WO2012140712A1 - 電池システム及び車両 - Google Patents

電池システム及び車両 Download PDF

Info

Publication number
WO2012140712A1
WO2012140712A1 PCT/JP2011/058982 JP2011058982W WO2012140712A1 WO 2012140712 A1 WO2012140712 A1 WO 2012140712A1 JP 2011058982 W JP2011058982 W JP 2011058982W WO 2012140712 A1 WO2012140712 A1 WO 2012140712A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
gas
collision
battery system
vehicle
Prior art date
Application number
PCT/JP2011/058982
Other languages
English (en)
French (fr)
Inventor
白澤 淳
重規 濱
典明 西野
幸義 上野
治永 廣川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/058982 priority Critical patent/WO2012140712A1/ja
Publication of WO2012140712A1 publication Critical patent/WO2012140712A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/579Devices or arrangements for the interruption of current in response to shock
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a battery system and a vehicle, and particularly to a battery system having a unit cell to which pressure is applied and a vehicle equipped with the battery system.
  • a lithium ion secondary battery (hereinafter sometimes referred to as a “lithium battery”) has characteristics that it has a higher energy density than other secondary batteries and can operate at a high voltage. For this reason, it is used as a secondary battery that can be easily reduced in size and weight in information equipment such as a mobile phone, and in recent years, there is an increasing demand for large motive power such as for electric vehicles and hybrid vehicles.
  • the lithium ion secondary battery includes a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed between them.
  • a non-aqueous liquid or solid electrolyte is used for the electrolyte layer.
  • electrolytic solution a liquid electrolyte (hereinafter referred to as “electrolytic solution”)
  • the electrolytic solution easily penetrates into the positive electrode layer and the negative electrode layer. Therefore, an interface between the active material contained in the positive electrode layer or the negative electrode layer and the electrolytic solution is easily formed, and the performance is easily improved.
  • the widely used electrolyte is flammable, it is necessary to mount a system for ensuring safety.
  • solid electrolyte a solid electrolyte that is nonflammable
  • solid electrolyte layer a layer containing a solid electrolyte that is nonflammable
  • Patent Document 1 discloses a structure in which a conductive intermediate layer that changes to a high resistance during overcharging is disposed between a current collector and an active material-containing layer. It is disclosed that the positive electrode of a water electrolyte secondary battery has.
  • Patent Document 2 discloses a battery in which a positive electrode terminal or a negative electrode terminal is provided with a resin film containing carbon powder having a positive temperature resistance characteristic that increases an electric resistance value by heating.
  • Patent Document 3 discloses a battery having a negative electrode current collector, a first layer in contact with the negative electrode current collector, and a second layer in contact with the first layer. The first layer is formed by a BET method.
  • Patent Document 4 includes a gas generating agent on the surface or inside of at least one layer selected from the group consisting of a positive electrode active material layer, an electrolyte layer, and a negative electrode active material layer, and the temperature of the secondary battery is 60 ° C.
  • Patent Document 5 discloses a technique related to an overcharge inhibitor that reacts when the positive electrode potential increases during overcharge and increases the internal resistance of the battery.
  • Patent Document 1 uses a conductive intermediate layer that changes to a high-resistance body during overcharge, so it is considered possible to improve safety during overcharge.
  • measures against safety degrading elements different from overcharging such as thermal runaway and collision of devices using batteries, are insufficient.
  • Patent Documents 2 to 5 countermeasures against either heating or overcharge are taken, but countermeasures against collision of devices using batteries are not. It was enough. Therefore, even when the techniques disclosed in Patent Documents 1 to 5 are combined, the safety of the battery tends to be insufficient.
  • an object of the present invention is to provide a battery system and a vehicle that can enhance safety.
  • a first aspect of the present invention includes a unit cell including a positive electrode layer and a negative electrode layer, and an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, and pressurizing the unit cell to reduce the internal resistance of the unit cell.
  • a pressurizing means for changing a pressure adjusting means capable of adjusting the pressure of the pressurizing means, and a control means capable of determining a risk level of the unit cell, according to the risk level determined by the control means,
  • the battery system is characterized in that the operation of the pressure adjusting means is controlled.
  • the internal resistance of the unit cell can be changed by adjusting the pressure applied from the pressurizing means to the unit cell. Therefore, for example, when there is a concern about deterioration of the safety of the unit cell, such as overcharge / discharge, thermal runaway, internal pressure increase, short circuit, and external force is applied to the device in which the battery is used, By reducing the applied pressure and increasing the internal resistance of the unit cell, the reaction occurring in the cell can be stopped. Thus, by stopping the reaction occurring in the battery, it is possible to improve the safety of the battery system. Furthermore, according to the first aspect of the present invention, when there is no longer a concern about the decrease in safety, the output of the unit cell is returned to the state before the pressure adjustment by increasing the pressure and returning it to the original state. Will also be possible.
  • the “risk level for the unit cell” means, for example, an overcharge / discharge of the unit cell, abnormal heating, pressure increase, and short circuit, as well as an accident to the vehicle when the unit cell is mounted on the vehicle. Etc.
  • the force applied to the container and the force applied to the container in the future can also be included in the degree of risk to the unit cell.
  • the degree of risk for the unit cell is equal to or higher than a predetermined value or less than a predetermined value, it can be determined as dangerous by the control means, and when it is determined as dangerous by the control means, The operation of the pressure adjusting means is controlled so as to change the pressure of the pressurizing means.
  • the operation of the pressure adjusting unit is controlled so as to reduce the pressure of a substance used as the pressurizing unit (for example, gas or the like; the same applies hereinafter). Since the internal resistance of the unit cell can be increased by adopting the form, it becomes possible to reduce the speed of the reaction occurring in the unit cell. As a result, the temperature of the unit cell can be reduced and safety can be reduced. Can be increased. In addition, for example, when there is a high possibility that a device on which the unit cell is mounted will collide, the operation of the pressure adjusting unit is controlled so as to increase the pressure of the substance used as the pressurizing unit.
  • a substance used as the pressurizing unit for example, gas or the like; the same applies hereinafter.
  • the determination in the control means correspond to the control for reducing the collision damage provided in the vehicle. Specifically, in order to increase the output of the brake or the like when the possibility of a collision increases, the pressure of the pressurizing means is increased to temporarily increase the output of the brake, or applied to the unit cell at the time of a vehicle collision.
  • the operation of the pressure adjusting means can be controlled so that the pressure of the pressurizing means is increased in advance before the vehicle collision.
  • the pressurizing means contains a fluid.
  • fluid refers to a gas or a liquid.
  • the gas includes an incombustible gas typified by carbon dioxide and the like, and an inert gas typified by helium gas, nitrogen gas, and argon gas. Gas (a gas that does not promote combustion).
  • the pressurizing means includes a flow path and an adjusting means capable of adjusting the pressure of the fluid in the accumulation unit and the pressure of the fluid in the container by adjusting the movement of the fluid in the fluid flow path.
  • the fluid can be moved between the container and the accumulating unit by adopting a configuration in which the accumulating unit, the fluid flow path, and the adjusting unit are included in the pressurizing unit.
  • the storage unit in which the storage unit, the fluid flow path, and the adjusting unit are included in the pressurizing unit, it is preferable that the storage unit can be contracted.
  • the accumulation unit can be contracted to operate the accumulation unit itself as a pump and move the fluid accumulated in the accumulation unit into the container.
  • the pressure applied to the battery can be increased. Furthermore, by observing the shape of the storage unit, it is possible to grasp the operating state of the pressurizing means.
  • a second aspect of the present invention is a vehicle on which the battery system according to the first aspect of the present invention (including modifications) is mounted, and the risk includes the collision of the vehicle and the possibility of collision
  • the control means is a vehicle characterized in that the operation of the pressure adjusting means can be controlled in accordance with the presence / absence of collision and the possibility of collision.
  • the pressure of the pressurizing means can be adjusted in accordance with the presence / absence of collision and the possibility of collision. Therefore, when there is a possibility of collision, safety is further improved in preparation for the collision.
  • the vehicle which can be made to provide can be provided.
  • the vehicle according to the second aspect of the present invention includes an electric vehicle not having an internal combustion engine in addition to a hybrid vehicle.
  • a vehicle using fuel and equipped with the battery system (including modifications) according to the first aspect of the present invention in which a fluid is contained in the pressurizing means.
  • the control means can control the operation of the pressure adjusting means in accordance with the presence / absence of the collision and the possibility of the collision, and the fluid is incombustible gas and / or inert gas. Is used, and has an introduction means for introducing the incombustible gas and / or the inert gas toward a portion where the fuel exists at the time of a collision.
  • the “incombustible gas and / or inert gas” means a nonflammable gas when an incombustible gas is used as the fluid, and the inert gas is present in the fluid. When used, it refers to an inert gas. Moreover, when a nonflammable gas and an inert gas are used for the fluid, it refers to a nonflammable gas and an inert gas.
  • the “part where the fuel exists” means, for example, an engine room, an engine interior, or a fuel tank. In the event of a collision, it is possible to reduce the pressure applied to the unit cell by introducing non-flammable gas and / or inert gas toward the site where the fuel is present.
  • a vehicle that is electrically driven and includes the battery system (including modifications) according to the first aspect of the present invention in which a fluid is contained in the pressurizing means.
  • the control means can control the operation of the pressure adjusting means in accordance with the presence / absence of the collision and the possibility of the collision, and the non-combustible gas and / or the inertness of the fluid.
  • the vehicle is characterized in that gas is used, and has an introduction means for introducing the incombustible gas and / or the inert gas toward a portion driven by electricity at the time of collision.
  • the “part driven by electricity” includes, for example, an inverter. Since an inverter or the like can generate heat, when an overcurrent is generated due to a collision, the inverter becomes hot and may ignite in some cases. However, since non-flammable gas and / or inert gas is introduced toward the part driven by electricity, it becomes possible to suppress / prevent ignition due to high temperature, thus improving vehicle safety. It becomes possible. In addition, at the time of collision, it is possible to reduce the pressure applied to the unit cell by introducing nonflammable gas and / or inert gas toward the site driven by electricity, The reaction occurring in the battery can be stopped, and as a result, the safety of the vehicle can be further improved.
  • an inverter Since an inverter or the like can generate heat, when an overcurrent is generated due to a collision, the inverter becomes hot and may ignite in some cases. However, since non-flammable gas and / or inert gas is introduced toward the part driven by electricity, it becomes possible to suppress / prevent ignition due to high temperature, thus
  • the operation of the pressure adjusting means is controlled by the control means.
  • control means By controlling the operation of the pressure adjusting means by the control means so as to increase the pressure of the pressurizing means when there is a possibility of collision, for example, when there is a high possibility of collision, a brake, a seat belt, an airbag, etc. Since these response performances can be further enhanced so that the vehicle can operate instantaneously, it becomes easy to improve the safety of the vehicle.
  • FIG. 1 is a diagram illustrating a battery system 100.
  • FIG. It is a figure explaining the unit cell. It is a figure explaining the battery system. It is sectional drawing explaining the unit cell 41.
  • FIG. It is a figure explaining the battery system. It is a figure explaining the control flow of a vehicle.
  • FIG. 1 is a diagram illustrating a battery system 100 according to the first embodiment of the present invention. In order to facilitate understanding of the battery system 100, a part of the configuration is shown in cross section in FIG.
  • the battery system 100 includes a battery 10, a gas flow path 20 connected to the battery 10, and a control means 30.
  • a pump 21, a check valve 22, a safety valve 23, and a pressure gauge 24 are connected to the gas flow path 20, and operations of the pump 21, the check valve 22 and the safety valve 23 are controlled by the control means 30.
  • the battery 10 includes a unit cell 1 wound in a cylindrical shape, a substantially columnar pressure vessel 2 that accommodates the unit cell 1, and electrode terminals 3 and 3 provided on the pressure vessel 2 (one is a positive electrode terminal). And the other has a negative electrode terminal).
  • the unit cell 1 is given a force from the axis side toward the outside by the gas 4 filled in the axial center portion (region surrounded by the unit cell 1) of the unit cell 1, and the unit cell to which the force is applied When 1 is restrained by the pressure vessel 2, a predetermined pressure is applied to the unit cell 1.
  • FIG. 2 is a cross-sectional view illustrating the unit cell 1.
  • a part of the unit cell 1 is shown enlarged.
  • the solid electrolyte layer 1c is sandwiched between the positive electrode layer 1d and the negative electrode layer 1b.
  • a positive electrode current collector 1e is connected to the positive electrode layer 1d, and a negative electrode current collector 1a is connected to the negative electrode layer 1b.
  • the positive electrode current collector 1e is connected to one electrode terminal 3, and the negative electrode current collector 1a is connected to the other electrode.
  • the electrode terminals 3 are respectively connected.
  • the negative electrode current collector 1a, the negative electrode layer 1b, the solid electrolyte layer 1c, the positive electrode layer 1d, and the positive electrode current collector 1e are wrapped in a laminate film (not shown).
  • the gas 4 is used to apply pressure in the thickness direction of the unit cell (direction parallel to the paper surface of FIGS. 1 and 2), and by changing the pressure of the gas 4, the internal resistance of the unit cell 1 is changed. Is adjusted.
  • the gas 4 filled in the pressure vessel 2 is sent through the gas flow path 20 using the pump 21 and flows into the pressure vessel 2.
  • the check valve 22 is opened, and the gas 4 is sent from the gas storage unit (not shown) to the pressure vessel 2 using the pump 21.
  • the pressure of the gas 4 measured by the pressure gauge 24 reaches a target value, the operation of the pump 21 is stopped and the check valve 22 is closed, whereby the gas 4 moves from the pressure vessel 2 to the gas storage unit. Is prevented.
  • the safety valve 23 is opened, and the gas 4 filled in the pressure vessel 2 is discharged to the outside, thereby filling the pressure vessel 2.
  • the pressure of the gas 4 being reduced is reduced.
  • the safety valve 23 is opened when the pressure of the gas 4 filled in the pressure vessel 2 is lowered, and is closed when the pressure of the gas 4 in the pressure vessel 2 is increased (when the gas 4 is filled in the pressure vessel 2). Yes.
  • the operations of the pump 21, the check valve 22, and the safety valve 23 are controlled by the control means 30.
  • information related to the safety of the battery 10 such as information on the voltage and temperature of the unit cell 1 detected by a voltage sensor and a temperature sensor (not shown), It is sent to the control means 30.
  • the control means 30 is provided with a CPU 31 capable of executing operation control of the pump 21, the check valve 22, and the safety valve 23, and a storage device for the CPU 31.
  • the CPU 31 is configured by combining a microprocessor unit and various peripheral circuits necessary for the operation thereof, and the storage device for the CPU 31 includes, for example, programs and various programs necessary for operation control of the pump 21, the check valve 22, and the safety valve 23.
  • a ROM 32 that stores data and a RAM 33 that functions as a work area for the CPU 31 are combined.
  • the control means 30 in the battery system 100 functions by combining the CPU 31 with software stored in the ROM 32.
  • Information related to the pressure detected by the pressure gauge 24 and information (output signal) that is a basis for determining the risk level of the battery system 100 such as voltage and temperature are input via the input port 34 of the control means 30.
  • the CPU 31 reaches the CPU 31 as an input signal.
  • the CPU 31 determines operation commands for the pump 21, the check valve 22, and the safety valve 23 based on the input signal and the program stored in the ROM 32.
  • the operation command determined by the CPU 31 is output to the pump 21, the check valve 22, and the safety valve 23 via the output port 35, and these operations are controlled.
  • the pump 21 when the CPU 31 determines that the pressure of the gas 4 detected by the pressure gauge 24 is less than the target value, the pump 21 is operated and the check valve 22 is opened to return to the pressure vessel 2.
  • the gas 4 is sent and the pressure of the gas 4 is increased.
  • the operation of the pump 21 whose operation is controlled by the control means 30 is stopped, and the check valve 22 whose operation is controlled by the control means 30 is closed.
  • the CPU 31 determines that the pressure of the gas 4 detected by the pressure gauge 24 exceeds the threshold
  • the CPU 31 receives information from a voltage sensor (not shown).
  • the control means 30 opens the safety valve 23.
  • the operation of the safety valve 23 is controlled, and the pressure of the gas 4 is lowered.
  • the safety valve 23 is closed.
  • the internal resistance of the unit cell 1 can be increased by lowering the pressure of the gas 4, it is possible to prevent abnormal internal pressure, overcharge / discharge, thermal runaway, short circuit, and the like.
  • the unit cell 1 and the pressure vessel 2 can be prevented from being damaged by lowering the pressure of the gas 4. Since it becomes possible to improve safety by preventing these, according to this invention, the battery system 100 which can improve safety can be provided.
  • the operation of the battery 10 can be quickly stopped by opening the safety valve 23 and discharging the gas 4 to the outside.
  • the reaction spontaneously proceeding inside the battery for example, bipolarization caused by the release of oxygen from the electrode material due to an increase in the electrode temperature and reaction with the electrolyte
  • the unit cell 1 can be cooled by adiabatic expansion.
  • the discharged gas 4 is used to deploy a float when there is a risk of submergence, or the discharged gas 4 is used as emergency power. It is also possible to do. In the battery system 100, even when there is no power or power, the above effect can be achieved by manually opening the safety valve 23.
  • the battery system 100 increases the pressure of the gas 4 so as to restore the original pressure.
  • the operation of the check valve 22 can also be controlled.
  • the operation of the pump 21 and the check valve 22 can also be controlled by the control means 30 so as to increase the pressure.
  • the safety valve 23 is controlled by the control means 30 so as to lower the pressure of the gas 4 before the collision when the possibility of a vehicle collision increases. It is also possible to control the operation.
  • the control means 30 operates the pump 21, the check valve 22, and the safety valve 23 so that the pressure of the gas 4 is restored. Can also be controlled.
  • the battery 10 included in the battery system 100 having these characteristics includes a step of manufacturing the unit cell 1, a step of storing the manufactured unit cell 1 in the pressure resistant container 2, and supplying a gas 4 to the pressure resistant container 2. And the step of pressurizing the battery 1.
  • the step of manufacturing the unit cell 1 includes a negative electrode current collector, a negative electrode layer connected to the negative electrode current collector, a solid electrolyte layer disposed so as to be in contact with the negative electrode layer, and a contact with the solid electrolyte layer.
  • a negative electrode slurry prepared by dispersing at least a negative electrode active material and a solid electrolyte in a solvent is applied to the surface of the negative electrode current collector 1a.
  • the negative electrode layer 1b is formed on the surface.
  • a positive electrode layer 1d is formed on the surface of the positive electrode current collector 1e through a process in which a positive electrode slurry prepared by dispersing at least a positive electrode active material and a solid electrolyte in a solvent is applied to the surface of the positive electrode current collector 1e.
  • the solid electrolyte layer 1c is the negative electrode layer 1b and the positive electrode layer 1d.
  • the negative electrode layer 1b formed on the surface of the negative electrode current collector 1a is disposed on the solid electrolyte layer 1c formed on the surface of the positive electrode layer 1d so as to be sandwiched.
  • the part where the negative electrode current collector 1a and the electrode terminal 3 should be electrically connected and the part where the positive electrode current collector 1e and the electrode terminal 3 should be electrically connected are accommodated. While not doing so, wrap the laminate in a laminate film. Then, while depressurizing the inside of the laminate film that wraps the laminate, the laminate film positioned around the laminate is heated and thermally welded to have the laminate and the laminate film that wraps the laminate. A unit cell before being wound can be produced. After the laminate is wrapped with the laminate film in this way, the laminate wrapped in the laminate film is wound into a cylindrical shape, and the end surfaces of the laminate film are heat-welded and bonded to each other, whereby the unit cell 1 wound into the cylindrical shape is joined.
  • the unit cell 1 is manufactured in this manner, for example, a hole corresponding to the gas flow path 20 is formed in a part of the portion where the end faces of the laminate film are heat-welded. Then, the negative electrode current collector 1a is connected to one electrode terminal 3 and the positive electrode current collector 1e is connected to the other electrode terminal 3, respectively, and a connection portion between the gas flow path 20 and the pressure vessel 2 (the outlet of the gas flow path 20) ) Is accommodated in the pressure-resistant container 2 so as to face the hole formed in the laminate film, and the pressure-resistant container 2 is sealed.
  • the pump 21 When the pressure vessel 2 is sealed, the pump 21 is operated in a state where the check valve 22 is opened, and the gas 4 is caused to flow into the pressure vessel 2 to pressurize the unit cell 1 using the gas 4. it can.
  • the battery 10 can be manufactured through the above process, for example.
  • the negative electrode current collector 1a and the positive electrode current collector 1e can be made of a known conductive material that can be used as a negative electrode current collector or a positive electrode current collector of a lithium ion secondary battery.
  • a conductive material include one or more elements selected from the group consisting of Cu, Ni, Al, V, Au, Pt, Mg, Fe, Ti, Co, Cr, Zn, Ge, and In. Examples of the metal material to be included can be given.
  • the negative electrode current collector 1a and the positive electrode current collector 1e can be formed into a shape such as a metal foil or a metal mesh, for example.
  • the well-known active material which can be contained in the negative electrode layer of a lithium ion secondary battery can be used suitably.
  • examples of such an active material include graphite.
  • the solid electrolyte contained in the negative electrode layer 1b a known solid electrolyte that can be contained in the negative electrode layer of the lithium ion secondary battery can be appropriately used.
  • Examples thereof include a sulfide solid electrolyte produced in the above manner.
  • the negative electrode layer 1b may contain a binder that binds the negative electrode active material and the solid electrolyte or a conductive material that improves conductivity.
  • Examples of the binder that can be contained in the negative electrode layer 1b include butylene rubber, and examples of the conductive material that can be contained in the negative electrode layer 1b include carbon black.
  • a solvent used when manufacturing the negative electrode layer 1b the well-known solvent which can be used when adjusting the slurry used at the time of negative electrode layer preparation of a lithium ion secondary battery can be used suitably. As such a solvent, heptane and the like can be exemplified.
  • examples of the solid electrolyte contained in the solid electrolyte layer 1c include the solid electrolytes that can be contained in the negative electrode layer 1b.
  • a solvent used when producing the solid electrolyte layer 1c the above-described solvents that can be used when producing the negative electrode layer 1b can be exemplified.
  • the well-known active material which can be contained in the positive electrode layer of a lithium ion secondary battery can be used suitably.
  • examples of such a positive electrode active material include lithium cobaltate (LiCoO 2 ).
  • the solid electrolyte contained in the positive electrode layer 1b a known solid electrolyte that can be contained in the positive electrode layer of the lithium ion secondary battery can be appropriately used. Examples of such a solid electrolyte include the solid electrolyte that can be contained in the negative electrode layer 1b.
  • the positive electrode layer 1d may contain a binder that binds the positive electrode active material and the solid electrolyte and a conductive material that improves conductivity.
  • binder and conductive material that can be contained in the positive electrode layer 1d examples include the binder and conductive material that can be contained in the negative electrode layer 1b.
  • solvent used when the positive electrode layer 1d is manufactured examples include the above-described solvents that can be used when the negative electrode layer 1b is manufactured.
  • the laminate film that wraps the laminate is particularly limited to a film that can withstand the environment when the lithium ion secondary battery is used, has a property of not allowing gas or liquid to permeate, and can be sealed. Can be used without any problem.
  • the constituent material of such a film include resin films such as polyethylene, polyvinyl fluoride, and polyvinylidene chloride, and metal deposited films obtained by depositing a metal such as aluminum on these surfaces.
  • the material of the pressure vessel 2 is not particularly limited as long as it is made of a material that can withstand the environment during operation of the battery 10 and the pressure of the gas 4.
  • the pressure vessel 2 can be made of metal such as aluminum or stainless steel, for example.
  • the diameter of the pressure vessel 2 can be, for example, about several centimeters.
  • the constituent material is not particularly limited.
  • the electrode terminal 3 can be comprised with electroconductive materials, such as a metal and a carbon material.
  • the gas 4 is an incombustible gas typified by carbon dioxide or the like, or an inert gas typified by helium, nitrogen, argon or the like, and when the safety valve 23 is opened and the gas 4 is discharged to the outside.
  • a gas that does not liquefy in the pressure vessel 2 can be used.
  • dry air can be used as the gas 4.
  • the pressure of the gas 4 that pressurizes the unit cell 1 can be, for example, about 1 to 200 atmospheres.
  • the gas flow path 20 is not particularly limited as long as it is made of a material that can withstand the environment during operation of the battery 10 and the pressure of the gas 4.
  • a known pipe formed of a resin reinforced by embedding a braided metal wire can be appropriately used.
  • the form of the pump 21 is not particularly limited as long as the gas 4 can flow into the pressure vessel 2, and a known pump can be appropriately used.
  • the check valve 22 is opened when the gas 4 is allowed to flow into the pressure vessel 2, and is closed after the inflow of the gas 4 into the pressure vessel 2 is finished, and is introduced into the pressure vessel 2. If the movement of the gas 4 can be stopped so that the 4 does not move toward the pump 21, the form is not particularly limited.
  • the check valve 22 a known valve can be appropriately used.
  • the check valve 22 can be a valve whose operation is electronically controlled.
  • the safety valve 23 discharges the gas 4 to the outside of the battery 10 when reducing the pressure of the gas 4 filled in the pressure-resistant vessel 2 and does not reduce the pressure of the gas 4 filled in the pressure-resistant vessel 2. If the leakage of the gas 4 can be prevented, the form is not particularly limited.
  • the safety valve 23 a known valve can be appropriately used.
  • the safety valve 23 can be a valve whose operation is electronically controlled.
  • the gas 4 is preferably an incombustible gas and / or an inert gas.
  • a known pressure gauge that can detect the pressure of the gas 4 filled in the pressure-resistant vessel 2 and can withstand the environment during operation of the battery 10 can be used as appropriate.
  • control means 30 is not particularly limited as long as it is a device capable of exhibiting the above functions.
  • control means 30 a known computer can be used as appropriate.
  • an engine control unit hereinafter sometimes referred to as “ECU”
  • ECU engine control unit
  • the function of the control means 30 may be assigned to the ECU, and the control means 30 may be provided in addition to the ECU.
  • the pressurizing means used in the present invention is not limited to the gas.
  • the pressurizing means may be a known liquid, and a solid may be used together with a gas or a liquid.
  • the battery system 100 the form of controlling the operation of the battery 10 by changing the pressure of the gas 4 has been described, but the battery system of the present invention is not limited to this form.
  • a cooling means to cool the unit cell from the outside of the unit cell.
  • the battery system of the present invention is not limited to this configuration.
  • a pressurizing means on the outside (periphery) of the unit cell to pressurize the unit cell from the outside.
  • the battery system of the present invention can be configured to include a unit cell that is not wound. Then, the battery system 200 of this invention provided with the unit cell which is not wound is demonstrated below.
  • FIG. 3 is a diagram for explaining a battery system 200 of the present invention according to the second embodiment.
  • FIG. 3 shows a part of the configuration in cross section. 3, components similar to those of the battery system 100 are denoted by the same reference numerals as those used in FIG. 1, and description thereof is omitted as appropriate.
  • the battery system 200 has a battery 40, a gas flow path 20 connected to the battery 40, and a control means 30.
  • a pump 21, a check valve 22, a safety valve 23, and a pressure gauge 24 are connected to the gas flow path 20, and operations of the pump 21, check valve 22, and safety valve 23 are controlled. Controlled by means 30.
  • the battery 40 includes a plurality of unrolled sheet-like unit cells 41, 41,..., A pressure vessel 42 that houses the unit cells 41, 41,..., An electrode terminal 43 provided on the pressure vessel 42, 43 (one is a positive terminal and the other is a negative terminal).
  • the unit cells 41, 41,... Are pressurized by the gas 4 filled around the unit cells 41, 41,.
  • FIG. 4 is a cross-sectional view illustrating the unit cell 41.
  • the unit cell 41 includes a laminate 41x and a laminate film 41y that wraps the laminate 41x.
  • the laminated body 41x includes a negative electrode current collector 41a, a negative electrode layer 41b connected to the negative electrode current collector 41a, a solid electrolyte layer 41c disposed so as to be in contact with the negative electrode layer 41b, and a solid electrolyte layer 41c.
  • a positive electrode layer 41d disposed on the opposite side of the negative electrode layer 41b so as to be in contact with the solid electrolyte layer 41c, and a positive electrode current collector 41e connected to the positive electrode layer 41d.
  • a negative electrode terminal 41m is connected to the negative electrode current collector 41a, and a positive electrode terminal 41p is connected to the positive electrode current collector 41e.
  • the unit cells 41, 41,... Housed in the pressure vessel 42 are connected to the negative electrode connection terminal 41mc of the negative terminals 41m, 41m,.
  • the negative electrode connection terminal 41 mc is connected to one electrode terminal 43, and the positive electrode connection terminal 41 pc is connected to the other electrode terminal 43.
  • the battery system 200 of this form as with the battery system 100, the applied pressure applied to the unit cells 41, 41,... Can be changed by changing the pressure of the gas 4. Therefore, the battery system 200 can achieve the same effects as the battery system 100.
  • the negative electrode current collector 41a can have the same configuration as that of the negative electrode current collector 1a except that the negative electrode current collector 41a is not wound.
  • the negative electrode layer 41b has the same structure as the negative electrode layer 1b except that it is not wound. It can be set as the same structure.
  • the solid electrolyte layer 41c can have the same configuration as the solid electrolyte layer 1c except that it is not wound.
  • the positive electrode layer 41d can have the same configuration as that of the positive electrode layer 1d except that the positive electrode layer 41d is not wound.
  • the positive electrode current collector 41e has the same configuration as that of the positive electrode current collector 1e except that it is not wound. It can be.
  • the negative electrode terminal 41m, the positive electrode terminal 41p, the negative electrode connection terminal 41mc, the positive electrode connection terminal 41pc, and the electrode terminal 43 are made of a conductive material that can withstand the environment during operation of the battery 40, the constituent material thereof Is not particularly limited, and can be formed of a known conductive material typified by a metal or a carbon material.
  • the material of the pressure vessel 42 is not particularly limited as long as it is made of a material that can withstand the environment when the battery 40 operates and the pressure of the gas 4.
  • the pressure vessel 42 can be made of a metal such as aluminum or stainless steel, for example.
  • FIG. 5 is a diagram for explaining a battery system 300 of the present invention according to the third embodiment. In order to facilitate understanding of the battery system 300, each configuration is shown in a simplified manner. In FIG. 5, the same reference numerals as those used in FIG. 3 are assigned to the same configurations as those of the battery system 200, and the description thereof is omitted.
  • the battery system 300 includes a battery 40, a gas flow path 20 connected to the battery 40, an accumulation unit 50 connected to the gas flow path 20, and a control unit 30.
  • a valve 51 is opened between the accumulator 50 and the pressure vessel 42 when the movement of the gas 4 between them is allowed, and closed when the movement of the gas 4 between them is not allowed.
  • the pump 52 used when moving the gas 4 between the storage part 50 and the pressure
  • a pump 21, a check valve 22, a safety valve 23, and a pressure gauge 24 are connected to the gas flow path 20. The operations of the valve 22, the safety valve 23, the valve 51, and the pump 52 are controlled by the control means 30.
  • the accumulation unit 50 is formed of a shrinkable substance (for example, a known resin), and swells when the pressure of the gas 4 filled therein increases, and withstands when the pressure of the gas 4 filled therein decreases. .
  • the gas 4 filled in the pressure vessel 42 and the accumulation unit 50 is sent through the gas flow path 20 using the pump 21 and flows into the pressure vessel 42 and the accumulation unit 50.
  • the check valve 22 and the valve 51 are opened and the safety valve 23 is closed, and the pressure vessel 42 is closed from a gas storage unit (not shown) using the pump 21. And the gas 4 is sent to the accumulation part 50.
  • the operation of the pump 21 is stopped, and the check valve 22 is closed to move the gas 4 from the pressure vessel 42 to the gas storage unit. Is prevented. Furthermore, when the pressure of the gas 4 reaches the target value, the valve 51 is closed, thereby preventing the movement of the gas 4 from the pressure-resistant container 42 toward the accumulation unit 50.
  • the CPU 31 determines that the pressure in the pressure vessel 42 detected by the pressure gauge 24 is higher than the threshold value when the battery 40 is operated, the CPU 31 opens the valve 51 so that the valve 51 is opened. Is controlled. By opening the valve 51, when the pressure of the gas 4 in the pressure vessel 42 is higher than the pressure in the storage unit 50, the gas 4 can be moved from the pressure vessel 42 toward the storage unit 50. An increase in internal pressure in the pressure vessel 42 is suppressed.
  • the CPU 31 determines that the pressure in the pressure vessel 42 detected by the pressure gauge 24 is lower than the threshold value when the battery 40 is operated, the CPU 31 opens the valve 51 to open the valve 51. Operation is controlled.
  • the valve 51 By opening the valve 51, when the pressure of the gas 4 in the pressure vessel 42 is lower than the pressure in the storage unit 50, the gas 4 can be moved from the storage unit 50 toward the pressure vessel 42. The internal pressure drop in the pressure vessel 42 is suppressed.
  • the CPU 31 controls the operation of the valve 51 and the pump 52 to open the valve 51 and operate the pump 52.
  • the gas 4 can be moved from the pressure vessel 42 to the accumulation unit 50. In this way, by moving the gas 4 from the pressure vessel 42 to the accumulating unit 50, the pressure of the gas 4 in the pressure vessel 42 can be lowered, so that the internal resistance of the unit cells 41, 41,.
  • the CPU 31 that receives information from a detection unit (not shown) determines that the possibility that the vehicle will collide is high, the pressure vessel 42 before the collision.
  • the valve 51 can be opened by the control means 30 and the pump 52 can be operated.
  • the pressure of the gas 4 in the pressure vessel 42 is lowered before the collision.
  • the valve 51 can be opened by the control means 30 and the pump 52 can be operated.
  • the valve 51 and the pump 52 are operated using the control means 30 so that the pressure of the gas 4 in the pressure vessel 42 is restored. You can also By controlling the operation of the valve 51 and the pump 52 in this way, when the pressure of the gas 4 in the pressure vessel 42 is increased, it is transmitted from the outside of the pressure vessel 42 to the cells 41, 41,. In addition to reducing the force generated, the collision avoidance operation is supported by increasing the pressure of the gas 4 to increase the output of the cells 41, 41,... The pressure of the gas 4 can be restored. Therefore, breakage of the unit cells 41, 41,... Can be more efficiently suppressed, and safety can be improved.
  • the pressure of the gas 4 in the pressure vessel 42 is lowered, the battery reaction is stopped by increasing the internal resistance of the unit cells 41, 41,. After the collision avoidance operation is completed, the pressure of the gas 4 in the pressure vessel 42 can be restored.
  • the pressure of the gas 4 in the pressure-resistant container 42 is increased or decreased by combining the operation control of the pump 21, the check valve 22, and the safety valve 23. be able to.
  • the gas 4 in the pressure vessel 42 is prevented while preventing the gas 4 from being discharged to the outside. It is possible to finely adjust the pressure.
  • the state of the pressure of the gas 4 in the pressure vessel 42 can be estimated by observing the shape of the storage unit 50. Furthermore, when the pressure of the gas 4 in the pressure vessel 42 is excessively increased, the gas 4 is caused to flow into the storage unit 50 and the storage unit 50 is ruptured, so that the parts other than the storage unit 50 including the battery 40 are removed. It is also possible to prevent damage.
  • the storage unit 50 can be made of a known material that can withstand the pressure of the gas 4 and can contract. Examples of such materials include known metals and resins.
  • valve 51 can have the same form as the check valve 22 and the safety valve 23, and the pump 52 can have the same form as the pump 21.
  • the battery system of the present invention in which the storage unit is provided is not limited to the form.
  • the battery system of the present invention provided with the storage unit may be configured such that a device corresponding to the pump 52 is not provided.
  • the gas 4 can be caused to flow into the pressure-resistant container 42 by crushing (contracting) the storage unit 50 in a state where the valve 51 is open.
  • the battery system of the present invention in which the storage unit is provided is not limited to this mode, and is provided with a storage unit that does not contract. It is also possible. Even if an accumulating portion that does not contract is provided, the pressure of the pressurizing means can be finely adjusted while preventing waste of the pressurizing means (gas 4 in the above example) that pressurizes the unit cell. However, it is possible to contract from the viewpoint of making it easy to estimate the pressure state in the pressure vessel from the outside, and making the storage part function as a pump by crushing (shrinking). It is preferable that a simple storage unit is provided.
  • the storage unit is provided outside the pressure vessel, but the battery system of the present invention provided with the storage unit is not limited to this mode.
  • the storage unit may be housed in a pressure resistant container.
  • the battery system of the present invention may be configured to include one type of valve (for example, a three-way valve) having a check valve function and a safety valve function.
  • the device on which the battery system of the present invention described above is mounted is not particularly limited.
  • the battery system of the present invention can be mounted on a vehicle, for example. A vehicle equipped with the battery system of the present invention will be described below.
  • FIG. 6 is a diagram illustrating a control flow of a vehicle (vehicle of the present invention) equipped with the battery system of the present invention.
  • a vehicle equipped with the battery system of the present invention has a system for reducing the risk of the driver when the possibility of collision becomes high or at the time of the collision (hereinafter sometimes referred to as “danger mitigation system”). The case where it is provided will be described.
  • the flow shown in the center of FIG. 6 is a control flow performed in the danger mitigation system, and the flows shown on the right and left sides of FIG. 6 are control flows performed on the battery system of the present invention.
  • the control for the battery system of the present invention is performed in conjunction with the control of the danger mitigation system.
  • step S11 it is determined whether or not there is a possibility of collision. If a negative determination is made in S11, there is no possibility of a collision, so S11 is repeated until an affirmative determination is made in S11. On the other hand, if an affirmative determination is made in S11, the driver may have a possibility of a collision by sounding an alarm buzzer or lighting a part of display means provided in the vehicle. (S12).
  • the brake assist function, the brake control, and the seat belt control are operated by linking the control of the danger mitigation system with the control of the pressure adjusting means in the battery system of the present invention mounted on the vehicle of the present invention. It is possible to temporarily secure the output necessary for the operation.
  • the pressure of the pressurizing means is temporarily increased in the battery system of the present invention, the rigidity required for the pressure vessel is reduced as compared with the case where the pressure of the pressurizing means is constantly increased. Is possible. Therefore, the weight and cost of the battery can be reduced by adopting such a configuration.
  • increasing the applied pressure improves the bonding state between the solids and reduces the resistance of substances (ions and electrons) that move between the solids. Is possible).
  • the vehicle of the present invention is provided with a battery system configured to pressurize a unit cell using a non-flammable gas and / or an inert gas, affirmative in S23 or in S18
  • the operation of the valve is controlled by the control means of the battery system so that the valve (the safety valve 23 in the case of the battery system 100 or the battery system 200, the valve 51 and the safety valve 23 in the case of the battery system 300) is opened. It is preferable to do.
  • the non-flammable gas and / or inert gas discharged to the outside in this way is adjusted to the direction of the gas flow path through which the gas flows in advance, so that there is a risk of fire (for example, the presence of fuel) Or a portion driven by electricity).
  • Introducing non-flammable gas and / or inert gas into a fire-risk area makes it possible to prevent fires and extinguish fire, making it easier to improve vehicle safety Become.
  • the pressing force of the unit cell is increased in S21.
  • the degree of applied pressure is generally defined because it is related to the difference between the output required when the possibility of collision is not high and the output required when the possibility of collision is high.
  • the pressure of the pressurizing means is increased by about 10% or more and 30% or less compared to before the applied pressure is increased.
  • the pressing force of the unit cell is maximized in S22.
  • the applied pressure is maximized means that the pressure of the pressurizing means is increased to a state where the output of the battery does not change even if the pressure is further increased.
  • the pressure of the maximized pressurizing means varies depending on the material and form used for the unit cell, it is not particularly limited. For example, the pressure is increased by about 30% or more compared to before the pressurizing force is increased. Refers to pressure.
  • the time from when the pressing force of the unit cell is maximized until the pressing force of the unit cell starts to be reduced in S23 can be, for example, about several seconds.
  • the battery used in the present invention may have a form having an electrolyte layer formed by impregnating a known separator with an electrolytic solution.
  • the unit cell can transmit the pressure from one to the other, like a laminate film, so that the output can be changed by changing the pressure applied by the pressure means. It may be in a form housed in a simple substance.
  • a known organic electrolytic solution that can be used in a lithium ion secondary battery can be appropriately used as the electrolytic solution.
  • Such an organic electrolyte contains a lithium salt and an organic solvent.
  • the lithium salt contained in the organic electrolyte include inorganic lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , and LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C Examples thereof include organic lithium salts such as 2 F 5 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 .
  • organic solvent for the organic electrolyte examples include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), butylene carbonate, ⁇ -butyrolactone, Examples include sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, and mixtures thereof.
  • concentration of the lithium salt in the organic electrolyte can be, for example, in the range of 0.1 mol / L to 3 mol / L.
  • a low-volatile liquid such as an ionic liquid may be used as the organic electrolyte.
  • the form in which the lithium ion secondary battery is used is exemplified, but the battery system and the vehicle of the present invention are not limited to the form.
  • the battery used in the present invention can be configured such that ions other than lithium ions move between the positive electrode layer and the negative electrode layer. Examples of such ions include sodium ions and potassium ions.
  • the positive electrode active material, the electrolyte, and the negative electrode active material may be appropriately selected according to the moving ions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本発明は、安全性を高めることが可能な電池システム及び車両を提供することを主目的とする。 本発明は、正極層及び負極層、並びに、正極層及び負極層の間に配設された電解質層を含む素電池と、素電池を加圧して素電池の内部抵抗を変化させる加圧手段と、加圧手段の圧力を調整可能な圧力調整手段と、素電池に対する危険度を判断可能な制御手段とを備え、制御手段で判断された危険度に応じて、圧力調整手段の動作が制御される電池システムとし、該電池システムを搭載した車両であって、危険度に車両の衝突及び衝突可能性が含まれ、制御手段は、衝突の有無及び衝突可能性に応じて、圧力調整手段の動作を制御可能である車両とする。

Description

電池システム及び車両
 本発明は電池システム及び車両に関し、特に、圧力を付与される素電池を有する電池システム及び該電池システムを搭載した車両に関する。
 リチウムイオン二次電池(以下において、「リチウム電池」ということがある。)は、他の二次電池よりもエネルギー密度が高く、高電圧での動作が可能という特徴を有している。そのため、小型軽量化を図りやすい二次電池として携帯電話等の情報機器に使用されており、近年、電気自動車やハイブリッド自動車用等、大型の動力用としての需要も高まっている。
 リチウムイオン二次電池には、正極層及び負極層と、これらの間に配置される電解質層とが備えられ、電解質層には、例えば非水系の液体状や固体状の電解質が用いられる。液体状の電解質(以下において、「電解液」という。)が用いられる場合には、電解液が正極層や負極層の内部へと浸透しやすい。そのため、正極層や負極層に含有されている活物質と電解液との界面が形成されやすく、性能を向上させやすい。ところが、広く用いられている電解液は可燃性であるため、安全性を確保するためのシステムを搭載する必要がある。一方、不燃性である固体状の電解質(以下において、「固体電解質」という。)を用いると、上記システムを簡素化できる。それゆえ、不燃性である固体電解質を含有する層(以下において、「固体電解質層」という。)が備えられる形態のリチウムイオン二次電池(以下において、「固体電池」という。)が提案されている。
 このような電池に関する技術として、例えば特許文献1には、集電体と活物質含有層との間に過充電時に高抵抗体に変化する導電性中間層を配置した構造を、組電池用非水電解液二次電池の正極が有することが開示されている。また、特許文献2には、正極端子又は負極端子に、加熱により電気抵抗値が大となる正温度抵抗特性を有する炭素粉含有の樹脂膜を備えた電池が開示されている。また、特許文献3には、負極集電体と、該負極集電体に接する第1層、該第1層に接する第2層からなる電池用負極を有する電池において、第1層はBET法による比表面積が1.5m/g以下のアルカリ金属イオンを吸蔵放出可能な炭素材料を有し、第2層はアルカリ金属イオンを吸蔵放出可能な材料を有する技術が開示されている。また、特許文献4には、正極活物質層、電解質層、及び負極活物質層からなる群より選択される少なくとも1層の表面又は内部にガス発生剤を含み、二次電池の温度が60℃以上300℃未満に達した時にガス発生剤からガスが発生する非水電解質二次電池が開示されている。また、特許文献5には、過充電時に正極電位が高くなると反応し電池内部抵抗を増大させる過充電抑制剤に関する技術が開示されている。
特開2000-164206号公報 特開平1-197963号公報 特開2003-346788号公報 特開2008-226807号公報 特開2010-198888号公報
 特許文献1に開示されている技術では、過充電時に高抵抗体に変化する導電性中間層を用いているので、過充電時の安全性を高めることが可能になると考えられる。しかしながら、特許文献1に開示されている技術では、例えば熱暴走や電池が用いられている機器の衝突等、過充電とは異なる安全性低下要素への対策が不十分である。また、特許文献2乃至特許文献5に開示されている技術では、加熱及び過充電の何れか一方への対策は施されているが、電池が用いられている機器の衝突等への対策は不十分であった。それゆえ、特許文献1乃至特許文献5に開示されている技術を組み合わせても、電池の安全性が不十分になりやすかった。
 そこで本発明は、安全性を高めることが可能な電池システム及び車両を提供することを課題とする。
 上記課題を解決するために、本発明は以下の手段をとる。すなわち、
  本発明の第1の態様は、正極層及び負極層、並びに、正極層及び負極層の間に配設された電解質層を含む素電池と、該素電池を加圧して素電池の内部抵抗を変化させる加圧手段と、該加圧手段の圧力を調整可能な圧力調整手段と、素電池に対する危険度を判断可能な制御手段と、を備え、制御手段で判断された危険度に応じて、圧力調整手段の動作が制御されることを特徴とする、電池システムである。
 本発明の第1の態様によれば、加圧手段から素電池へと付与される圧力を調整することによって、素電池の内部抵抗を変化させることが可能になる。それゆえ、例えば、過充放電、熱暴走、内圧上昇、短絡、及び、電池が用いられている機器に外力が付与される等、素電池の安全性低下が懸念される場合に、素電池へと付与される圧力を低減して素電池の内部抵抗を増大させることにより、電池内で生じる反応を停止させることが可能になる。こうして電池内で生じる反応を停止させることにより、電池システムの安全性を高めることが可能になる。さらに、本発明の第1の態様によれば、安全性の低下が懸念されなくなった場合には、圧力を増大して元に戻すことによって、素電池の出力を圧力調整前の状態に戻すことも可能になる。
 ここに、「素電池に対する危険度」とは、例えば、素電池の過充放電、異常加熱、圧力上昇、及び、短絡のほか、素電池が車両に搭載されている場合には、車両に対する事故等をいう。このほか、素電池が容器に収容されている場合には、容器へと付与された力や、容器へ今後付与される力も、素電池に対する危険度に含まれ得る。本発明の第1の形態では、素電池に対する危険度が所定値以上又は所定値未満である場合に、制御手段で危険と判断することができ、制御手段で危険と判断された場合には、加圧手段の圧力を変更するように、圧力調整手段の動作が制御される。例えば、素電池の温度が所定値以上である場合に、加圧手段として用いられている物質(例えば、気体等。以下において同じ。)の圧力を低減するように圧力調整手段の動作を制御する形態とすることにより、素電池の内部抵抗を増大させることができるので、素電池で生じている反応の速度を低減することが可能になり、その結果、素電池の温度を低減して安全性を高めることが可能になる。また、例えば、素電池が搭載されている機器が衝突する可能性が高い場合に、加圧手段として用いられている物質の圧力を増大するように圧力調整手段の動作を制御する形態とすることにより、電池システムの外部から素電池へと伝えられる、加圧手段に起因する圧力以外の外力を低減することが可能になる。それゆえ、かかる形態とすることにより、付与された外力に起因する破損を抑制しやすくなり、その結果、電池システムの安全性を高めることが可能になる。また、例えば、制御手段における判断を、車両に備えられている衝突被害を軽減するための制御と対応させることも可能である。具体的には、衝突可能性が高くなった時にブレーキ等の出力を上げるために加圧手段の圧力を高めることで一時的にブレーキの出力を上げることや、車両衝突時に素電池へ付与されると予想される力が所定値以上である場合に、加圧手段の圧力を車両衝突前に予め高めておくように圧力調整手段の動作を制御する形態とすることができる。かかる形態とすることにより、車両衝突時に素電池へと伝えられる力を低減することが可能になるので、素電池の破損をより効率良く抑制することが可能になり、その結果、電池システムの安全性を高めることが可能になる。
 また、上記本発明の第1の態様において、加圧手段に流体が含まれることが好ましい。
 ここに、「流体」とは、気体や液体をいい、気体には、二酸化炭素等に代表される不燃性の気体のほか、ヘリウムガス、窒素ガス、及び、アルゴンガス等に代表される不活性の気体(燃焼を助長しない気体)が含まれる。加圧手段に流体が含まれることにより、素電池へと付与される圧力を早く変化させることが容易になるので、上記効果に加えて、瞬間的な危険度の変化に応じて素電池へと付与される圧力を調整することも可能になる。さらに、流体として不燃性の気体や不活性の気体を用いることにより、安全性を一層高めることが可能になる。
 また、加圧手段に流体が含まれる上記本発明の第1の態様において、1又は2以上の素電池が容器に収容され、流体を蓄積可能な蓄積部、該蓄積部と容器とを繋ぐ流体流路、並びに、該流体流路における流体の移動を調整することにより蓄積部における流体の圧力及び容器における流体の圧力を調整可能な調整手段が、加圧手段に含まれることが好ましい。
 蓄積部、流体流路、及び、調整手段が加圧手段に含まれる形態とすることにより、流体を容器と蓄積部との間で移動させることができる。容器と蓄積部との間で流体を移動させることにより、上記効果に加えて、流体の外部への漏洩を防止しつつ素電池へと付与される圧力を微調整することが容易になる。
 また、蓄積部、流体流路、及び、調整手段が加圧手段に含まれる上記本発明の第1の態様において、蓄積部が収縮可能であることが好ましい。
 蓄積部が収縮可能であることにより、上記効果に加え、蓄積部を収縮させて蓄積部自体をポンプとして作動させて、蓄積部に蓄積されていた流体を容器内へと移動させることによって、素電池へと付与される圧力を高めることが可能になる。さらに、蓄積部の形状を観察することによって、加圧手段の動作状況を把握することも可能になる。
 本発明の第2の態様は、上記本発明の第1の態様にかかる電池システム(変形例も含む)を搭載した車両であって、上記危険度に車両の衝突及び衝突可能性が含まれ、制御手段は、衝突の有無及び衝突可能性に応じて、圧力調整手段の動作を制御可能であることを特徴とする、車両である。
 本発明の第2の態様によれば、衝突の有無及び衝突可能性に応じて加圧手段の圧力を調整することができるので、衝突可能性を有する時に、衝突に備えて安全性を一層向上させることが可能な、車両を提供することができる。なお、本発明の第2の態様にかかる車両には、ハイブリッド自動車のほか、内燃機関を有しない電気自動車も含まれる。
 本発明の第3の態様は、加圧手段に流体が含まれる上記本発明の第1の態様にかかる電池システム(変形例も含む)を搭載した、燃料を用いる車両であって、上記危険度に車両の衝突及び衝突可能性が含まれ、制御手段は、衝突の有無及び衝突可能性に応じて圧力調整手段の動作を制御可能であり、流体に不燃性の気体及び/又は不活性の気体が用いられ、衝突時に、上記不燃性の気体及び/又は不活性の気体を燃料が存在する部位へ向けて導入する導入手段を有することを特徴とする、車両である。
 ここに、本発明において、「上記不燃性の気体及び/又は不活性の気体」とは、流体に不燃性の気体が用いられる場合には不燃性の気体をいい、流体に不活性の気体が用いられる場合には不活性の気体をいう。また、流体に不燃性の気体及び不活性の気体が用いられる場合には、不燃性の気体及び不活性の気体をいう。また、「燃料が存在する部位」とは、例えば、エンジンルームやエンジン内部や燃料タンクをいう。衝突時に、不燃性の気体及び/又は不活性の気体が、燃料が存在する部位へ向けて導入されることにより、素電池へと付与される圧力を低減することが可能になるので、電池内で生じる反応を停止させることが可能になり、その結果、車両の安全性を高めることが可能になる。加えて、不燃性の気体及び/又は不活性の気体が、燃料が存在する部位へ向けて導入されることにより、衝突時の発火を防止することが可能になるので、車両の安全性を一層高めることが可能になる。
 本発明の第4の態様は、加圧手段に流体が含まれる上記本発明の第1の態様にかかる電池システム(変形例も含む)を搭載した、電気によって駆動する車両であって、上記危険度に車両の衝突及び衝突可能性が含まれ、制御手段は、衝突の有無及び衝突可能性に応じて圧力調整手段の動作を制御可能であり、流体に不燃性の気体及び/又は不活性の気体が用いられ、衝突時に、上記不燃性の気体及び/又は不活性の気体を電気によって駆動する部位へ向けて導入する導入手段を有することを特徴とする、車両である。
 ここに、本発明の第4の態様において、「電気によって駆動する部位」には、例えば、インバータ等が含まれる。インバータ等は発熱し得るため、衝突によって過電流が発生すると高温になり、場合によっては発火する虞がある。ところが、不燃性の気体及び/又は不活性の気体が、電気によって駆動する部位へ向けて導入されることにより、高温による発火を抑制・防止することが可能になるので、車両の安全性を高めることが可能になる。また、衝突時に、不燃性の気体及び/又は不活性の気体が、電気によって駆動する部位へ向けて導入されることにより、素電池へと付与される圧力を低減することが可能になるので、電池内で生じる反応を停止させることが可能になり、その結果、車両の安全性を一層高めることが可能になる。
 また、上記本発明の第2の態様、上記本発明の第3の態様、及び、上記本発明の第4の態様において、衝突可能性を有する場合に、加圧手段の圧力を高めるように、制御手段によって圧力調整手段の動作が制御されることが好ましい。
 衝突可能性を有する場合に、加圧手段の圧力を高めるように、制御手段によって圧力調整手段の動作が制御されることにより、例えば衝突の可能性が高い場合にブレーキやシートベルトやエアバッグ等が瞬時に作動するように、これらの応答性能を一層高めることが可能になるので、車両の安全性を高めることが容易になる。
 本発明によれば、安全性を高めることが可能な電池システム及び車両を提供することができる。
電池システム100を説明する図である。 素電池1を説明する図である。 電池システム200を説明する図である。 素電池41を説明する断面図である。 電池システム300を説明する図である。 車両の制御フローを説明する図である。
 以下、図面を参照しつつ、本発明の電池システム及び車両にリチウムイオン二次電池である固体電池が用いられる場合について主に説明する。なお、以下に示す形態は本発明の例示であり、本発明は以下に示す形態に限定されない。図面では、本発明の構成を適宜簡略化して示す。また、見やすくするため、図面では、一部符号の記載を省略することがある。
 図1は、第1実施形態にかかる本発明の電池システム100を説明する図である。電池システム100の理解を容易にするため、図1では、一部の構成を断面で示している。
 図1に示したように、電池システム100は、電池10と、該電池10に接続されたガス流路20と、制御手段30と、を有している。ガス流路20には、ポンプ21、逆止弁22、安全弁23、及び、圧力計24が接続されており、ポンプ21、逆止弁22、及び、安全弁23の動作は制御手段30によって制御される。
 電池10は、円筒状に巻回された素電池1と、該素電池1を収容する略円柱状の耐圧容器2と、該耐圧容器2に設けられた電極端子3、3(一方が正極端子、他方が負極端子)と、を有している。素電池1は、素電池1の軸心部(素電池1によって囲まれた領域)に充填された気体4によって、軸心側から外側へ向けて力を付与され、力を付与された素電池1が耐圧容器2によって拘束されることにより、素電池1に所定の圧力が付与される。
 図2は、素電池1を説明する断面図である。図2では、素電池1の一部を拡大して示している。図2に示したように、素電池1では、固体電解質層1cが正極層1d及び負極層1bによって挟持されている。正極層1dには正極集電体1eが、負極層1bには負極集電体1aが、それぞれ接続されており、正極集電体1eは一方の電極端子3に、負極集電体1aは他方の電極端子3に、それぞれ接続されている。なお、負極集電体1a、負極層1b、固体電解質層1c、正極層1d、及び、正極集電体1eは、不図示のラミネートフィルムに包まれている。電池10では、気体4を用いて素電池の厚さ方向(図1及び図2の紙面に平行な方向)に圧力が付与され、気体4の圧力を変更することによって、素電池1の内部抵抗が調整される。
 図1に戻り、電池システム100の説明を続ける。耐圧容器2に充填される気体4は、ポンプ21を用いてガス流路20内を送られ、耐圧容器2へと流入する。耐圧容器2における気体4の圧力を高める際には、逆止弁22が開かれ、ポンプ21を用いて、不図示の気体貯蔵部から耐圧容器2へと気体4が送られる。圧力計24によって測定された気体4の圧力が目標値に達すると、ポンプ21の動作が停止され、逆止弁22が閉じられることにより、耐圧容器2から気体貯蔵部へと向かう気体4の移動が防止される。これに対し、耐圧容器2に充填された気体4の圧力を下げる際には、安全弁23が開かれ、耐圧容器2に充填されていた気体4を外部へ吐出することによって、耐圧容器2に充填されている気体4の圧力が下げられる。安全弁23は、耐圧容器2に充填された気体4の圧力を下げる際に開かれ、耐圧容器2における気体4の圧力を高める際(耐圧容器2へ気体4を充填する際)には閉じられている。
 電池システム100において、ポンプ21、逆止弁22、及び、安全弁23の動作は、制御手段30によって制御される。圧力計24で検出された気体4の圧力に関する情報のほか、不図示の電圧センサや温度センサによって検出された素電池1の電圧や温度に関する情報等、電池10の安全性に関係する情報は、制御手段30へと送られる。制御手段30には、ポンプ21、逆止弁22、及び、安全弁23の動作制御を実行可能なCPU31と、該CPU31に対する記憶装置とが設けられている。CPU31は、マイクロプロセッサユニット及びその動作に必要な各種周辺回路を組み合わせて構成され、CPU31に対する記憶装置は、例えば、ポンプ21、逆止弁22、及び、安全弁23の動作制御に必要なプログラムや各種データを記憶するROM32と、CPU31の作業領域として機能するRAM33等を組み合わせて構成される。当該構成に加えて、さらに、CPU31が、ROM32に記憶されたソフトウエアと組み合わされることにより、電池システム100における制御手段30が機能する。
 圧力計24によって検出された圧力に関する情報(出力信号)や、電圧や温度等、電池システム100の危険度を判断する基になる情報(出力信号)は、制御手段30の入力ポート34を介して、入力信号としてCPU31へと到達する。CPU31は、入力信号及びROM32に記憶されたプログラムに基づいて、ポンプ21、逆止弁22、及び、安全弁23に対する動作指令を決定する。CPU31で決定された動作指令は、出力ポート35を介してポンプ21、逆止弁22、及び、安全弁23へと出力され、これらの動作が制御される。
 電池システム100では、圧力計24によって検出された気体4の圧力が目標値未満であるとCPU31によって判断された場合に、ポンプ21を作動させ且つ逆止弁22を開くことにより、耐圧容器2へ気体4が送られ、気体4の圧力が高められる。気体4の圧力が目標値に達すると、制御手段30によって動作を制御されるポンプ21の動作が停止され、制御手段30によって動作を制御される逆止弁22が閉じられる。ポンプ21及び逆止弁22の動作をこのように制御することによって、気体4を用いて素電池1へと付与される圧力を制御することができ、素電池1の内部抵抗を制御することが可能になる。
 このほか、電池システム100では、例えば、圧力計24によって検出された気体4の圧力がCPU31によって閾値を超えていると判断された場合のほか、不図示の電圧センサから情報を送られたCPU31によって過充放電が懸念されると判断された場合や、不図示の温度センサから情報を送られたCPU31によって熱暴走が懸念されると判断された場合等に、安全弁23を開くように制御手段30によって安全弁23の動作が制御され、気体4の圧力が下げられる。圧力計24によって検出された気体4の圧力が所定値まで下がったら、安全弁23は閉じられる。気体4の圧力を下げることにより、素電池1の内部抵抗を増大させることができるので、内圧異常、過充放電、熱暴走、及び、短絡等を防止することが可能になる。このほか、気体4の圧力を下げることにより、素電池1や耐圧容器2の破損を防止することも可能になる。これらを防止することにより、安全性を高めることが可能になるので、本発明によれば、安全性を高めることが可能な電池システム100を提供することができる。
 電池システム100では、安全弁23を開いて気体4を外部へ吐出することにより、電池10の動作を速やかに停止することができる。これにより、電池内部で自発的に進む反応(例えば、電極温度上昇により、電極材から酸素が遊離し、電解質と反応することによる二極化)も確実に止めることができる。さらに、吐出した気体4の圧力を利用した音や振動等で警報を発することも可能になるので、電池システム100の利用者に注意喚起をすることも可能になる。加えて、安全弁23を開いて気体4を外部へ吐出すると、断熱膨張により、素電池1を冷却することも可能になる。素電池1を冷却することにより、電池内部で自発的に進む上記反応の反応速度を低減することが可能になるので、安全性を高めやすくなる。なお、電池システム100が車両に用いられている場合には、吐出した気体4を利用して、水没の危険がある場合等にフロートを展開したり、吐出した気体4を緊急用の動力として利用したりすることも可能である。電池システム100では、電力や動力がない場合であっても、安全弁23を手動で開くことにより、上記効果を奏することが可能になる。
 一方で、内圧異常や過充放電や熱暴走や短絡等が懸念されない状態になったとCPU31によって判断された場合、電池システム100では、気体4の圧力を高めて元に戻すように、ポンプ21及び逆止弁22の動作を制御することもできる。
 さらに、例えば、電池システム100が車両に搭載されている場合、不図示の検知手段から情報を送られたCPU31によって車両が衝突する可能性が高くなったと判断された場合、衝突前に気体4の圧力を高めるように、制御手段30によってポンプ21及び逆止弁22の動作を制御することもできる。このほか、素電池1における反応を停止させることを優先させる場合には、車両が衝突する可能性が高くなった際に、衝突前に気体4の圧力を下げるように、制御手段30によって安全弁23の動作を制御することもできる。一方で、CPU31が、車両が衝突する可能性が低くなったと判断した場合は、気体4の圧力を元に戻すように、制御手段30はポンプ21、逆止弁22、及び、安全弁23の動作を制御することもできる。ポンプ21、逆止弁22、及び、安全弁23の動作をこのように制御することにより、気体4の圧力を高めた場合には、車両衝突時に耐圧容器2の外側から素電池1へと伝えられる力を低減することが可能になるほか、気体4の圧力を高めて素電池1の出力を上げることで衝突回避操作の支援を行なうことが可能になり、衝突回避操作終了後は気体4の圧力を元に戻すことが可能になる。それゆえ、素電池1の破損をより効率良く抑制することが可能になり、安全性を高めることが可能になる。これに対し、気体4の圧力を下げた場合には、車両衝突時に素電池1の内部抵抗を増大させて電池反応を停止し、これによって安全性を高めることが可能になり、衝突回避操作終了後は気体4の圧力を元に戻すことが可能になる。
 これらの特徴を有する電池システム100に備えられる電池10は、素電池1を作製する工程と、作製した素電池1を耐圧容器2に収容する工程と、耐圧容器2に気体4を供給して素電池1を加圧する工程と、を経て製造することができる。
 素電池1を作製する工程は、負極集電体、該負極集電体に接続された負極層、該負極層と接触するように配設された固体電解質層、該固体電解質層と接触するように負極層とは反対側に配設された正極層、及び、該正極層に接続された正極集電体を有する積層体を作製するステップと、作製した積層体をラミネートフィルムで包むステップと、ラミネートフィルムに包まれた積層体を円筒状に巻回するステップと、に大別することができる。
 上記積層体を作製するには、例えば、少なくとも負極活物質及び固体電解質を溶媒に分散して作製した負極スラリーを、負極集電体1aの表面に塗布する過程を経て、負極集電体1aの表面に負極層1bを形成する。また、少なくとも正極活物質及び固体電解質を溶媒に分散して作製した正極スラリーを、正極集電体1eの表面に塗布する過程を経て、正極集電体1eの表面に正極層1dを形成する。そして、固体電解質を溶媒に分散して作製した電解質スラリーを、例えば正極層1dの表面に塗布する過程を経て固体電解質層1cを形成した後、固体電解質層1cが負極層1b及び正極層1dで挟まれるように、正極層1dの表面に形成された固体電解質層1cの上に、負極集電体1aの表面に形成された負極層1bを配置する。その後、負極集電体1a、負極層1b、固体電解質層1c、正極層1d、及び、正極集電体1eの積層方向(厚さ方向)の両端側から圧縮力を付与することにより、積層体を作製することができる。
 こうして積層体を作製したら、負極集電体1aと電極端子3とを電気的に接続すべき部位、及び、正極集電体1eと電極端子3とを電気的に接続すべき部位の全部を収容しないようにしながら、積層体をラミネートフィルムで包む。そして、積層体を包んでいるラミネートフィルムの内側を減圧しながら、積層体の周りに位置しているラミネートフィルムを加熱し熱溶着することにより、積層体と該積層体を包むラミネートフィルムとを有する、巻回される前の素電池を作製することができる。こうして積層体をラミネートフィルムで包んだら、ラミネートフィルムに包まれた積層体を円筒状に巻回し、ラミネートフィルムの端面同士を熱溶着して接合することにより、円筒状に巻回された素電池1を作製することができる。こうして素電池1を作製したら、例えば、ラミネートフィルムの端面同士を熱溶着した箇所の一部に、ガス流路20と対応した孔を開ける。そして、負極集電体1aを一方の電極端子3に、正極集電体1eを他方の電極端子3にそれぞれ接続し、ガス流路20と耐圧容器2との接続部(ガス流路20の出口)をラミネートフィルムに形成した孔から臨める状態となるように、素電池1を耐圧容器2へ収容し、耐圧容器2を密閉する。耐圧容器2を密閉したら、逆止弁22が開かれている状態下でポンプ21を作動させ、耐圧容器2へ気体4を流入させることにより、気体4を用いて素電池1を加圧することができる。電池10は、例えば上記過程を経て作製することができる。
 電池システム100において、負極集電体1aや正極集電体1eは、リチウムイオン二次電池の負極集電体や正極集電体として使用可能な公知の導電性材料によって構成することができる。そのような導電性材料としては、Cu、Ni、Al、V、Au、Pt、Mg、Fe、Ti、Co、Cr、Zn、Ge、Inからなる群から選択される一又は二以上の元素を含む金属材料を例示することができる。また、負極集電体1a及び正極集電体1eは、例えば、金属箔や金属メッシュ等の形状にすることができる。
 また、負極層1bに含有させる負極活物質としては、リチウムイオン二次電池の負極層に含有させることが可能な公知の活物質を適宜用いることができる。そのような活物質としては、グラファイト等を例示することができる。また、負極層1bに含有させる固体電解質としては、リチウムイオン二次電池の負極層に含有させることが可能な公知の固体電解質を適宜用いることができる。そのような固体電解質としては、LiPO等の酸化物系固体電解質のほか、LiPSや、LiS:P=50:50~100:0となるようにLiS及びPを混合して作製した硫化物系固体電解質(例えば、質量比で、LiS:P=75:25となるようにLiS及びPを混合して作製した硫化物固体電解質)等を例示することができる。このほか、負極層1bには、負極活物質と固体電解質とを結着させるバインダーや導電性を向上させる導電材が含有されていても良い。負極層1bに含有させることが可能なバインダーとしては、ブチレンゴム等を例示することができ、負極層1bに含有させることが可能な導電材としては、カーボンブラック等を例示することができる。また、負極層1bを作製する際に用いる溶媒としては、リチウムイオン二次電池の負極層作製時に用いるスラリーを調整する際に使用可能な公知の溶媒を適宜用いることができる。そのような溶媒としては、ヘプタン等を例示することができる。
 また、固体電解質層1cに含有させる固体電解質としては、負極層1bに含有させることが可能な上記固体電解質等を例示することができる。また、固体電解質層1cを作製する際に用いる溶媒としては、負極層1bを作製する際に使用可能な上記溶媒等を例示することができる。
 また、正極層1dに含有させる正極活物質としては、リチウムイオン二次電池の正極層に含有させることが可能な公知の活物質を適宜用いることができる。そのような正極活物質としては、コバルト酸リチウム(LiCoO)等を例示することができる。また、正極層1bに含有させる固体電解質としては、リチウムイオン二次電池の正極層に含有させることが可能な公知の固体電解質を適宜用いることができる。そのような固体電解質としては、負極層1bに含有させることが可能な上記固体電解質等を例示することができる。このほか、正極層1dには、正極活物質と固体電解質とを結着させるバインダーや導電性を向上させる導電材が含有されていても良い。正極層1dに含有させることが可能なバインダーや導電材としては、負極層1bに含有させることが可能な上記バインダーや導電材等を例示することができる。また、正極層1dを作製する際に用いる溶媒としては、負極層1bを作製する際に使用可能な上記溶媒等を例示することができる。
 また、積層体を包むラミネートフィルムは、リチウムイオン二次電池の使用時の環境に耐えることができ、気体や液体を透過させない性質を有し、且つ、密封することができるフィルムを、特に限定されることなく用いることができる。そのようなフィルムの構成材料としては、ポリエチレン、ポリフッ化ビニルやポリ塩化ビニリデン等の樹脂フィルムのほか、これらの表面にアルミニウム等の金属を蒸着させた金属蒸着フィルム等を例示することができる。
 また、耐圧容器2は、電池10の作動時の環境、及び、気体4の圧力に耐え得る材料によって構成されていれば、その構成材料は特に限定されない。耐圧容器2は、例えば、アルミニウムやステンレス鋼等の金属製とすることができる。耐圧容器2の直径は、例えば数cm程度とすることができる。
 また、電極端子3は、電池10の作動時の環境に耐え得る導電性材料によって構成されていれば、その構成材料は特に限定されない。電極端子3は、金属や炭素材料等の導電性材料によって構成することができる。
 また、気体4は、二酸化炭素等に代表される不燃性の気体のほか、ヘリウム、窒素、アルゴン等に代表される不活性の気体等、安全弁23を開いて気体4を外部へ吐出した際に、耐圧容器2内で液化しない気体を用いることができる。このほか、気体4としては、乾燥空気を用いることも可能である。ただし、安全性を高めやすい形態にする等の観点からは、上記不燃性の気体や不活性の気体を用いることが好ましい。電池システム100において、素電池1を加圧する気体4の圧力は、例えば、1気圧以上200気圧以下程度とすることができる。
 また、ガス流路20は、電池10の作動時の環境、及び、気体4の圧力に耐え得る材料によって構成されていれば、その構成材料は特に限定されない。ガス流路20は、例えば、編込まれた金属線を埋め込んで補強された樹脂によって形成された公知の管を適宜用いることができる。
 また、ポンプ21は、気体4を耐圧容器2へと流入させることができれば、その形態は特に限定されず、公知のポンプを適宜用いることができる。
 また、逆止弁22は、耐圧容器2へ気体4を流入させる際には開かれ、且つ、耐圧容器2への気体4の流入が終了した後に閉じられて耐圧容器2へと流入させた気体4がポンプ21の方へと移動しないように気体4の移動を止めることが可能であれば、その形態は特に限定されない。逆止弁22は、公知の弁を適宜用いることができ、例えば、動作が電子制御される形態の弁とすることができる。
 また、安全弁23は、耐圧容器2に充填された気体4の圧力を低減させる際に気体4を電池10の外部へと吐出させ、且つ、耐圧容器2に充填された気体4の圧力を低減させない際には気体4の漏洩を防止可能であれば、その形態は特に限定されない。安全弁23は、公知の弁を適宜用いることができ、例えば、動作が電子制御される形態の弁とすることができる。なお、電池システム100が燃料を用いる車両や電気によって駆動する車両に搭載される場合、気体4は不燃性の気体及び/又は不活性の気体を用いることが好ましい。そして、安全弁23を通過して外部へと吐出された気体4が燃料の存在する部位や電気によって駆動する部位へと到達可能なように、安全弁23を通過した気体4が吐出されるガス流路20の出口(図1の紙面右側に位置しているガス流路20の出口)が、燃料の存在する部位や電気によって駆動する部位へと向けられていることが好ましい。かかる形態の車両では、ガス流路20及び安全弁23を、燃料が存在する部位や電気によって駆動する部位へ向けて気体を導入する導入手段として機能させることができる。
 また、圧力計24は、耐圧容器2に充填された気体4の圧力を検出可能であり、且つ、電池10の作動時の環境に耐え得る公知の圧力計を適宜用いることができる。
 また、制御手段30は、上記機能を発揮し得る機器であれば、その形態は特に限定されない。制御手段30としては、公知のコンピュータを適宜用いることができる。このほか、電池システム100が車両に搭載される場合には、エンジンコントロールユニット(以下において、「ECU」ということがある。)を制御手段30として用いることも可能である。電池システム100が車両に搭載される場合、制御手段30の機能をECUに担わせても良く、ECUのほかに制御手段30が備えられていても良い。
 電池システム100に関する上記説明では、加圧手段として気体4を用いる形態について言及したが、本発明において用いられる加圧手段は気体に限定されない。加圧手段は公知の液体であっても良く、気体や液体と共に固体を用いることも可能である。
 また、電池システム100に関する上記説明では、気体4の圧力を変更することによって電池10の動作を制御する形態について言及したが、本発明の電池システムは当該形態に限定されない。加圧手段の圧力を変更することに加え、任意の冷却手段を用いて、素電池の外側から素電池を冷却する形態とすることも可能である。
 電池システム100に関する上記説明では、軸心側から外側へ向けて加圧される円筒状に巻回された素電池1が備えられる形態を例示したが、本発明の電池システムは当該形態に限定されない。巻回された素電池が備えられる場合、素電池の外側(周囲)に加圧手段を配置して、素電池を外側から加圧する形態とすることも可能である。このほか、本発明の電池システムは、巻回されていない素電池が備えられる形態とすることも可能である。そこで、巻回されていない素電池を備えた本発明の電池システム200について、以下に説明する。
 図3は、第2実施形態にかかる本発明の電池システム200を説明する図である。電池システム200の理解を容易にするため、図3では、一部の構成を断面で示している。図3において、電池システム100と同様の構成には、図1で使用した符号と同一の符号を付し、その説明を適宜省略する。
 図3に示したように、電池システム200は、電池40と、該電池40に接続されたガス流路20と、制御手段30と、を有している。電池システム200において、ガス流路20には、ポンプ21、逆止弁22、安全弁23、及び、圧力計24が接続されており、ポンプ21、逆止弁22、及び、安全弁23の動作は制御手段30によって制御される。
 電池40は、巻回されていないシート状の複数の素電池41、41、…と、素電池41、41、…を収容する耐圧容器42と、該耐圧容器42に設けられた電極端子43、43(一方が正極端子、他方が負極端子)と、を有している。素電池41、41、…は、素電池41、41、…の周囲且つ耐圧容器42の内側に充填された気体4によって加圧されている。
 図4は、素電池41を説明する断面図である。図4に示したように、素電池41は、積層体41xと該積層体41xを包むラミネートフィルム41yとを有している。積層体41xは、負極集電体41aと、該負極集電体41aに接続された負極層41bと、該負極層41bと接触するように配設された固体電解質層41cと、固体電解質層41cを中心にして負極層41bの反対側に固体電解質層41cと接触するように配設された正極層41dと、該正極層41dに接続された正極集電体41eと、を有している。負極集電体41aには負極端子41mが接続されており、正極集電体41eには正極端子41pが接続されている。電池40において、耐圧容器42に収容された素電池41、41、…は、各素電池41、41、…の負極端子41m、41m、…が負極接続端子41mcに接続されており、各素電池41、41、…の正極端子41p、41p、…が正極接続端子41pcに接続されている。そして、負極接続端子41mcが一方の電極端子43に接続され、正極接続端子41pcが他方の電極端子43に接続されている。
 かかる形態の電池システム200であっても、電池システム100と同様に、気体4の圧力を変更することによって、素電池41、41、…へと付与される加圧力を変更することができる。したがって、電池システム200によっても、電池システム100と同様の効果を奏することが可能になる。
 電池システム200において、負極集電体41aは、巻回しない点を除いて負極集電体1aと同様の構成とすることができ、負極層41bは、巻回しない点を除いて負極層1bと同様の構成とすることができる。また、固体電解質層41cは、巻回しない点を除いて固体電解質層1cと同様の構成とすることができる。また、正極層41dは、巻回しない点を除いて正極層1dと同様の構成とすることができ、正極集電体41eは、巻回しない点を除いて正極集電体1eと同様の構成とすることができる。
 また、負極端子41m、正極端子41p、負極接続端子41mc、正極接続端子41pc、及び、電極端子43は、電池40の作動時の環境に耐え得る導電性材料によって構成されていれば、その構成材料は特に限定されず、金属や炭素材料等に代表される公知の導電性材料によって構成することができる。
 また、耐圧容器42は、電池40の作動時の環境、及び、気体4の圧力に耐え得る材料によって構成されていれば、その構成材料は特に限定されない。耐圧容器42は、例えば、アルミニウムやステンレス鋼等の金属製とすることができる。
 電池システム100、200に関する上記説明では、不図示の気体貯蔵部を除くと、ガス流路20及び耐圧容器2、42に気体4が存在する形態を例示したが、本発明は当該形態に限定されない。そこで、ガス流路及び耐圧容器以外にも加圧手段が存在し得る空間が備えられる形態の電池システム300について、以下に説明する。
 図5は、第3実施形態にかかる本発明の電池システム300を説明する図である。電池システム300の理解を容易にするため、各構成を簡略化して示している。図5において、電池システム200と同様の構成には、図3で使用した符号と同一の符号を付し、その説明を省略する。
 図5に示したように、電池システム300は、電池40と、該電池40に接続されたガス流路20と、該ガス流路20に接続された蓄積部50と、制御手段30と、を有している。蓄積部50と耐圧容器42との間には、これらの間における気体4の移動を許容する際には開かれ、且つ、これらの間における気体4の移動が許容されない際には閉じられる弁51、及び、蓄積部50と耐圧容器42との間で気体4を移動させる際に用いられるポンプ52が備えられている。電池システム300において、ガス流路20には、弁51、及び、ポンプ52に加えて、ポンプ21、逆止弁22、安全弁23、及び、圧力計24が接続されており、ポンプ21、逆止弁22、安全弁23、弁51、及び、ポンプ52の動作は制御手段30によって制御される。
 蓄積部50は、収縮可能な物質(例えば、公知の樹脂等)によって形成され、内部に充填された気体4の圧力が高まると膨らみ、内部に充填されている気体4の圧力が低下すると萎む。電池システム300において、耐圧容器42及び蓄積部50に充填される気体4は、ポンプ21を用いてガス流路20内を送られ、耐圧容器42及び蓄積部50へと流入する。耐圧容器42及び蓄積部50における気体4の圧力を高める際には、逆止弁22及び弁51が開かれるとともに安全弁23が閉じられ、ポンプ21を用いて不図示の気体貯蔵部から耐圧容器42及び蓄積部50へと気体4が送られる。圧力計24によって測定された気体4の圧力が目標値に達すると、ポンプ21の動作が停止され、逆止弁22が閉じられることによって耐圧容器42から気体貯蔵部へと向かう気体4の移動が防止される。さらに、気体4の圧力が目標値に達すると、弁51が閉じられることによって耐圧容器42から蓄積部50へと向かう気体4の移動が防止される。
 電池システム300では、例えば、電池40の作動時に、圧力計24によって検出された耐圧容器42内の圧力が、閾値よりも高いとCPU31によって判断されると、弁51が開くようにCPU31によって弁51の動作が制御される。弁51を開くことにより、耐圧容器42内の気体4の圧力が蓄積部50内の圧力よりも高い場合には、耐圧容器42から蓄積部50へ向けて気体4を移動させることができるので、耐圧容器42内の内圧上昇が抑制される。これに対し、例えば、電池40の作動時に、圧力計24によって検出された耐圧容器42内の圧力が、閾値よりも低いとCPU31によって判断されると、弁51を開くようにCPU31によって弁51の動作が制御される。弁51を開くことにより、耐圧容器42内の気体4の圧力が蓄積部50内の圧力よりも低い場合には、蓄積部50から耐圧容器42へ向けて気体4を移動させることができるので、耐圧容器42内の内圧低下が抑制される。このほか、電池システム300では、過充放電や熱暴走や短絡等が懸念される場合に、弁51を開きポンプ52を作動させるようにCPU31によって弁51及びポンプ52の動作を制御することにより、耐圧容器42から蓄積部50へ気体4を移動させることができる。このようにして、気体4を耐圧容器42から蓄積部50へと移動させることにより、耐圧容器42における気体4の圧力を下げることができるので、素電池41、41、…の内部抵抗を増大させることができ、その結果、過充放電、熱暴走、及び、短絡等を防止することが可能になる。このように、気体4を、耐圧容器42と蓄積部50との間で移動可能なように構成することにより、気体4が外部へと排出される浪費を防止しつつ、耐圧容器42における気体4の圧力の微調整を行うことが可能になる。
 さらに、電池システム300が車両に搭載される場合には、不図示の検知手段から情報を送られたCPU31によって、車両が衝突する可能性が高くなったと判断された場合、衝突前に耐圧容器42における気体4の圧力を高めるために、制御手段30によって弁51を開けポンプ52を作動させることもできる。このほか、車両が衝突する可能性が高くなった場合に素電池41、41、…における反応を停止させることを優先する場合には、衝突前に耐圧容器42における気体4の圧力を下げるために、制御手段30によって弁51を開けポンプ52を作動させることもできる。一方で、CPU31が、車両が衝突する可能性が低くなったと判断した場合は、耐圧容器42における気体4の圧力を元に戻すように、制御手段30を用いて弁51及びポンプ52を作動させることもできる。弁51及びポンプ52の動作をこのように制御することにより、耐圧容器42における気体4の圧力を高めた場合には、車両衝突時に耐圧容器42の外側から素電池41、41、…へと伝えられる力を低減することが可能になるほか、気体4の圧力を高めて素電池41、41、…の出力を上げることで衝突回避操作の支援を行ない、衝突回避操作終了後は耐圧容器42における気体4の圧力を元に戻すことが可能になる。それゆえ、素電池41、41、…の破損をより効率良く抑制することが可能になり、安全性を高めることが可能になる。これに対し、耐圧容器42における気体4の圧力を下げた場合には、車両衝突時に素電池41、41、…の内部抵抗を増大させて電池反応を停止し、これによって安全性を高めることが可能になり、衝突回避操作終了後は耐圧容器42における気体4の圧力を元に戻すことが可能になる。このほか、電池システム300では、電池システム100や電池システム200と同様に、ポンプ21、逆止弁22、及び、安全弁23の動作制御を組み合わせることによって、耐圧容器42における気体4の圧力を増減させることができる。
 以上のように構成される電池システム300によれば、電池システム100や電池システム200によって得られる効果に加えて、気体4が外部へと排出される浪費を防止しつつ、耐圧容器42における気体4の圧力の微調整を行うことが可能になる。このほか、蓄積部50の形状を観察することにより、耐圧容器42における気体4の圧力の状態を推定することも可能になる。さらに、耐圧容器42における気体4の圧力が過度に上昇した場合には、気体4を蓄積部50へと流入させ、蓄積部50を破裂させることにより、電池40を含む蓄積部50以外の部位の破損を防止することも可能になる。
 電池システム300において、蓄積部50は、気体4の圧力に耐えることができ、且つ、収縮可能な公知の材料によって構成することができる。そのような材料としては、公知の金属や樹脂等を例示することができる。
 また、弁51は逆止弁22や安全弁23と同様の形態とすることができ、ポンプ52はポンプ21と同様の形態とすることができる。
 電池システム300に関する上記説明では、弁51と共にポンプ52が備えられる形態を例示したが、蓄積部が備えられる本発明の電池システムは、当該形態に限定されない。蓄積部が備えられる本発明の電池システムは、ポンプ52に相当する機器が備えられない形態とすることも可能である。かかる形態とする場合、弁51が開いた状態で蓄積部50を潰す(収縮させる)ことによって気体4を耐圧容器42へと流入させることができる。
 電池システム300に関する上記説明では、収縮可能な蓄積部50が備えられる形態を例示したが、蓄積部が備えられる本発明の電池システムは、当該形態に限定されず、収縮しない蓄積部が備えられる形態とすることも可能である。収縮しない蓄積部が備えられていても、素電池を加圧する加圧手段(上記例では気体4)の浪費を防止しつつ、加圧手段の圧力を微調整することができる。ただし、外部から耐圧容器内の圧力の状態を推定しやすい形態にするという観点、また、潰す(収縮させる)ことにより蓄積部をポンプとしても機能させ得る形態にする等の観点からは、収縮可能な蓄積部が備えられることが好ましい。
 また、電池システム300に関する上記説明では、蓄積部が耐圧容器の外側に備えられる形態を例示したが、蓄積部が備えられる本発明の電池システムは、当該形態に限定されない。本発明の電池システムに蓄積部が備えられる場合、蓄積部は耐圧容器に収容されていても良い。
 また、本発明の電池システム100、200、300に関する上記説明では、逆止弁22と安全弁23とが備えられる形態を例示したが、本発明の電池システムは当該形態に限定されない。本発明の電池システムは、逆止弁の機能及び安全弁の機能を具備した1種類の弁(例えば三方弁等)が備えられる形態とすることも可能である。
 以上説明した本発明の電池システムが搭載される機器は、特に限定されない。本発明の電池システムは、例えば、車両に搭載することができる。そこで、本発明の電池システムを搭載した車両について、以下に説明する。
 図6は、本発明の電池システムを搭載した車両(本発明の車両)の制御フローを説明する図である。ここでは、本発明の電池システムを搭載した車両に、衝突可能性が高くなった場合や衝突時に、運転者の危険を軽減するシステム(以下において、「危険軽減システム」ということがある。)が備えられている場合について、説明する。図6の中央に示したフローは、危険軽減システムにおいて行われる制御フローであり、図6の右側及び左側に示したフローは、本発明の電池システムについて行なわれる制御フローである。図6に示したように、本発明の電池システムに対する制御は、危険軽減システムの制御と連動して行われる。
 車両の走行が開始されると、危険軽減システムが開始され、車両に備えられている各種センサから送られてきた出力信号に基づいて、車両に備えられている制御手段(例えば、ECU等。以下において同じ。)によって、衝突の可能性が有るか否かが判断される(S11)。S11において否定判断がなされた場合には、衝突の可能性はないので、S11で肯定判断がなされるまで、S11が繰り返される。これに対し、S11において肯定判断がなさると、警報ブザーを鳴らしたり、車両に備えられている表示手段の一部を点灯したりする等して、衝突可能性の可能性が有ることが運転者へと知らされる(S12)。その後、車両に備えられている各種センサから送られてきた出力信号に基づいて、車両に備えられている制御手段によって、衝突の可能性が高いか否かが判断される(S13)。S13において肯定判断がなされた場合には、衝突の可能性が高い。そのため、かかる場合には、ブレーキアシスト機能(運転者がブレーキペダルを踏んだときに、踏み込みに応じて制動力の補助を行う機能)を作動させる(S14)。加えて、S13において肯定判断がなされた場合には、衝突の可能性が高いので、本発明の電池システムに備えられている素電池の加圧力を高めて、電池の出力を高めるように、圧力調整手段の動作を制御することにより、ブレーキアシスト機能を作動させた時に必要になる出力が確保される(S21)。S14及びS21が終了したら、続いて、車両に備えられている衝突判断手段によって、衝突が避けられないか否かが判断される(S15)。S15で肯定判断がなされた場合には、衝突が避けられないので、ブレーキ制御を行って衝突速度が低減され(S16)、シートベルト制御を行って乗員(運転者を含む。以下において同じ。)が速やかに拘束される(S17)。これらに加え、S15で肯定判断がなされた場合には、衝突が避けられないので、本発明の電池システムに備えられている素電池の加圧力を最大化し、電池の出力を最大化するように、圧力調整手段の動作を制御することにより、ブレーキ制御及びシートベルト制御を作動させた時に必要になる出力が確保される(S22)。S17及びS22が終了したら、各種センサから送られてきた出力信号に基づいて、車両に備えられている制御手段によって、衝突したか否かが判断される(S18)。S18で肯定判断がなされたら、続いて、各種センサから送られてきた出力信号に基づいて、車両に備えられている制御手段によって、車両が停止したか否かが判断される(S19)。S19で肯定判断がなされたら、危険軽減システムが停止される。さらに、車両停止時には電池を作動させておく必要が無くなるため、S19で肯定判断がなされた場合には、本発明の電池システムに備えられている素電池の加圧力が低減され、素電池の動作が停止される(S23)。素電池の動作を停止することにより、万が一電池の端子間に短絡が発生しても、火災に至ることを防ぐことが可能になり、車両の安全性を高めることが可能になる。
 一方、S15で否定判断がなされた場合には、衝突を避けることができる。そのため、本発明の電池システムに備えられている素電池の加圧力を元に戻すように、圧力調整手段の動作を制御することにより、電池の出力が元に戻され(S24)、処理がS12へと戻される。また、S18で否定判断がなされた場合には、未だ衝突していないため、ブレーキ制御及びシートベルト制御を継続する必要がある。そのため、S18で否定判断がなされた場合には、処理がS16へと戻される。また、S19で否定判断がなされた場合には、衝突後に車両が停止していないため、ブレーキ制御及びシートベルト制御を継続する必要がある。それゆえ、ブレーキ制御及びシートベルト制御を継続するために、S19で肯定判断がなされるまで、危険軽減システムは停止されない。
 このように、危険軽減システムの制御と、本発明の車両に搭載された、本発明の電池システムにおける圧力調整手段の制御とを連動させることにより、ブレーキアシスト機能やブレーキ制御及びシートベルト制御を作動させるために必要な出力を、一時的に確保することができる。本発明の電池システムにおける加圧手段の圧力を一時的に高める形態とすることにより、加圧手段の圧力を常時高めておく場合と比較して、耐圧容器に必要とされる剛性を低減することが可能になる。それゆえ、かかる形態とすることにより、電池の重量やコストを低減することも可能になる。なお、固体電池の場合には、加圧力を高めると、固体間の結合状態が向上し、固体間を移動する物質(イオンや電子)の抵抗が低減するため、出力を高めること(より大きな電流を流すこと)が可能になる。
 また、本発明の車両に、不燃性の気体及び/又は不活性の気体を用いて素電池を加圧する形態の電池システムが備えられている場合には、上記S23において、又は、上記S18において肯定判断がなされた直後に、弁(電池システム100や電池システム200の場合は安全弁23、電池システム300の場合は弁51及び安全弁23)を開くように、電池システムの制御手段によって弁の動作を制御することが好ましい。こうして外部へと吐出された不燃性の気体及び/又は不活性の気体は、気体が流通するガス流路の向きを予め調整しておくことにより、火災の危険が有る部位(例えば、燃料が存在する部位や電気によって駆動する部位)へと導入することができる。火災の危険が有る部位へ不燃性の気体及び/又は不活性の気体を導入することにより、火災を防止することや消火することが可能になるので、車両の安全性を向上させることが容易になる。
 上述のように、本発明の車両における上記制御では、S21において、素電池の加圧力が高められる。ここで、高められる加圧力の程度は、衝突の可能性が高くない場合に必要とされる出力と衝突の可能性が高い場合に必要とされる出力との差に関連するため、一概に定義することは難しいが、例えば、加圧力が高められる前と比較して、10%以上30%以下程度、加圧手段の圧力が高められることをいう。
 また、本発明の車両における上記制御では、S22において、素電池の加圧力が最大化される。ここで、加圧力が最大化されるとは、それ以上圧力を高めても電池の出力が変わらない状態にまで、加圧手段の圧力が高められることをいう。最大化された加圧手段の圧力は、素電池に用いる材料や形態等によって変動するため、特に限定されないが、例えば、加圧力が高められる前と比較して、30%程度以上高められた、圧力をいう。なお、本発明の車両において、素電池の加圧力が最大化されてから、S23で素電池の加圧力が低減され始めるまでの時間は、例えば数秒程度とすることができる。
 本発明の電池システム及び車両に関する上記説明では、固体電池が用いられる形態を例示したが、本発明の電池システム及び車両は当該形態に限定されない。本発明で用いられる電池は、公知のセパレータに電解液を含浸させて構成した電解質層を有する形態とすることも可能である。電解液が用いられる形態とする場合、素電池は、加圧手段による加圧力を変更することによって出力を変更できるように、ラミネートフィルムのような、加圧力を一方から他方へと伝えることが可能な物質の中に収容された形態とすれば良い。電解液が用いられる形態とする場合、電解液としては、リチウムイオン二次電池で使用可能な公知の有機電解液を適宜用いることができる。そのような有機電解液は、リチウム塩及び有機溶媒を含有している。有機電解液に含有されるリチウム塩としては、LiPF、LiBF、LiClO、及び、LiAsF等の無機リチウム塩、並びに、LiCFSO、LiN(CFSO、LiN(CSO、及び、LiC(CFSO等の有機リチウム塩等を例示することができる。また、有機電解液の有機溶媒としては、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ブチレンカーボネート、γ-ブチロラクトン、スルホラン、アセトニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、及び、これらの混合物等を挙げることができる。また、有機電解液におけるリチウム塩の濃度は、例えば0.1mol/L~3mol/Lの範囲内とすることができる。なお、本発明においては、有機電解液として、例えばイオン性液体等の低揮発性液体を用いても良い。
 また、本発明の電池システム及び車両に関する上記説明では、リチウムイオン二次電池が用いられる形態を例示したが、本発明の電池システム及び車両は当該形態に限定されない。本発明で用いられる電池は、正極層と負極層との間を、リチウムイオン以外のイオンが移動する形態とすることも可能である。そのようなイオンとしては、ナトリウムイオンやカリウムイオン等を例示することができる。リチウムイオン以外のイオンが移動する形態とする場合、正極活物質、電解質、及び、負極活物質は、移動するイオンに応じて適宜選択すれば良い。
 以上、現時点において実践的であり、かつ好ましいと思われる実施形態に関連して本発明を説明したが、本発明は本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電池システム及び車両も本発明の技術的範囲に包含されるものとして理解されなければならない。
 1、41…素電池
 1a、41a…負極集電体
 1b、41b…負極層
 1c、41c…固体電解質層
 1d、41d…正極層
 1e、41e…正極集電体
 2、42…耐圧容器
 3、43…電極端子
 4…気体(加圧手段)
 10、40…電池
 20…ガス流路(加圧手段、導入手段)
 21…ポンプ(加圧手段)
 22…逆止弁(圧力調整手段)
 23…安全弁(圧力調整手段、導入手段)
 24…圧力計
 30…制御手段
 41x…積層体
 41y…ラミネートフィルム
 41m…負極端子
 41mc…負極接続端子
 41p…正極端子
 41pc…正極接続端子
 50…蓄積部
 51…弁(調整手段、導入手段)
 52…ポンプ(調整手段)
 100、200、300…電池システム

Claims (8)

  1. 正極層及び負極層、並びに、前記正極層及び前記負極層の間に配設された電解質層を含む素電池と、前記素電池を加圧して前記素電池の内部抵抗を変化させる加圧手段と、前記加圧手段の圧力を調整可能な圧力調整手段と、前記素電池に対する危険度を判断可能な制御手段と、を備え、
     前記制御手段で判断された危険度に応じて、前記圧力調整手段の動作が制御されることを特徴とする、電池システム。
  2. 前記加圧手段に流体が含まれることを特徴とする、請求項1に記載の電池システム。
  3. 1又は2以上の前記素電池が容器に収容され、
     前記流体を蓄積可能な蓄積部、該蓄積部と前記容器とを繋ぐ流体流路、並びに、該流体流路における前記流体の移動を調整することにより前記蓄積部における前記流体の圧力及び前記容器における前記流体の圧力を調整可能な調整手段が、前記加圧手段に含まれることを特徴とする、請求項2に記載の電池システム。
  4. 前記蓄積部が収縮可能であることを特徴とする、請求項3に記載の電池システム。
  5. 請求項1~4のいずれか1項に記載の電池システムを搭載した車両であって、
     前記危険度に、車両の衝突及び衝突可能性が含まれ、
     前記制御手段は、衝突の有無及び衝突可能性に応じて、前記圧力調整手段の動作を制御可能であることを特徴とする、車両。
  6. 請求項2~4のいずれか1項に記載の電池システムを搭載した、燃料を用いる車両であって、
     前記危険度に、車両の衝突及び衝突可能性が含まれ、
     前記制御手段は、衝突の有無及び衝突可能性に応じて、前記圧力調整手段の動作を制御可能であり、
     前記流体に、不燃性の気体及び/又は不活性の気体が用いられ、
     衝突時に、前記不燃性の気体及び/又は不活性の気体を前記燃料が存在する部位へ向けて導入する導入手段を有することを特徴とする、車両。
  7. 請求項2~4のいずれか1項に記載の電池システムを搭載した、電気によって駆動する車両であって、
     前記危険度に、車両の衝突及び衝突可能性が含まれ、
     前記制御手段は、衝突の有無及び衝突可能性に応じて、前記圧力調整手段の動作を制御可能であり、
     前記流体に、不燃性の気体及び/又は不活性の気体が用いられ、
     衝突時に、前記不燃性の気体及び/又は不活性の気体を前記電気によって駆動する部位へ向けて導入する導入手段を有することを特徴とする、車両。
  8. 衝突可能性を有する場合に、前記加圧手段の圧力を高めるように、前記制御手段によって前記圧力調整手段の動作が制御されることを特徴とする、請求項5~7のいずれか1項に記載の車両。
PCT/JP2011/058982 2011-04-11 2011-04-11 電池システム及び車両 WO2012140712A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058982 WO2012140712A1 (ja) 2011-04-11 2011-04-11 電池システム及び車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/058982 WO2012140712A1 (ja) 2011-04-11 2011-04-11 電池システム及び車両

Publications (1)

Publication Number Publication Date
WO2012140712A1 true WO2012140712A1 (ja) 2012-10-18

Family

ID=47008923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058982 WO2012140712A1 (ja) 2011-04-11 2011-04-11 電池システム及び車両

Country Status (1)

Country Link
WO (1) WO2012140712A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033043A (ja) * 2017-08-09 2019-02-28 三菱重工業株式会社 全固体電池モジュール
GB2568957A (en) * 2017-12-04 2019-06-05 Jaguar Land Rover Ltd An electricity storage system, a vehicle, a method and an electronic control means
FR3088213A1 (fr) * 2018-11-12 2020-05-15 Hutchinson Extinction de feu ou limitation de depart de feu

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226232A (ja) * 1994-02-14 1995-08-22 Sony Corp 非水電解液二次電池及び電源装置
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
WO1996016699A1 (en) * 1994-12-02 1996-06-06 Norsk Hydro A/S Method and apparatus for detection and prevention of fire hazard
US20010055712A1 (en) * 2000-06-26 2001-12-27 Alcatel Storage cell battery incorporating a safety device
WO2007043502A1 (ja) * 2005-10-04 2007-04-19 Toyota Jidosha Kabushiki Kaisha 車両の制御装置および制御方法
JP2008147010A (ja) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd 電力供給装置およびその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
JPH07226232A (ja) * 1994-02-14 1995-08-22 Sony Corp 非水電解液二次電池及び電源装置
WO1996016699A1 (en) * 1994-12-02 1996-06-06 Norsk Hydro A/S Method and apparatus for detection and prevention of fire hazard
US20010055712A1 (en) * 2000-06-26 2001-12-27 Alcatel Storage cell battery incorporating a safety device
WO2007043502A1 (ja) * 2005-10-04 2007-04-19 Toyota Jidosha Kabushiki Kaisha 車両の制御装置および制御方法
JP2008147010A (ja) * 2006-12-08 2008-06-26 Nissan Motor Co Ltd 電力供給装置およびその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033043A (ja) * 2017-08-09 2019-02-28 三菱重工業株式会社 全固体電池モジュール
GB2568957A (en) * 2017-12-04 2019-06-05 Jaguar Land Rover Ltd An electricity storage system, a vehicle, a method and an electronic control means
GB2568957B (en) * 2017-12-04 2020-06-03 Jaguar Land Rover Ltd An electricity storage system, a vehicle, a method and an electronic control means
FR3088213A1 (fr) * 2018-11-12 2020-05-15 Hutchinson Extinction de feu ou limitation de depart de feu
EP3880314B1 (fr) * 2018-11-12 2024-05-15 Hutchinson Tuyau extincteur pour un compartiment batterie ou un véhicule à moteur

Similar Documents

Publication Publication Date Title
CN101521294B (zh) 一种电动汽车用动力电池
JP6760256B2 (ja) 電池およびその製造方法
EP3134930B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP7037012B2 (ja) 安全性が改善したバッテリーモジュール、これを含むバッテリーパック及びこのバッテリーパックを含む自動車
CA2709138C (en) Construction of electrochemical storage cell with expansion member
CA2709122C (en) Electrochemical storage cell with blow out vents
JP2007194001A (ja) 電池応用機器
JP4649502B2 (ja) リチウムイオン二次電池
WO2016152922A1 (ja) 二次電池、二次電池の製造方法、電動車両および蓄電システム
JP2012221773A (ja) 固体電池及び固体電池システム
JP2013196781A (ja) 電気デバイス用正極およびこれを用いた電気デバイス
WO2016027673A1 (ja) 電流遮断機能を有する電池およびその製造方法
JP2011210390A (ja) 電池及び電池モジュール
JP2014036010A (ja) 非水電解液二次電池
JP6634671B2 (ja) 二次電池、電動車両、蓄電システム、および製造方法
JP2008192432A (ja) 二次電池及び二次電池装置
WO2012140712A1 (ja) 電池システム及び車両
JP4348492B2 (ja) 非水系二次電池
JP2006244832A (ja) リチウム二次電池およびその製造方法
JP5402127B2 (ja) 電池用セパレータ、これを用いた電池、及びこれを用いた車両及び電池搭載機器
JP2019102244A (ja) 仕切り部材及び組電池
JP2016219387A (ja) 二次電池
JP6601410B2 (ja) フィルム外装電池およびそれを備えた電池モジュール
JP5618156B2 (ja) 密閉型リチウム二次電池の製造方法
JP2002151020A (ja) 電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP