CN112691676A - 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用 - Google Patents

一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用 Download PDF

Info

Publication number
CN112691676A
CN112691676A CN202110135829.2A CN202110135829A CN112691676A CN 112691676 A CN112691676 A CN 112691676A CN 202110135829 A CN202110135829 A CN 202110135829A CN 112691676 A CN112691676 A CN 112691676A
Authority
CN
China
Prior art keywords
composite catalyst
graphene
doped
aerogel composite
graphene aerogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110135829.2A
Other languages
English (en)
Other versions
CN112691676B (zh
Inventor
董淑英
刘亚菲
李文莉
吴亚雯
韩晓旭
杨静怡
罗午月
田格格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN202110135829.2A priority Critical patent/CN112691676B/zh
Publication of CN112691676A publication Critical patent/CN112691676A/zh
Application granted granted Critical
Publication of CN112691676B publication Critical patent/CN112691676B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种Zn掺杂α‑Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用,该制备方法包括如下步骤:对石墨烯进行预处理得到氧化石墨烯;氧化石墨烯分散于一定量的去离子水中得到氧化石墨烯分散液;向氧化石墨烯分散液中加入预设量的FeSO4·7H2O和Zn(Ac)2·2H2O得到前驱溶液;将前驱溶液放置水热釜内再预设温度和预设时间下进行反应得到初始凝胶;初始凝胶经冷却、透析和干燥处理后得到Zn掺杂α‑Fe2O3/石墨烯气凝胶复合催化剂。该Zn掺杂α‑Fe2O3/石墨烯气凝胶复合催化剂,催化性能好,且具有较好的可见光响应能力。

Description

一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及 其氧化体系和应用
技术领域
本发明涉及催化材料技术领域,特别是涉及一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用。
背景技术
抗生素是一种由细菌、霉菌或其他微生物产生的次级代谢产物或人工合成的类似物,会对其他生殖细胞发育功能产生影响。抗生素生产废水、生活污水、医疗废水以及兽用与水产养殖业在养殖过程中产生的各种不同种类的抗生素的排放都是导致环境中抗生素问题的来源。
磺胺类药物是现代医学中常用的一类人工合成的抗菌消炎药。因其具有较广的抗菌谱,而且疗效确切、性质稳定、价格便宜,又便于长期保存的特点广泛使用于畜牧业和水产养殖业,用来治疗细菌及特定微生物引起的多种传染疾病。然而研究表明,磺胺类药物的大量使用,会使细菌产生抗药性,还可能和其他兽药、农药等污染物质在生物体内发生交互作用,造成无法预知的后果。此类药物在环境中降解非常缓慢,残留时间长,经过长期的积累和生物链的传递,会在动植物和人体内达到较高的浓度,影响动植物的生长,危害人体健康,导致严重的环境污染。磺胺类药物废水也是典型的难生物降解有机废水之一,采用常规的生物处理去除效果不理想。
发明内容
本发明的一个目的是要提供一种高效催化Oxone降解磺胺类废水的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。
本发明一个进一步的目的是要提高催化效率。
特别地,本发明提供了一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,所述制备方法包括如下步骤:
对石墨烯进行预处理得到氧化石墨烯;
所述氧化石墨烯分散于一定量的去离子水中得到氧化石墨烯分散液;
向所述氧化石墨烯分散液中加入预设量的FeSO4·7H2O和Zn(Ac)2·2H2O得到前驱溶液;
将所述前驱溶液放置水热釜内再预设温度和预设时间下进行反应得到初始凝胶;
所述初始凝胶经冷却、透析和干燥处理后得到所述Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。
优选地,所述一定量的去离子水的量为25~35 mL;所述氧化石墨烯分散液的浓度为2~10 mg/mL。
优选地,所述FeSO4·7H2O的用量为0.1~0.4mmol;所述Zn(Ac)2·2H2O的用量为0.05~0.4 mmol。
优选地,所述预设温度为180~190℃;所述预设时间为2.5~3.5h。
优选地,所述透析采用半透膜;所述半透膜为再生纤维滤膜。
优选地,所述干燥为冷冻干燥。
本发明还提供了上述复合催化剂的氧化体系,所述氧化体系为复合催化剂 /Oxone氧化体系。
优选地,所述复合催化剂与所述Oxone的质量比为300~500:1。
本发明还提供了Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的应用,所述Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂用于抗生素废水的处理。
本发明还提供了氧化体系的应用,所述复合催化剂 /Oxone氧化体系用于抗生素废水的处理。
本发明提供的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,制作方法简单,制备条件稳定,采用一锅法制备出易于回收利用的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂,催化性能好,且具有较好的可见光响应能力。在自然光下能够高效催化Oxone降解15mg/L的磺胺间甲氧基嘧啶废水,具有稳定、高效低廉、无毒和可回收循环利用等优点,不但可以避免纳米材料对环境的二次影响,而且可以应用于难生物降解有机污染物的降解,具有较强的市场应用前景。
根据下文对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是本发明提供的各个实施例制备的不同Fe/Zn摩尔比的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的XRD图谱;
图2是本发明提供的实施例2制得的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的TEM图;
图3是本发明提供的实施例2制得的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的XPS图。
具体实施方式
下面结合实施例对本发明作进一步说明。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了提高Zn掺杂α-Fe2O3的催化性能和回收利用性能,本发明采用复合石墨烯气凝胶的催化体系来催化Oxone(2KHSO5·KHSO4·K2SO4)产生SO4-自由基。Oxone(2KHSO5·KHSO4·K2SO4)为过氧硫酸氢钾复合盐的商品名称,其活性物质为单过氧硫酸氢钾KHSO5。由于一个SO3−取代HOOH形成不对称过氧化物的独特结构,使其易于激发而产生大量的硫酸根自由基(SO4-)。Zn掺杂α-Fe2O3 /Oxone是一种类似于Fenton试剂的氧化体系,过渡金属Fe3 +、Zn2+能催化Oxone产生大量活泼的、氧化能力强且无选择性的SO4-自由基,将水体中的有机污染物质彻底氧化为CO2、H2O和无机盐。
由于石墨烯具有独特的电子特征、极大的比表面积和较高的透明度使其成为合成复合催化剂的理想载体;合成的石墨烯复合材料在催化降解有机物中具有许多新的特性,如有效的电荷转移与分离、扩展的光吸收范围和对污染物较好的吸附能力。因此,在本发明中,利用石墨粉和二水合乙酸锌、硫酸亚铁等原材料,将石墨烯与Zn掺杂α-Fe2O3复合,制备出了稳定型的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂,在中性环境下不易溶出,这样既可以利用Zn掺杂α-Fe2O3的催化性能,又可以利用石墨烯气凝胶的吸附和机械稳定性能,使其高效稳定的催化Oxone产生SO4-自由基。
具体地,本发明提供的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,方法包括如下步骤:
步骤1,对石墨烯进行预处理得到氧化石墨烯。
采用改进的Hummers法,以天然石墨粉为原料制备氧化石墨烯。该石墨烯的处理方法现阶段比较成熟,在此不赘述。
步骤2,氧化石墨烯分散于一定量的去离子水中得到氧化石墨烯分散液。
具体地,氧化石墨烯超声分散在25~35mL去离子水中,得到浓度为2~10mg/mL的氧化石墨烯分散液。
步骤3,向氧化石墨烯分散液中加入预设量的FeSO4·7H2O和Zn(Ac)2·2H2O得到前驱溶液。
具体地,依次加入0.1~0.4mmol FeSO4·7H2O、0.05~0.4 mmol Zn(Ac)2·2H2O 搅拌至溶解且分散均匀后得到前驱溶液。
步骤4,将前驱溶液放置水热釜内再预设温度和预设时间下进行反应得到初始凝胶。
具体地,将前驱溶液放置至水热釜中,180~190℃下保持2.5~3.5h,进行水热反应得到初始凝胶。
步骤5,初始凝胶经冷却、透析和干燥处理后得到Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。该透析采用半透膜,包括但不限于采用再生纤维滤膜,再生纤维滤膜采用美国MD44-1000透析膜。
具体地,初始凝胶冷却至室温,得到水凝胶,经透析处理后冷冻干燥,即得到宏观整体块状的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。
本发明还提供了一种上述复合催化剂的氧化体系,具体为复合催化剂 /Oxone氧化体系,其中复合催化剂与Oxone的质量比为300~500:1。
在下述各个实施例中,充分说明上述制备方法的过程:
空白对照例
在常温室内条件下,1L浓度为30 mg/L 的Oxone溶液对1L浓度为15 mg/L的磺胺间甲氧基嘧啶废水进行降解100min,降解率为1.21%。
实施例1
首先是采用改进的Hummers法,以天然石墨粉为原料制备氧化石墨烯。将氧化石墨烯分散在30mL水溶液中,得到浓度为2mg/mL的氧化石墨烯分散液。然后加入0.1mmolFeSO4·7H2O、0.05mmol Zn(Ac)2·2H2O,搅拌至溶解且分散均匀后,将溶液转移至水热釜中,180℃下保持3h。冷却至室温,得水凝胶,经透析处理后冷冻干燥,即得宏观整体块状Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。在常温室内条件下,10g Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂加入到1L浓度为30 mg/L 的Oxone溶液,对1L浓度为15mg/L的磺胺间甲氧基嘧啶废水进行降解100min,降解率为72.1%。该催化剂在光催化降解过程中受水流冲击会略微变碎,无法整体回收,机械稳定性有待提高。
实施例2
首先是采用改进的Hummers法,以天然石墨粉为原料制备氧化石墨烯。将氧化石墨烯分散在30mL水溶液中,得到浓度为4mg/mL的氧化石墨烯分散液。然后加入0.2mmolFeSO4·7H2O、0.15mmol Zn(Ac)2·2H2O,搅拌至溶解且分散均匀后,将溶液转移至水热釜中,190℃下保持2.5h。冷却至室温,得水凝胶,经透析处理后冷冻干燥,即得宏观整体块状Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。在常温室内条件下,10g Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂加入到1L浓度为30 mg/L 的Oxone溶液,对1L浓度为15mg/L的磺胺间甲氧基嘧啶废水进行降解100min,降解率为83.8%。该催化剂在光催化降解过程中受水流冲击不会有变化,机械稳定性较好,且可以通过挤压方式排除间隙水,整体回收,便于循环利用。
实施例3
首先是采用改进的Hummers法,以天然石墨粉为原料制备氧化石墨烯。将氧化石墨烯分散在30mL水溶液中,得到浓度为6mg/mL的氧化石墨烯分散液。然后加入0.4mmolFeSO4·7H2O、0.2mmol Zn(Ac)2·2H2O,搅拌至溶解且分散均匀后,将溶液转移至水热釜中,180℃下保持3.5h。冷却至室温,得水凝胶,经透析处理后冷冻干燥,即得宏观整体块状Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。在常温室内条件下,10g Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂加入到1L浓度为25 mg/L 的Oxone溶液,对1L浓度为15mg/L的磺胺间甲氧基嘧啶废水进行降解100min,降解率为80.9%。该催化剂在光催化降解过程中受水流冲击不会有变化,机械稳定性较好,且可以通过挤压方式排除间隙水,整体回收,便于循环利用。
实施例4
首先是采用改进的Hummers法,以天然石墨粉为原料制备氧化石墨烯。将氧化石墨烯分散在30mL水溶液中,得到浓度为8mg/mL的氧化石墨烯分散液。然后加入0.36mmolFeSO4·7H2O、0.12mmol Zn(Ac)2·2H2O,搅拌至溶解且分散均匀后,将溶液转移至水热釜中,180℃下保持3h。冷却至室温,得水凝胶,经透析处理后冷冻干燥,即得宏观整体块状Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。在常温室内条件下,10g Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂加入到1L浓度为20 mg/L 的Oxone溶液,对1L浓度为15mg/L的磺胺间甲氧基嘧啶废水进行降解100min,降解率为79.7%。该催化剂在光催化降解过程中受水流冲击不会有变化,机械稳定性较好,且可以通过挤压方式排除间隙水,整体回收,便于循环利用。
实施例5
首先是采用改进的Hummers法,以天然石墨粉为原料制备氧化石墨烯。将氧化石墨烯分散在30mL水溶液中,得到浓度为10mg/mL的氧化石墨烯分散液。然后加入0.32mmolFeSO4·7H2O、0.4mmol Zn(Ac)2·2H2O,搅拌至溶解且分散均匀后,将溶液转移至水热釜中,180℃下保持3h。冷却至室温,得水凝胶,经透析处理后冷冻干燥,即得宏观整体块状Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。在常温室内条件下,10g Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂加入到1L浓度为33 mg/L 的Oxone溶液,对1L浓度为15mg/L的磺胺间甲氧基嘧啶废水进行降解100min,降解率为68.8%。该催化剂在催化降解过程中受水流冲击会略微变碎,无法整体回收,机械稳定性有待提高。
进一步地,图1是本发明提供的上述各个实施例制备的不同Fe/Zn摩尔比的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的XRD图谱。从图中可以看到,制备的催化剂在24.44°、33.39°、35.96°、41.11°、49.80°、54.23°、62.74°和64.34°的2θ衍射角分别与菱型赤铁矿α-Fe2O3晶型的(012)、(104)、(110)、(113)、(024)、(116)、(214)和(300)晶面相吻合,只是整体向大角度方向略微偏移了一些,这可能是Zn掺杂引起的晶格结构改变。
图2是本发明提供的实施例2制得的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的TEM图。实施例2制备的Fe/Zn摩尔比为2:1.5的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的TEM图像,从图中可以看到清晰的石墨烯层状结构,Zn掺杂α-Fe2O3纳米颗粒均匀分散在石墨烯的网状结构中。
图3是本发明提供的实施例2制得的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的XPS图。实施例2制备的Fe/Zn摩尔比为2:1.5的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的XPS图谱,从图中可以看到样品中含有C、O、Fe和Zn四种元素。
本发明Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,制作方法简单,制备条件稳定,采用一锅法制备出易于回收利用的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂,催化性能好,且具有较好的可见光响应能力。在自然光下能够高效催化Oxone降解15mg/L的磺胺间甲氧基嘧啶废水,具有稳定、高效低廉、无毒和可回收循环利用等优点,不但可以避免纳米材料对环境的二次影响,而且可以应用于难生物降解有机污染物的降解,具有较强的市场应用前景。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

1.一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,其特征在于,所述制备方法包括如下步骤:
对石墨烯进行预处理得到氧化石墨烯;
所述氧化石墨烯分散于一定量的去离子水中得到氧化石墨烯分散液;
向所述氧化石墨烯分散液中加入预设量的FeSO4·7H2O和Zn(Ac)2·2H2O得到前驱溶液;
将所述前驱溶液放置水热釜内再预设温度和预设时间下进行反应得到初始凝胶;
所述初始凝胶经冷却、透析和干燥处理后得到所述Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂。
2. 根据权利要求1所述的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,其特征在于,所述一定量的去离子水的量为25~35ml;所述氧化石墨烯分散液的浓度为2~10 mg/mL。
3. 根据权利要求1所述的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,其特征在于,所述FeSO4·7H2O的用量为0.1~0.4mmol;所述Zn(Ac)2·2H2O的用量为0.05~0.4mmol。
4.根据权利要求1所述的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,其特征在于,所述预设温度为180~190℃;所述预设时间为2.5~3.5h。
5.根据权利要求1所述的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,其特征在于,
所述透析采用半透膜;
所述半透膜为再生纤维滤膜。
6.根据权利要求1所述的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法,其特征在于,所述干燥为冷冻干燥。
7. 一种使用所述权利要求1至6任一项所述的复合催化剂的氧化体系,其特征在于,所述氧化体系为复合催化剂 /Oxone氧化体系。
8.根据权利要求7所述的氧化体系,其特征在于,
所述复合催化剂与所述Oxone的质量摩尔比为300~500:1。
9.一种权利要求1至6任一项的制备方法制得的Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的应用,其特征在于,
所述Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂用于抗生素废水的处理。
10.一种权利要求7或8任一项的氧化体系的应用,其特征在于,
所述复合催化剂 /Oxone氧化体系用于抗生素废水的处理。
CN202110135829.2A 2021-02-01 2021-02-01 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用 Active CN112691676B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110135829.2A CN112691676B (zh) 2021-02-01 2021-02-01 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110135829.2A CN112691676B (zh) 2021-02-01 2021-02-01 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用

Publications (2)

Publication Number Publication Date
CN112691676A true CN112691676A (zh) 2021-04-23
CN112691676B CN112691676B (zh) 2024-03-01

Family

ID=75516473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110135829.2A Active CN112691676B (zh) 2021-02-01 2021-02-01 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用

Country Status (1)

Country Link
CN (1) CN112691676B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004376A1 (fr) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Element photocatalytique
WO2012142829A1 (zh) * 2011-04-20 2012-10-26 东南大学 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法
CN103030208A (zh) * 2013-01-08 2013-04-10 哈尔滨工业大学 尖晶石铁氧体类催化剂的应用及用于促进过硫酸盐产生自由基催化降解有机物的方法
CN105174416A (zh) * 2015-10-12 2015-12-23 湖南农业大学 一种基于负载型活性炭催化过硫酸盐降解二氯喹啉酸有机污染物的方法
CN105498774A (zh) * 2015-12-09 2016-04-20 河南师范大学 一种氧化石墨烯-钴复合纳米催化剂的制备方法
CN106512987A (zh) * 2016-11-24 2017-03-22 河南师范大学 钨酸铋/石墨烯气凝胶复合可见光催化剂及其制备方法
CN107649078A (zh) * 2017-10-30 2018-02-02 成都格莱飞科技股份有限公司 一种石墨烯复合材料气凝胶及制备方法
CN109622068A (zh) * 2019-01-04 2019-04-16 河南师范大学 一种能够高效活化过硫酸盐的载钴石墨烯气凝胶复合催化剂的制备方法及其应用
CN110639614A (zh) * 2018-06-26 2020-01-03 宁波市雨辰环保科技有限公司 一种用于剧毒废水无害化处理的催化剂及其制备方法和应用
US20200016585A1 (en) * 2018-07-12 2020-01-16 Soochow University Visible-light response hybrid aerogel and preparation method and application thereof in waste gas processing
CN111790422A (zh) * 2020-06-18 2020-10-20 广州大学 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
CN111924955A (zh) * 2020-08-07 2020-11-13 浙江工业大学 一种基于铁基多原子耦合催化剂活化硫酸根治理有机农药的方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002004376A1 (fr) * 2000-07-12 2002-01-17 Nippon Sheet Glass Co., Ltd. Element photocatalytique
WO2012142829A1 (zh) * 2011-04-20 2012-10-26 东南大学 光催化法制备光催化剂/石墨烯一维核壳复合结构的方法
CN103030208A (zh) * 2013-01-08 2013-04-10 哈尔滨工业大学 尖晶石铁氧体类催化剂的应用及用于促进过硫酸盐产生自由基催化降解有机物的方法
CN105174416A (zh) * 2015-10-12 2015-12-23 湖南农业大学 一种基于负载型活性炭催化过硫酸盐降解二氯喹啉酸有机污染物的方法
CN105498774A (zh) * 2015-12-09 2016-04-20 河南师范大学 一种氧化石墨烯-钴复合纳米催化剂的制备方法
CN106512987A (zh) * 2016-11-24 2017-03-22 河南师范大学 钨酸铋/石墨烯气凝胶复合可见光催化剂及其制备方法
CN107649078A (zh) * 2017-10-30 2018-02-02 成都格莱飞科技股份有限公司 一种石墨烯复合材料气凝胶及制备方法
CN110639614A (zh) * 2018-06-26 2020-01-03 宁波市雨辰环保科技有限公司 一种用于剧毒废水无害化处理的催化剂及其制备方法和应用
US20200016585A1 (en) * 2018-07-12 2020-01-16 Soochow University Visible-light response hybrid aerogel and preparation method and application thereof in waste gas processing
CN109622068A (zh) * 2019-01-04 2019-04-16 河南师范大学 一种能够高效活化过硫酸盐的载钴石墨烯气凝胶复合催化剂的制备方法及其应用
CN111790422A (zh) * 2020-06-18 2020-10-20 广州大学 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
CN111924955A (zh) * 2020-08-07 2020-11-13 浙江工业大学 一种基于铁基多原子耦合催化剂活化硫酸根治理有机农药的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AREZOU FAZLI ET AL: "Cubic cobalt and zinc co-doped magnetite nanoparticles for persulfate and hydrogen peroxide activation towards the effective photodegradation of Sulfalene", 《CHEMICAL ENGINEERING JOURNAL》, vol. 404, 15 January 2021 (2021-01-15) *
KAIXIN ZHU ET AL: "Visible-light-induced photocatalysis and peroxymonosulfate activation over ZnFe2O4 fine nanoparticles for degradation of Orange II", 《CATAL. SCI. TECHNOL.》, 9 November 2015 (2015-11-09), pages 2296 *
SHENG GUO ET AL: "Scalable synthesis of Ca-doped α-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation", 《APPLIED CATALYSIS B: ENVIRONMENTAL》, vol. 262, 31 March 2020 (2020-03-31) *
王娜: "基于普鲁士蓝制备多相催化剂及其降解有机污染物的性能", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》, 15 January 2021 (2021-01-15), pages 016 - 336 *
秦家成: "铁酸锌复合石墨烯/二氧化钛光催化剂的研制及性能调控机制研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, 15 February 2017 (2017-02-15), pages 014 - 1029 *

Also Published As

Publication number Publication date
CN112691676B (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
Gopinath et al. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review
Zuo et al. A facile and novel construction of attapulgite/Cu2O/Cu/g-C3N4 with enhanced photocatalytic activity for antibiotic degradation
CN109574317B (zh) 利用钌酸镧系钙钛矿活化过氧乙酸降解氟喹诺酮抗生素的方法
Zhou et al. Preparation and characterization of macroalgae biochar nanomaterials with highly efficient adsorption and photodegradation ability
WO2005080489A1 (fr) Solution de chelate(s) metal/polymere et leurs utilisations
Bui et al. Titanium dioxide microscale and macroscale structures: a mini-review
CN105289629B (zh) 一种镧基钙钛矿型氧化物催化臭氧降解水中紫外稳定剂方法
CN110142061A (zh) 核壳型P-CoFe2O4@GCN光催化剂的制备方法及其应用
Palas et al. Bioinspired metal oxide particles as efficient wet air oxidation and photocatalytic oxidation catalysts for the degradation of acetaminophen in aqueous phase
CN104841015A (zh) 一种高比表面载银二氧化钛复合抗菌材料及其制备方法
Ma et al. Recent advances in carbon-based materials for adsorptive and photocatalytic antibiotic removal
Fajardo-Puerto et al. From Fenton and ORR 2e−-Type Catalysts to Bifunctional Electrodes for Environmental Remediation Using the Electro-Fenton Process
CN104607175A (zh) 一种光催化降解水中抗生素的催化剂及其制备方法和应用
CN108927172B (zh) 一种负载金纳米粒子的磁性生物质碳材料的制备及其应用
Yang et al. 3D-printed N-doped porous carbon aerogels for efficient flow-through degradation and disinfection of wastewater
Imam et al. Influence of various operational parameters on the photocatalytic degradation of ciprofloxacin in aqueous media: a short review
Fan et al. Preparation of MnO2-carbon materials and their applications in photocatalytic water treatment
Mei et al. Ce-Doped Brookite TiO2 Quasi-Nanocubes for Efficient Visible Light Catalytic Degradation of Tetracycline
CN109225279A (zh) 硅藻土负载镧掺杂纳米氯氧化铋复合材料、制备方法及应用
CN109772380B (zh) 氢化二氧化钛复合三维花球氯氧铋光催化剂及制备方法
CN112691676A (zh) 一种Zn掺杂α-Fe2O3/石墨烯气凝胶复合催化剂的制备方法及其氧化体系和应用
Fdez-Sanromán et al. Pushing the Operational Barriers for g-C3N4: A Comprehensive Review of Cutting-Edge Immobilization Strategies
Bao et al. Synthesis and antibacterial activities of Ag-TiO2/ZIF-8
CN110902770A (zh) 一种基于碳布的Fe3O4/C、Fe/C及其制备和应用
Xu et al. Degradation mechanisms and microbial community analysis of cefalexin in the intimately coupled photocatalytic and biodegradation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant