WO2012144269A1 - 内燃機関の排気ガス浄化制御装置 - Google Patents

内燃機関の排気ガス浄化制御装置 Download PDF

Info

Publication number
WO2012144269A1
WO2012144269A1 PCT/JP2012/054598 JP2012054598W WO2012144269A1 WO 2012144269 A1 WO2012144269 A1 WO 2012144269A1 JP 2012054598 W JP2012054598 W JP 2012054598W WO 2012144269 A1 WO2012144269 A1 WO 2012144269A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
rich
air
exhaust gas
fuel ratio
Prior art date
Application number
PCT/JP2012/054598
Other languages
English (en)
French (fr)
Inventor
佐藤 健一
高橋 秀明
将 天内
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP12773732.8A priority Critical patent/EP2700800A4/en
Priority to US14/112,629 priority patent/US9228463B2/en
Priority to CN201280019288.6A priority patent/CN103502612A/zh
Publication of WO2012144269A1 publication Critical patent/WO2012144269A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification control device for an internal combustion engine.
  • Patent Document 1 In an internal combustion engine in which a plurality of catalysts are arranged in series in the exhaust passage and the air-fuel ratio is controlled while detecting the states of the upstream catalyst and the downstream catalyst with three air-fuel ratio sensors, An exhaust gas purification control device that changes the richness of the air-fuel ratio based on the detection values of the air-fuel ratio sensors before and after the downstream catalyst when the amount of adsorption becomes excessive is known (Patent Document 1).
  • the problem to be solved by the present invention is to provide an exhaust gas purification control device that can efficiently recover the oxygen storage capacity of the downstream catalyst.
  • the richness of the injected fuel is set to a first richness larger than the stoichiometry from the start of the enrichment, and even after the air-fuel ratio of the exhaust gas flowing out from the upstream side catalyst reaches the stoichiometry, the first richness is increased.
  • the above problem is solved by maintaining the degree.
  • oxygen adsorbed to the downstream catalyst can be rapidly reduced by maintaining the first rich degree even after the air-fuel ratio of the exhaust gas flowing out from the upstream catalyst reaches stoichiometry.
  • the oxygen storage capacity of the downstream catalyst can be efficiently recovered.
  • FIG. 1 is a block diagram showing an internal combustion engine to which an embodiment of the present invention is applied.
  • 2 is a flowchart showing a procedure of exhaust gas purification control executed by the engine control unit of FIG. 1.
  • 6 is a flowchart showing another procedure of exhaust gas purification control executed by the engine control unit of FIG. 1. It is a time chart which shows the time state of each element when the control of FIG.2 and FIG.3 is performed.
  • FIG. 1 is a block diagram showing an engine EG to which an embodiment of the present invention is applied.
  • An air filter 112, an air flow meter 113 for detecting an intake air flow rate, and an intake air flow rate are provided in an intake passage 111 of the engine EG.
  • a throttle valve 114 and a collector 115 to be controlled are provided.
  • the throttle valve 114 is provided with an actuator 116 such as a DC motor for adjusting the opening of the throttle valve 114.
  • the throttle valve actuator 116 electronically controls the opening of the throttle valve 114 based on the drive signal from the engine control unit 11 so as to achieve the required torque calculated based on the driver's accelerator pedal operation amount and the like.
  • a throttle sensor 117 for detecting the opening degree of the throttle valve 114 is provided, and the detection signal is output to the engine control unit 1.
  • the throttle sensor 117 can also function as an idle switch.
  • a fuel injection valve 118 is provided facing the intake passage 111a branched from the collector 115 to each cylinder.
  • the fuel injection valve 118 is driven to open by a drive pulse signal set in the engine control unit 11, and feeds fuel that is pumped from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator (hereinafter referred to as fuel injection valve). (Also referred to as a port) 111a.
  • the fuel injection valve 118 may be exposed to the combustion chamber 123 to directly inject fuel into the combustion chamber 123.
  • the space surrounded by the cylinder 119, the crown surface of the piston 120 that reciprocates within the cylinder, and the cylinder head provided with the intake valve 121 and the exhaust valve 122 constitutes a combustion chamber 123.
  • the spark plug 124 is mounted facing the combustion chamber 123 of each cylinder, and ignites the intake air-fuel mixture based on an ignition signal from the engine control unit 11.
  • exhaust purification catalysts 126 and 127 for purifying the exhaust are provided in series.
  • the exhaust purification catalysts 126 and 127 of this example use a catalyst in which a three-way catalyst or an oxidation catalyst is supported on a crystalline porous aluminosilicate (so-called zeolite) that adsorbs an unburned gas such as hydrocarbon HC.
  • zeolite crystalline porous aluminosilicate
  • the adsorbent composed of zeolite or the like physically adsorbs the unburned gas in the low temperature region, while desorbing the adsorbent from the adsorbent due to molecular motion of the unburned gas adsorbed in the high temperature region such as 150 ° C. or higher.
  • the exhaust gas can be purified by oxidizing CO and hydrocarbon HC and reducing nitrogen oxide NOx.
  • the oxidation catalyst oxidizes carbon monoxide CO and hydrocarbon HC in the exhaust.
  • the adsorbent that adsorbs the unburned gas and the three-way catalyst or the oxidation catalyst are configured as one exhaust purification catalyst, and two such catalysts 126 and 127 are arranged in series. These catalysts may be arranged.
  • the catalyst on the upstream side of the exhaust passage 125 is referred to as a first catalyst 126
  • the catalyst on the downstream side is referred to as a second catalyst 127.
  • the exhaust passage 125 is provided with three air-fuel ratio sensors 128A, 128B, and 128C that detect the exhaust gas by detecting a specific component in the exhaust gas, for example, the oxygen concentration, and thus the air-fuel ratio of the intake air-fuel mixture. Are output to the engine control unit 11, respectively.
  • the air-fuel ratio sensor 128 may be an oxygen sensor that performs rich / lean output, or may be a wide-area air-fuel ratio sensor that linearly detects the air-fuel ratio over a wide area.
  • the first air-fuel ratio sensor 128A is provided in the vicinity of the inlet of the first catalyst 126, and the air-fuel ratio of the exhaust gas flowing into the first catalyst 126 or rich / Lean is detected and output to the engine control unit 11.
  • the second air-fuel ratio sensor 128B is provided in the exhaust passage 125 between the first catalyst 126 and the second catalyst 127, and the air-fuel ratio or the rich / rich exhaust gas flowing out of the first catalyst 126 and flowing into the second catalyst. Lean is detected and output to the engine control unit 11.
  • the third air-fuel ratio sensor 128 ⁇ / b> C is provided in the vicinity of the outlet of the second catalyst 127, detects the air-fuel ratio or rich / lean of the exhaust gas flowing out from the second catalyst 127, and outputs it to the engine control unit 11.
  • reference numeral 129 denotes a muffler.
  • the crankshaft 130 of the engine EG is provided with a crank angle sensor 131, and the engine control unit 11 counts a crank unit angle signal output from the crank angle sensor 131 in synchronization with the engine rotation for a predetermined time, or By measuring the cycle of the crank reference angle signal, the engine speed Ne can be detected.
  • the cooling jacket 132 of the engine EG is provided with a water temperature sensor 133 facing the cooling jacket, detects the cooling water temperature Tw in the cooling jacket 132, and outputs this to the engine control unit 11.
  • Normal air-fuel ratio feedback control is executed when the water temperature of the engine cooling water detected by the water temperature sensor 133 is equal to or higher than a predetermined temperature and the operating state of the engine EG is not in the high rotation / high load region.
  • the air-fuel ratio of the exhaust gas flowing out from the second catalyst 127 is detected by the third air-fuel ratio sensor 128C, and outflowing from the first catalyst 126 based on the output of the third air-fuel ratio sensor 128C. Set the target air-fuel ratio of the exhaust gas.
  • the air-fuel ratio of the exhaust gas flowing out from the first catalyst 126 is detected by the second air-fuel ratio sensor 128B, and the target air-fuel ratio of the exhaust gas flowing into the first catalyst 126 based on the deviation from the target air-fuel ratio described above.
  • an air-fuel ratio correction coefficient is calculated based on the deviation between the target air-fuel ratio and the output of the first air-fuel ratio sensor 128A.
  • the air-fuel ratio of the intake air introduced into the combustion chamber 123 is feedback-controlled using this air-fuel ratio correction coefficient.
  • the engine control unit 11 temporarily interrupts the fuel injection from the fuel injection valve 118.
  • the fuel cut during deceleration or the fuel cut during high rotation is performed, oxygen sucked into the combustion chamber 123 is not combusted and is directly discharged into the exhaust passage 125. Therefore, the first catalyst 126 and the second catalyst 127 The amount of oxygen adsorption is greatly increased. As described above, when the oxygen adsorption amount of the first catalyst 126 and the second catalyst 127 is too large, the processing capacity of NOx in the exhaust gas is lowered.
  • the air-fuel ratio of the mixed air introduced into the combustion chamber 123 is temporarily enriched and adsorbed by the first catalyst 126 and the second catalyst 127.
  • the control is performed by causing the oxygen thus reacted to react with the rich components (HC, CO, etc.) of the exhaust gas and quickly reducing the oxygen adsorption amount of the first catalyst 126 and the second catalyst 127.
  • the following control is executed.
  • step S201 it is determined whether or not a fuel cut condition is satisfied. If the fuel cut condition is not satisfied, steps S202 to S211 are performed. The routine is terminated without performing the above process, and the above-described normal air-fuel ratio feedback control or the like is executed. If the fuel cut condition is satisfied, the process proceeds to step S202.
  • the fuel cut conditions are, for example, the above-described fuel cut at deceleration and fuel cut at high speed.
  • step S202 the amount of oxygen adsorbed on the first catalyst 126 is estimated based on the detected values of the first air-fuel ratio sensor 128A, the second air-fuel ratio sensor 128B, and the engine speed (exhaust amount).
  • step S203 the amount of oxygen adsorbed by the second catalyst 127 is estimated based on the detected values of the second air-fuel ratio sensor 128B, the third air-fuel ratio sensor 128C, and the engine speed (exhaust amount).
  • step S204 When it is confirmed in step S204 that the fuel cut has been completed (time t3), the process proceeds to step S205, and the air-fuel ratio of the mixed air introduced into the combustion chamber 123 is set to a first rich degree that is richer in fuel than stoichiometric. Then, in step S206, it is determined whether or not the output of the second air-fuel ratio sensor 128B exceeds a predetermined V s1. If the output of the second air-fuel ratio sensor 128B exceeds V s1 (time t4), the process proceeds to step S207. .
  • the threshold value V s1 of the second air-fuel ratio sensor 128B is, for example, an output value in a state where the first catalyst 126 is restored to stoichiometry.
  • step S207 subtraction is started from the oxygen adsorption amount of the second catalyst 127 calculated in step S203 (time t4 to t5). This subtraction operation is calculated based on the second air-fuel ratio sensor 128B, the third air-fuel ratio sensor 128C, and the engine speed (displacement). If it is confirmed in step S208 that the oxygen adsorption amount of the second catalyst 127 has decreased to the target oxygen adsorption amount, the process proceeds to step S209.
  • This target oxygen adsorption amount can be determined in advance by experiment, simulation, or the like. In step S208 of this example, it is determined that the value obtained by subtracting a predetermined margin from the oxygen adsorption amount of the second catalyst 127 has decreased to the target oxygen adsorption amount.
  • step S209 the air-fuel ratio of the mixed air introduced into the combustion chamber 123 is switched from a first rich degree to a second rich degree that is fuel lean and fuel richer than stoichiometric (time t5).
  • step S210 it is determined whether or not the output of the third air-fuel ratio sensor 128C exceeds a predetermined V s2, and if the output of the third air-fuel ratio sensor 128C2 exceeds V s2 (time t6), the process proceeds to step S211. Then, the air-fuel ratio enrichment control is terminated.
  • the threshold value V s2 of the third air-fuel ratio sensor 128C is, for example, an output value in a state where the second catalyst 127 is restored to stoichiometry.
  • the recovery process of the oxygen adsorption capacity of the first catalyst 126 and the second catalyst 127 accompanying the fuel cut is performed after the oxygen adsorption capacity of the first catalyst 126 is recovered.
  • the first rich degree with a large rich degree is executed, so that the decrease rate of the oxygen adsorption amount of the second catalyst 127 is large as shown in FIG.
  • the absolute value of the decreasing slope at time t4 to t5 is large), and the oxygen adsorption capacity can be recovered more efficiently than the conventional method indicated by the dotted line in FIG. Therefore, the NOx conversion efficiency is increased as shown in FIG.
  • the timing at which the rich degree of fuel injection is switched from the first rich degree to the second rich degree is the time when the oxygen adsorption amount of the second catalyst 127 reaches the target oxygen adsorption amount (FIG. 2).
  • step S208 at this time, the exhaust passage 125 upstream of the second catalyst 127 is filled with the first rich degree of fuel-rich reducing agent. May be judged.
  • FIG. 3 is a control flow according to another embodiment.
  • step S301 to step S307 have the same control content as step S201 to step S207 in FIG. 2 described above, description thereof will be omitted.
  • step S308 the margin is further subtracted from the oxygen adsorption amount of the second catalyst 127 subtracted in step S307, and in the subsequent step S309, the fuel-rich reducing agent amount remaining in the exhaust passage 125 upstream of the second catalyst 127 is determined. calculate.
  • the amount of the reducing agent is determined based on the correction coefficient for correcting the reaction ratio between the richness of the air-fuel ratio (here, the first richness), the intake air amount, and oxygen, in the exhaust passage 125 upstream of the second catalyst 127. Calculate using volume.
  • step S310 the value obtained by subtracting the margin from the oxygen adsorption amount of the second catalyst 127 reacts with the residual reducing agent upstream of the second catalyst 127 without excess or deficiency (the margin is reduced because the margin is reduced). If it is confirmed that the amount has decreased to less than the amount that reacts, the process proceeds to step S311. Note that the margin for steps S308 and S310 may be zero.
  • step S311 the air-fuel ratio of the mixed air introduced into the combustion chamber 123 is switched to a second rich degree that is fuel leaner than the first rich degree and fuel richer than stoichiometric. Then, in step S312, it is determined whether or not the output of the third air-fuel ratio sensor 128C exceeds a predetermined V s2, and if the output of the third air-fuel ratio sensor 128C2 exceeds V s2 (time t6), the process proceeds to step S313. Then, the air-fuel ratio enrichment control is terminated.
  • the oxygen adsorption capacity recovery process of the first catalyst 126 and the second catalyst 127 accompanying the fuel cut is performed after the oxygen adsorption capacity of the first catalyst 126 is recovered.
  • 4 is executed with the first rich degree having a large rich degree until the target value is reduced to the target value, the reduction rate of the oxygen adsorption amount of the second catalyst 127 is large as shown in FIG. 4 (decreasing slope from time t4 to t5)
  • the oxygen adsorption capacity can be recovered more efficiently than the conventional method indicated by the dotted line in FIG. Therefore, the NOx conversion efficiency is increased as shown in FIG.
  • the oxygen adsorption amount of the second catalyst 127 has decreased to an amount that causes an oxidation / reduction reaction with the residual reducing agent upstream of the second catalyst 127 without excess or deficiency, the fuel lean becomes more lean than the first rich degree. Therefore, when the third air-fuel ratio sensor 128C on the downstream side of the second catalyst 127 detects the rich air-fuel ratio, the rich degree is smaller than the first rich degree. The fuel component passing through the second catalyst 127 can be suppressed. In particular, the richness of fuel injection can be switched at an optimal timing even if the intake air amount changes.
  • the second air-fuel ratio sensor 128B corresponds to detection means according to the present invention, and the first air-fuel ratio sensor 128A, the second air-fuel ratio sensor 128B, the third air-fuel ratio sensor 128C, and the crank angle sensor 131 are estimated according to the present invention.
  • the engine control unit 11 corresponds to the enrichment control means according to the present invention.
  • EG Engine (internal combustion engine) DESCRIPTION OF SYMBOLS 11 ... Engine controller 111, 111a ... Intake passage 112 ... Air filter 113 ... Air flow meter 114 ... Throttle valve 115 ... Collector 116 ... Throttle valve actuator 117 ... Throttle sensor 118 ... Fuel injection valve 119 ... Cylinder 120 ... Piston 121 ... Intake valve 122 ... exhaust valve 123 ... combustion chamber 124 ... ignition plug 125 ... exhaust passage 126 ... first catalyst 127 ... second catalyst 128A ... first air-fuel ratio sensor 128B ... second air-fuel ratio sensor 128C ... third air-fuel ratio sensor 129 ... muffler 130 ... Crankshaft 131 ... Crank angle sensor 132 ... Cooling jacket 133 ... Water temperature sensor

Abstract

上流側に配置された第1触媒(126)から流出する排気ガスの空燃比又はリッチ/リーンを検出する検出手段(128B)と、前記第1触媒及び第2触媒(127)の酸素吸着量を推定する推定手段(128A~128C)と、前記第1触媒及び前記第2触媒の酸素吸着量が所定値以上と推定される場合に、噴射燃料のリッチ度合いを一時的に変えてリッチ化するリッチ化制御手段(11)と、を備え、前記リッチ化制御手段は、前記リッチ化開始から前記噴射燃料のリッチ度合いをストイキよりも大きい第1のリッチ度合いに設定し、前記検出手段の出力がストイキの空燃比又はリッチ/リーン値に達した後も前記第1のリッチ度合いを維持する。

Description

内燃機関の排気ガス浄化制御装置
 本発明は、内燃機関の排気ガス浄化制御装置に関するものである。
 排気通路に複数の触媒を直列に配置し、上流側触媒と下流側触媒の状態を3つの空燃比センサで検出しながら空燃比を制御する内燃機関において、燃料カット時のように各触媒の酸素吸着量が過剰になったときに、下流側触媒の前後の空燃比センサの検出値に基づいて空燃比のリッチ度合いを変化させる排気ガス浄化制御装置が知られている(特許文献1)。
特開2002-276433号公報
 しかしながら、上記従来の制御方法では、リッチ度合いの変化制御の後半において最大リッチの状態から下流側触媒の前後の空燃比センサの検出値に応じて低下させる制御であるため、下流側触媒の酸素ストレージ能力の回復が非効率的であるという問題がある。
 本発明が解決しようとする課題は、下流側触媒の酸素ストレージ能力を効率的に回復できる排気ガス浄化制御装置を提供することである。
 本発明は、リッチ化開始から噴射燃料のリッチ度合いをストイキよりも大きい第1のリッチ度合いに設定し、上流側触媒から流出する排気ガスの空燃比がストイキに達した後も当該第1のリッチ度合いを維持することによって、上記課題を解決する。
 本発明によれば、上流側触媒から流出する排気ガスの空燃比がストイキに達した後も第1のリッチ度合いを維持することで、下流側触媒に吸着した酸素を急速に還元することができ、下流側触媒の酸素ストレージ能力を効率的に回復させることができる。
本発明の一実施の形態を適用した内燃機関を示すブロック図である。 図1のエンジンコントロールユニットで実行される排気ガス浄化制御の手順を示すフローチャートである。 図1のエンジンコントロールユニットで実行される排気ガス浄化制御の他の手順を示すフローチャートである。 図2及び図3の制御を実行したときの各要素の時間的状態を示すタイムチャートである。
 図1は、本発明の一実施の形態を適用したエンジンEGを示すブロック図であり、エンジンEGの吸気通路111には、エアーフィルタ112、吸入空気流量を検出するエアフローメータ113、吸入空気流量を制御するスロットルバルブ114およびコレクタ115が設けられている。
 スロットルバルブ114には、当該スロットルバルブ114の開度を調整するDCモータ等のアクチュエータ116が設けられている。このスロットルバルブアクチュエータ116は、運転者のアクセルペダル操作量等に基づき演算される要求トルクを達成するように、エンジンコントロールユニット11からの駆動信号に基づき、スロットルバルブ114の開度を電子制御する。また、スロットルバルブ114の開度を検出するスロットルセンサ117が設けられて、その検出信号をエンジンコントロールユニット1へ出力する。なお、スロットルセンサ117はアイドルスイッチとしても機能させることができる。
 また、コレクタ115から各気筒に分岐した吸気通路111aに臨ませて、燃料噴射バルブ118が設けられている。燃料噴射バルブ118は、エンジンコントロールユニット11において設定される駆動パルス信号によって開弁駆動され、図外の燃料ポンプから圧送されてプレッシャレギュレータにより所定圧力に制御された燃料を吸気通路(以下、燃料噴射ポートともいう)111a内に噴射する。なお、燃料噴射バルブ118を燃料噴射ポート111aに臨ませることに代えて燃焼室123に臨ませ、当該燃焼室123に直接燃料を噴射する、いわゆる直噴型燃料噴射とすることもできる。
 シリンダ119と、当該シリンダ内を往復移動するピストン120の冠面と、吸気バルブ121及び排気バルブ122が設けられたシリンダヘッドとで囲まれる空間が燃焼室123を構成する。点火プラグ124は、各気筒の燃焼室123に臨んで装着され、エンジンコントロールユニット11からの点火信号に基づいて吸入混合気に対して点火を行う。
 一方、排気通路125には、排気を浄化するための排気浄化触媒126,127が直列に設けられている。本例の排気浄化触媒126,127は、炭化水素HCなどの未燃ガスを吸着する結晶性多孔質アルミノケイ酸塩(いわゆるゼオライト)に三元触媒又は酸化触媒を担持させた触媒を用いている。ゼオライトなどから構成される吸着材は、低温領域において未燃ガスを物理吸着する一方で、たとえば150℃以上といった高温領域において吸着した未燃ガスが分子運動することにより吸着材から脱離する特性を有する。
 また、ゼオライトなどの吸着材に担持された三元触媒は、活性温度に達すると、ストイキ(理論空燃比,λ=1、空気重量/燃料重量=14.7)近傍において排気中の一酸化炭素COと炭化水素HCを酸化するとともに、窒素酸化物NOxの還元を行って排気を浄化することができる。また、酸化触媒は、排気中の一酸化炭素COと炭化水素HCを酸化する。
 なお、本例では未燃ガスを吸着する吸着材と三元触媒又は酸化触媒とを一つの排気浄化触媒として構成し、この種の触媒126,127を直列に2つ配置したが、3つ以上の触媒を配置してもよい。以下、排気通路125の上流側の触媒を第1触媒126、下流側の触媒を第2触媒127と称する。
 排気通路125には、排気中の特定成分、たとえば酸素濃度を検出することにより排気、ひいては吸入混合気の空燃比を検出する3つの空燃比センサ128A,128B,128Cが設けられ、それらの検出信号はそれぞれエンジンコントロールユニット11へ出力される。この空燃比センサ128は、リッチ/リーン出力する酸素センサであってもよいし、空燃比をリニアに広域に亘って検出する広域空燃比センサであってもよい。
 排気通路125に設けられた3つの空燃比センサのうちの第1空燃比センサ128Aは、第1触媒126の入口近傍に設けられ、当該第1触媒126に流入する排気ガスの空燃比又はリッチ/リーンを検出し、エンジンコントロールユニット11へ出力する。第2空燃比センサ128Bは、第1触媒126と第2触媒127との間の排気通路125に設けられ、第1触媒126を流出して第2触媒に流入する排気ガスの空燃比又はリッチ/リーンを検出し、エンジンコントロールユニット11へ出力する。第3空燃比センサ128Cは、第2触媒127の出口近傍に設けられ、当該第2触媒127を流出する排気ガスの空燃比又はリッチ/リーンを検出し、エンジンコントロールユニット11へ出力する。
 なお、図1において129はマフラである。
 エンジンEGのクランク軸130にはクランク角センサ131が設けられ、エンジンコントロールユニット11は、クランク角センサ131から機関回転と同期して出力されるクランク単位角信号を一定時間カウントすることで、又は、クランク基準角信号の周期を計測することで、機関回転速度Neを検出することができる。
 エンジンEGの冷却ジャケット132には、水温センサ133が当該冷却ジャケットに臨んで設けられ、冷却ジャケット132内の冷却水温度Twを検出し、これをエンジンコントロールユニット11へ出力する。
 通常の空燃比フィードバック制御は、水温センサ133により検出されるエンジン冷却水の水温が所定温度以上であり、エンジンEGの運転状態が高回転・高負荷領域でない場合に実行される。その一例を説明すると、まず第2触媒127から流出する排気ガスの空燃比を第3空燃比センサ128Cで検出し、この第3空燃比センサ128Cの出力に基づいて、第1触媒126から流出する排気ガスの目標空燃比を設定する。ついで、第1触媒126から流出する排気ガスの空燃比を第2空燃比センサ128Bで検出し、上述した目標空燃比との偏差に基づいて、第1触媒126に流入する排気ガスの目標空燃比を設定する。そして、この目標空燃比と第1空燃比センサ128Aの出力との偏差に基づいて、空燃比補正係数を算出する。この空燃比補正係数を用いて燃焼室123に導入される吸入空気の空燃比がフィードバック制御されることになる。
 さて、エンジンEGが運転中に、たとえばアクセル開度がゼロでエンジン回転速度が所定値以上になったり、エンジン回転速度がレッドゾーンに入ったりすると、燃料節減やエンジン回転の過上昇を防止するために、エンジンコントロールユニット11は燃料噴射バルブ118からの燃料噴射を一時的に中断する。こうした減速時燃料カットや高回転時燃料カットが実施されると、燃焼室123に吸入された酸素は燃焼せずにそのまま排気通路125に排出されるため、第1触媒126及び第2触媒127の酸素吸着量が大幅に増加する。このように第1触媒126及び第2触媒127の酸素吸着量が多過ぎると、排気ガス中のNOxの処理能力が低下することになる。
 このため、本例では、燃料カットが終了して燃料噴射を再開する際に、燃焼室123に導入する混合空気の空燃比を一時的にリッチ化して第1触媒126及び第2触媒127に吸着した酸素を排気ガスのリッチ成分(HC,CO等)と反応させ、これら第1触媒126及び第2触媒127の酸素吸着量を速やかに減少させる制御を実行する。そしてその際に、特に下流側触媒(本例では第2触媒127)の酸素吸着量を効率的に減少させるため、以下の制御を実行する。
 図2は制御フローチャート、図4は制御タイムチャートであり、まずステップS201にて燃料カットの条件が成立しているか否かを判断し、燃料カットの条件が成立していない場合はステップS202~S211の処理を行うことなく当該ルーチンを終了し、上述した通常の空燃比フィードバック制御などを実行する。燃料カットの条件が成立している場合はステップS202へ進む。燃料カットの条件は、たとえば上述した減速時燃料カットや高回転時燃料カットなどの条件である。
 ステップS202では、第1空燃比センサ128A及び第2空燃比センサ128B並びにエンジン回転速度(排気量)の各検出値に基づいて第1触媒126に吸着される酸素吸着量を推定する。同様に、ステップS203では、第2空燃比センサ128B及び第3空燃比センサ128C並びにエンジン回転速度(排気量)の各検出値に基づいて第2触媒127に吸着される酸素吸着量を推定する。これら酸素吸着量の推定演算はステップS204で燃料カットが終了するまで継続する。図4の第1触媒O量、第2触媒O量はステップS202,S203で算出される酸素吸着量を示し、燃料カット開始(時間t1)とほぼ同時に第1触媒126の酸素吸着量が増加し、少し遅れて(時間t2)第2触媒127の酸素吸着量が増加する。
 ステップS204にて燃料カットが終了したことを確認したら(時間t3)ステップS205へ進み、燃焼室123に導入する混合空気の空燃比をストイキより燃料リッチな第1のリッチ度合いに設定する。そして、ステップS206にて第2空燃比センサ128Bの出力が所定のVs1を超えるか否かを判断し、第2空燃比センサ128Bの出力がVs1を超えたら(時間t4)ステップS207へ進む。この第2空燃比センサ128Bの閾値Vs1は、たとえば第1触媒126がストイキに回復した状態の出力値である。
 ステップS207では、ステップS203にて算出した第2触媒127の酸素吸着量から減算を開始する(時間t4~t5)。この減算演算は第2空燃比センサ128B及び第3空燃比センサ128C並びにエンジン回転速度(排気量)に基づいて算出する。そして、ステップS208にて、第2触媒127の酸素吸着量が目標酸素吸着量まで減少したことを確認したら、ステップS209へ進む。この目標酸素吸着量は、実験やシミュレーション等により予め決定することができる。なお、本例のステップS208では、第2触媒127の酸素吸着量から所定の余裕代を減じた値が目標酸素吸着量まで減少したことを判断する。
 ステップS209では、燃焼室123に導入される混合空気の空燃比を、第1のリッチ度合いより燃料リーンであってストイキより燃料リッチな第2のリッチ度合いに切り換える(時間t5)。そして、ステップS210にて、第3空燃比センサ128Cの出力が所定のVs2を超えるか否かを判断し、第3空燃比センサ128C2の出力がVs2を超えたら(時間t6)ステップS211へ進み、空燃比リッチ化制御を終了する。この第3空燃比センサ128Cの閾値Vs2は、たとえば第2触媒127がストイキに回復した状態の出力値である。
 以上のとおり、本例の排気ガス浄化制御によれば、燃料カットにともなう第1触媒126及び第2触媒127の酸素吸着能力の回復処理を、第1触媒126の酸素吸着能力が回復した後も第2触媒の酸素吸着量が目標値に減少するまで、リッチ度合いの大きい第1のリッチ度合いで実行するため、図4に示すように、第2触媒127の酸素吸着量の減少率が大きく(時間t4~t5の減少傾きの絶対値が大きい)、同図に点線で示す従来方法に比べて効率よく酸素吸着能力を回復させることができる。したがって、同図に示すようにNOx転換効率が高くなる。
 上述した実施の形態では、燃料噴射のリッチ度合いを第1のリッチ度合いから第2のリッチ度合いに切り換えるタイミングを第2触媒127の酸素吸着量が目標酸素吸着量に達した時点とした(図2のステップS208)が、この時点では、第2触媒127の上流側の排気通路125には第1のリッチ度合いの燃料リッチな還元剤が満たされているので、この還元剤量を基準に切り換えるタイミングを判断してもよい。図3は他の実施の形態に係る制御フローである。
 ステップS301からステップS307は上述した図2のステップS201からステップS207と同じ制御内容であるため、その説明を省略する。ステップS308では、ステップS307で減算した第2触媒127の酸素吸着量からさらに余裕代を減算し、続くステップS309では第2触媒127の上流側の排気通路125に残留する燃料リッチな還元剤量を算出する。この還元剤量は、空燃比のリッチ度合い(ここでは第1のリッチ度合い)と吸入空気量、及び酸素との反応割合を補正する補正係数により、第2触媒127の上流側の排気通路125の容積を用いて算出する。
 そして、ステップS310にて、第2触媒127の酸素吸着量から余裕代を減じた値が第2触媒127上流側の残留還元剤と過不足なく反応する量(余裕代を減じているので過不足なく反応する量未満)まで減少したことを確認したら、ステップS311へ進む。なお、ステップS308及びS310の余裕代をゼロとしてもよい。
 ステップS311では、燃焼室123に導入される混合空気の空燃比を、第1のリッチ度合いより燃料リーンであってストイキより燃料リッチな第2のリッチ度合いに切り換える。そして、ステップS312にて、第3空燃比センサ128Cの出力が所定のVs2を超えるか否かを判断し、第3空燃比センサ128C2の出力がVs2を超えたら(時間t6)ステップS313へ進み、空燃比リッチ化制御を終了する。
 このように構成しても、燃料カットにともなう第1触媒126及び第2触媒127の酸素吸着能力の回復処理を、第1触媒126の酸素吸着能力が回復した後も第2触媒の酸素吸着量が目標値に減少するまで、リッチ度合いの大きい第1のリッチ度合いで実行するため、図4に示すように、第2触媒127の酸素吸着量の減少率が大きく(時間t4~t5の減少傾きの絶対値が大きい)、同図に点線で示す従来方法に比べて効率よく酸素吸着能力を回復させることができる。したがって、同図に示すようにNOx転換効率が高くなる。また、第2触媒127の酸素吸着量が第2触媒127上流側の残留還元剤と互いに過不足なく酸化・還元反応する量にまで減少したことを確認したら、第1のリッチ度合いより燃料リーンであってストイキより燃料リッチな第2のリッチ度合いに切り換えるので、第2触媒127下流側の第3空燃比センサ128Cがリッチ空燃比を検出するときには、リッチ度合いが第1のリッチ度合いより小さな第2のリッチ度合いになっていて、第2触媒127を通過する燃料成分を抑制することができる。特に吸入空気量が変化しても最適なタイミングで燃料噴射のリッチ度合いを切り換えることができる。
 上記第2空燃比センサ128Bは本発明に係る検出手段に相当し、上記第1空燃比センサ128A,第2空燃比センサ128B,第3空燃比センサ128C,クランク角センサ131は本発明に係る推定手段に相当し、上記エンジンコントロールユニット11は本発明に係るリッチ化制御手段に相当する。
EG…エンジン(内燃機関)
11…エンジンコントローラ
111,111a…吸気通路
112…エアーフィルタ
113…エアフローメータ
114…スロットルバルブ
115…コレクタ
116…スロットルバルブアクチュエータ
117…スロットルセンサ
118…燃料噴射バルブ
119…シリンダ
120…ピストン
121…吸気バルブ
122…排気バルブ
123…燃焼室
124…点火プラグ
125…排気通路
126…第1触媒
127…第2触媒
128A…第1空燃比センサ
128B…第2空燃比センサ
128C…第3空燃比センサ
129…マフラ
130…クランク軸
131…クランク角センサ
132…冷却ジャケット
133…水温センサ

Claims (3)

  1.  排気通路に複数の触媒を直列に配置した内燃機関の排気ガス浄化制御装置において、
     上流側に配置された第1触媒から流出する排気ガスの空燃比又はリッチ/リーンを検出する検出手段と、
     前記第1触媒及び前記第2触媒の酸素吸着量を推定する推定手段と、
     前記第1触媒及び前記第2触媒の酸素吸着量が所定値以上と推定される場合に、噴射燃料のリッチ度合いを一時的に変えてリッチ化するリッチ化制御手段と、を備え、
     前記リッチ化制御手段は、前記リッチ化開始から前記噴射燃料のリッチ度合いをストイキよりも大きい第1のリッチ度合いに設定し、前記検出手段の出力がストイキの空燃比又はリッチ/リーン値に達した後も前記第1のリッチ度合いを維持することを特徴とする内燃機関の排気ガス浄化制御装置。
  2.  請求項1に記載の内燃機関の排気ガス浄化制御装置において、
     前記リッチ化制御手段は、
     前記第2触媒の酸素吸着量が目標酸素吸着量以下になるまで前記第1のリッチ度合いを維持し、
     前記第2触媒の酸素吸着量が目標酸素吸着量以下になったら、リッチ度合いを前記第1のリッチ度合いより小さい第2のリッチ度合いに設定することを特徴とする内燃機関の排気ガス浄化制御装置。
  3.  請求項1に記載の内燃機関の排気ガス浄化制御装置において、
     前記リッチ化制御手段は、
     前記第2触媒の酸素吸着量が、当該第2触媒から上流側の排気通路に存在する還元剤と互いに過不足なく反応する量になるまで前記第1のリッチ度合いを維持し、
     前記第2触媒の酸素吸着量が前記還元剤と互いに過不足なく反応する量になったら、リッチ度合いを前記第1のリッチ度合いより小さい第2のリッチ度合いに設定することを特徴とする内燃機関の排気ガス浄化制御装置。
PCT/JP2012/054598 2011-04-22 2012-02-24 内燃機関の排気ガス浄化制御装置 WO2012144269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12773732.8A EP2700800A4 (en) 2011-04-22 2012-02-24 GAS CLEANING CONTROL DEVICE FOR A COMBUSTION ENGINE
US14/112,629 US9228463B2 (en) 2011-04-22 2012-02-24 Exhaust gas purification control device for an internal combustion engine
CN201280019288.6A CN103502612A (zh) 2011-04-22 2012-02-24 内燃机的排气气体净化控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095680 2011-04-22
JP2011-095680 2011-04-22

Publications (1)

Publication Number Publication Date
WO2012144269A1 true WO2012144269A1 (ja) 2012-10-26

Family

ID=47041391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054598 WO2012144269A1 (ja) 2011-04-22 2012-02-24 内燃機関の排気ガス浄化制御装置

Country Status (4)

Country Link
US (1) US9228463B2 (ja)
EP (1) EP2700800A4 (ja)
CN (1) CN103502612A (ja)
WO (1) WO2012144269A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016023621A (ja) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 内燃機関の制御装置
JP6036853B2 (ja) * 2013-01-29 2016-11-30 トヨタ自動車株式会社 内燃機関の制御装置
JP2017057778A (ja) * 2015-09-16 2017-03-23 三菱自動車工業株式会社 排気浄化制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5776773B2 (ja) * 2011-07-15 2015-09-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6260452B2 (ja) * 2014-05-23 2018-01-17 トヨタ自動車株式会社 内燃機関の制御装置
JP6308150B2 (ja) 2015-03-12 2018-04-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102016222108A1 (de) * 2016-11-10 2018-05-17 Robert Bosch Gmbh Verfahren zum Einstellen eines Kraftstoff/Luft-Verhältnisses eines Verbrennungsmotors
JP6834917B2 (ja) * 2017-11-09 2021-02-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP7077883B2 (ja) * 2018-09-06 2022-05-31 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR20200133980A (ko) * 2019-05-21 2020-12-01 현대자동차주식회사 삼원 촉매의 산소 퍼지 제어 방법 및 시스템
JP7211389B2 (ja) * 2020-03-25 2023-01-24 トヨタ自動車株式会社 内燃機関の制御装置
DE102021130875A1 (de) 2021-11-25 2023-05-25 Schaeffler Technologies AG & Co. KG Strahlpumpe für ein Brennstoffzellensystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339195A (ja) * 1997-06-09 1998-12-22 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2002276433A (ja) 2001-03-23 2002-09-25 Denso Corp 内燃機関の排出ガス浄化制御装置
JP2005299430A (ja) * 2004-04-08 2005-10-27 Toyota Motor Corp 内燃機関の空燃比制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6138453A (en) * 1997-09-19 2000-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an internal combustion engine
JP2001075527A (ja) * 1999-09-01 2001-03-23 Sharp Corp 表示装置
JP3966014B2 (ja) * 2002-02-25 2007-08-29 株式会社デンソー 内燃機関の排気浄化装置
JP3846375B2 (ja) 2002-07-10 2006-11-15 トヨタ自動車株式会社 触媒劣化判定方法
JP4312668B2 (ja) * 2004-06-24 2009-08-12 三菱電機株式会社 内燃機関の空燃比制御装置
DE102005024872A1 (de) * 2005-05-31 2006-12-14 Siemens Ag Verfahren und Vorrichtung zum Ermitteln einer Sauerstoffspeicherkapazität des Abgaskatalysators einer Brennkraftmaschine und Verfahren und Vorrichtung zum Ermitteln einer Dynamik-Zeitdauer für Abgassonden einer Brennkraftmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339195A (ja) * 1997-06-09 1998-12-22 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JP2002276433A (ja) 2001-03-23 2002-09-25 Denso Corp 内燃機関の排出ガス浄化制御装置
JP2005299430A (ja) * 2004-04-08 2005-10-27 Toyota Motor Corp 内燃機関の空燃比制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2700800A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6036853B2 (ja) * 2013-01-29 2016-11-30 トヨタ自動車株式会社 内燃機関の制御装置
JPWO2014118890A1 (ja) * 2013-01-29 2017-01-26 トヨタ自動車株式会社 内燃機関の制御装置
JP2016023621A (ja) * 2014-07-23 2016-02-08 トヨタ自動車株式会社 内燃機関の制御装置
US10626815B2 (en) 2014-07-23 2020-04-21 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
JP2017057778A (ja) * 2015-09-16 2017-03-23 三菱自動車工業株式会社 排気浄化制御装置

Also Published As

Publication number Publication date
EP2700800A1 (en) 2014-02-26
US20140060016A1 (en) 2014-03-06
US9228463B2 (en) 2016-01-05
EP2700800A4 (en) 2014-10-15
CN103502612A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2012144269A1 (ja) 内燃機関の排気ガス浄化制御装置
JP2003206785A (ja) エンジンの制御方法及び制御装置
WO2013035155A1 (ja) 内燃機関の排気浄化装置
WO2012049916A1 (ja) 内燃機関の排気還流制御装置
JP2982440B2 (ja) 内燃機関の排気浄化装置
WO2004097200A1 (ja) 内燃機関の制御装置
JP4127585B2 (ja) 内燃機関の排出ガス浄化装置
JP5113374B2 (ja) 内燃機関の排ガス浄化装置
CN110857645B (zh) 内燃机的排气净化装置和排气净化方法
JP2010031737A (ja) 空燃比制御装置及びハイブリッド車両
JP2013024131A (ja) 内燃機関の燃料噴射制御装置
JPH08144802A (ja) 内燃機関の空燃比制御装置
JP2012251429A (ja) 内燃機関の燃料噴射制御装置
US20240044276A1 (en) Straddled vehicle
JP5169671B2 (ja) エンジンの排気浄化装置
JP4063743B2 (ja) 内燃機関の燃料噴射時期制御装置
WO2023223504A1 (ja) 三元触媒の酸素ストレージ量制御方法および装置
JP2000248979A (ja) 内燃機関の排気浄化装置
JP2010180841A (ja) 内燃機関の排気浄化装置
JP2004116295A (ja) 内燃機関の排気浄化装置
JP2012251428A (ja) 内燃機関の燃料噴射制御装置
JP6232749B2 (ja) エンジンの制御装置及び制御方法
JP2020084832A (ja) 内燃機関の制御装置
JP4902632B2 (ja) 内燃機関の排ガス浄化装置
JP2021110305A (ja) 内燃機関の電子制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12773732

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012773732

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012773732

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14112629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP