WO2012147202A1 - 内燃機関の冷却水温制御装置 - Google Patents

内燃機関の冷却水温制御装置 Download PDF

Info

Publication number
WO2012147202A1
WO2012147202A1 PCT/JP2011/060443 JP2011060443W WO2012147202A1 WO 2012147202 A1 WO2012147202 A1 WO 2012147202A1 JP 2011060443 W JP2011060443 W JP 2011060443W WO 2012147202 A1 WO2012147202 A1 WO 2012147202A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
heat
amount
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2011/060443
Other languages
English (en)
French (fr)
Inventor
小山 崇
中谷 好一郎
晃 山下
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180070468.2A priority Critical patent/CN103502598A/zh
Priority to JP2013511855A priority patent/JP5780299B2/ja
Priority to US14/114,355 priority patent/US20140130753A1/en
Priority to EP11864411.1A priority patent/EP2703617A4/en
Priority to PCT/JP2011/060443 priority patent/WO2012147202A1/ja
Publication of WO2012147202A1 publication Critical patent/WO2012147202A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P2003/001Cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling

Definitions

  • the present invention relates to a cooling water temperature control device for an internal combustion engine.
  • the temperature of the cooling water of the internal combustion engine is controlled using a valve opening adjusting means that can adjust the valve opening electronically, and the optimum temperature of the cooling water is determined based on the operating conditions of the internal combustion engine up to the present time.
  • a technique for estimating the valve opening of the valve opening adjusting means based on the estimated value of the coolant temperature at the inlet of the internal combustion engine in the future and the estimated optimum value is known. (For example, refer to Patent Document 1). According to the technique of Patent Document 1, the temperature of the cooling water of the internal combustion engine can be controlled to a more optimal temperature.
  • cooling water for cooling an internal combustion engine there is a technology that uses cooling water whose specific heat is variable by including particles that change the specific heat of the medium by changing the phase from one of a solid phase state and a liquid phase state to the other. It is disclosed (see, for example, Patent Document 2).
  • the present invention has been made in view of the above circumstances, and when using cooling water with variable specific heat, appropriately controlling a control valve for changing the temperature of the cooling water to change the phase of the cooling water
  • the object is to provide a technology that makes effective use of temperature zones as much as possible.
  • the present invention A cooling water temperature control device for an internal combustion engine that circulates cooling water with variable specific heat, A heat receiving amount calculating means for calculating a heat receiving amount received by the cooling water; A control valve that is controlled to open and close according to a command in order to change the temperature of the cooling water by changing the flow path or flow rate of the cooling water; Control means for controlling the control valve based on the amount of heat received calculated by the amount of heat received; Is a cooling water temperature control device for an internal combustion engine.
  • the cooling water with variable specific heat does not change the temperature of the cooling water even if the amount of heat received by the cooling water changes to some extent in the phase change temperature zone of the cooling water.
  • the phase change temperature zone of the cooling water is a temperature zone in which the specific heat of the cooling water is changed due to a phase change of particles in the cooling water, and is given to the cooling water in this phase change temperature zone. Even if the amount of heat (amount of heat received) changes, a phase change of the particles occurs, the specific heat changes, and the temperature of the cooling water hardly changes. That is, in the phase change temperature zone of the cooling water, the allowable range of the amount of heat received by which the temperature of the cooling water remains unchanged is wide.
  • control of a control valve may become excessive and may not be performed appropriately. This is because the amount of heat received by the cooling water cannot be determined at the target temperature in the phase change temperature zone of the cooling water, and even if the cooling water has the target temperature, the amount of heat received within the phase change temperature zone may be high or low. This is because it can occur. Therefore, even if it is the cooling water of target temperature, there exists a possibility that it may remove
  • the target amount of heat received by the cooling water is set to a low amount of heat received within the phase change temperature zone, the temperature of the cooling water will be maintained within the phase change temperature zone even if the amount of heat received is further added. It can be avoided that the specific heat of the cooling water decreases and the temperature of the cooling water rises at once and falls into overheating. In addition, it is not necessary to set the target amount of heat received by the cooling water too low, and the temperature of the cooling water is too low, so that the oil in the internal combustion engine cools and the friction of the internal combustion engine increases. Can be avoided.
  • the control valve for changing the temperature of the cooling water is appropriately controlled to effectively use the phase change temperature zone of the cooling water as much as possible. Can do.
  • the heat receiving amount calculating means calculates an inlet heat receiving amount received at an inlet where the cooling water flows into the internal combustion engine
  • the control means is configured such that the inlet heat reception amount calculated by the heat reception amount calculation means is a low-side start heat reception amount in a phase change temperature zone in a state where the phase of the particles changes and the specific heat of the cooling water changes.
  • the control valve may be controlled so as to approach.
  • the target inlet heat amount of the cooling water can be set so as to be close to the low side starting heat amount in the phase change temperature zone, even if the heat amount is added to the cooling water in the internal combustion engine, the cooling water The temperature is maintained within the phase change temperature zone, and it can be avoided that the specific heat of the cooling water immediately decreases and the temperature of the cooling water rises at once and falls into overheating.
  • the heat receiving amount calculating means calculates an outlet heat receiving amount received at the outlet from which the cooling water flows out of the internal combustion engine, In the case where the outlet heat reception amount calculated by the heat reception amount calculation unit is a high heat reception amount exceeding the heat reception amount in the phase change temperature zone, the control unit determines that the outlet heat reception amount is the phase change.
  • the control valve may be controlled so as to be included in the amount of heat received in the temperature zone.
  • the target outlet heat receiving amount of the cooling water since it is possible to set the target outlet heat receiving amount of the cooling water to be included in the heat receiving amount within the phase change temperature zone, the temperature of the cooling water flowing out from the internal combustion engine is maintained within the phase change temperature zone. It can be avoided that the specific heat of the cooling water immediately decreases and the temperature of the cooling water rises at once and falls into overheating.
  • control valve may be controlled so that the temperature of the cooling water decreases.
  • the control valve for changing the temperature of the cooling water is appropriately controlled to effectively use the phase change temperature zone of the cooling water as much as possible. be able to.
  • FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine according to Embodiment 1 of the present invention. It is a figure which shows the model of the cooling water which concerns on Example 1.
  • FIG. It is a figure which shows the relationship between the temperature of the cooling water which concerns on Example 1, and specific heat. It is a figure which shows the characteristic curve of the relationship between the amount of heat received on the basis of 25 degreeC per unit quantity of cooling water in the cooling water which the specific heat which concerns on Example 1 changes, and the temperature of a cooling water. It is a figure which shows the model of the received heat amount in the internal combustion engine and various apparatuses which concern on Example 1.
  • FIG. It is a figure which shows the map which calculates the heat dissipation in the heater core which concerns on Example 1.
  • FIG. It is a figure which shows the map which calculates the heat radiation amount in the oil cooler which concerns on Example 1, the heat radiation amount in a throttle valve and an EGR valve, or the heat radiation amount in an EGR cooler.
  • control of the electronic thermostat based on the amount of inlet_heat
  • FIG. It is a figure which shows the problem in control of the electronic thermostat based on the amount of inlet_heat
  • FIG. It is a figure which shows control of the electronic thermostat based on the amount of heat received from the exit which concerns on Example 1.
  • FIG. 3 is a flowchart illustrating a cooling water temperature control routine according to the first embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of an internal combustion engine to which a cooling water temperature control device for an internal combustion engine according to a first embodiment of the present invention is applied.
  • the cooling water passage 2 includes a passage 2a through which the cooling water flows through the radiator 3, a passage 2b through which the cooling water flows through the oil cooler 4, a passage 2c through which the cooling water flows through the throttle valve 5a and the EGR valve 5b, and a cooling water reservoir.
  • a passage 2d through which the tank 6 flows, a passage 2e through which the cooling water flows through the heater core 7, a passage 2f through which the cooling water flows through the EGR cooler 8, and a bypass passage 2g through which the cooling water flows as it is are provided.
  • the radiator 3 cools the cooling water by exchanging heat between the cooling water and the outside air.
  • the oil cooler 4 is a water-cooled oil cooler, and cools the oil by exchanging heat between the oil supplied to the internal combustion engine 1 and the cooling water.
  • the throttle valve 5a is a valve that controls the intake air amount in the internal combustion engine 1, and is cooled by cooling water.
  • the EGR valve 5b is a valve that controls the amount of EGR gas that is part of the exhaust gas recirculated to the internal combustion engine 1, and is cooled by cooling water.
  • the reservoir tank 6 temporarily stores cooling water.
  • the heater core 7 warms the cooling water.
  • the EGR cooler 8 is a water-cooled EGR cooler, and cools the EGR gas by exchanging heat between the EGR gas recirculated to the internal combustion engine 1 and the cooling water.
  • the passage 2a through which the cooling water flows through the radiator 3 joins the passage 2b through which the cooling water from the cylinder block flows through the oil cooler 4.
  • the passage 2a through which the cooling water flows through the radiator 3 branches into a passage 2c through which the cooling water flows through the throttle valve 5a and the EGR valve 5b, and a passage 2d through which the cooling water flows through the reservoir tank 6.
  • the passage 2 f through which the cooling water communicated from the cylinder block flows through the EGR cooler 8 joins the passage 2 e through which the cooling water flows through the heater core 7.
  • An electronic thermostat 9 is disposed at a portion where the passage 2a through which the coolant flows through the radiator 3 and the bypass passage 2g join.
  • the electronic thermostat 9 is a control valve that is controlled to open and close in accordance with a command. By opening the valve, the flow path and flow rate of the cooling water are changed so that the cooling water flows through the radiator 3, and the temperature of the cooling water is adjusted. Can be reduced. At this time, the circulation amount of the cooling water is reduced in the bypass passage 2g.
  • by closing the electronic thermostat 9 it is possible to change the flow path and flow rate of the cooling water so that the cooling water does not easily flow through the radiator 3, thereby making it difficult to lower the temperature of the cooling water. At this time, the circulation amount of the cooling water increases in the bypass passage 2g.
  • Cooling water is fed into the water pump 10 downstream of the electronic thermostat 9.
  • the water pump 10 pumps up cooling water and supplies it to the cylinder block of the internal combustion engine 1.
  • a water temperature sensor 11 is disposed at a portion where the cooling water passage 2 is connected to the outlet of the internal combustion engine 1, and the temperature of the cooling water flowing out from the internal combustion engine 1 is detected by the water temperature sensor 11.
  • the cooling water flowing through the cooling water passage 2 is cooling water whose specific heat is variable. That is, the cooling water is a cooling water that includes particles that change the specific heat of the medium by changing the phase from one of the solid phase state and the liquid phase state to the other and has a variable specific heat. As the particles, not only particles that change phase from one of a solid phase state and a liquid phase state to the other but also particles that change phase from one of a liquid phase state and a gas phase state to the other can be used. . As shown in FIG. 2, the cooling water is a mixture of particles encapsulating a substance that changes its phase from a solid to a liquid when the temperature rises above a certain level. is there. FIG.
  • FIG. 2 is a diagram illustrating a cooling water model according to the present embodiment.
  • FIG. 3 is a diagram illustrating the relationship between the temperature of the cooling water and the specific heat according to the present embodiment.
  • the plurality of particles in the cooling water undergo a phase change from one of the solid phase state and the liquid phase state to the other, whereby the plurality of particles shown in FIG.
  • the variable specific heat region is generated.
  • This variable specific heat region is a phase change temperature zone in which the phase of the particles is changed and the specific heat of the cooling water is changing even if heat is given to the cooling water (see FIG. 4).
  • FIG. 4 is a diagram illustrating a characteristic curve of the relationship between the amount of heat received on the basis of 25 ° C.
  • the phase change temperature zone shown in FIG. 4 is a temperature zone in which the specific heat of the cooling water is changed by the phase change of the particles in the cooling water from one of the solid phase state and the liquid phase state to the other.
  • the phase change temperature zone even if the amount of heat received by the cooling water changes, the phase change of the particles occurs, the specific heat changes, and the temperature of the cooling water hardly changes.
  • the warm-up process of the internal combustion engine 1 can be improved in the warm-up process of the internal combustion engine 1 by lowering the specific heat of the coolant than before, thereby improving the warm-up property of the internal combustion engine 1 and improving the fuel consumption. Since the specific heat increases in a certain temperature range (phase change temperature range), the allowable range of the amount of heat received can be increased to avoid overheating and the like.
  • the internal combustion engine 1 is provided with an ECU (electronic control unit) 12.
  • ECU electronic control unit
  • Various sensors such as the water temperature sensor 11 are connected to the ECU 12 via electric wiring, and output signals of these various sensors are input to the ECU 12.
  • a throttle valve 5a, an EGR valve 5b, a heater core 7, an electronic thermostat 9, a water pump 10, and the like are connected to the ECU 12 through electric wiring, and these devices are controlled by the ECU 12.
  • Cooling water temperature control Conventionally, an electronic thermostat has been controlled based on the temperature of cooling water. For example, the future optimum temperature of the cooling water is estimated, and the temperature of the cooling water is adjusted by controlling the electronic thermostat so as to be the optimum temperature.
  • the cooling water having a variable specific heat as in this embodiment is used as the cooling water, there is a problem that the advantage of the cooling water cannot be utilized.
  • the temperature of the cooling water does not change even if the amount of heat received by the cooling water changes to some extent in the phase change temperature zone of the cooling water. That is, in the phase change temperature zone of the cooling water, the allowable range of the amount of heat received by which the temperature of the cooling water remains unchanged is wide. For this reason, if an attempt is made to control the electronic thermostat based on the temperature of the cooling water as in the prior art, the phase change temperature zone of the cooling water is narrow, and thus the electronic thermostat may be overcontrolled and cannot be appropriately performed.
  • Point A shown in FIG. 4 is the state of the cooling water when the cooling water at the outlet of the internal combustion engine is the target temperature in the phase change temperature zone and the amount of heat received by the cooling water is high in the phase change temperature zone. Therefore, even if it is the cooling water of the target temperature in a phase change temperature range, if a heat receiving amount changes, there exists a possibility that it may remove
  • Point B shown in FIG. 4 is the state of the cooling water when the cooling water at the outlet of the internal combustion engine is at a target temperature lower than the phase change temperature zone.
  • the temperature of the cooling water at the inlet of the internal combustion engine that has fallen in temperature due to circulation through the cooling water passage becomes excessively lower than the phase change temperature zone, and the oil in the internal combustion engine cools. As a result, the friction of the internal combustion engine increases.
  • the electronic thermostat when using the cooling water with variable specific heat, if the electronic thermostat is controlled based on the temperature of the cooling water, the advantage of the cooling water with variable specific heat cannot be utilized and the electronic thermostat can be appropriately controlled. could not. For this reason, the phase change temperature zone of the cooling water cannot be effectively used.
  • the amount of heat received by the cooling water is calculated, and the electronic thermostat 9 is controlled based on the calculated amount of received heat.
  • the control valve can be finely and appropriately controlled within the range including the phase change temperature zone.
  • the amount of received heat received at the inlet where the cooling water flows into the internal combustion engine is calculated. Then, the electronic thermostat 9 is controlled so that the calculated inlet heat reception amount approaches the low-side start heat reception amount in the phase change temperature zone in a state where the phase of the particles changes and the specific heat of the cooling water changes.
  • FIG. 5 is a diagram showing models of the amount of heat received by the internal combustion engine and various devices according to the present embodiment.
  • the inlet heat reception amount of the internal combustion engine 1 can be calculated from the outlet heat reception amount received at the outlet flowing out from the internal combustion engine 1, the heat transfer amounts of various devices, and the flow rates of the various devices.
  • the ECU 12 that calculates the inlet heat reception amount corresponds to the heat reception amount calculation means of the present invention.
  • the heat transfer amounts of the various devices are the heat transfer amounts of the cooling water flowing through the radiator 3, the bypass passage 2g, the heater core 7, the reservoir tank 6, the oil cooler 4, the throttle valve 5a, the EGR valve 5b, and the EGR cooler 8, respectively.
  • the flow rates in the various devices are the flow rates of cooling water flowing through the radiator 3, the bypass passage 2g, the heater core 7, the reservoir tank 6, the oil cooler 4, the throttle valve 5a, the EGR valve 5b, and the EGR cooler 8, respectively.
  • the outlet heat reception amount Qengout can be derived by incorporating the temperature Tengout of the cooling water at the outlet of the internal combustion engine 1 detected by the water temperature sensor 11 into the characteristic curve of the cooling water.
  • the ECU 12 that calculates the outlet heat reception amount corresponds to the heat reception amount calculation means of the present invention.
  • FIG. 6 is a diagram illustrating a map for calculating the flow rate Grad of the cooling water flowing through the radiator 3 and the flow rate Gby of the cooling water flowing through the bypass passage 2g according to the present embodiment. Since Grad and Gby depend on the valve opening of the electronic thermostat 9 and the rotational speed of the water pump 10, these values can be calculated by taking them into the map shown in FIG.
  • the valve opening degree of the electronic thermostat 9 a control opening degree can be used.
  • the rotational speed of the water pump 10 a value proportional to the engine rotational speed can be used in the case of a mechanical water pump, and the rotational speed of a drive motor can be used in the case of an electric water pump. .
  • FIG. 7 shows the flow rate Gheat of the cooling water flowing through the heater core 7 according to the present embodiment, the flow rate Gres of the cooling water flowing through the reservoir tank 6, the flow rate Goil of the cooling water flowing through the oil cooler 4, the throttle valve 5a and the EGR valve.
  • Gheat, Gres, Goil, Gthr, or Gegr depends on the number of rotations of the water pump 10, these values can be calculated by incorporating them into the map shown in FIG.
  • FIG. 8 is a diagram illustrating a map for calculating the heat release amount ⁇ Qrad in the radiator 3 and the heat release amount ⁇ Qres in the reservoir tank 6 according to the present embodiment. Since ⁇ Qrad and ⁇ Qres depend on the wind speed received by each device and the flow rate of the cooling water flowing through the various devices, these values can be calculated by incorporating them into the map shown in FIG. Here, as the wind speed, a value obtained by adding the vehicle speed and the wind speed of the fan of the vehicle can be used.
  • FIG. 9 is a diagram illustrating a map for calculating the heat release amount ⁇ Qheat in the heater core 7 according to the present embodiment.
  • FIG. 10 is a diagram showing a map for calculating the heat release amount ⁇ Qoil in the oil cooler 4 according to the present embodiment, the heat release amount ⁇ Qthr in the throttle valve 5a and the EGR valve 5b, or the heat release amount ⁇ Qegr in the EGR cooler 8. It is. ⁇ Qoil, ⁇ Qthr, or ⁇ Qegr depends on the temperature of the cooling water at the outlet of the internal combustion engine 1 detected by the water temperature sensor 11 and the flow rate of the cooling water flowing through various devices. It can be calculated by taking in the map shown in FIG.
  • the inlet heat reception amount Qengin is obtained by dividing the sum of the heat reception amount of various devices and the flow rate of the various devices by the heat reception amount of the various devices.
  • the amount of received heat Qengin (Qrad ⁇ Grad + Qres ⁇ Gres + Qby ⁇ Gby + Qheat ⁇ Gheat + Qoil ⁇ Goil + Qthr ⁇ Gthr + Qegr ⁇ Gegr) ⁇ (Qrad + Qres + Qby + Qheat + Qoil + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr + Qthr
  • FIG. 11 is a diagram illustrating the control of the electronic thermostat 9 based on the amount of received heat according to the present embodiment.
  • the electronic thermostat 9 is controlled so that the inlet heat reception amount calculated as described above approaches the low-side start heat reception amount in the phase change temperature zone.
  • the electronic thermostat 9 is controlled so that the calculated inlet heat reception amount becomes the low-side start heat reception amount of the phase change temperature zone that is the target heat reception amount.
  • the low-side starting heat receiving amount in the phase change temperature zone can be determined in advance by experiment, verification, or the like.
  • the ECU 12 that controls the electronic thermostat 9 corresponds to the control means of the present invention.
  • the electronic thermostat 9 is controlled to the closed side so as to reduce the amount of cooling water flowing into the radiator 3 if the inlet heat reception amount is lower than the low side start heat reception amount in the phase change temperature zone.
  • the electronic thermostat 9 is controlled to open so as to increase the amount of cooling water flowing into the radiator 3 if the inlet heat reception amount is higher than the low side start heat reception amount in the phase change temperature zone.
  • the target heat receiving amount of the cooling water can be set to the low-side starting heat receiving amount of the phase change temperature zone, the temperature of the cooling water is maintained within the phase change temperature zone even if the heat receiving amount is further added, It can be avoided that the specific heat of the cooling water immediately decreases and the temperature of the cooling water rises at once and falls into overheating. In addition, it is not necessary to set the target amount of heat received by the cooling water too low, and the temperature of the cooling water is too low, so that the oil in the internal combustion engine cools and the friction of the internal combustion engine increases. Can be avoided.
  • the control valve for changing the temperature of the cooling water is appropriately controlled to effectively use the phase change temperature zone of the cooling water as much as possible. be able to.
  • FIG. 12 is a diagram showing a problem in the control of the electronic thermostat 9 based on the amount of received heat according to the present embodiment.
  • the electronic thermostat 9 is controlled based on the amount of heat received at the entrance, as shown in FIG. 12, the amount of heat received at the exit may be a high amount of heat received exceeding the phase change temperature zone. In this case, there is a possibility that it will occur at a high load, etc., and it is easy to overheat.
  • the electronic thermostat 9 is controlled. Note that the electronic thermostat 9 may be controlled such that the amount of heat received at the outlet is included in the amount of heat received within the phase change temperature zone.
  • FIG. 13 is a diagram illustrating control of the electronic thermostat 9 based on the outlet heat receiving amount according to the present embodiment.
  • the amount of heat received at the outlet is closer to the higher amount of heat received within the phase change temperature zone, the amount of heat received at the inlet can also be maintained at a higher amount of heat received. It is because it can do.
  • the temperature of the cooling water flowing out from the internal combustion engine is within the phase change temperature range. It is maintained, and it can be avoided that the specific heat of the cooling water immediately decreases and the temperature of the cooling water rises at once and falls into overheating.
  • the inlet heat reception amount and the outlet heat reception amount are calculated for some reason such as sensor abnormality, engine abnormality, abnormality of various devices, and the like. May not be possible. In this case, it becomes impossible to control the electronic thermostat 9 based on the inlet heat reception amount and the outlet heat reception amount.
  • the electronic thermostat 9 is controlled so that the temperature of the cooling water decreases.
  • FIG. 14 is a diagram illustrating the control of the electronic thermostat 9 when the inlet heat reception amount and the outlet heat reception amount according to the present embodiment cannot be calculated.
  • the electronic thermostat 9 is opened more than a certain degree of opening so that the cooling water flows through the radiator 3 over a certain amount and the heat receiving amount at the outlet becomes lower than the phase change temperature zone. To control.
  • the electronic thermostat 9 is controlled to be fully opened so that the entire amount of cooling water can be circulated through the radiator 3. Also good.
  • FIG. 15 is a flowchart showing a cooling water temperature control routine according to the present embodiment. This routine is executed by the ECU 12. The ECU 12 that executes this routine corresponds to the control means of the present invention.
  • the inlet heat reception amount is calculated. At this time, the amount of heat received at the outlet is also calculated.
  • S102 it is determined whether or not an error (NG) has occurred in the calculation of the inlet heat reception amount and the outlet heat reception amount in S101. If a positive determination is made in S102, the process proceeds to S106. If a negative determination is made in S102, the process proceeds to S103. In S103, it is determined whether or not the outlet heat reception amount is a high heat reception amount exceeding the phase change temperature zone. If a positive determination is made in S103, the process proceeds to S105. If a negative determination is made in S103, the process proceeds to S104.
  • NG error
  • the electronic thermostat 9 is controlled so that the amount of heat received by the inlet approaches the amount of heat received from the lower side of the phase change temperature range.
  • the electronic thermostat 9 is controlled so that the amount of heat received at the outlet approaches a higher amount of heat received within the phase change temperature zone.
  • the electronic thermostat 9 is controlled so that the temperature of the cooling water decreases.
  • control valve for changing the temperature of the cooling water can be appropriately controlled to effectively use the phase change temperature zone of the cooling water as much as possible.
  • the cooling water temperature control apparatus for an internal combustion engine according to the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 本発明は、冷却水の温度を変更するための制御弁を適切に制御して冷却水の相変化温度帯を可及的に有効利用する技術を提供することを目的とする。本発明は、比熱が可変する冷却水を循環させる内燃機関の冷却水温制御装置であって、前記冷却水が受ける受熱量を算出する受熱量算出手段と、前記冷却水の流通経路又は流通量を変更して前記冷却水の温度を変更するために、指令に応じて開閉制御される制御弁と、前記受熱量算出手段によって算出される受熱量に基づいて、前記制御弁を制御する制御手段と、を備えた。

Description

内燃機関の冷却水温制御装置
 本発明は、内燃機関の冷却水温制御装置に関する。
 電子的に弁開度を調整可能な弁開度調整手段を用いて内燃機関の冷却水の温度を制御するものであって、内燃機関の現在までの運転条件に基づいて冷却水の温度の最適値を推定し、将来の内燃機関の入口での冷却水の温度の推定値と、推定された最適値とに基づいて、弁開度調整手段の弁開度を調整する技術が知られている(例えば特許文献1参照)。この特許文献1の技術によると、より最適な温度に内燃機関の冷却水の温度を制御することができる。
 一方、内燃機関を冷却する冷却水として、固相状態と液相状態との一方から他方に相変化することにより媒体の比熱を変更する粒子を含むことで比熱が可変する冷却水を用いる技術が開示されている(例えば特許文献2参照)。
特開2007-100638号公報 特開2009-044896号公報 特開2005-325790号公報
 特許文献2に開示された比熱が可変する冷却水を使用する場合に、特許文献1に開示された技術を適用して冷却水の温度を基準に制御しようとすると、冷却水の比熱が可変する温度帯(相変化温度帯)が狭いので制御が適切に行えない。すなわち、冷却水の目標温度を相変化温度帯に設定して冷却水の温度が相変化温度帯に存在しても、受熱量が相変化温度帯の許容範囲内であっても高ければ、更に受熱量が加わると直ぐに冷却水の比熱が低くなり一気に冷却水の温度が上昇してオーバーヒートに陥ってしまうおそれがある。またこれを回避するために、冷却水の目標温度を相変化温度帯よりも低めに設定すると、内燃機関のオイルが冷えてしまい、内燃機関のフリクションが増加してしまうおそれがある。
 本発明は、上記事情に鑑みてなされたものであって、比熱が可変する冷却水を使用する場合に、冷却水の温度を変更するための制御弁を適切に制御して冷却水の相変化温度帯を可及的に有効利用する技術を提供することを目的とする。
 本発明にあっては、以下の構成を採用する。すなわち、本発明は、
 比熱が可変する冷却水を循環させる内燃機関の冷却水温制御装置であって、
 前記冷却水が受ける受熱量を算出する受熱量算出手段と、
 前記冷却水の流通経路又は流通量を変更して前記冷却水の温度を変更するために、指令に応じて開閉制御される制御弁と、
 前記受熱量算出手段によって算出される受熱量に基づいて、前記制御弁を制御する制御手段と、
を備えた内燃機関の冷却水温制御装置である。
 比熱が可変する冷却水は、冷却水の相変化温度帯では冷却水が受ける受熱量がある程度変化しても冷却水の温度が変化しない。冷却水の相変化温度帯とは、冷却水中の粒子が相変化する等して冷却水の比熱が変化している状態の温度帯であり、この相変化温度帯では、冷却水に付与される熱量(受熱量)に変化が生じても、粒子の相変化が生じて比熱が変化し冷却水の温度が変化し難くなるものである。つまり、冷却水の相変化温度帯では、冷却水が温度変化しないままでいる受熱量の許容範囲が広い。このため、冷却水の温度を基準に制御弁を制御しようとすると、冷却水の相変化温度帯が狭いので制御弁の制御が過剰となり適切に行えない場合がある。これは、冷却水の相変化温度帯における目標温度では、冷却水の受熱量が判断できず、目標温度の冷却水であっても、相変化温度帯内の受熱量として高い場合や低い場合が生じ得るからである。よって、目標温度の冷却水であっても、受熱量が変化すると、直ぐに相変化温度帯から外れるおそれがある。しかし、冷却水の受熱量を基準に制御弁を制御すれば、冷却水の相変化温度帯内の受熱量の範囲が広いので、目標受熱量を定めれば相変化温度帯を含む範囲で制御弁の制御が細かく適切に行える。
 これによると、例えば、冷却水の目標受熱量を相変化温度帯内の低側受熱量に設定すれば、更に受熱量が加わっても冷却水の温度は相変化温度帯内に維持され、直ぐに冷却水の比熱が低くなり一気に冷却水の温度が上昇してオーバーヒートに陥ってしまうことを回避することができる。また、冷却水の目標受熱量を過度に低めに設定する必要もなく、冷却水の温度が低すぎることに起因して内燃機関のオイルが冷えてしまい、内燃機関のフリクションが増加してしまうことを回避することができる。
 本発明によると、比熱が可変する冷却水を使用する場合に、冷却水の温度を変更するための制御弁を適切に制御して冷却水の相変化温度帯を可及的に有効利用することができる。
 前記受熱量算出手段は、前記冷却水が内燃機関に流入する入口で受ける入口受熱量を算出し、
 前記制御手段は、前記受熱量算出手段によって算出される前記入口受熱量が、前記粒子が相変化して前記冷却水の比熱が変化している状態の相変化温度帯の低側開始受熱量に近付くように、前記制御弁を制御するとよい。
 これによると、冷却水の目標入口受熱量を相変化温度帯内の低側開始受熱量に近付けるように設定することができるので、更に内燃機関において冷却水に受熱量が加わっても冷却水の温度は相変化温度帯内に維持され、直ぐに冷却水の比熱が低くなり一気に冷却水の温度が上昇してオーバーヒートに陥ってしまうことを回避することができる。
 前記受熱量算出手段は、前記冷却水が内燃機関から流出する出口で受ける出口受熱量を算出し、
 前記制御手段は、前記受熱量算出手段によって算出される前記出口受熱量が、前記相変化温度帯内の受熱量を超えた高い受熱量となる場合には、前記出口受熱量が、前記相変化温度帯内の受熱量に含まれるように、前記制御弁を制御するとよい。
 これによると、冷却水の目標出口受熱量を相変化温度帯内の受熱量に含ませるように設定することができるので、内燃機関から流出する冷却水の温度は相変化温度帯内に維持され、直ぐに冷却水の比熱が低くなり一気に冷却水の温度が上昇してオーバーヒートに陥ってしまうことを回避することができる。
 前記受熱量算出手段が受熱量を算出できない場合には、前記冷却水の温度が低下するように、前記制御弁を制御するとよい。
 これによると、受熱量を算出できない場合には、冷却水の温度を低下させ、冷却水の温度が上昇してオーバーヒートに陥ってしまうことを回避することができる。
 本発明によれば、比熱が可変する冷却水を使用する場合に、冷却水の温度を変更するための制御弁を適切に制御して冷却水の相変化温度帯を可及的に有効利用することができる。
本発明の実施例1に係る内燃機関の概略構成を示す図である。 実施例1に係る冷却水のモデルを示す図である。 実施例1に係る冷却水の温度と比熱との関係を示す図である。 実施例1に係る比熱が変化する冷却水における、冷却水の単位量あたりの25℃基準での受熱量と、冷却水の温度と、の関係の特性曲線を示す図である。 実施例1に係る内燃機関及び各種機器での受熱量のモデルを示す図である。 実施例1に係るラジエータを流通する冷却水の流量やバイパス通路を流通する冷却水の流量を算出するマップを示す図である。 実施例1に係るヒータコアを流通する冷却水の流量、リザーバタンクを流通する冷却水の流量、オイルクーラを流通する冷却水の流量、スロットル弁及びEGR弁を流通する冷却水の流量、又はEGRクーラを流通する冷却水の流量を算出するマップを示す図である。 実施例1に係るラジエータでの放熱量やリザーバタンクでの放熱量を算出するマップを示す図である。 実施例1に係るヒータコアでの放熱量を算出するマップを示す図である。 実施例1に係るオイルクーラでの放熱量、スロットル弁及びEGR弁での放熱量、又はEGRクーラでの放熱量を算出するマップを示す図である。 実施例1に係る入口受熱量に基づく電子サーモスタットの制御を示す図である。 実施例1に係る入口受熱量に基づく電子サーモスタットの制御での問題点を示す図である。 実施例1に係る出口受熱量に基づく電子サーモスタットの制御を示す図である。 実施例1に係る入口受熱量や出口受熱量を算出できない場合の電子サーモスタットの制御を示す図である。 実施例1に係る冷却水温制御ルーチンを示すフローチャートである。
 以下に本発明の具体的な実施例を説明する。
 <実施例1>
 図1は、本発明の実施例1に係る内燃機関の冷却水温制御装置を適用する内燃機関の概略構成を示す図である。図1に示す内燃機関1では、シリンダブロック及びシリンダヘッドを冷却するために冷却水が冷却水通路2を循環する。冷却水通路2としては、冷却水がラジエータ3を流通する通路2a、冷却水がオイルクーラ4を流通する通路2b、冷却水がスロットル弁5a及びEGR弁5bを流通する通路2c、冷却水がリザーバタンク6を流通する通路2d、冷却水がヒータコア7を流通する通路2e、冷却水がEGRクーラ8を流通する通路2f、冷却水がそのまま流通するバイパス通路2gが設けられている。
 ラジエータ3は、冷却水と外気とで熱交換して冷却水を冷却する。オイルクーラ4は、水冷式オイルクーラであり、内燃機関1に供給されるオイルと冷却水とで熱交換してオイルを冷却する。スロットル弁5aは、内燃機関1で吸気量を制御する弁であり、冷却水で冷却される。EGR弁5bは、内燃機関1に還流される排気の一部であるEGRガス量を制御する弁であり、冷却水で冷却される。リザーバタンク6は、冷却水を一時的に貯留する。ヒータコア7は、冷却水を暖める。EGRクーラ8は、水冷式EGRクーラであり、内燃機関1に還流されるEGRガスと冷却水とで熱交換してEGRガスを冷却する。
 冷却水がラジエータ3を流通する通路2aには、シリンダブロックから通じる冷却水がオイルクーラ4を流通する通路2bが合流する。また、冷却水がラジエータ3を流通する通路2aからは、冷却水がスロットル弁5a及びEGR弁5bを流通する通路2c、並びに、冷却水がリザーバタンク6を流通する通路2dが分岐する。シリンダブロックから通じた冷却水がEGRクーラ8を流通する通路2fは、冷却水がヒータコア7を流通する通路2eに合流する。
 冷却水がラジエータ3を流通する通路2a及びバイパス通路2gが合流する部位には、電子サーモスタット9が配置されている。電子サーモスタット9は、指令に応じて開閉制御される制御弁であり、開弁することで冷却水がラジエータ3を流通するように冷却水の流通経路及び流通量を変更して冷却水の温度を低下させることができる。このとき、バイパス通路2gは冷却水の流通量が絞られる。反対に、電子サーモスタット9を閉弁することで冷却水がラジエータ3を流通し難くするように冷却水の流通経路及び流通量を変更して冷却水の温度を低下し難くすることができる。このとき、バイパス通路2gは冷却水の流通量が増加する。電子サーモスタット9の下流では冷却水をウォータポンプ10に送り込む。ウォータポンプ10は、冷却水を汲み上げて内燃機関1のシリンダブロックへ供給する。また、内燃機関1の出口に冷却水通路2が接続された部位には、水温センサ11が配置され、水温センサ11で内燃機関1から流出した冷却水の温度を検出する。
 ここで、冷却水通路2を流通する冷却水は、比熱が可変する冷却水である。すなわち、冷却水は、固相状態と液相状態との一方から他方に相変化することにより媒体の比熱を変更する粒子を含み比熱が可変する冷却水である。なお、粒子としては、固相状態と液相状態との一方から他方に相変化するものだけでなく、液相状態と気相状態との一方から他方に相変化するもの等を用いることができる。冷却水は、図2に示すように温度が一定以上になると内部の物質が固体から液体に相変化するような物質をカプセルで包んだ粒子を、冷却水の溶媒の中に混入させたものである。図2は、本実施例に係る冷却水のモデルを示す図である。図3は、本実施例に係る冷却水の温度と比熱との関係を示す図である。図2に示すように冷却水中の複数の粒子が固相状態と液相状態との一方から他方に相変化することにより、図3に示す複数の粒子が相変化して冷却水の比熱が変化している可変比熱領域が生じる。この可変比熱領域は、冷却水に熱量が付与されても、粒子が相変化して冷却水の比熱が変化している状態の相変化温度帯となる(図4参照)。図4は、本実施例に係る比熱が変化する冷却水における、冷却水の単位量あたりの25℃基準での受熱量と、冷却水の温度と、の関係の特性曲線を示す図である。図4に示す相変化温度帯とは、冷却水中の粒子が固相状態と液相状態との一方から他方に相変化して冷却水の比熱が変化している状態の温度帯であり、この相変化温度帯では、冷却水に付与される受熱量に変化が生じても、粒子の相変化が生じて比熱が変化し冷却水の温度が変化し難くなるものである。このような冷却水を用いることにより、内燃機関1の暖機過程では従来よりも冷却水の比熱を下げておくことで内燃機関1の暖機性を向上して燃費向上でき、暖機後はある一定の温度域(相変化温度帯)で比熱が高くなることから、受熱量の許容範囲が増大してオーバーヒート等を回避することができる。
 この内燃機関1には、ECU(電子制御ユニット)12が併設されている。ECU12には、水温センサ11等の各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU12に入力されるようになっている。一方、ECU12には、スロットル弁5a、EGR弁5b、ヒータコア7、及び電子サーモスタット9、ウォータポンプ10等が電気配線を介して接続されており、ECU12によりこれらの機器が制御される。
 (冷却水温制御)
 従来から、電子サーモスタットを、冷却水の温度に基づいて制御することが行われていた。例えば、冷却水の将来の最適温度を推定し、その最適温度となるように電子サーモスタットを制御して冷却水の温度を調節するものである。しかしながら、冷却水として、本実施例のような比熱が可変する冷却水を用いる場合には、その冷却水の利点が生かせないという問題があった。
 すなわち、比熱が可変する冷却水は、冷却水の相変化温度帯では冷却水が受ける受熱量がある程度変化しても冷却水の温度が変化しない。つまり、冷却水の相変化温度帯では、冷却水が温度変化しないままでいる受熱量の許容範囲が広い。このため、従来のように冷却水の温度に基づいて電子サーモスタットを制御しようとすると、冷却水の相変化温度帯が狭いので電子サーモスタットの制御が過剰となり適切に行えない場合がある。これは、冷却水の相変化温度帯における目標温度では、冷却水の受熱量が判断できず、目標温度の冷却水であっても、相変化温度帯内の受熱量として高い場合(図4点A)や低い場合が生じ得るからである。図4に示す点Aは、内燃機関出口の冷却水が相変化温度帯内の目標温度であり、冷却水の受熱量が相変化温度帯内において高い場合の冷却水の状態である。よって、相変化温度帯内の目標温度の冷却水であっても、受熱量が変化すると、直ぐに相変化温度帯から外れるおそれがある。例えば図4の点Aの場合には、急激な高負荷時等に受熱量が増加すると、冷却水の温度が相変化温度帯を超えてしまい直ぐに冷却水の比熱が低くなり一気に冷却水の温度が上昇してオーバーヒートに陥ってしまう。
 このようなオーバーヒートを回避するように、冷却水の目標温度を相変化温度帯よりも低く設定することも考えられる。図4に示す点Bは、内燃機関出口の冷却水が相変化温度帯より低い目標温度の場合の冷却水の状態である。しかし、図4の点Bの場合には、冷却水通路を循環して温度低下した内燃機関入口の冷却水の温度が相変化温度帯よりも過度に低温になり、内燃機関のオイルが冷えてしまい、内燃機関のフリクションが増加してしまう。
 以上のように、比熱が可変する冷却水を使用する場合に、電子サーモスタットを冷却水の温度に基づいて制御すると、比熱が可変する冷却水の利点が生かせず電子サーモスタットを適切に制御することができなかった。このため、冷却水の相変化温度帯を有効利用することができないものとなってしまっていた。
 そこで、本実施例では、冷却水が受ける受熱量を算出し、算出される受熱量に基づいて、電子サーモスタット9を制御するようにした。このようにすれば、冷却水の相変化温度帯内の受熱量の範囲が広いので、目標受熱量を定めれば相変化温度帯を含む範囲で制御弁の制御が細かく適切に行える。
 本実施例の具体的な制御としては、冷却水が内燃機関に流入する入口で受ける入口受熱量を算出する。そして、算出される入口受熱量が、粒子が相変化して冷却水の比熱が変化している状態の相変化温度帯の低側開始受熱量に近付くように、電子サーモスタット9を制御する。
 図5は、本実施例に係る内燃機関及び各種機器での受熱量のモデルを示す図である。図5に示すように、内燃機関1の入口受熱量は、内燃機関1から流出する出口で受ける出口受熱量と各種機器の授受熱量及び各種機器での流量とから算出することができる。入口受熱量を算出するECU12が、本発明の受熱量算出手段に対応する。各種機器の授受熱量は、ラジエータ3、バイパス通路2g、ヒータコア7、リザーバタンク6、オイルクーラ4、スロットル弁5a及びEGR弁5b、EGRクーラ8を夫々流通する冷却水の授受熱量である。各種機器での流量は、ラジエータ3、バイパス通路2g、ヒータコア7、リザーバタンク6、オイルクーラ4、スロットル弁5a及びEGR弁5b、EGRクーラ8を夫々流通する冷却水の流量である。
 以下に内燃機関1の入口受熱量の算出方法を説明する。まず、内燃機関1から流出する出口で受ける出口受熱量を算出する。出口受熱量Qengoutは、図4に示すように、水温センサ11で検出した内燃機関1の出口での冷却水の温度Tengoutを冷却水の特性曲線に取り込むことで導出することができる。出口受熱量を算出するECU12が、本発明の受熱量算出手段に対応する。
 次に、各種機器での流量を算出する。図6は、本実施例に係るラジエータ3を流通する冷却水の流量Gradやバイパス通路2gを流通する冷却水の流量Gbyを算出するマップを示す図である。GradやGbyは、電子サーモスタット9の弁開度とウォータポンプ10の回転数とに依存するので、これらの値を図6に示すマップに取り込むことにより算出することができる。ここで、電子サーモスタット9の弁開度としては、制御上の開度を流用することができる。ウォータポンプ10の回転数としては、機械式ウォータポンプの場合には、エンジン回転数に比例した値を用いることができ、電動式ウォータポンプの場合には、駆動モータの回転数を用いることができる。図7は、本実施例に係るヒータコア7を流通する冷却水の流量Gheat、リザーバタンク6を流通する冷却水の流量Gres、オイルクーラ4を流通する冷却水の流量Goil、スロットル弁5a及びEGR弁5bを流通する冷却水の流量Gthr、又はEGRクーラ8を流通する冷却水の流量Gegrを算出するマップを示す図である。Gheat、Gres、Goil、Gthr、又はGegrは、ウォータポンプ10の回転数に依存するので、これらの値を図7に示すマップに取り込むことにより算出することができる。
 次に、各種機器の授受熱量を算出する。図8は、本実施例に係るラジエータ3での放熱量△Qradやリザーバタンク6での放熱量△Qresを算出するマップを示す図である。△Qradや△Qresは、各機器が受ける風速と各種機器を流通する冷却水の流量とに依存するので、これらの値を図8に示すマップに取り込むことにより算出することができる。ここで、風速としては、車速と車輌のファンの風速とを足した値等を用いることができる。図9は、本実施例に係るヒータコア7での放熱量△Qheatを算出するマップを示す図である。△Qheatは、ヒータ風量とヒータコア7を流通する冷却水の流量とに依存するので、これらの値を図9に示すマップに取り込むことにより算出することができる。図10は、本実施例に係るオイルクーラ4での放熱量△Qoil、スロットル弁5a及びEGR弁5bでの放熱量△Qthr、又はEGRクーラ8での放熱量△Qegrを算出するマップを示す図である。△Qoil、△Qthr、又は△Qegrは、水温センサ11で検出した内燃機関1の出口での冷却水の温度と各種機器を流通する冷却水の流量とに依存するので、これらの値を図10に示すマップに取り込むことにより算出することができる。そして、出口受熱量から各種機器の放熱量を差し引いて各種機器の受熱量を算出する。すなわち、ラジエータ3での受熱量Qrad=Qengout-△Qradである。リザーバタンク6での受熱量Qres=Qengout-△Qresである。なお、バイパス通路2gでは熱の授受がほとんど無いので、バイパス通路2gでの受熱量Qby=Qengoutである。ヒータコア7での受熱量Qheat=Qengout-△Qheatである。オイルクーラ4での受熱量Qoil=Qengout-△Qoilである。スロットル弁5a及びEGR弁5bでの受熱量Qthr=Qengout-△Qthrである。EGRクーラ8での受熱量Qegr=Qengout-△Qegrである。
 次に、内燃機関1に流入する入口で受ける入口受熱量を算出する。入口受熱量Qenginは、各種機器の受熱量と各種機器での流量とを掛けたものの総和を各種機器の受熱量で割ったものである。すなわち、入口受熱量Qengin=(Qrad×Grad+Qres×Gres+Qby×Gby+Qheat×Gheat+Qoil×Goil+Qthr×Gthr+Qegr×Gegr)÷(Qrad+Qres+Qby+Qheat+Qoil+Qthr+Qegr)である。
 図11は、本実施例に係る入口受熱量に基づく電子サーモスタット9の制御を示す図である。図11に示すように、上記のようにして算出される入口受熱量が、相変化温度帯の低側開始受熱量に近付くように、電子サーモスタット9を制御する。言い換えると、算出される入口受熱量が、目標受熱量である相変化温度帯の低側開始受熱量となるように、電子サーモスタット9を制御する。相変化温度帯の低側開始受熱量は、予め実験や検証等で定めておくことができる。電子サーモスタット9を制御するECU12が、本発明の制御手段に対応する。これにより、電子サーモスタット9は、入口受熱量が相変化温度帯の低側開始受熱量よりも低ければ、ラジエータ3に流入する冷却水の量を低減するように閉じ側に制御される。一方、電子サーモスタット9は、入口受熱量が相変化温度帯の低側開始受熱量よりも高ければ、ラジエータ3に流入する冷却水の量を増加するように開き側に制御される。
 これによると、冷却水の目標受熱量を相変化温度帯の低側開始受熱量に設定することができるので、更に受熱量が加わっても冷却水の温度は相変化温度帯内に維持され、直ぐに冷却水の比熱が低くなり一気に冷却水の温度が上昇してオーバーヒートに陥ってしまうことを回避することができる。また、冷却水の目標受熱量を過度に低めに設定する必要もなく、冷却水の温度が低すぎることに起因して内燃機関のオイルが冷えてしまい、内燃機関のフリクションが増加してしまうことを回避することができる。
 本実施例によると、比熱が可変する冷却水を使用する場合に、冷却水の温度を変更するための制御弁を適切に制御して冷却水の相変化温度帯を可及的に有効利用することができる。
 図12は、本実施例に係る入口受熱量に基づく電子サーモスタット9の制御での問題点を示す図である。入口受熱量に基づき電子サーモスタット9を制御していると、図12に示すように、出口受熱量が相変化温度帯を超えた高い受熱量となる場合がある。この場合は、高負荷時等に生じる可能性があり、オーバーヒートし易い。
 そこで、本実施例では、出口受熱量が、相変化温度帯内の受熱量を超えた高い受熱量となる場合には、出口受熱量が、相変化温度帯内のより高い受熱量に近付くように、電子サーモスタット9を制御する。なお、出口受熱量が、相変化温度帯内の受熱量に含まれるように、電子サーモスタット9を制御するものでもよい。
 本実施例の具体的な制御としては、入口受熱量が、相変化温度帯の低側開始受熱量に近付くように、電子サーモスタット9を制御していると、図12に示すように、出口受熱量が、相変化温度帯内の受熱量を超えた高い受熱量となる場合がある。その場合には、入口受熱量に基づく制御を停止して、図13に示すように、出口受熱量が、相変化温度帯内のより高い受熱量に近付くように、電子サーモスタット9を制御する。図13は、本実施例に係る出口受熱量に基づく電子サーモスタット9の制御を示す図である。ここで、出口受熱量を相変化温度帯内のより高い受熱量に近付けるのは、入口受熱量もより高い受熱量に維持することができるので、冷却水の相変化温度帯を有効利用することができるためである。
 これによると、冷却水の目標出口受熱量を相変化温度帯内のより高い受熱量に含ませるように設定することができるので、内燃機関から流出する冷却水の温度は相変化温度帯内に維持され、直ぐに冷却水の比熱が低くなり一気に冷却水の温度が上昇してオーバーヒートに陥ってしまうことを回避することができる。
 上記のように、入口受熱量や出口受熱量に基づき電子サーモスタット9を制御していると、センサ異常、エンジン異常、各種機器の異常等の何らかの原因で入口受熱量や出口受熱量を算出することができなくなる場合がある。この場合には、入口受熱量や出口受熱量に基づき電子サーモスタット9を制御することができなくなる。
 そこで、入口受熱量や出口受熱量を算出できない場合には、冷却水の温度が低下するように、電子サーモスタット9を制御する。
 図14は、本実施例に係る入口受熱量や出口受熱量を算出できない場合の電子サーモスタット9の制御を示す図である。本実施例の具体的な制御としては、ラジエータ3に冷却水が一定量以上流通させて出口受熱量が相変化温度帯より低い受熱量となるように、電子サーモスタット9を一定開度以上開き側に制御する。なお、異常事態であり、図14に示す場合よりも出口受熱量を低くしてもよいので、ラジエータ3に冷却水が流通可能な全量を流通させるように、電子サーモスタット9を全開に制御してもよい。
 これによると、受熱量を算出できない場合には、冷却水の温度を低下させ、冷却水の温度が上昇してオーバーヒートに陥ってしまうことを回避することができる。
 (冷却水温制御ルーチン)
 ECU12における冷却水温制御ルーチンについて、図15に示すフローチャートに基づいて説明する。図15は、本実施例に係る冷却水温制御ルーチンを示すフローチャートである。本ルーチンは、ECU12によって実行される。本ルーチンを実行するECU12が、本発明の制御手段に対応する。
 図15に示すルーチンが開始されると、S101では、入口受熱量を算出する。この際、出口受熱量も算出される。S102では、S101で入口受熱量及び出口受熱量の算出に誤り(NG)が生じたか否かを判別する。S102において肯定判定されると、S106へ移行する。S102において否定判定されると、S103へ移行する。S103では、出口受熱量が相変化温度帯を超えた高い受熱量となるか否かを判別する。S103において肯定判定された場合には、S105へ移行する。S103において否定判定された場合には、S104へ移行する。S104では、入口受熱量が相変化温度帯の低側開始受熱量に近付くように、電子サーモスタット9を制御する。S105では、出口受熱量が相変化温度帯内のより高い受熱量に近付くように、電子サーモスタット9を制御する。S106では、冷却水の温度が低下するように、電子サーモスタット9を制御する。S104~S106の処理の後、本ルーチンを一旦終了する。
 以上の本ルーチンであると、冷却水の温度を変更するための制御弁を適切に制御して冷却水の相変化温度帯を可及的に有効利用することができる。
 <その他>
 本発明に係る内燃機関の冷却水温制御装置は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。
1     内燃機関
2     冷却水通路
3     ラジエータ
4     オイルクーラ
5a   スロットル弁
5b   EGR弁
6     リザーバタンク
7     ヒータコア
8     EGRクーラ
9     電子サーモスタット
10   ウォータポンプ
11   水温センサ
12   ECU

Claims (4)

  1.  比熱が可変する冷却水を循環させる内燃機関の冷却水温制御装置であって、
     前記冷却水が受ける受熱量を算出する受熱量算出手段と、
     前記冷却水の流通経路又は流通量を変更して前記冷却水の温度を変更するために、指令に応じて開閉制御される制御弁と、
     前記受熱量算出手段によって算出される受熱量に基づいて、前記制御弁を制御する制御手段と、
    を備えた内燃機関の冷却水温制御装置。
  2.  前記受熱量算出手段は、前記冷却水が内燃機関に流入する入口で受ける入口受熱量を算出し、
     前記制御手段は、前記受熱量算出手段によって算出される前記入口受熱量が、前記粒子が相変化して前記冷却水の比熱が変化している状態の相変化温度帯の低側開始受熱量に近付くように、前記制御弁を制御する請求項1に記載の内燃機関の冷却水温制御装置。
  3.  前記受熱量算出手段は、前記冷却水が内燃機関から流出する出口で受ける出口受熱量を算出し、
     前記制御手段は、前記受熱量算出手段によって算出される前記出口受熱量が、前記相変化温度帯内の受熱量を超えた高い受熱量となる場合には、前記出口受熱量が、前記相変化温度帯内の受熱量に含まれるように、前記制御弁を制御する請求項2に記載の内燃機関の冷却水温制御装置。
  4.  前記受熱量算出手段が受熱量を算出できない場合には、前記冷却水の温度が低下するように、前記制御弁を制御する請求項1~3のいずれかに記載の内燃機関の冷却水温制御装置。
PCT/JP2011/060443 2011-04-28 2011-04-28 内燃機関の冷却水温制御装置 WO2012147202A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180070468.2A CN103502598A (zh) 2011-04-28 2011-04-28 内燃机的冷却水温控制装置
JP2013511855A JP5780299B2 (ja) 2011-04-28 2011-04-28 内燃機関の冷却水温制御装置
US14/114,355 US20140130753A1 (en) 2011-04-28 2011-04-28 Cooling water temperature control apparatus for an internal combustion engine
EP11864411.1A EP2703617A4 (en) 2011-04-28 2011-04-28 CONTROL DEVICE FOR THE COOLING TEMPERATURE OF A COMBUSTION ENGINE
PCT/JP2011/060443 WO2012147202A1 (ja) 2011-04-28 2011-04-28 内燃機関の冷却水温制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/060443 WO2012147202A1 (ja) 2011-04-28 2011-04-28 内燃機関の冷却水温制御装置

Publications (1)

Publication Number Publication Date
WO2012147202A1 true WO2012147202A1 (ja) 2012-11-01

Family

ID=47071742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060443 WO2012147202A1 (ja) 2011-04-28 2011-04-28 内燃機関の冷却水温制御装置

Country Status (5)

Country Link
US (1) US20140130753A1 (ja)
EP (1) EP2703617A4 (ja)
JP (1) JP5780299B2 (ja)
CN (1) CN103502598A (ja)
WO (1) WO2012147202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711566A (zh) * 2013-01-23 2014-04-09 日立汽车部件(苏州)有限公司 发动机系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347150B2 (ja) * 2014-05-14 2018-06-27 スズキ株式会社 自動二輪車のエンジン冷却装置
KR101646130B1 (ko) * 2015-03-02 2016-08-05 현대자동차 주식회사 써모스탯을 갖는 엔진 냉각시스템
JP6557271B2 (ja) * 2017-03-24 2019-08-07 トヨタ自動車株式会社 内燃機関の冷却装置
JP6658665B2 (ja) * 2017-04-28 2020-03-04 トヨタ自動車株式会社 内燃機関の冷却装置
KR102440603B1 (ko) * 2017-10-24 2022-09-05 현대자동차 주식회사 이지알 쿨러를 구비한 엔진 냉각시스템
CN110985194A (zh) * 2019-12-23 2020-04-10 奇瑞汽车股份有限公司 发动机冷却水温度确定方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325790A (ja) 2004-05-17 2005-11-24 Mitsubishi Electric Corp エンジン冷却系制御方法およびエンジン冷却系制御装置
JP2006240501A (ja) * 2005-03-03 2006-09-14 Nissan Motor Co Ltd ハイブリッド車用の冷却システム
JP2007100638A (ja) 2005-10-06 2007-04-19 Toyota Motor Corp 内燃機関の冷却水制御装置
JP2007321633A (ja) * 2006-05-31 2007-12-13 Nissan Motor Co Ltd 車両用冷却装置および車両用熱源の冷却方法
JP2009044896A (ja) 2007-08-10 2009-02-26 Nissan Motor Co Ltd 車両用冷却装置
JP2009174362A (ja) * 2008-01-23 2009-08-06 Toyota Motor Corp ハイブリッド車両の排気還流ガス冷却装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768484A (en) * 1987-07-13 1988-09-06 General Motors Corporation Actively pressurized engine cooling system
US5381952A (en) * 1993-10-15 1995-01-17 Standard-Thomson Corporation Fail-safe thermostat
DE10117027C2 (de) * 2001-04-05 2003-03-27 Siemens Ag Flüssigkeitsgekühlte Röntgenröhre mit Phasenwechselmaterial(PCM) enthaltenden Mikrokapseln in der Kühlflüssigkeit
US20040019123A1 (en) * 2002-07-24 2004-01-29 Sehoon Kwak Multi-phase suspension coolant
JP2006017436A (ja) * 2004-07-05 2006-01-19 Honda Motor Co Ltd 蓄熱システム
US7267086B2 (en) * 2005-02-23 2007-09-11 Emp Advanced Development, Llc Thermal management system and method for a heat producing system
GB2425619B (en) * 2005-03-22 2007-05-02 Visteon Global Tech Inc Method of engine cooling
CN101566113B (zh) * 2009-06-03 2011-06-08 浙江银轮机械股份有限公司 基于有机朗肯循环的发动机废热回收系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325790A (ja) 2004-05-17 2005-11-24 Mitsubishi Electric Corp エンジン冷却系制御方法およびエンジン冷却系制御装置
JP2006240501A (ja) * 2005-03-03 2006-09-14 Nissan Motor Co Ltd ハイブリッド車用の冷却システム
JP2007100638A (ja) 2005-10-06 2007-04-19 Toyota Motor Corp 内燃機関の冷却水制御装置
JP2007321633A (ja) * 2006-05-31 2007-12-13 Nissan Motor Co Ltd 車両用冷却装置および車両用熱源の冷却方法
JP2009044896A (ja) 2007-08-10 2009-02-26 Nissan Motor Co Ltd 車両用冷却装置
JP2009174362A (ja) * 2008-01-23 2009-08-06 Toyota Motor Corp ハイブリッド車両の排気還流ガス冷却装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2703617A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711566A (zh) * 2013-01-23 2014-04-09 日立汽车部件(苏州)有限公司 发动机系统

Also Published As

Publication number Publication date
EP2703617A1 (en) 2014-03-05
US20140130753A1 (en) 2014-05-15
EP2703617A4 (en) 2015-06-24
CN103502598A (zh) 2014-01-08
JP5780299B2 (ja) 2015-09-16
JPWO2012147202A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
WO2012147202A1 (ja) 内燃機関の冷却水温制御装置
US10371041B2 (en) Cooling device for internal combustion engine of vehicle and control method thereof
JP6378055B2 (ja) 内燃機関の冷却制御装置
WO2015125260A1 (ja) 冷却システム制御装置及び冷却システム制御方法
EP3224461B1 (en) Cooling system for internal combustion engine
JP2006348793A (ja) 内燃機関の排気還流装置
US20180038267A1 (en) Cooling Device of Internal Combustion Engine for Vehicle and Control Method Thereof
JP2011099400A (ja) 車両の冷却装置
JP6023430B2 (ja) 水冷式エンジン冷却装置
US8978599B2 (en) Cooling apparatus of internal combustion engine for vehicle
JP2005344572A (ja) 熱電発電装置
US10060332B2 (en) Cooling apparatus for internal combustion engine
JP6131937B2 (ja) ロータリピストンエンジンの冷却装置
JP5637047B2 (ja) 内燃機関の冷却水温制御装置
JP2005248903A (ja) 車両動力源の冷却系制御方法
JP2006105093A (ja) エンジンの冷却装置
WO2011089705A1 (ja) 車両の冷却装置
Wilson et al. A Comparative Study on Engine Thermal Management System
JP2016211482A (ja) エンジンの冷却装置
JP2006105105A (ja) エンジンの冷却装置
JP5848906B2 (ja) 車両の熱交換装置
JP5605319B2 (ja) 内燃機関の冷却装置
JP2010209818A (ja) 内燃機関の冷却装置
JP2018105238A (ja) 冷却システム
JP2017180165A (ja) エンジン装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013511855

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011864411

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14114355

Country of ref document: US