WO2012144312A1 - 血液成分採取装置 - Google Patents
血液成分採取装置 Download PDFInfo
- Publication number
- WO2012144312A1 WO2012144312A1 PCT/JP2012/058919 JP2012058919W WO2012144312A1 WO 2012144312 A1 WO2012144312 A1 WO 2012144312A1 JP 2012058919 W JP2012058919 W JP 2012058919W WO 2012144312 A1 WO2012144312 A1 WO 2012144312A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- plasma
- bag
- collection
- intermediate bag
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/02—Blood transfusion apparatus
- A61M1/0209—Multiple bag systems for separating or storing blood components
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3693—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3693—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging
- A61M1/3696—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits using separation based on different densities of components, e.g. centrifuging with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
Definitions
- the present invention relates to a blood component collection apparatus for collecting a predetermined blood component obtained by centrifuging blood collected from a donor.
- Blood collection performed by blood donation includes whole blood collection in which blood is collected as it is and component blood collection in which only predetermined components are extracted.
- component blood collection a predetermined component is extracted by centrifuging blood collected from a donor, and other components are returned to the donor.
- the necessary components plasma and platelets
- a blood component collection apparatus for automatically performing such component blood collection has been put into practical use (see, for example, Japanese Patent No. 319638).
- the blood component collection device includes a blood collection kit having a plurality of bags for storing (collecting) a predetermined blood component, and a plurality of tubes connecting the plurality of bags, and a predetermined control mechanism and a centrifuge mounted with the blood collection kit.
- An apparatus main body having a separator.
- the blood collection kit includes a blood collection line provided with a blood collection needle, an anticoagulant supply line for supplying an anticoagulant to the blood collection line, a plasma collection bag for storing (collecting) plasma obtained by centrifugation, and centrifugation.
- blood collected from a donor is introduced into a centrifuge and separated into plasma, buffy coat and erythrocytes by centrifugal force. Thereafter, the plasma is transferred to a plasma collection bag. Once a predetermined amount of plasma has been collected in the plasma collection bag, the platelets are then separated from the buffy coat and the platelets are transferred to an intermediate bag. White blood cells and red blood cells are returned to the donor, and plasma is returned to the donor as needed.
- the leukocytes are removed by filtration through a leukocyte removal filter, and the platelets (platelet preparation) from which the leukocytes have been removed are collected in a platelet collection bag To do.
- platelets collected in component blood collection are temporarily stored in the intermediate bag, and aggregates may be generated in the intermediate bag being stored.
- platelet aggregates may clog the leukocyte removal filter.
- the present invention has been made in consideration of such problems, and provides a blood component collection device capable of suppressing the generation of platelet aggregates in an intermediate bag that temporarily stores platelets. Objective.
- a blood component collection apparatus comprises a blood collection line for collecting blood from a donor, an anticoagulant supply line for supplying an anticoagulant to the blood collection line, and a collected blood.
- a centrifuge for obtaining a predetermined blood component by centrifugation, a plasma collection bag for storing plasma obtained by centrifugation, an intermediate bag for temporarily storing concentrated platelets obtained by centrifugation, A platelet collection bag for storing concentrated platelets transferred from the intermediate bag, a filter provided on a liquid feeding line between the intermediate bag and the platelet collection bag, and a filter for removing a predetermined component in the concentrated platelets; Switching for selectively switching between a state in which the flow path between the centrifuge and the plasma collection bag is in communication and a state in which the flow path between the centrifuge and the intermediate bag is in communication And a control unit that drives and controls the centrifuge and the switching unit, and the control unit introduces blood from the blood collection line into the centrifuge and performs centri
- plasma having a high anticoagulant concentration is introduced into the intermediate bag in advance before transferring the concentrated platelets to the intermediate bag during the first cycle. And the generation of aggregates in the intermediate bag during accumulation of concentrated platelets can be suppressed. In addition, the amount of anticoagulant in the blood component returned to the donor is reduced by introducing the plasma having a high anticoagulant concentration into the intermediate bag, so that the risk of citrate reaction and the like can be reduced.
- control unit may transfer the plasma that first flows out from the centrifuge to the intermediate bag.
- the anticoagulant concentration in the intermediate bag can be effectively increased by placing it in the intermediate bag.
- the generation of the inner agglomerates can be more suitably suppressed.
- the blood component collection device can suppress the formation of platelet aggregates in the intermediate bag.
- a blood component collection device 10 has a device body 12 and a blood collection kit 14 attached to the device body 12.
- the apparatus main body 12 is provided on the left side of the upper end of the first column 16a, the box-shaped mechanism main unit 15, the first column 16a and the second column 16b extending upward from the left and right sides of the mechanism unit 15.
- the monitor 20 is an input / output device of the blood component collection device 10 and has a large color touch panel 20a and a speaker 20b, and can be easily operated using images and sounds.
- the speaker 20b is a stereo type.
- the mechanism body 15 includes a left control mechanism 22 and a right centrifugal mechanism 24.
- the control mechanism unit 22 controls the entire blood component collection device 10 in an integrated manner, a blood pump 28, an anticoagulant pump 30, a turbidity sensor 32, and six bubble sensors 34a to 34f. , Seven clamps 36a-36g, a donor pressure sensor 38, and a system pressure sensor 40.
- a turbidity sensor 32 and the bubble sensors 34a to 34f for example, an ultrasonic sensor, an optical sensor, an infrared sensor, or the like can be used.
- the turbidity sensor 32 and the bubble sensor 34d are integrally configured.
- the control unit 26 is provided inside the mechanism main body unit 15. Devices other than the control unit 26 in the control mechanism unit 22 are provided on the upper surface, the front surface, and the support column so that the tube of the blood collection kit 14 can be attached.
- the blood pump 28 and the anticoagulant pump 30 are a roller pump type that pushes the blood inside by continuously rolling the roller against the side of the tube, and can be driven in a non-contact state with respect to the blood. is there.
- the blood pump 28 and the anticoagulant pump 30 are variable in speed and fluid discharge direction under the action of the control unit 26.
- the turbidity sensor 32 is a sensor that detects the turbidity of the liquid passing through the sandwiched tube.
- the bubble sensors 34a to 34f are sensors that detect the presence or absence of bubbles or liquid mixed in the liquid passing through the sandwiched tube.
- the clamps 36a to 36g press and close the sandwiched tube from both sides, or open and communicate with each other, thereby acting as an open / close valve. These clamps 36a to 36g are concentrated in one section on the upper surface of the control mechanism 22 so that the cassette housing 42 can be fitted.
- the cassette housing 42 is a resin plate to which many portions of the tubes of the blood collection kit 14 are integrally connected. By fitting the cassette housing 42 into the upper surface of the control mechanism 22, clamps 36a to 36g to which predetermined tubes correspond. It can be opened and closed by.
- the donor pressure sensor 38 is a sensor for measuring a donor pressure Pd indicating a blood collection pressure by inserting a part of the blood collection line 14a (see FIG. 4) in the blood collection kit 14.
- the system pressure sensor 40 is a sensor into which a part of the processing path system (or circulation path system) 14b (see FIG. 4) is inserted and measures a system pressure (in-circuit pressure) Ps indicating a pressure in the circuit.
- a part of tube is abbreviate
- the centrifuge mechanism 24 is a mechanism that is equipped with the centrifuge bowl (centrifuge) 120 of the blood collection kit 14 and centrifuges the blood introduced into the centrifuge bowl 120.
- the centrifuge bowl 120 includes a truncated cone-shaped rotor 50 whose diameter is expanded downward, and a fixed cap 52 provided on the top of the rotor 50.
- the fixing cap 52 includes a circular plate 52a, a columnar body 52b protruding upward from the center, an introduction port 52c and a discharge port 52d protruding laterally from the upper and central portions of the columnar body 52b, and the columnar body 52b. And a flange 52e protruding in the circumferential direction from the lower portion.
- the fixing cap 52 is fixed to the centrifugal separation mechanism portion 24 through the concave portion of the opening / closing cover 58c between the upper surface of the circular plate 52a and the flange 52e in the cylindrical body 52b.
- the introduction port 52c and the discharge port 52d are portions for introducing and discharging blood and the like with respect to the centrifuge bowl 120.
- the rotor 50 includes a transparent resin outer plate 50a, a conical white reflecting plate 50b provided on the inner side, a bottom plate 50c, and a tubular body extending in the vertical direction at the center and communicating with the introduction port 52c. 50d.
- a blood storage space 54 into which blood is introduced is formed between the outer plate 50a and the reflecting plate 50b.
- the blood storage space 54 has a shape (tapered shape) in which the inner and outer diameters gradually decrease upward, and the lower portion thereof passes through a substantially disk-shaped channel formed along the bottom of the rotor 50.
- the tube body 50d communicates with the lower end opening, and the upper portion communicates with the discharge port 52d.
- the centrifuge mechanism 24 has an upper bowl mounting part 58 and a lower motor part 60.
- the bowl mounting portion 58 fixes a housing 58a that forms a space where the centrifugal bowl 120 is disposed, a turntable 58b into which the bottom plate 50c of the centrifugal bowl 120 is fitted, and a circular plate 52a and a flange 52e of the fixing cap 52.
- a transparent opening / closing cover 58c and an optical sensor 62 are provided.
- the open / close cover 58c has a recess, and the flange 52e is fitted into the recess to be fixed.
- the motor unit 60 is provided with a motor 64 in a direction in which the rotation shaft 64a is directed vertically upward.
- the rotary shaft 64a is connected to the bottom surface of the turntable 58b, and the centrifuge bowl 120 can rotate under the action of the motor 64.
- the motor 64 can rotate in the range of about 3000 to 6000 rpm, and the target rotational speed is set to about 4200 to 5800 rpm, for example.
- the blood in the blood storage space 54 is separated from the inner layer into a plasma layer (PPP layer) 70, a buffy coat layer (BC layer) 72, and a red blood cell layer (CRC layer) 74.
- PPP layer plasma layer
- BC layer buffy coat layer
- CRC layer red blood cell layer
- the optical sensor 62 includes a light projector 62a that generates light (for example, laser light), a light receiver 62b that receives light reflected by the reflecting plate 50b, and a mirror 62c that adjusts the direction of the optical path.
- the light projector 62a projects light to the reflecting plate 50b through the blood storage space 54, and the light reflected by the reflecting plate 50b returns through substantially the same path, is received by the light receiving device 62b, and is converted into an electrical signal corresponding to the amount of received light.
- the projected light and the reflected light pass through the blood components in the blood storage space 54, respectively, but depending on the position of the interface B between the plasma layer 70 and the buffy coat layer 72, the projected light and the reflected light are transmitted. Since the abundance ratios of the respective blood components at the transmitting position are different, their transmittance changes. As a result, the amount of light received by the light receiver 62b varies and can be detected as a change in output voltage.
- the interface of the blood component detected by the optical sensor 62 is not limited to the interface B, and may be the interface between the buffy coat layer 72 and the red blood cell layer 74, for example.
- the layers 70, 72, and 74 in the blood storage space 54 have different colors depending on blood components, and the red blood cell layer 74 is red with the color of the red blood cells. For this reason, from the viewpoint of improving measurement accuracy, there is a suitable range for the wavelength of the projection light, and this wavelength range is preferably about 750 to 800 nm, for example.
- the control unit 26 includes a blood pump driver 76, an anticoagulant pump driver 78, a motor driver 80, and a clamp driver 82 for output. 30, the motor 64 and the clamps 36a to 36g are controlled.
- the blood pump driver 76 controls the speed and discharge direction of the blood pump 28.
- anticoagulant pump driver 78 controls the speed of anticoagulant pump 30.
- the motor driver 80 controls the rotational speed of the motor 64.
- the clamp driver 82 individually controls the opening and closing of the clamps 36a to 36g.
- control unit 26 has an input interface 84 for performing input control of each sensor and a monitor interface 86 for performing input / output of the monitor 20.
- the control unit 26 further includes a mode control unit 88 that controls the blood collection processing operation in cooperation with each functional unit, an abnormality monitoring unit 90 that monitors an abnormality based on an input signal of each sensor, and a predetermined program.
- a storage unit 92 that stores data, a timer 94, and a communication unit 96 that performs data communication with external devices.
- the abnormality monitoring unit 90 monitors the system pressure Ps supplied from the system pressure sensor 40 via the input interface 84, and notifies the mode control unit 88 by interrupt control or the like when the predetermined pressure P ⁇ is exceeded. To do.
- the mode control unit 88 receives such an abnormal signal, the mode control unit 88 performs a corresponding error process, and stops the blood pump 28 via the blood pump driver 76, for example. Further, an alarm sound is generated from the speaker 20b via the monitor interface 86, and the type of error is displayed on the color touch panel 20a to notify the operator.
- the various abnormality monitoring processes of the abnormality monitoring unit 90 are performed independently and in parallel with the control of the mode control unit 88 based on a method such as multitasking. Some of the functions in the control unit 26 are realized by reading and executing a program recorded in the storage unit 92 by a CPU (not shown).
- the blood collection kit 14 collected a blood collection line 14a for collecting and returning blood from a donor, and an anticoagulant supply line 14c for supplying (introducing) an anticoagulant to the blood collection line 14a. And a treatment path system 14b for centrifuging or circulating blood.
- the blood collection line 14a includes a hollow blood collection needle 100 for puncturing the donor, a tube 104 having one end connected to the blood collection needle 100 and the other end connected to the processing path system 14b via the branch joint 102, and the tube 104 And a chamber 106 provided in the middle.
- the chamber 106 removes bubbles and microaggregates in the blood passing through the tube 104.
- a short tube 118 branched from the tube 104 is provided at one end of the chamber 106.
- the end of the tube 118 is connected to a breathable and bacteria-impermeable filter (not shown) and is inserted into the donor pressure sensor 38 so that the donor pressure Pd can be measured.
- a bubble sensor 34b and a clamp 36a are mounted between the chamber 106 and the branch joint 102.
- the clamp 36a is mounted in the vicinity of the branch joint 102, and the blood collection line 14a and the processing path system 14b communicate with each other by opening the clamp 36a.
- Two bubble sensors 34e and 34f are attached to the tube 104 in series, so that bubbles can be reliably detected.
- the anticoagulant supply line 14c includes an anticoagulant container connecting needle 108 connected to an anticoagulant container 107 containing an anticoagulant (see FIG. 1), and a tube 110 having one end connected to a branch joint 116. And a bubble removal chamber 112 and a sterilization filter (foreign matter removal filter) 114 provided in the middle of the tube 110.
- the tube 104 and the tube 110 are connected by a branch joint 116 provided near the blood collection needle 100.
- an anticoagulant such as ACD-A solution is stored in the anticoagulant container 107 connected to the anticoagulant container connecting needle 108.
- the tube 110 is attached to the anticoagulant pump 30, and the anticoagulant supplied from the anticoagulant container connecting needle 108 under the action of the anticoagulant pump 30 is passed through the tube 110 and the branch joint 116.
- An anticoagulant is mixed in the blood in 104.
- a bubble sensor 34 a is attached in the middle of the tube 110.
- the processing path system 14b includes a centrifuge bowl 120, a plasma collection bag 122, a platelet collection bag 124, an intermediate bag 126a, an air bag 126b, a bag 128, and a leukocyte removal filter 130.
- the centrifuge bowl 120 has been described in detail with reference to FIG.
- the plasma collection bag 122 and the platelet collection bag 124 are bags for storing plasma and platelets (also referred to as concentrated platelets or concentrated platelet plasma) obtained by processing such as centrifugation.
- the plasma collection bag 122 is suspended on the hook 18a of the weighing scale 18 (see FIG. 1), and the weight of the stored plasma can be measured.
- the platelet collection bag 124 is suspended on the front surface of the mechanism main body 15 (see FIG. 1).
- the intermediate bag 126a is a container (temporary storage bag) for temporarily storing concentrated platelets.
- the air bag 126b is a container for temporarily storing air.
- the air bag 126b and the intermediate bag 126a are independent containers separated in terms of a circuit, but are physically integrated to form a multi-chamber bag 126.
- the multi-chamber bag 126 is suspended from the hook 21a of the bag detection sensor 21 (see FIG. 1).
- the air in the blood storage space 54 of the centrifuge bowl 120 is transferred to and stored in the air bag 126b.
- the air stored in the air bag 126b is returned to the blood storage space 54, and a predetermined blood component is returned to the donor.
- the bag 128 is a bag connected to the platelet collection bag 124, and is used when the air in the platelet collection bag 124 is discharged after the component blood collection is completed.
- the plasma collection bag 122, the platelet collection bag 124, the intermediate bag 126a, the air bag 126b, and the bag 128 are each laminated with a flexible sheet material made of resin (for example, soft polyvinyl chloride), and the peripheral portions thereof are fused. (Thermal fusion, high-frequency fusion, ultrasonic fusion, etc.) or a bag formed by bonding with an adhesive is used.
- resin for example, soft polyvinyl chloride
- a sheet material used for the platelet collection bag 124 it is more preferable to use a material excellent in gas permeability in order to improve platelet storage stability.
- a sheet material for example, polyolefin, DnDP plasticized polyvinyl chloride, or the like can be used.
- the white blood cell removal filter 130 is a filter that separates and removes white blood cells in the blood component when the blood component is transferred from the intermediate bag 126a to the platelet collection bag 124. As is clear from FIG. 1, the leukocyte removal filter 130 is disposed at a position lower than the intermediate bag 126 a and higher than the platelet collection bag 124.
- a tube 140 is connected between the branch joint 102 which is the end of the processing path system 14 b and the inlet 52 c of the centrifuge bowl 120.
- the tube 140 is attached to the blood pump 28. Accordingly, by rotating the blood pump 28 in the forward direction, blood can be introduced into the centrifuge bowl 120 from the blood collection line 14a, or a predetermined circulation operation can be performed in the processing path system 14b. Further, by reversing the blood pump 28, a predetermined blood component can be led out to the blood collection line 14a and returned to the donor.
- a tube 142 is connected to the discharge port 52d of the centrifuge bowl 120, and the tube 142 is branched into three forks via a branch joint 144 and connected to the tube 146, the tube 148, and the tube 150.
- the tube 142 is connected in series to the turbidity sensor 32 and the bubble sensor 34d.
- the tube 146 is connected to the air bag 126b, and is attached to the clamp 36e along the way.
- the end of the tube 148 is connected to a breathable and bacteria-impermeable filter (not shown) and is inserted into the system pressure sensor 40 so that the system pressure Ps can be measured.
- the end of the tube 150 is connected to the plasma collection bag 122, and a branch joint 152 is provided in the middle thereof, and is connected to the intermediate bag 126a via the tube 154.
- the tube 154 is attached to the clamp 36d.
- a tube 150 between the branch joint 152 and the plasma collection bag 122 is attached to the clamp 36c.
- the intermediate bag 126a and the platelet collection bag 124 are connected by a tube 156, and a leukocyte removal filter 130 is provided in the middle thereof.
- a tube 156 between the intermediate bag 126a and the platelet collection bag 124 is attached to the bubble sensor 34c and the clamp 36g.
- a filter 160 branched from the tube 156 is provided.
- the filter 160 includes a vent filter and a cap.
- the tube 156 between the bubble sensor 34c and the clamp 36g is provided with a branch joint 162 and connected to the plasma collection bag 122 via the tube 164.
- a branch joint 166 is provided in the middle of the tube 164.
- the branch joint 166 and the branch joint 102 are connected by a tube 168.
- a tube 164 between the branch joint 162 and the branch joint 166 is attached to the clamp 36f.
- a clamp 36 b is attached to the tube 168 in the vicinity of the branch joint 102.
- the platelet collection bag 124 and the bag 128 are connected by a tube 158.
- the blood collection kit 14 configured in this manner has been subjected to a predetermined sterilization process in advance. 4, illustration of the cassette housing 42 in which the tubes of the blood collection kit 14 are concentrated and the filter cassette 170 (see FIG. 1) that holds a part of the tubes and the filter 160 is omitted.
- predetermined initial processing is performed in step S1 of FIG.
- the blood collection needle 100 is punctured into the blood vessel of the donor after performing treatment (priming) for introducing an anticoagulant into the tube 110 and the tube 104 from the blood collection needle 100 to the chamber 106.
- the component blood collection process is started by operating the color touch panel 20a of the monitor 20. Subsequent procedures are automatically performed mainly under the action of the control unit 26.
- step S2 a counter I indicating the number of component blood sampling cycles is initialized as I ⁇ 1.
- step S3 the first plasma collection process is started.
- This first plasma collection step is a step of collecting plasma obtained by introducing blood into the blood storage space 54 of the centrifuge bowl 120 and centrifuging it into the plasma collection bag 122.
- blood rotation from the donor is continued by rotating the rotation speed V of the blood pump 28 at a prescribed blood collection speed V1 (step S4).
- the blood collection speed V1 is lower than the main circulation speed described later, and is set to 120 mL / min or less, more preferably about 40 to 100 mL / min, for example, 60 mL / min.
- the anticoagulant pump 30 is operated to supply the anticoagulant via the tube 110, and this anticoagulant is mixed into the collected blood.
- the rotation speed of the anticoagulant pump 30 is controlled by the control unit 26 so that the anticoagulant is mixed at a predetermined ratio (for example, 1/10) to the collected blood.
- blood blood containing an anticoagulant
- the tube 104 blood is transferred through the tube 104 and introduced into the blood storage space 54 of the rotor 50 from the introduction port 52c of the centrifugal bowl 120 through the tubular body 50d.
- the air in the centrifuge bowl 120 is sent into the air bag 126b through the tube 142 and the tube 146.
- Rotation of the rotor 50 is started with a predetermined amount of blood being introduced into the blood storage space 54 (step S5). That is, the motor 64 is driven and the rotor 50 is controlled to rotate at a predetermined rotational speed.
- the rotation speed of the rotor 50 may be rapidly increased to the target rotation speed, or may be increased stepwise.
- the target rotational speed of the rotor 50 is, for example, about 4200-5800 rpm. Thereafter, the rotational speed of the rotor 50 is kept constant until step S32.
- the blood introduced into the blood storage space 54 is separated from the inside into three layers: a plasma layer 70, a buffy coat layer 72, and a red blood cell layer 74.
- step S6 the signal of the bubble sensor 34d provided in the tube 142 is monitored to determine whether or not the fluid flowing through the tube 142 has changed from air to plasma.
- the process proceeds to step 7.
- the fluid flowing through the tube 142 is still air (NO in step S6), monitoring of the signal of the bubble sensor 34d is continued.
- the plasma introduction process in step S8 is a process performed only during the first cycle.
- the clamp 36e when it is detected that the fluid flowing through the tube 142 has changed from air to plasma, the clamp 36e is closed and the clamp 36d is opened while the clamp 36c is kept closed.
- a predetermined amount of plasma is collected in the intermediate bag 126a.
- the amount of plasma collected in the intermediate bag 126a is calculated from the number of rotations of the blood pump 28 and the amount of liquid delivered per rotation.
- the amount of plasma collected in the intermediate bag 126a is set to, for example, about 10 to 100 mL, and preferably about 30 to 50 mL. If even a small amount of plasma is introduced into the intermediate bag 126a, an effect of suppressing the generation of platelet aggregates introduced into the intermediate bag 126a in a later step can be obtained by the action of the anticoagulant contained in the plasma. In addition, by introducing at least 30 mL of plasma into the intermediate bag 126a in advance, the effectiveness of the aggregate generation suppressing effect can be enhanced.
- the process proceeds to step S9.
- the plasma obtained by centrifugation during the first cycle contains the entire amount of anticoagulant supplied to the tube 104 during priming performed before blood collection. Therefore, the concentration of the anticoagulant in the plasma collected in the intermediate bag 126a is high. Moreover, in the case of the present embodiment, the plasma that first flows out from the centrifuge bowl 120 is introduced into the intermediate bag 126a, so that the portion of the plasma with the highest anticoagulant concentration is introduced into the intermediate bag 126a. .
- step S9 while continuing blood collection by driving the blood pump 28, supplying anticoagulant to the blood collection line 14a, and centrifugation by rotating the centrifugal bowl 120, the clamp 36d is closed and the clamp 36c is opened. That is, such a clamping operation is performed, and plasma is introduced into and collected in the plasma collection bag 122 via the tube 142 and the tube 150. The weight of the plasma introduced into the plasma collection bag 122 is measured by the weigh scale 18.
- step S9 it is detected that the fluid flowing through the tube 142 has changed from air to plasma. While the clamp 36d is kept closed, the clamp 36e is closed and the clamp 36c is opened. Thereby, plasma is introduced into the plasma collection bag 122 and collected.
- the clamp 36c for opening and closing the flow path of the tube 150 between the branch joint 152 and the plasma collection bag 122, and between the branch joint 152 and the intermediate bag 126a.
- Switching means for selectively switching between and is configured.
- step S10 based on the weight signal obtained from the weighing scale 18, it is determined whether or not a predetermined amount of plasma has been collected in the plasma collection bag 122.
- a predetermined amount of plasma is collected, the process proceeds to the next constant-speed plasma circulation step (step S11), and when it is less than the predetermined amount, it waits while continuing the collection.
- the amount of plasma collected is, for example, about 20 to 40 g.
- the constant-speed plasma circulation step is a step of circulating the plasma in the plasma collection bag 122 at a constant speed in a circulation circuit including the blood storage space 54. Specifically, first, as a preparation for the constant-speed plasma circulation process, the clamp 36a is closed, the clamp 36b is opened, and the anticoagulant pump 30 is stopped. Thereby, while collecting blood temporarily, the path
- the blood pump 28 is rotated forward at a predetermined circulation speed.
- This circulation rate is higher than the blood collection rate, and is preferably set to about 120 to 300 mL / min, for example, 200 mL / min.
- step S12 based on the signal from the timer 94, it is determined whether or not a predetermined time (preferably about 10 to 90 sec, for example, 30 sec) has elapsed since the start of the main circulation sub-process.
- a predetermined time preferably about 10 to 90 sec, for example, 30 sec
- the process proceeds to step S13, and when it has not elapsed, the process waits while continuing the circulation.
- step S13 which proceeds when the operation of the blood pump 28 is performed at a predetermined circulation speed for a predetermined time, it is confirmed whether or not it is the final cycle. That is, the counter I indicating the cycle number is compared with a preset parameter N (N is an integer equal to or greater than 1) indicating the final cycle number.
- N an integer equal to or greater than 1
- step S14 is performed. The process proceeds to step S15. Otherwise (I ⁇ N) (other than the final cycle), the process proceeds to step S15 only.
- step S15 a second plasma collection step is performed.
- blood collected by closing the clamp 36b and opening the clamp 36a is introduced into the centrifuge bowl 120, and the plasma is collected and centrifuged in the same manner as in the first plasma collection step.
- the amount of red blood cells in the blood storage space 54 increases, that is, as the layer thickness of the red blood cell layer 74 increases, the interface B gradually rises (moves in the direction of the rotation axis of the rotor 50).
- the step of putting air into the air bag 126b can be omitted.
- step S16 based on the detection signal from the optical sensor 62, it is determined whether the interface B has reached a predetermined level. When the interface B has reached the predetermined level, the process proceeds to step S17. When the interface B has not reached, the process waits while continuing to collect blood, centrifuge, and measure the level of the interface B.
- step S17 an accelerated plasma circulation process is performed.
- the accelerated plasma circulation step is a step of circulating the plasma in the plasma collection bag 122 while accelerating it into the blood storage space 54. Specifically, the clamp 36a is closed and the clamp 36b is opened. Further, the anticoagulant pump 30 is stopped, and the blood pump 28 is rotated forward so as to increase (increase) at a constant acceleration. Thereby, the blood collection is temporarily interrupted, and the plasma in the plasma collection bag 122 is circulated while being accelerated in the circulation circuit. The circulation circuit at this time is the same as the path in the constant-speed plasma circulation process.
- the rotation speed of the blood pump 28 is controlled to increase (increase) at a constant acceleration from a speed (initial speed: for example, 60 mL / min) slower than the constant-speed plasma circulation process.
- the acceleration condition (acceleration) is, for example, about 3 to 6 mL / min / sec.
- the acceleration may not be constant, and may change stepwise or continuously within the above range, for example.
- step S18 it is confirmed whether or not the circulating speed of plasma into the blood storage space 54 has reached a predetermined speed. That is, when the rotation speed of the blood pump 28 reaches a predetermined speed, the process proceeds to step S19, and when it has not reached, the process waits while continuing circulation.
- the predetermined speed as a threshold value at this time is, for example, 155 mL / min.
- step S19 a third plasma collection step is performed.
- plasma is collected in the same manner as in the first and second plasma collection steps.
- step S20 as in step S10, it is determined whether or not a predetermined amount of plasma has been collected in the plasma collection bag 122.
- a predetermined amount of plasma has been collected, the process proceeds to a platelet collection step (steps S21 to S32).
- the amount is less than the predetermined amount, the process waits while continuing the collection.
- the predetermined amount at this time is, for example, about 5 to 15 g.
- a platelet collection step (S21 to S32) is performed.
- the plasma in the plasma collection bag 122 is circulated while accelerating in the blood storage space 54 at the first acceleration, and then circulated while accelerating at the second acceleration greater than the first acceleration.
- platelets are allowed to flow out from the blood storage space 54, and concentrated platelets are collected (stored) in the intermediate bag 126a.
- step S21 in FIG. 6 plasma circulation is performed by the first acceleration. Specifically, the clamp 36a is closed and the clamp 36b is opened. Further, the anticoagulant pump 30 is stopped, and the rotation speed of the blood pump 28 is normally rotated so as to increase (increase) at the first acceleration. Thereby, the blood collection is interrupted, and the plasma in the plasma collection bag 122 is circulated while being accelerated at the first acceleration in the circulation circuit.
- the circulation circuit at this time is the same as the path in the constant-speed plasma circulation process.
- the circulation process by the first acceleration causes the red blood cell layer 74 to diffuse (increase in layer thickness), and the interface B gradually moves in the direction of the rotation axis of the rotor 50.
- the first acceleration is, for example, about 1.5 to 2.5 mL / min / sec.
- the first acceleration may not be constant.
- the first acceleration may change stepwise or continuously within the range.
- the initial speed of the blood pump 28 is, for example, about 40 to 100 mL / min.
- step S22 it is confirmed whether or not the circulating speed of plasma into the blood storage space 54 has reached a predetermined speed. That is, when the rotation speed of the blood pump 28 reaches a predetermined speed, the process proceeds to step S23, and when it does not, the process waits while continuing circulation.
- the predetermined speed at this time is, for example, about 140 to 160 mL / min.
- step S23 plasma circulation by the second acceleration is performed. Specifically, the acceleration of blood pump 28 is changed from the first acceleration to the second acceleration, and forward rotation is performed so that the rotation speed of blood pump 28 increases (increases) at the second acceleration. Thereby, the plasma in the plasma collection bag 122 is circulated in the blood storage space 54 while being accelerated at the second acceleration.
- the second acceleration is set so as to be larger than the first acceleration, for example, about 5 to 15 mL / min / sec. Note that the second acceleration may not be constant, and may change stepwise or continuously within the above range, for example.
- the red blood cell layer 74 Due to the circulation process by the second acceleration, the red blood cell layer 74 is diffused, the interface B gradually moves in the direction of the rotation axis of the rotor 50, and the platelets in the buffy coat layer 72 rise against the centrifugal force. Then, it moves toward the discharge port 52d of the rotor 50.
- step S24 it is determined whether or not the circulating speed of the plasma into the blood storage space 54 has reached a predetermined speed. If it has reached the predetermined speed, the process proceeds to step S26, and if not, the process proceeds to step S25.
- the predetermined speed at this time is about 250 mL / min, for example.
- step S25 it is determined whether or not the PC concentration voltage value obtained from the turbidity sensor 32 has decreased below a predetermined value.
- the process proceeds to step S28, and when it exceeds the predetermined value, the process returns to step S24 to continue the circulation. Even if the rotation speed of the blood pump 28 does not reach the predetermined value, if the outflow of platelets is detected in step S25, the process proceeds to step S28.
- step S26 based on the signal from the timer 94, it is determined whether or not a predetermined time (for example, 10 sec) has elapsed since the circulating speed reached the predetermined speed.
- a predetermined time for example, 10 sec
- the process proceeds to step S33, and when it has not elapsed, the process proceeds to step S27 while maintaining the rotational speed of step S24.
- step S27 as in step S25, it is determined whether or not the PC concentration voltage value obtained from the turbidity sensor 32 has dropped below a predetermined value.
- the process proceeds to step S28, and when it exceeds the predetermined value, the process returns to step S26.
- step S28 platelets are collected. Specifically, based on the detection signal of the turbidity sensor 32, the clamp 36c is closed and the clamp 36d is opened. Thereby, concentrated platelets are introduced into the intermediate bag 126a via the tubes 142, 150 and 154, and collected (stored). Further, based on the output voltage (detection signal) from the turbidity sensor 32, the platelet concentration (cumulative PC concentration) in the intermediate bag 126a is calculated. This platelet concentration continues to rise after starting the collection of PC, and once it reaches the maximum concentration, it begins to fall.
- step S29 based on the signal from the timer 94, it is determined whether or not a predetermined time (for example, 15 sec) has elapsed since the start of platelet collection.
- a predetermined time for example, 15 sec
- the process proceeds to step S33, and when it has not elapsed, the process proceeds to step S30.
- step S30 it is determined whether or not the PC concentration voltage value obtained from the turbidity sensor 32 has risen above a predetermined value.
- the process proceeds to step S33, and when it is less than the predetermined value, the process proceeds to step S31.
- step S31 it is determined whether or not the increased amount of the concentrated platelets in the intermediate bag 126a has reached a predetermined amount. If it has reached, the process proceeds to step S32, and if not, the process returns to step S28.
- the collected amount (predetermined amount) is, for example, about 30 to 80 mL.
- the amount of concentrated platelets collected in the intermediate bag 126a is calculated from the number of rotations of the blood pump 28 and the amount of liquid delivered per rotation.
- step S32 it is confirmed whether or not the amount of concentrated platelets in the intermediate bag 126a has reached a predetermined amount.
- the amount of concentrated platelets here is the set collection target value (total value of all cycles), and the predetermined amount as a threshold value depends on the number of units of the PC preparation, and is set to 20 to 315 mL, for example. The When the amount of concentrated platelets has reached the predetermined amount, the process proceeds to step S33, and when it has not reached, the process returns to step S28.
- a platelet collection end process in step S33 is performed. That is, the clamp 36e is opened, the other clamps 36a to 36d and 36f are closed, and the blood pump 28 is stopped. Note that the clamp 36g may be open during filtration.
- concentrated platelets are collected in the intermediate bag 126a.
- plasma having a high anticoagulant concentration is placed in the intermediate bag 126a in advance before transferring the concentrated platelets to the intermediate bag 126a during the first cycle.
- the concentration of the anticoagulant in the bag 126a is increased, and the generation of aggregates in the intermediate bag 126a during accumulation of concentrated platelets can be suppressed.
- step S34 the rotational speed of the motor 64 is controlled to decelerate and stop the rotor 50.
- the blood return process is a process of returning blood components (mainly red blood cells and white blood cells) remaining in the blood storage space 54 of the rotor 50 to the donor.
- the clamp 36a and the clamp 36e are opened, and the blood pump 28 is reversed at a predetermined rotation speed (for example, 90 mL / min).
- a predetermined rotation speed for example, 90 mL / min.
- the remaining blood component is discharged from the inlet 52c of the centrifuge bowl 120 and returned (returned) to the donor via the tube 104 (blood collection needle 100).
- step S36 air discharged from the centrifuge bowl 120 is monitored by the bubble sensor 34b. Blood return is continued while air is not detected by the bubble sensor 34b. When air is detected, the process proceeds to step S37.
- step S37 blood return termination processing is performed. That is, after the blood pump 28 is rotated a predetermined number of times, the clamp 36a and the clamp 36e are closed and the blood pump 28 is stopped.
- the filtration step is a step in which the concentrated platelets temporarily collected in the intermediate bag 126a are supplied to the leukocyte removal filter 130, and the concentrated platelets are filtered, that is, the leukocytes in the concentrated platelets are separated and removed. Specifically, the clamp 36g is opened, and the concentrated platelets in the intermediate bag 126a are transferred into the platelet collection bag 124 through the tube 156 and the leukocyte removal filter 130 by a drop (self-weight).
- the removal rate of leukocytes in the platelet preparation can be made extremely high.
- plasma having a high anticoagulant concentration is placed in the intermediate bag 126a in advance before transferring the concentrated platelets to the intermediate bag 126a in the first cycle. Since the generation of aggregates of concentrated platelets is suppressed, the occurrence of clogging of the leukocyte removal filter can be suitably suppressed.
- the anticoagulant concentration in the intermediate bag 126a is effectively reduced. Can be increased. That is, since the plasma that first flows out of the centrifuge bowl 120 during the first cycle has the highest anticoagulant concentration, the anticoagulant concentration in the intermediate bag 126a can be effectively increased by placing it in the intermediate bag 126a. And generation of agglomerates in the intermediate bag 126a can be more suitably suppressed.
- the transfer of concentrated platelets from the intermediate bag 126a to the platelet collection bag 124 may be performed using a predetermined pump.
- the clamp 36g may be replaced with a clamp or the like that can manually open and close the middle of the flow path of the tube 156.
- step S38 a YES determination is made in step S38, the process proceeds to step S39, the blood collection process is terminated, a predetermined end output is performed from the color touch panel 20a and the speaker 20b, and the end is notified to the operator.
- FIG. 7 is a graph showing the anticoagulant concentration in the intermediate bag 126a in each cycle.
- the plasma that first flows out of the centrifuge bowl 120 during the first cycle (plasma with a high anticoagulant concentration) is shown.
- a case where the liquid is supplied to the intermediate bag 126a is indicated by a square mark, and a case where the plasma is not supplied to the intermediate bag 126a is indicated by a rhombus mark.
- the blood component collection device 10 can suitably suppress the generation of platelet aggregates in the intermediate bag 126a.
- plasma having a high anticoagulant concentration is preliminarily stored in the intermediate bag 126a before the concentrated platelets are transferred to the intermediate bag 126a during the first cycle. Therefore, the concentration of the anticoagulant in the intermediate bag 126a is increased, and it is possible to suppress the generation of aggregates in the intermediate bag 126a during accumulation of concentrated platelets. Further, since the portion of the plasma having a high anticoagulant concentration is placed in the intermediate bag 126a, the concentration of the anticoagulant in the returned blood plasma is lowered, so that the risk of citrate reaction and the like can be reduced.
- the anticoagulant concentration in the intermediate bag 126a can be effectively increased by placing the plasma in the intermediate bag 126a. And the generation of aggregates in the intermediate bag 126a can be more suitably suppressed.
- the plasma that first flows out of the centrifugal bowl 120 during the first cycle is sent to the intermediate bag 126a.
- the present invention is not limited to this, and the first cycle After introducing and centrifuging the collected blood into the centrifuge bowl 120, a predetermined amount of plasma flowing out from the centrifuge bowl 120 is sent to the intermediate bag 126a at any timing before the first collection of platelets in the intermediate bag 126a. May be. Even in this case, since plasma having a high anticoagulant concentration is introduced into the intermediate bag 126a, the generation of platelet aggregates in the intermediate bag 126a can be suppressed.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Cardiology (AREA)
- External Artificial Organs (AREA)
Abstract
血液成分採取装置(10)は、第1サイクル時に中間バッグ(126a)内に濃厚血小板を移送する血小板移送工程の前に、遠心分離して得られた血漿を所定量だけ中間バッグ(126a)に導入する血漿導入工程を行う。抗凝固剤濃度が高い血漿が予め中間バッグ(126a)に導入されるため、中間バッグ(126a)内での濃厚血小板の凝集塊の発生を抑制することができる。
Description
本発明は、ドナーから採取した血液を遠心分離して得られた所定の血液成分を採取する血液成分採取装置に関する。
献血で行われる採血には、血液をそのまま採取する全血採血と、所定の成分のみを取り出す成分採血がある。成分採血では、ドナーから採取した血液を遠心分離することにより所定の成分を抽出し、他の成分についてはドナーに返還する。これにより、必要な成分(血漿や血小板)については全血採血よりも多く採取することができ、しかも他の成分については返還をすることからドナーの負担を軽減することができる。また、このような成分採血を自動的に行うための血液成分採取装置が実用化されている(例えば、特許第3196838号公報参照)。
血液成分採取装置は、所定の血液成分を貯留(採取)する複数のバッグと、当該複数のバッグを接続する複数のチューブとを有する採血キットと、この採血キットが装着され所定の制御機構及び遠心分離器を有する装置本体とを備える。採血キットには、採血針が設けられた採血ライン、この採血ラインに抗凝固剤を供給する抗凝固剤供給ライン、遠心分離して得られた血漿を貯留(採取)する血漿採取バッグ、遠心分離して得られた血小板(濃厚血小板、濃厚血小板血漿)を一時的に貯留する中間バッグ、血小板から白血球を除去する白血球除去フィルター、白血球が除去された血小板(血小板製剤)を貯留する血小板採取バッグが含まれる。
血液成分採取装置において血小板製剤を得る場合には、ドナーから採取した血液を遠心分離器に導入し、遠心力によって血漿、バフィーコート及び赤血球に分離する。その後、血漿を血漿採取バッグに移送する。所定量の血漿を血漿採取バッグに採取したら、次に、バフィーコートから血小板を分離し、血小板を中間バッグに移送する。白血球及び赤血球は、ドナーに返還し、血漿は必要に応じてドナーに返還する。このような各工程を複数サイクル行って中間バッグ内に所定量の血小板を採取したら、白血球除去フィルターで濾過することで白血球を除去し、白血球を除去した血小板(血小板製剤)を血小板採取バッグに採取する。
上述したように、成分採血において採血された血小板(濃厚血小板)は一時的に中間バッグに貯留されるが、この貯留中の中間バッグ内に凝集塊が発生することがあり、中間バッグ内に所定量の血小板を貯留した後に行われる白血球濾過工程において、血小板の凝集塊が白血球除去フィルターを目詰まりさせてしまうことがある。
本発明はこのような課題を考慮してなされたものであり、血小板を一時的に貯留する中間バッグ内での血小板の凝集塊の発生を抑止することができる血液成分採取装置を提供することを目的とする。
上記の目的を達成するため、本発明に係る血液成分採取装置は、ドナーから血液を採取する採血ラインと、前記採血ラインに抗凝固剤を供給する抗凝固剤供給ラインと、採取された血液を遠心分離して所定の血液成分を得る遠心分離器と、遠心分離して得られた血漿を貯留する血漿採取バッグと、遠心分離して得られた濃厚血小板を一時的に貯留する中間バッグと、前記中間バッグから移送される濃厚血小板を貯留する血小板採取バッグと、前記中間バッグと前記血小板採取バッグとの間の送液ライン上に設けられ、前記濃厚血小板中の所定成分を除去するフィルターと、前記遠心分離器と前記血漿採取バッグとの間の流路を連通させる状態と、前記遠心分離器と前記中間バッグとの間の流路を連通させる状態とを選択的に切り替える切替手段と、前記遠心分離器及び前記切替手段を駆動制御する制御部と、を有し、前記制御部は、血液を前記採血ラインから前記遠心分離器に導入して遠心分離を行うとともに遠心分離して得られた血漿を前記血漿採取バッグに移送する血漿採取工程と、前記血漿採取工程の後に、遠心分離して得られた濃厚血小板を前記中間バッグに移送する血小板移送工程と、を少なくとも1サイクル行い、第1サイクル時の前記血小板移送工程の前に、遠心分離して得られた血漿を所定量だけ前記中間バッグに導入する血漿導入工程を行うことを特徴とする。
上記の本発明の構成によれば、第1サイクル時に濃厚血小板を中間バッグに移送する前に、抗凝固剤濃度が高い血漿を予め中間バッグ内に導入するので、中間バッグ内の抗凝固剤濃度が高まり、濃厚血小板の貯留中に中間バッグ内に凝集塊が発生することを抑制することができる。また、抗凝固剤濃度が高い部分の血漿を中間バッグに導入する分、ドナーに返還する血液成分中の抗凝固剤濃度が下がるため、クエン酸反応等のリスクを低減することができる。
また、上記の血液成分採取装置では、前記血漿導入工程において、前記制御部は、前記遠心分離器から最初に流出した血漿を前記中間バッグに移送するとよい。
第1サイクル時に最初に遠心分離器から流出した血漿は抗凝固剤濃度が最も高いため、これを中間バッグに入れることで中間バッグ内の抗凝固剤濃度を効果的に高めることができ、中間バッグ内の凝集塊の発生をより好適に抑制することができる。
本発明に係る血液成分採取装置によれば、中間バッグ内での血小板の凝集塊の発生を抑止することができる。
以下、本発明に係る血液成分採取装置について好適な実施の形態を挙げ、添付の図面を参照しながら説明する。
図1に示すように、本実施の形態に係る血液成分採取装置10は、装置本体12と、該装置本体12に装着される採血キット14とを有する。装置本体12は、箱形の機構本体部15と、該機構本体部15の背面左右から上方に延在する第1支柱16a及び第2支柱16bと、第1支柱16aの上端左側に設けられた重量計18と、第2支柱の上端部に設けられたモニタ20と、第1支柱16aの左側に設けられた複室バッグ126の有無を検出するバッグ検出センサ21と、第2支柱16bの右方に設けられた除菌フィルター114の有無を検出するセンサ23a及び気泡除去用チャンバー112の有無及び抗凝固剤の滴下を検出するセンサ23bとを有する。モニタ20は血液成分採取装置10の入出力装置であり、大型のカラータッチパネル20aと、スピーカ20bとを有し、画像及び音声を用いた簡易な操作が可能である。スピーカ20bはステレオ式である。
機構本体部15は左側の制御機構部22と、右側の遠心分離機構部24とからなる。制御機構部22は、血液成分採取装置10の全体を統括的に制御する制御部26と、血液ポンプ28と、抗凝固剤ポンプ30と、濁度センサ32と、6つの気泡センサ34a~34fと、7つのクランプ36a~36gと、ドナー圧力センサ38と、システム圧力センサ40とを有する。濁度センサ32及び各気泡センサ34a~34fとしては、それぞれ、例えば、超音波センサ、光学式センサ、赤外線センサ等を用いることがきる。濁度センサ32と気泡センサ34dは一体的に構成されている。
制御部26は、機構本体部15の内部に設けられている。制御機構部22における制御部26以外の機器は、採血キット14のチューブが装着可能なように上面、前面及び支柱に設けられている。
血液ポンプ28及び抗凝固剤ポンプ30は、チューブ側面にローラを押圧させながら連続的に転動させることにより内部の血液を押し出すローラポンプ式であり、血液に対して非接触の状態で駆動可能である。また、血液ポンプ28及び抗凝固剤ポンプ30は、制御部26の作用下に速度及び流体吐出方向が可変である。
濁度センサ32は、挟み込まれたチューブ内を通過する液体の濁度を検出するセンサである。気泡センサ34a~34fは、挟み込まれたチューブ内を通過する液体に混入している気泡又は液の有無を検出するセンサである。クランプ36a~36gは、挟み込まれたチューブを両側から押圧して閉じ、又は開放して連通させ、開閉バルブとしての作用を奏する。これらのクランプ36a~36gは、カセットハウジング42がはめ込み可能なように制御機構部22の上面における一区画に集中配置されている。カセットハウジング42は採血キット14のチューブの多くの部分が一体的に接続された樹脂板であり、該カセットハウジング42を制御機構部22の上面にはめ込むことにより所定のチューブが対応するクランプ36a~36gによって開閉可能に配置される。
ドナー圧力センサ38は、採血キット14における採血ライン14a(図4参照)の一部が差し込まれ、採血の圧力を示すドナー圧力Pdを計測するセンサである。システム圧力センサ40は、処理経路系統(又は循環経路系統)14b(図4参照)の一部が差し込まれ、回路内の圧力を示すシステム圧力(回路内圧力)Psを計測するセンサである。なお、装置本体12にセットされた状態の採血キット14におけるチューブの配置は本発明の要旨ではないので、図1においてはチューブの一部を省略して図示している。
図2に示すように、遠心分離機構部24は採血キット14の遠心ボウル(遠心分離器)120が装着され、該遠心ボウル120内に導入された血液を遠心分離する機構部である。遠心ボウル120は、下方に向かって拡径した円錐台形状のロータ50と、該ロータ50の上部に設けられた固定キャップ52とを有する。固定キャップ52は、円形板52aと、中央から上方に突出した円柱体52bと、該円柱体52bの上部及び中央部からそれぞれ横方向に突出した導入口52c及び排出口52dと該円柱体52bの下部から円周方向に突出したフランジ52eとを有する。固定キャップ52は円柱体52bにおける円形板52aの上面とフランジ52eとの間で開閉カバー58cの凹部を介して遠心分離機構部24に固定される。導入口52c及び排出口52dは遠心ボウル120に対して血液等を導入及び排出する部分である。
ロータ50は透明な樹脂製の外側板50aと、内側に設けられた円錐状で白色の反射板50bと、底板50cと、中央部で鉛直方向に延在して導入口52cに連通する管体50dとを有する。外側板50aと反射板50bとの間には血液が導入される貯血空間54が形成されている。貯血空間54は、上方に向けてその内外径が漸減するような形状(テーパ状)をなしており、その下部は、ロータ50の底部に沿って形成されたほぼ円盤状の流路を介して管体50dの下端開口に連通し、その上部は、排出口52dに連通している。固定キャップ52とロータ50との間には、ロータ50を気密に維持するとともに回転可能に保持するシール56が設けられている。
遠心分離機構部24は上方のボウル装着部58と、下方のモータ部60とを有する。ボウル装着部58は、遠心ボウル120が配置される空間部を形成するハウジング58aと、遠心ボウル120の底板50cが嵌合するターンテーブル58bと、固定キャップ52の円形板52a及びフランジ52eを固定する透明な開閉カバー58cと、光学式センサ62とを有する。開閉カバー58cは凹部を有しており、フランジ52eを該凹部に嵌め込んで固定する。
モータ部60には、回転軸64aが鉛直上方を指向する向きにモータ64が設けられている。
回転軸64aはターンテーブル58bの底面に接続されており、モータ64の作用下に遠心ボウル120が回転可能となっている。モータ64は、3000~6000rpm程度の範囲で回転可能であり、目標回転数としては、例えば4200~5800rpm程度に設定される。これにより、貯血空間54内の血液は内層より血漿層(PPP層)70、バフィーコート層(BC層)72及び赤血球層(CRC層)74に分離される。
光学式センサ62は、光(例えば、レーザ光)を発生する投光器62aと、反射板50bで反射した光を受光する受光器62bと、光路の向きを調整するミラー62cとを有する。投光器62aは貯血空間54を介して反射板50bに対して投光し、反射板50bで反射した光は略同じ経路を戻り、受光器62bにより受光されて受光光量に応じた電気信号に変換される。
このとき、投光光及び反射光は、それぞれ、貯血空間54内の血液成分を透過するが、血漿層70とバフィーコート層72との界面Bの位置に応じて、投光光及び反射光が透過する位置における各血液成分の存在比が異なるため、それらの透過率が変化する。これにより、受光器62bでの受光光量が変動し、出力電圧の変化として検出することができる。なお、光学式センサ62が検出する血液成分の界面としては、界面Bに限られず、例えば、バフィーコート層72と赤血球層74との界面であってもよい。
貯血空間54内の各層70、72、74は、それぞれ、血液成分により色が異なっており、赤血球層74は、赤血球の色に伴い赤色を呈している。このため、計測精度向上の観点からは、投光光の波長に好適な範囲が存在し、この波長範囲としては、例えば、750~800nm程度であるとよい。
図3に示すように、制御部26は、出力用として血液ポンプドライバ76と、抗凝固剤ポンプドライバ78と、モータドライバ80と、クランプドライバ82とを有し、血液ポンプ28、抗凝固剤ポンプ30、モータ64及びクランプ36a~36gを制御する。血液ポンプドライバ76は、血液ポンプ28の速度及び吐出方向を制御する。同様に、抗凝固剤ポンプドライバ78は、抗凝固剤ポンプ30の速度を制御する。モータドライバ80はモータ64の回転速度を制御する。クランプドライバ82は、クランプ36a~36gを個別に開閉制御する。
また、制御部26は、各センサの入力制御を行う入力インターフェース84と、モニタ20の入出力を行うモニタインターフェース86とを有する。さらに、制御部26は、各機能部と協働して採血処理動作を制御するモード制御部88と、各センサの入力信号等に基づいて異常の監視を行う異常監視部90と、所定のプログラムやデータの記憶を行う記憶部92と、タイマ94と、外部機器とのデータ通信を行う通信部96とを有する。
異常監視部90は、例えば、システム圧力センサ40から供給されるシステム圧力Psを入力インターフェース84を介して監視し、所定の圧力Pεを超えたときには、モード制御部88に対して割り込み制御等により通知する。モード制御部88では、このような異常信号を受信すると対応するエラー処理を行い、例えば、血液ポンプドライバ76を介して血液ポンプ28を停止させる。さらに、モニタインターフェース86を介してスピーカ20bから警報音を発生させるとともに、カラータッチパネル20aにエラーの種類を表示し、操作者に通知する。
なお、システム圧力Psが圧力Pεを超えたときには装置の物理的影響が直ちに発生することはないが、放置すると遠心ボウル120内のシール56の液密性が低下する懸念があるため、事前にエラー処理を行うようにしている。
異常監視部90の各種の異常監視処理は、マルチタスク等の手法に基づいて、モード制御部88の制御とは独立並行的に行われる。制御部26内の機能の一部は、記憶部92に記録されたプログラムを図示しないCPUによって読み込み実行することにより実現される。
次に、採血キット14の構成を説明する。図4に示すように、採血キット14は、ドナーから血液を採取及び返還するための採血ライン14aと、採血ライン14aに抗凝固剤を供給(導入)する抗凝固剤供給ライン14cと、採取した血液を遠心分離又は循環等させる処理経路系統14bとを有する。
採血ライン14aは、ドナーに穿刺する中空の採血針100と、一端が採血針100に接続されて他端が分岐継手102を介して処理経路系統14bに接続されたチューブ104と、該チューブ104の途中に設けられたチャンバー106とを有する。チャンバー106は、チューブ104を通過する血液中の気泡及びマイクロアグリゲートを除去する。チャンバー106の一端にはチューブ104から分岐した短いチューブ118が設けられている。該チューブ118の端部は通気性且つ菌不透過性のフィルター(図示せず)に接続されるとともに、ドナー圧力センサ38に挿入さており、ドナー圧力Pdを計測可能である。
チャンバー106と分岐継手102との間には、気泡センサ34b及びクランプ36aが装着される。クランプ36aは分岐継手102の近傍に装着されており、クランプ36aを開くことにより採血ライン14aと処理経路系統14bは連通する。チューブ104には直列して2つの気泡センサ34e及び34fが装着されており、気泡を確実に検知することができる。
抗凝固剤供給ライン14cは、抗凝固剤が入った抗凝固剤容器107(図1参照)に接続される抗凝固剤容器接続用針108と、一端が分岐継手116に接続されたチューブ110と、該チューブ110の途中に設けられた気泡除去用チャンバー112及び除菌フィルター(異物除去用フィルター)114とを有する。チューブ104とチューブ110は、採血針100の近傍に設けられた分岐継手116により接続されている。
抗凝固剤容器接続用針108に接続された抗凝固剤容器107には、ACD-A液のような抗凝固剤が蓄えられている。チューブ110は抗凝固剤ポンプ30に装着されており、該抗凝固剤ポンプ30の作用下に抗凝固剤容器接続用針108から供給された抗凝固剤はチューブ110及び分岐継手116を介してチューブ104内の血液中に抗凝固剤が混入される。チューブ110の途中には気泡センサ34aが装着される。
処理経路系統14bは遠心ボウル120と、血漿採取バッグ122と、血小板採取バッグ124と、中間バッグ126aと、エアーバッグ126bと、バッグ128と、白血球除去フィルター130とを有する。遠心ボウル120は図2に基づいて詳述したので再度の説明は省略する。
血漿採取バッグ122及び血小板採取バッグ124は、遠心分離等の処理により得られた血漿及び血小板(濃厚血小板又は濃厚血小板血漿ともいう)を蓄えるバッグである。血漿採取バッグ122は重量計18(図1参照)のフック18aに懸架され、収納された血漿の重量を計測することができる。血小板採取バッグ124は、機構本体部15の前面に懸架される(図1参照)。
中間バッグ126aは、濃厚血小板を一時的に貯留するための容器(一時貯留バッグ)である。エアーバッグ126bは、空気を一時的に収納するための容器である。エアーバッグ126bと中間バッグ126aとは、回路的には分離した独立の容器であるが、物理的には一体的であって複室バッグ126を構成している。複室バッグ126はバッグ検出センサ21(図1参照)のフック21aに懸架される。
採血を行う際には、遠心ボウル120の貯血空間54内等の空気はエアーバッグ126b内に移送され、収納される。返血工程の際には、エアーバッグ126b内に収納されている空気は、貯血空間54内に戻され、所定の血液成分が、ドナーへ返還される。
バッグ128は、血小板採取バッグ124に接続されたバッグであり、成分採血の終了後、血小板採取バッグ124内の空気を排出する際に用いられる。
血漿採取バッグ122、血小板採取バッグ124、中間バッグ126a、エアーバッグ126b及びバッグ128は、それぞれ樹脂製(例えば、軟質ポリ塩化ビニル)の可撓性を有するシート材を重ね、その周縁部を融着(熱融着、高周波融着、超音波融着等)又は接着剤により接着等して袋状にしたものが使用される。
なお、血小板採取バッグ124に使用されるシート材としては、血小板保存性を向上するためにガス透過性に優れるものを用いることがより好ましい。このようなシート材としては、例えば、ポリオレフィンやDnDP可塑化ポリ塩化ビニル等を用いることができる。
白血球除去フィルター130は、中間バッグ126aから血小板採取バッグ124に血液成分を移送する際に、血液成分中の白血球を分離除去するフィルターである。図1から明らかなように、白血球除去フィルター130は、中間バッグ126aより低く、血小板採取バッグ124より高い位置に配置される。
次に、処理経路系統14bの各構成機器を接続するチューブについて説明する。処理経路系統14bの端部である分岐継手102と遠心ボウル120の導入口52cとの間はチューブ140で接続されている。該チューブ140は血液ポンプ28に装着される。したがって、血液ポンプ28を正転させることにより血液を採血ライン14aから遠心ボウル120内に導入し、又は処理経路系統14b内で所定の循環動作を行うことができる。また、血液ポンプ28を逆転させることにより、所定の血液成分を採血ライン14aに導出し、ドナーに返還することができる。
遠心ボウル120の排出口52dにはチューブ142が接続されており、該チューブ142は分岐継手144を介して三つ股に分岐してチューブ146、チューブ148及びチューブ150に接続されている。チューブ142は、濁度センサ32及び気泡センサ34dに直列的に接続されている。
チューブ146はエアーバッグ126bに接続されており、その途中はクランプ36eに装着されている。チューブ148の端部は通気性且つ菌不透過性のフィルター(図示せず)に接続されるとともに、システム圧力センサ40に挿入されており、システム圧力Psを計測可能である。
チューブ150の端部は血漿採取バッグ122に接続されており、その途中には分岐継手152が設けられ、チューブ154を介して中間バッグ126aに接続されている。チューブ154はクランプ36dに装着されている。分岐継手152と血漿採取バッグ122との間のチューブ150はクランプ36cに装着されている。
中間バッグ126aと血小板採取バッグ124との間はチューブ156により接続されており、その途中には白血球除去フィルター130が設けられている。 中間バッグ126aと血小板採取バッグ124との間のチューブ156は、気泡センサ34c及びクランプ36gに装着されている。白血球除去フィルター130の端部には、チューブ156から短く分岐したフィルター160が設けられている。フィルター160はベントフィルター及びキャップからなる。
気泡センサ34cとクランプ36gとの間のチューブ156には分岐継手162が設けられ、チューブ164を介して、血漿採取バッグ122に接続されている。チューブ164の途中には分岐継手166が設けられている。該分岐継手166と分岐継手102との間はチューブ168により接続されている。分岐継手162と分岐継手166との間のチューブ164はクランプ36fに装着されている。チューブ168における分岐継手102の近傍部には、クランプ36bが装着されている。血小板採取バッグ124とバッグ128はチューブ158により接続されている。
このように構成される採血キット14は予め所定の滅菌処理がなされている。なお、図4においては、採血キット14のチューブが集中配置されたカセットハウジング42、及びチューブの一部とフィルター160とを保持するフィルターカセット170(図1参照)の図示を省略している。
次に、血液成分採取装置10により成分採血を行う手順について図5及び図6を参照しながら説明する。
先ず、図5のステップS1において所定の初期処理を行う。この初期処理では、チューブ110、及び採血針100からチャンバー106までのチューブ104に抗凝固剤を導入する処理(プライミング)を行ったうえで、ドナーの血管に採血針100を穿刺する。この後、モニタ20のカラータッチパネル20aを操作して成分採血処理を開始する。これ以降の手順は主に制御部26の作用下に自動的に行われる。
ステップS2において、成分採血のサイクル数を示すカウンタIを、I←1として初期化する。
ステップS3において第1の血漿採取工程を開始する。この第1の血漿採取工程は、遠心ボウル120の貯血空間54内に血液を導入して遠心分離することにより得られる血漿を血漿採取バッグ122内に採取する工程である。
具体的には、血液ポンプ28の回転速度Vを規定の採血速度V1で正転して、ドナーからの採血を継続する(ステップS4)。この採血速度V1は、後述する主循環速度よりも低速であって、120mL/min以下、より好ましくは40~100mL/min程度、例えば60mL/minに設定される。
この採血と同時並行で、抗凝固剤ポンプ30を作動して、チューブ110を介して抗凝固剤を供給し、この抗凝固剤を採血血液中に混入させる。このとき、抗凝固剤ポンプ30の回転速度は、制御部26により、採血血液に対して抗凝固剤が所定比率(例えば1/10)で混合されるように制御される。
これにより、血液(抗凝固剤を含む血液)は、チューブ104を介して移送され、遠心ボウル120の導入口52cより管体50dを経てロータ50の貯血空間54内に導入される。このとき、遠心ボウル120内の空気は、チューブ142及びチューブ146を介してエアーバッグ126b内に送り込まれる。
貯血空間54内に所定量の血液が導入された状態でロータ50の回転を開始する(ステップS5)。つまり、モータ64を駆動し、ロータ50を所定の回転数で回転するよう制御する。ロータ50の回転を開始する際には、例えば、ロータ50の回転数を目標回転数まで急速に増大させてもよく、また、段階的に増大させてもよい。
ロータ50の目標回転数としては、例えば4200~5800rpm程度とされる。以下、ステップS32までロータ50の回転数は一定に維持される。ロータ50の回転により、貯血空間54内に導入された血液は、内側から血漿層70、バフィーコート層72、赤血球層74の3層に分離される。
なお、第2サイクル以降は、血液ポンプ28と同時にモータ64を駆動する。
ステップS6において、チューブ142に設けられた気泡センサ34dの信号を監視し、チューブ142を流れる流体が空気から血漿に変わったかどうかを判断する。そして、チューブ142を流れる流体が空気から血漿に変わった場合(ステップS6において、YES)、ステップ7に進む。チューブ142を流れる流体が空気のままの場合(ステップS6において、NO)、気泡センサ34dの信号の監視を継続する。
ステップS7において、サイクル数を示すカウンタIを参照し、I=1であるか否かを判断する。すなわち、第1の血漿採取工程において血液を遠心分離する際、現在のサイクル数が第1サイクルである場合(ステップS7で、YES)、血漿導入工程(ステップS8)に進み、現在のサイクル数が第2サイクル以降である場合(ステップS7で、NO)、血漿を血漿採取バッグ122に送液する工程(ステップS9)に進む。
ステップS8の血漿導入工程は、第1サイクル時のみ行う工程である。この血漿導入工程では、チューブ142を流れる流体が空気から血漿に変わったことを検出したとき、クランプ36cの閉塞を維持したまま、クランプ36eを閉じるとともにクランプ36dを開放する。すなわち、ドナーからの採血及び採血ライン14aへの抗凝固剤の供給を継続し、貯血空間54の容量を越える血液(約270mL)が貯血空間54内に導入されると、遠心ボウル120の排出口52dから血漿が流出することから、このタイミングを気泡センサ34dにより検出し、クランプ操作を行い、チューブ142、チューブ150及びチューブ154を介して血漿を中間バッグ126aに導入、採取するように切り替える。
このようして中間バッグ126aに所定量の血漿を採取する。中間バッグ126a内の血漿の採取量は、血液ポンプ28の回転数と1回転あたりの送液量から算出される。中間バッグ126a内に採取する血漿の量は、例えば、10~100mL程度に設定され、好ましくは、30~50mL程度に設定される。中間バッグ126a内に血漿を少しでも導入すれば、血漿中に含まれる抗凝固剤の作用により、後工程にて中間バッグ126a内に導入する血小板の凝集塊の発生を抑制する効果が得られるが、少なくとも30mL以上の血漿を中間バッグ126aに予め導入しておくことで、凝集塊発生抑制効果の実効性を高めることができる。中間バッグ126aに所定量の血漿が採取されたら、ステップS9に進む。
第1サイクル時に遠心分離によって得られた血漿中には、採血前に実施したプライミングの際にチューブ104に供給された抗凝固剤の全量が入っている。したがって、中間バッグ126aに採取された血漿中の抗凝固剤の濃度は高い。しかも、本実施形態の場合、遠心ボウル120から最初に流出した血漿を中間バッグ126a内に導入するので、最も抗凝固剤の濃度が高い部分の血漿が中間バッグ126a内に導入されることとなる。
第1サイクルの場合、ステップS9において、血液ポンプ28の駆動による採血、採血ライン14aへの抗凝固剤の供給及び遠心ボウル120の回転による遠心分離を継続しつつ、クランプ36dを閉塞するとともに、クランプ36cを開放する。すなわち、このようなクランプ操作を行い、チューブ142及びチューブ150を介して血漿を血漿採取バッグ122内に導入、採取する。血漿採取バッグ122に導入された血漿の重量は、重量計18により計測される。
第1サイクル以外の場合(すなわち第2サイクル以降の場合)では、ステップS7での判断によりステップS9に進み、このステップS9において、チューブ142を流れる流体が空気から血漿に変わったことを検出したとき、クランプ36dの閉塞を維持したまま、クランプ36eを閉じるとともにクランプ36cを開放する。これにより、血漿を血漿採取バッグ122内に導入、採取する。
上述した説明から了解されるように、本実施形態では、分岐継手152と血漿採取バッグ122との間のチューブ150の流路を開閉するクランプ36cと、分岐継手152と中間バッグ126aとの間のチューブ154の流路を開閉するクランプ36dとにより、遠心ボウル120と血漿採取バッグ122との間の流路を連通させる状態と、遠心ボウル120と中間バッグ126aとの間の流路を連通させる状態とを選択的に切り替える切替手段が構成されている。
ステップS10において、重量計18から得られる重量信号に基づき、血漿採取バッグ122内に所定量の血漿が採取されたか否かを判断する。血漿が所定量採取されたときには次の定速血漿循環工程(ステップS11)に移り、所定量未満であるときには採取を継続しながら待機する。血漿の採取量としては、例えば20~40g程度である。
次に、ステップS11の定速血漿循環工程を行う。定速血漿循環工程は、血漿採取バッグ122内の血漿を貯血空間54を含む循環回路で定速にて循環させる工程である。具体的には、まず、定速血漿循環工程の準備としてクランプ36aを閉じ、クランプ36bを開放するとともに抗凝固剤ポンプ30を停止する。これにより、採血を一時中断するとともに、血漿採取バッグ122内の血漿を循環させる経路(回路)が形成される。この循環回路は、血漿採取バッグ122からチューブ164、168及び140を介して貯血空間54内に至り、遠心ボウル120の排出口52dから流出してきた血漿をチューブ142及び150を介して血漿採取バッグ122内に回収する経路である。このような循環回路を形成したら、血液ポンプ28を所定の循環速度で正転する。この循環速度は、採血速度よりも速い速度であって、好ましくは120~300mL/min程度、例えば200mL/minに設定するとよい。
ステップS12では、タイマ94からの信号に基づき、主循環サブ工程を開始してから所定時間(好ましくは10~90sec程度、例えば30sec)が経過したか否かを判断する。所定時間が経過したときにはステップS13へ移り、未経過であるときには循環を継続しながら待機する。このように、ステップS11及びS12において血漿を循環させることにより、バフィーコート層の濃縮を抑制し、粘度が過度に上昇することを防ぐとともに、赤血球層74に埋もれていた血小板をバフィーコート層72に集めることができる。
血液ポンプ28の運転を所定の循環速度で所定時間行った場合に進むステップS13では、最終サイクルであるか否かを確認する。すなわち、サイクル数を示すカウンタIと、予め設定された最終サイクル数を示すパラメータN(Nは1以上の整数)とを比較し、I=Nであるとき(最終サイクルのとき)にはステップS14及びステップS15に進み、それ以外(I<N)のとき(最終サイクル以外のとき)にはステップS15のみへ進む。以下では、ステップS13でNO判定されてステップS15に進む場合を先に説明し、ステップS13でYES判定された場合に行われる濾過工程については後で説明する。
ステップS15では、第2の血漿採取工程を行う。第2の血漿採取工程では、クランプ36bを閉じてクランプ36aを開放することにより採取した血液を遠心ボウル120へ導入し、第1の血漿採取工程と同様に血漿の採取及び遠心分離を行う。これにより、貯血空間54内の赤血球量が増加、すなわち、赤血球層74の層厚が増大するのに伴い、界面Bも徐々に上昇(ロータ50の回転軸方向へ移動)する。このとき、遠心ボウル120内は血液で満たされているので、エアーバッグ126bに空気を入れる工程は省略できる。
ステップS16では、光学式センサ62からの検出信号に基づいて界面Bが所定レベルに到達したか否かを判断する。界面Bが所定レベルに達しているときにはステップS17へ移り、未達であるときには血液の採取、遠心分離及び界面Bのレベルの計測を継続しながら待機する。
ステップS17では、加速血漿循環工程を行う。加速血漿循環工程は、血漿採取バッグ122内の血漿を貯血空間54内に加速させながら循環させる工程である。具体的には、クランプ36aを閉じるとともにクランプ36bを開放する。また、抗凝固剤ポンプ30を停止させるとともに血液ポンプ28の回転速度が一定の加速度にて増加(増大)するように正転させる。これにより、採血を一時中断するとともに、血漿採取バッグ122内の血漿を循環回路内で加速させながら循環させる。この際の循環回路は、前記の定速血漿循環工程における経路と同じである。
なお、このとき、血液ポンプ28の回転速度を、前記定速血漿循環工程より遅い速度(初速:例えば60mL/min)から、一定の加速度にて増加(増大)するように制御する。加速条件(加速度)としては、例えば3~6mL/min/sec程度とされる。加速度は、一定でなくてもよく、例えば、前記範囲内で段階的又は連続的に変化するものであってもよい。
ステップS18において、血漿の貯血空間54内への循環速度が所定速度に到達したか否かを確認する。つまり、血液ポンプ28の回転速度が、所定速度に達したときにはステップS19へ移り、未達であるときには循環を継続しながら待機する。この際の閾値としての所定速度は、例えば155mL/minである。
ステップS19において第3の血漿採取工程を行う。第3の血漿採取工程では、第1及び第2の血漿採取工程と同様に、血漿の採取を行う。
ステップS20において、ステップS10と同様に、血漿採取バッグ122内に所定量の血漿が採取されたか否かを判断し、血漿が所定量採取されたときには血小板採取工程(ステップS21~S32)へ移り、所定量未満であるときには採取を継続しながら待機する。この際の所定量は、例えば5~15g程度である。
次に、血小板採取工程(S21~S32)を行う。血小板採取工程は血漿採取バッグ122内の血漿を貯血空間54内で第1の加速度にて加速させながら循環させ、次いで、第1の加速度より大きい第2の加速度にて加速させながら循環させて、貯血空間54内より血小板を流出させ、濃厚血小板を中間バッグ126a内に採取(貯留)する工程である。
図6のステップS21においては、第1の加速度による血漿循環を行う。具体的には、クランプ36aを閉じるとともにクランプ36bを開放する。また、抗凝固剤ポンプ30を停止するとともに血液ポンプ28の回転速度を第1の加速度にて増加(増大)するよう正転する。これにより、採血を中断するとともに、血漿採取バッグ122内の血漿を循環回路内で第1の加速度にて加速させながら循環させる。この際の循環回路は、前記の定速血漿循環工程における経路と同じである。この第1の加速度による循環処理により、赤血球層74の拡散(層厚の増大)が生じて、界面Bも徐々にロータ50の回転軸方向へ移動する。
第1の加速度としては、例えば1.5~2.5mL/min/sec程度とされる。第1の加速度は、一定でなくてもよく、例えば、前記範囲内で段階的又は連続的に変化するものであってもよい。また、血液ポンプ28の初速としては、例えば40~100mL/min程度とされる。
ステップS22において、血漿の貯血空間54内への循環速度が所定速度に到達したか否かを確認する。つまり、血液ポンプ28の回転速度が、所定速度に達したときにはステップS23へ移り、未達であるときには循環を継続しながら待機する。この際の所定速度は、例えば140~160mL/min程度とされる。
ステップS23において、第2の加速度による血漿循環を行う。具体的には、血液ポンプ28の加速度を、第1の加速度から第2の加速度に変更して、血液ポンプ28の回転速度を第2の加速度にて増加(増大)するよう正転する。これにより、血漿採取バッグ122内の血漿を貯血空間54内で第2の加速度にて加速させながら循環させる。第2の加速度としては、第1の加速度より大きくなるよう設定され、例えば5~15mL/min/sec程度とされる。なお、第2の加速度は、一定でなくてもよく、例えば、前記範囲内で段階的又は連続的に変化するものであってもよい。
この第2の加速度による循環処理により、赤血球層74の拡散が生じて、界面Bも徐々にロータ50の回転軸方向へ移動するとともに、バフィーコート層72中の血小板が遠心力に抗して浮上し(舞い上がり)、ロータ50の排出口52dへ向って移動する。
ステップS24において、血漿の貯血空間54内への循環速度が所定速度に到達したか否かを判断し、所定速度に達しているときにはステップS26へ移り、未達であるときにはステップS25へ移る。この際の所定速度は、例えば250mL/min程度とされる。
ステップS25において、濁度センサ32から得られるPC濃度電圧値が所定値以下に低下したか否かを判断する。該PC濃度電圧値が所定値以下であるときにはステップS28へ移り、所定値を超えるときにはステップS24へ戻り、循環を継続する。なお、血液ポンプ28の回転速度が所定値に達していなくても、ステップS25で血小板の流出を検出した場合には、ステップS28へ移る。
ステップS26において、タイマ94からの信号に基づき、循環速度が所定速度に到達したときから所定時間(例えば10sec)が経過したか否かを判断する。所定時間が経過したときにはステップS33へ移り、未経過であるときにはステップS24の回転速度を維持しつつステップS27へ移る。
ステップS27において、ステップS25と同様に、濁度センサ32から得られるPC濃度電圧値が所定値以下に低下したか否かを判断する。該PC濃度電圧値が所定値以下であるときにはステップS28へ移り、所定値を超えるときにはステップS26へ戻る。
ステップS28において、血小板の採取を行う。具体的には、濁度センサ32の検出信号に基づき、クランプ36cを閉じるとともにクランプ36dを開放する。これにより、チューブ142、150及び154を介して濃厚血小板を中間バッグ126a内へ導入し、採取(貯留)する。また、濁度センサ32からの出力電圧(検出信号)に基づき、中間バッグ126a内の血小板濃度(累積PC濃度)を算出する。この血小板濃度は、PC採取を開始してから上昇を続け、一旦、最高濃度に到達した後、下降に転じる。
ステップS29において、タイマ94からの信号に基づき、血小板の採取を開始してから所定時間(例えば15sec)が経過したか否かを判断する。所定時間が経過したときにはステップS33へ移り、未経過であるときにはステップS30へ移る。
ステップS30において、濁度センサ32から得られるPC濃度電圧値が所定値以上に上昇したか否かを判断する。該PC濃度電圧値が所定値以上であるときにはステップS33へ移り、所定値を下回るときにはステップS31へ移る。
ステップS31において、中間バッグ126a内の濃厚血小板の増加量が所定量に到達したか否かを判断し、到達しているときにはステップS32へ移り、未達であるときにはステップS28へ戻る。この採取量(所定量)としては、例えば30~80mL程度とされる。なお、中間バッグ126a内の濃厚血小板の採取量は、血液ポンプ28の回転数と1回転当たりの送液量から算出される。
ステップS32において、中間バッグ126aの濃厚血小板の量が所定量に達したか否かを確認する。ここでの濃厚血小板の量は、設定した採取目標値(全サイクルの合計値)であって、閾値としての所定量は、該閾値はPC製剤の単位数によって異なり、例えば20~315mLに設定される。濃厚血小板の量が所定量に達しているときにはステップS33へ移り、未達であるときにはステップS28へ戻る。
中間バッグ126aに採取した濃厚血小板の量が所定量に達したとき(ステップS32で、YES)は、ステップS33の血小板採取終了処理を行う。すなわち、クランプ36eを開放し、この他のクランプ36a~36d及び36fを閉じた状態とし、血液ポンプ28を停止する。なお、濾過中にはクランプ36gは開いた状態でよい。
上述した工程(ステップS21~S33)を実施することより、中間バッグ126a内に濃厚血小板が採取される。この場合、本発明に係る血液成分採取装置10では、第1サイクル時に濃厚血小板を中間バッグ126aに移送する前に、抗凝固剤濃度が高い血漿を予め中間バッグ126a内に入れておくので、中間バッグ126a内の抗凝固剤濃度が高まり、濃厚血小板の貯留中に中間バッグ126a内に凝集塊が発生することを抑制することができる。
ステップS34においてモータ64の回転数を制御してロータ50を減速及び停止させる。
ステップS35において返血工程を開始する。返血工程はロータ50の貯血空間54内に残属する血液成分(主に、赤血球、白血球)をドナーに返血する工程である。具体的には、クランプ36a及びクランプ36eを開放するとともに、血液ポンプ28を所定の回転速度(例えば90mL/min)で逆転する。これにより、残存する血液成分は遠心ボウル120の導入口52cから排出され、チューブ104(採血針100)を介してドナーに返血(返還)される。
ステップS36において、気泡センサ34bによって遠心ボウル120から排出される空気を監視する。気泡センサ34bによって空気が検出されない間は返血を継続し、空気が検出されたときにはステップS37へ移る。
ステップS37において返血終了処理を行う。すなわち、所定の回数だけ血液ポンプ28を回転した後、クランプ36a及びクランプ36eを閉じるとともに、血液ポンプ28を停止する。
最終サイクルでは、気泡センサ34fにより空気を検出した後にクランプ36a及びクランプ36eを閉じるとともに血液ポンプ28を停止する。
ステップS38においてサイクル数の確認を行う。すなわち、ステップS13と同様にカウンタIとパラメータNとを比較し、I=NであるときにはステップS39へ移り、それ以外のときにはパラメータIを、I←I+1としてインクリメントして(ステップS40)、ステップS3へ戻り、次のサイクルに移る。すなわち、上述した第1~第3の血漿採取工程、定速血漿循環工程、加速血漿循環工程、中間バッグ126aに濃厚血小板を採取する工程及び返血工程を、予め設定した所定サイクル数だけ繰り返す。
最終サイクル時のステップS13(図5参照)では、I=Nであるため、ステップS14の濾過工程に進む。濾過工程は、中間バッグ126a内に一時的に採取した濃厚血小板を、白血球除去フィルター130に供給して、濃厚血小板の濾過、すなわち、濃厚血小板中の白血球の分離除去を行う工程である。具体的には 、クランプ36gを開放し、中間バッグ126a内の濃厚血小板を落差(自重)によりチューブ156及び白血球除去フィルター130を経て、血小板採取バッグ124内に移送する。
このとき、濃厚血小板は、そのほとんどが白血球除去フィルター130の濾過部材を通過するが、白血球は濾過部材に捕捉される。このため、血小板製剤中の白血球の除去率を極めて高いものとすることができる。本発明に係る血液成分採取装置10では、第1サイクル時に濃厚血小板を中間バッグ126aに移送する前に、抗凝固剤濃度が高い血漿を予め中間バッグ126a内に入れておくことで、中間バッグ126a内に濃厚血小板の凝集塊が発生することが抑制されているので、白血球除去フィルターの目詰まりの発生を好適に抑制することができる。
また、本実施の形態に係る血液成分採取装置10の場合、遠心ボウル120から最初に流出した血漿を中間バッグ126aに移送するように動作するため、中間バッグ126a内の抗凝固剤濃度を効果的に高めることができる。すなわち、第1サイクル時に最初に遠心ボウル120から流出した血漿は、抗凝固剤濃度が最も高いため、これを中間バッグ126aに入れることで中間バッグ126a内の抗凝固剤濃度を効果的に高めることができ、中間バッグ126a内の凝集塊の発生をより好適に抑制することができる。
なお、濃厚血小板の中間バッグ126a内から血小板採取バッグ124への移送は、所定のポンプを用いて行うようにしてもよい。また、クランプ36gは、手動によりチューブ156の流路の途中を開閉し得るクレンメ等で置き替えてもよい。
最終サイクル時の場合、ステップS38でYES判定がなされてステップS39に進み、採血処理を終了し、カラータッチパネル20aやスピーカ20bから所定の終了出力を行い、オペレータに終了を知らせる。
図7は、各サイクルにおける中間バッグ126a内の抗凝固剤濃度を示すグラフであり、同図においては、第1サイクル時に遠心ボウル120から最初に流出した血漿(抗凝固剤濃度が高い血漿)を中間バッグ126aに送液した場合(本実施形態の場合)を正方形マークで示し、血漿を中間バッグ126aに送液しなかった場合を菱形マークで示している。
図7から了解されるように、第1サイクル時に遠心ボウル120から最初に流出した血漿を中間バッグ126aに送液した場合は、血漿を中間バッグ126aに送液しなかった場合に比べて、全てのサイクルにおいて中間バッグ126a内の抗凝固剤濃度が高く維持されている。このような結果からも、本実施の形態に係る血液成分採取装置10によれば、中間バッグ126a内における血小板の凝集塊の発生を好適に抑制できることが理解される。
以上説明したように、本実施の形態に係る血液成分採取装置10によれば、第1サイクル時に濃厚血小板を中間バッグ126aに移送する前に、抗凝固剤濃度が高い血漿を予め中間バッグ126a内に入れておくので、中間バッグ126a内の抗凝固剤濃度が高まり、濃厚血小板の貯留中に中間バッグ126a内に凝集塊が発生することを抑制することができる。また、抗凝固剤濃度が高い部分の血漿を中間バッグ126aに入れている分、返血の血漿中の抗凝固剤濃度が下がるため、クエン酸反応等のリスクを低減することができる。
また、第1サイクル時に最初に遠心分離器から流出した血漿は抗凝固剤濃度が最も高いため、これを中間バッグ126aに入れることで中間バッグ126a内の抗凝固剤濃度を効果的に高めることができ、中間バッグ126a内の凝集塊の発生をより好適に抑制することができる。
なお、上述した本実施形態に係る血液成分採取装置では、第1サイクル時に最初に遠心ボウル120から流出した血漿を中間バッグ126aに送液したが、本発明はこれに限らず、第1サイクルにおいて採血した血液を遠心ボウル120に導入及び遠心分離した後、中間バッグ126aに最初に血小板を採取する前のいずれかのタイミングで、遠心ボウル120から流出した血漿を中間バッグ126aに所定量だけ送液してもよい。この場合でも、抗凝固剤濃度が高い血漿を中間バッグ126a内に導入するため、中間バッグ126a内での血小板の凝集塊の発生を抑制することができる。
上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。
Claims (2)
- ドナーから血液を採取する採血ライン(14a)と、
前記採血ライン(14a)に抗凝固剤を供給する抗凝固剤供給ライン(14c)と、
採取された血液を遠心分離して所定の血液成分を得る遠心分離器(120)と、
遠心分離して得られた血漿を貯留する血漿採取バッグ(122)と、
遠心分離して得られた濃厚血小板を一時的に貯留する中間バッグ(126a)と、
前記中間バッグ(126a)から移送される濃厚血小板を貯留する血小板採取バッグ(124)と、
前記中間バッグ(126a)と前記血小板採取バッグ(124)との間の送液ライン上に設けられ、前記濃厚血小板中の所定成分を除去するフィルター(130)と、
前記遠心分離器(120)と前記血漿採取バッグ(122)との間の流路を連通させる状態と、前記遠心分離器(120)と前記中間バッグ(126a)との間の流路を連通させる状態とを選択的に切り替える切替手段(36c、36e)と、
前記遠心分離器(120)及び前記切替手段(36c、36e)を駆動制御する制御部(26)と、
を有し、
前記制御部(26)は、
血液を前記採血ライン(14a)から前記遠心分離器(120)に導入して遠心分離を行うとともに遠心分離して得られた血漿を前記血漿採取バッグ(122)に移送する血漿採取工程と、
前記血漿採取工程の後に、遠心分離して得られた濃厚血小板を前記中間バッグ(126a)に移送する血小板移送工程と、
を少なくとも1サイクル行い、
第1サイクル時の前記血小板移送工程の前に、遠心分離して得られた血漿を所定量だけ前記中間バッグ(126a)に導入する血漿導入工程を行う、
ことを特徴とする血液成分採取装置(10)。 - 請求項1記載の血液成分採取装置(10)において、
前記血漿導入工程において、前記制御部(26)は、前記遠心分離器(120)から最初に流出した血漿を前記中間バッグ(126a)に移送する、
ことを特徴とする血液成分採取装置(10)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013510930A JP5883436B2 (ja) | 2011-04-20 | 2012-04-02 | 血液成分採取装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-094075 | 2011-04-20 | ||
JP2011094075 | 2011-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012144312A1 true WO2012144312A1 (ja) | 2012-10-26 |
Family
ID=47041427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/058919 WO2012144312A1 (ja) | 2011-04-20 | 2012-04-02 | 血液成分採取装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5883436B2 (ja) |
WO (1) | WO2012144312A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3919608A4 (en) * | 2019-02-15 | 2023-05-10 | TERUMO Kabushiki Kaisha | PLATELET LYSAT PRODUCTION METHOD, PRODUCTION SYSTEM AND BAG SET |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005199055A (ja) * | 2003-12-16 | 2005-07-28 | Terumo Corp | 血液成分採取装置 |
JP2006204623A (ja) * | 2005-01-28 | 2006-08-10 | Terumo Corp | フィルター装置および血液成分採取装置 |
US20090259163A1 (en) * | 2008-04-14 | 2009-10-15 | Etienne Pages | Three-Line Apheresis System and Method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1933899A1 (en) * | 2005-10-05 | 2008-06-25 | Gambro BCT, Inc. | Method and apparatus for leukoreduction of red blood cells |
-
2012
- 2012-04-02 JP JP2013510930A patent/JP5883436B2/ja active Active
- 2012-04-02 WO PCT/JP2012/058919 patent/WO2012144312A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005199055A (ja) * | 2003-12-16 | 2005-07-28 | Terumo Corp | 血液成分採取装置 |
JP2006204623A (ja) * | 2005-01-28 | 2006-08-10 | Terumo Corp | フィルター装置および血液成分採取装置 |
US20090259163A1 (en) * | 2008-04-14 | 2009-10-15 | Etienne Pages | Three-Line Apheresis System and Method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3919608A4 (en) * | 2019-02-15 | 2023-05-10 | TERUMO Kabushiki Kaisha | PLATELET LYSAT PRODUCTION METHOD, PRODUCTION SYSTEM AND BAG SET |
Also Published As
Publication number | Publication date |
---|---|
JP5883436B2 (ja) | 2016-03-15 |
JPWO2012144312A1 (ja) | 2014-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4050477B2 (ja) | 血液成分採取装置 | |
US7566315B2 (en) | Blood component collection apparatus and method | |
JP2003088581A (ja) | 血小板採取装置 | |
JP4481919B2 (ja) | 血液成分採取装置 | |
JP5883436B2 (ja) | 血液成分採取装置 | |
JP4916905B2 (ja) | 血液成分採取装置 | |
JP4607503B2 (ja) | 血液成分採取装置 | |
JP4619260B2 (ja) | 血液成分採取装置 | |
JP4956528B2 (ja) | 血液成分採取装置 | |
JP4558401B2 (ja) | 血液成分採取装置 | |
JP4344592B2 (ja) | 血液成分採取装置 | |
JP4255166B2 (ja) | 血液成分採取装置 | |
JP2006204623A (ja) | フィルター装置および血液成分採取装置 | |
JP4607508B2 (ja) | 血液成分採取装置 | |
JP4740808B2 (ja) | 血液成分採取装置 | |
JP4871496B2 (ja) | 血液成分採取装置 | |
JP4434817B2 (ja) | 血小板採取装置 | |
JP2005199055A (ja) | 血液成分採取装置 | |
JP4758663B2 (ja) | 血液成分採取装置 | |
JP2002272837A (ja) | 血液成分採取装置 | |
JP2006051252A (ja) | 血液成分採取装置 | |
JP4727058B2 (ja) | 血液成分採取装置 | |
JP2005177191A (ja) | 採血装置 | |
JP2007050078A (ja) | 血液成分採取装置 | |
JP2006034721A (ja) | 血液成分採取装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12773890 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013510930 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12773890 Country of ref document: EP Kind code of ref document: A1 |