WO2012144355A1 - 液状封止樹脂組成物、液状封止樹脂組成物を用いた半導体装置、および半導体装置の製造方法 - Google Patents

液状封止樹脂組成物、液状封止樹脂組成物を用いた半導体装置、および半導体装置の製造方法 Download PDF

Info

Publication number
WO2012144355A1
WO2012144355A1 PCT/JP2012/059545 JP2012059545W WO2012144355A1 WO 2012144355 A1 WO2012144355 A1 WO 2012144355A1 JP 2012059545 W JP2012059545 W JP 2012059545W WO 2012144355 A1 WO2012144355 A1 WO 2012144355A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing resin
liquid sealing
semiconductor device
semiconductor element
Prior art date
Application number
PCT/JP2012/059545
Other languages
English (en)
French (fr)
Inventor
浩志 伊藤
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Publication of WO2012144355A1 publication Critical patent/WO2012144355A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a liquid sealing resin composition having both high thermal conductivity and high gap inflow property, a bump connection type semiconductor device using the liquid sealing resin composition, and a method for manufacturing the semiconductor device.
  • the present invention claims priority based on Japanese Patent Application No. 2011-095645 filed in Japan on April 22, 2011, the contents of which are incorporated herein by reference.
  • bump connection type semiconductor devices capable of high-density mounting in a small area have been widely used in various electronic information processing devices.
  • a liquid sealing resin called an underfill material is filled into the bump connection portion and cured.
  • the periphery of the connection bump is reinforced.
  • a liquid sealing resin for semiconductor devices generally contains a silica filler in order to maintain the thermal dimension stability and strength, but in order to improve thermal conductivity, it is relatively thermal conductive. It is common to contain as much heat-conductive filler as possible instead of low-silica filler, and it is widely known that high heat-conductive fillers such as silicon nitride, aluminum nitride, alumina, and magnesium oxide can be used. ing. Among them, for example, using spherical alumina, spherical alumina containing particles having an average particle diameter of 2 to 30 ⁇ m and containing particles having a particle diameter of 24 ⁇ m or more is 15% or more and 1 ⁇ m or less is 3% or more.
  • alumina with an average diameter of less than 1 ⁇ m could not be used because this technique causes problems in fluidity. As a result, it was difficult to increase the filling degree of alumina by using alumina having an average diameter of 1 ⁇ m or less and to achieve high thermal conductivity. Further, as a filler using an average diameter of less than 1 ⁇ m, an ultrafine inorganic filler having an average particle diameter of less than 0.1 ⁇ m is added to a mixture of alumina having an average particle diameter of 1 to 30 ⁇ m and silica having an average particle diameter of 0.1 to 30 ⁇ m. In which the total resin composition contains 44 to 75% by volume has been proposed (Patent Document 3). However, since it is necessary to use silica having a low thermal conductivity as compared with alumina, there is a problem that it is unavoidable that the thermal conductivity is lowered as compared with those containing only alumina.
  • An object of the present invention is to provide a liquid encapsulating resin composition having both high thermal conductivity and high gap inflow properties that have been difficult to realize in the past.
  • a liquid sealing resin composition comprising (A) a liquid epoxy resin, (B) an amine-based curing agent, and (C) an inorganic filler, wherein the (C) inorganic filler has an average diameter of 0.00.
  • Liquid sealing characterized by containing a mixture of spherical alumina (1) having a diameter of 5 ⁇ m or more and less than 1.0 ⁇ m and spherical alumina (2) having an average diameter of 1.0 ⁇ m or more and less than 3.0 ⁇ m and having a pH higher than 7.
  • Resin composition [2]
  • the liquid sealing resin composition according to [2] which is at least one kind.
  • the content of the inorganic filler (C) in the liquid encapsulating resin composition is 80% by mass or more, of which (C) spherical alumina occupying 0.5 to 1.0 ⁇ m in the inorganic filler (
  • a semiconductor device comprising a semiconductor element and a substrate on which the semiconductor element can be mounted, wherein the liquid sealing resin composition according to [1] or [2] is between the semiconductor element and the substrate A semiconductor device which is sealed with a cured product.
  • the present invention it is possible to provide a liquid encapsulating resin composition having both high thermal conductivity and high gap inflow property. By enabling thinning, a semiconductor device capable of stable high-speed operation with low power consumption can be obtained.
  • the liquid sealing resin composition of the present invention is a liquid sealing resin composition containing (A) an epoxy resin, (B) an amine-based curing agent, and (C) an inorganic filler, and the above (C) inorganic
  • the filler contains a mixture of spherical alumina (1) having an average diameter of 0.5 ⁇ m or more and less than 1.0 ⁇ m and spherical alumina (2) having an average diameter of 1.0 ⁇ m or more and less than 3.0 ⁇ m, and the pH is greater than 7.
  • a liquid sealing resin composition characterized by the above.
  • the liquid sealing resin composition of the present invention is preferably used when the gap between the semiconductor element and the substrate is sealed after bump-connecting the semiconductor element and the substrate.
  • the space between the semiconductor element and the substrate is sealed with the cured product of the liquid sealing resin composition.
  • the liquid sealing resin composition of the present invention contains an epoxy resin (A).
  • the epoxy resin (A) is not particularly limited in molecular weight and structure as long as it has two or more epoxy groups in one molecule.
  • a phenol novolac type epoxy resin for example, a cresol novolak type epoxy resin, etc.
  • Bisphenol type epoxy resins such as novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, N, N-diglycidylaniline, N, N-diglycidyltoluidine, diaminodiphenylmethane type glycidylamine, aminophenol type glycidyl Aromatic glycidylamine type epoxy resin such as amine, hydroquinone type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin, triphenolmethane type epoxy resin, triphenolpropane type epoxy resin Alkyl-modified triphenolmethane type epoxy resin, triazine nucleus-containing epoxy resin, dicyclopentadiene-modified phenol type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, phenol aralkyl type epoxy resin having phenylene and / or biphenylene ske
  • the epoxy resin (A) is finally liquid at room temperature (25 ° C.) because of the liquid encapsulating resin composition. What is necessary is just to dissolve in a liquid epoxy resin and to be in a liquid state as a result.
  • normal temperature refers to 25 ° C.
  • liquid refers to that the resin or resin composition has fluidity.
  • the liquid resin composition has fluidity at room temperature (25 ° C.).
  • the liquid sealing resin composition of the present invention contains an amine-based curing agent (B).
  • amine-based curing agent examples include diethylenetriamine, triethylenetetraamine, tetraethylenepentamine, m-xylenediamine, trimethylhexamethylenediamine, 2-methylpentamethylenediamine aliphatic polyamine, isophoronediamine, 1,3-bisamino.
  • Cycloaliphatic polyamines such as methylcyclohexane, bis (4-aminocyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, N-aminoethylpiperazine, 1,4-bis (2-amino-2-methylpropyl) piperazine
  • Piperazine type polyamines such as diaminodiphenylmethane, m-phenylenediamine, diaminodiphenylsulfone, diethyltoluenediamine, trimethylenebis (4-aminobenzoate), polytetramethyl N'okishido - aromatic polyamines such as di -P- amino benzoate.
  • an aromatic polyamine type curing agent is more preferable from the viewpoints of heat resistance, electrical characteristics, mechanical characteristics, adhesion, and moisture resistance.
  • a liquid curing agent is preferable in order to ensure the fluidity of the thermosetting liquid sealing resin composition, but as a result, if it is in a liquid state at room temperature, a solid curing agent may be dissolved and used. it can.
  • curing agents other than amine curing agents phenols, acid anhydrides, polyamide resins, polysulfide resins and the like may be used in combination.
  • the liquid sealing resin composition of the present invention comprises, as the inorganic filler (C), spherical alumina (1) having an average diameter of 0.5 ⁇ m or more and less than 1.0 ⁇ m and spherical alumina having an average diameter of 1.0 ⁇ m or more and less than 3.0 ⁇ m (2 ).
  • the average diameter of the spherical alumina (1) is 0.5 ⁇ m or more, the effect of improving the inflow property to the gap of the bump connection portion is enhanced, and when it is less than 1.0 ⁇ m, the effect of improving the thermal conductivity is enhanced.
  • the average diameter of the spherical alumina (2) is 1.0 ⁇ m or more, the effect of improving the inflow property to the gap of the bump connection portion is enhanced, and when it is less than 3.0 ⁇ m, the effect of improving the thermal conductivity is enhanced. Become.
  • the inorganic filler (C) has both high thermal conductivity and high gap inflow, and can sufficiently maintain the reliability of the semiconductor device, and the content is not limited as long as it can flow into the bump connection portion.
  • the content of the spherical alumina (1) having a content of 80% by mass or more and of which the inorganic filler (C) is 0.5 ⁇ m or more and less than 1.0 ⁇ m is preferably 5% by mass or more and less than 50% by mass.
  • the content of the inorganic filler (C) is 80% by mass or more, the effect of increasing the thermal conductivity is increased, and when the proportion of alumina (1) is 5% by mass or more, the inflow property to the gaps in the bump connecting portion.
  • Inorganic fillers other than spherical alumina can be added as long as the effects of the present invention are high thermal conductivity, low dielectric constant, and high gap inflow, such as spherical silica, silicon nitride and nitride.
  • Aluminum, magnesium oxide, or the like can be used in combination as appropriate.
  • the pH value of the liquid sealing resin composition of the present invention containing the above components is larger than 7. Thereby, the dispersibility of the spherical alumina in the resin system is further improved, the viscosity is lowered, and the gap inflow property is improved. At the same time, electrostatic interaction between the spherical alumina particles is further weakened, so that generation of various voids that hinder heat conduction such as unfilled voids, entrained voids, and volatile voids is suppressed, and high thermal conductivity can be obtained. More preferably, since the pH value greater than 8 exceeds the isoelectric point of alumina, the effect is further enhanced.
  • the pH value refers to a hydrogen ion index or a hydrogen ion concentration index.
  • the method for determining the pH value is not particularly limited.
  • a general method using a pH test paper such as a litmus test paper, a pH indicator, a pH electrode, a pH sensor, or the like can be used.
  • pretreatment can be performed, additives can be added, and operations such as heating and cooling can be added within a range that does not change the pH value of the liquid sealing resin composition.
  • 0.01 to 0.1 ml of the liquid sealing resin composition was placed on the sensor part of the pH meter, and 0.02 to 0.2 ml of pure water was added thereon to prepare a specimen. Furthermore, the sensor part was tilted so that the whole was covered with the specimen and allowed to stand until the pH value was stabilized, and the displayed pH value was used as the pH value of the liquid resin composition.
  • the liquid sealing resin composition of the present invention preferably contains a basic compound (D).
  • the basic compound works to shift the pH value of the entire sealing resin system in the basic direction, thereby displacing the surface potential of the spherical alumina in the negative direction.
  • the dispersibility in each sealing resin system can be improved and the viscosity can be lowered, so that the gap inflow property can be improved.
  • the electrostatic interaction between the spherical alumina particles can be weakened, generation of various voids that hinder heat conduction such as unfilled voids, entrained voids, and volatile voids can be suppressed, so that high thermal conductivity can be obtained.
  • the basic compound (D) is not particularly limited as long as the pH value of the entire encapsulating resin product can be shifted in the basic direction.
  • examples of such a compound include hexylamine, heptylamine, Primary amines such as octylamine, secondary amines such as dipropylamine, dibutylamine, isopropylbenzylamine, dihexylamine, dioctylamine, dicyclohexylamine, diphenylamine, dibenzylamine, didecylamine, iminodiethanol, ethylaminoethanol, Isopropylaminoethanol, benzylethanolamine, dibutylaminoethanol, anilinoethanol, 2-amino-2-ethyl-1,3-propanediol, isopropanolamine, aminomethylpropanol, ethanolamine, amino Primary, secondary, tertiary amino alcohols such as propanol, hexan
  • 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) or a salt thereof, 1,5-diazabicyclo [4.3.0] nona-5-ene (DBN) or a salt thereof is a sealing resin.
  • DBU 1,8-diazabicyclo [5.4.0] undec-7-ene
  • DBN 1,5-diazabicyclo [4.3.0] nona-5-ene
  • the effect of shifting the pH value of the system to basic is higher and preferable.
  • the compounding amount of the basic compound (D) is not particularly limited as long as the pH value of the entire sealing resin product can be shifted in the basic direction, but is 0.005% by mass to 1.0% by mass. Preferably there is.
  • the epoxy resin (A), the curing agent (B), and the inorganic filler (C) have a spherical alumina (1) having an average diameter of 0.5 ⁇ m or more and less than 1.0 ⁇ m and an average diameter.
  • a mixture with spherical alumina (2) of 1.0 ⁇ m or more and less than 3.0 ⁇ m basic compound (D), adhesion aid, dispersant, anti-bleeding agent, colorant, antifoaming as necessary
  • additives such as an agent, a diluent, a pigment, a flame retardant, and a leveling agent can be used.
  • the effect of the present invention can be maintained by appropriately increasing the blending amount of the basic compound (D).
  • the liquid sealing resin composition of the present invention is prepared by dispersing and kneading the above-described components and additives using a planetary mixer, a triple roll, a two-heat roll, a laika machine, etc.
  • a generally known production method such as foam production can be used.
  • the raw material charging step, the dispersion kneading step, etc. if necessary, can adjust the raw material charging sequence and the charging time, or can divide the raw material and distribute it several times. It is also possible to perform kneading, heating, adding an aging step, and the like.
  • Such a liquid encapsulating resin composition has an epoxy resin reaction rate of 95% under curing conditions of 150 ° C. or less and 2 hours or less from the viewpoint of shortening the time in the manufacturing process of the semiconductor device and reducing the thermal stress on the semiconductor device.
  • the above is preferable.
  • the reason for this is that when the reaction rate is 95% or more, physical properties such as glass transition temperature (Tg) and fracture toughness value are less likely to change due to post-curing due to high temperature storage, etc., and adversely affect semiconductor devices such as warping and peeling. It is because is reduced.
  • curing refers to forming a three-dimensional network structure by thermosetting reaction of an epoxy resin
  • the reaction rate (Y) is measured by DSC (differential scanning calorimetry)
  • the calorific value is measured by DSC after weighing 20 mg of sample in an aluminum pan, capping, and using DSC220 manufactured by Seiko Instruments Inc., measuring the temperature range of 30-300 ° C under the temperature rising condition of 10 ° C / min. (° C.) It can be determined as the area of the reaction peak with the base line in the graph with DSC (mJ / mg) on the vertical axis.
  • the semiconductor device of the present invention is manufactured using the liquid sealing resin composition described above.
  • a semiconductor element having a solder bump and a substrate are first solder-connected through a reflow apparatus.
  • flux 3 is applied to solder bumps 1 provided on the semiconductor element 2.
  • FIG. 1C the obtained semiconductor element 2 is temporarily mounted on the substrate 4.
  • the semiconductor element 2 is reflow-connected to the substrate 4 as shown in FIG.
  • FIG. 1 (e) the liquid sealing resin composition 5 is filled in the gap between the semiconductor element 2 and the substrate 4.
  • a method utilizing a capillary phenomenon is common. Specifically, the liquid sealing resin composition is applied to one side of the semiconductor element and then poured into the gap between the semiconductor element and the substrate by a capillary phenomenon, and the liquid sealing resin composition is applied to the two sides of the semiconductor element. After coating, a method of pouring into the gap between the semiconductor element and the substrate by capillary action, a through hole is opened in the central part of the semiconductor element, the liquid sealing resin composition is applied around the semiconductor element, and then the semiconductor element And a method of pouring into the gap between the substrate and the substrate by capillary action. Further, instead of applying the whole amount at once, a method of applying in two steps is also performed. Next, the filled liquid sealing resin composition is cured.
  • the curing conditions are not particularly limited, but can be cured by heating for 1 to 12 hours in a temperature range of 100 to 170 ° C., for example. Furthermore, for example, after heating at 100 ° C. for 1 hour, heat curing may be performed while changing the temperature stepwise, such as heating at 150 ° C. for 2 hours. In this manner, a semiconductor device in which the space between the semiconductor element and the substrate is sealed with the cured product of the liquid sealing resin composition can be obtained.
  • Such semiconductor devices include flip-chip semiconductor devices, cavity down type BGA (Ball Grid Array), POP (Package on Package) type BGA (Ball Grid Array), TAB (Tape Automated Bonding) type BGA (Ball). Grid Array) and CSP (Chip Scale Package).
  • Example 1 shows the epoxy resin (A) and curing agent (B) shown below, a mixture of spherical alumina and spherical silica as the inorganic filler (C), basic compound (D), diluting solvent, and adhesion aid. After blending with the indicated composition and kneading and dispersing it sufficiently with three rolls, vacuum degassing was performed to obtain a liquid sealing resin composition. In addition, the basic compound and the diluting solvent were previously mixed at room temperature.
  • Epoxy resin Dainippon Ink & Chemicals, Inc. (EXA-830LVP) Made by Japan Epoxy Resin Co., Ltd. (JER-630) ⁇ Hardener (B) Nippon Kayaku Co., Ltd. (Kayahard AA) ⁇ Inorganic filler (C) ⁇ Spherical alumina (1) Manufactured by Denki Kagaku Kogyo Co., Ltd. (ASFP-20: average diameter 0.2 ⁇ m) Admatechs Co., Ltd. (AO-502: average diameter 0.7 ⁇ m) ⁇ Spherical alumina (2) Showa Denko Co., Ltd. (CB-P02: average diameter 2.0 ⁇ m) Showa Denko Co., Ltd.
  • the thermal diffusivity ⁇ , density ⁇ , and specific heat Cp of a cured product obtained by heating for 2 hours in an atmosphere at 150 ° C. are determined by the following methods.
  • the thermal conductivity ⁇ was calculated from the equation (1).
  • the thermal diffusivity ⁇ is measured by a laser flash method according to JIS R 1611: 2011 (least square method) using a thermal diffusivity measuring device LFA447 Nanoflash (manufactured by NETZSCH), and the density ⁇ is based on the JIS K 7112A method.
  • a glass cell having a parallel plane with a gap was prepared by bonding an 18 mm ⁇ 18 mm glass plate (upper) and a glass plate (lower) so that a space of 70 ⁇ 10 ⁇ m was left therebetween.
  • the glass cell was placed on a hot plate and allowed to stand for 5 minutes while adjusting the temperature so that the upper surface temperature of the glass plate (upper) was 110 ⁇ 1 ° C.
  • 0.05 to 0.1 mL of a liquid sealing resin composition that was allowed to stand at room temperature for 24 hours was applied to one side of the glass cell using the capillary phenomenon, and the time (seconds) required to flow 18 mm was measured. It was determined that a gap inflow time of less than 400 seconds was good and a gap inflow time of 400 seconds or more was unacceptable.
  • a 15 mm square semiconductor element provided with solder bumps having a bump size of 100 ⁇ m and a number of bumps of 3872, and a BT substrate (bismaleimide triazine substrate, connection pad: gold-plated surface) are combined with a rosin flux agent (tal Using a Kester 6502 manufactured by Chinster Co., Ltd., a semiconductor device having a gap between the semiconductor element and the BT substrate of 80 ⁇ m obtained by heating and melting at 260 ° C. on a hot plate heated to 110 ° C.
  • the liquid sealing resin composition was filled into the gap between the semiconductor element and the BT substrate from one side of the semiconductor element using a capillary phenomenon, and then cured and sealed at 150 ° C. for 2 hours to obtain a semiconductor device. .
  • the obtained semiconductor device was inspected using an ultrasonic deep wound device, and it was determined that there was no unfilled portion, and that there was an unfilled portion was unacceptable.
  • the present invention can be used to obtain a liquid sealing resin composition having both high thermal conductivity, low dielectric constant, and high gap inflow property, and a semiconductor device using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

高熱伝導率と高隙間流入性とを兼備した液状封止樹脂組成物を提供することを目的の一つとし、本発明は(A)エポキシ樹脂、(B)硬化剤、および(C)無機充填材を含有する液状封止樹脂組成物であって、上記(C)無機充填材が平均径0.5μm以上1.0μm未満の球状アルミナ(1)と平均径1.0μm以上3.0μm未満の球状アルミナ(2)との混合物を含み、且つpHが7より大きいことを特徴とする液状封止樹脂組成物を提供する。

Description

液状封止樹脂組成物、液状封止樹脂組成物を用いた半導体装置、および半導体装置の製造方法
本発明は、高熱伝導率と高隙間流入性とを兼備した液状封止樹脂組成物、その液状封止樹脂組成物を用いたバンプ接続方式の半導体装置、および半導体装置の製造方法に関する。
 本発明は、2011年4月22日に、日本に出願された特願2011-095645号に基づき優先権を主張し、その内容をここに援用する。
 近年様々な電子情報処理機器には、狭い面積に高密度実装することが可能なバンプ接続方式の半導体装置が広く用いられるようになってきている。そのようなバンプ接続方式の半導体装置では、半導体素子をバンプによって電気的に接続した後、接続信頼性を向上するために、アンダーフィル材と呼ばれる液状封止樹脂をバンプ接続部へ充填して硬化させ、接続バンプ周辺を補強するのが一般的である。
 また一方で高度情報化社会進展の一端として、あらゆる情報が電子データ化され、それを瞬時に処理して伝達する必要にも迫られてきており、さらに低炭素社会の実現など環境問題への対応も必須とされていることから、大容量の電子データを高速且つ低消費電力で処理できる安価な電子情報処理機器が求められてきている。それに伴って機器に組み入れられる半導体装置にも、より低消費電力で安定した高速動作の可能なことが求められており、そのため半導体装置の発熱対策も重要になってきたことから、バンプ接続方式の半導体装置に用いられる液状封止樹脂に対しても高い熱伝導性が必要になってきている。
さらに、電子情報処理機器の低価格化を実現するために、半導体装置は小型・薄型化が進んできており、近年ではバンプ接続方式の半導体装置における接続部の隙間やバンプ間隔は100μmに満たないものがほとんどで、今後もますます微細化が進むとみられるため、用いられる液状封止樹脂にはいっそう高い隙間流入性が求められてきている。このように、高い熱伝導性と高い隙間流入性とを兼備した液状封止樹脂が求められてきた。
従来、半導体装置用液状封止樹脂には熱時寸法の安定性や強度保持のためシリカフィラーを含有するのが一般的であったが、熱伝導性を改善するためには比較的熱伝導性の低いシリカフィラーに替えて、より高い熱伝導性のフィラーをできるだけ多く含有するのが一般的であり、窒化ケイ素や窒化アルミニウム、アルミナ、酸化マグネシウムなどの高熱伝導性フィラーを使用できることは広く知られている。
それらの中で、例えば球状アルミナを用いたものとして、平均粒径2~30μmであり、且つ粒径24μm以上の粒子を15%以上、1μm以下の粒子を3%以上含有する球状アルミナを含有したものが提案されている(特許文献1参照)。しかし、この技術では24μm以上の粒子を15%以上含有していることを必要とすることから、バンプ接続部の隙間やバンプとバンプの間へフィラーが詰まる可能性が高くなるため、ますます微細化する傾向にある半導体装置への適用には限界があった。一方、前述に比べてより小さい径の球状アルミナを用いることで、そのような問題に対応するものとして、平均粒子径が1~5μm、最大粒子径が20μm以下で、10μmを超える粒子の構成割合が10質量%未満の球状アルミナを組成物全体の60~90質量%含有するものも提案されている(特許文献2参照)。しかしこの技術では流動性に問題が生じるとの理由から、平均径1μm未満のアルミナを用いることはできなかった。その結果、平均径1μm以下のアルミナを用いることでアルミナの充填度をアップし、高熱伝導化を図ることは困難であった。さらに、平均径1μm未満のフィラーを用いるものとして、平均粒径1~30μmのアルミナと平均粒径0.1~30μmのシリカの混合物に、さらに平均粒径0.1μm未満の超微粉無機充填材を全樹脂組成物中に44~75体積%含むものなども提案されている(特許文献3)。
しかし、アルミナと比べて熱伝導性の低いシリカを併用する必要があることから、アルミナだけを含有したものに比べ熱伝導性が低下することは避ける事が出来ないという問題があった。
特許第2643714号公報 特開2008-274083号公報 特開2010-118649号公報
本発明の目的は、従来は実現が困難であった高い熱伝導率と高い隙間流入性とを兼備した液状封止樹脂組成物を提供することである。
本発明は以下の通りである。
[1](A)液状エポキシ樹脂、(B)アミン系硬化剤、および(C)無機充填材を含有する液状封止樹脂組成物であって、上記(C)無機充填材が平均径0.5μm以上1.0μm未満の球状アルミナ(1)と平均径1.0μm以上3.0μm未満の球状アルミナ(2)との混合物を含有し、且つpHが7より大きいことを特徴とする液状封止樹脂組成物。
[2] さらに、(D)塩基性化合物を含有することを特徴とする[1]記載の液状封止樹脂組成物。
[3]前記(D)塩基性化合物が、1,8-ジアザビシクロ(5.4.0)ウンデセン-7、1,5-ジアザビシクロ(4.3.0)ノネン-5、およびそれらの塩のうち少なくとも1種類である[2]記載の液状封止樹脂組成物。
[4]液状封止樹脂組成物における前記(C)無機充填材の含有量が80質量%以上であって、そのうち(C)無機充填剤に占める0.5μm以上1.0μm未満の球状アルミナ(1)の割合が5質量%以上50質量%未満である[1]~[3]いずれかに記載の液状封止樹脂組成物。
[5] 半導体素子と、半導体素子を搭載し得る基板とを具備する半導体装置であって、前記半導体素子と前記基板との間が、[1]または[2]に記載の液状封止樹脂組成物の硬化物で封止されていることを特徴とする半導体装置。
[6] 半導体素子を搭載し得る基板上に半導体素子を接続搭載する工程と、
半導体素子と基板との間に液状封止樹脂組成物を充填し硬化する工程とを具備する半導体装置の製造方法であって、上記充填工程において使用する液状封止樹脂組成物が、[1]~[4]いずれかに記載の液状封止樹脂組成物であることを特徴とする半導体装置の製造方法。
 本発明によれば、高い熱伝導率と高い隙間流入性とを兼備した液状封止樹脂組成物の提供を可能にし、それを用いて組み立てられたバンプ接続方式の半導体装置の発熱対策や小型・薄型化を可能にすることで、低消費電力で安定した高速動作が可能な半導体装置を得ることができる
本発明の半導体装置の構成を示す概略図である。 本発明の半導体装置の製造方法の一例を示す工程図である。
 以下、本発明の液状封止樹脂組成物および半導体装置について説明する。
 本発明の液状封止樹脂組成物は、(A)エポキシ樹脂、(B)アミン系硬化剤、および(C)無機充填材を含有する液状封止樹脂組成物であって、上記(C)無機充填材が平均径0.5μm以上1.0μm未満の球状アルミナ(1)と平均径1.0μm以上3.0μm未満の球状アルミナ(2)との混合物を含有し、且つpHが7より大きいことを特徴とする液状封止樹脂組成物である。本発明の液状封止樹脂組成物は、半導体素子と基板とをバンプ接続した後、半導体素子と基板との隙間を封止する際に好ましく用いられる。
本発明の半導体装置では、半導体素子と基板との間が上記液状封止樹脂組成物の硬化物で封止されている。
 まず、液状封止樹脂組成物について説明する。
本発明の液状封止樹脂組成物は、エポキシ樹脂(A)を含む。これにより、硬化後の封止樹脂脂組成物が耐熱性、耐湿性、機械的強度に優れ、且つバンプ接続部を強固に接着することができる。そのため、信頼性に優れた半導体装置を得ることができる。
エポキシ樹脂(A)としては、一分子中にエポキシ基を2個以上有するものであれば特に分子量や構造は限定されるものではないが、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂などのビスフェノール型エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジルトルイジン、ジアミノジフェニルメタン型グリシジルアミン、アミノフェノール型グリシジルアミンなどの芳香族グリシジルアミン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、トリフェノールプロパン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリアジン核含有エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂などのエポキシ樹脂、ビニルシクロヘキセンジオキシド、ジシクロペンタジエンオキシド、アリサイクリックジエポキシ-アジペイドなどの脂環式エポキシなどの脂肪族エポキシ樹脂が挙げられる。
さらに本発明の場合、芳香族環にグリシジル構造またはグリシジルアミン構造が結合した構造を含むものが耐熱性、機械特性、耐湿性という観点からより好ましく、脂肪族または脂環式エポキシ樹脂は信頼性、特に接着性という観点から使用する量を制限するほうがさらに好ましい。これらは単独でも2種以上混合して使用してもよい。また本発明では液状封止樹脂組成物の態様のため、エポキシ樹脂(A)として最終的に常温(25℃)で液状であることが好ましいが、常温で固体のエポキシ樹脂であっても常温で液状のエポキシ樹脂に溶解させ、結果的に液状の状態であればよい。
本発明において、常温とは25℃を指し、また、液状とは樹脂又は樹脂組成物が流動性を有していることを指す。
本発明において、上記液状樹脂組成物は、常温(25℃)において流動性を有している。
本発明の液状封止樹脂組成物は、アミン系硬化剤(B)を含む。そのようなものとしては、例えばジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタミン、m-キシレンジアミン、トリメチルヘキサメチレンジアミン、2-メチルペンタメチレンジアミン脂肪族ポリアミン、イソフォロンジアミン、1,3-ビスアミノメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ノルボルネンジアミン、1,2-ジアミノシクロヘキサンなどの脂環式ポリアミン、N-アミノエチルピペラジン、1,4-ビス(2-アミノ-2-メチルプロピル)ピペラジンなどのピペラジン型のポリアミン、ジアミノジフェニルメタン、m-フェニレンジアミン、ジアミノジフェニルスルホン、ジエチルトルエンジアミン、トリメチレンビス(4-アミノベンゾエート)、ポリテトラメチレンオキシド-ジ-P-アミノベンゾエートなどの芳香族ポリアミン類が挙げられる。これらは、単独で用いても2種以上の硬化剤を配合して用いてもよい。
さらに半導体装置の封止用途を考慮すると、耐熱性、電気的特性、機械的特性、密着性、耐湿性の観点から芳香族ポリアミン型硬化剤が一層好ましい。性状としては、熱硬化性液状封止樹脂組成物の流動性を確保するため液状の硬化剤が好ましいが、結果的に常温で液状の状態であれば固形の硬化剤を溶解させて用いることもできる。
アミン系硬化剤以外の硬化剤として、フェノール類、酸無水物、ポリアミド樹脂、ポリスルフィド樹脂などを併用してもよい。
本発明の液状封止樹脂組成物は、無機充填材(C)として平均径0.5μm以上1.0μm未満の球状アルミナ(1)と平均径1.0μm以上3.0μm未満の球状アルミナ(2)との混合物を含む。
球状アルミナ(1)の平均径が0.5μm以上であるとバンプ接続部の隙間への流入性を向上させる効果が高くなり、1.0μm未満であると熱伝導率を向上させる効果が高くなる。球状アルミナ(2)の平均径が1.0μm以上であると、バンプ接続部の隙間への流入性を向上させる効果が高くなり、3.0μm未満であると熱伝導率を向上させる効果が高くなる。
無機充填材(C)は、高熱伝導と高隙間流入性とを兼備しており半導体装置の信頼性を十分保持可能で、バンプ接続部への流入が可能であれば含有量に制限はないが、含有量80質量%以上で、そのうち無機充填剤(C)に占める0.5μm以上1.0μm未満の球状アルミナ(1)の割合が5質量%以上50質量%未満であることが好ましい。無機充填剤(C)の含有量が80質量%以上であると熱伝導率上昇効果が高くなり、そのうちアルミナ(1)の割合が5質量%以上であるとバンプ接続部の隙間への流入性を向上させる効果が高くなり、50質量%未満であると熱伝導率を向上させる効果が高くなる。
球状アルミナ以外の無機充填材も、本発明の効果である高熱伝導と低誘電率、高隙間流入性とが得られる範囲で加えることができ、そのようなものとしては球状シリカ、窒化ケイ素や窒化アルミニウム、酸化マグネシウムなどを適宜併用することができる。
上記成分を含有する本発明の液状封止樹脂組成物のpH値は、7をより大きい。これにより、球状アルミナの樹脂系への分散性がいっそう向上し、粘度が低下して隙間流入性が向上する。それと同時に球状アルミナ粒子同士の静電気的相互作用がいっそう弱まるので、未充填ボイドや巻き込みボイド、揮発ボイドなど熱伝導を妨げる各種ボイドの発生が抑制され、高い熱伝導率を得ることができる。さらに好ましくは、pH値8より大きいことが、アルミナの等電点を上回るので、前記効果がいっそう高くなる。
ここでpH値とは、水素イオン指数または水素イオン濃度指数を指す。pH値の決定方法は特に限定されないが、例えばリトマス試験紙などのpH試験紙、pH指示薬、pH電極やpHセンサーなどを用いた一般的なものを使用することができる。なお、pH値の決定に際しては、液状封止樹脂組成物のpH値を変動させない範囲で前処理を施したり、添加剤を加えたり、加熱や冷却などの操作も加えることができる。
本願では、液状封止樹脂組成物0.01~0.1mlを、pHメーターのセンサー部に乗せ、その上から純水を0.02~0.2ml加えて検体とした。さらに、センサー部を傾けるなどして全体が検体で覆われるようにし、pH値が安定するまで静置し、表示されたpH値を液状樹脂組成物のpH値とした。
本発明の液状封止樹脂組成物は塩基性化合物(D)を含有することが好ましい。塩基性化合物とは、液状封止樹脂組成物に加えることで封止樹脂系全体のpH値を塩基性方向へ移行させるように働き、そのことによって球状アルミナの表面電位をマイナス方向へ変位させることで各々の封止樹脂系への分散性を改善し、粘度を低下できるので隙間流入性を向上させることができる。それと同時に、球状アルミナ粒子同士の静電気的相互作用を弱められるので、未充填ボイドや巻き込みボイド、揮発ボイドなど熱伝導を妨げる各種ボイドの発生を抑制できることから、高い熱伝導率を得ることができる。
 従って、塩基性化合物(D)として、封止樹脂物全体のpH値を塩基性方向へ移行し得るものであれば特に制限はないが、そのようなものとしては、例えばヘキシルアミン、ヘプチルアミン、オクチルアミンなどの1級アミン類、ジプロピルアミン、ジブチルアミン、イソプロピルベンジルアミン、ジヘキシルアミン、ジオクチルアミン、ジシクロヘキシルアミン、ジフェニルアミン、ジベンジルアミン、ジデシルアミンなどの2級アミン類、イミノジエタノール、エチルアミノエタノール、イソプロピルアミノエタノール、ベンジルエタノールアミン、ジブチルアミノエタノール、アニリノエタノール、2-アミノ-2-エチル-1,3-プロパンジオール、イソプロパノールアミン、アミノメチルプロパノール、エタノールアミン、アミノプロパノール、ヘキサノールアミン、アミノエトキシエタノール、トリスヒドロキシメチルアミノメタンなどの1級,2級,3級アミノアルコール類、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンとその部分加水分解物、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンとその部分加水分解物、N-フェニル-3-アミノプロピルトリメトキシシランなどの各種塩基性カップリング剤や、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)あるいはその塩、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)あるいはその塩などの塩基性物質などを挙げる事ができる。
なかでも、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)あるいはその塩、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)あるいはその塩が封止樹脂系のpH値を塩基性に移行させる効果がより高く好ましい。
塩基性化合物(D)の配合量は、封止樹脂物全体のpH値を塩基性方向へ移行し得るものであれば特に制限はないが、0.005質量%以上1.0質量%以下であることが好ましい。
本発明の液状封止樹脂組成物には、エポキシ樹脂(A)、硬化剤(B)、無機充填材(C)として平均径0.5μm以上1.0μm未満の球状アルミナ(1)と平均径1.0μm以上3.0μm未満の球状アルミナ(2)との混合物、塩基性化合物(D)を含有する以外に、必要に応じて密着助剤、分散剤、ブリード防止剤、着色剤、消泡剤、希釈剤、顔料、難燃剤、レベリング剤などの各種添加剤を用いることができる。ただし、それらの添加物によって塩基性化合物の働きが抑えられる場合は、適宜塩基性化合物(D)の配合量を増やすことで本発明の効果を維持できる。
 本発明の液状封止樹脂組成物は、上述した各成分、添加剤などをプラネタリーミキサー、三本ロール、二本熱ロール、ライカイ機などの装置を用いて分散混練したのち、真空下で脱泡処理して製造するなど、一般的に知られている製造方法を用いることができる。さらに、液状封止樹脂組成物の製造に際しては、必要に応じて原料投入工程、分散混練工程などにおいて、原料投入の順序や投入時間を調整することや、何度かに分けて原料投入や分散混練を行うこと、加温すること、熟成工程を付加することなども可能である。
 このような液状封止樹脂組成物は、半導体装置の製造プロセスにおける時間の短縮や半導体デバイスへの熱応力低減の観点から、150℃以下2時間以下の硬化条件でエポキシ樹脂の反応率が95%以上であることが好ましい。その理由としては、反応率が95%以上になると、高温保管などによる後硬化により、ガラス転移温度(Tg)や破壊靱性値などの物性が変化することが少なく、反りや剥離など半導体装置へ悪影響が低減されるからである。ここで硬化とは、エポキシ樹脂の熱硬化反応によって3次元網状構造を形成することを指し、その反応率(Y)はDSC(示差走査熱量測定)により測定し、未硬化のサンプルの発熱量A(mJ/mg)と硬化後のサンプルの発熱量B(mJ/mg)を測定し、Y(%)=(1-B/A)×100の計算式を用いて算出する。DSCによる発熱量測定はアルミパンにサンプルを20mg秤量し蓋をした後、Seiko Instruments社製DSC220を用い30-300℃の温度範囲を10℃/minの昇温条件で測定し、横軸に温度(℃)縦軸にDSC(mJ/mg)をとったグラフにおけるベースラインを底辺とした反応ピークの面積として求めることができる。
次に、半導体装置について説明する。
本発明の半導体装置は、上述した液状封止樹脂組成物を用いて製造される。
例えばフリップチップ接続のアンダーフィル材に適用した場合について説明すると、まず半田バンプを有する半導体素子と基板とを、リフロー装置を通して半田接続を行う。具体的には、図1(a)および(b)に示すように、半導体素子2に設けられた半田バンプ1にフラックス3を塗布する。次いで、図1(c)に示すように、得られた半導体素子2を基板4上に仮搭載する。その後、図1(d)に示すように、半導体素子2を基板4にリフロー接続する。次いで、図1(e)に示すように、半導体素子2と基板4との間隙に液状封止樹脂組成物5を充填する。充填する方法としては、毛細管現象を利用する方法が一般的である。具体的には、半導体素子の一辺に上記液状封止樹脂組成物を塗布した後、半導体素子と基板との間隙に毛細管現象で流し込む方法、半導体素子の2辺に上記液状封止樹脂組成物を塗布した後、半導体素子と基板との間隙に毛細管現象で流し込む方法、半導体素子の中央部にスルーホールを開けておき、半導体素子の周囲に上記液状封止樹脂組成物を塗布した後、半導体素子と基板との間隙に毛細管現象で流し込む方法などが挙げられる。また、一度に全量を塗布するのではなく、2度に分けて塗布する方法なども行われる。次に、充填した上記液状封止樹脂組成物を硬化させる。硬化条件は、特に限定されないが、例えば100℃~170℃の温度範囲で1~12時間加熱を行うことにより硬化できる。さらに、例えば100℃で1時間加熱した後、引き続き150℃で2時間加熱するような、段階的に温度を変化させながら加熱硬化を行っても良い。このようにして、半導体素子と基板との間が、液状封止樹脂組成物の硬化物で封止されている半導体装置を得ることができる。
このような半導体装置には、フリップチップ方式の半導体装置、キャビティーダウン型BGA(Ball Grid Array)、POP(Package on Package)型BGA(Ball Grid Array)、TAB(Tape Automated Bonding)型BGA(Ball Grid Array)、CSP(Chip Scale Package)等が挙げられる。
以下、本発明を実施例および比較例に基づいて詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1~7)(比較例1~5)
 下記に示すエポキシ樹脂(A)と硬化剤(B)、無機充填剤(C)として球状アルミナと球状シリカとの混合物、塩基性化合物(D)、その他に希釈溶剤、密着助剤を表1に示した組成で配合、それを3本ロールにて十分に混練分散した後、真空脱泡して液状封止樹脂組成物を得た。なお、塩基性化合物と希釈溶剤とは予め室温混合したものを用いた。
○エポキシ樹脂(A)
大日本インキ化学工業(株)製 (EXA-830LVP)
ジャパンエポキシレジン(株)製(JER-630)
○硬化剤(B)
日本化薬(株)製 (カヤハードAA)
○無機充填材(C)
 ・球状アルミナ(1)
電気化学工業(株)製 (ASFP-20:平均径0.2μm)
アドマテクス(株)製 (AO-502:平均径0.7μm)
 ・球状アルミナ(2)
昭和電工(株)製   (CB-P02:平均径2.0μm)
  昭和電工(株)製   (CB-A05S:平均径3.0μm)
  昭和電工(株)製   (CB-P05:平均径4.0μm)
○塩基性化合物(D)
1,8-ジアザビシクロ(5,4,0)ウンデセン-7(DBU)
DBU-フェノール塩 サンアプロ(株)製U-CAT (SA-1)
1,5-ジアザビシクロ(4,3,0)ノネン-5  (DBN)
○希釈溶剤
ブチルセロソルブアセテート(BCSA)
○密着助剤
信越化学(株)製 (KBM-403)
(測定及び評価)
得られた液状封止樹脂組成物および半導体装置について、以下の測定及び評価を行った。得られた結果を表1に示す。
1.pHの測定
各液状封止樹脂組成物0.05mlを、予め校正液を用いて校正されたHORIBA製コンパクトpHメーター「B-211」のセンサー部に乗せ、その上から純水約0.1ml加えて検体とした。さらに、センサー部を傾けるなどして全体が検体で覆われるようにし、センサー部の蓋を閉めてpH値が安定したとの表示が出るまで静置した。表示されたpH値を液状樹脂組成物のpH値とした。
2.熱伝導率の測定と評価
 各液状封止樹脂組成物について、150℃雰囲気下で2時間加熱して得られる硬化物の熱拡散率α、密度ρおよび比熱Cpを下記方法によってそれぞれ測定して求め、式(1)により熱伝導率λを算出した。
熱拡散率αは、熱拡散率測定装置LFA447 Nanoflash(NETZSCH社製)を用い、JIS R 1611:2011(最小二乗法)に準拠したレーザーフラッシュ法によって測定、密度ρはJIS K 7112A法に準拠した水中置換法によって測定、また比熱Cpについては示差走査熱量計 DSC7(PERKIN-ELMER社製)を用い、JIS K 7123に準拠した方法によって測定した。
熱伝導率の評価については、熱伝導率値が1.5W/m・K以上のものは良好、1.5W/m・K未満のものは不可と判定した。
λ=α×ρ×Cp ・・・・・・・・・・・式(1)
λ:熱伝導率(W/m・K)
α:熱拡散率(m2/sec)
ρ:密度(kg/m3)
Cp:比熱(J/kg・K)
3.隙間流入速度の測定と評価
 18mm×18mmのガラス板(上)とガラス板(下)とを70±10μmの間隔が空くように張り合わせて、隙間のある平行平面を持つガラスセルを作製した。このガラスセルをホットプレートの上に置き、ガラス板(上)の上面温度が110±1℃になるよう温度調整しながら5分間静置した。その後、ガラスセルの一辺に、室温で24時間静置した液状封止樹脂組成物0.05~0.1mLを毛細管現象を利用して塗布し、18mm流れきる時間(秒)を測定した。隙間流入時間が400秒未満のものを良好、400秒以上のものを不可と判定した。
4.隙間流入性の評価
 バンプサイズ100μm、バンプ数3872個の半田バンプが設けられた15mm角の半導体素子と、BT基板(ビスマレイミドトリアジン基板、接続パッド:金メッキ表面)とを、ロジン系フラックス剤(タルチンケスター社製 Kester6502)を使用し、260℃で加熱して半田を溶融接合して得られた、半導体素子とBT基板との隙間が80μmの半導体装置を、110℃に加熱した熱板上に乗せ、半導体素子とBT基板との隙間に前記の液状封止樹脂組成物を半導体素子の一辺から毛細管現象を利用して充填した後、150℃で2時間硬化封止して半導体装置を得た。得られた半導体装置を、超音波深傷装置を用いて検査し、未充填部の無かったものを良好、未充填部のあったものを不可と判定した。
Figure JPOXMLDOC01-appb-T000001
本発明は、高熱伝導率と低誘電率、高隙間流入性とを兼備した液状封止樹脂組成物、およびそれを用いた半導体装置を得ることに利用することができる。

Claims (6)

  1. (A)液状エポキシ樹脂、(B)アミン系硬化剤、および(C)無機充填材を含有する液状封止樹脂組成物であって、
    上記(C)無機充填材が平均径0.5μm以上1.0μm未満の球状アルミナ(1)と平均径1.0μm以上3.0μm未満の球状アルミナ(2)との混合物を含有し、且つ
    pHが7より大きいことを特徴とする液状封止樹脂組成物。
  2.  さらに、(D)塩基性化合物を含有することを特徴とする請求項1記載の液状封止樹脂組成物。
  3. 前記(D)塩基性化合物が、1,8-ジアザビシクロ(5.4.0)ウンデセン-7、1,5-ジアザビシクロ(4.3.0)ノネン-5、およびそれらの塩のうち少なくとも1種類である請求項1又は2記載の液状封止樹脂組成物。
  4. 液状封止樹脂組成物における前記(C)無機充填材の含有量が80質量%以上であって、そのうち(C)無機充填剤に占める0.5μm以上1.0μm未満の球状アルミナ(1)の割合が5質量%以上50質量%未満である請求項1または2に記載の液状封止樹脂組成物。
  5.  半導体素子と、半導体素子を搭載し得る基板とを具備する半導体装置であって、前記半導体素子と前記基板との間が、請求項1または2に記載の液状封止樹脂組成物の硬化物で封止されていることを特徴とする半導体装置。
  6.  半導体素子を搭載し得る基板上に半導体素子を接続搭載する工程と、
    半導体素子と基板との間に液状封止樹脂組成物を充填し硬化する工程とを具備する半導体装置の製造方法であって、
    上記充填工程において使用する液状封止樹脂組成物が、請求項1または2に記載の液状封止樹脂組成物であることを特徴とする半導体装置の製造方法。
PCT/JP2012/059545 2011-04-22 2012-04-06 液状封止樹脂組成物、液状封止樹脂組成物を用いた半導体装置、および半導体装置の製造方法 WO2012144355A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-095645 2011-04-22
JP2011095645A JP2012224799A (ja) 2011-04-22 2011-04-22 液状封止樹脂組成物および液状封止樹脂組成物を用いた半導体装置

Publications (1)

Publication Number Publication Date
WO2012144355A1 true WO2012144355A1 (ja) 2012-10-26

Family

ID=47041467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059545 WO2012144355A1 (ja) 2011-04-22 2012-04-06 液状封止樹脂組成物、液状封止樹脂組成物を用いた半導体装置、および半導体装置の製造方法

Country Status (3)

Country Link
JP (1) JP2012224799A (ja)
TW (1) TW201311790A (ja)
WO (1) WO2012144355A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022125150A (ja) * 2016-12-27 2022-08-26 昭和電工マテリアルズ株式会社 樹脂組成物及び電子部品装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9670377B2 (en) 2014-03-04 2017-06-06 Namics Corporation Underfill composition for encapsulating a bond line
JP6405209B2 (ja) * 2014-12-02 2018-10-17 ナミックス株式会社 銅バンプ用液状封止材、および、それに用いる樹脂組成物
JP6888870B2 (ja) * 2017-08-30 2021-06-16 京セラ株式会社 半導体封止用樹脂組成物及び半導体装置
JP7276151B2 (ja) * 2017-12-28 2023-05-18 株式会社レゾナック ボールグリッドアレイパッケージ封止用エポキシ樹脂組成物、エポキシ樹脂硬化物及び電子部品装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100394A (ja) * 1995-08-01 1997-04-15 Toshiba Corp エポキシ樹脂組成物及び樹脂封止型半導体装置
JPH10231351A (ja) * 1997-02-18 1998-09-02 Sumitomo Bakelite Co Ltd 液状注入封止アンダーフィル材料
JP2002097254A (ja) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd エポキシ樹脂組成物及び半導体装置
JP2004292515A (ja) * 2003-03-25 2004-10-21 Sumitomo Bakelite Co Ltd 高熱伝導エポキシ樹脂組成物及び半導体装置
JP2008184544A (ja) * 2007-01-30 2008-08-14 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置
JP2008274083A (ja) * 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物及び半導体装置
WO2010073559A1 (ja) * 2008-12-25 2010-07-01 住友ベークライト株式会社 液状樹脂組成物および半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100394A (ja) * 1995-08-01 1997-04-15 Toshiba Corp エポキシ樹脂組成物及び樹脂封止型半導体装置
JPH10231351A (ja) * 1997-02-18 1998-09-02 Sumitomo Bakelite Co Ltd 液状注入封止アンダーフィル材料
JP2002097254A (ja) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd エポキシ樹脂組成物及び半導体装置
JP2004292515A (ja) * 2003-03-25 2004-10-21 Sumitomo Bakelite Co Ltd 高熱伝導エポキシ樹脂組成物及び半導体装置
JP2008184544A (ja) * 2007-01-30 2008-08-14 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置
JP2008274083A (ja) * 2007-04-27 2008-11-13 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物及び半導体装置
WO2010073559A1 (ja) * 2008-12-25 2010-07-01 住友ベークライト株式会社 液状樹脂組成物および半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022125150A (ja) * 2016-12-27 2022-08-26 昭和電工マテリアルズ株式会社 樹脂組成物及び電子部品装置

Also Published As

Publication number Publication date
TW201311790A (zh) 2013-03-16
JP2012224799A (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
TWI667267B (zh) 液狀封裝材、及使用其之電子元件
WO2012144355A1 (ja) 液状封止樹脂組成物、液状封止樹脂組成物を用いた半導体装置、および半導体装置の製造方法
JP2011168650A (ja) エポキシ樹脂組成物
JP4747580B2 (ja) アンダーフィル用液状封止樹脂組成物、それを用いた半導体装置、及びその製造方法
WO2012111652A1 (ja) 液状封止樹脂組成物および液状封止樹脂組成物を用いた半導体装置
JP2008069291A (ja) 半導体封止用液状エポキシ樹脂組成物及び半導体装置
JP6512699B2 (ja) 半導体封止用一液性エポキシ樹脂組成物、硬化物、半導体部品の製造方法及び半導体部品
JP5101860B2 (ja) エポキシ樹脂組成物と半導体装置
JP5703489B2 (ja) 封止用液状樹脂組成物の製造方法と調整方法及びこれを用いた半導体装置と半導体素子の封止方法
JP2010118649A (ja) 封止用液状樹脂組成物、及びこれを用いた電子部品装置
JP7000698B2 (ja) アンダーフィル用樹脂組成物、半導体装置の製造方法及び半導体装置
JP4810835B2 (ja) アンダーフィル用液状封止樹脂組成物及びそれを用いた半導体装置
JP2003212963A (ja) 熱硬化性液状封止樹脂組成物及び半導体装置
WO2019078024A1 (ja) 封止用樹脂組成物および半導体装置
WO2019146617A1 (ja) 封止用樹脂組成物
JPWO2010073559A1 (ja) 液状樹脂組成物および半導体装置
JP2004352939A (ja) 液状封止樹脂及びそれを用いた半導体装置
TWI664230B (zh) 液狀環氧樹脂組成物
WO2023162252A1 (ja) アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
JP2007238781A (ja) 液状封止樹脂組成物、及びそれを用いた半導体装置
JPWO2018181603A1 (ja) 液状エポキシ樹脂組成物、半導体装置及び半導体装置の製造方法
KR102283055B1 (ko) 에폭시 복합 조성물 및 이를 포함하는 반도체 패키지
JP2002309067A (ja) 封止用エポキシ樹脂組成物及び半導体装置
KR102666277B1 (ko) 수지 조성물, 반도체 봉지재, 일액형 접착제 및 접착 필름
US20240132714A1 (en) Epoxy resin composition, semiconductor device, and method of producing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12774707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12774707

Country of ref document: EP

Kind code of ref document: A1