない。
 SCRでは各種ゼオライトが広く使用されているが、ゼオライトは貴金属による汚染でSCR性能を著しく低下させてしまう。
 このように、ディーゼルエンジンに代表される希薄燃焼機関の排気ガス流れ中、DOCやCSFの後方にSCRを配置した触媒装置において、高温時にもNOx性能の低下を招くことの無い、実用的な触媒装置がのぞまれている。
特開平05-38420号公報(請求項1、段落0012、0013、0014) 特開平08-103636号公報(請求項1、段落0002、0012) 特開平01-318715号公報 特表2002-502927号公報(請求項1、段落0007、0008) 米国特許第6823663号明細書 米国特許第6928806号明細書 特開平08-38897号公報 特開平09-262467号公報
Catalysis Today 114(2006)3-12(第2頁左欄) 「ディーゼルSCR触媒上の超微量Pt汚染の検知、起源、および影響」(Detection、Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts), SAE  Ford Motor Company, October/6/2008 「SCR触媒上のPt族金属による超微量汚染の衝撃と抑制」(Impact and Prevention of Platinum Group Metals on SCR Catalysts Due to DOC Design), SAE  Ford Motor Company, April/20/2009 「低温の酸化雰囲気下、Pt触媒のNO酸化性能への担体物質とエージングの影響」(Influence of Support Materials and Aging on NO Oxidation Performance of Pt Catalysts under an Oxidative Atmosphere at Low Temperature), JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Vol.40 (2007) No.9 pp.741-748 H.Jehn,High Temperature Behaviour of Platinum Group Metals in Oxidizing Atmospheres,Journal of the Less Common Metals,100(1984),321-339
 本発明の目的は、上記従来技術の問題点に鑑み、希薄燃焼機関からの排気ガスに含まれる炭化水素、一酸化炭素、窒素酸化物、煤などの微粒子成分を長期間効率的に浄化することが可能な酸化触媒及び選択還元触媒を用いた排気ガス浄化触媒装置を提供することにある。
 本発明者らは、上記従来技術の問題点を解決するために鋭意検討を重ねた結果、DOCの後方にSCR触媒を配置し、DOCとSCR触媒の間に還元成分としてNH3成分の供給手段を配置した排気ガス浄化装置において、DOCの貴金属成分がPt及びPdを含有し、貴金属の粒子径又は単独で存在するPt粒子の比率を特定化すると、Ptの飛散を抑えるようになり、DOCの触媒床温度が900℃と著しく高温になるような状態であっても、SCR触媒におけるNOx浄化性能を維持でき、還元成分を有効に利用できることを見出し、さらに、DOCの後ろにDPF又はCSFを追加配置し、SCR触媒の前に還元成分としてNH3成分の供給手段を配置し、DPF又はCSFの触媒床温度が900℃と著しく高温になるような排気ガス浄化装置においても、DOC及び/又はCSFの貴金属成分がPt及びPdを含有し、貴金属の粒子径又は単独で存在するPt粒子の比率を特定化すると、同様に顕著な作用効果が得られることを見出して、本発明を完成するに至った。
 即ち、本発明の第1の発明によれば、ディーゼルエンジンから排出される排気ガス中の窒素酸化物(NO)を酸化するための貴金属成分を含む酸化触媒(DOC)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置において、酸化触媒(DOC)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を20%以下とするか、又は貴金属の平均粒子径を4nm以上とすることにより、酸化触媒(DOC)の触媒床温度が900℃まで上昇しても酸化触媒(DOC)からの白金の揮発を抑制することで選択還元触媒(SCR)の活性を維持することを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第2の発明によれば、第1の発明において、前記酸化触媒(DOC)の後方、かつ前記還元剤噴霧手段の前方に、さらに排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない燃焼フィルター(DPF)を配置したことを特徴とする請求項1に記載の排気ガス浄化装置が提供される。
 また、本発明の第3の発明によれば、第1の発明において、前記選択還元触媒(SCR)が、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない燃焼フィルター(DPF)に塗布されている選択還元触媒化燃焼フィルター(SCRF)であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第4の発明によれば、第1の発明において、前記酸化触媒(DOC)の後方、かつ前記還元剤噴霧手段の前方に、さらに燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルター(CSF)を配置し、触媒化燃焼フィルター(CSF)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を3%以下とすることにより、触媒化燃焼フィルター(CSF)の触媒床温度が900℃まで上昇しても触媒化燃焼フィルター(CSF)からの白金の揮発を抑制することで選択還元触媒(SCR)の活性を維持することを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第5の発明によれば、第1~4のいずれかの発明において、選択還元触媒(SCR)の成分は、貴金属成分を含まず、ゼオライト又は結晶金属アルミノリン酸塩を含むことを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第6の発明によれば、第1~4のいずれかの発明において、酸化触媒(DOC)は、貴金属の担持量が金属換算で0.5~4.0g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第7の発明によれば、第1~4のいずれかの発明において、酸化触媒(DOC)は、白金とパラジウムの比が重量換算で1:1~11:2であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第8の発明によれば、第1~4のいずれかの発明において、酸化触媒(DOC)は、触媒層を構成する酸化成分の被覆量が100~300g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第9の発明によれば、第1~4のいずれかの発明において、酸化触媒(DOC)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第10の発明によれば、第4の発明において、触媒化燃焼フィルター(CSF)は、白金とパラジウムの比が重量換算で1:1~11:4であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第11の発明によれば、第4の発明において、触媒化燃焼フィルター(CSF)は、貴金属の担持量が金属換算で0.1~2.0g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第12の発明によれば、第4の発明において、触媒化燃焼フィルター(CSF)は、触媒層を構成する酸化成分の被覆量が5~150g/Lであることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第13の発明によれば、第4の発明において、触媒化燃焼フィルター(CSF)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第14の発明において、第1~4のいずれかの発明において、貴金属成分は、一体型構造を有する担体に担持されていることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第15の発明において、第14の発明において、一体型構造を有する担体が、フロースルー型ハニカム構造体及び/又はウォールフロー型ハニカム構造体であることを特徴とする排気ガス浄化装置が提供される。
 また、本発明の第16の発明において、第1~4のいずれかの発明において、選択還元触媒(SCR)の後に、さらにアンモニア酸化触媒(AMOX)を配置したことを特徴とする排気ガス浄化装置が提供される。
 本発明によれば、ディーゼルエンジンからの排気ガスの流れの中に、酸化触媒(DOC)を配置し、DOCの後方に選択還元触媒(SCR)を配置する排気ガス浄化装置において、DOCの貴金属成分がPt及びPdを含有し、貴金属の粒子径又は単独で存在するPt粒子の比率を特定化しているので、Ptの飛散が抑えられるようになり、DOCの触媒床温度が900℃と著しく高温になるような状態であっても、SCR触媒におけるNOx浄化性能を維持でき、還元成分を有効に利用できる。
 さらに、DOCの後ろにフィルター(DPF又はCSF)を追加配置し、DOCとSCR触媒の前に還元成分としてNH3成分の供給手段を配置し、フィルター(DPF又はCSF)の触媒床温度が900℃と著しく高温になるような排気ガス浄化装置においても、DOC及び/又はCSFの貴金属成分がPt及びPdを含有し、貴金属の粒子径又は単独で存在するPt粒子の比率を特定化すると、同様にSCR触媒におけるNOx浄化性能を維持でき、還元成分を有効に利用できるようになる。
 また、フィルター(DPFまたはCSF)の触媒床温度が著しく高温になる条件でも、SCRにおける脱硝を安定して行うことができるから、フィルター(DPF又はCSF)に多量の微粒子成分を堆積させて、一度に燃焼させることで、少ない燃料でフィルターを再生することが可能になり、ディーゼルエンジンにおける燃費の向上をはかることができる。
図1は、本発明の排気ガス浄化触媒装置において、酸化触媒(DOC)、還元成分の供給手段、及び選択還元触媒(SCR)をこの順に配置した構成を模式的に示す説明図である。 図2は、本発明の排気ガス浄化触媒装置において、酸化触媒(DOC)、燃焼フィルター(DPF)、還元成分の供給手段、及び選択還元触媒(SCR)をこの順に配置した構成を模式的に示す説明図である。 図3は、本発明の排気ガス浄化触媒装置において、酸化触媒(DOC)、還元成分の供給手段、及び選択還元触媒(SCR)を塗布した燃焼フィルター(SCRF)を、この順に配置した構成を模式的に示す説明図である。 図4は、本発明の排気ガス浄化触媒装置において、酸化触媒(DOC)、触媒化フィルター(CSF)、還元成分の供給手段、及び選択還元触媒(SCR)をこの順に配置した構成を模式的に示す説明図である。 図5は、本発明において、排気ガス浄化触媒の耐久試験に使用される装置構成を模式的に示す説明図である。
 以下、本発明をディーゼル自動車用途に適用した場合について主に詳述するが、本発明は発電など様々な電力源に使用されるディーゼルエンジンにも有効であることはいうまでもない。
I.[排気ガス浄化触媒装置(DOC+SCR)]
 本発明の排気ガス浄化触媒装置では、DOCとSCR、及び還元成分の供給手段を必須構成要素とする。本発明は図1のように、ディーゼルエンジン1からの排気ガス流路2中、酸化触媒(DOC)4の後方に還元剤噴霧手段3を設け、この噴射手段3の後方に選択還元触媒(SCR)5を配置した排気ガス浄化触媒装置(以下、単に触媒装置Iともいう)である。
 すなわち、本発明の触媒装置Iでは、DOCが排気ガス流れの中で高温に晒される場合であっても、DOCの単独で存在する白金の比率や貴金属の粒子径などを特定化することにより、DOCからSCRへの白金成分の漏出(Slip)を抑制し、DOCの後方に配置するSCRにおける尿素水溶液やアンモニア水溶液(以下、アンモニア成分、またはNH成分ということがある)を使用したNOx還元触媒の性能低下を防止しようとするものである。
1.[DOC:酸化触媒]
 本発明に使用されるDOCは、排気ガス中のHCやCOを酸化する貴金属成分を含む酸化触媒であり、貴金属成分として、少なくとも白金成分とパラジム成分を含有する。
(貴金属成分)
 酸化触媒では、前記のとおり、貴金属成分として一般に白金成分が使用され、パラジム成分も使用されることがある。これをPdのみにすれば、DOCからのPtの揮発をなくすことが可能性になる。しかし、Pd成分のみでは充分なNO酸化活性を得ることは難しい。
 また、触媒中の貴金属成分は、高温の排気ガス中では時間の経過と共にその表面が酸化されていくことが予測される。Pd酸化物は融点が高くPt酸化物に比べて揮発し難い。揮発し難いPd成分は、揮発したPt成分を吸着する作用や、Pt成分とPd成分が合金化することでPtの揮発を抑制する作用があることから、本発明の排気ガス浄化触媒装置においては、DOCに必須成分としてPt成分と共にPd成分が含まれるようにする。Pd成分を添加することで、高価なPt成分の使用量を少なくすることにもなる。
 貴金属成分中のPt成分量は、金属換算で50wt%以上とすることが好ましく、60wt%以上がより好ましい。Pt成分の量が少なすぎるとNO酸化性能、排気ガスの発熱能力が共に不足することがあり、Pt成分の量が多すぎるとPt成分の揮発量も多くなり、後方の、貴金属成分を含まないSCR触媒へのPtの移動量が許容量を超えてしまう恐れがある。
 このような貴金属成分は、無機酸化物(母材)に担持され、必要に応じて他の触媒成分と混合し、触媒組成物として構造型担体に被覆される。このように貴金属成分を担持する母材としての無機酸化物は、排気ガスの浄化用触媒の分野で公知の触媒材料が使用できる。このような無機材料は、耐熱性が高く、その比表面積値が大きいことで貴金属成分を安定に高分散できる多孔質の無機酸化物が好ましい。
 多孔質の無機酸化物としては、公知の無機酸化物の中から適宜選択可能である。具体的には、各種アルミナ、ジルコニア、セリア、シリカ、シリカ-アルミナ、チタニア、ゼオライト等が使用できる。これら主成分は単独でも、2種以上を混合したり、2種以上の複合酸化物として使用してもよい。また、このように単独、混合、複合酸化物として使用される母材は、純粋な金属酸化物でも良いが、耐熱性や触媒活性を調整するために、他の元素を添加してもよい。この添加剤としては各種希土類金属成分、各種遷移金属成分が挙げられ、それぞれ単独で添加しても、二種以上の成分を組み合わせて添加してもよい。
 このような無機酸化物のうち、本発明ではアルミナが好ましい。アルミナとしてはγ-アルミナ、β-アルミナ、δ-アルミナ、η-アルミナ、θ-アルミナが挙げられ、なかでもγ-アルミナが好ましい。そして、γ-アルミナであれば特にランタンを添加したγ-アルミナが好ましい。ランタンが添加されたγ-アルミナは、耐熱性に優れ、白金成分やパラジウム成分等の貴金属成分を担持させた場合、高温時にも高い触媒活性を維持することが可能である(特開2004-290827)。このようなγ-アルミナ、又はランタン添加γ-アルミナの比表面積値(BET法による、以下同様)は、80~250m/gであることが好ましく、更に、200~250m/gであるものがより好ましい。γ-アルミナの比表面積値が250m/g以下であると触媒の耐熱性が良く、貴金属成分の分散状態を安定化でき、80m/g以上であれば貴金属成分を高分散することができる。
 本発明の主要課題は、上記の無機酸化物(無機母材)に担持される白金が、高温下、水蒸気を含む空気雰囲気に長期間にわたって晒されても揮発されないようにして、後段の選択還元型触媒(SCR)の脱硝性能を維持させることである。
 基本的に酸化触媒(DOC)は、NOxの酸化活性を高めるため、無機酸化物上に担持される白金等の貴金属成分は、NOxと酸素(O)の反応をおこなう活性サイトの数を増やすため、できるだけ高分散させるよう工夫されており、そのため、白金等の貴金属の粒子径はより小さくすることが求められており、それは貴金属全体の比表面積を大きくし、酸素(O)と接触する白金原子の数を増やすことになり、酸化される白金の量を増大させることにつながる。
 白金の飛散を抑制する手段としては、酸化物の状態で白金に比べ揮発し難いパラジウムとの複合化(特開2003-299957、WO99/32223)や白金粒子そのものを大きくして比表面積を低下させる方法(特許文献8:特開平9-262467)がある。
 しかし、パラジウムとの複合化においては、耐久条件を1000℃で5時間とした場合、白金とパラジウムの比率が1:1~1:15とパラジウムの割合が多くなっており(特開2003-299957)、NOxの酸化活性に優れた白金が有効利用できない。また、白金とパラジウムの比率が9:1と白金の割合が大きい場合は、耐久条件が800℃、10時間と、実際の耐久条件としての要求されている900℃、20時間とはかけ離れている(WO99/32223)。
 一方、特許文献8では、白金の平均粒子径を5~40nmとするものの、耐久条件が810℃で3.5時間としており、実際の耐久要件(900℃、20時間)とかけ離れており、実用性は疑問である。さらに、白金の平均粒子径を5~40nmとするために、白金を担持したγ-アルミナを10%O/Nガスと20%(CO:H=75%:25%)/Nガスを20分周期で5時間、700℃で処理する必要があり、製造設備、安全対策、炉を高温に保つためのコストがかさみ、省資源、省エネルギー、価格面で問題がある。いずれも、耐久要件(900℃、20時間)やNOの酸化性能(白金の混合比率が50重量%以上)を満足していない上、製造コストも高くなる。
 これに対して、本発明は、酸化触媒(DOC)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を20%以下とするか、又は貴金属の平均粒子径を4nm以上としたものであり、これにより、酸化触媒(DOC)の触媒床温度が900℃まで上昇した際の白金の揮発を抑制し、選択還元型触媒(SCR)の活性を維持できるようにした。
 上記の無機母材に貴金属の白金をパラジウムにより複合化して担持させるには、白金の出発塩として、水酸化白金(IV)酸のエタノールアミン溶液、テトラアンミン白金(II)酢酸塩、テトラアンミン白金(II)炭酸塩、テトラアンミン白金(II)硝酸塩、水酸化白金(IV)酸の硝酸溶液、硝酸白金、ジニトロジアミン白金硝酸、塩化白金(IV)酸などを用いることができ、パラジウムの出発塩として、テトラアンミンパラジウム(II)酢酸塩、テトラアンミンパラジウム(II)炭酸塩、テトラアンミンパラジウム(II)硝酸塩、ジニトロジアンミンパラジウム、硝酸パラジウム、塩化パラジウムなどを用いることができる。白金の出発塩として好ましいのは、水酸化白金(IV)酸のエタノールアミン溶液、硝酸白金、ジニトロジアミン白金硝酸、テトラアンミン白金(II)硝酸塩などで、貴金属以外の成分が触媒調製時の熱処理により容易に揮発する物が好ましい。
 なお、塩化物を出発塩とする場合、製法によっては塩素が残留して触媒活性に悪影響を及ぼす恐れがある。
 これらの金属塩との水溶液と、無機母材とを混合した後は、適宜公知の方法により乾燥、焼成を行うことができる。
 混合の際、単独で存在する白金粒子の比率を当該発明の範囲内に抑える為に、白金とパラジウムの各々の出発塩の水溶液の性質(酸性、アルカリ性)を合わせる必要がある。例えば、テトラアンミン白金(II)酢酸塩-テトラアンミンパラジウム(II)酢酸塩(アルカリ性同士)、水酸化白金(IV)酸のエタノールアミン溶液-テトラアンミンパラジウム(II)酢酸塩(同左)、硝酸白金-硝酸パラジウム(酸性同士)、ジニトロジアミン白金硝酸-硝酸パラジウム(同左)、塩化白金(IV)酸-塩化パラジウム(同左)などの組み合わせが挙げられる。
 白金とパラジウムの出発塩の水溶液の性質を同じにすることにより、両方の水溶液を混合させても沈殿を生じることなく、均一溶液のままで存在するので、無機母材に担持させた後も、白金粒子とパラジウム粒子は各々混合した状態で存在し、それぞれが単独で存在し難い。
 但し、白金とパラジウムの比率があまりに大きくなってしまうと、白金が単独で存在しやすくなる。また、白金とパラジウムの各々の出発塩の性質が異なる(酸性とアルカリ性)場合、両方の水溶液を混合すると沈殿を生じてしまう為、無機母材には各々単独でしか担持できない場合は白金粒子とパラジウム粒子は各々単独で存在する比率が高くなってしまう。
 そのような場合でも、貴金属粒子の粒子径を大きくし、貴金属粒子の比表面積を小さくすることで、貴金属表面からの白金の揮発速度を抑えることができる。
 無機材料上に担持された貴金属粒子を酸化させずに大きくする方法として、一般には不活性ガス(窒素、アルゴン等)中、高温で処理する方法や、前述のような高温下、酸化-還元を繰り返す(特開平9-262467)方法が知られている。しかし、この方法は、ガスを密閉するための設備、及び不活性ガス、酸化性ガス、還元性ガスが必要で、省資源・省エネルギー上好ましくない。
 そこで、本発明では、予め、触媒成分を加えてスラリーを製造する際に可燃性物質を添加しておき、スラリーを一体構造を有する担体にコート後、焼成する際に担体上に触媒成分を焼結させると共に可燃性物質が焼かれて発熱し、高温を発生させることで白金等の貴金属成分の微粒子径を大きくすることが好ましい。
 その際、触媒表面近傍で可燃性物質が燃焼(酸化)すれば、空気中の酸素を消費するため、触媒表面が還元状態になる可能性があるので、可燃性物質を用いると、白金等の貴金属が高温下で還元雰囲気となり、白金等の貴金属がメタルの状態を保ったまま、粒子成長することが期待できる。
 可燃性物質としては、安価で炭素を含む材料が好ましく、例えば、精製糖のほか、果糖、ブドウ糖、脳糖などの単糖類、ショ糖、麦芽糖、乳糖などの二糖類が挙げられる。
 これらは、材料として安全である上、可溶性にも優れ、発火温度も350℃と触媒成分をハニカム構造体に塗布して焼成する際の条件で十分燃焼するだけでなく、分子を形成する炭素数も6~12と小さいため、燃焼しても完全燃焼し易く、煤等の残渣が残り難いという特色があり、可燃性物質として適している。
[一体型構造を有する担体]
 本発明のDOCには、貴金属成分を分散性よく担持するために一体型構造を有する担体、すなわちハニカム構造体(以下、ハニカム担体ともいう)が使用される。ハニカム構造体とは、多数の通孔が集中したハニカム形状の構造体である。このようなハニカム構造体の材質には、ステンレス、シリカ、アルミナ、炭化珪素、コーディエライトなどが使用できるが、本発明には、いずれの材質のハニカム構造体も使用できる。
 このようなハニカム構造体は、DOCだけでなく、後述するSCRの用途でも両端が開口した通孔を集積してハニカム状にしたフロースルー型ハニカム構造体が使用されることが望ましい。一方、後述するDPF、CSF、及びSCRFには、通孔開口部の一方を開口し、もう一方を閉口した通孔を集積してハニカム状にしたウォールフロー型ハニカム構造体が使用されることが望ましい。このようなハニカム構造体型触媒では、一つのハニカム構造体に各ハニカム構造型触媒専用の触媒組成物を被覆しても良い。
 このようなハニカム担体は、公知のハニカム構造型担体の中から選択可能であり、その全体形状も任意であり、円柱型、四角柱型、六角注型など、適用する排気系の構造に応じて適宜選択できる。さらに、開口部の孔数は、処理すべき排気ガスの種類、ガス流量、圧力損失あるいは除去効率などを考慮して適正な孔数が決められるが、通常、ディーゼル自動車の排気ガス浄化用途としては、1平方インチ(6.45cm)当たり100~1500個程度が好ましく、100~900であることがより好ましい。1平方インチ(6.45cm)当たりのセル密度が10個以上であれば、排気ガスと触媒の接触面積を確保することができ、充分な排気ガスの浄化機能が得られ、1平方インチ(6.45cm)当たりのセル密度が1500個以下であれば、著しい排気ガスの圧力損出を生じることがなく内燃機関の性能を損なうことがない。
 また、ハニカム担体のセル壁の厚みは、2~12mil(ミリインチ)(0.05~0.3mm)が好ましく、3~8mil(0.076~0.2mm)がより好ましい。
 本発明に使用されるハニカム担体からDOCなどの触媒を調製するには、一般にウォッシュコート法が用いられる。
 本発明において、ウォッシュコート法で酸化触媒(DOC)を調製するには、まず、触媒材料、ハニカム担体を用意する。触媒材料は必要に応じてバインダーや界面活性剤などの添加剤を水または水に水溶性有機溶媒を加えた溶媒と混合してスラリー状混合物にしてから、ハニカム担体へ塗工した後、乾燥、焼成する事により製造される。すなわち、触媒材料と水または水に水溶性有機溶媒を加えた溶媒と所定の比率で混合してスラリー状混合物を得る。本発明においては、水系媒体は、スラリー中で各触媒成分が均一に分散できる量を用いれば良い。なお、水または水に水溶性有機溶媒を加えた溶媒については以下「水系媒体」という。
 触媒材料は、少なくとも白金を含む貴金属成分を無機母材として含んでいる。貴金属成分は、予め無機母材に担持させておくこともできる。金属触媒成分と無機母材は水系媒体中で混合してスラリーを調製しておく。
 触媒材料を調製するにあたり、貴金属を、予め無機母材に担持させておく場合、適宜公知の方法を採用できるが、その一例を示すと以下のとおりである。
 まず、貴金属成分の原料として硝酸塩、炭酸塩、酢酸塩、塩化物などの化合物、具体的には水酸化白金(IV)酸のエタノールアミン溶液、テトラアンミン白金(II)酢酸塩、テトラアンミン白金(II)炭酸塩、テトラアンミン白金(II)硝酸塩、水酸化白金(IV)酸の硝酸溶液、硝酸白金、ジニトロジアミン白金硝酸、塩化白金(IV)酸などを、パラジウムの出発塩として、テトラアンミンパラジウム(II)酢酸塩、テトラアンミンパラジウム(II)炭酸塩、テトラアンミンパラジウム(II)硝酸塩、ジニトロジアンミンパラジウム、硝酸パラジウム、塩化パラジウムなどを用意する。これらから選択して水、有機溶媒に溶解して貴金属成分原料の溶液を用意する。
 次に、この貴金属成分原料の溶液を、水系媒体と共に無機母材と混合した後、50~200℃で乾燥して溶媒を除去した後、300~1200℃で焼成する。なお、上記成分以外に、バインダー等として公知の触媒材料を配合してもよい。このような公知の触媒材料としてはアルミナ、シリカ、チタニア、ジルコニア、シリカ-アルミナ、セリア、アルカリ金属材料、アルカリ土類金属材料、遷移金属材料、希土類金属材料、銀、銀塩等が挙げられ、必要に応じて分散剤、pH調整剤を合わせて使用することができる。
 触媒組成物をハニカム担体に被覆するには触媒組成物をスラリー状混合物として塗工する。触媒組成物は一層としてもよいし、二層以上になるように塗布してもよい。触媒組成物を塗工した後、乾燥、焼成を行う。なお、乾燥温度は、100~300℃が好ましく、100~200℃がより好ましい。また、焼成温度は、300~700℃が好ましく、特に400~600℃が好ましい。乾燥時間は0.5~2時間、焼成時間は1~3時間が好ましい。加熱手段については、電気炉やガス炉等の公知の加熱手段によって行う事ができる。
(DOCの機能)
 本発明の排気ガス浄化触媒装置には、必須成分としてPt成分が含まれるDOCが使用される。エンジンからの排気ガスに含まれるNOxは、その多くがNOである。従来の排気ガス浄化触媒装置では、SCR触媒におけるNOx浄化を促進するため、NOとNOを適切な比率にすることが望ましいとされてきた。このNO:NO比率は、Fe-βやMFIなどのゼオライトを主要な成分としたSCR触媒では凡そモル比で1:1とされる。
 本発明の排気ガス浄化装置でも、SCR触媒の前方にDOCを配置して、NOをNOに酸化し、NOx中のNO濃度を上昇させる。このようなNO酸化性能は、貴金属成分が遷移金属より高く、Pd成分よりもPt成分の方が優れている(特開2009-167844:段落[0021]、特公表2008-526509:段落[0005]、特開2008-155204:段落[0006]、非特許文献4(JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, Vol.40 (2007) No.9 pp.741-748等))。
 Pd成分は、ディーゼルエンジンの燃料である軽油や重油中の硫黄成分により被毒し易く、長期間の使用で失活してしまうことがある。このため本発明では、DOCにPd成分を使用する場合、その混合比率を50wt%以下にすることが好ましい。
 本発明ではDOCの貴金属成分の担持量が一体構造型担体の体積あたりの金属換算で0.5~4.0g/Lであることが好ましく、0.8g/L~3.0g/Lであることがより好ましい。貴金属成分の量が少なすぎると、充分なNO酸化性能が得られず、貴金属成分の量が多すぎても使用量に見合ったNO酸化性能の向上が見られないだけでなく、Pt成分の揮発量が増えてしまい、SCR触媒に移動するPt量が許容量を超えてしまう恐れがある。
 また、DOCの貴金属成分中の白金とパラジウムの比が重量換算で1:1~11:2であることが好ましく、3:2~11:2であることがより好ましい。1:1未満であると白金の含有率の低下に伴うHC、CO、NO等の酸化活性の低下が大きくなり、11:2を超えるとパラジウムが共存しても揮発した白金等の貴金属によるSCRの脱硝性能の低下が大きくなるので好ましくない。
 さらに、本発明では酸化触媒(DOC)の触媒層を構成する酸化成分の被覆量が、100~300g/Lであることが好ましく、150~250g/Lであることがより好ましい。酸化成分の被覆量が、100g/L未満であると、担持される白金等の貴金属の分散性が悪化することにより酸化活性が低下し、300g/Lを超えると、セル内が狭くなることで圧損が増大するので好ましくない。
2.[SCR触媒:選択還元触媒]
 本発明の排気ガス浄化装置に使用されるSCR触媒は、アンモニア成分を還元剤として排気ガス中のNOxを還元浄化するものである。SCR触媒材料としては、ゼオライトや後述するゼオライト類似の化合物(結晶金属アルミノリン酸塩)の他、バナジウム酸化物、チタニア、ジルコニア、酸化タングステン等の遷移金属酸化物、セリア、ランタン、プラセオジム、サマリウム、ガドリニウム、ネオジム等の希土類酸化物、酸化ガリウム、酸化スズ等の碑金属酸化物、またはこれらの複合酸化物等の各種無機材料が挙げられる。また、アルミナやシリカ、及び希土類、アルカリ金属、アルカリ土類等で修飾されたアルミナやシリカと上記酸化物との混合物や複合化等も挙げられる。ただし、自動車用途ではバナジウムのような有害な重金属を含まないことが望ましい。
 本発明では、SCR触媒がゼオライト又は結晶金属アルミノリン酸塩を含むことが好ましい。また、本発明では、PtやPdなどの貴金属成分は、アンモニア成分を酸化しNOxを生成するので含まないことが好ましい。
 ゼオライトは、結晶中に微細孔を持つアルミノ珪酸塩の総称であり、その細孔内に選択的に分子を取り込み、反応を促進させることができる。このようなゼオライトや上記無機材料は、SCR材料として優れたNOx還元浄化性能を有するが、貴金属に汚染されるとNOxの還元浄化性能を著しく低下させてしまう。ところが、本発明によれば、DOC中の貴金属成分であるPtが高温に晒されても飛散しにくい状態でハニカム構造体に担持されているので、ゼオライトや上記無機材料が汚染されるのを防ぎ、SCR触媒として優れたNOx還元浄化性能を長期間にわたって安定的に発揮させることができる。
 SCR触媒は、フロースルー型ハニカム構造体、又はウォールフロー型ハニカム構造体などの一体構造型担体であることが好ましい。
(ゼオライト及びゼオライト類似の化合物)
 本発明においてゼオライトは特に限定されないが、Y型、β型、MFI型、CHA型、USY型、SUZ型、MCM型、PSH型、SSZ型、ERB型、ITQ型、モルデナイト、フェリエライトの中から適宜選択できる。また、ゼオライトと同様の層状構造を有する結晶金属アルミノリン酸塩(Crytal metal aluminophosphate)が挙げられる(特開昭60-86011)。このような結晶金属アルミノリン酸塩は、結晶性リン酸アルミニウム(ALPO:Aluminaphosphate)や、結晶性ケイ酸リン酸アルミニウム(SAPO:Silicoaluminophosphate)が知られており、SCR触媒材料としても検討されている(US2008/0241060)。このようなゼオライト、及びゼオライト類似の化合物は、単独でも良いが、2種以上の材料を混合してもよく、複数の材料を構造型担体表面に多層化して被覆してもよい。また、ゼオライト、及びゼオライト類似の化合物は、そのカチオンサイトに鉄や銅等の遷移金属成分や、セリウムやランタン等の希土類成分をイオン交換したものであってもよい。
 このようなゼオライト、及びゼオライト類似の化合物のうち、本発明ではSCR触媒材料としてβ型ゼオライトの使用が好ましい。β型ゼオライトは、比較的大きな径を有する一方向に整列した直線的細孔とこれに交わる曲線的細孔とからなる比較的複雑な3次元細孔構造を有し、イオン交換時のカチオンの拡散、およびNH等のガス分子の拡散が容易であると共に反応性と耐久性に優れるという性質を有している。
 また、ゼオライトは、NHのような塩基性化合物が吸着できる酸点を有しており、そのSi/Al比に応じてその酸点の数が異なる。一般的にSi/Al比が低いゼオライトは酸点の数が多いが、水蒸気共存下での耐久において劣化度合いが大きく、逆にSi/Al比が高いゼオライトは耐熱性に優れているが酸点は少ない。NH選択還元触媒においては、ゼオライトの酸点にNHが吸着し、そこが活性点になってNOなどの窒素酸化物を還元除去するので、酸点が多い方(Si/Al比が低い方)が脱硝反応には有利である。このようにSi/Al比には、耐久性と活性がトレードオフの関係にあるが、これらを考慮すると、ゼオライトのSi/Al比は5~500が好ましく、10~100がより好ましく、15~50がさらに好ましい。このような特性は、SCR触媒に好適なβ型ゼオライト、そしてMFI型ゼオライトも同様に有している。
(β型ゼオライト)
 本発明においてSCR触媒材料には、ゼオライトのカチオンサイトに鉄元素がイオン交換したβ型ゼオライトを使用することが好ましい。また、この鉄元素がイオン交換されたゼオライトには、鉄成分として酸化鉄が含まれていても良い。このようにして鉄元素を含むゼオライトはNH吸着脱離速度が速く、SCRとしての活性も高いため、主成分として含むことが好ましい。ここで、主成分とは、SCR触媒の担体に被覆される触媒組成物に仕様される全ゼオライト量のうち、50wt%以上であることをいう。
 β型ゼオライトは、前述のような3次元細孔構造を有し、イオン交換時のカチオンの拡散、およびNH等のガス分子の拡散が容易である。また、このような構造はモルデナイト、ホージャサイト等が一方向に整列した直線的な空孔のみを有するのに対して、特異な構造で、複雑な空孔構造であるがゆえに、β型ゼオライトは、熱による構造破壊が生じ難く安定性が高く、自動車用触媒にとって有効な材料である。
(鉄元素が添加されたβ型ゼオライト)
 一般にゼオライトには固体酸点として、カチオンがカウンターイオンとして存在する。カチオンとしては、アンモニウムイオンやプロトンが一般的であるが、カチオン種として鉄元素が添加されたβ型ゼオライト(以下、「Fe-β」ということがある)が好ましい。
 β型ゼオライトが鉄元素によりイオン交換される割合は、鉄元素(イオン)1個と、ゼオライト中の一価のイオン交換サイトである[AlO4/2]-単位の2個とがイオン対を形成することに基づいて、次式(9)で表されることが好ましい。
 [単位重量のゼオライト中にイオン交換により含まれる鉄イオンのモル数/{(単位重量のゼオライト中の存在するAlのモル数)×(1/2)}]×100・・・(9)
 イオン交換率は、10~100%である事が好ましく、12~92%であることがより好ましく、30~70%であることが更に好ましい。イオン交換率が92%以下であると、ゼオライトの骨格構造がより安定化し、触媒の耐熱性、ひいては触媒の寿命が向上し、より安定した触媒活性を得ることができる。ただし、イオン交換率が低すぎて、10%未満になると充分な脱硝性能が得られない場合がある。なお、前記イオン交換率が100%である場合には、ゼオライト中のカチオン種全てが鉄イオンでイオン交換されていることを意味する。このように、イオン交換されたゼオライトは優れた浄化能力を発揮する。
(各種無機材料)
 本発明において、無機材料としては、チタニア、ジルコニア、酸化タングステン等の遷移金属酸化物、セリア、ランタン、プラセオジム、サマリウム、ガドリニウム、ネオジム等の希土類酸化物、酸化ガリウム、酸化スズ等の碑金属酸化物、またはこれらの複合酸化物等の中から適宜選択できる。それ以外にも、アルミナやシリカ、及び希土類、アルカリ金属、アルカリ土類等で修飾されたアルミナやシリカは耐熱性に優れ、比表面積が上記酸化物より大きいため、上記酸化物と混合または複合化することで上記酸化物自体の比表面積を増大させることができるので、より好ましい。
 なかでも、セリアは、NOx吸着機能材料として知られており、本発明においてもNOx吸着を促進することでNHとNOxのSCR反応を促進できる機能を有する。また、ジルコニアは、その他成分を熱的に安定な状態で高分散させる為の分散保持材料としての効果を期待できる。その他、タングステンの酸化物は、酸性が強く、アルカリ成分である尿素やアンモニアの吸着力が大きいので、タングステンの酸化物を使用することで脱硝性能が高くなるという作用効果を期待できるため、これらの酸化物を単独または混合もしくは複合化して使用することが好ましい。
 これらの酸化物およびそれらの複合酸化物は、組成、構造、製法によって特に限定されない。例えば、上記元素を含む硝酸塩、硫酸塩、炭酸塩、酢酸塩、塩化物等の形態を有する出発原料を水溶液中に溶解させた後、混合し、pH調整等により沈殿物として沈降させるか蒸発乾固させるかして得られた固形物を焼成してもよいし、混合もしくは複合化する際には、これらの複数の金属塩を一度に可溶化させて上記処理を行ってもよいし、単一もしくは複数の金属塩に上記処理を行うことにより酸化物を形成させた後、残りの金属塩を一度にまたは逐次に担持してもよい。
(DOCとSCR触媒の関係)
 ゼオライトや上記無機材料は、優れたNOx還元浄化性能を発揮するが、前述のとおり、Ptなどの貴金属成分に汚染されると活性を著しく低下してしまう場合がある。しかし、本発明のようにDOCからのPtの飛散を抑制することで、SCR触媒がPt成分により汚染されることを防止し、DOCにより生成されるNOを利用してSCR触媒でのNOx還元浄化性能を向上することができる。
 また、SCRの後方に配置する触媒については貴金属の有無は特に限定されず、貴金属成分を含む触媒を配置してもよい。以上、DOCとSCR触媒の関係について述べたが、DOCとSCRの間にDPFやCSFが配置される場合も同様に考えることができる。
 本発明では、酸化触媒(DOC)の触媒床温度が900℃まで上昇した際に酸化触媒(DOC)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下であることが好ましく、10ppm以下であることがより好ましい。従来、酸化触媒(DOC)では、DOCから揮発して選択還元触媒(SCR)に付着する白金の量を20時間経過後に測定して評価すること自体行われていないが、同様に測定すると、最も高性能とされる酸化触媒(DOC)でも、20~40ppmであった。このようなことからも、本発明の酸化触媒(DOC)を用いた触媒装置Iで、選択還元触媒(SCR)に付着する白金の量が20時間経過後に12ppm以下になるということは極めて顕著な作用効果と言える。
3.[還元剤噴霧手段]
 本発明の排気ガス浄化触媒装置において、還元剤噴霧手段(Injection)は、尿素成分又はアンモニア成分から選ばれる還元剤を供給するものであって、通常、還元剤の貯蔵タンクと配管、その先端に取り付けられた噴霧ノズルから構成される。
 還元剤噴霧手段の位置は、酸化触媒(DOC)の後方、かつ窒素酸化物(NOx)を還元剤と接触させて還元するための選択還元触媒(SCR)の前方に設置される。そして、DPF又はCSFがDOCとSCRの間に設置される場合は、DPF又はCSFの後方に配置することが好ましい。
 還元成分の種類は、尿素成分又はアンモニア成分から選ばれる。尿素成分としては、濃度31.8~33.3重量%の規格化された尿素水溶液、例えば商品名アドブルー(Adblue)を使用でき、またアンモニア成分であれば、アンモニア水のほか、アンモニアガスを使用してもよい。ただし、還元成分であるNHは、それ自体に刺激臭等の有害性があるため、還元成分としてはNH成分をそのまま使用するよりも、脱硝触媒の上流から尿素水を添加して、熱分解や加水分解によりNHを発生させ、これを還元剤として作用させる方式が好ましい。
II.[排気ガス浄化触媒装置(DOC+DPF+SCR)]
 本発明の排気ガス浄化触媒装置は、ディーゼルエンジンから排出される排気ガス中の窒素酸化物(NO)を酸化するための貴金属成分を含む酸化触媒(DOC)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置において、上記酸化触媒(DOC)の後方、かつ還元剤噴霧手段の前方に、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない燃焼フィルター(DPF)を配置することができる。以下、この排気ガス浄化触媒装置(DOC+DPF+SCR)を触媒装置IIともいう。
 すなわち、本発明の触媒装置IIは図2のように、ディーゼルエンジン1からの排気ガス流路2中、酸化触媒(DOC)4と燃焼フィルター(DPF)6の後方に、還元剤噴霧手段3を設け、この噴射手段3の後方に選択還元触媒(SCR)5を配置した排気ガス浄化触媒装置である。
4.[DPF:燃焼フィルター]
 本発明において、燃焼フィルター(DPF)は、前述した通孔開口部の一方を開口し、もう一方を閉口した通孔を集積してハニカム状にしたウォールフロー型ハニカム構造体をベースとしたものであり、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない構造体として使用される。
 触媒装置IIでは、酸化触媒(DOC)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を20%以下とするか、又は貴金属の平均粒子径を4nm以上とすることにより、燃焼フィルター(DPF)のフィルター床が900℃まで上昇した際の白金の揮発を抑制し、選択還元触媒(SCR)の活性を維持することができる。
(DOC+DPFとSCR触媒の関係)
 前記触媒装置Iでは、DOC+SCRの触媒を組み合わせているので、HC、COおよびNOxの浄化には優れた活性を発揮するものの、煤やSOF等の浮遊粒子状物質の燃焼浄化にやや劣ることが懸念される。
 実際、大型ディーゼルエンジンでは、制御方法の関係でエンジンからの排気ガス中にNOx及び浮遊粒子状物質が多く発生する場合があり、浮遊粒子状物質が多い場合には、DPFにより、浮遊粒子状物質を除去する必要がある。
 DPFは、貴金属成分を含まないウォールフロー型ハニカム構造体を有し、そのフィルターセル壁には平均細孔径が20~40μmの孔が無数にあいている。ガスはそれらの細孔を通過するが、30~80nmのSOFや50~400nmの煤等の微粒子はセル壁に開いた無数の細孔の中でトラップされる。
 そこで、本発明の触媒装置IIでは、DOCの後ろにDPFを設置することで、煤やSOFをDPFのフィルターセル壁でトラップするようにしている。これにより、煤やSOFがある程度溜まったところで加熱し、煤やSOFを一挙に完全に燃焼(酸化)除去することができる。
 このDPFのフィルターセル壁に無数に開いた細孔によるトラップ効果は、SOFや煤だけにとどまらず、DOCから飛散するPt等の貴金属成分のトラップにも有効である。フロースルー型ハニカム構造体のガスが通過するセル穴が数mm長の四角または六角であるのに対し、ウォールフロー型ハニカム構造体を有するDPFは20~40nmの細孔のため、そのトラップ効果も格段に優れている。
 そのため、DOCから飛散し、SCRに付着するPt等の貴金属の量は、触媒装置I(DOC+SCR)の場合に比べ、DPFを間に配置することによってかなり低減することができる。
III.[排気ガス浄化触媒装置(DOC+SCRF)]
 本発明では、ディーゼルエンジンから排出される排気ガス中の窒素酸化物(NO)を酸化するための貴金属成分を含む酸化触媒(DOC)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置された排気ガス浄化装置において、該選択還元触媒(SCR)として、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない燃焼フィルター(DPF)に該選択還元触媒が塗布された選択還元触媒化燃焼フィルター(SCRF)を使用することができる。以下、この排気ガス浄化触媒装置(DOC+SCRF)を触媒装置IIIともいう。
 すなわち、本発明の触媒装置IIIは図3のように、ディーゼルエンジン1からの排気ガス流路2中、酸化触媒(DOC)4の後方に、還元剤噴霧手段3を設け、この噴射手段3の後方に選択還元触媒を被覆した燃焼フィルター(SCRF)7を配置した排気ガス浄化触媒装置である。
5.[SCRF触媒:選択還元触媒を被覆した燃焼フィルター]
 本発明において、SCRF触媒とは、選択還元触媒を被覆した燃焼フィルターのことであり、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)の機能と、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない燃焼フィルター(DPF)の機能を併せ持ったものである。
 前記のとおり、触媒装置Iでは、HC、COおよびNOxの浄化には優れた活性を発揮するものの、煤やSOFの酸化浄化は不十分になることがあるため、DOCの後ろにDPFを設置することで、煤やSOFをDPFのフィルターセル壁でトラップするようにしている。これにより、煤やSOFがある程度溜まったところで加熱し、煤やSOFを一挙に完全に燃焼(酸化)除去することが期待できる。しかし、これによって、DPFの分だけ設置スペースが増えてしまう。
 これに対して、本発明の触媒装置IIIでは、触媒装置IのSCR触媒の代わりに、選択還元触媒を被覆した燃焼フィルター(SCRF触媒)を配置して、限られたスペースの中で、選択還元触媒(SCR)の機能と、燃焼フィルター(DPF)の機能を併せもつようにしている。
(高気孔率DPF)
 実際問題として、中型のディーゼルエンジンの場合、制御方法の関係で各種排気ガスの有害成分(HC、CO、NOx、煤、SOF等)はある程度抑えられるものの、触媒を搭載するためのスペースの関係で、触媒の搭載数を減らすことが求められていた。
 そこで、最近、選択還元触媒(SCR)を通常使用されるフロースルー型ハニカム構造体ではなく、燃焼フィルター(DPF)機能を有するウォールフロー型ハニカム構造体に塗布することで、触媒の搭載数を削減することが検討されている。
 但し、通常のウォールフロー型ハニカム構造体(DPF)では、CSFの項で後述するように圧損を抑えるため、塗布する触媒の量を通常のフロースルー型ハニカム構造体に比べ半分以下に抑えなければならなかった。しかし、SCRの場合、無機材料に担持した貴金属が酸化反応の活性点となるCSFと異なり、無機材料自体が脱硝反応の活性点となるため、触媒量を半減すると活性もまた半減してしまう恐れがあった。
 そこで、通常のDPFに比べ、フィルターセル壁の細孔の数を増やした(空隙率を上げた)低圧損で高気孔率のDPFが開発されている。この低圧損・高気孔率DPFを使用することにより、初めて、通常のフロースルー型ハニカム構造体にSCR触媒成分を担持するのと同量のSCR触媒成分を塗布することが可能になった。
 この場合でも、酸化触媒(DOC)は、貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を20%以下とするか、又は貴金属の平均粒子径を4nm以上とすることにより、酸化触媒(DOC)の触媒床温度が900℃まで上昇しても白金の揮発を抑制することで選択還元触媒(SCR)の活性を維持することができる。
 本発明の触媒装置IIIにおいて、SCRF(SCRが塗布されたDPF)は、シリカ、アルミナ、炭化珪素、コーディエライトなどの無機酸化物の焼結体を多孔質化して得られたウォールフロータイプのハニカム型構造体で、かつ、フィルターセル壁の細孔の数を増やした低圧損・高気孔率DPFの使用が望ましい。この低圧損・高気孔率DPFを使用することにより、圧損を損なうことなく、通常のフロースルータイプのハニカム構造体と同量のSCR触媒成分を塗布することが可能になる。
 無機母材については、SCRの項で詳細に述べたゼオライト及び多孔質な無機酸化物がすべて使用できる。
(DOCとSCRF触媒の関係)
 前述のDOC+DPF+SCRや後述のDOC+CSF+SCRでは、排気ガス中の有害成分であるHC、CO、NOx、煤、SOFのすべてが浄化させるので、非常に好ましいが、自動車に搭載する場合、収納スペースの関係でこれらのすべての触媒を搭載できないケースもありうる。前述のDOC+SCRでは、収納スペースが少なくてすむが、煤やSOFの浄化にやや懸念がある。
 そこで、DPFとSCRを組み合わせて一つにしたSCRF(DPFにSCR触媒成分を塗布)をDOCの後ろに配置することが有効である。DOC+DPF+SCRの項で述べたように、煤およびSOFはDPFでトラップされ、煤およびSOFがある程度溜まったところで燃焼(酸化)除去されるからである。
 また、DOCで酸化されたNOxはDPFのフィルターセル壁を通過する際、被覆されたSCR触媒成分で容易にNHと反応して浄化されることが期待できる。後述のDOC+CSF+SCRにくらべればHC、CO、NOxの浄化性能がやや劣る恐れはあるものの、収納スペースの関係で、DOC+CSF(又はDPF)+SCRのすべての触媒が搭載できない場合には、限られたスペースを最大限有効に使用して最大の浄化効果を上げることが期待できる。
 SCRFにおいてもゼオライトや上記無機材料は、優れたNOx還元浄化性能を発揮するが、前述のとおり、Ptなどの貴金属成分に汚染されると活性を著しく低下してしまう場合がある。しかし、本発明のように、酸化触媒(DOC)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を20%以下とするか、又は貴金属の平均粒子径を4nm以上とすることにより、DOCからのPtの飛散を抑制することで、SCRF触媒がPtにより汚染されることを防止し、DOCにより生成されるNOを利用してSCRF触媒でのNOx還元浄化性能を向上することができる。
 なお、SCRFの後方に配置する触媒については特に限定されず、貴金属成分を含む触媒を配置してもよい。
IV.[排気ガス浄化触媒装置(DOC+CSF+SCR)]
 本発明は、ディーゼルエンジンから排出される排気ガス中の窒素酸化物(NO)を酸化するための貴金属成分を含む酸化触媒(DOC)と、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルター(CSF)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置であり、この排気ガス浄化触媒装置(DOC+CSF+SCR)を触媒装置IVともいう。
 すなわち、本発明の触媒装置IVは図4のように、ディーゼルエンジン1からの排気ガス流路2中、酸化触媒(DOC)4と触媒化燃焼フィルター(CSF)8の後方に、還元剤噴霧手段3を設け、この噴射手段3の後方に選択還元触媒(SCR)5を配置した排気ガス浄化触媒装置である。
6.[CSF:触媒化燃焼フィルター]
 本発明において、触媒化燃焼フィルター(CSF)とは、ディーゼルエンジンから排出される排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルターである。
 本発明の触媒装置IVにおいて、CSFは耐熱性の高いバグフィルターでも良いが、シリカ、アルミナ、炭化珪素、コーディエライトなどの無機酸化物の焼結体を多孔質化して得られたウォールフロータイプのハニカム型構造体を触媒化して使用することが望ましい。
 CSFには貴金属成分として、少なくとも白金成分とパラジム成分を含有する。Pt成分を含有させることでCSFでもNO酸化性能を発揮させ、排気ガス中のNO濃度を増し、CSF後段のSCR触媒におけるNOx還元浄化能力を向上させることができる。
 また、Pt成分にPd成分を加えることで、Pt成分の揮発を抑制することが期待できる。触媒化燃焼フィルター(CSF)は、白金とパラジウムの比が重量換算で1:1~11:4であることが好ましく、3:2~11:4であることがより好ましい。この範囲を外れると、前記DOCと同様に好ましくない。1:1未満であると白金の含有率の低下に伴うHC、CO、NO等の酸化活性の低下が大きくなり、11:4を超えるとパラジウムが共存しても揮発した白金等の貴金属によるSCRの脱硝性能の低下が大きくなるためである。そして、触媒化燃焼フィルター(CSF)は、白金の担持量が金属換算で0.1~2.0g/Lであることが好ましく、0.3~1.5g/Lであることがより好ましい。
 さらに、本発明では触媒化燃焼フィルター(CSF)の触媒層を構成する酸化成分の被覆量が、5~150g/Lであることが好ましく、10~100g/Lであることがより好ましい。酸化成分の被覆量が、5g/L未満であると、担持される白金等の貴金属の分散性が悪化することにより酸化活性が低下し、150g/Lを超えると、フィルターセル壁に無数に開いた細孔が狭くなることで圧損が増大するので好ましくない。
 このようなCSFは、本発明ではDOC同様の「酸化触媒組成物を被覆した構造体」であるといえる。
 前記DOCと同様、CSFにもハニカム構造体が使用される。特に、通孔開口部の一方を開口し、もう一方を閉口した通孔を集積してハニカム状にしたウォールフロー型担体の使用が望ましい。ウォールフロー型担体は、通孔の壁が多孔質からできていて、微粒子成分は排気ガスと共に通孔開口部から通孔の中に進入し、排気ガスが通孔壁の多孔質の孔を通過して後方に排出され、微粒子成分は閉口された通孔の中に堆積する。このように堆積した微粒子成分は、前述のとおり燃焼除去されることでCSFが再生され、再び排気ガスの中から微粒子成分を補足することができる。
 但し、DOCに使用されるフロースルー型ハニカム構造体とは異なり、フィルターとしての機能を有するウォールフロー型ハニカム構造体が使用されるため、CSFとして使用される触媒成分はDOCと同じ機能を有しながら、DOCとは異なる機能も求められる。
 実際、ウォールフロー型ハニカム構造体にフロースルー型ハニカム構造体と同じ量の触媒成分を塗布すると、通孔の壁が多孔質からできているとはいえ、圧損が異常に増大してしまい、エンジンの出力を著しく低下させる。そのため、ウォールフロー型ハニカム構造体に触媒成分を塗布する場合、フロースルー型ハニカム構造体に比べ、触媒成分の量は半分以下にすることが好ましい。
 そのため、CSFでは白金等の貴金属の使用量も半分以下にする必要がある。但し、貴金属の量を半分以下に減らしても、NOxの酸化性能については高い浄化性能を求められるため、白金等の貴金属の分散状態については、DOC以上の分散性が要求される。
 このため、白金の揮発抑制については、DOC以上の過酷な条件が求められる。CSFでは貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を3%以下とすることにより、CSFの触媒床温度が900℃まで上昇した際の白金の揮発を抑制し、選択還元型触媒(SCR)の活性を維持するようになる。
 本発明では、CSFの触媒床温度が900℃まで上昇した際に触媒化燃焼フィルター(CSF)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下であることが好ましく、10ppm以下であることがより好ましい。
 無機母材については、DOCの項で詳細に述べた多孔質な無機酸化物がすべて使用できる。
(DOC+CSFとSCR触媒の関係)
 本発明の触媒装置II(DOC+DPF+SCR)によれば、HC、COやNOxの他、煤やSOFについても高い浄化性能の発揮が期待できる。しかし、DPFには、酸化触媒機能がないので、煤を完全に燃焼させるためにDPFのフィルター床温度を900℃の高温にする必要がある。フィルター床の温度を上げるため、エンジンに燃料を多めに供給して、未燃焼のHCを発生させてDOCに供給するか、DOCに燃料を直接噴霧して供給しなければならず、いずれにしても燃費の悪化を招く。
 このような場合、DPFに付着した煤、SOF等の浮遊粒子状物質をより低い温度から燃焼を開始できるようにDPFに酸化触媒機能を付与するCSFを用いれば、DPFに付着した浮遊粒子状物質が比較的低温から燃焼を開始するので、浮遊粒子状物質の燃焼用燃料の消費を低減することが可能になる。また、NOの排出量が多い場合、DOCだけではNOを十分にNOに酸化しきれないが、CSFはDOCでは酸化しきれないNOをさらにNOに酸化することもできる。本発明の触媒装置IVは、HC、CO、NOx、浮遊粒子状物質のすべてを高効率で浄化するだけでなく、燃費も向上させるために、DPFに酸化触媒成分を被覆したCSFをDOCの後ろに配置したDOC+CSF+SCRの組み合わせとしたものである。
 実際、大型ディーゼルエンジンでは、制御方法の関係でエンジンからの排気ガス中にNOx及び浮遊粒子状物質が多く発生する場合があり、浮遊粒子状物質だけでなくNOxも多い場合には、DOC-SCRの触媒システムにCSFを組み込むことにより、CSFの酸化燃焼機能で浮遊粒子状物質を比較的低温から燃焼除去するとともに、DOCだけでは処理しきれなかったNOをさらにNOに酸化することが可能になる。
 CSFにはDPF(ウォールフロー型ハニカム構造体)のフィルターセル壁に酸化触媒成分が塗布してあるため、DOC(フロースルー型ハニカム構造体のセル壁に酸化触媒を塗布)に比べ、酸化触媒成分が排気ガス中のHC、CO、NO等とより容易に接触する為、DOCでは酸化し切れなかった未燃のHCやCO、NO等を酸化除去することができる。
 また、CSFはHC、CO、NOを酸化して発熱するため、酸化触媒を塗布していないDPFに比べ、より低い温度で着火するので、煤やSOFを燃焼させるために添加する燃料の量が少なくて済み、燃費という面でも好ましい。
 SCR触媒のゼオライトや上記無機材料は、優れたNOx還元浄化性能を発揮するが、前述のとおり、Ptに汚染されると活性を著しく低下してしまう場合がある。しかし、本発明の触媒装置IVでは、CSFの貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を3%以下とすることにより、CSFの触媒床温度が900℃まで上昇した場合でも白金の揮発を抑制し、選択還元触媒(SCR)の活性が維持されるようにする。すなわち、CSFからのPtの飛散を抑制することで、SCR触媒がPt成分により汚染されることを防止し、DOCやCSFにより生成されるNO2を利用してSCR触媒でのNOx還元浄化性能を向上することができる。
 なお、DOCから飛散するPtについては、CSFの酸化触媒成分が比較的低温から煤等の浮遊粒子状物質を燃焼させるので、DOC+CSF+SCRの触媒システムにおけるDOCの触媒床温度は、DOC+DPF+SCRの触媒システムにおけるDOCの触媒床温度に比べ、かなり低い温度ですむため、Ptの飛散量もDOC+DPF+SCRに比べ著しく軽減される。DOCから飛散するPtの量が非常に少ないため、飛散したPtがCSFを通過してそのさらに後ろに配置されたSCRの触媒成分に付着することはほとんどない。すなわち、SCR上に付着すると想定されるPtはすべてCSF由来のPtと考えて差し支えない。
 CSFについては、前述したように、使用される担体がウォールフロー型ハニカム構造体となり、圧損を抑える為、低圧損のフロースルー型ハニカム構造体を用いるDOCに比べ、塗布される触媒の量が半減し、貴金属の量も半減するにも関わらず、高いNOxの酸化活性を保持するため、貴金属の分散性を上げざるを得なくなる。すなわち、貴金属の粒子径をDOCに比べ、小さくせざるを得なくなる。
 そのため、前記触媒装置I~IIIのいずれかのDOCでは貴金属の平均粒子径を4nm以上にすることでPtの飛散を抑制する方法も可能であったが、本発明の触媒装置IVでは、このような手法をとることはできず、触媒化燃焼フィルター(CSF)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率が3%以下とする必要がある。単独で存在する白金粒子の比率は2.5%以下とすることが好ましく、2.0%以下とすることがより好ましい。
 無機母材については、DOCの項で詳細に述べた多孔質な無機酸化物がすべて使用できる。また、白金等の貴金属の出発塩についてもDOCの項で詳細に述べた原料がすべて使用できる。
 但し、前述したように、白金等の貴金属をDOC以上に高分散させた上で、白金の揮発を抑制させるため、白金とパラジウムの各々の出発塩の水溶液の性質(酸性、アルカリ性)を必ず合わせる必要があり、両方を混合して均一混合溶液の状態で無機母材と混合しなければならない。性質の異なる白金およびパラジウムの出発塩の溶液を各々別々に無機母材に混合する方法では、どうしても白金の微粒子が単独で存在する数が白金とパラジウムの混合溶液を無機母材に混合する場合に比べ、増大するので好ましくない。
 また、SCRの後方に配置する触媒については特に限定されず、貴金属成分を含む触媒を配置してもよい。
 本発明では、触媒化燃焼フィルター(CSF)の触媒床温度が900℃まで上昇した際に触媒化燃焼フィルター(CSF)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下であることが好ましく、10ppm以下であることがより好ましい。従来、触媒化燃焼フィルター(CSF)では、CSFから揮発して選択還元触媒(SCR)に付着する白金の量を20時間経過後に測定して評価すること自体行われていないが、同様に測定すると、最も高性能とされる触媒化燃焼フィルター(CSF)でも、20~30ppmであった。このようなことからも、本発明の触媒化燃焼フィルター(CSF)を用いた触媒装置IVで、選択還元触媒(SCR)に付着する白金の量が20時間経過後に12ppm以下になるということは極めて顕著な作用効果と言える。
 本発明の触媒装置IVでは、酸化触媒(DOC)として、従来のタイプの酸化触媒を用いても良い。すなわち、酸化触媒(DOC)の貴金属成分が、白金を含有しパラジウムを含有しないか、白金とパラジウムを含有するものであっても単独で存在する白金粒子の比率が20%を超えるか、又は貴金属の平均粒子径が4nm未満という酸化触媒(DOC)の使用を制限するものではない。しかし、このような従来のタイプの触媒は、高温でのPt飛散抑制が考慮されていないので、酸化触媒(DOC)の触媒床温度が900℃まで上昇した際に酸化触媒(DOC)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下とすることができない場合もある。
 このような場合は、前記本発明の触媒装置Iに記載した高温でのPt飛散抑制が考慮された酸化触媒(DOC)を用いることが望ましい。これをCSFと併用することで、それぞれ単独で用いるよりもさらに顕著な作用効果(相乗効果)が得られることが確認されている。
7.[AMOX:アンモニア酸化触媒] 
 本発明の排気ガス浄化装置においては、必要に応じ、SCRの後にさらにアンモニア酸化触媒(AMOX)を配置することができる。実用的には、SCRではNOxやNH3が規制値以下まで浄化し切れない場合にAMOXが追加使用される。
 そのため、AMOXにはNHの酸化機能を有する触媒の他、NOxの浄化機能を有する触媒成分も含まれている。NHの酸化機能を有する触媒としては、貴金属成分として、白金、パラジウム、ロジウムなどから選ばれる一種以上の元素をアルミナ、シリカ、チタニア、ジルコニアなどの一種以上からなる無機材料の上に担持することが好ましい。また、希土類、アルカリ金属、アルカリ土類金属等の助触媒を加えて耐熱性を向上させた無機材料を使用することも好ましい。貴金属としては、特に、白金及びパラジウムは優れた酸化活性を発揮するので、比表面積が高く、耐熱性も高い上記無機材料を使用することにより、貴金属成分が焼結し難くなり、貴金属の比表面積を高く維持することで活性サイトが増え、高い活性を発揮することができる。
 一方、NOxの浄化機能を有する触媒としては、SCRの項で述べたゼオライト及び酸化物のすべてが使用できる。
 これら二種類の触媒を均一に混合して一体型を有するハニカム構造体に塗布すればよいが、NHの酸化機能を有する触媒を下層に、NOxの浄化機能を有する触媒を上層に塗布してもよい。
 以下に実施例及び比較例を示し、本発明の特徴を一層明確にするが、本発明は、これら実施例の態様に限定されるものではない。なお、本実施例、並びに比較例に使用する酸化触媒(DOC)、触媒化燃焼フィルター(CSF)、選択還元型触媒(SCR)の成分・組成については、下記に示す方法によって測定した。
(1)遊離Pt粒子比率(%)
 触媒のウォッシュコートのみを一部掻き取り、走査透過型電子顕微鏡(STEM)にて貴金属粒子が母材上に分布している様子がよくわかる倍率(30~50万倍)での観察を行った。16~20個の任意の貴金属粒子を選択し、エネルギー分散型X線分光器(EDS)を用いてそれぞれ定性分析を行い、Pt単独粒子か、Pd単独粒子か、もしくはPt-Pd合金粒子なのか調査した。全測定粒子中に何%のPt単独粒子が存在したのかを求め、遊離Pt粒子比率(%)とした。
  遊離Pt粒子比率(%)=[Pt単独粒子数]/[全測定粒子数]×100
(2)初期貴金属成分の粒子径(nm)
 触媒のウォッシュコートのみを一部掻き取り、走査透過型電子顕微鏡(STEM)にて貴金属粒子が母材上に分布している様子がよくわかる倍率(30~50万倍)での観察を行った。観察した画像から、画像解析ソフトを用いて約300個の貴金属粒子の円相当径を求めた。これらの平均値を初期貴金属成分の粒子径として算出した。
<Pt飛散抑制効果の評価>
 エージングを施した選択還元型触媒(SCR)について、下記条件のもとモデルガスを用いて脱硝性能を測定した。脱硝後のNOx転化率は質量分析計を使用して測定した。結果を表2に記した。
・モデルガス組成: NO=200ppm、NO=50ppm
          NH=250ppm、CO=100ppm
          O=5%、HO=10%、N=balance
・モデルガス流量:9.3L/min
     (SCR(1)における空間速度換算≒61,000 /h)
・NOx浄化能力を測定したSCR(1)の触媒床温度:300℃、500℃
 本試験方法によってPt飛散抑制効果の有無を評価するに当たり、選択還元型触媒(SCR)に含まれる白金量が多いほど白金が本来NOxを還元するために供給されるNHを酸化してしまうためにNOx浄化率は低下するが、温度がより高いほど白金によるNH酸化能は高くなるため、特に300℃よりも500℃におけるNOx浄化率の低下が大きい。また選択還元型触媒(SCR)に含まれる白金量が多いほど300℃におけるNO排出濃度が高くなる。従ってC300/C500の値が大きいほど、またNO@300℃の値が小さいほどPt飛散抑制効果が高いことになる。
 本発明では、耐久後の選択還元型触媒(SCR)の活性評価において、後述するC500/C300の値が0.9以上であればOK(脱硝性能が維持された)、0.9未満であればNG(脱硝性能が維持されない)と評価した。
 その後、上記脱硝性能試験に用いたSCRに含まれる白金濃度を、ICP発光分析装置を用いて測定した。結果を表2に併記した。脱硝性能試験後のSCRに含まれる白金濃度が少ないほどPt飛散抑制効果が高いと評価した。
[実施例1]
<酸化触媒DOC(1)の製造>
 母材としてのアルミナ粉末(γ-アルミナ、2重量%La含有、比表面積:200m/g)300gに、貴金属成分原料としての水酸化白金(IV)酸のエタノールアミン溶液をPt換算で0.75重量%となるよう含浸担持させて、Pt担持アルミナ粉末を得た。次に硝酸パラジウム水溶液をPd換算で0.25重量%となるよう前記Pt担持アルミナ粉末に含浸担持させ、Pt-Pd担持アルミナ粉末を得た(Pt:Pd=3:1)。そしてPt-Pd担持アルミナ粉末、市販の精製糖(アルミナ粉末の10重量%)と水をボールミルに投入し、所定の粒径となるまでミリングしてスラリーを得た。
 続いてこのスラリーに一体型構造担体、すなわちハニカムフロースルー型コージェライト担体(300セル/8ミル、φ24mm×66mm長さ)を浸漬させ、単位体積あたりの触媒担持量が200g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(1)(貴金属量:2.0g/L)を得た。
 得られた酸化触媒DOC(1)の遊離Pt粒子比率(%)、初期貴金属成分の粒子径(nm)を前記の方法で測定し、結果を表1に示した。
<選択還元触媒(SCR)>
 鉄元素でイオン交換したβ型ゼオライト(鉄元素換算:濃度2wt%、イオン交換量:70%、SAR=35)と、バインダーとしてのシリカを、水で濃度を調整しボールミルを用いてミリングしてSCR触媒組成物原料スラリーを得た。この際、Feイオン交換βゼオライトとシリカの比率は、重量比で10:1とした。このスラリーに、一体型構造担体、すなわちハニカムフロースルー型コージェライト担体(300セル/5ミル、φ24mm×20mm長さ)を浸漬させ、単位体積あたりの触媒担時量が220g/Lとなるようにウォッシュコート法をもって塗布し、乾燥後、大気雰囲気下、500℃で2時間焼成し、SCR触媒を得た。
<Pt飛散試験>
 図5のように、酸化触媒(DOC)又は触媒化フィルター(CSF)のサンプル11と、選択還元型触媒(SCR)のサンプル12を管状炉10の石英管(内径30mm、長さ700mm)の中に各々断熱材(カオウール)を巻いて所定の位置に固定して配置し、本発明に係る触媒の耐久試験装置を構成した。この装置を用い、流速10L/分で酸化触媒(DOC)の触媒床温度が900℃になるようにした加熱空気9を20時間流通させ、耐久処理をおこなった。なお、耐久試験を行った際の酸化触媒(DOC)又は触媒化フィルター(CSF)とSCR触媒との距離は100mmとし、触媒床温度は、測定箇所に設置した温度計13,14で測定した。
 前記条件のもとモデルガスを用いてSCRの脱硝性能を測定した。また、試験後のSCRの白金濃度を測定した。これらの結果を表2に示す。ここでC300は300℃におけるNOx浄化率を、C500は500℃におけるNOx浄化率を、NO@300℃は300℃におけるNO排出濃度(ppm)を意味する。
 [実施例2]
<酸化触媒DOC(2)の製造>
 =下層=
 貴金属成分原料として硝酸白金水溶液と硝酸パラジウム水溶液とを混合し、Pt-Pd混合溶液を得た。ここで白金とパラジウムの割合を、重量比で5:1とした。
 次に母材としての実施例1のアルミナ粉末300gに、前記Pt-Pd混合溶液を貴金属換算で0.68重量%となるよう含浸担持させてPt-Pd担持アルミナ粉末を得た。
そしてPt-Pd担持アルミナ粉末、と水をボールミルに投入し、所定の粒径となるまでミリングしてスラリーを得た。
 続いてこのスラリーに一体型構造担体、すなわちハニカムフロースルー型コージェライト担体(300セル/8ミル、φ24mm×66mm長さ)を浸漬させ、単位体積あたりの触媒担持量が110g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(2)の下層塗布済み触媒を得た。
 =上層=
 母材としての実施例1のアルミナ粉末300gに、前記Pt-Pd混合溶液を貴金属換算で1.39重量%となるよう含浸担持させたこと以外は、下層と同じ要領でスラリーを得た。
 続いてこのスラリーに前記の下層塗布済み触媒を浸漬させ、単位体積あたりの触媒担持量が90g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してDOC(2)(貴金属量:2.0g/L)を得た。
 得られた酸化触媒DOC(2)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例1と同様の装置構成、処理条件で行った。結果を表2に示した。
[実施例3]
 貴金属成分原料として硝酸白金水溶液と硝酸パラジウム水溶液とを混合し、Pt-Pd混合溶液を得た。ここで白金とパラジウムの割合を、重量比で3:1とした。
 次に母材としての実施例1のアルミナ粉末300gに、前記Pt-Pd混合溶液を貴金属換算で1.0重量%となるよう含浸担持させてPt-Pd担持アルミナ粉末を得た。
 その後は、スラリー成分原料から精製糖を除いた以外は実施例1のDOC(1)と同様にして、酸化触媒DOC(3)(貴金属量:2.0g/L)を得た。
 得られた酸化触媒DOC(3)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例1と同様の装置構成、処理条件で行った。結果を表2に示した。
[比較例1]
 スラリー成分原料から精製糖を除いた以外は実施例1のDOC(1)と同様にして、表に示す酸化触媒DOC(4)(貴金属量:2.0g/L)を得た。
 得られた酸化触媒DOC(4)の遊離Pt粒子比率(%)、初期貴金属成分の粒子径(nm)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例1と同様の装置構成、処理条件で行った。結果を表2に示した。
[比較例2]
 白金とパラジウムの割合を重量比で6.2:1としたこと以外は、実施例2のDOC(2)と同様にして、酸化触媒DOC(5)(貴金属量:2.0g/L)を得た。
 得られた酸化触媒DOC(5)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例1と同様の装置構成、処理条件で行った。結果を表2に示した。
[実施例4]
<触媒化燃焼フィルターCSF(1)の製造>
 貴金属成分原料としての硝酸白金水溶液と硝酸パラジウム水溶液とを混合し、Pt-Pd混合溶液を得た。ここで白金とパラジウムの割合を、重量比で2:1とした。
 次に母材としての実施例1のアルミナ粉末300gに、前記Pt-Pd混合溶液をPt並びにPd換算で3.0重量%となるよう含浸担持させてPt-Pd担持アルミナ粉末を得た。
 そしてPt-Pd担持アルミナ粉末と水をボールミルに投入し、所定の粒径となるまでミリングしてスラリーを得た。続いてこのスラリーに一体型構造担体、すなわちハニカムウォールフロー型コージェライト担体(200セル/12ミル、φ24mm×66mm長さ)を浸漬させ、単位体積あたりの触媒担持量が28g/Lとなるようにウォッシュコート法で塗布した。その後、150℃で1時間乾燥させ、大気雰囲気下、500℃で2時間焼成してCSF(1)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(1)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、酸化触媒DOC(1)の代わりに触媒化燃焼フィルターCSF(1)を用いたことを除き、実施例1と同様の装置構成、処理条件で行った。結果を表2に示した。
[実施例5]
 白金とパラジウムの割合を重量比で1.5:1としたこと以外は実施例4のCSF(1)と同様にして、触媒化燃焼フィルターCSF(2)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(2)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例4と同様の装置構成、処理条件で行った。結果を表2に示した。
[実施例6]
 貴金属成分原料として、硝酸白金水溶液の代わりにジニトロジアンミン白金の硝酸水溶液を用いたこと以外は実施例4のCSF(1)と同様にして、触媒化燃焼フィルターCSF(3)を得た。
 得られた触媒化燃焼フィルターCSF(3)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例4と同様の装置構成、処理条件で行った。結果を表2に示した。
[実施例7]
 白金とパラジウムの割合を重量比で2.35:1としたこと以外は実施例4のCSF(1)と同様にして、触媒化燃焼フィルターCSF(4)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(4)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例4と同様の装置構成、処理条件で行った。結果を表2に示した。
[比較例3]
 母材としての実施例1のアルミナ粉末70gと、CeOとZrOの比率が7:3である複合酸化物粉末230gとを混合した計300gの粉末に対し、貴金属成分原料としての硝酸白金水溶液をPt換算で3.0重量%となるよう含浸担持させた。
 その後は実施例4のCSF(1)と同じ要領でスラリー調製以降の触媒調製を行い、触媒化燃焼フィルターCSF(5)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(5)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、実施例1と同様の装置構成、処理条件で行った。結果を表2に示した。
[比較例4]
 母材としての実施例1のアルミナ粉末300gに、貴金属成分原料としての水酸化白金(IV)酸のエタノールアミン溶液をPt換算で2.0重量%となるよう含浸担持させて、Pt担持アルミナ粉末を得た。次に硝酸パラジウム水溶液をPd換算で1.0重量%となるよう前記Pt担持アルミナ粉末に含浸担持させ、Pt-Pd担持アルミナ粉末を得た(Pt:Pd=2:1)。
 その後は実施例4のCSF(1)と同じ要領でスラリー調製以降の触媒調製を行い、触媒化燃焼フィルターCSF(6)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(6)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、比較用の触媒化燃焼フィルターCSF(6)を用いた以外は、実施例4と同様の装置構成、処理条件で行った。結果を表2に示した。
[比較例5]
 白金とパラジウムの割合を、重量比で3:1とした以外は実施例4のCSF(1)と同様にして、触媒化燃焼フィルターCSF(7)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(7)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、比較用の触媒化燃焼フィルターCSF(7)を用いた以外は、実施例4と同様の装置構成、処理条件で行った。結果を表2に示した。
[比較例6]
 貴金属成分原料としてのジニトロジアンミン白金の硝酸水溶液と硝酸パラジウム水溶液とを混合し、Pt-Pd混合溶液を得た。ここで白金とパラジウムの割合を、重量比で3:1とした。
 その後は実施例4のCSF(1)と同じ要領でスラリー調製以降の触媒調製を行い、触媒化燃焼フィルターCSF(8)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(8)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、比較用の触媒化燃焼フィルターCSF(8)を用いた以外は、実施例4と同様の装置構成、処理条件で行った。結果を表2に示した。
[比較例7]
 白金とパラジウムの割合を重量比で2.5:1としたこと以外は、実施例4のCSF(1)と同様にして、触媒化燃焼フィルターCSF(9)(貴金属量:0.84g/L)を得た。
 得られた触媒化燃焼フィルターCSF(9)の遊離Pt粒子比率(%)を前記の方法で測定し、結果を表1に示した。
 次に、Pt飛散試験と、その後にPt濃度測定を行った。具体的には、比較用の触媒化燃焼フィルターCSF(9)を用いた以外は、実施例4と同様の装置構成、処理条件で行った。結果を表2に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
「評価」
 上記表1の結果から、実施例1~3では、本発明により、酸化触媒(DOC)の貴金属成分が、白金及びパラジウムを含有し、貴金属の平均粒子径が大きく、かつ単独で存在する白金粒子の比率が特定%以下なので、DOCの触媒床温度が900℃まで上昇しても、酸化触媒(DOC)から白金の揮発が抑制され、選択還元触媒(SCR)の活性が維持されている。
 また、上記表1の結果から、実施例4~6では、本発明により、触媒化燃焼フィルター(CSF)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率が特定%以下であるので、CSFの触媒床温度が900℃まで上昇しても、触媒化燃焼フィルター(CSF)から白金の揮発が抑制され、選択還元型触媒(SCR)の活性が維持されている。そして、これらの結果から、実施例1~3に記載の本発明に係る酸化触媒(DOC)と実施例4~6に記載の本発明に係る触媒化燃焼フィルター(CSF)を併用すれば、更に顕著な作用効果が得られることが分かる。
 なお、選択還元型触媒(SCR)の脱硝性能試験では、モデルガスをNO:NO=4:1にした。これは、必ずしも反応性が高いとはいえないNO:NO比であるが、このように理想的とはいえない条件で評価を行った理由は、自動車の実際の走行状況を想定したためである。実際の自動車の走行状況では排気ガス中のNO:NO比は刻々変化し、必ずしもSCR反応に適したNO:NO比を維持できるものではない。それにも係らず、本実施例は、高い脱硝性能を示していることから、本発明の排気ガス浄化触媒装置はこのように実際の走行状況を想定したNO:NO比においても優れたNOx浄化性能を発揮できることがわかる。
 これに対して、比較例1~11では、本発明とは異なり、従来のタイプの酸化触媒(DOC)、又は触媒化燃焼フィルター(CSF)、すなわち、貴金属成分が、パラジウムを含有しないか、白金及びパラジウムを含有しても、単独で存在する白金粒子の比率が特定%よりも大きいので、触媒床温度が900℃まで上昇すると、酸化触媒(DOC)又は触媒化燃焼フィルター(CSF)から白金の揮発が抑制できず、選択還元触媒(SCR)の活性が維持できていない。
1 ディーゼルエンジン
2 排気ガス流路
3 還元剤噴霧手段
4 酸化触媒(DOC)
5 選択還元触媒(SCR)
6 燃焼フィルター(DPF)
7 選択還元触媒化燃焼フィルター(SCRF)
8 触媒化燃焼フィルター(CSF)
9 Air流路
10 管状炉
11 DOC又はCSFサンプル
12 SCRサンプル
13 SCRの触媒床温度計
14 DOC又はCSFの触媒床温度計
発明の利用分野
 本発明は、希薄燃焼により発生するNOxの浄化技術、例えばディーゼル自動車用途をはじめ、ガソリン自動車、船舶等の移動体用途や、発電機等の定置用途などに使用可能である。

Claims (16)

  1.  ディーゼルエンジンから排出される排気ガス中の窒素酸化物(NO)を酸化するための貴金属成分を含む酸化触媒(DOC)と、尿素成分又はアンモニア成分から選ばれる還元剤を供給する還元剤噴霧手段と、窒素酸化物(NOx)を還元剤と接触させて還元除去するための貴金属を含まない選択還元触媒(SCR)を排気ガス流路の上流側からこの順に配置した排気ガス浄化装置において、
     酸化触媒(DOC)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を20%以下とするか、又は貴金属の平均粒子径を4nm以上とすることにより、酸化触媒(DOC)の触媒床温度が900℃まで上昇しても酸化触媒(DOC)からの白金の揮発を抑制することで選択還元触媒(SCR)の活性を維持することを特徴とする排気ガス浄化装置。
  2.  前記酸化触媒(DOC)の後方、かつ前記還元剤噴霧手段の前方に、さらに排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない燃焼フィルター(DPF)を配置したことを特徴とする請求項1に記載の排気ガス浄化装置。
  3.  前記選択還元触媒(SCR)が、排気ガス中の微粒子成分(PM)を捕集し、燃焼(酸化)除去するための貴金属成分を含まない燃焼フィルター(DPF)に塗布されている選択還元触媒化燃焼フィルター(SCRF)であることを特徴とする請求項1に記載の排気ガス浄化装置。
  4.  前記酸化触媒(DOC)の後方、かつ前記還元剤噴霧手段の前方に、さらに燃焼(酸化)除去するための貴金属成分を含む触媒化燃焼フィルター(CSF)を配置し、触媒化燃焼フィルター(CSF)の貴金属成分が、白金及びパラジウムを含有し、かつ単独で存在する白金粒子の比率を3%以下とすることにより、触媒化燃焼フィルター(CSF)の触媒床温度が900℃まで上昇しても触媒化燃焼フィルター(CSF)からの白金の揮発を抑制することで選択還元触媒(SCR)の活性を維持することを特徴とする請求項1に記載の排気ガス浄化装置。
  5.  選択還元触媒(SCR)は、貴金属成分を含まず、ゼオライト又は結晶金属アルミノリン酸塩を含むことを特徴とする請求項1~4のいずれかに記載の排気ガス浄化装置。
  6.  酸化触媒(DOC)は、貴金属の担持量が金属換算で0.5~4.0g/Lであることを特徴とする請求項1~4のいずれかに記載の排気ガス浄化装置。
  7.  酸化触媒(DOC)は、白金とパラジウムの比が重量換算で1:1~11:2であることを特徴とする請求項1~4のいずれかに記載の排気ガス浄化装置。
  8.  酸化触媒(DOC)は、触媒層を構成する酸化成分の被覆量が100~300g/Lであることを特徴とする請求項1~4のいずれかに記載の排気ガス浄化装置。
  9.  酸化触媒(DOC)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下であることを特徴とする請求項1~4のいずれかに記載の排気ガス浄化装置。
  10.  触媒化燃焼フィルター(CSF)は、貴金属の担持量が金属換算で0.1~2.0g/Lであることを特徴とする請求項4に記載の排気ガス浄化装置。
  11.  触媒化燃焼フィルター(CSF)は、白金とパラジウムの比が重量換算で1:1~11:4であることを特徴とする請求項4に記載の排気ガス浄化装置。
  12.  触媒化燃焼フィルター(CSF)は、触媒層を構成する酸化成分の被覆量が5~150g/Lであることを特徴とする請求項4に記載の排気ガス浄化装置。
  13.  触媒化燃焼フィルター(CSF)から揮発して選択還元触媒(SCR)に付着する白金の量が、20時間経過後において、12ppm以下であることを特徴とする請求項4に記載の排気ガス浄化装置。
  14.  貴金属成分は、一体型構造を有する担体に担持されていることを特徴とする請求項1~4のいずれかに記載の排気ガス浄化装置。
  15.  一体型構造を有する担体が、フロースルー型ハニカム構造体及び/又はウォールフロー型ハニカム構造体であることを特徴とする請求項14に記載の排気ガス浄化装置。
  16.  選択還元触媒(SCR)の後に、さらにアンモニア酸化触媒(AMOX)を配置したことを特徴とする請求項1~4のいずれかに記載の排気ガス浄化装置。
PCT/JP2012/050314 2011-04-28 2012-01-11 排気ガス浄化装置 WO2012147376A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280020403.1A CN103582523B (zh) 2011-04-28 2012-01-11 废气净化装置
JP2013511954A JP5937067B2 (ja) 2011-04-28 2012-01-11 排気ガス浄化装置
EP12777161.6A EP2703077A4 (en) 2011-04-28 2012-01-11 DEVICE FOR PURIFYING CLEARING GAS
US14/114,108 US9523302B2 (en) 2011-04-28 2012-01-11 Off gas purification device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-101047 2011-04-28
JP2011101047 2011-04-28

Publications (1)

Publication Number Publication Date
WO2012147376A1 true WO2012147376A1 (ja) 2012-11-01

Family

ID=47071906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050314 WO2012147376A1 (ja) 2011-04-28 2012-01-11 排気ガス浄化装置

Country Status (5)

Country Link
US (1) US9523302B2 (ja)
EP (1) EP2703077A4 (ja)
JP (2) JP5937067B2 (ja)
CN (1) CN103582523B (ja)
WO (1) WO2012147376A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088132A1 (en) * 2011-12-12 2013-06-20 Johnson Matthey Public Limited Company Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst
US8652429B2 (en) 2011-10-06 2014-02-18 Johnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
US8667785B2 (en) 2011-12-12 2014-03-11 Johnson Matthey Public Limited Company Catalysed substrate monolith
JP2014136174A (ja) * 2013-01-15 2014-07-28 Mazda Motor Corp 触媒付パティキュレートフィルタ及びその製造方法
JP2014136175A (ja) * 2013-01-15 2014-07-28 Mazda Motor Corp 触媒付パティキュレートフィルタ及びその製造方法
WO2014131708A1 (en) * 2013-02-27 2014-09-04 Umicore Ag & Co. Kg Hexagonal oxidation catalyst
JP2015086834A (ja) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 排気浄化装置の制御方法
GB2521425A (en) * 2013-12-19 2015-06-24 Gm Global Tech Operations Inc Exhaust system for a diesel engine
US20160003118A1 (en) * 2013-03-15 2016-01-07 N.E. Chemcat Corporation Oxidation catalyst and exhaust gas purification device using same
WO2016006655A1 (ja) * 2014-07-11 2016-01-14 いすゞ自動車株式会社 排気浄化システム
US9259684B2 (en) 2011-12-12 2016-02-16 Johnson Matthey Public Limited Company Exhaust system for a lean-burn internal combustion engine including SCR catalyst
JP2016511139A (ja) * 2013-01-28 2016-04-14 ビーエーエスエフ コーポレーション 酸化窒素を酸化するための触媒物品、システム及び方法
US9333461B2 (en) 2011-12-12 2016-05-10 Johnson Matthey Public Limited Company Substrate monolith comprising SCR catalyst
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
JP2016215091A (ja) * 2015-05-15 2016-12-22 株式会社 Acr 二元燃料酸化触媒、二元燃料scr排ガス処理機構、二元燃料ディーゼル内燃機関、および、その制御方法
JP2017524514A (ja) * 2014-06-16 2017-08-31 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 排気ガス処理システム

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2653681B2 (de) 2012-04-20 2019-12-04 Umicore AG & Co. KG Verwendung eines Beschichteten Dieselpartikelfilters zum Verhindern der Kontamination eines SCR-Katalysators
EP2674584B2 (de) * 2012-06-14 2020-04-29 Umicore AG & Co. KG Verwendung eines Oxidationskatalysators zur Verhinderung der Kontamination eines SCR-Katalysators mit Platin
CN104162349B (zh) * 2014-07-23 2016-05-18 浙江大学 一种抑制低温脱硝催化剂so2中毒的方法
CN105525967B (zh) * 2014-09-30 2019-06-18 康明斯排放处理公司 用于选择性催化还原系统的涂有催化剂的分流过滤器
CN104607041B (zh) * 2014-11-28 2018-02-09 河南弘康环保科技有限公司 一种超低温车用尿素溶液
GB201504658D0 (en) * 2015-03-19 2015-05-06 Johnson Matthey Plc Exhaust system for a compression ignition engine having a capture face for volatilised platinum
WO2016201276A1 (en) * 2015-06-12 2016-12-15 Basf Corporation Exhaust gas treatment system
KR20180027434A (ko) * 2015-07-08 2018-03-14 오츠카 가가쿠 가부시키가이샤 배기 가스 정화 필터의 제조 방법, 배기 가스 정화 필터 및 배기 가스 정화 장치
ES2730524T3 (es) * 2015-07-09 2019-11-11 Umicore Ag & Co Kg Sistema para la eliminación del material particulado y los compuestos nocivos del gas de escape procedente del motor
KR101749127B1 (ko) * 2016-02-19 2017-06-22 한국에너지기술연구원 N2O 생성 억제를 위한 NOx 저감장치, 디젤엔진 배기가스 처리장치 및 디젤엔진의 배기가스 처리방법
KR20190029699A (ko) * 2016-07-15 2019-03-20 우미코레 아게 운트 코 카게 바나듐계 촉매의 제조방법
KR102486612B1 (ko) * 2016-12-20 2023-01-12 우미코레 아게 운트 코 카게 산화바나듐 및 철 함유 분자체를 함유하는 scr 촉매 장치
WO2018115044A1 (de) 2016-12-20 2018-06-28 Umicore Ag & Co. Kg Scr-katalysatorvorrichtung enthaltend vanadiumoxid und eisen-haltiges molekularsieb
GB2577967B (en) * 2017-03-30 2021-06-09 Johnson Matthey Plc Platinum group metal and base metal on a molecular sieve for PNA-SCR-ASC close-coupled systems
JP6443501B1 (ja) 2017-06-23 2018-12-26 マツダ株式会社 排気ガス浄化システム
JP2019118857A (ja) * 2017-12-28 2019-07-22 トヨタ自動車株式会社 排ガス浄化触媒
CN108786445B (zh) * 2018-06-12 2020-05-08 丰城新高焦化有限公司 一种scr脱硝装置
CN110206615B (zh) * 2019-06-05 2024-04-16 第一拖拉机股份有限公司 一种dpf载体碳烟和灰分清理装置及清理方法
CN110227538A (zh) * 2019-06-11 2019-09-13 一汽解放汽车有限公司 同时去除NOx和PM的高活性DPF涂层的制备方法
JP7172976B2 (ja) * 2019-12-16 2022-11-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
RU2745091C1 (ru) * 2020-05-21 2021-03-19 Общество с ограниченной ответственностью "Экострим" Каталитическая система для окисления аммиака
KR102457079B1 (ko) * 2020-11-30 2022-10-21 한국에너지기술연구원 복합유해물질 동시 제거 시스템
CN113274879A (zh) * 2021-07-22 2021-08-20 山东艾泰克环保科技股份有限公司 一种气体机用尾气后处理系统及其制备方法和应用
CN114849704B (zh) * 2022-04-12 2024-05-28 浙江通源环保科技有限公司 一种贵金属催化剂的制备方法
TWI796206B (zh) * 2022-04-18 2023-03-11 凱德利斯特國際有限公司 智慧型多功能環保裝置

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086011A (ja) 1983-07-15 1985-05-15 ユニオン・カ−バイド・コ−ポレ−シヨン 結晶金属アルミノリン酸塩
JPH01318715A (ja) 1988-05-13 1989-12-25 Johnson Matthey Inc ディーゼル排ガスの微粒子除去方法とその装置
JPH0538420A (ja) 1991-01-08 1993-02-19 Agency Of Ind Science & Technol 窒素酸化物の除去処理方法
JPH0838897A (ja) 1994-08-03 1996-02-13 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
JPH08103636A (ja) 1994-10-06 1996-04-23 Babcock Hitachi Kk 低温脱硝装置
JPH09262467A (ja) 1996-03-28 1997-10-07 Toyota Central Res & Dev Lab Inc 高耐久性排ガス浄化用触媒
WO1999032223A1 (fr) 1997-12-22 1999-07-01 Toyota Jidosha Kabushiki Kaisha Catalyseur d'epuration des gaz d'echappement, procede de fabrication correspondant et procede d'epuration des gaz d'echappement
JP2000027508A (ja) 1998-07-08 2000-01-25 Denso Corp ドアロック操作装置
JP2002502927A (ja) 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 排ガス中のNOxの還元機構
JP2003148141A (ja) 2001-11-16 2003-05-21 Isuzu Motors Ltd 排気ガス浄化装置
JP2003299957A (ja) 2002-04-08 2003-10-21 Toyota Central Res & Dev Lab Inc 飽和炭化水素浄化用触媒及びその製造方法
JP2004290827A (ja) 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒
US6823663B2 (en) 2002-11-21 2004-11-30 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US6928806B2 (en) 2002-11-21 2005-08-16 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
JP2008155204A (ja) 2006-11-29 2008-07-10 Ict:Kk 酸化触媒およびそれを用いた排気ガス浄化システム
JP2008526509A (ja) 2005-01-19 2008-07-24 クリーン ディーゼル テクノロジーズ インコーポレーテッド 多成分金属系燃焼触媒を用いる低排出物燃焼及び軽触媒化ディーゼル酸化触媒
US20080241060A1 (en) 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
JP2008272659A (ja) * 2007-04-27 2008-11-13 Ne Chemcat Corp 自動車用排気ガス浄化触媒、排気ガス浄化触媒系、および排気ガスの浄化方法
JP2009167844A (ja) 2008-01-11 2009-07-30 Mazda Motor Corp 排気ガス浄化触媒装置
JP2009262098A (ja) * 2008-04-28 2009-11-12 Ne Chemcat Corp 選択還元触媒を用いた排気ガス浄化方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100999616B1 (ko) * 2007-12-14 2010-12-08 기아자동차주식회사 배기 가스 내의 질소산화물 저감 장치
US7976784B2 (en) * 2007-12-18 2011-07-12 Basf Corporation Methods and systems including CO oxidation catalyst with low NO to NO2 conversion
DE502008001082D1 (de) * 2008-05-23 2010-09-16 Umicore Ag & Co Kg Vorrichtung zur Reinigung von Dieselabgasen
US20100300078A1 (en) * 2009-05-27 2010-12-02 Gm Global Technology Operations, Inc. Exhaust After Treatment System
US8557203B2 (en) * 2009-11-03 2013-10-15 Umicore Ag & Co. Kg Architectural diesel oxidation catalyst for enhanced NO2 generator
JPWO2011162030A1 (ja) 2010-06-24 2013-08-19 エヌ・イーケムキャット株式会社 選択還元触媒を用いた排気ガス浄化触媒装置、排気ガス浄化方法、および排気ガス浄化触媒装置を搭載したディーゼル自動車

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086011A (ja) 1983-07-15 1985-05-15 ユニオン・カ−バイド・コ−ポレ−シヨン 結晶金属アルミノリン酸塩
JPH01318715A (ja) 1988-05-13 1989-12-25 Johnson Matthey Inc ディーゼル排ガスの微粒子除去方法とその装置
JPH0538420A (ja) 1991-01-08 1993-02-19 Agency Of Ind Science & Technol 窒素酸化物の除去処理方法
JPH0838897A (ja) 1994-08-03 1996-02-13 Toyota Motor Corp 排気ガス浄化用触媒の製造方法
JPH08103636A (ja) 1994-10-06 1996-04-23 Babcock Hitachi Kk 低温脱硝装置
JPH09262467A (ja) 1996-03-28 1997-10-07 Toyota Central Res & Dev Lab Inc 高耐久性排ガス浄化用触媒
WO1999032223A1 (fr) 1997-12-22 1999-07-01 Toyota Jidosha Kabushiki Kaisha Catalyseur d'epuration des gaz d'echappement, procede de fabrication correspondant et procede d'epuration des gaz d'echappement
JP2002502927A (ja) 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー 排ガス中のNOxの還元機構
JP2000027508A (ja) 1998-07-08 2000-01-25 Denso Corp ドアロック操作装置
JP2003148141A (ja) 2001-11-16 2003-05-21 Isuzu Motors Ltd 排気ガス浄化装置
JP2003299957A (ja) 2002-04-08 2003-10-21 Toyota Central Res & Dev Lab Inc 飽和炭化水素浄化用触媒及びその製造方法
US6823663B2 (en) 2002-11-21 2004-11-30 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
US6928806B2 (en) 2002-11-21 2005-08-16 Ford Global Technologies, Llc Exhaust gas aftertreatment systems
JP2004290827A (ja) 2003-03-27 2004-10-21 Ne Chemcat Corp 軽油燃焼用酸化触媒
JP2008526509A (ja) 2005-01-19 2008-07-24 クリーン ディーゼル テクノロジーズ インコーポレーテッド 多成分金属系燃焼触媒を用いる低排出物燃焼及び軽触媒化ディーゼル酸化触媒
JP2008155204A (ja) 2006-11-29 2008-07-10 Ict:Kk 酸化触媒およびそれを用いた排気ガス浄化システム
US20080241060A1 (en) 2007-03-26 2008-10-02 Hong-Xin Li Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same
JP2008272659A (ja) * 2007-04-27 2008-11-13 Ne Chemcat Corp 自動車用排気ガス浄化触媒、排気ガス浄化触媒系、および排気ガスの浄化方法
JP2009167844A (ja) 2008-01-11 2009-07-30 Mazda Motor Corp 排気ガス浄化触媒装置
JP2009262098A (ja) * 2008-04-28 2009-11-12 Ne Chemcat Corp 選択還元触媒を用いた排気ガス浄化方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Detection, Origin andEffect of Ultra-Low Platinum Contamination on Diesel-SCR catalyst", 6 October 2008, SAE FORD MOTOR COMPANY
"Impact and Prevention of Platinum Group metals on SCR catalyst Due to DOC Design", 20 April 2009, SAE FORD MOTOR COMPANY
"Influence of Support Materials and Aging on NO Oxidation Performance of Pt Catalysts under an Oxidative Atmosphere at Low Temperature", JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 40, no. 9, 2007, pages 741 - 748
CATALYSIS TODAY, vol. 114, 2006, pages 3 - 12
H. JEHN: "High Temperature Behavior of Platinum Group metals in Oxidizing Atmospheres", JOURNAL OF THE LESS COMMON METALS, vol. 100, 1984, pages 321 - 339
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, vol. 40, no. 9, 2007, pages 741 - 748
See also references of EP2703077A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9005559B2 (en) 2011-10-06 2015-04-14 Johnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
US8652429B2 (en) 2011-10-06 2014-02-18 Johnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
US9868115B2 (en) 2011-10-06 2018-01-16 Johnson Matthey Public Limited Company Oxidation catalyst for internal combustion engine exhaust gas treatment
US8667785B2 (en) 2011-12-12 2014-03-11 Johnson Matthey Public Limited Company Catalysed substrate monolith
WO2013088132A1 (en) * 2011-12-12 2013-06-20 Johnson Matthey Public Limited Company Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst
JP2015507116A (ja) * 2011-12-12 2015-03-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Pgm成分およびscr触媒を含む希薄燃焼ic機関のための排気装置
US8986635B2 (en) 2011-12-12 2015-03-24 Johnson Matthey Public Limited Company Exhaust system for a lean-burn IC engine comprising a PGM component and a SCR catalyst
US9259684B2 (en) 2011-12-12 2016-02-16 Johnson Matthey Public Limited Company Exhaust system for a lean-burn internal combustion engine including SCR catalyst
US8668891B2 (en) 2011-12-12 2014-03-11 Johnson Matthey Public Limited Company Exhaust system for a lean-burn IC engine comprising a PGM component and a SCR catalyst
US9046022B2 (en) 2011-12-12 2015-06-02 Johnson Matthey Public Limited Company Catalysed substrate monolith
US9597661B2 (en) 2011-12-12 2017-03-21 Johnson Matthey Public Limited Company Catalysed substrate monolith
US9333461B2 (en) 2011-12-12 2016-05-10 Johnson Matthey Public Limited Company Substrate monolith comprising SCR catalyst
JP2014136174A (ja) * 2013-01-15 2014-07-28 Mazda Motor Corp 触媒付パティキュレートフィルタ及びその製造方法
JP2014136175A (ja) * 2013-01-15 2014-07-28 Mazda Motor Corp 触媒付パティキュレートフィルタ及びその製造方法
JP2016511139A (ja) * 2013-01-28 2016-04-14 ビーエーエスエフ コーポレーション 酸化窒素を酸化するための触媒物品、システム及び方法
WO2014131708A1 (en) * 2013-02-27 2014-09-04 Umicore Ag & Co. Kg Hexagonal oxidation catalyst
US20160001226A1 (en) * 2013-02-27 2016-01-07 Umicore Ag & Co. Kg Hexagonal oxidation catalyst
US9694322B2 (en) 2013-02-27 2017-07-04 Umicore Ag & Co. Kg Hexagonal oxidation catalyst
US20160003118A1 (en) * 2013-03-15 2016-01-07 N.E. Chemcat Corporation Oxidation catalyst and exhaust gas purification device using same
US10030559B2 (en) * 2013-03-15 2018-07-24 N.E. Chemcat Corporation Oxidation catalyst and exhaust gas purification device using same
JP2015086834A (ja) * 2013-11-01 2015-05-07 トヨタ自動車株式会社 排気浄化装置の制御方法
GB2521425A (en) * 2013-12-19 2015-06-24 Gm Global Tech Operations Inc Exhaust system for a diesel engine
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
JP2017524514A (ja) * 2014-06-16 2017-08-31 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 排気ガス処理システム
JP2016020636A (ja) * 2014-07-11 2016-02-04 いすゞ自動車株式会社 排気浄化システム
WO2016006655A1 (ja) * 2014-07-11 2016-01-14 いすゞ自動車株式会社 排気浄化システム
JP2016215091A (ja) * 2015-05-15 2016-12-22 株式会社 Acr 二元燃料酸化触媒、二元燃料scr排ガス処理機構、二元燃料ディーゼル内燃機関、および、その制御方法

Also Published As

Publication number Publication date
EP2703077A1 (en) 2014-03-05
JP2016195996A (ja) 2016-11-24
CN103582523A (zh) 2014-02-12
JPWO2012147376A1 (ja) 2014-07-28
US9523302B2 (en) 2016-12-20
JP5937067B2 (ja) 2016-06-22
US20140050627A1 (en) 2014-02-20
JP6315717B2 (ja) 2018-04-25
CN103582523B (zh) 2015-11-25
EP2703077A4 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6315717B2 (ja) 排気ガス浄化装置
JP6040232B2 (ja) 排気ガス浄化装置
WO2011162030A1 (ja) 選択還元触媒を用いた排気ガス浄化触媒装置、排気ガス浄化方法、および排気ガス浄化触媒装置を搭載したディーゼル自動車
JP5989214B2 (ja) アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP5110954B2 (ja) 選択還元型触媒を用いた排気ガス浄化触媒装置並びに排気ガス浄化方法
US8865615B2 (en) Ammonia oxidation catalyst, exhaust gas purification device using same, and exhaust gas purification method
JP5769708B2 (ja) 選択還元型触媒を用いた排気ガス浄化装置及び排気ガス浄化方法
EP2651540B1 (en) Architectural diesel oxidation catalyst for enhanced no2 generator
JP4982241B2 (ja) 自動車用排気ガス浄化触媒、排気ガス浄化触媒系、および排気ガスの浄化方法
KR102515969B1 (ko) 배기 가스 촉매 및 필터 기재에 대한 촉매 결합제
JP2018535818A (ja) すす触媒とscr触媒を有する触媒フィルタ
WO2018025827A1 (ja) コールドスタート対応尿素scrシステム
WO2012090557A1 (ja) 選択還元型触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
EP3476480A1 (en) Catalyst for lean burn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12777161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511954

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012777161

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14114108

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE