WO2012143982A1 - ランプ生成回路、並びにそれを備えたイメージセンサーおよび撮像装置 - Google Patents

ランプ生成回路、並びにそれを備えたイメージセンサーおよび撮像装置 Download PDF

Info

Publication number
WO2012143982A1
WO2012143982A1 PCT/JP2011/004258 JP2011004258W WO2012143982A1 WO 2012143982 A1 WO2012143982 A1 WO 2012143982A1 JP 2011004258 W JP2011004258 W JP 2011004258W WO 2012143982 A1 WO2012143982 A1 WO 2012143982A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
ramp
signal
comparator
unit
Prior art date
Application number
PCT/JP2011/004258
Other languages
English (en)
French (fr)
Inventor
真浩 樋口
西村 佳壽子
優介 山岡
阿部 豊
洋 藤中
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013510744A priority Critical patent/JPWO2012143982A1/ja
Priority to CN201180070093XA priority patent/CN103477628A/zh
Publication of WO2012143982A1 publication Critical patent/WO2012143982A1/ja
Priority to US14/053,206 priority patent/US9166614B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • H03M1/56Input signal compared with linear ramp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0612Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/67Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
    • H04N25/671Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction
    • H04N25/677Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection or correction for reducing the column or line fixed pattern noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K4/00Generating pulses having essentially a finite slope or stepped portions
    • H03K4/06Generating pulses having essentially a finite slope or stepped portions having triangular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/123Simultaneous, i.e. using one converter per channel but with common control or reference circuits for multiple converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/74Simultaneous conversion
    • H03M1/742Simultaneous conversion using current sources as quantisation value generators

Definitions

  • the present invention relates to an image sensor and an image pickup apparatus, and in particular, a single slope type (also referred to as an integral type or a counter type) analog-digital conversion circuit (hereinafter referred to as ADC (Analog-to-To)) included in the image sensor and the image pickup device.
  • ADC Analog-to-To
  • -Digital Converter
  • a ramp generation circuit that outputs a reference signal.
  • an ADC is provided in each column of the pixel array of the image sensor, and a column parallel AD conversion system that performs AD (Analog-to-Digital) conversion of pixel output signals for one row of the pixel array at a time within a horizontal scanning period.
  • Image sensors have been developed and used.
  • a single slope type ADC having a relatively small circuit scale is generally used because of the area limitation of each column determined by the pixel pitch (for example, Patent Document 1).
  • a ramp signal having a correlation with the count value of the counter is input as a reference signal to the comparator of the ADC, and the count value when the analog input signal (pixel output signal) matches this reference signal. Based on the above, the AD conversion result is output as a digital signal.
  • FIG. 12 is a block diagram showing a configuration example of a conventional image sensor.
  • the column parallel ADC (single slope type ADC) 620 includes a comparator 660 (661 to 66p) (p is a natural number) and a counter 670 (671 to 67p). Then, in the comparator 660, the column parallel ADC 620 compares the reference signal Vr output from the ramp generation circuit 630 with the pixel signals Vs1 to Vsp output from the pixel array 610, and compares them by the counter 670 (671 to 67p). Based on the count results of the results Vc1 to Vcp, an AD conversion result (digital signal) is output.
  • the column parallel ADC 620 mounted on the image sensor performs AD conversion by a series of operations generally called digital CDS (Correlated Double Sampling).
  • the digital CDS performs two AD conversions, that is, AD conversion of the reset level and signal level AD conversion of the pixel signals Vs1 to Vsp, and uses the difference as an AD conversion result of the pixel signals Vs1 to Vsp, thereby This is to suppress fixed pattern noise caused by variations in the characteristics of the pixels in the array 610 and the comparator 660.
  • the control circuit 640 drives the comparator output initialization control signal Sr. Then, the ramp generation circuit 630 changes the reference signal Vr from the initial voltage VI to the comparator initialization voltage VR and holds this voltage.
  • the comparator initialization voltage VR is an initial value set in advance by the control circuit 640 that compensates for a voltage difference (that is, comparison operation) between the reference signal Vr and the pixel signal Vsx after initialization of the comparator 66x. The voltage is higher than the voltage VI by the compensation voltage.
  • the control circuit 640 starts driving the counter clock CK, and the reference signal Vr becomes a ramp-like ramp signal based on the comparator initialization voltage VR.
  • the control circuit 640 starts driving the counter clock CK, and the reference signal Vr becomes an inclined ramp signal based on the comparator initialization voltage VR. With the start of ramp signal output, the counter 67x starts up-counting based on the count value held in the first AD conversion, and the comparison operation related to the second AD conversion is started.
  • a DDR (Double-Data-Rate) method that uses the timing of both the rising edge and falling edge of the clock is used in accordance with the above-described increase in speed.
  • the clock signal line supplies a common clock to the ramp generation circuit 630 and the counter 670. Therefore, the clock signal line is routed over a long distance.
  • the load due to the wiring resistance or the wiring capacitance causes the clock waveform to become dull or the duty ratio to deteriorate, resulting in the deterioration of the AD conversion DNL (Differential Non-Linearity) characteristics. .
  • Patent Document 2 the clock supplied to the ramp generation circuit is divided to reduce its frequency, a low-pass filter (LPF (LowLPass Filter)) is inserted into the output signal of the ramp generation circuit, and the ramp signal waveform is calculated.
  • LPF LowLPass Filter
  • a technique of smoothing is disclosed. As a result, it is possible to prevent DNL characteristic deterioration due to clock waveform dullness and duty ratio deterioration.
  • the AD conversion of the digital CDS is realized by two AD conversions.
  • the AD conversion period can be shortened as much as possible.
  • Patent Document 3 discloses a technique for extending the linear period of the ramp wave in the ramp wave generation period (for example, the down-count period and the up-count period in FIG. 13) as a technique for shortening the AD conversion period of the digital CDS.
  • the output part of the ramp generation circuit is driven by a buffer, and many ADCs are connected.
  • An LPF for smoothing glitch noise is provided at the input of the buffer provided at the output of the ramp generation circuit. By switching the time constant of the glitch smoothing LPF, dullness at the start of ramp wave output is improved.
  • Patent Document 4 discloses a technique that enables high-speed ramp wave generation by adding a ramp wave and a square wave at the same timing as a technique for improving the high-speed response of the ramp wave generator. Yes.
  • JP 2006-340044 A JP 2009-077172 A US Patent Application Publication No. 2010/0271248 JP 2006-337139 A
  • Patent Document 2 it is possible to suppress degradation of linearity due to waveform blunting of the high-speed clock by dividing the clock and inserting the LPF, but promote waveform blunting at the start of ramp wave output. Therefore, it is difficult to shorten the AD conversion period.
  • Patent Document 4 is a technique for improving the rising response of the output waveform of the ramp generator, but the circuit scales such as the square wave generator and the waveform adder are large, and when mounted on an image sensor and an imaging apparatus. Has major disadvantages. Furthermore, similarly to the technique of Patent Document 3, the problem of waveform dullness due to an increase in output load (wiring routing or ADC input load) is unavoidable.
  • FIG. 15 is a diagram showing the transient characteristics of the reference signal Vr (Vre) during the first AD conversion operation of the digital CDS of the column parallel ADC 620 mounted on the conventional image sensor.
  • the reference signal Vr output from the ramp generation circuit 630 is changed from the initial voltage VI to the comparator initialization voltage VR.
  • a ramp signal that is temporally inclined with a predetermined inclination from the comparator initialization voltage VR is output as the reference signal Vr.
  • the reference signal at the input of the comparator 66p in the column farthest from the ramp generation circuit 630 Vre becomes a signal having a transient characteristic as shown by a thick solid line in FIG. 15, and this reference signal Vre is transmitted to the comparator 66p.
  • the voltage width in which the reference signal Vre changes for one count period of the counter 670 needs to be constant (that is, the slope of the reference signal Vre reaches the linear region).
  • the slope of the reference signal Vre reaches the linear region at point A, and AD conversion is not accurately performed up to point A.
  • the first AD conversion of the digital CDS converts the reset level of the pixel signal that hardly varies due to the amount of incident light
  • the comparator 660 includes an input capacitor 3a, It is the structure provided with 3b. Since the comparison operation is performed after the comparator 660 is once initialized, the comparison is ideally completed when the reference signal Vre input to the column parallel ADC 620 becomes equal to the initial voltage VI in FIG. Accordingly, it is only necessary that the slope of the ramp waveform of the reference signal Vre reaches the linear region when the pixel signal Vsx and the reference signal Vre coincide. That is, in the example of FIG. 15, since the reference signal Vre reaches the linear region before the initial voltage VI is reached, the first AD conversion of the digital CDS is correctly performed.
  • FIG. 16 is a diagram showing a difference characteristic between the reference signal Vr and the reference signal Vre in FIG. It can be considered that the time when the difference becomes a constant value has reached the straight line area, and it can be said that the straight line area has been reached at point A as in FIG.
  • the reference at the time when the ramp generation circuit 630 starts outputting the ramp signal is performed.
  • the signal Vre starts transition from a voltage lower than the point C (a voltage away from the comparator initialization voltage VR). That is, the period until reaching the straight line region is later than the point A.
  • FIG. 17 is a diagram showing the relationship between the voltage waveform of the reference signal Vre and the AD conversion characteristics in the state of FIG.
  • the signal level of the pixel signal at the time of the second AD conversion of the digital CDS is dark (the voltage is close to the reset level)
  • the slope of the ramp signal at the completion of the comparison is ideal.
  • the change in the reference signal Vre with respect to one count period is small. That is, the AD conversion count is increased, and the AD conversion gain is higher than ideal (point F).
  • the present invention provides an accurate AD conversion in the AD conversion of a single slope type ADC even when an excessive load is applied to the reference signal due to wiring routing or ADC input load.
  • An object of the present invention is to provide a ramp generation circuit that makes it possible to reduce the time required for AD conversion.
  • One aspect of the present invention is a ramp generation circuit that outputs, as a reference signal, a ramp signal that is temporally inclined with a predetermined inclination to a single-slope analog-digital conversion circuit
  • the analog-digital conversion circuit includes: A comparator which receives the reference signal at the input terminal and receives an analog input signal at the other input terminal, and converts the analog input signal into a digital signal based on the result of the comparison operation by the comparator. Is. Then, before the comparison operation, the ramp generation circuit changes the voltage of the reference signal to a comparator setting voltage that compensates for a voltage difference between the two input terminals of the comparator, and starts the comparison operation. And a reference voltage generation unit that outputs the ramp signal with the comparator set voltage as a base point, and has a function of adding a predetermined emphasized voltage to the comparator set voltage before the comparison operation. It is what.
  • the voltage of the reference signal is compensated for the voltage difference between the two input ends of the comparator of the ADC, that is, the comparator set voltage for compensating the comparison operation. While being changed, a predetermined emphasis voltage is applied, and this voltage is output as a reference signal.
  • This not only compensates for the comparison operation of the comparator by compensating for the voltage difference between the two input terminals of the comparator, but also in the case where an excessive load is applied due to wiring routing or the input load of the ADC. It is possible to support the rising of the reference signal at the input portion of the comparator. Thereby, it is possible to shorten the period until the slopes of the ramp signals at the output section of the ramp generation circuit and the input section of the ADC comparator become substantially equal. That is, the time required for AD conversion can be shortened while enabling accurate AD conversion.
  • the ramp generation circuit changes a period from the change of the reference signal voltage to the comparator setting voltage and the addition of the emphasized voltage before the start of the comparison operation to the start of output of the ramp signal. It preferably has a function.
  • the analog-digital conversion circuit may include a counter that counts the comparison time of the comparator, and may generate the digital signal based on a counting result by the counter.
  • the ramp generation circuit preferably has a function of changing an output start time of the ramp signal with respect to a count start time of a counter included in the analog-digital conversion circuit.
  • the length of the period from when the emphasized voltage is applied to when the ramp signal output is started can be controlled, and the output start time of the ramp signal can be set with respect to the count start time of the counter included in the ADC.
  • the ramp generation circuit measures a time difference from when the output voltage of the reference voltage generation unit becomes a predetermined voltage to when the voltage at the one input terminal of the comparator becomes the predetermined voltage.
  • a first time difference that is the time difference at an initial stage of the output period of the ramp signal, and a second time difference that is measured when the slope of the ramp signal is stabilized.
  • a time difference comparison unit that compares the time difference between the first time difference and the second time difference based on a comparison result by the time difference comparison unit. And may be provided.
  • the emphasis voltage is controlled based on the result of the measurement and the comparison of the measured time differences. That is, feedback control based on the comparison result of the time difference is possible.
  • the emphasis voltage can be controlled to an optimum value by repeatedly performing the above operation using a period during which the image output of the imaging apparatus is invalid.
  • the use of feedback control can provide an effect of suppressing variation in characteristics while maintaining good AD conversion characteristics.
  • the ramp generation circuit includes an output voltage measurement unit that measures an output voltage of the reference voltage generation unit, a reference voltage measurement unit that measures a voltage at the one input terminal of the comparator, and the reference voltage A time difference measuring unit that measures a time difference from when the output voltage of the generating unit becomes a predetermined voltage to when the voltage at the one input terminal of the comparator becomes the predetermined voltage; and an output period of the ramp signal
  • the second voltage measured by the reference voltage measuring unit when the first voltage measured by the output voltage measuring unit at a predetermined time in the initial stage and the time difference measured by the time difference measuring unit from the predetermined time have passed.
  • the emphasized voltage is controlled so that the first voltage and the second voltage coincide with each other May include a that emphasizing a voltage control unit.
  • the emphasis voltage is controlled based on the comparison result with the voltage. That is, feedback control based on the comparison result between the first voltage and the second voltage is possible.
  • the emphasis voltage can be controlled to an optimum value by repeatedly performing the above operation using a period during which the image output of the imaging apparatus is invalid.
  • the use of feedback control can provide an effect of suppressing variation in characteristics while maintaining good AD conversion characteristics.
  • a ramp generation circuit that outputs a ramp signal as a reference signal to a single scope type ADC, even when an excessive load exists in the signal transmission path, it is possible to perform accurate AD conversion, The time required for AD conversion can be shortened.
  • the AD conversion period of the downcount can be greatly shortened, and high-speed driving is possible even if the number of pixels increases. Is possible.
  • (A) is an example of composition of a reference voltage generating part concerning a 1st embodiment
  • (b) is a figure for explaining operation of a reference voltage generating part. It is a figure which shows the other structural example of the reference voltage generation part which concerns on 1st Embodiment. It is a figure which shows the other structural example of the reference voltage generation part which concerns on 1st Embodiment. It is a figure which shows the structural example of the ramp production
  • the AD conversion of the digital CDS is composed of two AD conversions.
  • the second AD conversion converts the signal level of the pixel signal, the signals with various voltage amplitudes according to the amount of incident light.
  • a period corresponding to the total quantum count of the ADC is required as an AD conversion period.
  • the first AD conversion is conversion of almost the same reset level in all pixels, it is possible to define the down count period to be short within a range including variations in the down count width. Therefore, in each of the following embodiments, attention is paid to the first AD conversion for converting the reset level of the pixel signal that hardly changes due to the incident light amount among the AD conversion performed twice in the digital CDS, and this first AD conversion is performed. The shortening of the conversion operation time will be described. It should be noted that, in terms of performing accurate AD conversion, the following embodiment is effective in the second AD conversion as well as the first AD conversion of the digital CDS.
  • FIG. 1 is a block diagram schematically showing an imaging apparatus according to the first embodiment.
  • the imaging device includes an image sensor 100 and a digital video processing device 200.
  • the digital video processing apparatus 200 has a microcomputer CPU 201, and controls the image sensor 100 by a serial control signal D (m ⁇ 1: 0) (m is a natural number of 2 or more) from the microcomputer CPU 201.
  • the video signal processing is performed based on the digital signal (ADC output signal) input from.
  • FIG. 2 is a block diagram schematically showing the image sensor 100 according to the first embodiment.
  • the image sensor 100 includes a pixel array 110, a column parallel ADC (single slope ADC) 120, a ramp generation circuit 130, a control circuit 140, and a control register 150.
  • a column parallel ADC single slope ADC
  • the pixel array 110 is a unit pixel composed of photodiodes and amplifiers arranged two-dimensionally in a matrix, and is photoelectrically converted in each of n unit pixels (n is a natural number) belonging to a selected row.
  • the pixel signals Vs1 to Vsn are simultaneously output in parallel.
  • a single slope type ADC is used as the column parallel ADC 120.
  • the column parallel ADC 120 includes a comparator 160 (161 to 16n) and a counter 170 (171 to 17n) described later (see FIG. 5).
  • the reference signal Vr (Vre) from the ramp generation circuit 130 and the pixel signals Vs1 to Vsn which are analog input signals output from the pixel array 110 are compared by the respective comparators 160 (161 to 16n), and the pixel signals Vs1 to Vsn are compared.
  • An operation of outputting an AD conversion result (digital signal) is performed based on the count value at the time when Vsn matches the reference signal Vr (Vre) (when comparison results Vc1 to Vcn described later are inverted).
  • the serial control signal D (m ⁇ 1: 0) output from the microcomputer CPU 201 is input to the control circuit 140 via the control register 150.
  • the control circuit 140 controls the ramp generation circuit 130 and the column parallel ADC 120.
  • the ramp generation circuit 130 receives the control signal from the control circuit 140 and outputs a ramp signal that is temporally inclined with a predetermined inclination as the reference signal Vr.
  • FIG. 3 shows the reference signal Vr (hereinafter referred to as reference signal Vr) at the output of the ramp generation circuit 130 and the comparator 16n of the column parallel ADC 120 of the column farthest from the ramp generation circuit 130 in the reference signal according to the present embodiment. It is the figure which showed the example of the transient characteristic of the reference signal Vre (henceforth a reference signal Vre) in an input part.
  • the thin line indicates the reference signal Vr
  • the thick line indicates the reference signal Vre.
  • the ramp generation circuit 130 changes the reference signal Vr from the initial voltage VI to the comparator initialization voltage VE obtained by adding the enhancement voltage VA to the comparator initialization voltage VR. To do.
  • the ramp generation circuit 130 continuously outputs the comparator initialization voltage VE.
  • the reference signal Vre shows a change like a thick line under the influence of the transient characteristic due to the connected load.
  • the ramp generation circuit 130 changes the reference signal Vr from the comparator initialization voltage VE to the comparator initialization voltage VR and refers to the ramp signal. Output as signal Vr.
  • the reference signal Vre reaches the ramp start voltage Vrs that is higher than the comparator initialization voltage VR by the voltage ⁇ V (point B in FIG. 3).
  • FIG. 4 is a diagram showing the difference between the reference signal Vr and the reference signal Vre at each time.
  • the difference is a straight line area at point A, but in the present embodiment, the straight line area is widened at point A ′. I understand.
  • a ramp start voltage Vrs which is a voltage necessary for making the difference between the reference signal Vr and the reference signal Vre a linear region, is derived.
  • the ramp waveform is in the downward voltage direction.
  • the voltage of the reference signal Vre can be easily matched with the lamp start voltage Vrs.
  • the emphasized voltage VA commonator initialization
  • the voltage VE) is preferably controlled.
  • the ramp generation circuit 130 starts outputting the ramp signal as the reference signal Vr by using a period in which the image output of the imaging apparatus is invalid (for example, after the power is turned on or a vertical blanking period).
  • the comparator initialization voltage VE emphasis voltage VA
  • the effective image period starts. A way to do this is conceivable.
  • a time difference until the reference signal Vr and the reference signal Vre become a predetermined voltage is measured at the initial stage of the output period of the ramp signal and when the slope of the ramp signal is stabilized.
  • a calibration for controlling the comparator initialization voltage VE can be considered based on the result of comparing the time differences.
  • an example of the control of the comparator initialization voltage VE using the feedback control based on the measurement result of the time difference will be described.
  • FIG. 5 is a diagram illustrating a configuration example of the ramp generation circuit 130 and a connection example of peripheral circuits according to the first embodiment.
  • the ramp generation circuit 130 includes a time difference measurement unit 131, a time difference comparison unit 132, an emphasized voltage control unit 133, and a reference voltage generation unit 134.
  • the column parallel ADC 120 is an ADC of n columns (n is a natural number), and includes a comparator 160 (161 to 16n) and a counter 170 (171 to 17n).
  • the comparators 160 (161 to 16n) compare the reference signals Vrm and Vre input to one input terminal with the pixel signals Vs1 to Vsn input to the other input terminal, respectively.
  • the counter 170 (171 to 17n) counts the time from the counting start time of the counter 170 until the output of the comparator 160 is inverted, which is the comparison time of the comparator 160 (161 to 16n), and based on the result.
  • the analog-digital conversion result is output as a digital signal.
  • the reference signal Vrm refers to a reference signal input to one input terminal of each of the comparators 161 to 16 (n ⁇ 1).
  • the control circuit 140 supplies the reset signal CRST to the comparator 160 and also supplies the ramp generation circuit 130 with a control signal Sr that defines the timing for initializing the output state of the comparator 160 via the reference signal Vr. .
  • the counter clock CK for correlating the ramp-shaped ramp signal output period in the reference signal Vr with the count value of the counter 170 is supplied to the counter 170, and the ramp generation clock CKr used for the ramp signal generation is ramped. This is supplied to the generation circuit 130.
  • timing signals T1 and T2 are supplied to the time difference measuring unit 131.
  • wiring resistance and wiring capacitance exist in the wiring path from the output unit of the ramp generation circuit 130 to each input unit of the comparator 160 (161 to 16n) of the column parallel ADC 120.
  • the reference signal Vre connected to the input of the comparator 16n located in the column farthest from the ramp generation circuit 130 has the longest delay time with respect to the reference signal Vr.
  • the time difference measuring unit 131 measures the time difference between the reference signal Vre having the longest delay and the reference signal Vr at two points of time T1 at the initial point of the ramp-shaped ramp signal period and time T2 at the stable point.
  • the respective time differences ⁇ t1 and ⁇ t2 are output to the time difference comparison unit 132.
  • the time difference between the reference signal Vre and the reference signal Vr is measured.
  • the time difference between the reference signal Vrm and the reference signal Vr at the input unit of the comparator 160 located in another column may be measured. Absent.
  • FIG. 6 is a diagram illustrating an example of the relationship between the above-described times T1 and T2 and time differences ⁇ t1 and ⁇ t2.
  • the dotted line indicates the reference signal Vr
  • the solid line indicates the reference signal Vre. Further, description will be made assuming that the slope of the reference signal Vr is a negative slope.
  • the time difference measuring unit 131 holds the voltage of the reference signal Vr as the reference signal voltage Vr1, and starts the internal count by the ramp generation clock CKr and the comparison between the reference signal voltage Vr1 and the reference signal Vre. Then, the time difference measuring unit 131 outputs a time difference ⁇ t1 that is a time difference at which the reference signal Vr and the reference signal Vre become the reference signal voltage Vr1 to the time difference comparing unit 132 from the internal count value when Vre ⁇ Vr1.
  • the time difference comparison unit 132 holds the time difference ⁇ t1 output from the time difference measurement unit 131.
  • the time difference measuring unit 131 holds the voltage of the reference signal Vr as the reference signal voltage Vr2, and starts the internal count by the ramp generation clock CKr and the comparison between the reference signal voltage Vr2 and the reference signal Vre. . Then, the time difference measuring unit 131 outputs, to the time difference comparing unit 132, a time difference ⁇ t2 that is a time difference at which the reference signal Vr and the reference signal Vre become the reference signal voltage Vr2 from the internal count value when Vre ⁇ Vr2. Then, the time difference comparison unit 132 holds the time difference ⁇ t2 output from the time difference measurement unit 131.
  • the time difference comparison unit 132 compares the time difference ⁇ t1 with the time difference ⁇ t2, and outputs the comparison result to the emphasized voltage control unit 133.
  • the emphasized voltage control unit 133 changes the comparator initialization voltage VE (enhanced voltage VA) of the reference voltage generation unit 134 based on the comparison result from the time difference comparison unit 132.
  • the emphasis voltage control unit 133 changes the comparator initialization voltage VE when ⁇ t1 ⁇ t2, while lowering the comparator initialization voltage VE when ⁇ t1> ⁇ t2.
  • the update of the control state of the emphasized voltage control unit 133 is preferably performed for each series of AD conversion operations as in the reset (initialization) of the comparator 160 by the reset signal CRST.
  • the comparator initialization voltage VE (emphasis voltage VA) can be set to an optimum setting.
  • the time T1 is set to the time when the ramp generation clock CKr starts.
  • the time T1 is set at a time when a certain amount of time has elapsed from the start of the ramp generation clock CKr. It is preferable to set.
  • FIG. 7A is a block diagram illustrating an example of the configuration of the reference voltage generation unit 134.
  • the reference voltage generation unit 134 includes a control switching unit 300, a counter 301, and a DAC (Digital-to-Analog Converter) 302.
  • FIG. 7B schematically shows changes in the reference signal Vr.
  • the control switching unit 300 Prior to time T21 in FIG. 7B, the control switching unit 300 converts the reference signal Vr to the initial voltage via the DAC 302 based on the control signal (initial voltage (VI) setting signal) input from the control circuit 140. Set to VI. At time T21, the control switching unit 300 converts the reference signal Vr to the initial voltage VI via the DAC 302 based on the control signal (emphasis voltage (VE (VA)) setting signal) input from the enhancement voltage control unit 133. To the comparator initialization voltage VE to which the emphasis voltage VA is added.
  • V initial voltage
  • the counter 301 sets the comparator output initialization voltage (VR) setting code input from the control circuit 140 to the initial value of the count, and the DAC 302
  • the reference signal Vr is changed to the comparator initialization voltage VR.
  • the DAC 302 outputs the ramp signal as the reference signal Vr based on the count value of the counter 301 with the voltage VR as a base point.
  • the control circuit 140 starts supplying the counter clock CK to the counter 170, and the counter 170 starts counting. Specifically, the counter 170 uses the counter clock CK until the comparison result by the comparator 160 (161 to 16n) between the pixel signals Vs1 to Vsn from the pixel array 110 and the reference signals Vrm and Vre is inverted. Count the time.
  • the forced voltage control unit 133 includes an up / down counter. Based on the comparison result of the time difference comparison unit 132, the forced voltage control unit 133 adjusts the digital code output to the control switching unit 300, thereby controlling the comparator initialization voltage VE. Realize the adjustment.
  • the forced voltage control unit 133 is not limited to the above as long as it is a configuration that adjusts the comparator initialization voltage VE, and the configuration changes in accordance with the configuration of the reference voltage generation unit 134. It does n’t matter.
  • FIG. 8 and 9 are circuit diagrams showing other configuration examples of the reference voltage generation unit 134.
  • FIG. 8 and 9 are circuit diagrams showing other configuration examples of the reference voltage generation unit 134.
  • FIG. 8 shows an example of a method of selecting a voltage dividing tap of the resistance ladder (the emphasis voltage resistance ladder 400 and the initial voltage resistance ladder 401) by the ladder selection control circuit 402 and outputting a desired reference signal Vr.
  • the initial voltage VI is set by the voltage dividing tap of the initial voltage resistor ladder 401 selected by the control signal (initial voltage (VI) selection signal) from the control circuit 140.
  • the comparator initialization voltage VE is set by the voltage dividing tap of the emphasized voltage resistor ladder 400 selected by the control signal (emphasized voltage (VE) selection signal) from the emphasized voltage control unit 133.
  • the comparator initialization voltage VR is a predetermined fixed voltage.
  • a preset voltage VR may be used, or the voltage VR may be set from the outside. Then, the voltage generation tap of the initial voltage resistor ladder 401 is sequentially selected and switched toward the voltage Vref by the ramp generation clock CKr, and the ramp signal is output as the reference signal Vr.
  • FIG. 9 shows an example of a system using a current reference type DAC.
  • the comparator initialization voltage VE including the initial voltage VI, the comparator initialization voltage VR, and the emphasis voltage VA is supplied to the output bias resistor 500 based on the control signals received from the control circuit 140 and the emphasis voltage controller 133. It is set by controlling. Then, based on the count value of the counter 501 that receives the ramp generation clock CKr, the current source switch 502 is controlled to be turned on and off, and a ramp signal that is temporally inclined with a predetermined inclination is output as the reference signal Vr.
  • the ramp signal that is temporally inclined with a predetermined inclination may be a smooth slope waveform or a stepped waveform, and may be any signal that is temporally inclined with a predetermined inclination. .
  • the reference signal Vr and the reference signal Vre are compared with each other at a predetermined voltage difference, and the calibration is performed based on the comparison result. Even when a heavy load is applied, the difference between the reference signal Vr and the reference signal Vre can be reached quickly in the straight line region. As a result, the linear area of the difference between the reference signal Vr and the reference signal Vre is widened, and the AD conversion time can be shortened, and accurate AD conversion can be realized even when the AD conversion time is shortened. Furthermore, even when the load on the voltage path varies between individuals, the use of feedback control provides an effect of suppressing variation in characteristics while maintaining good AD conversion characteristics.
  • the counter 170 receives the counter clock CK from the time T22 when the ramp signal output is started and starts counting the comparator output. It is preferable to start counting with a delay of time ⁇ t1 from the start of supply. Thereby, the count of the counter 170 can be started from the reference signal Vre having the same voltage value as the reference signal Vr at the time of outputting the ramp signal, so that the downcount range can be effectively utilized.
  • the internal count direction of the time difference measuring unit 131 is provided with a function of switching up and down between the first and second AD conversions performed twice in the digital CDS.
  • the time differences ⁇ t1 and ⁇ t2 output from the time difference measuring unit 131 may be cumulatively added.
  • the emphasis voltage control unit 133 adjusts the comparator initialization voltage VE based on the cumulative addition result.
  • the time difference comparison unit 132 is not necessary. That is, in the state where the time difference comparison unit 132 is deleted, the same effect as that of the present embodiment can be obtained.
  • FIG. 10 is a diagram illustrating a configuration example of a ramp generation circuit and a connection example of peripheral circuits according to the second embodiment.
  • the same components as those in FIG. 5 are denoted by the same reference numerals as those in FIG. 5, and detailed description thereof is omitted here.
  • the ramp generation circuit 130A of FIG. 10 differs from FIG. 5 in that it includes a voltage comparison unit 137 instead of the time difference comparison unit 132, and further includes a voltage measurement unit 135 and a reference voltage measurement unit 136. is there.
  • the calibration for controlling the comparator initialization voltage VE is repeatedly performed during a period in which the image output of the imaging device is invalid.
  • the calibration performed for the first time is performed for the first cycle and the second time.
  • the calibration to be performed is called the second cycle.
  • the time difference measuring unit 131 measures the time difference between the reference signal Vr and the reference signal Vre, as in the first embodiment.
  • the time difference ⁇ t at time T2 at the stable point is measured and output to the reference voltage measuring unit 136.
  • the voltage measurement unit 135 measures the reference signal voltage Vr1 of the reference signal Vr at time T1 at the initial point of the ramp-shaped ramp signal period, and outputs it to the voltage comparison unit 137.
  • the reference voltage measurement unit 136 measures the reference signal voltage Vr1 ′ of the reference signal Vre at the time (T1 + ⁇ t) obtained by adding the time difference ⁇ t output from the time difference measurement unit 131 to the time T1, and outputs the reference signal voltage Vr1 ′ to the voltage comparison unit 137.
  • the voltage comparison unit 137 compares the reference signal voltage Vr1 with the reference signal voltage Vr1 'and outputs the comparison result to the emphasized voltage control unit 133. Then, the emphasized voltage control unit 133 adjusts the comparator initialization voltage VE of the reference voltage generation unit 134 based on the comparison result output from the voltage comparison unit 137. For example, the emphasis voltage control unit 133 adjusts the comparator initialization voltage VE to be increased when Vr1 ⁇ Vr1 ′, while decreasing the comparator initialization voltage VE when Vr1> Vr1 ′.
  • the comparator initialization voltage VE can be set to an optimum setting by repeating the operation of the second cycle during a period when the image output of the imaging device is invalid.
  • the first cycle operation may be performed in addition to the second cycle operation.
  • the first cycle operation and the second cycle operation may be performed alternately.
  • the voltage difference between the reference signal Vr and the reference signal Vre at a predetermined point is compared, and calibration is performed based on the comparison result, so that the reference signal Vr is excessive.
  • the difference between the reference signal Vr and the reference signal Vre can be reached quickly in the straight line region.
  • the linear area of the difference between the reference signal Vr and the reference signal Vre is widened, and the AD conversion time can be shortened, and accurate AD conversion can be realized even when the AD conversion time is shortened.
  • the use of feedback control provides an effect of suppressing variation in characteristics while maintaining good AD conversion characteristics.
  • the control of the comparator initialization voltage VE based on the time difference and the voltage difference between the reference signal Vr and the reference signal Vre in the first and second embodiments has an effect of improving the linearity over the entire n columns of ADCs. can get.
  • the ramp signal of the reference signal Vr output from the ramp generation circuits 130 and 130A is assumed to be in the voltage decreasing direction, but the ramp signal slope Gr in the above equation 2 may be positive, The same effect can be obtained with the signal in the direction of increasing voltage.
  • the comparator initialization voltage VR and the emphasis voltage VA can be varied independently.
  • the ramp generation circuits 130 and 130A have a function of changing a period from when the voltage of the reference signal Vr is changed to the comparator initialization voltage VE to when the output of the ramp signal is started before the comparison operation of the comparator 160 is started. It is preferable to provide. It is preferable to perform a combination of control during a period from when the comparator initialization voltage VE is changed to when the ramp signal starts to be output, and voltage control of the comparator initialization voltage VE. As a result, the AD conversion period can be tuned to the shortest time.
  • the ramp generation circuit 130 has a function of changing the output start time for outputting the ramp signal as the reference signal Vr with respect to the count start time of the counter 170. Then, by changing the period, the period from the change to the comparator initialization voltage VE to the start of ramp signal output is controlled, and the ramp signal output start time is set with respect to the counter 170 count start time. Can do. Thereby, when the slope of the ramp signal (ramp waveform) output from the ramp generation circuit 130 is gentle (that is, when the AD conversion gain is high), the amplitudes of the reference signals Vrm and Vre input to the comparator 160 are small. In addition, it is possible to make it difficult for AD conversion not to end within a certain downcount period.
  • the comparator 160 detects the comparison coincidence and then returns to the counter 170. There is a possibility that the response time until the comparison result Vcx is transmitted becomes longer. Therefore, depending on the set gain (ramp waveform slope), AD conversion may not be completed within a certain downcount period. In such a case, for example, the start time of the ramp waveform is greatly advanced with respect to the count start time of the counter 170, that is, the comparator initialization voltage VE (or the comparator initialization) in which the reference signal Vr adds the emphasized voltage VA.
  • the period during which the voltage VR) is maintained is set to a short setting, for example, close to zero. Then, the time for the comparator 160 to detect the comparison coincidence is advanced, and the voltage value of the comparator initialization voltage VE and the start time of the counter 170 are adjusted. This can improve the problem that AD conversion does not end within the downcount period.
  • the ramp generation circuit supplies a reference signal to a single slope ADC that requires highly accurate AD conversion even when driven at high speed when an excessive load is present in the signal path of the reference signal. It can be used as a circuit.
  • the image sensor according to the present invention is useful as an image sensor for a digital camera, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 ランプ生成回路(130)は、アナログデジタル変換回路(120)の比較動作の前に、参照信号(Vr)の電圧を参照信号(Vr)とアナログ入力信号(Vs1~Vsn)との電圧差を補償する比較器設定電圧(VR)に変更し、比較動作開始とともに、比較器設定電圧(VR)を基点としてランプ信号を出力する参照電圧生成部(134)を備えており、かつ、比較動作の前に、比較器設定電圧(VR)に所定の強調電圧(VA)を加える機能を有している。

Description

ランプ生成回路、並びにそれを備えたイメージセンサーおよび撮像装置
 本発明は、イメージセンサーおよび撮像装置に関するものであり、特に、このイメージセンサーおよび撮像素子が有するシングルスロープ型(または、積分型、カウンタ型とも呼ばれる)のアナログデジタル変換回路(以下ADC(Analog-to-Digital Converter)と表記)に参照信号を出力するランプ生成回路に関するものである。
 従来より、イメージセンサーの画素配列の各列にそれぞれADCを設け、水平走査期間内に画素配列一行分の画素出力信号のAD(Analog-to-Digital)変換を一度に処理する列並列AD変換方式のイメージセンサーが開発され、利用されている。この列並列AD変換方式では、画素ピッチで決まる各列の面積的な制約から、比較的回路規模が小さいシングルスロープ型ADCが一般的によく用いられる(例えば特許文献1)。シングルスロープ型ADCは、カウンタのカウント値と相関を持ったランプ信号を参照信号としてADCの比較器に入力させ、アナログ入力信号(画素出力信号)とこの参照信号とが一致した時点でのカウント値に基づいて、AD変換結果をデジタル信号として出力する。
 図12は従来のイメージセンサーの構成例を示すブロック図である。
 列並列ADC(シングルスロープ型ADC)620は、比較器660(661~66p)(pは自然数)とカウンタ670(671~67p)とを備えている。そして、列並列ADC620は、比較器660において、ランプ生成回路630から出力された参照信号Vrと画素配列610から出力された画素信号Vs1~Vspとを比較し、カウンタ670(671~67p)による比較結果Vc1~Vcpのカウント結果に基づいて、AD変換結果(デジタル信号)を出力する。
 イメージセンサーに搭載される列並列ADC620は、一般的にデジタルCDS(Correlated Double Sampling:相関二重サンプリング)と呼ばれる一連の動作によってAD変換を行う。デジタルCDSとは、画素信号Vs1~VspのリセットレベルのAD変換と信号レベルのAD変換との2回のAD変換を行い、その差分を画素信号Vs1~VspのAD変換結果とすることにより、画素配列610の画素や比較器660の特性のばらつきに起因する固定パターンノイズを抑制するものである。
 図13のタイミングチャートを用いてデジタルCDSの動作を具体的に説明する。
 まず、時刻T30から時刻T31の期間において、画素配列610からは画素信号Vsx(x=1~p)として、リセットレベル電圧V1が出力される。また、ランプ生成回路630が出力する参照信号Vrは、予め制御回路640により設定されている初期電圧VIに設定される。この状態において、制御回路640は、リセット信号CRSTを“L”に設定し、比較器660をリセットする。具体的には、比較器66x(x=1~p)は、例えば図14に示すように、入力容量3a,3bを備えた差動アンプと入力容量3cを備えたインバータ(INV)アンプ3iとで構成されている。そして、リセット信号CRSTが入力されると、差動トランジスタ3d,3eのゲートとドレインとの間およびINVアンプ3iの入出力は、リセットトランジスタ3f,3g,3hによってショートされ、比較器66xはバランス状態にリセットされる。
 時刻T31から時刻T32の期間において、制御回路640は、比較器出力初期化制御信号Srを駆動する。すると、ランプ生成回路630は、参照信号Vrを初期電圧VIから比較器初期化電圧VRに変更し、この電圧を保持する。ここで、比較器初期化電圧VRとは、比較器66xの初期化後の参照信号Vrと画素信号Vsxとの電圧差(すなわち比較動作)を補償する、予め制御回路640によって設定されている初期電圧VIより補償電圧だけ高い電圧である。これにより、比較器66x(x=1~p)は、バランスした状態から比較結果Vcx(x=1~p)が“H”の状態に確定(初期化)される。
 時刻T32において、制御回路640はカウンタ用クロックCKの駆動を開始し、参照信号Vrは、比較器初期化電圧VRを基点とした傾斜状のランプ信号となる。ランプ信号出力の開始とともに、カウンタ67x(x=1~p)は、初期カウント値からダウンカウントを開始し、1回目のAD変換に係る比較動作が開始される。
 時刻T33において、比較器66xにおける参照信号Vrと画素信号Vsx(リセットレベル電圧V1)とが一致すると、比較結果Vcxは“L”に転じ、カウンタ67xはダウンカウントを停止し、そのときのカウント値(カウント幅Vd)を保持する。
 時刻T34から時刻T35の期間において、制御回路640は、再度比較器出力初期化制御信号Srを駆動する。すると、ランプ生成回路630は、再び参照信号Vrを比較器初期化電圧VRに変更し、これにより、比較結果Vcx(x=1~p)が“H”の状態に初期化される。また、画素配列610からは、リセットレベル電圧V2に変更された画素信号Vsxが出力され、状態が安定するまで待機する。
 時刻T35において、制御回路640はカウンタ用クロックCKの駆動を開始し、参照信号Vrは、比較器初期化電圧VRを基点とした傾斜状のランプ信号となる。そして、ランプ信号出力の開始とともに、カウンタ67xは、1回目のAD変換で保持されたカウント値を基点としてアップカウントを開始し、2回目のAD変換に係る比較動作が開始される。
 時刻T36において、比較器66xにおける参照信号Vrと画素信号Vsx(リセットレベル電圧V2)とが一致すると、比較結果Vcxは“L”に転じ、カウンタ67xはアップカウントを停止し、そのときのカウント値を保持する。この時刻T33におけるカウント値と時刻T36におけるカウント値との差分は、1回目のAD変換と2回目のAD変換との差分値に等しく、すなわち画素信号Vsxの振幅の差分(V1-V2)のAD変換結果となる。
 ところで、近年では、デジタルカメラシステムにおいて、画素数の増加が一段と進んでいる。また、ハイビジョン動画撮影機能の搭載などにより、イメージセンサー駆動の高速化が進んでいる。この高速化において、上述したデジタルCDSを用いたAD変換には下記の課題があり、課題解決のための技術が提案されている。
 例えば、上記高速化に伴い、クロックの立ち上がりと立ち下がりの両エッジのタイミングを用いるDDR(Double-Data-Rate)方式が用いられる。上記の例(特許文献1)において、クロック信号線は、ランプ生成回路630とカウンタ670とに共通のクロックを供給している。そのため、長距離にわたってクロック信号線が引き回されることとなる。そして、このクロックの周波数が高くなると配線抵抗や配線容量に起因する負荷によって、クロック波形の鈍りやデューティー比の劣化が起こり、AD変換のDNL(Differential Non-Linearity)特性が劣化するという課題がある。
 そこで、特許文献2では、ランプ生成回路に供給するクロックを分周してその周波数を低下させ、ランプ生成回路の出力信号にローパスフィルタ(LPF(Low Pass Filter))を挿入し、ランプ信号波形を平滑化するという技術が開示されている。これにより、クロック波形の鈍りやデューティー比の劣化に起因するDNL特性劣化を防ぐことができる。
 また、上述のように、デジタルCDSのAD変換は、2回のAD変換によって実現されているが、高速駆動の観点からは、AD変換期間をできるだけ短縮できることが好ましい。
 そこで、特許文献3では、デジタルCDSのAD変換期間を短縮する技術として、ランプ波発生期間(例えば図13のダウンカウント期間およびアップカウント期間)のなかで、ランプ波の線形期間を広げる技術が開示されている。具体的には、ランプ生成回路の出力部はバッファにより駆動されており、かつ多数のADCが接続されている。そして、このランプ生成回路の出力部に設けられたバッファの入力部には、グリッジノイズを平滑化するためのLPFが設けられている。このグリッジ平滑用LPFの時定数を切替えることにより、ランプ波出力開始時の鈍りが改善される。
 また、特許文献4では、ランプ波発生器の高速応答性を改善する技術として、ランプ波と方形波とを同じタイミングで加算することにより、高速なランプ波発生を可能とする技術が開示されている。
特開2006-340044号公報 特開2009-077172号公報 米国特許出願公開第2010/0271248号明細書 特開2006-337139号公報
 しかしながら、上述の従来技術において、特に参照信号に対して、配線の引き回しや画素数の増加に伴うADCの増加による参照信号に対する入力負荷の増加などによる過大な負荷がついた場合において、正確なAD変換とAD変換期間の短縮との両立を考えたときには、未解決の課題がある。
 例えば、特許文献2の構成では、クロックの分周とLPFの挿入とにより、高速クロックの波形鈍りによる線形性の劣化を抑制することができるが、ランプ波出力開始時における波形の鈍りを助長することとなり、AD変換期間の短縮は難しい。
 また、特許文献3の構成では、グリッジ平滑用LPFの時定数の切替えにより、ランプ生成回路の出力バッファの入力部では、ランプ波形の立ち上がり応答は俊敏となるが、出力バッファの出力後の配線の引き回しやADCの入力負荷による波形の鈍りの問題は避けられない。
 また、特許文献4は、ランプ波発生器の出力波形の立ち上がり応答を改善させる技術ではあるが、方形波発生部および波形加算部などの回路規模が大きく、イメージセンサーおよび撮像装置に搭載する際にはデメリットが大きい。さらに、特許文献3の技術と同様に、出力負荷の増大(配線の引き回しやADCの入力負荷)による波形の鈍りの問題は避けられない。
 以下、図15~図17を用いて、ランプ生成回路の出力負荷の増大(配線の引き回しやADCの入力負荷)による波形の鈍りの問題について具体的に説明する。
 図15は従来のイメージセンサーに搭載された列並列ADC620のデジタルCDSの1回目のAD変換動作時の参照信号Vr(Vre)の過渡特性を示した図である。
 時刻T40において、ランプ生成回路630から出力される参照信号Vrは、初期電圧VIから比較器初期化電圧VRに変更される。そして、時刻T41において、比較器初期化電圧VRを基点として、所定の傾きをもって時間的に傾斜するランプ信号が参照信号Vrとして出力される。しかしながら、参照信号配線経路の負荷および多数の共通接続された列並列ADC620の比較器660(661~66p)の負荷により、例えばランプ生成回路630から最も遠い列の比較器66pの入力部における参照信号Vreは、図15の太い実線で示したような過渡特性を示す信号となり、この参照信号Vreが比較器66pに伝達される。
 ここで、AD変換が正確に行われるためには、カウンタ670の1カウント期間に対する参照信号Vreが変化する電圧幅が一定(すなわち、参照信号Vreの傾斜が直線領域に達している)必要がある。しかしながら、図15において、参照信号Vreの傾斜が直線領域に達するのはA点であり、A点までの間はAD変換が正確に行われていない。
 ただし、図15の例では、参照信号Vreが初期電圧VIになる以前に直線領域に達しているため、デジタルCDSの1回目のAD変換は正しく行われる。
 具体的には、デジタルCDSの1回目のAD変換は、入射光量による変動がほとんど無い画素信号のリセットレベルを変換するものであり、かつ比較器660は、図14に示すような入力容量3a,3bを備えた構成である。そして、比較器660が一旦初期化されてから比較動作を行うため、理想的には列並列ADC620に入力される参照信号Vreが図15における初期電圧VIに等しくなる時点で比較が完了する。したがって、画素信号Vsxと参照信号Vreとが一致した時点での参照信号Vreのランプ波形の傾斜が直線領域に達していればよい。すなわち、図15の例では、参照信号Vreが初期電圧VIになる以前に直線領域に達しているため、デジタルCDSの1回目のAD変換は正しく行われる。
 図16は図15の参照信号Vrと参照信号Vreとの差分特性を示した図である。この差分が一定値になった時刻が直線領域に達した時点とみなすことができ、図15同様にA点において直線領域に達しているといえる。
 しかしながら、さらに高速化した場合(例えば図15における比較器初期化電圧VRの出力期間(T40~T41の期間)を短縮した場合)、ランプ生成回路630がランプ信号の出力を開始する時刻での参照信号Vreは、C点よりも低い電圧(比較器初期化電圧VRから離れた電圧)から遷移を始めることとなる。すなわち、直線領域に達するまでの期間はA点よりも遅くなる。
 また、イメージセンサーの画素数が増加した場合においても、同様な課題が発生するとともに、接続される列並列ADC620の比較器660や配線の増加に起因する負荷の増大による参照信号Vreの遅延が更に大きくなることが考えられる。したがって、図15において、参照信号Vreの電圧が初期電圧VIになったときに、参照信号Vreが直線領域に達していない状態が起こりえることとなる。
 次に、このような状態がAD変換特性に及ぼす影響を詳しく説明する。
 図17は図15の状態における参照信号Vreの電圧波形とAD変換特性との関係を示した図である。図17において、例えばデジタルCDSの2回目のAD変換時の画素信号の信号レベルが暗時(電圧としてはリセットレベルに近い電圧)のときには、比較完了時点(D点)のランプ信号の傾斜が理想よりも緩やかな状態であり、1カウント期間に対する参照信号Vreの変化が小さくなっている。つまり、AD変換のカウント数が大きくなり、AD変換ゲインは理想より高い状態となる(F点)。一方、標準時(一般的には数百mV程度)のときには、比較完了時点(E点)のランプ信号の傾斜が理想の参照信号(参照信号Vr)と等しいため、AD変換ゲインは理想と等しい(G点)。
 上記より、参照信号Vreの電圧が初期電圧VIに到達した時点において、参照信号Vreが直線領域に達していないと、画素信号Vsxの振幅が小さい範囲において、列並列ADC620のリニアリティーが劣化することとなる。
 上記の点に鑑み、本発明は、シングルスロープ型ADCのAD変換において、特に参照信号に対して、配線の引き回しやADCの入力負荷などによる過大な負荷がついた場合においても、正確なAD変換を可能にしながら、AD変換に要する時間を短縮することを可能とするランプ生成回路を提供することを目的とする。
 本発明の一態様は、シングルスロープ型のアナログデジタル変換回路に、所定の傾きをもって時間的に傾斜するランプ信号を参照信号として出力するランプ生成回路であって、前記アナログデジタル変換回路は、一方の入力端に前記参照信号を受けるとともに、他方の入力端にアナログ入力信号を受ける比較器を有しており、前記比較器による比較動作の結果に基づいて、前記アナログ入力信号をデジタル信号に変換するものである。そして、前記ランプ生成回路は、前記比較動作の前に、前記参照信号の電圧を、前記比較器の前記2つの入力端の電圧差を補償する比較器設定電圧に変更し、前記比較動作の開始とともに、前記比較器設定電圧を基点として前記ランプ信号を出力する参照電圧生成部を備えており、かつ、前記比較動作の前に、前記比較器設定電圧に所定の強調電圧を加える機能を有しているものである。
 これにより、アナログデジタル変換回路(ADC)の比較動作の前に、参照信号の電圧は、ADCの比較器の2つの入力端の電圧差を補償する、すなわち比較動作を補償する比較器設定電圧に変更されるとともに、所定の強調電圧が加えられ、この電圧が参照信号として出力される。これにより、比較器の2つの入力端の電圧差を補償することによる比較器の比較動作の補償だけでなく、配線の引き回しやADCの入力負荷などによる過大な負荷がついた場合においても、ADCの比較器の入力部における参照信号の立ち上がりをサポートすることができる。これにより、ランプ生成回路の出力部とADCの比較器の入力部とにおけるランプ信号の傾斜がほぼ等しくなるまでの期間を短縮することができる。すなわち、正確なAD変換を可能にしながら、AD変換に要する時間を短縮することができる。
 そして、前記態様のランプ生成回路は、前記比較動作開始前における前記参照信号電圧の前記比較器設定電圧への変更および前記強調電圧を加える変更から、前記ランプ信号の出力開始までの期間を変更する機能を有しているのが好ましい。
 これにより、強調電圧を加えてからランプ信号の出力を開始するまでの期間の長さの制御を、強調電圧の電圧値の制御と組み合わせて行うことができる。これにより、AD変換期間を最短時間にチューニングすることが可能となる。
 また、前記アナログデジタル変換回路は、前記比較器の比較時間を計数するカウンタを有しており、前記カウンタによる計数結果に基づいて、前記デジタル信号を生成するものとしてもよい。そして、前記態様のランプ生成回路は、前記アナログデジタル変換回路が有するカウンタの計数開始時刻に対する、前記ランプ信号の出力開始時刻を変更する機能を有しているのが好ましい。
 これにより、強調電圧を加えてからランプ信号の出力を開始するまでの期間の長さを制御するとともに、ADCが有するカウンタの計数開始時刻に対してランプ信号の出力開始時刻を設定することができる。これにより、ランプ生成回路が出力するランプ波形の傾斜が緩やかな場合(すなわちAD変換ゲインが高い場合)において、ADCの比較器に入力される参照信号の振幅が小さいときに、一定のダウンカウント期間内でAD変換が終了しないことを、起こりにくくすることが可能となる。
 また、前記態様のランプ生成回路は、前記参照電圧生成部の出力電圧が所定電圧になった時から、前記比較器の前記一方の入力端における電圧が前記所定電圧になる時までの時間差を測定する時間差測定部と、前記時間差測定部によって測定された、前記ランプ信号の出力期間の初期における前記時間差である第1の時間差と、前記ランプ信号の傾斜が安定したときにおける前記時間差である第2の時間差とを比較する時間差比較部と、前記時間差比較部による比較結果に基づいて、前記第1の時間差と前記第2の時間差とが一致するように、前記強調電圧を制御する強調電圧制御部とを備えていてもよい。
 これにより、ランプ生成回路の出力電圧と比較器の一方の入力端における電圧との所定電圧になる時までの時間差を、ランプ信号の出力期間の初期とランプ信号の傾斜が安定したときとのそれぞれにおいて測定し、この測定された時間差を比較した結果に基づいて、強調電圧を制御する。すなわち、この時間差の比較結果に基づいたフィードバック制御が可能となる。これにより、例えば撮像装置の画像出力が無効である期間などを利用して、上記の動作を繰り返し実施することにより、強調電圧を最適な値に制御することができる。さらに、前記電圧経路の負荷が個体間でばらついた場合においても、フィードバック制御を用いることにより、AD変換特性を良好に保ちながら、特性のばらつきも抑える効果が得られる。
 また、前記態様のランプ生成回路は、前記参照電圧生成部の出力電圧を測定する出力電圧測定部と、前記比較器の前記一方の入力端における電圧を測定する参照電圧測定部と、前記参照電圧生成部の出力電圧が所定電圧になった時から、前記比較器の前記一方の入力端における電圧が前記所定電圧になる時までの時間差を測定する時間差測定部と、前記ランプ信号の出力期間の初期における所定時に、前記出力電圧測定部によって測定された第1の電圧と、前記所定時から前記時間差測定部によって測定された前記時間差が経過した時に、前記参照電圧測定部によって測定された第2の電圧とを比較する電圧比較部と、前記電圧比較部による比較結果に基づいて、前記第1の電圧と前記第2の電圧とが一致するように、前記強調電圧を制御する強調電圧制御部とを備えていてもよい。
 これにより、ランプ信号の出力期間の初期における所定時に測定された第1の電圧と、第1の電圧を測定した所定時から時間差測定部を用いて測定した時間差が経過した時に測定した第2の電圧との比較結果に基づいて、強調電圧を制御する。すなわち、この第1の電圧と第2の電圧との比較結果に基づいたフィードバック制御が可能となる。これにより、例えば撮像装置の画像出力が無効である期間などを利用して、上記の動作を繰り返し実施することにより、強調電圧を最適な値に制御することができる。さらに、前記電圧経路の負荷が個体間でばらついた場合においても、フィードバック制御を用いることにより、AD変換特性を良好に保ちながら、特性のばらつきも抑える効果が得られる。
 本発明によれば、シングルスコープ型のADCに、ランプ信号を参照信号として出力するランプ生成回路において、特に信号伝達経路に過大な負荷が存在する場合においても、正確なAD変換を可能にしながら、AD変換に要する時間を短縮することができる。
 特に、イメージセンサーに搭載されている列並列ADC(シングルスコープ型のADC)に本発明を適用することにより、ダウンカウントのAD変換期間が大幅に短縮可能となり、画素数が増加しても高速駆動が可能となる。
各実施形態に係る撮像装置を模式的に示すブロック図である。 各実施形態に係るイメージセンサーを模式的に示すブロック図である。 第1の実施形態に係るランプ生成回路の参照信号波形の一例を示す図である。 第1の実施形態に係るランプ生成回路における参照信号の遅延前後の差分特性を示す図である。 第1の実施形態に係るランプ生成回路の構成例および周辺回路の接続例を示す図である。 第1の実施形態に係る時間差測定部の動作を説明するための図である。 (a)は第1の実施形態に係る参照電圧生成部の構成の一例、(b)は参照電圧生成部の動作を説明するための図である。 第1の実施形態に係る参照電圧生成部の他の構成例を示す図である。 第1の実施形態に係る参照電圧生成部の他の構成例を示す図である。 第2の実施形態に係るランプ生成回路の構成例および周辺回路の接続例を示す図である。 第2の実施形態に係る電圧測定部および時間差測定部の動作を説明するための図である。 従来のイメージセンサーの構成例を示すブロック図である。 従来のイメージセンサーの動作を説明するためのタイミングチャートである。 従来のADCが有する比較器の内部回路の一例を示す図である。 従来のランプ生成回路の参照信号波形の一例を示す図である。 従来のランプ生成回路における参照信号の遅延前後の差分特性を示す図である。 従来のランプ生成回路における参照信号とADCのAD変換特性との関係を説明するための図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
 ここで、デジタルCDSのAD変換は、2回のAD変換から構成されているが、2回目のAD変換は、画素信号の信号レベルを変換するため、入射光量に応じて様々な電圧振幅の信号を変換する必要があり、システム的にはAD変換期間としては、ADCの全量子カウント分の期間が必要となる。これに対して、1回目のAD変換は、全画素においてほぼ等しいリセットレベルの変換であるため、ダウンカウント幅のばらつきを包括する範囲でダウンカウント期間を短く規定することが可能である。そのため、以下の各実施形態では、デジタルCDSにおいて2回行うAD変換のうち、入射光量による変動がほとんど無い画素信号のリセットレベルを変換する1回目に係るAD変換に着目し、この1回目のAD変換動作時間の短縮について説明を行うものとする。なお、正確なAD変換の実施という点においては、以下の実施形態を実施することにより、デジタルCDSの1回目のAD変換とともに、2回目のAD変換においても効果がある。
 <第1の実施形態>
 図1は第1の実施形態に係る撮像装置を模式的に示すブロック図である。図1において、撮像装置は、イメージセンサー100と、デジタル映像処理装置200とを備えている。
 デジタル映像処理装置200は、マイコンCPU201を有しており、マイコンCPU201からのシリアル制御信号D(m-1:0)(mは2以上の自然数)によってイメージセンサー100を制御するとともに、イメージセンサー100から入力したデジタル信号(ADC出力信号)に基づいて、映像信号処理を行う。
 図2は第1の実施形態に係るイメージセンサー100を模式的に示すブロック図である。図2において、イメージセンサー100は、画素配列110と、列並列ADC(シングルスロープ型ADC)120と、ランプ生成回路130と、制御回路140と、制御レジスタ150とを備えている。
 画素配列110は、フォトダイオードとアンプで構成された単位画素が行列状に2次元配置されたものであり、選択された一行に属するn個(nは自然数)の単位画素のそれぞれにおいて光電変換された画素信号Vs1~Vsnを同時に並列に出力する。
 本実施形態では、列並列ADC120として、シングルスロープ型のADCを用いている。列並列ADC120は、後述する比較器160(161~16n)とカウンタ170(171~17n)とを備えている(図5参照)。ランプ生成回路130からの参照信号Vr(Vre)と画素配列110から出力されるアナログ入力信号である画素信号Vs1~Vsnとをそれぞれの比較器160(161~16n)により比較し、画素信号Vs1~Vsnと参照信号Vr(Vre)とが一致した時点(後述する比較結果Vc1~Vcnが反転した時点)におけるカウント値に基づいて、AD変換結果(デジタル信号)を出力する動作を行う。
 イメージセンサー100において、マイコンCPU201から出力されたシリアル制御信号D(m-1:0)は、制御レジスタ150を介して、制御回路140に入力される。制御回路140は、ランプ生成回路130および列並列ADC120を制御する。ランプ生成回路130は、制御回路140からの制御信号を受けて、所定の傾きをもって時間的に傾斜するランプ信号を参照信号Vrとして出力する。
 図3は本実施形態に係る参照信号において、ランプ生成回路130の出力部における参照信号Vr(以降参照信号Vrとする)、およびランプ生成回路130から最も遠い列の列並列ADC120の比較器16nの入力部における参照信号Vre(以降参照信号Vreとする)の過渡特性の例を示した図である。図3において、細線が参照信号Vrを示しており、太線が参照信号Vreを示している。時刻T10において、ランプ生成回路130は、制御回路140からの制御信号に基づいて、参照信号Vrを初期電圧VIから比較器初期化電圧VRに強調電圧VAを加えた比較器初期化電圧VEに変更する。時刻T10から時刻T11の期間において、ランプ生成回路130からは、継続して比較器初期化電圧VEを出力する。このとき、参照信号Vreは、接続されている負荷による過渡特性の影響を受けて、太線のような変化を示している。そして、ランプ生成回路130からランプ信号を参照信号Vrとして出力する時刻T11において、ランプ生成回路130は参照信号Vrを比較器初期化電圧VEから比較器初期化電圧VRに変更し、ランプ信号を参照信号Vrとして出力する。すると、このとき、参照信号Vreは、比較器初期化電圧VRより電圧ΔVだけ高いランプ開始電圧Vrsに達している(図3のB点)。なお、定性的には、図3においてB点に達する時刻を早めたい場合は、ランプ信号の出力を開始する時刻と後述する列並列ADC120のカウンタ170のカウントを開始する時刻とを早めるとともに、強調電圧VAを高くする、すなわち比較器初期化電圧VEを高くすることで実現できる。
 なお、図3において、参照信号Vrの比較器初期化電圧VRへの変更、および強調電圧VAを加える変更は同時に行われているが、参照信号Vrを比較器初期化電圧VRに変更する時刻と強調電圧VAを加える時刻とがずれていてもかまわない。
 図4は各時刻における参照信号Vrと、参照信号Vreとの差分を示した図である。従来の構成においては差分が直線の領域となるのはA点であったのに対して、本実施形態では、A’点においてほぼ直線の領域に入っており、直線の領域が広がっていることが分かる。
 以下、その具体的な手段について説明する。
 まず、ランプ信号を参照信号Vrとして出力する時に、参照信号Vrと参照信号Vreとの電圧の差分を直線の領域とするために必要な電圧であるランプ開始電圧Vrsを導出する。
 ここで、参照信号Vrの配線経路、および列並列ADC120の比較器160の入力負荷による伝達遅延時間をτとし、ランプ波形(ランプ信号)の傾斜をGrとすると、直線領域の任意の時刻における電圧差ΔVrは、
  ΔVr=τ・Gr  ・・・(式1)
となる。図3において、ランプ生成回路130がランプ信号の出力を開始する時(時刻T11)の参照信号Vrは、比較器初期化電圧VRである。したがって、そのときのVrsは、下式2で求められる。
  Vrs=VR-ΔVr
     =VR-τ・Gr  ・・・(式2)
 上式2の結果より、比較器初期化電圧VRおよびランプ信号の傾斜Grは既知であるため、ランプ開始電圧Vrsを求めるためには、伝達遅延時間τまたは電圧差ΔVrの実測値がわかればよい。
 また、図3の例では、ランプ波形は下り電圧方向なので、
  Gr<0
  ∴ Vrs>VR  ・・・(式3)
となる。上式3の結果より、ランプ生成回路130がランプ信号の出力を開始する時刻T11において、参照信号Vreをランプ開始電圧Vrsに一致させるためには、必然的に、図3において、従来の比較器初期化電圧VRを、VE>Vrsとなる比較器初期化電圧VEに変更する必要がある。
 ここで、図3の参照信号Vrにおいて、比較器初期化電圧VEを維持している期間が十分確保できれば、比較器初期化電圧VE=Vrsとすることによって、ランプ生成回路130がランプ波形を開始する時点(時刻T11)において、参照信号Vreの電圧をランプ開始電圧Vrsに容易に一致させることができる。しかしながら、列並列ADC120のAD変換に要する時間を短縮するためには、参照信号Vreの電圧とランプ開始電圧Vrsとが一致するまでの時間を短縮する必要があり、強調電圧VA(比較器初期化電圧VE)を制御するのが好ましい。
 さらに、参照信号Vrの経路に係る負荷のばらつきなどに起因して、比較器初期化電圧VE(強調電圧VA)とランプ開始電圧Vrsとを計算によって一致させることは困難である。
 そこで、例えば、撮像装置の画像出力が無効である期間(例えば電源立ち上げ後や垂直ブランキング期間など)を利用し、ランプ生成回路130が参照信号Vrとしてランプ信号の出力を開始する時の参照信号Vreの電圧を測定し、この参照信号Vreの電圧がランプ開始電圧Vrsと一致するように比較器初期化電圧VE(強調電圧VA)を制御するキャリブレーションを行ってから、有効画像期間に入るようにする方法が考えられる。
 また、例えば、参照信号Vrと参照信号Vreとが所定電圧になる時までの時間差を、ランプ信号の出力期間の初期とランプ信号の傾斜が安定したときとのそれぞれにおいて測定し、この測定された時間差を比較した結果に基づいて、比較器初期化電圧VEを制御するキャリブレーションが考えられる。以下では、この時間差の測定結果によるフィードバック制御を用いた比較器初期化電圧VEの制御についての例を示す。
 図5は第1の実施形態に係るランプ生成回路130の構成例および周辺回路の接続例を示す図である。
 ランプ生成回路130は、時間差測定部131と、時間差比較部132と、強調電圧制御部133と、参照電圧生成部134とを備えている。
 列並列ADC120は、n列(nは自然数)のADCであるものとし、比較器160(161~16n)とカウンタ170(171~17n)とを備えている。比較器160(161~16n)は、それぞれ一方の入力端に入力された参照信号Vrm,Vreと他方の入力端に入力された画素信号Vs1~Vsnとを比較する。カウンタ170(171~17n)は、比較器160(161~16n)の比較時間である、カウンタ170の計数開始時刻から比較器160の出力が反転するまでの時間を計数し、その結果に基づいたアナログデジタル変換結果を、デジタル信号として出力する。ここで、参照信号Vrmとは、各比較器161~16(n-1)の一方の入力端に入力される参照信号を指すものとする。
 制御回路140は、リセット信号CRSTを比較器160に供給するとともに、比較器160の出力状態を初期化するタイミングを、参照信号Vrを介して規定する制御信号Srを、ランプ生成回路130に供給する。また、参照信号Vrにおける傾斜状のランプ信号出力期間とカウンタ170のカウント値との相関をとるためのカウンタ用クロックCKをカウンタ170に供給するとともに、ランプ信号生成に用いるランプ生成用クロックCKrをランプ生成回路130に供給する。また、時間差測定部131にタイミング信号T1,T2を供給する。
 ここで、ランプ生成回路130の出力部から列並列ADC120の比較器160(161~16n)の各入力部までの配線経路には、配線抵抗および配線容量が存在している。そして、ランプ生成回路130から最も離れた列に位置する比較器16nの入力に接続されている参照信号Vreは、参照信号Vrに対して最も遅延時間が大きい。
 そこで、時間差測定部131は、この最も遅延の大きい参照信号Vreと、参照信号Vrとの時間差を、傾斜状のランプ信号期間の初期時点における時刻T1および安定点における時刻T2の2点において測定し、それぞれの時間差Δt1および時間差Δt2を、時間差比較部132に出力する。なお、上記において、参照信号Vreと参照信号Vrとの時間差を測定したが、他の列に位置する比較器160の入力部における参照信号Vrmと、参照信号Vrとの時間差を測定してもかまわない。ただし、参照信号Vreと参照信号Vrとの時間差を測定するのが好ましい。
 図6は上述の時刻T1,T2および時間差Δt1,Δt2の関係の一例を示す図である。図6において、点線が参照信号Vrを示しており、実線が参照信号Vreを示している。また、参照信号Vrの傾きは負の傾きであるものとして説明する。
 時刻T1において、時間差測定部131は、参照信号Vrの電圧を参照信号電圧Vr1として保持し、ランプ生成用クロックCKrによる内部カウントおよび参照信号電圧Vr1と参照信号Vreとの比較を開始する。そして、時間差測定部131は、Vre≦Vr1となった時の内部カウント値から、参照信号Vrおよび参照信号Vreが参照信号電圧Vr1となる時間差である時間差Δt1を時間差比較部132に出力する。そして、時間差比較部132は、時間差測定部131から出力された時間差Δt1を保持する。
 同様に、時刻T2において、時間差測定部131は、参照信号Vrの電圧を参照信号電圧Vr2として保持し、ランプ生成用クロックCKrによる内部カウントおよび参照信号電圧Vr2と参照信号Vreとの比較を開始する。そして、時間差測定部131は、Vre≦Vr2となった時の内部カウント値から、参照信号Vrおよび参照信号Vreが参照信号電圧Vr2となる時間差である時間差Δt2を時間差比較部132に出力する。そして、時間差比較部132は、時間差測定部131から出力された時間差Δt2を保持する。
 時間差比較部132は、時間差Δt1と時間差Δt2との比較を行い、比較結果を強調電圧制御部133に出力する。強調電圧制御部133は、時間差比較部132からの比較結果に基づいて、参照電圧生成部134の比較器初期化電圧VE(強調電圧VA)を変更する。例えば、強調電圧制御部133は、Δt1<Δt2の場合は、比較器初期化電圧VEを上昇させる一方、Δt1>Δt2の場合は、比較器初期化電圧VEを下降させる変更を行う。ここで、強調電圧制御部133の制御状態の更新は、リセット信号CRSTによる比較器160のリセット(初期化)と同様に一連のAD変換動作毎に行われるようにするのが好ましい。
 以上の動作を、撮像装置の画像出力が無効な期間などで繰り返し行うことにより、比較器初期化電圧VE(強調電圧VA)を最適な設定にすることができる。
 ここで、時刻T1は、理想的な参照信号Vrの波形であれば、ランプ生成用クロックCKrの開始した時点に設定される。しかしながら、実際の参照信号Vrの波形は、ランプ生成回路130の出力インピーダンスなどの影響により既に波形が鈍っているため、ランプ生成用クロックCKrの開始した時点からある程度時間が経過した時刻に時刻T1を設定するのが好ましい。
 図7(a)は参照電圧生成部134の構成の一例を示すブロック図である。参照電圧生成部134は、制御切替部300と、カウンタ301と、DAC(Digital-to-Analog Converter)302とを備えている。また、図7(b)は参照信号Vrの変化を模式的に示した図である。
 図7(b)の時刻T21より前において、制御切替部300は、制御回路140から入力した制御信号(初期電圧(VI)設定信号)に基づいて、DAC302を介して、参照信号Vrを初期電圧VIに設定する。そして、時刻T21において、制御切替部300は、強調電圧制御部133から入力した制御信号(強調電圧(VE(VA))設定信号)に基づいて、DAC302を介して、参照信号Vrを初期電圧VIから強調電圧VAを加えた比較器初期化電圧VEに変更する。制御回路140が時刻T22にランプ生成用クロックCKrの供給を開始すると、カウンタ301は、制御回路140から入力した比較器出力初期化電圧(VR)設定コードをカウントの初期値に設定し、DAC302は参照信号Vrを比較器初期化電圧VRに変更する。その後、DAC302は、その電圧VRを基点として、カウンタ301のカウント値に基づいて、ランプ信号を参照信号Vrとして出力する。
 このとき、図5において、制御回路140はカウンタ170に対して、カウンタ用クロックCKの供給を開始し、カウンタ170はカウントを開始する。具体的には、カウンタ170は、カウンタ用クロックCKを用いて、画素配列110からの画素信号Vs1~Vsnと参照信号Vrm,Vreとの比較器160(161~16n)による比較結果が反転するまでの時間をカウントする。
 強制電圧制御部133は、アップダウンカウンタを備えるものであり、時間差比較部132の比較結果に基づいて、制御切替部300に出力するデジタルコードを加減制御することにより、比較器初期化電圧VEの調整を実現する。なお、強制電圧制御部133は、比較器初期化電圧VEの調整を行う構成であれば上記に限定されず、参照電圧生成部134の構成に併せて構成が変わるものであり、別の構成となってもかまわない。
 図8および図9は参照電圧生成部134の他の構成例を示す回路図である。
 図8は抵抗ラダー(強調電圧用抵抗ラダー400および初期電圧用抵抗ラダー401)の分圧タップをラダー選択制御回路402によって選択し、所望の参照信号Vrを出力する方式の一例である。そして、初期電圧VIは、制御回路140からの制御信号(初期電圧(VI)選択信号)によって選択された初期電圧用抵抗ラダー401の分圧タップで設定される。また、比較器初期化電圧VEは、強調電圧制御部133からの制御信号(強調電圧(VE)選択信号)によって選択された強調電圧用抵抗ラダー400の分圧タップで設定される。このとき、比較器初期化電圧VRは、所定の固定電圧である。なお、比較器初期化電圧VRは、予め設定された電圧VRを用いてもよいし、外部から電圧VRを設定するものとしてもよい。そして、ランプ生成用クロックCKrによって、初期電圧用抵抗ラダー401の分圧タップを電圧Vref側に向かって順次選択切替えし、ランプ信号を参照信号Vrとして出力する。
 図9は電流参照型DACを用いた方式の一例である。初期電圧VI、比較器初期化電圧VRおよび強調電圧VAを加えた比較器初期化電圧VEは、制御回路140および強調電圧制御部133から受けたそれぞれの制御信号に基づいて、出力バイアス抵抗500を制御することによって設定される。そして、ランプ生成用クロックCKrを受けたカウンタ501のカウント値に基づいて、電流源のスイッチ502をオンオフ制御し、所定の傾きをもって時間的に傾斜するランプ信号を参照信号Vrとして出力する。なお、所定の傾きをもって時間的に傾斜するランプ信号は、滑らかなスロープ状の波形であっても、階段状の波形であってもよく、所定の傾きをもって時間的に傾斜する信号であればよい。
 以上のように、本実施形態では、参照信号Vrと参照信号Vreとが所定の電圧となる時間差を比較し、この比較結果に基づいてキャリブレーションを実施することにより、参照信号Vrに対して過大な負荷がついた場合においても、参照信号Vrと参照信号Vreとの差分を直線領域に早く到達させることができる。これにより、参照信号Vrと参照信号Vreとの差分の直線領域が広がり、AD変換の時間を短縮できるとともに、AD変換時間を短縮した場合においても正確なAD変換を実現することができる。さらに、前記電圧経路の負荷が個体間でばらついた場合においても、フィードバック制御を用いることにより、AD変換特性を良好に保ちながら、特性のばらつきを抑える効果が得られる。
 なお、図7(b)において、カウンタ170は、ランプ信号出力を開始した時刻T22からカウンタ用クロックCKの供給を受けて比較器出力のカウントを開始するものとしたが、ランプ生成用クロックCKrの供給開始から時間Δt1遅らせてカウントを開始させるのが好ましい。これにより、ランプ信号の出力時における参照信号Vrと、同等の電圧値となった参照信号Vreからカウンタ170のカウントを開始することができるため、ダウンカウント範囲を有効に活用することができる。
 また、本実施形態において、時間差測定部131の内部カウントの方向について、デジタルCDSにおいて2回行うAD変換の1回目と2回目とのアップダウンを切替える機能を備えさせ、強調電圧制御部133において、時間差測定部131から出力する時間差Δt1,Δt2をそれぞれ累積加算するようにしてもよい。そして、このとき、強調電圧制御部133は、上記の累積加算結果に基づいて、比較器初期化電圧VEを調整する。このとき、時間差比較部132は必要としない。すなわち、時間差比較部132を削除した状態において、本実施形態と同様の効果を得ることができる。
 <第2の実施形態>
 図10は第2の実施形態に係るランプ生成回路の構成例および周辺回路の接続例を示す図である。図10において図5と共通の構成要素には図5と同一の符号を付しており、ここではその詳細な説明を省略する。
 図10のランプ生成回路130Aにおいて、図5と異なるのは、時間差比較部132に代えて電圧比較部137を備えており、さらに、電圧測定部135および参照電圧測定部136を備えている点である。ここで、比較器初期化電圧VEを制御するキャリブレーションは、撮像装置の画像出力が無効な期間などで繰り返し行われるが、以下では、1回目に行われるキャリブレーションを1サイクル目、2回目に行われるキャリブレーションを2サイクル目と呼ぶものとする。
 図11を参照しながら、ランプ生成回路130Aの動作を説明する。
 1サイクル目において、時間差測定部131は、第1の実施形態と同様に、参照信号Vrと参照信号Vreとの時間差を測定する。本実施形態では、安定点における時刻T2における時間差Δtを測定し、参照電圧測定部136に出力する。
 次に、2サイクル目において、電圧測定部135は、傾斜状のランプ信号期間の初期時点における時刻T1の参照信号Vrの参照信号電圧Vr1を測定し、電圧比較部137に出力する。
 参照電圧測定部136は、時刻T1に時間差測定部131から出力された時間差Δtを加えた時刻(T1+Δt)における参照信号Vreの参照信号電圧Vr1’を測定し、電圧比較部137に出力する。
 電圧比較部137は、参照信号電圧Vr1と参照信号電圧Vr1’とを比較し、比較結果を強調電圧制御部133に出力する。そして、強調電圧制御部133は、電圧比較部137から出力された比較結果に基づいて、参照電圧生成部134の比較器初期化電圧VEを調整する。例えば、強調電圧制御部133は、Vr1<Vr1’の場合は、比較器初期化電圧VEを上昇させる一方、Vr1>Vr1’の場合は、比較器初期化電圧VEを下降させる調整を行う。
 3サイクル目以降は、2サイクル目の動作を、撮像装置の画像出力が無効な期間などで繰り返し行うことにより、比較器初期化電圧VEを最適な設定にすることができる。なお、3サイクル目以降に、2サイクル目の動作に交えて1サイクル目の動作を行ってもよい。例えば、3サイクル目以降で1サイクル目の動作と2サイクル目の動作とを交互に行ってもよい。
 以上のように、本実施形態では、所定の点における参照信号Vrと参照信号Vreとの電圧差を比較し、この比較結果に基づいてキャリブレーションを実施することにより、参照信号Vrに対して過大な負荷がついた場合においても、参照信号Vrと参照信号Vreとの差分を直線領域に早く到達させることができる。これにより、参照信号Vrと参照信号Vreとの差分の直線領域が広がり、AD変換の時間を短縮できるとともに、AD変換時間を短縮した場合においても正確なAD変換を実現することができる。さらに、前記電圧経路の負荷が個体間でばらついた場合においても、フィードバック制御を用いることにより、AD変換特性を良好に保ちながら、特性のばらつきを抑える効果が得られる。
 ここで、n列のADC(比較器160)に関して、各列間の配線抵抗および配線容量が均等となるように参照信号配線の物理パターン設計を行えば、各列間の遅延時間は均一となり、全列にわたって直線性の改善効果が得られる。すなわち、第1および第2の実施形態における参照信号Vrと参照信号Vreとの時間差および電圧差に基づく比較器初期化電圧VEの制御によって、n列のADCの全列にわたる直線性の改善効果が得られる。
 なお、以上の説明において、ランプ生成回路130,130Aから出力される参照信号Vrのランプ信号は電圧の下り方向であるものとしたが、上式2におけるランプ信号の傾斜Grは正でもよく、ランプ信号は電圧の登り方向でも同様の効果が得られる。
 また、比較器初期化電圧VRと強調電圧VAとはそれぞれ独立して可変できるようにするのが好ましい。
 また、ランプ生成回路130,130Aは、比較器160の比較動作開始前において、参照信号Vrの電圧を比較器初期化電圧VEへ変更した時からランプ信号の出力開始までの期間を変更する機能を備えているのが好ましい。そして、比較器初期化電圧VEへ変更した時からランプ信号の出力開始までの期間の制御と、比較器初期化電圧VEの電圧制御とを組み合わせて行うのが好ましい。これにより、AD変換期間を最短時間にチューニングすることが可能となる。
 また、ランプ生成回路130は、カウンタ170の計数開始時刻に対して、ランプ信号を参照信号Vrとして出力する出力開始時刻を変更する機能を備えているのが好ましい。すると、前記の期間変更によって、比較器初期化電圧VEへの変更からランプ信号の出力開始までの期間を制御するとともに、カウンタ170の計数開始時刻に対してランプ信号の出力開始時刻を設定することができる。これにより、ランプ生成回路130が出力するランプ信号(ランプ波形)の傾斜が緩やかな場合(すなわちAD変換ゲインが高い場合)において、比較器160に入力される参照信号Vrm,Vreの振幅が小さいときに、一定のダウンカウント期間内でAD変換が終了しないことが起こりにくいようにすることができる。
 具体的には、上記のようなランプ信号傾斜が緩やかな場合において、比較器160に入力される参照信号Vrm,Vreの振幅が小さいときには、比較器160が比較一致を検知してからカウンタ170への比較結果Vcxを伝達するまでの応答時間が長くなる可能性がある。そのため、設定されたゲイン(ランプ波形の傾斜)によっては、一定のダウンカウント期間内でAD変換が終了しない場合がある。このようなとき、例えば、カウンタ170のカウント開始時刻に対して、ランプ波形の開始時刻を大幅に早める、すなわち参照信号Vrが強調電圧VAを加えた比較器初期化電圧VE(または比較器初期化電圧VR)を維持する期間を、例えばゼロに近いような短い設定にする。そして、比較器160が比較一致を検知する時間を早めるとともに、比較器初期化電圧VEの電圧値とカウンタ170の開始時刻を調整する。これにより、ダウンカウント期間内でAD変換が終了しないという問題を改善することができる。
 本発明に係るランプ生成回路は、参照信号の信号経路に過大な負荷が存在する場合に、高速駆動したときにおいても、高精度なAD変換を必要とするシングルスロープ型ADCに参照信号を供給する回路として利用することができる。
 したがって、例えばデジタルカメラ用のイメージセンサーに搭載される列並列ADCなどに特に有用である。また、本発明に係るイメージセンサーは、例えばデジタルカメラ用のイメージセンサーとして有用である。
  100  イメージセンサー
  110  画素配列(画素アレイ部)
  120  列並列ADC(アナログデジタル変換回路)
  130,130A  ランプ生成回路
  131  時間差測定部
  132  時間差比較部
  133  強調電圧制御部
  134  参照電圧生成部
  135  電圧測定部(出力電圧測定部)
  136  参照電圧測定部
  137  電圧比較部
  160  比較器
  170  カウンタ
  200  デジタル映像処理装置
  Vr,Vre,Vrm  参照信号
  Vs1~Vsn  画素信号(アナログ入力信号)
  VR  比較器初期化電圧(比較器設定電圧)
  VA  強調電圧
  VE  強調電圧を加えた比較器初期化電圧
  Δt1  時間差(第1の時間差)
  Δt2  時間差(第2の時間差)
  Vr1  参照信号電圧(第1の電圧)
  Vr1’  参照信号電圧(第2の電圧)
  Δt  時間差
  D(m-1:0)  シリアル制御信号

Claims (9)

  1.  シングルスロープ型のアナログデジタル変換回路に、所定の傾きをもって時間的に傾斜するランプ信号を参照信号として出力するランプ生成回路であって、
     前記アナログデジタル変換回路は、一方の入力端に前記参照信号を受けるとともに、他方の入力端にアナログ入力信号を受ける比較器を有しており、前記比較器による比較動作の結果に基づいて、前記アナログ入力信号をデジタル信号に変換するものであり、
     前記ランプ生成回路は、
     前記比較動作の前に、前記参照信号の電圧を、前記比較器の前記2つの入力端の電圧差を補償する比較器設定電圧に変更し、前記比較動作の開始とともに、前記比較器設定電圧を基点として前記ランプ信号を出力する参照電圧生成部を備えており、かつ、
     前記比較動作の前に、前記比較器設定電圧に所定の強調電圧を加える機能を有している
    ことを特徴とするランプ生成回路。
  2.  請求項1記載のランプ生成回路において、
     前記強調電圧を加えた後、前記比較器設定電圧に戻してから前記ランプ信号を出力する機能を有している
    ことを特徴とするランプ生成回路。
  3.  請求項1記載のランプ生成回路において、
     前記比較器設定電圧および前記強調電圧のそれぞれを独立して制御する機能を有している
    ことを特徴とするランプ生成回路。
  4.  請求項1記載のランプ生成回路において、
     前記比較動作開始前における前記参照信号電圧の前記比較器設定電圧への変更および前記強調電圧を加える変更から、前記ランプ信号の出力開始までの期間を変更する機能を有している
    ことを特徴とするランプ生成回路。
  5.  請求項1~4のうちいずれか1項記載のランプ生成回路において、
     前記アナログデジタル変換回路は、
     前記比較器の比較時間を計数するカウンタを有しており、前記カウンタによる計数結果に基づいて、前記デジタル信号を生成するものであり、
     前記ランプ生成回路は、
     前記アナログデジタル変換回路が有するカウンタの計数開始時刻に対する、前記ランプ信号の出力開始時刻を変更する機能を有している
    ことを特徴とするランプ生成回路。
  6.  請求項1または5に記載のランプ生成回路において、
     前記参照電圧生成部の出力電圧が所定電圧になった時から、前記比較器の前記一方の入力端における電圧が前記所定電圧になる時までの時間差を測定する時間差測定部と、
     前記時間差測定部によって測定された、前記ランプ信号の出力期間の初期における前記時間差である第1の時間差と、前記ランプ信号の傾斜が安定したときにおける前記時間差である第2の時間差とを比較する時間差比較部と、
     前記時間差比較部による比較結果に基づいて、前記第1の時間差と前記第2の時間差とが一致するように、前記強調電圧を制御する強調電圧制御部とを備えている
    ことを特徴とするランプ生成回路。
  7.  請求項1または5に記載のランプ生成回路において、
     前記参照電圧生成部の出力電圧を測定する出力電圧測定部と、
     前記比較器の前記一方の入力端における電圧を測定する参照電圧測定部と、
     前記参照電圧生成部の出力電圧が所定電圧になった時から、前記比較器の前記一方の入力端における電圧が前記所定電圧になる時までの時間差を測定する時間差測定部と、
     前記ランプ信号の出力期間の初期における所定時に、前記出力電圧測定部によって測定された第1の電圧と、前記所定時から前記時間差測定部によって測定された前記時間差が経過した時に、前記参照電圧測定部によって測定された第2の電圧とを比較する電圧比較部と、
     前記電圧比較部による比較結果に基づいて、前記第1の電圧と前記第2の電圧とが一致するように、前記強調電圧を制御する強調電圧制御部とを備えている
    ことを特徴とするランプ生成回路。
  8.  請求項1,6または7のいずれか1項記載のランプ生成回路と、
     光電変換素子を含む単位画素が行列状に2次元配置されるとともに、前記単位画素の行列状配置に対して列毎に列信号線が配線されている画素アレイ部と、
     前記画素アレイ部の前記各単位画素を行毎に選択制御し、この制御結果を前記列信号線に出力する行走査手段と、
     前記単位画素の列毎に設けられており、それぞれが前記行走査手段から前記列信号線を介して出力されたアナログ信号を前記アナログ入力信号として受け、前記デジタル信号を出力する複数の前記アナログデジタル変換回路とを備えている
    ことを特徴とするイメージセンサー。
  9.  請求項8記載のイメージセンサーと、
     前記イメージセンサーをシリアル制御信号によって制御するとともに、前記イメージセンサーの前記各アナログデジタル変換回路から出力された前記デジタル信号に基づいて、映像信号処理を行うデジタル映像処理装置とを備えている
    ことを特徴とする撮像装置。
PCT/JP2011/004258 2011-04-21 2011-07-27 ランプ生成回路、並びにそれを備えたイメージセンサーおよび撮像装置 WO2012143982A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013510744A JPWO2012143982A1 (ja) 2011-04-21 2011-07-27 ランプ生成回路、並びにそれを備えたイメージセンサーおよび撮像装置
CN201180070093XA CN103477628A (zh) 2011-04-21 2011-07-27 斜坡信号发生电路及包括该电路的图像传感器和摄像装置
US14/053,206 US9166614B2 (en) 2011-04-21 2013-10-14 Ramp-signal generator circuit, and image sensor and imaging system including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011095138 2011-04-21
JP2011-095138 2011-04-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/053,206 Continuation US9166614B2 (en) 2011-04-21 2013-10-14 Ramp-signal generator circuit, and image sensor and imaging system including the same

Publications (1)

Publication Number Publication Date
WO2012143982A1 true WO2012143982A1 (ja) 2012-10-26

Family

ID=47041136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004258 WO2012143982A1 (ja) 2011-04-21 2011-07-27 ランプ生成回路、並びにそれを備えたイメージセンサーおよび撮像装置

Country Status (4)

Country Link
US (1) US9166614B2 (ja)
JP (1) JPWO2012143982A1 (ja)
CN (1) CN103477628A (ja)
WO (1) WO2012143982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171011A (ja) * 2013-03-01 2014-09-18 Canon Inc 撮像装置、撮像装置の駆動方法、撮像システム、撮像システムの駆動方法
JP2015115872A (ja) * 2013-12-13 2015-06-22 オリンパス株式会社 撮像装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6612056B2 (ja) * 2014-05-16 2019-11-27 株式会社半導体エネルギー研究所 撮像装置、及び監視装置
US9325335B1 (en) 2014-10-24 2016-04-26 Teledyne Scientific & Imaging, Llc Comparator circuits with local ramp buffering for a column-parallel single slope ADC
KR20160103302A (ko) * 2015-02-24 2016-09-01 에스케이하이닉스 주식회사 램프전압 제너레이터 및 그를 포함하는 이미지 센싱 장치
KR20160121973A (ko) * 2015-04-13 2016-10-21 에스케이하이닉스 주식회사 램프 바이어스 샘플링 기능을 가지는 램프 신호 발생 장치 및 그를 이용한 씨모스 이미지 센서
US9716510B2 (en) 2015-05-12 2017-07-25 Teledyne Scientific & Imaging, Llc Comparator circuits with constant input capacitance for a column-parallel single-slope ADC
WO2016185839A1 (ja) * 2015-05-20 2016-11-24 ソニー株式会社 固体撮像装置および固体撮像装置の駆動方法
CN105245229B (zh) * 2015-10-22 2018-12-14 天津大学 用于单斜adc的高线性度电压-时间转换方法及转换器
KR102469071B1 (ko) * 2018-02-06 2022-11-23 에스케이하이닉스 주식회사 비교 장치 및 그에 따른 씨모스 이미지 센서
KR102510671B1 (ko) * 2018-09-21 2023-03-20 에스케이하이닉스 주식회사 램프신호 생성기 및 이를 포함하는 이미지 센서
KR20200098163A (ko) * 2019-02-12 2020-08-20 삼성전자주식회사 이미지 센서의 구동 방법 및 이를 수행하는 이미지 센서
US10498993B1 (en) * 2019-02-27 2019-12-03 Omnivision Technologies, Inc. Ramp signal settling reduction circuitry
JP7333060B2 (ja) * 2019-09-26 2023-08-24 株式会社テックイデア イメージセンサ
JP7394649B2 (ja) * 2020-02-17 2023-12-08 キヤノン株式会社 撮像素子及び撮像装置
KR20230027368A (ko) 2021-08-18 2023-02-28 삼성전자주식회사 엠퍼시스 회로 및 프리-엠퍼시스 회로를 포함하는 램프 생성기, 이의 동작 방법, 및 이를 포함하는 이미지 센서 장치
CN114374806B (zh) * 2022-01-17 2023-04-25 华中科技大学 单斜模数转换器及图像传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767433U (ja) * 1980-10-09 1982-04-22
JP2006337139A (ja) * 2005-06-01 2006-12-14 Advantest Corp 波形発生器、波形整形器、及び試験装置
WO2009090703A1 (ja) * 2008-01-18 2009-07-23 Panasonic Corporation ランプ波出力回路、アナログデジタル変換回路、及びカメラ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767433A (en) 1980-10-03 1982-04-24 Minolta Camera Co Ltd Cut sheet feeder
US7129883B2 (en) * 2004-02-23 2006-10-31 Sony Corporation Method and apparatus for AD conversion, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
JP2006020172A (ja) * 2004-07-02 2006-01-19 Fujitsu Ltd ランプ波形発生回路、アナログ・デジタル変換回路、撮像装置、撮像装置の制御方法
JP4442515B2 (ja) 2005-06-02 2010-03-31 ソニー株式会社 固体撮像装置、固体撮像装置におけるアナログ−デジタル変換方法および撮像装置
JP4524652B2 (ja) * 2005-07-06 2010-08-18 ソニー株式会社 Ad変換装置並びに半導体装置
JP5181087B2 (ja) * 2006-08-31 2013-04-10 トリクセル 単一スロープ型アナログ‐デジタル・コンバータ
JP4674589B2 (ja) * 2007-02-05 2011-04-20 ソニー株式会社 固体撮像装置および撮像装置
JP2009077172A (ja) 2007-09-20 2009-04-09 Sony Corp アナログデジタル変換器及び撮像装置
JP2010154372A (ja) * 2008-12-25 2010-07-08 Panasonic Corp 固体撮像装置、デジタルカメラ及びad変換方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767433U (ja) * 1980-10-09 1982-04-22
JP2006337139A (ja) * 2005-06-01 2006-12-14 Advantest Corp 波形発生器、波形整形器、及び試験装置
WO2009090703A1 (ja) * 2008-01-18 2009-07-23 Panasonic Corporation ランプ波出力回路、アナログデジタル変換回路、及びカメラ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171011A (ja) * 2013-03-01 2014-09-18 Canon Inc 撮像装置、撮像装置の駆動方法、撮像システム、撮像システムの駆動方法
JP2015115872A (ja) * 2013-12-13 2015-06-22 オリンパス株式会社 撮像装置
US9462204B2 (en) 2013-12-13 2016-10-04 Olympus Corporation Analog to digital converter for imaging device

Also Published As

Publication number Publication date
US9166614B2 (en) 2015-10-20
JPWO2012143982A1 (ja) 2014-07-28
CN103477628A (zh) 2013-12-25
US20140036124A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2012143982A1 (ja) ランプ生成回路、並びにそれを備えたイメージセンサーおよび撮像装置
US10027336B2 (en) Photoelectric conversion apparatus and image pickup system
JP4952301B2 (ja) 撮像装置およびカメラ
US9525836B2 (en) AD conversion apparatus, solid-state imaging apparatus, and imaging system
US9307173B2 (en) Signal processing circuit, solid-state imaging device, and camera system
US9438841B2 (en) Solid-state imaging apparatus and imaging system
US8427565B2 (en) Solid-state imaging apparatus and imaging system
JP4449565B2 (ja) 物理量分布検知の半導体装置
JP5922997B2 (ja) 固体撮像装置
US8269872B2 (en) Analog-to-digital converter, analog-to-digital converting method, solid-state image pickup device, and camera system
US8174422B2 (en) Power-supply-noise cancelling circuit and solid-state imaging device
US9071779B2 (en) Photoelectric conversion apparatus and image pickup system
US7554476B2 (en) Ad conversion method, apparatus thereof, solid-state imaging device, driving method thereof, and imaging apparatus
US8692920B2 (en) Solid-state imaging apparatus, A/D converter, and control method thereof
JP6998995B2 (ja) 固体撮像装置、その制御方法、撮像システム及びカメラ
KR101411369B1 (ko) 촬상 시스템 및 촬상장치
JP6021626B2 (ja) 撮像装置の駆動方法、撮像装置、撮像システム
KR20160030488A (ko) 신호 처리 장치 및 방법, 촬상 소자, 및 촬상 장치
JP2013175936A (ja) 半導体装置、及び、撮像装置
JP2019012933A (ja) Ad変換器および固体撮像素子
WO2019150522A1 (ja) Ad変換回路、撮像装置、および内視鏡システム
JP4470839B2 (ja) 半導体装置
JP6184469B2 (ja) 光電変換装置および撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013510744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864013

Country of ref document: EP

Kind code of ref document: A1