WO2012144059A1 - モータのロータの製造方法 - Google Patents

モータのロータの製造方法 Download PDF

Info

Publication number
WO2012144059A1
WO2012144059A1 PCT/JP2011/059893 JP2011059893W WO2012144059A1 WO 2012144059 A1 WO2012144059 A1 WO 2012144059A1 JP 2011059893 W JP2011059893 W JP 2011059893W WO 2012144059 A1 WO2012144059 A1 WO 2012144059A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated steel
shaft
peripheral edge
rotor
steel plate
Prior art date
Application number
PCT/JP2011/059893
Other languages
English (en)
French (fr)
Inventor
将之 松下
公正 村山
康治 松野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020137023501A priority Critical patent/KR101361369B1/ko
Priority to PCT/JP2011/059893 priority patent/WO2012144059A1/ja
Priority to EP11863741.2A priority patent/EP2701289A4/en
Priority to CN201180070317.7A priority patent/CN103493343A/zh
Priority to US14/113,040 priority patent/US9015926B2/en
Priority to JP2011537773A priority patent/JP5299516B2/ja
Publication of WO2012144059A1 publication Critical patent/WO2012144059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/028Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots for fastening to casing or support, respectively to shaft or hub
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • the present invention relates to, for example, a motor rotor mounted on a hybrid vehicle or the like, and a rotor of a motor that is assembled integrally with a rotor core by inserting a shaft, which is a rotating shaft of the rotor, into an insertion hole of a rotor core formed of laminated steel plates. It is related with the manufacturing method.
  • the rotor of the motor has a rotor core formed by inserting a shaft into the insertion hole with respect to a rotor core formed of a laminated steel plate in which a plurality of thin steel plates each having a through-hole punched by press working are stacked.
  • the shaft is fixed by press fitting, and a magnet is attached to the rotor core.
  • FIG. 14 is a perspective view of the rotor core disclosed in Patent Document 1.
  • FIG. 15 shows a part of the thin steel plate forming the rotor core as viewed from the direction of arrow C in FIG.
  • FIG. 16 is an explanatory view showing a state where the motor shaft is inserted through the through hole of the rotor core as seen from the direction of arrow C in FIG.
  • the through-holes 312H of the thin steel plate 312 are alternately formed with grooves 303 and projections 304 having a diameter difference in the radial direction at regular intervals in the circumferential direction, as shown in FIGS. It is formed in an annular arrangement.
  • the rotor core 310 uses a plurality of such thin steel plates 312, and the adjacent thin steel plates 312 and 312 are arranged such that the groove portion 303 of one thin steel plate 312 and the convex portion 304 of the other thin steel plate 312 are in phase. It is formed by laminating.
  • the outer surface of the motor shaft 320 is formed with a concavo-convex portion 324 by knurling, and a fitting hole 311H of the rotor core 310 which is a through hole 312H (groove portion 303, convex portion 304) of a plurality of laminated thin steel plates 312. It is supposed to be inserted through.
  • the uneven portion 324 of the motor shaft 320 is intermittently pressed into the contact portion and the non-contact portion into the groove portion 303 and the convex portion 304 of the thin steel plate 312. Yes.
  • Patent Document 1 as shown in FIG.
  • each thin steel plate 312 is freely deformed and easily bent toward the axis AX of the rotor core 310. It is devised so that no stress remains on the rotor core 310 and the motor shaft 324, and scratches and burrs due to press-fitting of the motor shaft 320 do not occur.
  • FIG. 17 shows an example of another conventional manufacturing method for fixing a rotor core and a shaft as in Patent Document 1.
  • the rotor core 410 has plate-shaped jigs 431 and 432 in surface contact with both side end surfaces 411a and 411b of the laminated steel plate 411 in the thickness direction HT, and has a predetermined clamping force.
  • the jig 431 and the jig 432 are fastened to restrain the plurality of thin steel plates 412.
  • the rotor core 410 is heated by induction hardening or the like, and the shaft 420 is inserted into the insertion hole 411H whose hole diameter is slightly expanded by thermal expansion, and then the rotor core 410 is cooled, whereby the rotor core 410 and the shaft 420 are quenched. It is fitted and fixed.
  • FIG. 18 and FIG. 19 are schematic views for explaining how the laminated steel sheet is distorted in the axial direction by shrink fitting.
  • the laminated steel plates 411 obtained by laminating the thin steel plates 412 in the same stamping direction are constrained by a pair of jigs 431 and 432 with a large clamping force.
  • the shaft 420 is inserted into the insertion hole 411H with a clearance in the diameter of the insertion hole 411H of the heated laminated steel plate 411, and after being inserted, the laminated steel plate 411 is cooled.
  • the laminated steel plate 411 is distorted in the axial direction HT by tightening allowance by shrink fitting on the shaft insertion inlet side (lower side in FIG. 18) or the shaft insertion outlet side (upper side in FIG. 19).
  • Displacement occurs between the steel plate outermost peripheral portions Q2 and Q3. This displacement differs for each product (motor) in the direction and magnitude of the displacement.
  • Variation width that is, the distance between the steel plate outermost peripheral part Q2 and the steel plate outermost peripheral part Q3 reaches, for example, about 2 (mm).
  • FIG. 20 is a schematic diagram showing a part of a motor in which a rotor and a stator are assembled.
  • a motor in which the rotor 403 with the rotor core 410 largely deformed in the axial direction HT is assembled, as shown in FIG. 20, the rotor core 410 that remains distorted in the axial direction HT in the rotor 403 and the axial direction HT of the rotor 403
  • the stator 402 formed with a constant thickness cannot be disposed at a position facing each other with respect to the radial direction RD of the rotor.
  • a part of the laminated steel plate 411 constituting the rotor core 410 is largely displaced relative to the stator 402 with respect to the axial direction HT of the rotor 403, and there is a portion where it is difficult for the stator 402 to be affected by the magnetic force. It will occur. As a result, there is a problem that a loss occurs in generating the rotational force by the motor, and the motor performance cannot be maximized.
  • each thin steel plate serving as the insertion hole of the rotor core (laminated steel plate), the inclination of the inner peripheral surface (fitting surface), the thickness of the shear surface, the burr at the end, etc.
  • the form of the part differs for each thin steel plate constituting the rotor core.
  • the through holes in the thin steel plate are punched by punching the thin steel plates one by one, so quality control of the entire through hole of the rotor core through which the shaft is inserted is performed based on each through hole in each thin steel plate I can't do it.
  • the axial thickness of the rotor core is premised on the assumption that a variation of about 2 (mm) occurs at the position of the outermost peripheral portion of the laminated steel plate.
  • the thickness is larger than the thickness of the stator.
  • the thickness of one thin steel plate is 0 In the case of .3 (mm), if the thickness of the rotor core is increased to nearly 2 (mm), seven or more extra thin steel plates are required, which increases the manufacturing cost of the rotor core. In addition, even if the rotor is thicker than the stator, there is a portion where the magnetic force is difficult to act between the rotor and the stator, so that the substantial cost of the stator is increased, which in turn increases the cost of the motor. is there.
  • the present invention has been made to solve the above-described problems, and can improve the assembly accuracy between a rotor core and a shaft made of laminated steel sheets and manufacture a rotor for a high-performance motor at a low cost. It aims at providing the manufacturing method of the rotor of a motor.
  • a method for manufacturing a rotor of a motor according to an aspect of the present invention for solving the above problems has the following configuration.
  • (1) A pair of laminated steel plates each having a through hole formed by laminating a plurality of thin steel plates having through holes and aligning the through holes of the plurality of thin steel plates from both sides in the thickness direction of the laminated steel plates
  • the shaft is inserted into the insertion hole and fixed by shrink fitting with the laminated steel plate in a state where the laminated steel plate is constrained in the thickness direction as the rotor core using the pair of jigs.
  • Each of the pair of jigs has a shaft insertion hole through which the shaft can be inserted, and a radially inner peripheral portion sandwiching the periphery of the insertion hole of the laminated steel plate at a position surrounding the shaft insertion hole on the inner diameter side with respect to the radial direction of the shaft insertion hole. And a radially outer peripheral edge sandwiching the outer peripheral edge of the laminated steel sheet, and a pair of jigs, the radially inner peripheral edge and the radially outer peripheral edge are orthogonal to the radial direction. Difference in height in the jig height direction Provided, characterized in that it is formed.
  • the segment range indicating the radially inner peripheral edge portion and the segment range indicating the radially outer peripheral edge portion are defined as follows.
  • a range that is located on the inner side in the radial direction with respect to a position sandwiching the central portion of the steel plate diameter of the steel plate is pointed out.
  • a radial outer peripheral part shall point out the range located in the radial direction outer side from the position which pinches
  • the pair of jigs has a shape in which the inner peripheral edge is higher than the outer peripheral edge with respect to one side in the jig height direction with respect to the horizontal direction.
  • the first jig and the second jig constituting the pair of jigs are a mountain shape or a valley. It is preferable that all are formed in the same shape as the mold shape.
  • the pair of jigs are formed in a mountain shape.
  • the pair of jigs has a shape in which a radially inner peripheral edge and a radially outer peripheral edge are connected by an inclined surface. It is preferable that it is formed by.
  • the pair of jigs have a flat base portion that connects the radially inner peripheral edge portion and the radially outer peripheral edge portion.
  • the radially inner peripheral edge portion and the radially outer peripheral edge portion are formed so as to stand from the base portion in the jig height direction.
  • the laminated steel plates sandwiched by a pair of jigs are sandwiched in a predetermined direction from both sides of the laminated steel plates in the thickness direction.
  • a laminated steel plate having insertion holes formed by laminating a plurality of thin steel plates having through holes and aligning the through holes of the plurality of thin steel plates Using a pair of jigs sandwiched from both sides in the thickness direction of the laminated steel sheet, with the pair of jigs constraining the laminated steel sheet as the rotor core in the thickness direction, the shaft is inserted into the insertion hole and shrink-fitted with the laminated steel sheet
  • the pair of jigs are respectively positioned at a position that surrounds the shaft insertion hole on the inside of the diameter with respect to the shaft insertion hole through which the shaft can be inserted and the radial direction of the shaft insertion hole.
  • the thickness direction generated between the shrink-fitted part with the shaft and the outermost peripheral part of the steel sheet is characterized by being formed with a height difference in the jig height direction perpendicular to the radial direction.
  • the displacement the variation width between products (rotors) can be suppressed to about half compared with the conventional manufacturing method.
  • the rotor core is composed of a laminated steel plate in which a plurality of thin steel plates having through holes are laminated.
  • a thin steel plate is formed, for example, in a shape having a thickness of about 0.3 (mm) and an outer peripheral diameter exceeding 100 (mm), and is easily bent in the thickness direction even with its own weight.
  • the through holes of the thin steel plates are punched by punching for each thin steel plate before lamination.
  • the inner peripheral surface (fitting surface) is inclined and sheared. The shape of the peripheral edge of the through hole after pressing, such as the thickness of the surface and the burrs at the end, is different for each thin steel plate.
  • each thin steel plate has a large degree of freedom for deformation.
  • each thin steel plate is distorted by residual stress when the peripheral edge of the through hole of each thin steel plate shrinks toward the shaft after shrink fitting.
  • deformation with displacement occurs between the shrink-fitted portion between the peripheral edge of the through hole and the shaft and the outermost peripheral portion of the steel plate of the thin steel plate in the thickness direction of each thin steel plate.
  • the direction of deformation is the insertion hole inlet side which is the inlet side when the shaft passes through the insertion hole of the laminated steel sheet for each rotor (product) due to the reasons of (b) and (c) described above.
  • the shaft may be an insertion hole outlet side that is an outlet side when the shaft is inserted through the insertion hole.
  • the entire laminated steel plate is further deformed to the insertion hole inlet side or the insertion hole outlet side with respect to its thickness direction by the spring force of each thin steel plate, and is deformed for each product.
  • the variation width of the deformation occurred on the inlet side of the laminated steel plate in the thickness direction and on the outlet side of the through hole. It is the sum of the displacement of the time and is generally larger between products.
  • the laminated steel plates are restrained by a pair of jigs having a height difference in the jig height direction between the radially inner peripheral edge and the radially outer peripheral edge.
  • a pair of jigs has a diameter inner periphery higher than a diameter outer periphery, or a diameter inner periphery lower than a diameter outer periphery, and both jigs have a diameter inner periphery and a diameter outer periphery.
  • the height relationship with the part is the same.
  • the radial inner peripheral edge of one jig is the thickness of the laminated steel sheet.
  • the inner peripheral edge of the other side jig is separated from the peripheral edge of the laminated steel sheet.
  • the other side in the thickness direction lower side on the opposite side illustrated, it comes into direct contact with the periphery of the insertion hole of the laminated steel sheet.
  • the peripheral edge of the through hole of each thin steel sheet shrinks toward the shaft, Residual stress toward the other side in the thickness direction of the laminated steel plate does not act on the radially inner peripheral edge of the other side jig in contact, and the laminated steel plate does not deform toward the other side in the thickness direction.
  • the inner peripheral edge of the one side jig is one side in the thickness direction of the laminated steel sheet and is separated from the periphery of the insertion hole of the laminated steel sheet, so the residual stress of each thin steel sheet is on one side in the thickness direction.
  • the degree of freedom in the deformation direction is the thickness of the laminated steel sheet in each constrained thin steel sheet due to the difference in height between the radially inner periphery and the radially outer periphery. It is suppressed to one side of the direction (lower side in the case of the above example).
  • the entire thin steel plate is aligned and displaced in the same direction. Therefore, the variation width between products (rotors) in the displacement between the insertion hole of the laminated steel plate (the whole thin steel plate) and the shaft and the outermost peripheral part of the steel plate of the laminated steel plate is different from the conventional manufacturing method. In comparison, it can be reduced to about half. As a result, the part where the magnetic force is difficult to act between the rotor and the stator between the products is reduced compared to the conventional manufacturing method, and the assembly accuracy between the rotor core and the shaft is improved. Loss when generating can be suppressed, and a motor with high performance can be manufactured.
  • the thickness of the rotor is increased so that a portion that is less susceptible to the action of magnetic force with the stator does not occur. Since the number of extra thin steel plates can be reduced, the manufacturing cost of the rotor core can be reduced. Also, in the stator, the portion where the magnetic force is difficult to act with the rotor is reduced as compared with the conventional manufacturing method, so that the cost of the stator can be substantially reduced, and thus the cost of the motor is suppressed. can do.
  • the method for manufacturing a rotor of a motor according to the above aspect has an excellent effect that the assembly accuracy between the rotor core and the shaft can be increased, and a high-performance motor rotor can be manufactured at low cost.
  • the pair of jigs may be on one side in the jig height direction with respect to the horizontal direction.
  • a first jig that constitutes a pair of jigs when a shape in which the radially inner peripheral edge is higher than the radially outer peripheral edge is a mountain shape, and a shape in which the radially inner peripheral edge is lower than the radially outer peripheral edge is a valley shape.
  • the second jig are characterized in that they are formed in the same shape with either a mountain shape or a valley shape, so that it is easy to suppress the degree of freedom in the deformation direction of the thin steel plate, Generation
  • the pair of jigs are formed in a mountain shape. Then, when the shaft is inserted into the insertion hole of the laminated steel sheet toward the top side of the pair of jigs and shrink-fitted, the stress when the peripheral edge of the through hole of each thin steel sheet contracts toward the shaft after shrink-fitting, It is less likely to occur on the opposite side of the direction through which the shaft is inserted. Thereby, generation
  • the pair of jigs includes a radially inner peripheral portion and Since it is characterized by being formed in a shape where the outer peripheral edge portion is connected by an inclined surface, even when a plurality of types of rotor cores are manufactured with different specifications of the outer peripheral diameter of the thin steel plate,
  • One type of specification is not specified by the specification of the rotor core and has general versatility, and can be widely applied to a plurality of types of rotor cores. Therefore, a pair of jigs is not required individually for each specification of the rotor core, and the cost of the rotor core can be reduced.
  • the pair of jigs may include a radially inner peripheral portion and Since it has a flat plate-like base portion that connects to the outer peripheral edge portion, the inner diameter peripheral edge portion and the outer radial outer periphery portion are each formed upright from the base portion in the jig height direction. , Among the pair of jigs, it is easy to set the heights of the radially inner peripheral edge and the radially outer peripheral edge in accordance with the amount of displacement to be regulated in the thickness direction in the thin steel plate after shrink fitting. become able to.
  • the laminated steel plates sandwiched by a pair of jigs in the manufacturing method of the rotor of the motor described in any one of (1) to (5), the laminated steel plates sandwiched by a pair of jigs, A laminated steel plate restraining step of restraining with a predetermined clamping force from both sides of the laminated steel plate with respect to the thickness direction, a laminated steel plate heating step of heating the restrained laminated steel plate after the laminated steel plate restraining step, and heating the laminated steel plate, In the laminated steel sheet restraining step, the shaft is inserted into the insertion hole of the laminated steel sheet through the shaft insertion hole of the jig, and the shaft is shrink-fitted with the shaft.
  • the steel plate is restrained by a pair of jigs in a state where the degree of freedom of deformation that occurs after shrink fitting is suppressed, and in the laminated steel plate heating process, the hole diameter of the constrained laminated steel plate expands somewhat due to thermal expansion.
  • the shaft shrink fitting process the shaft can be smoothly inserted into the insertion hole having a slightly expanded hole diameter, and the shaft and the laminated steel sheet are shrink fitted by cooling the laminated steel sheet.
  • the strain to be displaced in the thickness direction is restricted to one side, so that the laminated steel sheet, that is, the rotor core and the shaft can be fixed with high assembling accuracy.
  • FIG. 3 is a cross-sectional view of a pair of jigs as viewed from a position corresponding to an arrow AA in FIG.
  • FIG. 3 shows a pair of jig
  • FIG. 7 is a cross-sectional view taken along line BB in FIG.
  • it is a flowchart figure which shows the process of manufacturing the rotor of a motor. It is a schematic diagram explaining the state before shrink fitting of the shaft and laminated steel plate which were penetrated to the penetration hole. It is a schematic diagram explaining the state after shrink fitting of the shaft and laminated steel plate which were penetrated to the penetration hole.
  • FIG. 14 It is a schematic diagram explaining a mode that a thin steel plate is distorted by the shrink-fit part with a shaft.
  • the rotor manufactured with the manufacturing method of the rotor of the motor concerning an embodiment, it is a mimetic diagram explaining modification of a laminated steel plate. It is explanatory drawing which showed typically the motor which assembled
  • the perspective view of the rotor core disclosed by patent document 1 is shown. In FIG. 14, a part of the thin steel plate forming the rotor core as viewed from the direction of arrow C is shown.
  • FIG. 18 is a schematic diagram illustrating a state in which a laminated steel sheet is deformed to the axial shaft insertion entrance side in a rotor manufactured by the conventional manufacturing method illustrated in FIG. 17.
  • FIG. 18 is a schematic diagram for explaining a state in which the laminated steel sheet is deformed to the axial shaft insertion outlet side in the rotor manufactured by the conventional manufacturing method shown in FIG. 17.
  • a rotor of a motor is assembled by inserting a shaft, which is a rotating shaft of a rotor, into a rotor core insertion hole formed of laminated steel plates and assembling integrally with the rotor core.
  • the method is listed in the embodiment.
  • the HT illustrated in the accompanying drawings includes a direction along the axis of the shaft, a direction along the rotor rotation axis, a thickness direction of the rotor core, a lamination direction (thickness direction) of the thin steel plates, and a shaft in a pair of jigs.
  • the direction along the axis of the insertion hole and the jig height direction are shown.
  • RD is a radial direction centered on the axis of the shaft, a radial direction centered on the axis of the rotor, a radial direction centered on the axis of the insertion hole of the laminated steel plate (through hole of the thin steel plate), and The radial direction centering on the shaft center of the shaft insertion hole in a pair of jigs is shown.
  • FIG. 1 is an explanatory diagram of a manufacturing method for fixing a rotor core and a shaft using a pair of jigs according to a first example of the embodiment.
  • FIG. 6 is a plan view showing a thin steel plate constituting the rotor core.
  • 7 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 13 is an explanatory view schematically showing a motor in which a rotor manufactured by the method for manufacturing a rotor of a motor according to the embodiment is assembled with a stator.
  • the motor 1 has a stator 2, a rotor 3 and the like as shown in FIG.
  • the stator 2 is annularly arranged on the outer side in the radial direction RD of the rotor 3 in the circumferential direction of the rotor 3 around the axis AX of the rotor 3.
  • the rotor 3 has a rotor core 10 and a shaft 20.
  • the rotor core 10 is composed of a laminated steel plate 11 in which a plurality (for example, about 300) of thin steel plates 12 are laminated in the thickness direction HT.
  • the thin steel plate 12 is formed in a disk shape having a thickness of 0.3 (mm) and an outer diameter ⁇ 130 (mm), for example, in the center with the axis AX1 as the center.
  • a through hole 12H having an inner diameter ⁇ D (0 ⁇ D) is provided. The through holes 12H are punched by punching the thin steel plates 12 one by one by pressing.
  • the laminated steel plate 11 has an insertion hole 11H having an inner diameter ⁇ D formed by aligning the axial centers AX1 of the plurality of through holes 12H with respect to the laminated thin steel plates 12.
  • Each of the thin steel plates 12 has a plurality of magnet insertion holes 15H into which magnets are inserted on pitch circles (not shown) having a predetermined diameter centered on the axis AX1 outside the through-hole 12H in the radial direction RD. 6 has eight magnet insertion holes 15H.
  • the shaft 20 is a rotating shaft of the rotor 3 having an outer diameter ⁇ d (0 ⁇ d ⁇ D) and formed in a hollow shape or a solid shape. As will be described in detail later, the shaft 20 is inserted into the insertion hole 11H of the laminated steel plate 11 and fixed to the laminated steel plate 11 by shrink fitting. In the manufacturing process of the rotor 3, a pair of jigs 30 that sandwich the laminated steel sheet 11 from both sides in the thickness direction HT are used to fix the shaft 20 and the laminated steel sheet 11.
  • FIG. 2 is a plan view of a first jig of the pair of jigs shown in FIG.
  • the pair of jigs 30 includes a first jig 31 and a second jig 32.
  • a stainless steel or the like is not heated at the time of shrink fitting of the laminated steel sheet 11 by induction hardening. It is made of a magnetic material.
  • Each of the first jig 31 and the second jig 32 has a shaft insertion hole 30H through which the shaft 20 can be inserted at the center.
  • the pair of jigs 30 has a radially inner peripheral portion 35 that sandwiches the periphery of the insertion hole 11H of the laminated steel plate 11 at a position surrounding the shaft insertion hole 30H on the radially inner side with respect to the radial direction RD of the shaft insertion hole 30H.
  • a radially outer peripheral edge 37 sandwiching the outer peripheral edge of the laminated steel plate 11 outside the radially inner peripheral edge 35.
  • the radially inner peripheral edge 35 and the radially outer peripheral edge 37 are formed with a height difference in the jig height direction HT orthogonal to the radial direction RD.
  • section range indicating the radially inner peripheral edge portion 35 and the section range indicating the radially outer peripheral edge portion 37 are defined as follows.
  • the inner diameter peripheral edge part 35 is a member of the pair of jigs 30.
  • it refers to a range located inside the radial direction RD diameter with a position sandwiching the central portion of the steel plate diameter of the laminated steel plate 11 as a boundary.
  • the radially outer peripheral edge portion 37 refers to a range of the pair of jigs 30 that is located on the outer side in the radial direction RD diameter with a position sandwiching the central portion of the steel plate diameter of the laminated steel plate 11 as a boundary.
  • the shape in which the radially inner peripheral edge 35 is higher than the radially outer peripheral edge 37 with respect to the jig height direction HT one side (upper side in FIG. 1) with respect to the horizontal direction is a mountain shape.
  • the diameter inner peripheral edge 35 is lower than the diameter outer peripheral edge 37 in a valley shape
  • the first jig 31 and the second jig 32 constituting the pair of jigs 30 have a mountain shape or a valley shape. All are formed in the same shape.
  • a fastener 50 such as a bolt is used to restrain the laminated steel sheet 11 sandwiched between the first jig 31 and the second jig 32 with a predetermined clamping force F in the thickness direction HT.
  • Fastener insertion holes 38H through which the fastener 50 is inserted are drilled in the first jig 31 at a plurality of locations (four locations shown in FIG. 2), and the second jig 32 can be screwed into the fastener 50.
  • Various female screw holes 39H are drilled at a plurality of locations.
  • the restraint of the laminated steel sheets by the first jig and the second jig is not limited to this embodiment, but in a dedicated production facility, the first jig and the second jig are driven by a drive source such as an air cylinder or a hydraulic cylinder.
  • the jigs are configured so as to be freely close to or away from each other in the thickness direction, and the first jig and the second jig are clamped by such a drive source to restrain the laminated steel sheet. May be.
  • FIGS. 3 is a cross-sectional view of a pair of jigs as viewed from the position corresponding to the arrow AA in FIG.
  • the pair of jigs 30 is such that the inner diameter peripheral edge 35 is (h1-h2) more than the outer diameter peripheral edge 37 with respect to the reference horizontal line HL. It is a high mountain shape, and is formed in a shape in which the radially inner peripheral edge 35 and the radially outer peripheral edge 37 are connected by the inclined surface 30a.
  • the first and second jigs 31 and 32 are the highest in the vicinity of the position where the axis CL passes, and the shaft insertion holes 30H It is formed by curving one disk-like flat plate in a form that gradually decreases toward the outside in the radial direction RD diameter.
  • the pair of jigs according to the first example was formed by deforming one disk-shaped flat plate into a mountain shape.
  • the pair of jigs 30T according to the modification is not formed by deforming one member, and the inner diameter peripheral edge 35T is cut by (h1-h2) from the outer diameter outer peripheral edge 37T by cutting or the like. It was formed at a high level.
  • FIG. 4 is an explanatory view showing a pair of jigs according to a modification, and is a cross-sectional view seen from the same position as in FIG.
  • the pair of jigs 30T has a mountain shape in which the radially inner peripheral edge 35T is higher than the radially outer peripheral edge 37T by (h1-h2) with respect to the reference horizontal line HL. It is a shape, and is formed in a shape in which the radially inner peripheral edge portion 35T and the radially outer peripheral edge portion 37T are connected by the inclined surface 30Ta.
  • the first jig 31T has a plurality of fastener insertion holes 38TH through which the fastener 50 is inserted, and the second jig 32T has female screw holes 39TH that can be screwed with the fastener 50 at a plurality of positions. Perforated.
  • FIG. 8 is a flowchart showing a process for manufacturing a motor rotor in the present embodiment.
  • FIG. 9 is a schematic diagram for explaining a state before shrink fitting between the shaft inserted into the insertion hole and the laminated steel sheet.
  • FIG. 10 is a schematic diagram for explaining a state after shrink fitting between the shaft inserted into the insertion hole and the laminated steel sheet.
  • the laminated steel plate 11 is formed by inserting a predetermined number of thin steel plates 12 in the same punching direction, aligning each through hole 12H of each thin steel plate 12, and inserting through holes. 11H, and the rotor core 10 is in a single state.
  • a laminated steel plate restraining step is performed in the method for manufacturing a rotor of the motor according to the present embodiment.
  • the laminated steel plate restraining step the laminated steel plate 11 sandwiched between the pair of jigs 30 is restrained with a predetermined clamping force F from both sides of the laminated steel plate 11 in the thickness direction HT. Specifically, as shown in FIG. 1, on one side (upper side in FIG.
  • the inner peripheral edge portion in the vicinity of the periphery of the insertion hole 11 ⁇ / b> H is While the outer periphery of the laminated steel plate 11 near the outermost periphery in the radial direction is in contact with the outer periphery of the outer periphery 37 of the first jig 31. There is no contact gap.
  • the inner peripheral edge of the other end surface 11b is in contact with the radially inner peripheral edge 35 of the second jig 32 and has no gap.
  • the outer peripheral edge portion does not contact the radially outer peripheral edge portion 37 of the second jig 32 and has a gap.
  • the laminated steel sheet 11 is sandwiched between the first jig 31 and the second jig 32, and the four fasteners 50 are inserted into the fastener insertion holes 38 ⁇ / b> H of the first jig 31. Fastened by the female screw hole 39H, for example, the laminated steel sheet 11 is restrained with a clamping force F having a predetermined magnitude of about 1 (ton).
  • a laminated steel sheet heating step is performed in the motor rotor manufacturing method according to the present embodiment.
  • the constrained laminated steel sheet 11 is heated after the laminated steel sheet constraining step performed in step S10.
  • the laminated steel plate 11 constrained by the pair of jigs 30 is heated to, for example, near 300 ° C. by induction hardening, and the inner diameter ⁇ D of the insertion hole 11H is expanded by about 100 ( ⁇ m) by thermal expansion.
  • step S30 and step S40 a shaft shrink fitting process is performed in the method for manufacturing a rotor of the motor according to the present embodiment.
  • the shaft shrink fitting process after heating the laminated steel sheet 11, the shaft 20 is inserted into the insertion hole 11H of the laminated steel sheet 11 through the shaft insertion holes 30H of the pair of jigs 30, and the shaft 20 and the laminated steel sheet 11 are shrink fitted.
  • step S30 as shown in FIG. 1 to be referred to, the shaft 20 is inserted into the laminated steel plate 11 constrained by the pair of jigs 30 from the shaft insertion hole 30H of the second jig 32.
  • the shaft insertion hole 30H of the first jig 31 is passed through the insertion hole 11H.
  • the shaft 20 having the outer diameter ⁇ d (0 ⁇ d ⁇ D) is smoothly inserted into the expanded insertion hole 11H as shown in FIG. Can be inserted.
  • step S40 the laminated steel sheet 11 is cooled.
  • the laminated steel plate 11 that is, the laminated thin steel plates 12, the inner diameter ⁇ D of each through hole 12H (insertion hole 11H) contracts smaller than the outer diameter ⁇ d of the shaft 20, and the laminated steel plate 11 and the shaft 20 are As shown in FIG. 10, it is shrink-fitted and fixed.
  • step S50 after fastening of the fastener 50 is released and the pair of jigs 30 are removed from the laminated steel plate 11, the magnet inserted into each magnet insertion hole 15H is fixed to the laminated steel plate 11 with an adhesive. .
  • the process of fixing the rotor core 10 and the shaft 20 together is completed.
  • FIG. 11 is a schematic diagram for explaining how the thin steel plate is distorted at the shrink-fit portion with the shaft.
  • FIG. 12 is a schematic diagram for explaining the deformation of the laminated steel plate in the rotor manufactured by the method for manufacturing a rotor of the motor according to the embodiment.
  • the insertion is formed by laminating a plurality of thin steel plates 12 having through holes 12H and aligning the through holes 12H of the plurality of thin steel plates 12.
  • the laminated steel sheet 11 is constrained in the thickness direction HT as the rotor core 10 by the pair of jigs 30.
  • the pair of jigs 30 are respectively shaft insertion holes 30H through which the shaft 20 can be inserted. And a radial inner side sandwiching the periphery of the insertion hole 11H of the laminated steel plate 11 at a position surrounding the shaft insertion hole RD on the inner side in the radial direction RD of the shaft insertion hole 30H A pair of jigs 30 having a radially outer peripheral edge 35 and a radially outer peripheral edge 37 sandwiching the outer peripheral edge of the laminated steel sheet 11.
  • the portion 37 is formed with a difference in height in the jig height direction HT orthogonal to the radial direction RD, in the laminated steel plate 11, the shrink-fitted portion P1 with the shaft 20 and the steel plate
  • the displacement X in the thickness direction HT generated between the outer peripheral portion P1 and the variation width between products (rotor 3) as compared with the conventional manufacturing method in which the rotor core 410 and the shaft 420 are fixed as shown in FIG.
  • it can be reduced to about half.
  • the rotor core 10 is composed of a laminated steel plate 12 in which a plurality of thin steel plates 12 having through holes 12H are laminated.
  • the thin steel plate 12 is formed in a shape having a thickness of about 0.3 (mm) and an outer diameter exceeding 100 (mm). Just bend easily in the thickness direction.
  • the through-holes 12H of the thin steel plates 12 are punched by punching or the like for each thin steel plate 12 before lamination, and the through-holes 12H of the thin steel plates 12 are referred to as shown in FIG.
  • the shape of the peripheral edge 12C after pressing differs depending on the sheet steel plate 12 one by one. Yes. Further, at the time of shrink fitting, a plurality of laminated thin steel plates 12 (laminated steel plates 11) are constrained in the thickness direction HT by a pair of jigs, but there are nearly 300 thin steel plates 12 as illustrated. Although it is fixed by caulking locally with a pair of jigs, the entire surface of each thin steel plate 12 is not fixed to each other in the entire laminated steel plate 11, but is simply overlapped and laminated. . Therefore, as shown in FIG. 11, each thin steel plate 12 has a large degree of freedom for deformation.
  • Deformation with displacement X (0 ⁇ X) occurs between The direction of the deformation is due to the reasons (b) and (c) described above, for each rotor (product), as shown in FIG. 18, when the shaft 420 is inserted through the insertion hole 411H of the laminated steel plate 410. There is a case where it is the insertion hole inlet side (lower side in FIG. 18) which is the inlet side. Further, as shown in FIG. 19, the deformation direction may be the insertion hole outlet side (the upper side in FIG. 19) which is the outlet side when the shaft 420 is inserted through the insertion hole 411H.
  • the entire laminated steel plate 411 is inserted into the insertion hole inlet side or the insertion hole outlet side with respect to the thickness direction HT by the spring force of each thin steel plate 412.
  • the variation width of the deformation is the displacement X when occurring on the thickness direction through hole entrance side of the laminated steel plate 412 and the through hole exit side. 2X, the sum of the displacement X and the product X between the products.
  • the method of manufacturing the rotor of the motor according to the first example of the present embodiment has a pair of jigs in which the radial inner peripheral edge 35 and the radial outer peripheral edge 37 are provided with a height difference in the jig height direction HT.
  • the laminated steel plate 11 is restrained by the tool 30.
  • the pair of jigs 30 has a radially inner peripheral edge 35 higher than the radially outer peripheral edge 37, and the first jig 31 and the second jig 32 both have a radially inner peripheral edge 35 and a radially outer peripheral edge.
  • the positional relationship with the part 37 is the same.
  • the radially inner peripheral edge 35 of the first jig 31 is in the thickness direction of the laminated steel plate 11.
  • the inner peripheral edge 35 of the second jig 32 is spaced apart from the peripheral edge of the insertion hole 11H of the laminated steel sheet 11, but the second inner edge 35 of the second jig 32 On the side (the lower side in FIG. 1), it comes into direct contact with the peripheral edge of the insertion hole 11H of the laminated steel plate 11.
  • the shaft 20 is inserted from the other side to the one side in the thickness direction HT of the laminated steel sheet 11, and after shrink fitting, the through-hole peripheral part 12 ⁇ / b> C of each thin steel sheet 12 (laminated steel sheet 11) faces the shaft 20.
  • the inner diameter peripheral edge portion 35 of the second jig 32 that contacts the peripheral edge of the insertion hole 11H of the laminated steel sheet 11 does not act on the other side of the laminated steel sheet 11 in the thickness direction HT, and this thickness direction. Deformation of the laminated steel plate 11 to the other side of the HT does not occur.
  • the radially inner peripheral edge 35 of the first jig 31 is separated from the peripheral edge of the insertion hole 11H of the laminated steel sheet 11 on one side in the thickness direction HT of the laminated steel sheet 11, the residual stress of each thin steel sheet 12 Acts toward one side in the thickness direction HT, and the shrink-fit part P1 of each whole thin steel plate (laminated steel plate 11) is easily deformed toward this gap. Therefore, in the method of manufacturing the rotor of the motor according to the first example of the present embodiment, the thin inner steel plate 12 is deformed due to a difference in height between the radially inner peripheral edge 35 and the radially outer peripheral edge 37. The degree of freedom in the direction is suppressed to one side (the side shown in FIG. 12) in the thickness direction HT of the laminated steel sheet 11.
  • the entire thin steel plate 12 (laminated steel plate 11) is shown in FIG. As shown in the figure, they are all deformed within the variation range of the displacement X in the same direction. For this reason, variation in overall displacement between the insertion hole 11H of the laminated steel sheet 11 (the insertion hole 12H of the entire thin steel sheet 12) and the shrink-fitted part P1 of the shaft 20 and the outermost peripheral part P2 of the steel sheet of the laminated steel sheet 11 is achieved.
  • the width X can be suppressed to about a half of the variation width 2X generated in the case of the conventional manufacturing method.
  • the portion where the magnetic force is less likely to act between the rotor 3 and the stator 2 between the products is reduced as compared with the conventional manufacturing method, and the assembly accuracy between the rotor core 10 and the shaft 20 is improved. Loss when generating rotational force with the motor 1 is suppressed, and the motor 1 with high performance can be manufactured.
  • the motor 1 in which the rotor core 10 in which the variation width X is suppressed to be small is assembled to the rotor 3, as shown in FIGS. 13 and 20, there is no portion that is hardly affected by the magnetic force between the stator 2.
  • the thickness of the rotor 3 is increased as compared with the conventional manufacturing method.
  • the manufacturing cost of the rotor core 10 can be reduced.
  • the portion where the magnetic force is difficult to act with the rotor 3 is reduced as compared with the conventional manufacturing method, so that the cost of the stator 2 can be substantially reduced. Cost can be reduced.
  • the assembly accuracy between the rotor core 10 and the shaft 20 is increased, and the rotor 3 of the motor 1 having high performance at low cost is manufactured. There is an excellent effect of being able to.
  • the pair of jigs 30 have a radially inner peripheral portion with respect to the jig height direction HT one side with respect to the horizontal direction HL.
  • the second jig 32 are characterized by being formed in the same shape in either a mountain shape or a valley shape, so that the degree of freedom in the deformation direction of the thin steel plate 12 can be easily suppressed, As shown in FIG. 12, it is possible to suppress the occurrence of distortion that tends to be displaced in the thickness direction HT one side (the upper side in FIG. 12 and the direction shown in FIG. 19) of the laminated steel plate 11.
  • the pair of jigs 30 are formed in a mountain shape.
  • the stress when the through-hole peripheral edge portion 12C of each thin steel plate 12 contracts toward the shaft 20 after shrink-fitting, It is less likely to occur on the opposite side of the direction through which the shaft 20 is inserted.
  • production of the distortion of the laminated steel plate 11 toward this other side can be suppressed more reliably.
  • the pair of jigs 30 has a shape in which the radially inner peripheral edge 35 and the radially outer peripheral edge 37 are connected by the inclined surface 30a. Therefore, even when a plurality of types of rotor cores 10 are manufactured with different specifications of the outer peripheral diameter of the thin steel plate 12, the pair of jigs 30 is in accordance with the specifications of the rotor core 10 for one type of specifications. It is not specified and has versatility, and can be widely applied to a plurality of types of rotor cores 10. Therefore, the pair of jigs 30 is not required individually for each specification of the rotor core 10, and the cost of the rotor core 10 can be reduced.
  • the laminated steel plate 11 sandwiched between the pair of jigs 30 is sandwiched by a predetermined amount from both sides of the laminated steel plate 11 with respect to the thickness direction HT.
  • the laminated steel sheet 11 is formed in the laminated steel sheet restraining step.
  • the shaft 20 can be smoothly inserted into the insertion hole 11H having a slightly expanded hole diameter, and the cooling of the laminated steel sheet 11 causes the shaft 20 and the laminated steel sheet 11 to be shrink fitted.
  • the strain to be displaced in the thickness direction HT is restricted to one side (the upper side in FIG. 12), so the laminated steel sheet 11, that is, the rotor core 10 and the shaft 20 can be assembled with high accuracy. It can be fixed.
  • FIG. 5 is an explanatory view showing a pair of jigs according to a second example of the embodiment, and is a cross-sectional view seen from the same position as in FIG. 3.
  • the form of the pair of jigs used is different from the pair of jigs used in the method for manufacturing the rotor of the motor according to the first embodiment described above, and the other parts are the same as those of the first embodiment. It is the same. Therefore, the description will focus on the parts different from the first embodiment, and the description of the other parts will be simplified or omitted.
  • the pair of jigs 130 has a flat plate-like base portion 134 that connects the radially inner peripheral edge portion 135 and the radially outer peripheral edge portion 137, and the radially inner peripheral edge portion 135 and the radially outer peripheral edge portion 137.
  • Each of the peripheral edge portions 137 is formed upright from the base portion 134 in the jig height direction HT.
  • the pair of jigs 130 has a mountain shape in which the radially inner peripheral edge 135 is higher than the reference outer horizontal edge 37 by (h1 ⁇ h2) with respect to the reference horizontal line HL.
  • the first jig 131 has a shaft insertion hole 130H through which the shaft 20 can be inserted and a fastener insertion hole 138H through which the fastener 50 shown in FIG.
  • the second jig 132 has a shaft insertion hole 130 ⁇ / b> H through which the shaft 20 can be inserted and female screw holes 39 ⁇ / b> H that can be screwed into the fastener 50 at a plurality of locations.
  • a plurality of the thin steel plates 12 having the through holes 12H are stacked in the same manner as the method for manufacturing the rotor of the motor according to the first example.
  • the pair of jigs 130 sandwiching the laminated steel plate 11 having the insertion holes 11H formed by aligning the through holes 12H of the thin steel plate 12 from both sides in the thickness direction HT of the laminated steel plate 11 are used.
  • Each of the pair of jigs 130 has a diameter of the shaft insertion hole RD with respect to the shaft insertion hole 130H through which the shaft 20 can be inserted and the radial direction RD of the shaft insertion hole 130H.
  • the pair of jigs 130 is characterized in that the radially inner peripheral edge 135 and the radially outer peripheral edge 137 are formed with a height difference in the jig height direction HT perpendicular to the radial direction RD.
  • the assembly accuracy between the rotor core 10 and the shaft 20 is increased, and the rotor 3 of the motor 1 having high performance at low cost is manufactured. There is an excellent effect of being able to.
  • the pair of jigs 130 have a flat plate-like base portion 134 that connects the radially inner peripheral edge portion 135 and the radially outer peripheral edge portion 137.
  • the inner diameter peripheral edge portion 135 and the outer diameter outer periphery edge portion 137 are each formed upright from the base portion 134 in the jig height direction HT.
  • the respective heights of the inner diameter peripheral edge portion 135 and the outer diameter outer peripheral edge portion 137 are made to correspond to the displacement amount X to be regulated in the thickness direction HT in the thin steel plate 11 after shrink fitting. It becomes easy to set.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

 本発明は、積層鋼板からなるコアとシャフトとの組付け精度を高くして、低コストで高性能なモータのロータを製造することができるモータのロータの製造方法を提供することを、課題とする。そこで、本発明の一態様は、貫通孔を有した薄板鋼板を複数積層し、複数の薄板鋼板の各貫通孔を位置合わせして形成された挿通孔を有する積層鋼板を、積層鋼板の厚み方向両側から挟み込む一対の治具により、ロータコアとして積層鋼板を厚み方向に拘束した状態で、挿通孔にシャフトを挿入し積層鋼板と焼き嵌めで固定させるモータのロータの製造方法において、一対の治具は、シャフトが挿通可能なシャフト挿通孔と、シャフト挿通孔の径方向に対しシャフト挿通孔を径内側に取り囲む位置で積層鋼板の挿通孔の周縁を挟む径内側周縁部と、径内側周縁部より径外側で積層鋼板の外周縁を挟む径外側周縁部と、を有し、径内側周縁部と径外側周縁部とは治具高さ方向に高低差を有している。

Description

モータのロータの製造方法
 この発明は、例えば、ハイブリッド自動車等に搭載されるモータのロータについて、積層鋼板で形成されたロータコアの挿通孔に、ロータの回転軸であるシャフトを挿入してロータコアと一体に組付けるモータのロータの製造方法に関するものである。
 モータのロータは、プレス加工による打ち抜きで穿孔された貫通孔を中央部に有した薄板鋼板を、複数積層させた積層鋼板で形成されたロータコアに対し、その挿通孔にシャフトを挿通してロータコアとシャフトとを圧入で固定し、ロータコアに磁石を取り付けて構成されている。
 従来、ロータコアとシャフトとを固定させる製造方法の一例として、特許文献1に開示されたモータのロータコアとシャフトとの締結構造が挙げられる。図14に、特許文献1に開示されたロータコアの斜視図を示す。図15は、図14中、C矢視から見たロータコアをなす薄板鋼板の一部を示す。図16は、図14中、C矢視から見たロータコアの貫通孔にモータシャフトが挿通した状態を示す説明図である。
 特許文献1では、薄板鋼板312の貫通孔312Hが、図14及び図15に示すように、径方向に径差を有した溝部303と凸部304とを、周方向に一定の間隔で交互に環状に配置して形成されている。ロータコア310は、このような薄板鋼板312を複数用い、隣り合う薄板鋼板312、312同士で、一方の薄板鋼板312の溝部303と他方の薄板鋼板312の凸部304とが同位相となる配置形態で積層して形成されている。
 その一方、モータシャフト320は、その外周面を、ローレット加工により凹凸部324で形成し、複数積層された薄板鋼板312の貫通孔312H(溝部303、凸部304)であるロータコア310の嵌入孔311Hに挿通するようになっている。特許文献1は、図16に示すように、薄板鋼板312の溝部303、凸部304に対し、モータシャフト320の凹凸部324を、断続的に接触部位と非接触部位とに分けて圧入させている。特許文献1では、図16に示すように、ロータコア310にモータシャフト324を圧入しても、各薄板鋼板312がロータコア310の軸心AXに向けて自由に変形して撓み易くなっているため、ロータコア310やモータシャフト324に応力が残留せず、モータシャフト320の圧入による傷付きやバリも発生しないよう、工夫されている。
 また、特許文献は挙げていないが、特許文献1のようなロータコアとシャフトとを固定させる従来の製造方法の他の実施例として、その一例を、図17に示す。従来の製造方法では、ロータコア410は、図17に示すように、その厚さ方向HTの積層鋼板411の両側端面411a,411bに板状の治具431,432を面接触させ、所定の挟持力で治具431と治具432とを締め付けて複数の薄板鋼板412を拘束している。この状態でロータコア410を、高周波焼入れ等により加熱し、熱膨張により孔径が多少拡張した挿通孔411Hに、シャフト420を挿通した後、ロータコア410を冷却することにより、ロータコア410とシャフト420とが焼き嵌めされて固定されている。
特開2006-217770号公報
 しかしながら、ロータコアとシャフトとを固定する従来技術には、以下の2つの問題があった。
(1)シャフトの圧入時には、ロータコアの軸方向への応力が、複数積層された薄板鋼板に発生し、軸方向の歪みが、各薄板鋼板に生じる。特許文献1は、ロータコア310にモータシャフト320を圧入したときに、ロータコア310やモータシャフト320に生じる応力を、ロータコア310の軸心AX方向へ逃すようになっているが、特許文献1には、応力をロータコア310の軸方向(図14中、上下方向)に逃す対策は施されていない。ロータコア310の軸方向への応力が残留していると、ロータコア310の軸心AXに向けた歪みが生じ、薄板鋼板312の貫通孔312H付近と、薄板鋼板312の外周部付近との間に、軸方向に変位を有した変形がロータコア310に生じる虞がある。
 ここで、図18及び図19に、焼き嵌めにより積層鋼板が軸方向に歪む様子を説明する模式図を示す。前述した他の実施例による従来の製造方法では、各薄板鋼板412のプレスの打ち抜き方向を同じにして積層させた積層鋼板411が、一対の治具431,432により大きな挟持力で拘束されている。シャフト420は、加熱した積層鋼板411の挿通孔411Hの孔径にクリアランスを持たせてこの挿通孔411Hに挿通され、挿通後、積層鋼板411が冷却される。このとき、積層鋼板411が、軸方向HTに対し、シャフト挿通入口側(図18中、下側)、またはシャフト挿通出口側(図19中、上側)に、焼き嵌めによる締め代で歪む。その結果、この従来の製造方法でも、特許文献1と同様、積層鋼板411において、その軸方向HTに対し、積層鋼板411の挿通孔411Hとシャフト420との焼き嵌め部位Q1と、その積層鋼板411の鋼板最外周部位Q2,Q3との間に変位が生じる。この変位は、製品(モータ)毎に、変位の向きとその大きさが異なり、ロータコア410では、積層鋼板411が最もシャフト挿通入口側に変位したときと、最もシャフト挿通出口側に変位したときとのバラツキ幅、すなわち鋼板最外周部位Q2と鋼板最外周部位Q3との距離が、例えば、2(mm)程度にまで及んでしまう。
 図20は、ロータとステータとを組み付けたモータの一部を示す模式図である。ロータコア410が軸方向HTに大きく変形したままのロータ403を組み付けたモータでは、図20に示すように、ロータ403内で軸方向HTに歪んだままのロータコア410と、ロータ403の軸方向HTに対し、一定の厚みで形成されたステータ402とが、ロータの径方向RDに対し、互いに対向する位置に配置できなくなる。すなわち、ロータコア410を構成する積層鋼板411の一部が、ロータ403の軸方向HTに対し、ステータ402と相対的に大きくずれてしまい、ステータ402との間で磁力の作用を受け難くなる部分が生じてしまう。その結果、モータで回転力を発生させるのにロスが生じ、モータの性能が最大限に発揮できない問題がある。
(2)ロータコア(積層鋼板)の挿通孔となる各薄板鋼板の貫通孔において、その内周面(嵌合面)の傾きや剪断面の厚み、端部のバリ等、プレス後の貫通孔周縁部の形態は、ロータコアを構成する薄板鋼板一枚毎に異なる。薄板鋼板の貫通孔は、薄板鋼板を一枚ずつプレス加工で打ち抜いて穿孔されるため、薄板鋼板一枚ずつの各貫通孔に基づいて、シャフトを挿通させるロータコアの挿通孔全体の品質管理を実施することはできない。その結果、上述した(1)の問題を回避する対策の一つとして、積層鋼板の鋼板最外周部位の位置に2(mm)程度のバラツキが生じるのを前提に、ロータコアの軸方向の厚みが、少なくともそのバラツキ幅に相当する分の厚みを考慮し、ステータの厚みより厚くしている。これにより、ロータとステータとの間で磁力が作用し難い部分を少なくし、ロータコアとシャフトとの組付け精度をある程度高めることができるようになるが、例えば、一枚の薄板鋼板の厚みが0.3(mm)の場合、ロータコアの厚みを2(mm)近く厚くしようとすると、薄板鋼板が余分に7枚以上も必要となり、ロータコアの製造コストがアップする。しかも、ロータをステータより厚くしても、ステータにおいても、ロータとの間で磁力が作用し難い部分が生じることから、ステータの実質的なコストも高くなり、ひいては、モータがコストアップする問題がある。
 本発明は、上記問題点を解決するためになされたものであり、積層鋼板からなるロータコアとシャフトとの組付け精度を高くして、低コストで高性能なモータのロータを製造することができるモータのロータの製造方法を提供することを目的とする。
 上記課題を解決するための本発明の一態様におけるモータのロータの製造方法は、次の構成を有している。
(1)貫通孔を有した薄板鋼板を複数積層し、複数の薄板鋼板の各貫通孔を位置合わせして形成される挿通孔を有する積層鋼板を、該積層鋼板の厚み方向両側から挟み込む一対の治具を用いて、該一対の治具により、ロータコアとして積層鋼板を厚み方向に拘束した状態で、挿通孔にシャフトを挿入し、積層鋼板と焼き嵌めで固定させるモータのロータの製造方法において、一対の治具はそれぞれ、シャフトが挿通可能なシャフト挿通孔と、シャフト挿通孔の径方向に対し、シャフト挿通孔を径内側に取り囲む位置で、積層鋼板の挿通孔の周縁を挟む径内側周縁部と、径内側周縁部より径外側で、積層鋼板の外周縁を挟む径外側周縁部と、を有し、一対の治具では、径内側周縁部と径外側周縁部とが、径方向に直交する治具高さ方向に高低差を設けて形成されていることを特徴とする。
 なお、本発明の一態様におけるモータのロータの製造方法では、径内側周縁部を指す区分範囲と、径外側周縁部を指す区分範囲とについては、次のように定義されている。
 すなわち、積層鋼板において、その径方向に対し、外周縁と内周縁との中央付近に位置する部分を環状の鋼板径中央部としたとき、径内側周縁部は、一対の治具のうち、積層鋼板の鋼板径中央部を挟む位置を境に、その径方向径内側に位置する範囲を指すものとする。径外側周縁部は、一対の治具のうち、積層鋼板の鋼板径中央部を挟む位置を境に、その径方向径外側に位置する範囲を指すものとする。
(2)(1)に記載するモータのロータの製造方法において、一対の治具では、水平方向を基準に、治具高さ方向片側に対し、径内側周縁部が径外側周縁部より高い形状を山型形状とし、径内側周縁部が径外側周縁部より低い形状を谷型形状としたとき、一対の治具を構成する第1治具と第2治具とは、山型形状または谷型形状で何れも同じ形状に形成されていること、が好ましい。
(3)(2)に記載するモータのロータの製造方法において、一対の治具は、山型形状で形成されていること、が好ましい。
(4)(1)乃至(3)のいずれか1つに記載するモータのロータの製造方法において、一対の治具は、径内側周縁部と径外側周縁部とが傾斜面で繋がれた形状で形成されていること、が好ましい。
(5)(1)乃至(3)のいずれか1つに記載するモータのロータの製造方法において、一対の治具は、径内側周縁部と径外側周縁部とを繋ぐ平板状の基部を有し、径内側周縁部と径外側周縁部とがそれぞれ、基部から治具高さ方向に立設して形成されていること、が好ましい。
(6)(1)乃至(5)のいずれか1つに記載するモータのロータの製造方法において、一対の治具で挟持した積層鋼板を、厚み方向に対し、積層鋼板の両側から所定の挟持力で拘束する積層鋼板拘束工程と、積層鋼板拘束工程の後、拘束した積層鋼板を加熱する積層鋼板加熱工程と、積層鋼板の加熱後、一対の治具のシャフト挿通孔を通じてシャフトを積層鋼板の挿通孔に挿通し、シャフトと積層鋼板とを焼き嵌めするシャフト焼き嵌め工程と、を有すること、が好ましい。
 上記構成を有する本発明のモータのロータの製造方法の作用・効果について説明する。
(1)上述態様のモータのロータの製造方法では、貫通孔を有した薄板鋼板を複数積層し、複数の薄板鋼板の各貫通孔を位置合わせして形成される挿通孔を有する積層鋼板を、該積層鋼板の厚み方向両側から挟み込む一対の治具を用いて、該一対の治具により、ロータコアとして積層鋼板を厚み方向に拘束した状態で、挿通孔にシャフトを挿入し、積層鋼板と焼き嵌めで固定させるモータのロータの製造方法において、一対の治具はそれぞれ、シャフトが挿通可能なシャフト挿通孔と、シャフト挿通孔の径方向に対し、シャフト挿通孔を径内側に取り囲む位置で、積層鋼板の挿通孔の周縁を挟む径内側周縁部と、径内側周縁部より径外側で、積層鋼板の外周縁を挟む径外側周縁部と、を有し、一対の治具では、径内側周縁部と径外側周縁部とが、径方向に直交する治具高さ方向に高低差を設けて形成されていることを特徴とするので、積層鋼板において、シャフトとの焼き嵌め部位と鋼板最外周部位との間で生じる厚み方向に変位について、製品(ロータ)間のバラツキ幅が、従来の製造方法に比べ、半分程度にまで小さく抑制することができる。
 すなわち、ロータコアは、貫通孔を有した薄板鋼板を複数積層させた積層鋼板で構成されている。薄板鋼板は、例えば、一枚の厚みが0.3(mm)程度で、外周径が100(mm)を超える大きさ等の形状で形成され、自重だけでも厚み方向に撓み易い。また、薄板鋼板の貫通孔は、積層前に、薄板鋼板一枚毎に、プレス加工等による打ち抜きで穿孔され、各薄板鋼板の貫通孔では、その内周面(嵌合面)の傾きや剪断面の厚み、端部のバリ等、プレス後の貫通孔周縁部の形態が、薄板鋼板一枚毎に異なっている。また、焼き嵌め時に、複数積層させた薄板鋼板(積層鋼板)が一対の治具で厚み方向に拘束されているが、各薄板鋼板は、例えば、300枚近くもあり、一対の治具により局部的に加締め固定されているものの、積層鋼板全体において各薄板鋼板の面全体が、互いに固定されておらず、単に重ね合わせて積層させただけとなっている。そのため、各薄板鋼板では、変形に対する自由度が大きい状態にある。
 よって、焼き嵌め時に、貫通孔の貫通孔周縁部がその径方向径内側に収縮したときの締め代でシャフトと固定したときに、(a)薄板鋼板自体が撓み易いことのほか、特に(b)貫通孔周縁部の形態が各薄板鋼板で異なり、シャフトとの焼き嵌め状態が各薄板鋼板で異なること、(c)各薄板鋼板の面全体が互いに固定されず変形の自由度が大きくなっていること、に起因して、各薄板鋼板において、貫通孔周縁部とシャフトとが、シャフトの軸方向に直交する水平方向に均一な状態で焼き嵌めできない。
 特に、ロータコアとシャフトとを固定する従来の製造方法では、焼き嵌め後、各薄板鋼板の貫通孔周縁部がシャフトに向けて収縮したときの残留応力により、各薄板鋼板において、歪みが生じる。その結果、各薄板鋼板の厚み方向に対し、貫通孔周縁部とシャフトとの焼き嵌め部位と、薄板鋼板の鋼板最外周部位との間に変位を持った変形が生じる。変形の向きは、上述した(b)及び(c)の理由に起因して、ロータ(製品)毎に、シャフトが積層鋼板の挿通孔を挿通するときの入口側である挿通孔入口側である場合や、シャフトがこの挿通孔を挿通したときの出口側である挿通孔出口側である場合もある。積層鋼板から一対の治具を取り外すと、各薄板鋼板のバネ力で、積層鋼板全体は、その厚み方向に対し、挿通孔入口側または挿通孔出口側にさらに大きく変形し、製品毎に、変形代とその向きにバラツキが大きく生じる。その結果、このように変形した各薄板鋼板を積層させて構成したロータコアでは、変形のバラツキ幅は、積層鋼板の厚み方向挿通孔入口側に生じたときの変位と、挿通孔出口側に生じたときの変位との和であり、製品同士の間で、全体的に大きくなっている。
 上述態様のモータのロータの製造方法は、径内側周縁部と径外側周縁部とに治具高さ方向に高低差を設けた一対の治具で積層鋼板を拘束する。一対の治具は、径内側周縁部を径外側周縁部より高くする場合、または径内側周縁部を径外側周縁部より低くする場合とし、両方の治具とも、径内側周縁部と径外側周縁部との高低の位置関係を同じにする。
 例えば、径内側周縁部を径外側周縁部より高くした一対の治具の場合、一対の治具のうち、一方側治具(例えば、上側治具)の径内側周縁部は、積層鋼板の厚み方向一方側(例えば、上側)において、積層鋼板の挿通孔周縁と当接せず離間するが、他方側治具(例示した反対側の下側治具)の径内側周縁部は、積層鋼板の厚み方向他方側(例示した反対側の下側)において、積層鋼板の挿通孔周縁と直に当接するようになる。この状態で、積層鋼板の厚み方向他方側から一方側に向けてシャフトを挿通し、焼き嵌め後、各薄板鋼板の貫通孔周縁部がシャフトに向けて収縮したとき、積層鋼板の挿通孔周縁と当接する他方側治具の径内側周縁部により、積層鋼板の厚み方向他方側に向けた残留応力が作用せず、この厚み方向他方側に向けて積層鋼板は変形しない。その一方で、一方側治具の径内側周縁部は、積層鋼板の厚み方向一方側で、積層鋼板の挿通孔周縁と離間しているため、各薄板鋼板の残留応力は、厚み方向一方側に向けて作用し、各薄板鋼板全体の焼き嵌め部位が、この隙間に向けて変形し易くなる。そのため、上述態様のモータのロータの製造方法では、径内側周縁部と径外側周縁部とに高低差があることで、拘束された各薄板鋼板において、変形方向の自由度が、積層鋼板の厚み方向の片側(上述で例示した場合には下側)に抑制されるようになる。
 よって、上述態様のモータのロータの製造方法では、積層鋼板から一対の治具を取り外した後、薄板鋼板全体が、揃って同じ向きに変位するようになる。そのため、積層鋼板(薄板鋼板全体)の挿通孔とシャフトとの焼き嵌め部位と、積層鋼板の鋼板最外周部位との間の変位における製品(ロータ)間でのバラツキ幅は、従来の製造方法に比べ、半分程度にまで小さく抑制することができる。これにより、製品間で、ロータとステータとの間で磁力が作用し難い部分が、従来の製造方法に比べて少なくなり、ロータコアとシャフトとの組付け精度が向上するため、ひいてはモータで回転力を発生させるときのロスが抑制され、性能が高いモータを製造することができる。
 また、上述したバラツキ幅を小さく抑制したロータコアをロータに組み付けたモータでは、ステータとの間で磁力の作用を受け難くなる部分が生じないよう、ロータの厚みを厚くする分が、従来の製造方法に比べ少なくなり、余分に薄板鋼板を増やす数量も低減できることから、ロータコアの製造コストを低減することができる。また、ステータにおいても、ロータとの間で磁力が作用し難い部分が、従来の製造方法に比べ少なくなることから、ステータのコストも実質的に低減することができ、ひいては、モータのコストを抑制することができる。
 従って、上述態様のモータのロータの製造方法では、ロータコアとシャフトとの組付け精度を高くして、低コストで高性能なモータのロータを製造することができる、という優れた効果を奏する。
(2)また、上述態様のモータのロータの製造方法では、(1)に記載するモータのロータの製造方法において、一対の治具では、水平方向を基準に、治具高さ方向片側に対し、径内側周縁部が径外側周縁部より高い形状を山型形状とし、径内側周縁部が径外側周縁部より低い形状を谷型形状としたとき、一対の治具を構成する第1治具と第2治具とは、山型形状または谷型形状で何れも同じ形状に形成されていることを特徴とするので、薄板鋼板の変形方向への自由度を抑制し易くなり、積層鋼板の厚み方向片側に変位しようとする歪みの発生を抑制することができる。
(3)また、上述態様のモータのロータの製造方法では、(2)に記載するモータのロータの製造方法において、一対の治具は、山型形状で形成されていることを特徴とするので、一対の治具の頂上側に向けてシャフトを積層鋼板の挿通孔に挿通して焼き嵌めると、焼き嵌め後、各薄板鋼板の貫通孔周縁部がシャフトに向けて収縮したときの応力が、シャフトを挿通する向きの反対側に生じ難くなる。これにより、この反対側に向けた積層鋼板の歪みの発生がより確かに抑制できる。
(4)また、上述態様のモータのロータの製造方法では、(1)乃至(3)のいずれか1つに記載するモータのロータの製造方法において、一対の治具は、径内側周縁部と径外側周縁部とが傾斜面で繋がれた形状で形成されていることを特徴とするので、薄板鋼板の外周径が異なる仕様で複数種のロータコアを製造する場合でも、一対の治具は、一種の仕様につき、ロータコアの仕様に特定されず汎用性を持ち、複数種のロータコアに対し幅広く対応できるようになる。よって、一対の治具が、ロータコアの仕様毎に個々に必要にならず、ロータコアのコスト低減が可能となる。
(5)また、上述態様のモータのロータの製造方法では、(1)乃至(3)のいずれか1つに記載するモータのロータの製造方法において、一対の治具は、径内側周縁部と径外側周縁部とを繋ぐ平板状の基部を有し、径内側周縁部と径外側周縁部とがそれぞれ、基部から治具高さ方向に立設して形成されていることを特徴とするので、一対の治具のうち、径内側周縁部及び径外側周縁部のそれぞれの高さを、焼き嵌め後の薄板鋼板において、その厚み方向に規制したい変位量に対応させて設定することが容易にできるようになる。
(6)また、上述態様のモータのロータの製造方法では、(1)乃至(5)のいずれか1つに記載するモータのロータの製造方法において、一対の治具で挟持した積層鋼板を、厚み方向に対し、積層鋼板の両側から所定の挟持力で拘束する積層鋼板拘束工程と、積層鋼板拘束工程の後、拘束した積層鋼板を加熱する積層鋼板加熱工程と、積層鋼板の加熱後、一対の治具のシャフト挿通孔を通じてシャフトを積層鋼板の挿通孔に挿通し、シャフトと積層鋼板とを焼き嵌めするシャフト焼き嵌め工程と、を有することを特徴とするので、積層鋼板拘束工程では、積層鋼板が、一対の治具により、焼き嵌め後に生じる変形の自由度が抑制された状態で拘束され、積層鋼板加熱工程で、拘束した積層鋼板の挿通孔が、熱膨張により孔径が多少拡張する。シャフト焼き嵌め工程では、シャフトが、孔径が多少拡張した挿通孔にスムーズに挿入でき、積層鋼板の冷却により、シャフトと積層鋼板とが焼き嵌めされる。このとき、積層鋼板では、その厚み方向に変位しようとする歪みが片側に規制されるため、積層鋼板、すなわちロータコアとシャフトとが、組付け精度良く固定できるようになる。
実施形態の第1実施例に係る一対の治具を用いて、ロータコアとシャフトとを固定させる製造方法の説明図である。 図1に示す一対の治具のうち、第1治具の平面図である。 図2中、A-A矢視に相当する位置から見た一対の治具の断面図である。 実施形態の変形例に係る一対の治具を示す説明図であり、図3と同様の位置から見た断面図である。 実施形態の第2実施例に係る一対の治具を示す説明図であり、図3と同様の位置から見た断面図である。 ロータコアを構成する薄板鋼板を示す平面図である。 図6中、B-B矢視断面図である。 実施形態において、モータのロータの製造する工程を示すフローチャート図である。 挿通孔に挿通したシャフトと積層鋼板との焼き嵌め前の状態を説明する模式図である。 挿通孔に挿通したシャフトと積層鋼板との焼き嵌め後の状態を説明する模式図である。 シャフトとの焼き嵌め部位で薄板鋼板が歪む様子を説明する模式図である。 実施形態に係るモータのロータの製造方法で製造したロータにおいて、積層鋼板の変形について説明する模式図である。 実施形態に係るモータのロータの製造方法で製造したロータを、ステータと組み付けたモータを模式的に示した説明図である。 特許文献1に開示されたロータコアの斜視図を示す。 図14中、C矢視から見たロータコアをなす薄板鋼板の一部を示す。 図14中、C矢視から見たロータコアの貫通孔にモータシャフトが挿通した状態を示す説明図である。 ロータコアとシャフトとを固定させる従来の製造方法の説明図である。 図17に示す従来の製造方法で製造したロータにおいて、積層鋼板が軸方向のシャフト挿通入口側に変形した様子を説明する模式図である。 図17に示す従来の製造方法で製造したロータにおいて、積層鋼板が軸方向のシャフト挿通出口側に変形した様子を説明する模式図である。 図17に示す従来の製造方法で製造したロータを、ステータと組み付けたモータを示す模式図である。
 以下、本発明を具体化した形態について、添付図面を参照しつつ詳細に説明する。本実施形態では、ハイブリッド自動車等に搭載されるモータのロータについて、積層鋼板で形成されたロータコアの挿通孔に、ロータの回転軸であるシャフトを挿入しロータコアと一体に組付けるモータのロータの製造方法を実施形態に挙げる。
 本実施形態では、添付図面に図示したHTは、シャフトの軸心に沿う方向、ロータ回転軸に沿う方向、ロータコアの厚み方向、薄板鋼板の積層方向(厚み方向)、及び一対の治具におけるシャフト挿通孔の軸心に沿う方向と治具高さ方向とを示す。また、RDは、シャフトの軸心を中心とする径方向、ロータの軸心を中心とする径方向、積層鋼板の挿通孔(薄板鋼板の貫通孔)の軸心を中心とする径方向、及び一対の治具におけるシャフト挿通孔の軸心を中心とする径方向を示す。
 はじめに、本実施形態に係るモータの概要について、図1、図6、図7、及び図13を用いて説明する。
 図1は、実施形態の第1実施例に係る一対の治具を用いて、ロータコアとシャフトとを固定させる製造方法の説明図である。図6は、ロータコアを構成する薄板鋼板を示す平面図である。図7は、図6中、B-B矢視断面図である。図13は、実施形態に係るモータのロータの製造方法で製造したロータを、ステータと組み付けたモータを模式的に示した説明図である。
 モータ1は、図13に示すように、ステータ2、ロータ3等を有している。ステータ2は、ロータ3の径方向RD径外側に、ロータ3の軸心AXを中心とするロータ3の周方向に環状に配置されている。
 ロータ3は、ロータコア10とシャフト20とを有している。ロータコア10は、複数(例えば、300枚程度)の薄板鋼板12を、その厚み方向HTに重ね合わせて積層させた積層鋼板11からなる。薄板鋼板12は、図6及び図7に示すように、例えば、厚さ0.3(mm)、外径Φ130(mm)等の円盤状に形成され、軸心AX1を中心とする中央に、内径ΦD(0<D)の貫通孔12Hを有している。貫通孔12Hは、プレス加工により、薄板鋼板12を1枚ずつ打ち抜いて穿孔されている。
 積層鋼板11は、参照する図1に示すように、複数積層した薄板鋼板12に対し、複数の貫通孔12Hの軸心AX1を位置合わせして形成された内径ΦDの挿通孔11Hを有する。
 また、薄板鋼板12はそれぞれ、貫通孔12Hの径方向RD径外側で、軸心AX1を中心とする所定径のピッチ円(図示せず)上に、磁石を挿着する複数の磁石挿通孔15H(図6は8つの磁石挿通孔15Hを図示)を有している。
 シャフト20は、外径Φd(0<d<D)で中空状または中実状に形成されたロータ3の回転軸である。シャフト20は、後に詳述するように、積層鋼板11の挿通孔11Hに挿入され、積層鋼板11と焼き嵌めで固定されている。ロータ3の製造工程では、シャフト20と積層鋼板11とを固定するにあたり、積層鋼板11を、その厚み方向HT両側から挟み込む一対の治具30が用いられる。
 次に、一対の治具30について、参照する図1及び図2を用いて説明する。図2は、図1に示す一対の治具のうち、第1治具の平面図である。
 一対の治具30は、参照する図1に示すように、第1治具31と第2治具32とからなり、例えば、ステンレス材等、高周波焼入れによる積層鋼板11の焼き嵌め時に加熱されない非磁性体の材質で形成されている。第1治具31及び第2治具32はそれぞれ、シャフト20が挿通可能なシャフト挿通孔30Hを中央に有している。
 また、一対の治具30は、シャフト挿通孔30Hの径方向RDに対し、シャフト挿通孔30Hを径内側に取り囲む位置で、積層鋼板11の挿通孔11Hの周縁を挟む径内側周縁部35と、径内側周縁部35より径外側で、積層鋼板11の外周縁を挟む径外側周縁部37と、を有している。一対の治具30では、径内側周縁部35と径外側周縁部37とが、径方向RDに直交する治具高さ方向HTに高低差を設けて形成されている。
 本実施形態では、径内側周縁部35を指す区分範囲と、径外側周縁部37を指す区分範囲とについては、次のように定義されている。
 積層鋼板11において、その径方向RDに対し、外周縁と内周縁との中央付近に位置する部分を環状の鋼板径中央部としたとき、径内側周縁部35は、一対の治具30のうち、積層鋼板11の鋼板径中央部を挟む位置を境に、その径方向RD径内側に位置する範囲を指す。径外側周縁部37は、一対の治具30のうち、積層鋼板11の鋼板径中央部を挟む位置を境に、その径方向RD径外側に位置する範囲を指す。
 一対の治具30では、水平方向を基準に、治具高さ方向HT片側(図1中、上側)に対し、径内側周縁部35が径外側周縁部37より高い形状を山型形状とし、径内側周縁部35が径外側周縁部37より低い形状を谷型形状としたとき、一対の治具30を構成する第1治具31と第2治具32とは、山型形状または谷型形状で何れも同じ形状に形成されている。
 本実施形態では、第1治具31と第2治具32との間に挟み込んだ積層鋼板11を、その厚み方向HTに所定の挟持力Fで拘束するのに、ボルト等の締結具50が複数用いられる。第1治具31には、締結具50を挿通する締結具挿通孔38Hが複数箇所(図2には4箇所図示)に穿孔され、第2治具32には、締結具50と螺合可能な雌ネジ孔39Hが複数箇所に穿孔されている。
 なお、第1治具と第2治具とによる積層鋼板の拘束は、本実施形態以外にも、専用の生産設備において、エアシリンダまたは油圧シリンダ等の駆動源により、第1治具と第2治具とを互いに、厚み方向に対し、自在に近接または離間できる構造で構成し、このような駆動源で第1治具と第2治具とを挟持させて、積層鋼板を拘束するようにしても良い。
第1実施例
 第1実施例に係る一対の治具について、図1乃至図3を用いて説明する。図3は、図2中、A-A矢視に相当する位置から見た一対の治具の断面図である。
 本実施例では、一対の治具30は、図1乃至図3に示すように、基準である水平ラインHLに対し、径内側周縁部35が径外側周縁部37より(h1-h2)分だけ高い山型形状であり、径内側周縁部35と径外側周縁部37とが傾斜面30aで繋がれた形状で形成されている。
 具体的には、第1,第2治具31,32(一対の治具30)は、図1乃至図3に示すように、軸心CLが通る位置近傍が最も高く、シャフト挿通孔30Hの径方向RD径外側に向けて徐々に低くなる形態に、1枚の円盤状の平板を湾曲させて形成されている。
変形例
 第1実施例に係る一対の治具は、1枚の円盤状の平板を山型形状に変形させて形成した。これに対し、変形例に係る一対の治具30Tは、1つの部材を変形させて形成せず、切削加工等により、径内側周縁部35Tを径外側周縁部37Tより(h1-h2)分だけ高くして形成したものである。
 図4は、変形例に係る一対の治具を示す説明図であり、図3と同様の位置から見た断面図である。
 本変形例では、一対の治具30Tは、図4に示すように、基準である水平ラインHLに対し、径内側周縁部35Tが径外側周縁部37Tより(h1-h2)分だけ高い山型形状であり、径内側周縁部35Tと径外側周縁部37Tとが傾斜面30Taで繋がれた形状で形成されている。第1治具31Tには、締結具50を挿通する締結具挿通孔38THが複数箇所に穿孔され、第2治具32Tには、締結具50と螺合可能な雌ネジ孔39THが複数箇所に穿孔されている。
 次に、本実施形態に係るモータのロータの製造方法について、図8乃至図10を用いて説明する。
 図8は、本実施形態において、モータのロータの製造する工程を示すフローチャート図である。図9は、挿通孔に挿通したシャフトと積層鋼板との焼き嵌め前の状態を説明する模式図である。図10は、挿通孔に挿通したシャフトと積層鋼板との焼き嵌め後の状態を説明する模式図である。
 はじめに、積層鋼板11は、参照する図9に示すように、プレスの打ち抜き方向を同じにして所定枚数の薄板鋼板12を積層させ、各薄板鋼板12の各貫通孔12Hを位置合わせして挿通孔11Hをなしている状態にあり、ロータコア10として、一つにまとまった状態にある。
 ステップS10では、本実施形態に係るモータのロータの製造方法のうち、積層鋼板拘束工程を実施する。積層鋼板拘束工程では、一対の治具30で挟持した積層鋼板11を、厚み方向HTに対し、積層鋼板11の両側から所定の挟持力Fで拘束する。具体的には、図1に示すように、積層鋼板11の厚み方向HT一方側(図1中、上側)では、積層鋼板11の一端面11aにおいて、挿通孔11H周縁付近の内周縁部は、第1治具31の径内側周縁部35と当接せず隙間を有する一方で、積層鋼板11の径方向最外周付近の外周縁部は、第1治具31の径外側周縁部37と当接し隙間を有していない。また、厚み方向HT他方側(図1中、下側)では、他端面11bにおいて、その内周縁部は、第2治具32の径内側周縁部35と当接し隙間を有していない一方で、外周縁部は、第2治具32の径外側周縁部37と当接せず隙間を有している。このように、積層鋼板11を、第1治具31及び第2治具32で挟み込み、第1治具31の締結具挿通孔38Hに4つの締結具50を挿通させ、第2治具32の雌ネジ孔39Hで締結させて、例えば、1(ton)程度の所定大きさの挟持力Fで、積層鋼板11を拘束する。
 次いで、ステップS20では、本実施形態に係るモータのロータの製造方法のうち、積層鋼板加熱工程を実施する。積層鋼板加熱工程は、ステップS10で行った積層鋼板拘束工程の後、拘束した積層鋼板11を加熱する。具体的には、一対の治具30で拘束した積層鋼板11を、例えば、高周波焼入れにより約300℃近くまで加熱し、熱膨張により挿通孔11Hの内径ΦDを100(μm)程度拡張させる。
 次いで、ステップS30及びステップS40で、本実施形態に係るモータのロータの製造方法のうち、シャフト焼き嵌め工程を実施する。シャフト焼き嵌め工程は、積層鋼板11の加熱後、一対の治具30のシャフト挿通孔30Hを通じてシャフト20を積層鋼板11の挿通孔11Hに挿通し、シャフト20と積層鋼板11とを焼き嵌めする。
 具体的には、ステップS30では、参照する図1に示すように、一対の治具30により拘束された積層鋼板11に対し、シャフト20を、第2治具32のシャフト挿通孔30Hから挿入し、挿通孔11Hを通じ、第1治具31のシャフト挿通孔30Hを貫通させる。このとき、挿通孔11Hの内径ΦDが熱膨張によって拡張されているため、外径Φd(0<d<D)のシャフト20は、図9に示すように、拡張された挿通孔11Hにスムーズに挿入できる。
 ステップS40では、積層鋼板11を冷却する。これにより、積層鋼板11、すなわち複数積層した薄板鋼板12では、各貫通孔12H(挿通孔11H)の内径ΦDが、シャフト20の外径Φdより小さく収縮し、積層鋼板11とシャフト20とが、図10に示すように、焼き嵌めされて固定される。
 次いで、ステップS50で、締結具50の締結を解除して、一対の治具30を積層鋼板11から取り外した後、各磁石挿通孔15Hに挿入した磁石を、接着剤で積層鋼板11に固定させる。かくして、ロータコア10とシャフト20とを一体に固定する工程が終了する。
 前述した構成を有する実施形態の第1実施例に係るモータのロータの製造方法の作用・効果について、図11乃至図13、及び図17乃至図20を用いて説明する。
 図11は、シャフトとの焼き嵌め部位で薄板鋼板が歪む様子を説明する模式図を示す。図12は、実施形態に係るモータのロータの製造方法で製造したロータにおいて、積層鋼板の変形について説明する模式図を示す。
 実施形態の第1実施例に係るモータのロータの製造方法では、貫通孔12Hを有した薄板鋼板12を複数積層し、複数の薄板鋼板12の各貫通孔12Hを位置合わせして形成される挿通孔11Hを有する積層鋼板11を、該積層鋼板11の厚み方向HT両側から挟み込む一対の治具30を用いて、該一対の治具30により、ロータコア10として積層鋼板11を厚み方向HTに拘束した状態で、挿通孔11Hにシャフト20を挿入し、積層鋼板11と焼き嵌めで固定させるモータ1のロータ3の製造方法において、一対の治具30はそれぞれ、シャフト20が挿通可能なシャフト挿通孔30Hと、シャフト挿通孔30Hの径方向RDに対し、シャフト挿通孔RDを径内側に取り囲む位置で、積層鋼板11の挿通孔11Hの周縁を挟む径内側周縁部35と、径内側周縁部35より径外側で、積層鋼板11の外周縁を挟む径外側周縁部37と、を有し、一対の治具30では、径内側周縁部35と径外側周縁部37とが、径方向RDに直交する治具高さ方向HTに高低差を設けて形成されていることを特徴とするので、積層鋼板11において、シャフト20との焼き嵌め部位P1と鋼板最外周部位P1との間で生じる厚み方向HTに変位Xについて、製品(ロータ3)間のバラツキ幅が、図17に示すような、ロータコア410とシャフト420とを固定する従来の製造方法に比して、半分程度にまで小さく抑制することができる。
 すなわち、ロータコア10は、貫通孔12Hを有した薄板鋼板12を複数積層させた積層鋼板12で構成されている。薄板鋼板12は、図6及び図7に示すように、例えば、一枚の厚みが0.3(mm)程度で、外周径が100(mm)を超える大きさ等の形状で形成され、自重だけでも厚み方向に撓み易い。また、薄板鋼板12の貫通孔12Hは、積層前に、薄板鋼板12一枚毎に、プレス加工等による打ち抜きで穿孔され、各薄板鋼板12の貫通孔12Hでは、参照する図9に示すように、その内周面(嵌合面)の傾きや剪断面の厚み、端部のバリ等、プレス後の貫通孔周縁部12Cの形態が、厳密に言うと、薄板鋼板12一枚毎に異なっている。また、焼き嵌め時に、複数積層させた薄板鋼板12(積層鋼板11)が一対の治具で厚み方向HTに拘束されているが、各薄板鋼板12は、例示したように、300枚近くもあり、一対の治具により局部的に加締め固定されているものの、積層鋼板11全体において各薄板鋼板12の面全体が、互いに固定されておらず、単に重ね合わせて積層させただけとなっている。そのため、各薄板鋼板12では、図11に示すように、変形に対する自由度が大きい状態にある。
 よって、焼き嵌め時に、図10に示すように、貫通孔12Hの貫通孔周縁部12Cがその径方向RD径内側に収縮したときの締め代でシャフト20と固定したときに、(a)薄板鋼板12自体が撓み易いことのほか、特に(b)貫通孔周縁部12Cの形態が各薄板鋼板12で異なり、シャフト20との焼き嵌め状態が各薄板鋼板12で異なること、(c)各薄板鋼板12の面全体が互いに固定されず変形の自由度が大きくなっていること、に起因して、各薄板鋼板12において、貫通孔周縁部12Cとシャフト20とが、シャフト20の軸方向HTに直交する水平方向(図10乃至図13、図18、及び図19中、径方向RDと平行な方向)に均一な状態で焼き嵌めできない。
 特に、参照する図17に示す従来の製造方法で、ロータコア410とシャフト420とを固定すると、焼き嵌め後、各薄板鋼板412の貫通孔周縁部412がシャフト420に向けて収縮したときの残留応力により、各薄板鋼板412において、歪みが大きく生じる。その結果、図18及び図19に示すように、各薄板鋼板412の厚み方向HTに対し、貫通孔周縁部412Cとシャフト420との焼き嵌め部位Q1と、薄板鋼板の鋼板最外周部位Q2,Q3との間に変位X(0<X)を持った変形が生じる。変形の向きは、上述した(b)及び(c)の理由に起因して、ロータ(製品)毎に、図18に示すように、シャフト420が積層鋼板410の挿通孔411Hを挿通するときの入口側である挿通孔入口側(図18中、下側)である場合がある。また、変形の向きは、図19に示すように、シャフト420がこの挿通孔411Hを挿通したときの出口側である挿通孔出口側(図19中、上側)である場合もある。
 積層鋼板411から第1治具431及び第2治具432を取り外すと、各薄板鋼板412のバネ力で、積層鋼板411全体は、その厚み方向HTに対し、挿通孔入口側または挿通孔出口側にさらに大きく変形し、製品毎に、変形代とその向きにバラツキが大きく生じる。その結果、このように変形した各薄板鋼板412を積層させて構成したロータコアでは、変形のバラツキ幅は、積層鋼板412の厚み方向挿通孔入口側に生じたときの変位Xと、挿通孔出口側に生じたときの変位Xとの和2Xであり、製品同士の間で、全体的に大きくなっている。
 これに対し、本実施形態の第1実施例に係るモータのロータの製造方法は、径内側周縁部35と径外側周縁部37とに治具高さ方向HTに高低差を設けた一対の治具30で積層鋼板11を拘束する。一対の治具30は、本実施形態の場合、径内側周縁部35を径外側周縁部37より高くし、第1治具31及び第2治具32とも、径内側周縁部35と径外側周縁部37との高低の位置関係を同じにする。
 本実施形態の場合のように、径内側周縁部35を径外側周縁部37より高くした一対の治具30の場合、第1治具31の径内側周縁部35は、積層鋼板11の厚み方向HT一方側(図1中、上側)において、積層鋼板11の挿通孔11H周縁と当接せず離間するが、第2治具32の径内側周縁部35は、積層鋼板11の厚み方向HT他方側(図1中、下側)において、積層鋼板11の挿通孔11H周縁と直に当接するようになる。
 この状態で、積層鋼板11の厚み方向HT他方側から一方側に向けてシャフト20を挿通し、焼き嵌め後、各薄板鋼板12(積層鋼板11)の貫通孔周縁部12Cがシャフト20に向けて収縮したとき、積層鋼板11の挿通孔11H周縁と当接する第2治具32の径内側周縁部35により、積層鋼板11の厚み方向HT他方側に向けた残留応力が作用せず、この厚み方向HT他方側への積層鋼板11の変形は生じない。その一方で、第1治具31の径内側周縁部35は、積層鋼板11の厚み方向HT一方側で、積層鋼板11の挿通孔11H周縁と離間しているため、各薄板鋼板12の残留応力は、厚み方向HT一方側に向けて作用し、各薄板鋼板全体(積層鋼板11)の焼き嵌め部位P1が、この隙間に向けて変形し易くなる。そのため、本実施形態の第1実施例に係るモータのロータの製造方法では、径内側周縁部35と径外側周縁部37とに高低差があることで、拘束された各薄板鋼板12において、変形方向の自由度が、積層鋼板11の厚み方向HTの片側(図12に示す側)に抑制されるようになる。
 よって、本実施形態の第1実施例に係るモータ1のロータ3の製造方法では、積層鋼板11から一対の治具30を取り外した後、薄板鋼板12全体(積層鋼板11)が、図12に示すように、揃って同じ向きに変位Xのバラツキ範囲で変形するようになる。そのため、積層鋼板11の挿通孔11H(薄板鋼板12全体の挿通孔12H)とシャフト20との焼き嵌め部位P1と、積層鋼板11の鋼板最外周部位P2との間に有する全体的な変位のバラツキ幅Xは、従来の製造方法の場合に生じるバラツキ幅2Xに比べ、半分程度にまで小さく抑制することができる。これにより、製品間で、ロータ3とステータ2との間で磁力が作用し難い部分が、従来の製造方法に比べて少なくなり、ロータコア10とシャフト20との組付け精度が向上するため、ひいてはモータ1で回転力を発生させるときのロスが抑制され、性能が高いモータ1を製造することができる。
 また、上述したバラツキ幅Xを小さく抑制したロータコア10をロータ3に組み付けたモータ1では、図13及び図20に示すように、ステータ2との間で磁力の作用を受け難くなる部分が生じないよう、ロータ3の厚みを厚くする分が、従来の製造方法に比べ少なくなる。これにより、余分に薄板鋼板12を増やす数量も低減できることから、ロータコア10の製造コストを低減することができる。また、ステータ2においても、ロータ3との間で磁力が作用し難い部分が、従来の製造方法に比べ少なくなることから、ステータ2のコストも実質的に低減することができ、ひいては、モータ1のコストを抑制することができる。
 従って、本実施形態の第1実施例に係るモータ1のロータ3の製造方法では、ロータコア10とシャフト20との組付け精度を高くして、低コストで高性能なモータ1のロータ3を製造することができる、という優れた効果を奏する。
 また、本実施形態の第1実施例に係るモータ1のロータ3の製造方法では、一対の治具30では、水平方向HLを基準に、治具高さ方向HT片側に対し、径内側周縁部35が径外側周縁部37より高い形状を山型形状とし、径内側周縁部35が径外側周縁部37より低い形状を谷型形状としたとき、一対の治具30を構成する第1治具31と第2治具32とは、山型形状または谷型形状で何れも同じ形状に形成されていることを特徴とするので、薄板鋼板12の変形方向への自由度を抑制し易くなり、図12に示すように、積層鋼板11の厚み方向HT片側(図12中、上側、及び図19に示す向き)に変位しようとする歪みの発生を抑制することができる。
 また、本実施形態の第1実施例に係るモータ1のロータ3の製造方法では、一対の治具30は、山型形状で形成されていることを特徴とするので、一対の治具30の頂上側に向けてシャフト20を積層鋼板11の挿通孔11Hに挿通して焼き嵌めると、焼き嵌め後、各薄板鋼板12の貫通孔周縁部12Cがシャフト20に向けて収縮したときの応力が、シャフト20を挿通する向きの反対側に生じ難くなる。これにより、この反対側に向けた積層鋼板11の歪みの発生がより確かに抑制できる。
 また、本実施形態の第1実施例に係るモータ1のロータ3の製造方法では、一対の治具30は、径内側周縁部35と径外側周縁部37とが傾斜面30aで繋がれた形状で形成されていることを特徴とするので、薄板鋼板12の外周径が異なる仕様で複数種のロータコア10を製造する場合でも、一対の治具30は、一種の仕様につき、ロータコア10の仕様に特定されず汎用性を持ち、複数種のロータコア10に対し幅広く対応できるようになる。よって、一対の治具30が、ロータコア10の仕様毎に個々に必要にならず、ロータコア10のコスト低減が可能となる。
 また、本実施形態の第1実施例に係るモータ1のロータ3の製造方法では、一対の治具30で挟持した積層鋼板11を、厚み方向HTに対し、積層鋼板11の両側から所定の挟持力Fで拘束する積層鋼板拘束工程と、積層鋼板拘束工程の後、拘束した積層鋼板11を加熱する積層鋼板加熱工程と、積層鋼板11の加熱後、一対の治具30のシャフト挿通孔30Hを通じてシャフト20を積層鋼板11の挿通孔11Hに挿通し、シャフト20と積層鋼板11とを焼き嵌めするシャフト焼き嵌め工程と、を有することを特徴とするので、積層鋼板拘束工程では、積層鋼板11が、一対の治具30により、焼き嵌め後に生じる変形の自由度が抑制された状態で拘束され、積層鋼板加熱工程で、拘束した積層鋼板11の挿通孔11Hが、熱膨張により内径ΦDが多少拡張する。シャフト焼き嵌め工程では、シャフト20が、孔径が多少拡張した挿通孔11Hにスムーズに挿入でき、積層鋼板11の冷却により、シャフト20と積層鋼板11とが焼き嵌めされる。このとき、積層鋼板11では、その厚み方向HTに変位しようとする歪みが片側(図12中、上側)に規制されるため、積層鋼板11、すなわちロータコア10とシャフト20とが、組付け精度良く固定できるようになる。
第2実施例
 次に、本実施形態の第2実施例に係るモータのロータの製造方法について、図5を用いて説明する。図5は、実施形態の第2実施例に係る一対の治具を示す説明図であり、図3と同様の位置から見た断面図である。
 本実施例では、用いる一対の治具の形態が、前述の第1実施例に係るモータのロータの製造方法で用いる一対の治具と異なるだけで、それ以外の部分は、第1実施例と同様である。従って、第1実施例とは異なる部分を中心に説明し、その他について説明を簡略または省略する。
 本実施例では、一対の治具130は、図5に示すように、径内側周縁部135と径外側周縁部137とを繋ぐ平板状の基部134を有し、径内側周縁部135と径外側周縁部137とがそれぞれ、基部134から治具高さ方向HTに立設して形成されている。一対の治具130は、基準である水平ラインHLに対し、径内側周縁部135が径外側周縁部37より(h1-h2)分だけ高い山型形状である。第1治具131には、シャフト20が挿通可能なシャフト挿通孔130Hと、図1に示す締結具50を挿通する締結具挿通孔138Hが複数箇所に穿孔されている。第2治具132には、シャフト20が挿通可能なシャフト挿通孔130Hと、締結具50と螺合可能な雌ネジ孔39Hが複数箇所に穿孔されている。
 前述した構成を有する本実施形態の第2実施例に係るモータのロータの製造方法の作用・効果について、説明する。
 本実施形態の第2実施例に係るモータのロータの製造方法では、前述の第1実施例に係るモータのロータの製造方法と同様、貫通孔12Hを有した薄板鋼板12を複数積層し、複数の薄板鋼板12の各貫通孔12Hを位置合わせして形成される挿通孔11Hを有する積層鋼板11を、該積層鋼板11の厚み方向HT両側から挟み込む一対の治具130を用いて、該一対の治具130により、ロータコア10として積層鋼板11を厚み方向HTに拘束した状態で、挿通孔11Hにシャフト20を挿入し、積層鋼板11と焼き嵌めで固定させるモータ1のロータ3の製造方法において、一対の治具130はそれぞれ、シャフト20が挿通可能なシャフト挿通孔130Hと、シャフト挿通孔130Hの径方向RDに対し、シャフト挿通孔RDを径内側に取り囲む位置で、積層鋼板11の挿通孔11Hの周縁を挟む径内側周縁部135と、径内側周縁部135より径外側で、積層鋼板11の外周縁を挟む径外側周縁部137と、を有し、一対の治具130では、径内側周縁部135と径外側周縁部137とが、径方向RDに直交する治具高さ方向HTに高低差を設けて形成されていることを特徴とするので、積層鋼板11において、シャフト20との焼き嵌め部位P1と鋼板最外周部位P1との間で生じる厚み方向HTに変位Xについて、製品(ロータ3)間のバラツキ幅が、図17に示すような、ロータコア410とシャフト420とを固定する従来の製造方法に比して、半分程度にまで小さく抑制することができる。
 従って、本実施形態の第2実施例に係るモータ1のロータ3の製造方法では、ロータコア10とシャフト20との組付け精度を高くして、低コストで高性能なモータ1のロータ3を製造することができる、という優れた効果を奏する。
 また、本実施形態の第2実施例に係るモータ1のロータ3の製造方法では、一対の治具130は、径内側周縁部135と径外側周縁部137とを繋ぐ平板状の基部134を有し、径内側周縁部135と径外側周縁部137とがそれぞれ、基部134から治具高さ方向HTに立設して形成されていることを特徴とするので、一対の治具130のうち、径内側周縁部135及び径外側周縁部137のそれぞれの高さを、参照する図12に示すように、焼き嵌め後の薄板鋼板11において、その厚み方向HTに規制したい変位量Xに対応させて設定することが容易にできるようになる。
 以上の説明から明らかなように、本発明によれば、積層鋼板からなるロータコアとシャフトとの組付け精度を高くして、低コストで高性能なモータのロータを製造することができる。
1 モータ
3 ロータ
10 ロータコア
11 積層鋼板
11a,11b 両側端面
11H 挿通孔
12 薄板鋼板
12H 貫通孔
20 シャフト
30H シャフト挿通孔
30,130 一対の治具
30a 傾斜面
31,131 第1治具
32,132 第2治具
35,135 径内側周縁部
37,137 径外側周縁部
134 基部
F 挟持力
HL 水平方向
HT 厚み方向、高さ方向
RD 径方向
 

Claims (6)

  1.  貫通孔を有した薄板鋼板を複数積層し、前記複数の薄板鋼板の各前記貫通孔を位置合わせして形成される挿通孔を有する積層鋼板を、該積層鋼板の厚み方向両側から挟み込む一対の治具を用いて、該一対の治具により、ロータコアとして前記積層鋼板を前記厚み方向に拘束した状態で、前記挿通孔にシャフトを挿入し、前記積層鋼板と焼き嵌めで固定させるモータのロータの製造方法において、
     前記一対の治具はそれぞれ、前記シャフトが挿通可能なシャフト挿通孔と、
     前記シャフト挿通孔の径方向に対し、前記シャフト挿通孔を径内側に取り囲む位置で、前記積層鋼板の前記挿通孔の周縁を挟む径内側周縁部と、前記径内側周縁部より径外側で、前記積層鋼板の外周縁を挟む径外側周縁部と、を有し、
     前記一対の治具では、前記径内側周縁部と前記径外側周縁部とが、前記径方向に直交する前記治具高さ方向に高低差を設けて形成されていることを特徴とするモータのロータの製造方法。
  2.  請求項1に記載するモータのロータの製造方法において、
     前記一対の治具では、水平方向を基準に、前記治具高さ方向片側に対し、前記径内側周縁部が前記径外側周縁部より高い形状を山型形状とし、前記径内側周縁部が前記径外側周縁部より低い形状を谷型形状としたとき、
     前記一対の治具を構成する第1治具と第2治具とは、前記山型形状または前記谷型形状で何れも同じ形状に形成されていることを特徴とするモータのロータの製造方法。
  3.  請求項2に記載するモータのロータの製造方法において、
     前記一対の治具は、前記山型形状で形成されていることを特徴とするモータのロータの製造方法。
  4.  請求項1乃至請求項3のいずれか1つに記載するモータのロータの製造方法において、
     前記一対の治具は、前記径内側周縁部と前記径外側周縁部とが傾斜面で繋がれた形状で形成されていることを特徴とするモータのロータの製造方法。
  5.  請求項1乃至請求項3のいずれか1つに記載するモータのロータの製造方法において、
     前記一対の治具は、前記径内側周縁部と前記径外側周縁部とを繋ぐ平板状の基部を有し、
     前記径内側周縁部と前記径外側周縁部とがそれぞれ、前記基部から前記治具高さ方向に立設して形成されていることを特徴とするモータのロータの製造方法。
  6.  請求項1乃至請求項5のいずれか1つに記載するモータのロータの製造方法において、
     前記一対の治具で挟持した前記積層鋼板を、前記厚み方向に対し、前記積層鋼板の両側から所定の挟持力で拘束する積層鋼板拘束工程と、
     前記積層鋼板拘束工程の後、拘束した前記積層鋼板を加熱する積層鋼板加熱工程と、
     前記積層鋼板の加熱後、前記一対の治具の前記シャフト挿通孔を通じて前記シャフトを前記積層鋼板の前記挿通孔に挿通し、前記シャフトと前記積層鋼板とを焼き嵌めするシャフト焼き嵌め工程と、を有することを特徴とするモータのロータの製造方法。
PCT/JP2011/059893 2011-04-22 2011-04-22 モータのロータの製造方法 WO2012144059A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137023501A KR101361369B1 (ko) 2011-04-22 2011-04-22 모터의 로터의 제조 방법
PCT/JP2011/059893 WO2012144059A1 (ja) 2011-04-22 2011-04-22 モータのロータの製造方法
EP11863741.2A EP2701289A4 (en) 2011-04-22 2011-04-22 MANUFACTURING PROCESS FOR A MOTOR ROTOR
CN201180070317.7A CN103493343A (zh) 2011-04-22 2011-04-22 电动机的转子的制造方法
US14/113,040 US9015926B2 (en) 2011-04-22 2011-04-22 Method for producing a motor rotor
JP2011537773A JP5299516B2 (ja) 2011-04-22 2011-04-22 モータのロータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/059893 WO2012144059A1 (ja) 2011-04-22 2011-04-22 モータのロータの製造方法

Publications (1)

Publication Number Publication Date
WO2012144059A1 true WO2012144059A1 (ja) 2012-10-26

Family

ID=47041207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059893 WO2012144059A1 (ja) 2011-04-22 2011-04-22 モータのロータの製造方法

Country Status (6)

Country Link
US (1) US9015926B2 (ja)
EP (1) EP2701289A4 (ja)
JP (1) JP5299516B2 (ja)
KR (1) KR101361369B1 (ja)
CN (1) CN103493343A (ja)
WO (1) WO2012144059A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220404A (ja) * 2015-05-20 2016-12-22 東芝三菱電機産業システム株式会社 かご型誘導電動機およびかご型誘導電動機用回転子ならびに回転子製造方法
JP2018182795A (ja) * 2017-04-04 2018-11-15 日産自動車株式会社 電動モータのロータ製造方法及び電動モータのロータ
CN109687656A (zh) * 2017-10-18 2019-04-26 丰田自动车株式会社 旋转电机的芯的制造方法和旋转电机的芯

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556810B (zh) * 2013-09-17 2018-04-27 丰田自动车株式会社 转子芯加热装置和转子芯热配合方法
KR101507249B1 (ko) * 2013-12-31 2015-03-30 (주)항남 고효율 모터용 스파이럴 스테이터 코어의 가압 장치 및 방법
CN104410221B (zh) * 2014-12-17 2016-11-23 哈尔滨电气动力装备有限公司 大型屏蔽电机转子冲片热叠压工艺
JP6495747B2 (ja) * 2015-06-05 2019-04-03 株式会社三井ハイテック 積層鉄心の検査装置及び積層鉄心の検査方法
RU2631546C1 (ru) * 2016-09-20 2017-09-25 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") Устройство для изготовления ротора самотормозящегося асинхронного электродвигателя
EP3683933A1 (de) * 2019-01-18 2020-07-22 Siemens Aktiengesellschaft Fügen eines blechpakets auf eine welle
JP7378496B2 (ja) * 2019-12-09 2023-11-13 三菱電機株式会社 回転電機のロータおよび回転電機のロータの製造方法
JP2022125516A (ja) * 2021-02-17 2022-08-29 トヨタ自動車株式会社 回転電機ロータ
CN113726052A (zh) * 2021-09-27 2021-11-30 珠海格力电器股份有限公司 转子挡板组件、电机和工业吊扇

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722168A (ja) * 1993-07-02 1995-01-24 Toshiba Corp ワ−ク加熱装置およびモ−タの製造方法
JPH08500719A (ja) * 1992-08-21 1996-01-23 エービービー インダストリー オサケ ユキチュア 電気機械のローター構造
JP2006217770A (ja) 2005-02-07 2006-08-17 Oriental Motor Co Ltd モータのロータコアとシャフトの締結構造
JP2008178253A (ja) * 2007-01-19 2008-07-31 Fanuc Ltd 電動機ロータの製造方法及び電動機
JP2008199831A (ja) * 2007-02-15 2008-08-28 Aichi Elec Co 電動機の製造方法と、その製造方法を用いた電動機、圧縮機及び車両

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189186A (ja) 1997-09-05 1999-03-30 Mitsuba Corp アーマチュアコア取付方法および装置
US20080122311A1 (en) * 2006-06-13 2008-05-29 The Board Of Regents, The University Of Texas System Rotor assembly and method of assembling a rotor of a high speed electric machine
JP5172491B2 (ja) 2008-06-18 2013-03-27 本田技研工業株式会社 モータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500719A (ja) * 1992-08-21 1996-01-23 エービービー インダストリー オサケ ユキチュア 電気機械のローター構造
JPH0722168A (ja) * 1993-07-02 1995-01-24 Toshiba Corp ワ−ク加熱装置およびモ−タの製造方法
JP2006217770A (ja) 2005-02-07 2006-08-17 Oriental Motor Co Ltd モータのロータコアとシャフトの締結構造
JP2008178253A (ja) * 2007-01-19 2008-07-31 Fanuc Ltd 電動機ロータの製造方法及び電動機
JP2008199831A (ja) * 2007-02-15 2008-08-28 Aichi Elec Co 電動機の製造方法と、その製造方法を用いた電動機、圧縮機及び車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2701289A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016220404A (ja) * 2015-05-20 2016-12-22 東芝三菱電機産業システム株式会社 かご型誘導電動機およびかご型誘導電動機用回転子ならびに回転子製造方法
JP2018182795A (ja) * 2017-04-04 2018-11-15 日産自動車株式会社 電動モータのロータ製造方法及び電動モータのロータ
CN109687656A (zh) * 2017-10-18 2019-04-26 丰田自动车株式会社 旋转电机的芯的制造方法和旋转电机的芯
JP2019075935A (ja) * 2017-10-18 2019-05-16 トヨタ自動車株式会社 回転電機コアの製造方法および回転電機コア
CN109687656B8 (zh) * 2017-10-18 2021-12-03 丰田自动车株式会社 旋转电机的芯的制造方法和旋转电机的芯
US11336158B2 (en) 2017-10-18 2022-05-17 Toyota Jidosha Kabushiki Kaisha Manufacturing method of core of rotating electrical machine, and core of rotating electrical machine

Also Published As

Publication number Publication date
KR101361369B1 (ko) 2014-02-10
US20140041207A1 (en) 2014-02-13
CN103493343A (zh) 2014-01-01
JP5299516B2 (ja) 2013-09-25
JPWO2012144059A1 (ja) 2014-07-28
EP2701289A1 (en) 2014-02-26
US9015926B2 (en) 2015-04-28
EP2701289A4 (en) 2016-03-09
KR20130105937A (ko) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5299516B2 (ja) モータのロータの製造方法
CN109672306B (zh) 旋转电机转子的制造方法以及旋转电机转子
JP5324673B2 (ja) 分割式コアを有する電動機の回転子及びその製造方法
EP1947758A2 (en) Method of manufacturing rotor of electric motor and electric motor
JP5634383B2 (ja) 回転電機用ロータおよび電動パワーステアリング用モータ
JP2004153913A (ja) 永久磁石モータの回転子
JPWO2015008544A1 (ja) ステータ
JP4272927B2 (ja) ハイブリッド型ステッピングモータの回転子の製造方法
US10432046B2 (en) Rotor, method of manufacturing the same, and motor including the rotor
JP2009072015A (ja) 回転子とその製造方法および電動機
JP2010136514A (ja) ロータ
JP4736028B2 (ja) 回転子とその製造方法および電動機
KR101867973B1 (ko) 모터의 로터 및 이를 갖는 모터
JP5098570B2 (ja) 回転電機の製造方法および回転電機
JP2009225584A (ja) 電動モータのロータ構造
CN103503287A (zh) 线性运动驱动器
JP6890456B2 (ja) 電動モータのロータ製造方法及び電動モータのロータ
KR101867611B1 (ko) 로터 및 이를 갖는 모터
JP2010110123A (ja) 積層コア及びその製造方法
JP4648716B2 (ja) 積層鉄心とその製造方法
KR101982646B1 (ko) 모터의 적층 로터 코어
JP2010004619A (ja) 圧入荷重設定方法及びモータの製造方法
JP2019083651A (ja) ロータ、ロータの製造方法、および、回転電機
KR101904789B1 (ko) 모터
JP2009100537A (ja) 永久磁石付き回転子における鉄心の製造方法および鉄心

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011537773

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023501

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011863741

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011863741

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14113040

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE