WO2012142829A1 - 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法 - Google Patents

光催化法制备光催化剂/石墨烯一维核壳复合结构的方法 Download PDF

Info

Publication number
WO2012142829A1
WO2012142829A1 PCT/CN2011/082360 CN2011082360W WO2012142829A1 WO 2012142829 A1 WO2012142829 A1 WO 2012142829A1 CN 2011082360 W CN2011082360 W CN 2011082360W WO 2012142829 A1 WO2012142829 A1 WO 2012142829A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
photocatalyst
preparing
composite structure
shell composite
Prior art date
Application number
PCT/CN2011/082360
Other languages
English (en)
French (fr)
Inventor
孙岳明
代云茜
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2012142829A1 publication Critical patent/WO2012142829A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the invention belongs to the technical field of photocatalyst / graphene composite nano material, in particular to a preparation photocatalyst / A method for preparing a graphene one-dimensional core-shell composite structure.
  • Graphene is a two-dimensional planar material composed of a carbon atom and a sp 2 hybrid orbital hexagonal honeycomb lattice.
  • the basic repeating structural unit is the most stable benzene six-membered ring in organic materials.
  • the single-layer graphene theoretical specific surface area is as high as 2630 m 2 /g.
  • the most common preparation method is the chemical reduction method.
  • the inorganic materials are dispersed into graphene to prepare graphene/inorganic nanocomposites. Due to the presence of inorganic nanoparticles, the interaction between graphene sheets can be greatly reduced, and graphite is prevented to some extent. Agglomeration of alkenes. Therefore, the use of inorganic nanoparticles to modify graphene sheets is a method to effectively prevent graphene agglomeration.
  • graphene/inorganic oxides have been prepared (GE/TiO 2 , GE/Li 4 Ti 5 O 12 , GE/SnO 2 , GE/Co 3 O 4 , GE/ZnO, GE/Fe 3 O 4 , GE/Al 2 O 3 , GE/LiFePO 4 , etc.), graphene/metal (GE/Ag, GE/Au, GE/Pt, GE/Pd, GE/Co, etc.), graphene/polymer (GE/poly Composite nanoparticles of styrene, GE/polyvinyl acetate.
  • metals and metal oxides are three-dimensional nanoparticles ([1] Bai Wei, Shen Xiaoping. Graphene-based inorganic nanocomposites. Chemical Progress 2010, 22, 2010-2118).
  • the invention provides a photocatalytic method for preparing a photocatalyst/graphene one-dimensional core-shell composite structure,
  • the photocatalytic properties of one-dimensional photocatalysts were used to reduce graphene oxide to graphene to form a novel photocatalyst/graphene one-dimensional core-shell composite nanomaterial with core-shell structure.
  • Photocatalytic preparation of photocatalyst / The method for preparing a graphene one-dimensional core-shell composite structure is prepared by dispersing graphene oxide in a solvent at a concentration of 0.01-10 mg/mL. a graphene oxide colloid; a one-dimensional photocatalyst is dispersed in a solvent, and a photocatalyst suspension having a concentration of 0.01-1000 mg/mL is disposed; and the solution is mass ratio 100: 1-1 : 100, mixed and stirred, placed in an open container for 0.5-1000 h of light; after the reaction is finished, the product is centrifuged and dried.
  • the graphene oxide dispersion solvent is water or ethanol.
  • the one-dimensional structure is a nanofiber, a nanotube or a nanorod.
  • the photocatalyst is TiO 2 , ZnO , ZrO 2 , SnO 2 , N-doped TiO 2 , S-doped TiO 2 , N and S co-doped TiO 2 or N-doped ZnO.
  • the photocatalyst dispersion solvent is water or ethanol.
  • the illumination is visible light or ultraviolet light.
  • the stirring speed is not more than 800 rpm/min.
  • the centrifugation speed is 500-13000 rpm/min, and the centrifugation time is 1-60 min. .
  • graphene oxide is reduced to graphene by photocatalyst.
  • the steric effect of photocatalyst can effectively prevent the agglomeration of graphene, and the two-dimensional sheet-like graphene oxide is curled and wrapped.
  • Preparation of one-dimensional semiconductor by photocatalytic reduction method / The method of graphene composite nanofibers is simple; the reduction of graphene oxide by photocatalytic reaction can overcome the phenomenon of irreversible agglomeration of graphene oxide during the reduction process, and the product has good dispersibility.
  • Prepared photocatalyst / Graphene product is a new composite material with novel nano-core shell structure and novel physicochemical properties.
  • the reaction system does not add any organic matter as a surfactant, the product is pure, no complicated separation and purification process is required;
  • ethanol has a wide range of sources and low price; it can be reacted under visible light and ultraviolet light conditions, so it can be produced by natural light; the production process is carried out under normal temperature and pressure, no sintering process, saving production energy consumption; No toxic and harmful reagents, environmentally friendly, no pollution; fast and convenient method, easy to learn, good reproducibility, low manufacturing cost, simple process and high efficiency.
  • Figure 1 shows the photocatalytic preparation of a semiconductor/graphene core-shell composite one-dimensional structure.
  • Figure 2 is a transmission electron microscopy (TEM) photograph of titanium dioxide/graphene core-shell composite nanofibers.
  • Figure 3 is a high-resolution transmission electron microscope (HRTEM) photograph of titanium dioxide/graphene core-shell composite nanofibers.
  • the above solution was mixed according to the mass ratio of graphene oxide/TiO 2 nanofibers to 1:4, placed in a beaker, magnetically stirred at a rotation speed of 50 rpm/min, and irradiated with an ultraviolet lamp for 21 hours.
  • the above solution was mixed according to the mass ratio of graphene oxide/TiO 2 nanotubes to 10:1, placed in a beaker, magnetically stirred at a rotation speed of 500 rpm/min, and irradiated with an ultraviolet lamp for 4 hours.
  • the composite fiber is centrifuged at 13,000 rpm/min. Min, the product was isolated and dried at room temperature.
  • the graphene oxide/ZnO nanofiber mass ratio is 100:1, placed in a beaker, magnetically stirred, rotating at 100 Rpm/min, irradiated with UV light for 1000 h.
  • the composite fiber is centrifuged at 15000 rpm/min. Min, the product was isolated and dried at room temperature.
  • the graphene oxide/ZnO nanorods mass ratio is 20:1, placed in a beaker, magnetically stirred, rotating at 800 Rpm/min, irradiated with UV light for 4 h.
  • the composite fiber is centrifuged at 15000 rpm/min. Min, the product was isolated and dried at room temperature.
  • the graphene oxide/ZrO 2 nanofibers have a mass ratio of 1:100, placed in a beaker at a rotation speed of 300 rpm/min, and continuously irradiated for 0.5 h under ultraviolet light.
  • the composite fiber is centrifuged at 1000 rpm/min for 5 min, and the product is separated and dried under vacuum at room temperature.
  • the composite fiber is centrifuged at 1000 rpm/min for 10 min and dried at room temperature.
  • the composite fiber is centrifuged at 1000 rpm/min for 10 min and dried at room temperature.
  • the composite fiber is centrifuged at 500 rpm/min. Min, the product was isolated and dried at room temperature.
  • the composite fiber was centrifuged at 8,000 rpm/min, and the product was separated and dried at room temperature.
  • the mass ratio of graphene oxide/N and S co-doped TiO 2 nanofibers is 1:10.
  • the above solution is mixed, placed in a beaker, magnetically stirred, rotating at 500 rpm / min, continuous illumination under visible light 120 h.
  • the composite fiber was centrifuged at 8,000 rpm/min, and the product was separated and dried at room temperature.
  • the mass ratio of graphene oxide/S doped ZnO nanorods is 20:1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

光催化法制备光催化剂 / 石墨烯一维核壳复合结构的方法 技术领域
本发明属于光催化剂 / 石墨烯复合纳米材料技术领域,尤其涉及一种制备光催化剂 / 石墨烯一维核壳复合结构的制备方法。
背景技术
现有技术:石墨烯( GE )是一种由碳原子以 sp2 杂化轨道组成六角型呈蜂巢晶格的二维平面材料,其基本重复结构单元为有机材料中最稳定的苯六元环,单层石墨烯理论比表面积高达 2630 m2/g 。最常用的制备方法是化学还原法。但是由氧化石墨烯还原为石墨烯的过程中,碳原子由 sp3 杂化转变为 sp2 杂化,导致石墨烯发生不可逆团聚,产物比表面积下降至仅有 1 m2/g ( [1] 柏嵩,沈小平 . 石墨烯基无机纳米复合材料 . 化学进展 2010, 22, 2010-2118; [2] 徐超,陈胜,汪信 . 基于石墨烯的材料化学进展 . 应用化学 2011, 28, 1-9. )。
将无机材料(如金属和半导体纳米粒子)分散到石墨烯中制备石墨烯 / 无机纳米复合材料,由于无机纳米粒子的存在,可以大大减少石墨烯片层之间的相互作用,一定程度上防止石墨烯的团聚。因此,采用无机纳米粒子修饰石墨烯片是一种有效阻止石墨烯团聚的方法。目前,人们已经制备的石墨烯 / 无机氧化物( GE/TiO2 、 GE/Li4Ti5O12 、 GE/SnO2 、 GE/Co3O4 、 GE/ZnO 、 GE/Fe3O4 、 GE/Al2O3 、 GE/LiFePO4 等)、石墨烯 / 金属( GE/Ag 、 GE/Au 、 GE/Pt 、 GE/Pd 、 GE/Co 等)、石墨烯 / 高分子( GE/ 聚苯乙烯、 GE/ 聚乙酸乙烯酯)的复合纳米颗粒。在已报道的文献、专利中,金属、金属氧化物均为三维的纳米颗粒 ([1] 柏嵩,沈小平 . 石墨烯基无机纳米复合材料 . 化学进展 2010, 22, 2010-2118) 。
技术问题
本发明提供一种光催化法制备光催化剂 / 石墨烯一维核壳复合结构的方法 , 利用一维光催化剂光催化特性,将氧化石墨烯还原为石墨烯,生成新颖的具有核壳结构的光催化剂 / 石墨烯一维核壳复合纳米材料。
技术解决方案
光催化法制备光催化剂 / 石墨烯一维核壳复合结构的方法,制备步骤为:将氧化石墨烯分散在溶剂中,配制浓度为 0.01-10 mg/mL 的氧化石墨烯胶体;将一维结构的光催化剂分散在溶剂中,配置浓度为 0.01-1000 mg/mL 的光催化剂悬浮液;将上述溶液按质量比 100 : 1-1 : 100 混合搅拌,置于开口容器中光照 0.5-1000 h ;反应结束后,在将产物离心分离,干燥。
所述氧化石墨烯分散溶剂为水或者乙醇。
所述一维结构为纳米纤维、纳米管或纳米棒。
所述光催化剂为 TiO2 、 ZnO 、 ZrO2 、 SnO2 、 N 掺杂 TiO2 、 S 掺杂 TiO2 、 N 和 S 共掺杂 TiO2 或 N 掺杂 ZnO 。
所述光催化剂分散溶剂为水或者乙醇。
所述光照为可见光照或者紫外光照。
所述搅拌速度为不超过 800 rpm/min 。
所述离心速度为 500-13000 rpm/min ,离心时间为 1-60 min 。
在光照条件下,氧化石墨烯被光催化剂还原为石墨烯,在还原反应发生过程中,光催化剂的位阻效应可以有效防止石墨烯的团聚,并且二维的片状氧化石墨烯发生卷曲包裹在一维的光催化剂表面,形成新颖的光催化剂 / 石墨烯核壳结构。
有益效果
利用光催化还原法制备一维半导体 / 石墨烯复合纳米纤维,方法简便;采用光催化反应法还原氧化石墨烯,可以克服氧化石墨烯在还原过程中出现不可逆团聚的现象,产物具有良好的分散性。制备出的光催化剂 / 石墨烯产物是一种新的复合材料,具有新颖的纳米核壳结构和新颖的物理化学性质;反应体系未添加任何有机物作为表面活性剂,产物纯净,无需复杂的分离、提纯过程;以水或乙醇作为反应溶剂,来源广泛、价格低廉;可以在可见光、紫外光照条件下进行反应,因此可以利用自然光进行生产;制作过程在常温常压下进行,无烧结工艺,节约生产能耗;制备方法中无任何有毒有害试剂,对环境友好,无污染;方法快速便捷、简单易学,重现性好,并且制造成本低,工艺简单,效率高。
附图说明
图 1 为光催化制备半导体 / 石墨烯核壳复合一维结构的设备。 1 、光源; 2 、容器; 3 、反应溶液; 4 、磁子; 5 、磁力搅拌器; 6 、载物台。
图 2 为二氧化钛 / 石墨烯核壳复合纳米纤维透射电镜( TEM )照片。
图 3 为二氧化钛 / 石墨烯核壳复合纳米纤维高分辨率透射电镜( HRTEM )照片。
本发明的实施方式
实施例1:
a、将氧化石墨分散在乙醇中,浓度为1 mg/mL。
b、将TiO2纳米纤维分散在水中,浓度为2 mg/mL。
c、将上述溶液按照氧化石墨烯/TiO2纳米纤维质量比为1:4进行混合,置于烧杯中,进行磁力搅拌,转速为50 rpm/min,用紫外灯照射21 h。
d、反应结束后,在8000 rpm/min转速下离心3 min,将产物分离出来,室温干燥。
反应产物见图2、3。
实施例2:
a、将氧化石墨烯分散在去离子水中,浓度为2 mg/mL。
b、将TiO2纳米管分散在乙醇中,配置浓度为0.01 mg/mL。
c、上述溶液按照氧化石墨烯/TiO2纳米管质量比为10:1进行混合,置于烧杯中,磁力搅拌,转速为500 rpm/min,用紫外灯照射4 h。
d、反应结束后,在将复合纤维在13000 rpm/min转速下进行离心1 min,将产物分离出来,室温干燥。
实施例3:
a、将氧化石墨烯分散在去离子水中,浓度为0.05 mg/mL。
b、将ZnO纳米纤维分散在去离子水中,浓度为100 mg/mL。
c、将上述溶液混合,氧化石墨烯/ZnO纳米纤维质量比为100:1,置于烧杯中,磁力搅拌,转速为100 rpm/min,用紫外灯照射1000 h。
d、反应结束后,在将复合纤维在15000 rpm/min转速下进行离心1 min,将产物分离出来,室温干燥。
实施例4:
a、将氧化石墨烯分散在去离子水中,配置浓度为10 mg/mL。
b、将ZnO纳米棒分散在乙醇中,配置浓度为100 mg/mL。
c、将上述溶液混合,氧化石墨烯/ZnO纳米棒质量比为20:1,置于烧杯中,磁力搅拌,转速为800 rpm/min,用紫外灯照射4 h。
d、反应结束后,在将复合纤维在15000 rpm/min转速下进行离心1 min,将产物分离出来,室温干燥。
实施例5:
a、将氧化石墨烯分散在蒸馏水中,配置浓度为5 mg/mL。
b、将ZrO2纳米纤维分散在乙醇中,配置浓度为0.1 mg/mL。
c、将上述溶液混合,氧化石墨烯/ZrO2纳米纤维质量比为1:100,置于烧杯中,转速为300 rpm/min,在紫外光下连续照射0.5 h。
d、反应结束后,将复合纤维在1000 rpm/min转速下离心5 min,将产物分离出来,室温真空干燥。
实施例6:
a、以氧化石墨烯作为碳源,超声分散在蒸馏水中,配置浓度为1 mg/mL。
b、将SnO2纳米纤维分散在水中,配置浓度为10 mg/mL。
c、将上述溶液混合,其中氧化石墨烯/SnO2纳米纤维质量比为2:1,置于烧杯中,磁力搅拌,转速为50 rpm/min,在紫外光下连续照射96 h。
d、反应结束后,在将复合纤维在1000 rpm/min转速下离心10 min,室温干燥。
实施例7:
a、以氧化石墨烯作为碳源,超声分散在蒸馏水中,配置浓度为1 mg/mL。
b、将静电纺丝制备的N掺杂TiO2纳米纤维分散在水中,配置浓度为0.1 mg/mL。
c、将上述溶液混合,其中氧化石墨烯/SnO2纳米纤维质量比为10:1置于烧杯中,在可见光下连续照射96 h。
d、反应结束后,在将复合纤维在1000 rpm/min转速下离心10 min,室温干燥。
实施例8:
a、以氧化石墨烯作为碳源,超声分散在蒸馏水中,配置浓度为1 mg/mL。
b、将静电纺丝制备的S掺杂TiO2纳米纤维分散在水中,配置浓度为0.1 mg/mL。
c、将上述溶液混合,其中氧化石墨烯/S掺杂TiO2纳米纤维质量比为5:1置于烧杯中,磁力搅拌,转速为400 rpm/min,在可见光下连续照射24 h。
d、反应结束后,在将复合纤维在500 rpm/min转速下离心60 min,将产物分离出来,室温干燥。
实施例9:
a、以氧化石墨烯作为碳源,超声分散在蒸馏水中,配置浓度为1 mg/mL。
b、将静电纺丝制备的N和S共掺杂TiO2纳米纤维分散在水中,配置浓度为0.1 mg/mL。
c、将上述溶液混合,置于烧杯中,在可见光下连续照射1 h。
d、反应结束后,在将复合纤维在8000 rpm/min转速下进行离心,将产物分离出来,室温干燥。
其中氧化石墨烯/N和S共掺杂TiO2纳米纤维质量比为1:10。
实施例10:
a、以氧化石墨烯作为碳源,超声分散在蒸馏水中,配置浓度为1 mg/mL。
b、将S掺杂的ZnO纳米棒分散在水中,配置浓度为0.1 mg/mL。
c、将上述溶液混合,置于烧杯中,磁力搅拌,转速为500 rpm/min,在可见光下连续照射120 h。
d、反应结束后,在将复合纤维在8000 rpm/min转速下进行离心,将产物分离出来,室温干燥。
其中氧化石墨烯/S掺杂的ZnO纳米棒质量比为20:1。

Claims (8)

  1. 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于制备步骤为: a.将氧化石墨烯分散在溶剂中,配制浓度为0.01-10 mg/mL的氧化石墨烯胶体; b.将一维结构的光催化剂分散在溶剂中,配置浓度为0.01-1000 mg/mL的光催化剂悬浮液; c.将上述溶液按质量比100:1-1:100混合搅拌,置于开口容器中光照0.5-1000 h; d.反应结束后,在将产物离心分离,干燥。
  2. 根据权利要求1所述的光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于所述氧化石墨烯分散溶剂为水或者乙醇。
  3. 根据权利要求1所述的光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于所述一维结构为纳米纤维、纳米管或纳米棒。
  4. 根据权利要求1所述的光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于所述光催化剂为TiO2、ZnO、ZrO2、SnO2、N掺杂TiO2、S掺杂TiO2、N和S共掺杂TiO2或N掺杂ZnO。
  5. 根据权利要求1所述的光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于所述光催化剂分散溶剂为水或者乙醇。
  6. 根据权利要求1所述的光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于所述光照为可见光照或者紫外光照。
  7. 根据权利要求1所述的光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于所述搅拌速度为不超过800 rpm/min。
  8. 根据权利要求1所述的光催化法制备光催化剂/石墨烯一维核壳复合结构的方法,其特征在于所述离心速度为500-13000 rpm/min,离心时间为1-60 min。
PCT/CN2011/082360 2011-04-20 2011-11-17 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法 WO2012142829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110098807.XA CN102225330B (zh) 2011-04-20 2011-04-20 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法
CN201110098807.X 2011-04-20

Publications (1)

Publication Number Publication Date
WO2012142829A1 true WO2012142829A1 (zh) 2012-10-26

Family

ID=44806349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082360 WO2012142829A1 (zh) 2011-04-20 2011-11-17 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法

Country Status (2)

Country Link
CN (1) CN102225330B (zh)
WO (1) WO2012142829A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706349A (zh) * 2014-01-21 2014-04-09 中国计量学院 一种纳米ZnO微球/石墨烯光催化剂及其制备方法
CN109589996A (zh) * 2018-11-30 2019-04-09 清华大学 一种TiO2基/二维材料纳米复合光催化纤维膜及其制备方法
CN111111653A (zh) * 2019-12-25 2020-05-08 厦门十日甫智能科技合伙企业(有限合伙) 一种贵金属/石墨烯复合二氧化钛光催化剂的制备及其在空气净化中的应用
CN111450822A (zh) * 2020-04-09 2020-07-28 浙江工业大学 一种钼酸铋包覆电气石复合光催化剂的制备方法
CN111534065A (zh) * 2020-05-11 2020-08-14 陈建华 一种C-N共掺杂TiO2纳米管改性聚乳酸抗菌薄膜及其制法
TWI721625B (zh) * 2019-10-30 2021-03-11 國立雲林科技大學 複合奈米纖維、其製法及其應用
CN112691676A (zh) * 2021-02-01 2021-04-23 河南师范大学 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225330B (zh) * 2011-04-20 2013-04-03 东南大学 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法
CN102586946B (zh) * 2012-01-05 2014-04-16 浙江大学 一种高强度石墨烯有序多孔纤维及其制备方法
CN102744091B (zh) * 2012-06-21 2014-05-07 华北电力大学 多孔无机陶瓷膜-石墨烯-N改性TiO2光触媒材料及其制备方法
CN103361044B (zh) * 2013-07-16 2015-01-07 东南大学 一种氧化石墨烯片包裹氧化锌量子点核壳结构的制备方法
CN104549281A (zh) * 2015-02-04 2015-04-29 中国科学技术大学 一种活性石墨烯-金属氧化物复合光催化剂、其制备方法及其应用
CN104785235B (zh) * 2015-03-25 2017-03-01 中南大学 一种改性石墨烯负载二氧化钛复合光催化剂的制备方法
CN105148894B (zh) * 2015-09-23 2018-06-19 长沙理工大学 一种羟基化氧化钛/石墨烯可见光催化材料的制备方法
CN105126820B (zh) * 2015-09-23 2017-05-10 长沙理工大学 一种三维石墨烯/钨基纳米片/镁掺杂氧化锌层层组装结构的制备方法
CN105944708B (zh) * 2016-04-28 2018-11-20 安徽理工大学 TiO2-C@TiO2-rGO透明自支撑薄膜及其制备方法和应用
CN107128906B (zh) * 2017-07-03 2019-04-02 福州大学 分步光催化制备二氧化锡-银/石墨烯纳米复合材料的方法
CN108636397B (zh) * 2018-04-27 2021-03-26 同济大学 一种多功能涂层及其制备方法与应用
CN110396838B (zh) * 2019-07-19 2022-04-01 浙江海印数码科技有限公司 一种基于多级结构的复合粒子改性的喷墨印花用涂料型墨水及其制备方法、应用
CN113463388B (zh) * 2021-07-20 2023-05-23 华南理工大学 一种用于纸质文物预防性保护的无机/高分子复合膜及其制备方法
CN113559913B (zh) * 2021-08-23 2023-07-21 湖南文理学院 一种三明治结构的包覆氮掺杂石墨烯复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947441A (zh) * 2010-09-07 2011-01-19 中国科学院苏州纳米技术与纳米仿生研究所 一种石墨烯复合光催化剂及其制备方法和用途
CN101966989A (zh) * 2010-11-18 2011-02-09 东华大学 一种采用四角氧化锌光催化还原氧化石墨烯的方法
CN102225330A (zh) * 2011-04-20 2011-10-26 东南大学 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733985B (zh) * 2009-12-23 2013-01-02 天津大学 一种石墨烯/氧化镍层状结构复合薄膜及其制备方法
CN101890344B (zh) * 2010-07-27 2012-06-13 华东理工大学 石墨烯/二氧化钛复合光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101947441A (zh) * 2010-09-07 2011-01-19 中国科学院苏州纳米技术与纳米仿生研究所 一种石墨烯复合光催化剂及其制备方法和用途
CN101966989A (zh) * 2010-11-18 2011-02-09 东华大学 一种采用四角氧化锌光催化还原氧化石墨烯的方法
CN102225330A (zh) * 2011-04-20 2011-10-26 东南大学 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706349A (zh) * 2014-01-21 2014-04-09 中国计量学院 一种纳米ZnO微球/石墨烯光催化剂及其制备方法
CN103706349B (zh) * 2014-01-21 2016-05-11 中国计量学院 一种纳米ZnO微球/石墨烯光催化剂及其制备方法
CN109589996A (zh) * 2018-11-30 2019-04-09 清华大学 一种TiO2基/二维材料纳米复合光催化纤维膜及其制备方法
CN109589996B (zh) * 2018-11-30 2023-04-07 清华大学 一种TiO2基/二维材料纳米复合光催化纤维膜及其制备方法
TWI721625B (zh) * 2019-10-30 2021-03-11 國立雲林科技大學 複合奈米纖維、其製法及其應用
CN111111653A (zh) * 2019-12-25 2020-05-08 厦门十日甫智能科技合伙企业(有限合伙) 一种贵金属/石墨烯复合二氧化钛光催化剂的制备及其在空气净化中的应用
CN111450822A (zh) * 2020-04-09 2020-07-28 浙江工业大学 一种钼酸铋包覆电气石复合光催化剂的制备方法
CN111534065A (zh) * 2020-05-11 2020-08-14 陈建华 一种C-N共掺杂TiO2纳米管改性聚乳酸抗菌薄膜及其制法
CN112691676A (zh) * 2021-02-01 2021-04-23 河南师范大学 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用
CN112691676B (zh) * 2021-02-01 2024-03-01 河南师范大学 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用

Also Published As

Publication number Publication date
CN102225330B (zh) 2013-04-03
CN102225330A (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
WO2012142829A1 (zh) 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法
Meng et al. One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties
Zhu et al. Electrospinning direct preparation of SnO2/Fe2O3 heterojunction nanotubes as an efficient visible-light photocatalyst
Han et al. Structural diversity of graphene materials and their multifarious roles in heterogeneous photocatalysis
Song et al. Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties
Roozban et al. The experimental and statistical investigation of the photo degradation of methyl orange using modified MWCNTs with different amount of ZnO nanoparticles
Huang et al. Ultrathin carbon-coated Zr3+-ZrO2 nanostructures for efficient visible light photocatalytic antibiotic elimination
Zhang et al. Calcination of reduced graphene oxide decorated TiO2 composites for recovery and reuse in photocatalytic applications
CN100427388C (zh) 一种大面积的超薄碳纳米管膜及其制备工艺
WO2016146070A1 (zh) 一种用于光催化的铋-氧化钛纳米线材料及制备方法
Chen et al. Highly flexible, nonflammable and free-standing SiC nanowire paper
Liu et al. The synergistic effect of graphene oxide and silver vacancy in Ag3PO4-based photocatalysts for rhodamine B degradation under visible light
Tian et al. Fabrication of reduced graphene oxide–BiOCl hybrid material via a novel benzyl alcohol route and its enhanced photocatalytic activity
WO2017018674A1 (ko) 나노 기공, 메조 기공 및 마크로 기공이 3차원적으로 상호 연결된 다공성 산화물 반도체, 그 제조방법 및 이를 가스감응물질로 포함하는 가스센서
WO2011156952A1 (zh) 核壳型磁性合金纳米颗粒的制备方法
Azizian-Kalandaragh et al. Ultrasound-assisted preparation and characterization of β-Bi2O3 nanostructures: Exploring the photocatalytic activity against rhodamine B
Ding et al. Construction of amorphous SiO2 modified β-Bi2O3 porous hierarchical microspheres for photocatalytic antibiotics degradation
Zhou et al. The enhanced gas-sensing and photocatalytic performance of hollow and hollow core–shell SnO2-based nanofibers induced by the Kirkendall effect
Xiao et al. Facile synthesis of reduced graphene oxide/titania composite hollow microspheres based on sonication-assisted interfacial self-assembly of tiny graphene oxide sheets and the photocatalytic property
Jiang et al. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature
Singh et al. Study of photocatalytic and antibacterial activities of graphene oxide nanosheets
Chu et al. The acetic acid vapor sensing properties of BaSnO3 microtubes prepared by electrospinning method
Zhang et al. Preparation of aligned W18O49 nanowire clusters with high photocatalytic activity
Tsai et al. Carbon induced phase transformation in electrospun TiO2/multiwall carbon nanotube nanofibers
Li et al. Preparation and characterization of CNTs–SrFe12O19 composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863712

Country of ref document: EP

Kind code of ref document: A1