WO2012138063A2 - 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법 - Google Patents

비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법 Download PDF

Info

Publication number
WO2012138063A2
WO2012138063A2 PCT/KR2012/001943 KR2012001943W WO2012138063A2 WO 2012138063 A2 WO2012138063 A2 WO 2012138063A2 KR 2012001943 W KR2012001943 W KR 2012001943W WO 2012138063 A2 WO2012138063 A2 WO 2012138063A2
Authority
WO
WIPO (PCT)
Prior art keywords
wire
diamond
electrodeposited
circumferential surface
outer circumferential
Prior art date
Application number
PCT/KR2012/001943
Other languages
English (en)
French (fr)
Other versions
WO2012138063A3 (ko
Inventor
이세광
성낙주
김태봉
Original Assignee
이화다이아몬드공업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화다이아몬드공업(주) filed Critical 이화다이아몬드공업(주)
Priority to US14/009,879 priority Critical patent/US9776306B2/en
Priority to JP2014503587A priority patent/JP5710067B2/ja
Priority to EP12768219.3A priority patent/EP2695973B1/en
Priority to CN2012800173828A priority patent/CN103476972A/zh
Publication of WO2012138063A2 publication Critical patent/WO2012138063A2/ko
Publication of WO2012138063A3 publication Critical patent/WO2012138063A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0018Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by electrolytic deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/18Sawing tools of special type, e.g. wire saw strands, saw blades or saw wire equipped with diamonds or other abrasive particles in selected individual positions
    • B23D61/185Saw wires; Saw cables; Twisted saw strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0607Wires

Definitions

  • the present invention relates to an electrodeposited diamond wire saw using a patterning process of a non-conductive material and a method for manufacturing the same, and in particular, facilitates the manufacturing process of the diamond wire saw used for semiconductor cutting processing such as silicon ingot, sapphire wafer, etc. It also relates to technology that can reduce manufacturing costs and improve product quality.
  • Wire sawing is a method that can perform not only cutting processing of silicon ingots, sapphire wafers, etc., but also grinding processing using a wire saw provided by protruding a plurality of diamond abrasive grains on the wire or such a wire. .
  • the wire uses a high tensile strength metal material, steel wire, nickel wire, nichrome wire, and the like, for example, a variety of other materials may be used.
  • Electrodeposited diamond wire saw is manufactured by electrodepositing diamond abrasive grains around the outer peripheral surface along the longitudinal direction of such a wire.
  • An object of the present invention is to pre-pattern the non-conductive material along the outer circumferential surface of the wire, followed by electrodeposition of the diamond abrasive grains, so that the diamond abrasive grains can be electrodeposited only in the non-conductive material section, thereby improving process efficiency and manufacturing.
  • the present invention provides an electrodeposition diamond wire saw and a method of manufacturing the same, which can reduce the unit cost and improve product quality.
  • Another object of the present invention is to provide an electrodeposition diamond wire saw and a method of manufacturing the same, in which a diamond abrasive grain is easily electrodeposited after a patterning process by spraying a masking liquid in a plurality of directions at the same time as the wire is injected. .
  • Another object of the present invention is a method of coating the entire surface of the wire with a non-conductive material, and then patterning through an exposure and etching process, after which electrodeposited diamond wire saws and a method of easily electrodepositing diamond abrasive grains and their manufacture In providing a method.
  • Still another object of the present invention is to attach a patterned non-conductive tape having a perforation hole to a wire in a specific section in which diamond abrasive grains are to be electrodeposited to a wire surface, thereby electrodepositing diamond abrasive grains in a manner that can be easily electrodeposited.
  • a diamond wire saw and a method of manufacturing the same are provided.
  • the printing of the masking liquid is arranged such that a plurality of print nozzles have the same sandwiched angle with respect to the outer circumferential surface of the wire, and the predetermined pattern path is formed on the outer circumferential surface of the wire to be injected. It is preferable to print the masking liquid.
  • the printing of the masking liquid may be implemented by an inkjet method.
  • the outer peripheral surface remainder region of the wire on which the diamond abrasive grains are electrodeposited is preferably formed to have a spiral shape along the length direction of the wire.
  • step (a) the printing of the masking liquid, a single print nozzle is spaced apart from the outer peripheral surface of the wire, the masking liquid along a predetermined pattern path on the outer peripheral surface of the wire that rotates at the same time as the injection It is preferable that the printing cycle of the print nozzle is controlled in such a manner that the printing is performed.
  • the front coating the outer peripheral surface of the wire with a masking liquid (a) the front coating the outer peripheral surface of the wire with a masking liquid; (b) exposing and patterning the wire with the masking liquid overcoated in a predetermined pattern and performing etching; And (c) electrodepositing diamond abrasive grains on the remaining portion of the outer circumferential surface of the wire except for the patterned region, thereby providing an electrodeposition diamond wire saw.
  • the exposure is preferably made in a manner of irradiating UV light.
  • the method for patterning the outer circumferential surface of the wire by attaching the masking tape, in advance forming a plurality of perforation holes in a spiral shape along the longitudinal direction of the wire to the masking tape The method may be used to attach the masking tape on which the perforation hole is formed to the outer circumferential surface of the wire.
  • the method for patterning the outer circumferential surface of the wire by attaching the masking tape the masking tape is attached to the outer circumferential surface of the wire in a spiral shape along the longitudinal direction of the wire Manner may be used.
  • a non-conductive material pattern is formed in some sections of the outer peripheral surface of the wire, diamond abrasive grains are electrodeposited in the remaining sections of the outer peripheral surface of the wire to provide an electrode.
  • diamond abrasive grains are electrodeposited in the remaining sections of the outer peripheral surface of the wire to provide an electrode. Can be.
  • the non-conductive material may be formed as a spiral trajectory along the length direction of the wire.
  • the diamond abrasive grains may be formed in a spiral trajectory along the length direction of the wire.
  • the inventor's electrodeposited diamond wire saw and its manufacturing method prior to the process of electrodepositing the diamond abrasive grains on the wire, by pre-patterning the non-conductive material along the outer circumferential surface of the wire to be electrodeposited diamond abrasive grains in advance, By improving the efficiency, it is possible to reduce the manufacturing cost, improve the product quality, thereby having an advantageous effect that can improve the product competitiveness.
  • the present invention presents four preferred embodiments as preferred examples of the above nonconductive material patterning process.
  • the masking liquid is sprayed in a plurality of directions with respect to the outer circumferential surface of the wire by an inkjet method to pattern the diamond abrasive grains.
  • the wire is rotated at the time of injection of the wire, and the masking liquid is sprayed by the inkjet method in only one direction to pattern the diamond abrasive grains.
  • the front surface of the wire is coated with a non-conductive material, followed by patterning through exposure and etching, followed by electrodeposition of diamond abrasive grains.
  • the fourth embodiment is a form in which a diamond abrasive grain is electrodeposited after a patterning process is performed by attaching a non-conductive tape having a perforation hole to a wire only in a specific section where the diamond abrasive grain is electrodeposited with respect to the wire surface.
  • FIG. 1 is a flow chart showing a method for manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a first embodiment of the present invention
  • FIG. 2 is a flowchart illustrating a method for manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a first embodiment of the present invention
  • FIG. 3 is a flow chart showing a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a second embodiment of the present invention
  • FIG. 4 is a flowchart illustrating a method for manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a second embodiment of the present invention
  • FIG. 5 is a flowchart showing a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a third embodiment of the present invention
  • FIG. 6 is a flowchart illustrating a method for manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a third embodiment of the present invention
  • FIG. 7 is a flowchart illustrating a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a fourth embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method for manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a fourth embodiment of the present invention.
  • Wire sawing uses wire saws to cut and grind various metal workpieces such as aluminum (Al), copper (Cu), gold (Au), silver (Ag), etc., as well as chip packages, plastics and resins in recent years. It is a technique which extends the range of the workpiece
  • the wire saw consists of a structure including a high tension wire and abrasive grains electrodeposited along the outer circumferential surface thereof.
  • the wire is made of a material such as steel wire, nickel wire, nichrome wire, and the like
  • the abrasive grain is made of a material having excellent hardness and machinability such as diamond, silicon carbide (SiC) and the like.
  • Electrodeposited diamond wire saws are widely used in semiconductor cutting operations such as silicon ingots and sapphire wafers.
  • 1 is a flow chart showing a method for manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a first embodiment of the present invention.
  • 2 is a flowchart illustrating a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a process for more specifically identifying a method for manufacturing an electrodeposited diamond wire saw according to the first embodiment of the present invention to be described with reference to FIG. 1.
  • the masking liquid is printed on the outer circumferential surface of the wire in a predetermined pattern form for the efficiency of the electrodeposition process.
  • the masking liquid is sprayed in a plurality of directions (three directions in the drawing) with respect to the outer circumferential surface of the wire 110 injected in one direction, and is printed.
  • a plurality of print nozzles (not shown) can be used.
  • the printing nozzle at this time is a structure which print-processes the masking liquid on the outer peripheral surface of the wire 110 by the inkjet system, and can use any form as long as it is a commonly used inkjet printing nozzle.
  • a plurality of printing nozzles are formed at the same included angle with respect to the outer circumferential surface of the wire 110.
  • the included angles may be composed of three composed of 120 °, and the number of the present invention is Do not limit the category.
  • the outer circumferential surface of the wire 110 may be patterned.
  • the patterning path may follow the path set by the user before the manufacturing process, and the pattern path may be set slightly differently according to the shape of the electrodeposited diamond wire saw of the target shape to be manufactured.
  • the masking liquid is patterned on the outer circumferential surface of the wire after the present step ST110, except for the section in which the diamond abrasive grains are to be electrodeposited in the step to be described later.
  • This step ST120 is a step of electrodepositing diamond abrasive grains along the outer circumferential surface of the wire other than the patterned section in the previous step.
  • Electrodeposition of the diamond abrasive grains may be carried out in such a way that the diamond abrasive grains contained in the nickel plating solution are attached to the wires together when the nickel is electroplated on the wires, and may be performed in various known manners.
  • a patterning process using a masking liquid is performed except for a section in which the diamond abrasive grains 120 are electrodeposited on the outer circumferential surface of the wire 110.
  • the remaining area of the outer circumferential surface of the wire 110 where the diamond abrasive grains 120 are electrodeposited that is, the area where the patterning is not processed in the previous step ST110, has a spiral shape along the length direction of the wire 110. It can be seen that it has a continuous trajectory.
  • diamond abrasive grains may be electrodeposited on the wire along a uniform and precise spiral trajectory as shown in FIG.
  • the first embodiment of the present invention includes only two levels of detailed configuration, so that in the manufacture of electrodeposited diamond wire saws, the management of the manufacturing process is easy and the cost is easy. Brings the effect of savings and man-hours.
  • 3 is a flow chart showing a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a second embodiment of the present invention.
  • 4 is a flowchart illustrating a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a process for more specifically confirming the electrodeposition diamond wire saw manufacturing method according to the second embodiment of the present invention to be described with reference to FIG. 3. See also parallel.
  • a masking liquid is printed on the outer circumferential surface of the wire in a predetermined pattern form for the efficiency of the electrodeposition process.
  • the second embodiment of the present invention differs from the above-described first embodiment in that the masking liquid is printed in one direction with respect to the outer circumferential surface of the wire to be rotated.
  • the wire 110 injected in one direction rotates.
  • the masking liquid is sprayed in one direction with respect to the outer circumferential surface of the rotating wire 110 and is printed.
  • a printing nozzle can be used, and an inkjet method can be used similarly to the first embodiment described above.
  • Masking liquid may be printed after injection from a print nozzle spaced from the outer circumferential surface of the rotationally injected wire 110 and disposed on only one side. In order to be printed along a predetermined pattern path, the printing cycle of the print nozzle may be controlled. desirable.
  • the masking liquid can be printed on the outer peripheral surface of the wire along the pattern path set by the user.
  • the pattern path set by the user may be set slightly differently according to the shape of the electrodeposited diamond wire saw of the target shape to be manufactured.
  • the masking liquid is patterned on the outer circumferential surface of the wire having finished this step ST210 for all sections except for the section in which the diamond abrasive grains are to be electrodeposited in the steps to be described later.
  • This step ST220 is a step of electrodepositing diamond abrasive grains along the outer circumferential surface of the wire other than the patterned section in the previous step.
  • the patterning process using the masking liquid is performed except for the section in which the diamond abrasive grains 120 are electrodeposited on the outer circumferential surface of the wire 110.
  • the remaining area of the outer circumferential surface of the wire 110 to which the diamond abrasive grains 120 are electrodeposited that is, the area where the patterning is not processed in the previous step ST210, has a spiral shape in the longitudinal direction of the wire 110. It can be confirmed that it has a trajectory.
  • the process of the present step ST220 may be performed in the same or similar manner to the diamond abrasive electrode deposition step ST120 of the first embodiment described above with reference to FIG. 1.
  • 5 is a flowchart illustrating a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a third embodiment of the present invention.
  • 6 is a flowchart illustrating a method for manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a third embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a process for more specifically confirming the electrodeposition diamond wire saw manufacturing method according to the third embodiment of the present invention to be described with reference to FIG. 5. See also parallel.
  • This step (ST310) is a step of completely coating the outer peripheral surface of the wire with a masking liquid.
  • the process of completely coating the outer circumferential surface of the wire with the masking liquid has a meaning as a preceding process for treating the masking liquid on the outer circumferential surface of the wire in a predetermined pattern by a photomasking technique of a step to be described later.
  • FIG. 6A a process operation diagram for completely coating the outer circumferential surface of the wire 110 with a masking liquid is disclosed.
  • the entering wire 110 is immersed in the container in which the masking liquid is stored to coat the masking liquid on the outer circumferential surface of the wire 110 sufficiently.
  • the coating method shown in (a) of FIG. 6 is one preferred embodiment of the present invention, and the present invention does not need to be limited to such a coating method.
  • This step ST320 is a step of exposing and etching the wire 110 coated with the masking liquid in a predetermined pattern in the previous step and performing a patterning process.
  • the masking liquid is exposed to a pattern set on the front-coated wire 110 and subjected to etching to perform a predetermined patterning on the outer circumferential surface, which may be said to be the same as or similar to a kind of photomasking method. Since the photomasking method is well known in the semiconductor or LCD process, unnecessary description thereof will be omitted.
  • the exposure process in this step may be made by irradiating UV light. After exposure in a predetermined pattern, etching is performed, and patterning is performed on the outer circumferential surface of the wire.
  • the patterned shape appears to be a pattern of a plurality of rectangular shapes alternately formed spaced apart from each other up and down, but these specific shapes do not limit the scope of the present invention.
  • This step ST330 is a step of electrodepositing diamond abrasive grains along the outer circumferential surface of the wire other than the patterned section in the previous step.
  • the diamond abrasive grains 120 are electrodeposited in a section other than a portion where the non-conductive material remaining after the exposure and etching in the previous step is coated.
  • the diamond abrasive grains 120 may be evenly electrodeposited on the outer circumferential surface of the wire 110 through the remaining section other than the portion where the masking liquid is coated.
  • the outer peripheral surface remainder region of the wire 110 to which the diamond abrasive grains 120 are electrodeposited has a spiral-shaped continuous trajectory along the length direction of the wire 110.
  • the electrodeposited diamond wire saw according to the present invention may have a uniform cutting or polishing quality in the entire length range.
  • the process of the present step (ST330) may be carried out the same or similar to the diamond abrasive grain step (ST120, ST220) of the first and second embodiments described above with reference to FIGS.
  • FIG. 7 is a flowchart illustrating a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a fourth embodiment of the present invention.
  • 8 is a flowchart illustrating a method of manufacturing an electrodeposited diamond wire saw using a patterning treatment method of a non-conductive material according to a fourth embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a process for more specifically confirming the electrodeposition diamond wire saw manufacturing method according to the fourth embodiment of the present invention to be described with reference to FIG. 7. See also parallel.
  • Patterning process step by attaching masking tape (ST410)
  • This step ST410 is a step of patterning a non-conductive material on the wire by attaching a masking tape to the outer circumferential surface of the wire.
  • the method of patterning the non-conductive material at this stage is characterized by being different from the first, second and third embodiments of the present invention.
  • the non-conductive material is patterned by a method in which a masking tape made in the form of a tape is wound around the outer circumferential surface of the wire and not attached to the wire.
  • This step ST410 may again include two embodiments.
  • a masking tape having a plurality of perforation holes formed on a section where diamond abrasive grains are to be electrodeposited in advance is wound and attached in the longitudinal direction of the wire 110.
  • the plurality of drilling holes may be formed in a spiral shape on the masking tape in advance.
  • the diamond abrasive grains 120 may be electrodeposited through the plurality of drilling holes.
  • the masking tape is inclinedly wound in a spiral form along the outer circumferential surface of the wire except for a section in which diamond abrasive grains are to be electrodeposited in advance.
  • the masking tape does not need to form a separate punched hole in advance.
  • step ST420 when the patterning process is performed by the attachment of the masking tape in the previous step, diamond abrasive grains are electrodeposited on the outer circumferential surface of the wire through a hole or a spaced gap.
  • the diamond abrasive grains 120 are electrodeposited in the plurality of drilling holes provided in the spiral-like arrangement in the masking tape.
  • This step ST430 is a finishing step of removing the masking tape after diamond abrasive grains are electrodeposited and formed along the outer circumferential surface of the wire through the above-described steps ST410 and ST420.
  • the diamond abrasive grains 120 are regularly electrodeposited in a spiral shape along the longitudinal direction on the outer circumferential surface of the wire 110.
  • Electrodeposited diamond wire saws produced in this way can have a uniformly improved cutting or polishing quality over the entire length range.
  • the non-conductive material is patterned on the surface section of the wire to which electrodeposition of the diamond abrasive grains should be excluded.
  • the manufacturing process of the electrodeposited diamond wire saw can be efficiently presented, the manufacturing cost can be reduced, and the quality of the product can be improved through a uniform manufacturing process.
  • the present invention presents four preferred embodiments as preferred examples of the above nonconductive material patterning process.
  • the masking liquid is sprayed in a plurality of directions with respect to the outer circumferential surface of the wire by an inkjet method to pattern the diamond abrasive grains.
  • the wire is rotated at the time of injection of the wire, and the masking liquid is sprayed by the inkjet method in only one direction to pattern the diamond abrasive grains.
  • the front surface of the wire is coated with a non-conductive material, followed by patterning through exposure and etching, followed by electrodeposition of diamond abrasive grains.
  • the fourth embodiment is a form in which a diamond abrasive grain is electrodeposited after a patterning process is performed by attaching a non-conductive tape having a perforation hole to a wire only in a specific section where the diamond abrasive grain is electrodeposited with respect to the wire surface.
  • the process automation of the manufacturing process of the electrodeposited diamond wire saw can be made, there is an advantage that is suitable for mass production of improved products through the reduction of the man-hour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

와이어에 다이아몬드 지립을 전착하는 공정에 앞서, 다이아몬드 지립의 전착이 배제되어야 할 와이어의 외주면을 따라 비전도성 물질을 선행적으로 패터닝 처리하여 제조 공정을 효율적으로 개선할 수 있는 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법에 관하여 개시한다. 본 발명의 바람직한 실시예에 따르면, 와이어의 주입 시 와이어의 외주면에 대해 복수의 방향에서 마스킹 액을 인쇄하여 패터닝 처리하는 단계와, 패터닝 처리된 영역을 제외한 와이어의 외주면 잔부 영역에 다이아몬드 지립을 전착하는 단계를 포함한다.

Description

비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법
본 발명은 비전도성 물질의 패터닝 처리를 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법에 관한 것으로서, 특히, 실리콘 잉곳, 사파이어 웨이퍼 등의 반도체 절삭 가공에 이용되는 다이아몬드 와이어 쏘우의 제조 공정을 용이하게 함은 물론, 제조비 감축 및 제품 품질까지 개선할 수 있는 기술에 관한 것이다.
와이어 쏘잉(wire sawing)은, 와이어 또는 이러한 와이어에 복수의 다이아몬드 지립을 돌출 형성시켜 마련되는 와이어 쏘우를 이용하여, 실리콘 잉곳, 사파이어 웨이퍼 등의 절삭 가공은 물론, 연삭 가공까지 수행할 수 있는 방식이다.
이때, 와이어는 고장력 특성의 금속 재질을 이용하는데, 강선, 니켈선, 니크롬선 등이 그 예에 해당되며, 그 외에도 다양한 소재가 이용되기도 한다.
이러한 와이어의 길이 방향을 따라, 그 외주면 둘레에 다이아몬드 지립을 전착 형성함으로써, 전착 다이아몬드 와이어 쏘우가 제조된다.
다만, 종래의 경우, 이러한 와이어 쏘우의 제조에 있어서, 와이어 상에 다이아몬드 지립을 특정 형태의 배열로 전착하는데 어려움이 따랐기에, 다량의 제품을 연속적으로 그리고 효율적으로 제조하기에는 무리가 있었다.
이로 인하여, 전착 다이아몬드 와이어 쏘우의 제조 단가가 높았으며, 제조 공수 또한 증가될 수밖에 없는 문제점이 있었다.
이를 위해, 관련 제조 업계에서는, 더 낮은 비용으로, 더 공정 효율을 높일 수 있는 전착 다이아몬드 와이어 쏘우 제조 방법에 대한 개발에 박차를 가하였으나, 아직까지는 합리적인 제조 방법에 대한 방안이 제시되지 못한 실정이다.
본 발명의 목적은, 와이어의 외주면을 따라 비전도성 물질을 사전 패터닝 처리한 후 다이아몬드 지립을 전착함으로써, 비전도성 물질이 없는 구간에만 다이아몬드 지립이 전착될 수 있도록 하여 공정 효율을 개선함과 동시에, 제조 단가 하락 및 제품 품질 향상을 도모할 수 있는 전착 다이아몬드 와이어 쏘우 및 그 제조 방법을 제공함에 있다.
본 발명의 다른 목적은, 와이어의 주입과 동시에, 복수의 방향에서 마스킹 액을 잉크젯 방식으로 분사하여 패터닝 처리 한 후 다이아몬드 지립을 용이하게 전착하는 방식의 전착 다이아몬드 와이어 쏘우 및 그 제조 방법을 제공함에 있다.
본 발명의 또 다른 목적은, 와이어의 주입 시 와이어를 회전시키는 동시에, 일방향에서만 마스킹 액을 잉크젯 방식으로 분사하여 패터닝 처리한 후 다이아몬드 지립을 용이하게 전착하는 방식의 전착 다이아몬드 와이어 쏘우 및 그 제조 방법을 제공함에 있다.
본 발명의 또 다른 목적은, 와이어의 전면을 비전도성 물질로 코팅 처리한 후 노광 및 에칭 과정을 거쳐 패터닝 처리하는 방식으로, 그 이후 다이아몬드 지립을 용이하게 전착하는 방식의 전착 다이아몬드 와이어 쏘우 및 그 제조 방법을 제공함에 있다.
본 발명의 또 다른 목적은, 와이어 표면에 대하여 다이아몬드 지립이 전착될 특정 구간에만 천공홀이 형성된 비전도성 테이프를 와이어에 부착하여 패터닝 처리하는 방식으로, 다이아몬드 지립을 용이하게 전착할 수 있는 방식의 전착 다이아몬드 와이어 쏘우 및 그 제조 방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 사상에 따르면, (a) 와이어의 주입 시 상기 와이어의 외주면에 대해 복수의 방향에서 마스킹 액을 인쇄하여 패터닝 처리하는 단계; 및 (b) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 영역에 다이아몬드 지립을 전착 형성하는 단계;를 포함하는 전착 다이아몬드 와이어 쏘우 제조 방법을 제공할 수 있다.
상기 (a) 단계에서, 상기 마스킹 액의 인쇄는, 상기 와이어의 외주면에 대향하여 복수개의 인쇄 노즐이 상호 동일한 끼인각을 가지도록 배치되어, 주입되는 상기 와이어의 외주면 상으로 미리 정해진 패턴 경로를 따라 상기 마스킹 액을 인쇄하는 것이 바람직하다.
이때, 상기 마스킹 액의 인쇄는, 잉크젯 방식으로 구현될 수 있다.
상기 (b) 단계에서, 상기 다이아몬드 지립이 전착되는 상기 와이어의 외주면 잔부 영역은, 상기 와이어의 길이 방향을 따라 스파이럴(spiral) 형상을 갖도록 형성되는 것이 바람직하다.
또한, 본 발명의 다른 하나의 사상에 따르면, (a) 와이어의 주입 시, 상기 와이어가 회전하는 동시에 상기 와이어의 외주면에 대해 일 방향으로 마스킹 액을 인쇄하여 패터닝을 처리하는 단계; 및 (b) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 영역에 다이아몬드 지립을 전착하는 단계;를 포함하는 전착 다이아몬드 와이어 쏘우 제조 방법을 제공할 수 있다.
상기 (a) 단계에서, 상기 마스킹 액의 인쇄는, 상기 와이어의 외주면에 대향하여 단일의 인쇄 노즐이 이격 배치되되, 주입과 동시에 회전하는 상기 와이어의 외주면 상으로 미리 정해진 패턴 경로를 따라 상기 마스킹 액이 인쇄되도록, 상기 인쇄 노즐의 인쇄 주기가 조절되는 방식에 의해 이루어지는 것이 바람직하다.
또한, 본 발명의 또 하나의 사상에 따르면, (a) 와이어의 외주면을 마스킹 액으로 전면 코팅하는 단계; (b) 상기 마스킹 액이 전면 코팅된 상기 와이어를 미리 정해진 패턴으로 노광을 주고 에칭을 실시하여 패터닝 처리하는 단계; 및 (c) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 영역에 다이아몬드 지립을 전착 형성하는 단계;를 포함하는 전착 다이아몬드 와이어 쏘우 제조 방법을 제공할 수 있다.
상기 (b) 단계에서, 상기 노광은, UV광을 조사하는 방식으로 이루어지는 것이 바람직하다.
또한, 본 발명의 또 다른 하나의 사상에 따르면, (a) 와이어의 외주면을 따라 미리 정해진 패턴으로 마스킹 테이프를 부착하여 패터닝 처리하는 단계; (b) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 구간에 다이아몬드 지립을 전착 형성하는 단계; 및 (c) 부착된 상기 마스킹 테이프를 상기 와이어로부터 제거하는 단계;를 포함하는 전착 다이아몬드 와이어 쏘우 제조 방법을 제공할 수 있다.
상기 (a) 단계에서, 상기 마스킹 테이프를 부착하여 상기 와이어의 외주면을 패터닝 처리하는 방법은, 상기 마스킹 테이프에 미리 복수개의 천공홀을 상기 와이어의 길이 방향을 따라 스파이럴(spiral) 형상으로 배열 형성하고, 상기 천공홀이 형성된 상기 마스킹 테이프를 상기 와이어의 외주면에 부착하는 방식을 이용할 수 있다.
또한, 상기 (a) 단계에서, 상기 마스킹 테이프를 부착하여 상기 와이어의 외주면을 패터닝 처리하는 방법은, 상기 와이어의 길이 방향을 따라 스파이럴 형상의 궤적으로 상기 와이어의 외주면에 대해 상기 마스킹 테이프를 부착하는 방식이 이용될 수 있다.
한편, 본 발명의 다른 사상에 따르면, 와이어의 외주면 중 일부 구간에 비전도성 물질 패턴이 형성되어 있으며, 상기 와이어 외주면 중 나머지 구간에 다이아몬드 지립이 전착되어 있는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우를 제공할 수 있다.
이때, 비전도성 물질은 상기 와이어의 길이 방향을 따라 스파이럴 형상의 궤적으로 형성되어 있을 수 있다.
또한, 상기 다이아몬드 지립은 상기 와이어의 길이 방향을 따라 스파이럴 형상의 궤적으로 형성되어 있을 수 있다.
본 발명인 전착 다이아몬드 와이어 쏘우 및 그 제조 방법에 따르면, 와이어에 다이아몬드 지립을 전착하는 공정에 앞서, 미리 다이아몬드 지립의 전착이 배제되어야 할 와이어의 외주면을 따라 비전도성 물질을 사전 패터닝 처리함으로써, 제조 공정의 효율성 개선을 통해, 제조 단가 하락, 제품 품질 향상을 도모할 수 있으며, 이로써, 제품 경쟁력이 향상될 수 있는 유리한 효과가 있다.
특히, 본 발명은 상기의 비전도성 물질 패터닝 공정에 관한 바람직한 실시예로서, 네 가지 바람직한 실시 형태를 제시한다.
첫 번째 실시예는, 와이어의 주입과 동시에, 와이어의 외주면에 대해 복수의 방향에서 마스킹 액을 잉크젯 방식으로 분사하여 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
두 번째 실시예는, 와이어의 주입 시 와이어를 회전시키는 동시에, 일방향에서만 마스킹 액을 잉크젯 방식으로 분사하여 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
세 번째 실시예는, 와이어의 전면을 비전도성 물질로 코팅 처리한 후 노광 및 에칭 과정을 거쳐 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
네 번째 실시예는, 와이어 표면에 대하여 다이아몬드 지립이 전착될 특정 구간에만 천공홀이 형성된 비전도성 테이프를 와이어에 부착하여 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
이로써, 전착 다이아몬드 와이어 쏘우의 제조 과정에 대한 공정 자동화가 이루어질 수 있으며, 공수 단축 및 비용 절감은 물론, 보다 향상된 품질을 갖는 제품을 대량 생산하기에 유리한 기술적 효과가 따른다.
도 1은 본 발명의 제1실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도,
도 2는 본 발명의 제1실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도,
도 3은 본 발명의 제2실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도,
도 4는 본 발명의 제2실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도,
도 5는 본 발명의 제3실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도,
도 6은 본 발명의 제3실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도,
도 7은 본 발명의 제4실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도,
도 8은 본 발명의 제4실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도임.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 또한, 본 발명을 설명함에 있어 관련된 공지 기술 등이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그에 관한 자세한 설명은 생략하기로 한다.
본 발명에 따른 전착 다이아몬드 와이어 쏘우 제조 방법의 바람직한 네 가지 실시예에 관하여 설명하기에 앞서, 와이어 쏘우의 간단한 구조에 대해서 살펴보기로 한다.
와이어 쏘잉은, 와이어 쏘우를 이용하여, 알루미늄(Al), 구리(Cu), 금(Au), 은(Ag) 등과 같은 다양한 금속 피삭재를 절삭 및 연삭함은 물론, 최근에는 칩 패키지, 플라스틱 및 수지 성형물 등에까지 그 피삭재의 범위를 확대하고 있는 기술이다.
와이어 쏘우는, 고장력의 와이어와, 그 외주면을 따라 전착 형성되는 지립을 포함하는 구조로 이루어진다.
이때, 와이어는, 강선, 니켈선, 니크롬선 등과 같은 재질로 이루어지며, 지립은 다이아몬드, 탄화실리콘(SiC) 등과 같은 경도 및 절삭성이 우수한 재질로 이루어진다.
특히, 다이아몬드 지립이 와이어 상에 전착되어 형성되는 와이어 쏘우를 전착 다이아몬드 와이어 쏘우라고 한다. 전착 다이아몬드 와이어 쏘우는, 최근 실리콘 잉곳, 사파이어 웨이퍼 등과 같은 반도체 절삭 가공에서 그 활용도가 높다.
이하에서, 본 발명에 따른 전착 다이아몬드 와이어 쏘우 제조 방법에 대한 바람직한 네 가지 실시예를 살펴보기로 한다.
[제 1 실시예]
도 1은 본 발명의 제1실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도이다. 그리고 도 2는 본 발명의 제1실시예에 따른 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도이다.
도 2는 도 1을 통해 설명될 본 발명의 제1실시예에 따른 전착 다이아몬드 와이어 쏘우 제조 방법을 보다 구체적으로 확인할 수 있는 공정 과정을 도식화 한 것으로서, 도 1을 통한 각 단계별 설명 시 도 2를 병행 참조하기로 한다.
먼저, 도 1을 참조하여, 본 발명의 제1실시예의 상세 단계를 살펴보기로 한다.
패터닝 처리 단계(ST110)
본 단계(ST110)는, 와이어의 표면, 즉 외주면을 따라 다이아몬드 지립을 전착하기에 앞서, 전착 공정의 효율성을 위하여 와이어의 외주면에 미리 정해진 패턴 형태로 마스킹 액을 인쇄하는 단계이다.
도 2의 (a)를 참조하면, 본 단계의 공정을 보다 구체적으로 확인할 수 있다.
도시된 바와 같이, 일측 방향으로 주입되는 와이어(110)의 외주면에 대해 복수의 방향(도면에서, 3개 방향)에서 마스킹 액이 분사되어 인쇄 처리된다.
보다 효과적인 마스킹 액 인쇄 처리를 위하여, 복수개의 인쇄 노즐(미도시)을 이용할 수 있다.
이때의 인쇄 노즐은, 잉크젯 방식으로 마스킹 액을 와이어(110)의 외주면에 인쇄 처리하는 구성으로서, 통용되는 잉크젯 프린팅 노즐이라면 어떠한 형태라도 이용 가능하다.
다만, 인쇄 노즐은 와이어(110)의 외주면에 대향하여 상호 동일한 끼인각으로 복수개가 형성되는 것이 바람직한데, 도시된 바와 같이, 그 끼인각이 120°로 구성된 3개로 이루어질 수 있으며, 이러한 개수는 본 발명의 범주를 제한하지 않는다.
직진 주입되는 와이어(110)의 외주면을 따라, 순차적으로 상기 3개의 인쇄 노즐로부터 마스킹 액이 분사 후 인쇄됨에 따라, 와이어의 외주면은 패터닝 처리될 수 있다.
이때, 패터닝 경로는, 제조 공정 전에 사용자에 의해서 설정된 경로를 따를 수 있으며, 제조되어야 할 목표 형상의 전착 다이아몬드 와이어 쏘우의 형태에 따라 그 패턴 경로 역시 조금씩 달리 설정되어도 무방하다.
이로써, 본 단계(ST110)를 마친 와이어의 외주면 상에는, 후술될 단계에서 다이아몬드 지립이 전착 형성될 구간을 제외한 전 구간에 대해 마스킹 액이 패터닝 처리된다.
다이아몬드 지립 전착 단계(ST120)
본 단계(ST120)는, 이전 단계에서 패터닝 처리된 구간 이외의 와이어 외주면을 따라 다이아몬드 지립을 전착하는 단계이다.
다이아몬드 지립의 전착은 와이어에 니켈의 전기도금시 니켈도금액에 포함된 다이아몬드 지립이 함께 와이어에 부착되는 방식으로 실시될 수 있으며, 이외에도 공지된 다양한 방식으로 실시될 수 있다.
도 2의 (b)를 참조하면, 본 단계의 공정을 더욱 구체적으로 확인할 수 있다.
도시된 바와 같이, 와이어(110)의 외주면 상에서 다이아몬드 지립(120)이 전착 형성될 구간을 제외하고는 마스킹 액을 이용한 패터닝 처리가 이루어져 있음을 확인할 수 있다.
여기서, 다이아몬드 지립(120)이 전착 형성되는 와이어(110)의 외주면 잔부 영역, 즉 이전 단계(ST110)에서 패터닝이 처리되지 않은 영역은, 와이어(110)의 길이 방향을 따라 스파이럴(spiral) 형상의 연속적인 궤적을 갖는 것을 확인할 수 있다.
이러한 영역 상에 다이아몬드 지립(120)이 골고루 전착 형성됨에 따라, 전 길이 범위에서 균일한 절삭 또는 연마 특성을 갖는 전착 다이아몬드 와이어 쏘우가 제조될 수 있는 것이다.
본 발명의 제1실시예를 통해 제조되는 전착 다이아몬드 와이어 쏘우는 도 2의 (c)에 도시된 바와 같이, 균일하고 정밀한 나선 궤적을 따라 다이아몬드 지립이 와이어 상에 전착될 수 있다.
아울러, 전 공정 과정을 체계적으로 관리할 수 있어, 균일한 고품질의 제품을 제공할 수 있는 효과가 있다.
도 1 및 도 2를 참조하여 살펴본 바와 같이, 본 발명의 제1실시예는, 단지 2단계의 세부 구성을 포함하므로, 전착 다이아몬드 와이어 쏘우의 제조에 있어, 제조 공정의 효율적인 관리가 용이하며, 비용 절감 및 공수 단축의 효과를 가져 온다.
[제 2 실시예]
도 3은 본 발명의 제2실시예에 따른 비도전성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도이다. 그리고 도 4는 본 발명의 제2실시예에 따른 비도전성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도이다.
여기서, 도 4는 도 3을 통해 설명될 본 발명의 제2실시예에 따른 전착 다이아몬드 와이어 쏘우 제조 방법을 보다 구체적으로 확인할 수 있는 공정 과정을 도식화 한 것으로서, 도 3을 통한 각 단계별 설명 시 도 4를 병행 참조하기로 한다.
먼저, 도 3을 참조하여, 본 발명의 제2실시예의 상세 단계를 살펴보기로 한다.
패터닝 처리 단계(ST210)
본 단계(ST210)는, 와이어의 표면, 즉 외주면을 따라 다이아몬드 지립을 전착하기에 앞서, 전착 공정의 효율성을 위하여 와이어의 외주면에 미리 정해진 패턴 형태로 마스킹 액을 인쇄하는 단계이다.
다만, 앞서 도 1을 통해 살펴본 패터닝 단계(ST110)와 비교하면, 그 차이점이 뚜렷한데, 전술한 제1실시예의 경우, 와이어 주입 시 와이어가 직진하는 것과 달리, 여기서 설명될 제2실시예의 경우, 와이어 주입 시 와이어가 회전한다는 것이다.
아울러, 회전 주입되는 와이어의 외주면에 대해 일방향으로 마스킹 액이 인쇄 처리된다는 점에서 본 발명의 제2실시예는 전술된 제1실시예와 차이가 있다.
도 4의 (a)를 참조하면, 본 단계의 공정을 보다 구체적으로 확인할 수 있다.
도시된 바와 같이, 일측 방향으로 주입되는 와이어(110)는 회전한다.
이때, 회전하는 와이어(110)의 외주면에 대해 일 방향으로 마스킹 액이 분사되어 인쇄 처리된다.
이러한 단계에서도, 보다 효과적인 마스킹 액 인쇄 처리를 위해서는, 인쇄 노즐이 이용될 수 있으며, 전술된 제1실시예와 동일하게 잉크젯 방식이 이용될 수 있다.
회전 주입되는 와이어(110)의 외주면에 대해 이격되어 일측에만 배치된 인쇄 노즐로부터 마스킹 액이 분사 후 인쇄될 수 있는데, 미리 정해진 패턴 경로를 따라 인쇄되기 위해서는, 상기 인쇄 노즐의 인쇄 주기가 조절되는 것이 바람직하다.
즉, 와이어(110)의 주입 속도, 및 회전수에 연동하여, 상기 인쇄 노즐로부터 분사되어 인쇄되는 마스킹 액의 분사 주기가 조절될 수 있도록 하는 것이 좋다.
이로써, 사용자로부터 설정된 패턴 경로를 따라 마스킹 액이 와이어의 외주면 상에 인쇄 처리될 수 있다.
여기서, 사용자로부터 설정된 패턴 경로란, 제조되어야 할 목표 형상의 전착 다이아몬드 와이어 쏘우의 형태에 따라 조금씩 달리 설정될 수 있다.
이로써, 본 단계(ST210)를 마친 와이어의 외주면 상에는, 후술될 단계에서 다이아몬드 지립이 전착될 구간을 제외한 전 구간에 대해 마스킹 액이 패터닝 처리된다.
다이아몬드 지립 전착 단계(ST220)
본 단계(ST220)는, 이전 단계에서 패터닝 처리된 구간 이외의 와이어 외주면을 따라 다이아몬드 지립을 전착 형성하는 단계이다.
도 4의 (b)를 참조하면, 본 단계의 공정을 더욱 구체적으로 확인할 수 있다.
도시된 바와 같이, 와이어(110)의 외주면 상에서 다이아몬드 지립(120)이 전착될 구간을 제외하고는 마스킹 액을 이용한 패터닝 처리가 이루어져 있음을 확인할 수 있다.
여기서, 다이아몬드 지립(120)이 전착되는 와이어(110)의 외주면 잔부 영역, 즉 이전 단계(ST210)에서 패터닝이 처리되지 않은 영역은, 와이어(110)의 길이 방향을 따라 스파이럴(spiral) 형상의 연속적인 궤적을 갖는 것을 확인할 수 있다.
이러한 영역 상에 다이아몬드 지립(120)이 골고루 전착 형성됨에 따라, 전 길이 범위에서 균일한 절삭 또는 연마 특성을 갖는 전착 다이아몬드 와이어 쏘우가 제조될 수 있는 것이다.
이러한 본 단계(ST220)의 공정 과정은 도 1을 통해 전술된 제1실시예의 다이아몬드 지립 전착 단계(ST120)와 동일 또는 유사하게 실시될 수 있다.
이러한 본 발명의 제2실시예에 따를 경우에도, 단지 2단계의 세부 구성을 포함함으로써, 제조 공정의 효율적인 관리가 용이하며, 비용 절감은 물론, 공수 단축을 통해 생산성 증대를 도모할 수 있다.
[제 3 실시예]
도 5는 본 발명의 제3실시예에 따른 비도전성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도이다. 그리고 도 6은 본 발명의 제3실시예에 따른 비도전성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도이다.
여기서, 도 6은 도 5를 통해 설명될 본 발명의 제3실시예에 따른 전착 다이아몬드 와이어 쏘우 제조 방법을 보다 구체적으로 확인할 수 있는 공정 과정을 도식화 한 것으로서, 도 5를 통한 각 단계별 설명 시 도 6을 병행 참조하기로 한다.
먼저, 도 5를 참조하여, 본 발명의 제3실시예의 상세 단계를 살펴보기로 한다.
마스킹 액 전면 코팅 단계(ST310)
본 단계(ST310)는, 와이어의 외주면을 마스킹 액으로 전면 코팅하는 단계이다.
이 단계에서 와이어의 외주면을 마스킹 액으로 전면 코팅하는 과정은, 후술될 단계의 포토마스킹(photomasking) 기법에 의해 와이어의 외주면에 마스킹 액을 일정 패턴으로 처리하기 위한 선행 공정으로서의 의미를 가진다.
도 6의 (a)를 참조하면, 와이어(110)의 외주면을 마스킹 액으로 전면 코팅하기 위한 공정 작업도가 개시된다.
도시된 바와 같이, 진입되는 와이어(110)를 마스킹 액이 보관된 용기 내에 침지시켜 충분히 와이어(110)의 외주면에 마스킹 액을 코팅 시킨다. 다만, 도 6의 (a)에서 나타낸 코팅 방법은 본 발명의 바람직한 하나의 실시 형태로서, 본 발명은 이러한 코팅 방식에 굳이 제한될 필요는 없다.
패터닝 처리 단계(ST320)
본 단계(ST320)는, 이전 단계에서 마스킹 액으로 전면 코팅된 와이어(110)를 미리 정해진 패턴 형태로 노광을 주고 에칭을 실시하여 패터닝 처리하는 단계이다.
이 단계에서 마스킹 액이 전면 코팅된 와이어(110)에 설정된 패턴으로 노광을 주고 에칭을 실시함으로써 외주면에 소정의 패터닝을 실시하는 방법은 일종의 포토마스킹(photomasking) 방법과 동일 또는 유사하다고 할 수 있다. 포토마스킹 방법은 반도체 또는 LCD 공정에 널리 주지된 공정 방법이므로, 이에 대한 불필요한 설명은 생략하기로 한다.
이 단계에서의 노광 공정은, UV광을 조사하는 방식으로 이루어질 수 있다. 미리 정해진 패턴으로 노광을 준 후, 에칭을 실시하면, 와이어의 외주면 상에 패터닝이 실시된다.
이러한 단계를 통해 와이어의 외주면 상에 마스킹 액이 부분적으로 패터닝 된 모습은 도 6의 (b)를 통해 확인할 수 있다.
도시된 바로는, 패터닝 된 형상이 상, 하로 서로 이격되어 교번적으로 형성된 복수개의 직사각형 형상의 패턴인 것으로 보이나, 이러한 구체적인 형상은 본 발명의 범주를 제한하지 않는다.
다이아몬드 지립 전착 단계(ST330)
본 단계(ST330)는, 이전 단계에서 패터닝 처리된 구간 이외의 와이어 외주면을 따라 다이아몬드 지립을 전착하는 단계이다.
도 6의 (c)를 참조하면, 이전 단계에서의 노광 및 에칭 이후에 남은 비전도성 물질이 코팅된 부분 이외의 구간에 다이아몬드 지립(120)이 전착되는 모습을 확인할 수 있다.
즉, 다이아몬드 지립(120)은 와이어(110)의 외주면 상에서, 마스킹 액이 코팅된 부분 이외의 잔부 구간을 통해 골고루 전착 형성될 수 있다.
여기서, 다이아몬드 지립(120)이 전착되는 와이어(110)의 외주면 잔부 영역은, 상기 와이어(110)의 길이 방향을 따라 스파이럴(spiral) 형상의 연속적인 궤적을 가지는 것을 알 수 있다.
이와 같이 와이어(110)의 외주면에 골고루 다이아몬드 지립(120)이 전착됨에 따라, 본 발명에 따른 전착 다이아몬드 와이어 쏘우는 전 길이 범위에서 균일한 절삭 또는 연마 품질을 가질 수 있는 것이다.
여기서, 본 단계(ST330)의 공정 과정은 도 1 및 도 3을 통해 전술된 제1실시예 및 제2실시예의 다이아몬드 지립 전착 단계(ST120, ST220)와 동일 또는 유사하게 실시될 수 있다.
[제 4 실시예]
도 7은 본 발명의 제4실시예에 따른 비도전성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 보여주는 순서도이다. 그리고 도 8은 본 발명의 제4실시예에 따른 비도전성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법을 설명하기 위해 도시한 공정도이다.
여기서, 도 8은 도 7을 통해 설명될 본 발명의 제4실시예에 따른 전착 다이아몬드 와이어 쏘우 제조 방법을 보다 구체적으로 확인할 수 있는 공정 과정을 도식화 한 것으로서, 도 7을 통한 각 단계별 설명 시 도 8을 병행 참조하기로 한다.
먼저, 도 7을 참조하여, 본 발명의 제4실시예의 상세 단계를 살펴보기로 한다.
마스킹 테이프 부착을 통한 패터닝 처리 단계(ST410)
본 단계(ST410)는, 와이어의 외주면에 마스킹 테이프를 부착하는 방식으로 와이어에 비전도성 물질을 패터닝 처리하는 단계이다.
이 단계에서의 비전도성 물질의 패터닝 방법은, 앞서 살펴본 본 발명의 제1실시예, 제2실시예 및 제3실시예와는 차별화된 특징이 있다.
즉, 비전도성 물질로서, 마스킹 액을 이용하는 방식이 아니라, 테이프 형태로 사전 제작된 마스킹 테이프를 와이어의 외주면에 감아 둘러 부착시키는 방식으로, 비전도성 물질을 패터닝 처리한다.
본 단계(ST410)는 다시 2가지 실시 형태를 포함할 수 있다.
첫 번째로는, 도 8의 (a)에 도시된 바와 같이, 미리 다이아몬드 지립이 전착될 구간 상에 복수개의 천공홀이 형성된 마스킹 테이프를 직접 와이어(110)의 길이 방향으로 감아 둘러 부착하는 방식이다.
이 경우, 복수개의 천공홀은 마스킹 테이프 상에 미리 스파이럴 형상의 궤적으로 배치 형성될 수 있다. 이러한 복수개의 천공홀을 통해 다이아몬드 지립(120)이 전착될 수 있다.
두 번째로는, 별도로 도시하진 않았으나, 미리 다이아몬드 지립이 전착될 구간을 제외하고, 와이어의 외주면을 따라 마스킹 테이프를 스파이럴 형태로 경사지게 감아 둘러 부착하는 방식이다.
이 경우의 마스킹 테이프에는 미리 별도의 천공홀을 형성할 필요가 없다.
즉, 마스킹 테이프의 부착 시, 감아 두르는 사이에 소정의 이격 간격을 두어, 그 이격 간격 내에서 다이아몬드 지립이 골고루 전착 형성되도록 해주는 것이다.
다이아몬드 지립 전착 단계(ST420)
본 단계(ST420)는, 이전 단계에서 마스킹 테이프의 부착에 의해 패터닝 처리될 때, 천공홀 또는 이격 간격을 통해 와이어의 외주면 상에 다이아몬드 지립이 전착 형성되는 단계이다.
도 8의 (b)를 참조하면, 마스킹 테이프 내에서, 스파이럴 형상의 배열로 구비된 복수개의 천공홀 내에 다이아몬드 지립(120)이 전착되어 있는 모습을 확인할 수 있다.
마스킹 테이프 제거 단계(ST430)
본 단계(ST430)는, 전술된 전 단계(ST410, ST420)를 통해 와이어의 외주면을 따라 스파이럴 형태로 다이아몬드 지립이 전착 형성되고 난 다음, 마스킹 테이프를 제거하는 마무리 단계이다.
도 8의 (c)를 참조하면, 와이어(110)의 외주면에서 길이 방향을 따라 다이아몬드 지립(120)이 스파이럴 형상의 연속적인 궤적을 가지며 규칙적으로 전착 형성되어 있음을 확인할 수 있다.
이러한 방법으로 제조된 전착 다이아몬드 와이어 쏘우는, 전 길이 범위에서 균일하게 향상된 절삭 또는 연마 품질을 가질 수 있다.
상술한 바와 같이, 본 발명인 전착 다이아몬드 와이어 쏘우 및 그 제조 방법에 따르면, 와이어에 다이아몬드 지립을 전착하는 공정에 앞서, 다이아몬드 지립의 전착이 배제되어야 할 와이어의 표면 구간에 대해 비전도성 물질을 패터닝 처리한다.
이로써, 전착 다이아몬드 와이어 쏘우의 제조 공정을 효율적으로 제시할 수 있어, 제조 단가를 저감할 수 있으며, 균일한 제조공정 과정을 통해 제품의 품질을 향상시킬 수 있다.
특히, 본 발명은 상기의 비전도성 물질 패터닝 공정에 관한 바람직한 실시예로서, 네 가지 바람직한 실시 형태를 제시한다.
첫 번째 실시예는, 와이어의 주입과 동시에, 와이어의 외주면에 대해 복수의 방향에서 마스킹 액을 잉크젯 방식으로 분사하여 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
두 번째 실시예는, 와이어의 주입 시 와이어를 회전시키는 동시에, 일방향에서만 마스킹 액을 잉크젯 방식으로 분사하여 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
세 번째 실시예는, 와이어의 전면을 비전도성 물질로 코팅 처리한 후 노광 및 에칭 과정을 거쳐 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
네 번째 실시예는, 와이어 표면에 대하여 다이아몬드 지립이 전착될 특정 구간에만 천공홀이 형성된 비전도성 테이프를 와이어에 부착하여 패터닝 처리한 후 다이아몬드 지립을 전착하는 형태이다.
이로써, 전착 다이아몬드 와이어 쏘우의 제조 과정에 대한 공정 자동화가 이루어질 수 있으며, 공수 단축을 통해 보다 향상된 제품을 대량 생산하기에 적합한 장점이 있다.
지금까지 본 발명의 내구수명 증가 및 절삭 품질을 개선할 수 있는 전기 도금 처리된 고정지립형 와이어 쏘우에 대한 구체적인 실시예에 관하여 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서는 여러 가지 실시적인 변형이 가능함은 물론이다.
즉, 전술된 실시예는 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로 이해되어야 하며, 본 발명의 범위는 전술된 상세한 설명보다는 후술될 특허청구범위에 의하여 나타내어지며, 그 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (17)

  1. (a) 와이어의 주입 시 상기 와이어의 외주면에 대해 복수의 방향에서 마스킹 액을 인쇄하여 패터닝 처리하는 단계; 및
    (b) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 영역에 다이아몬드 지립(abrasive particle)을 전착(electroplating)하는 단계;를 포함하는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  2. 제 1 항에 있어서,
    상기 (a) 단계에서,
    상기 마스킹 액의 인쇄는,
    상기 와이어의 외주면에 대향하여 복수개의 인쇄 노즐이 상호 동일한 끼인각을 가지도록 배치되어,
    주입되는 상기 와이어의 외주면 상으로 미리 정해진 패턴 경로를 따라 상기 마스킹 액을 인쇄하는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  3. 제 2 항에 있어서,
    상기 마스킹 액의 인쇄는,
    잉크젯 방식으로 구현되는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  4. 제 1 항에 있어서,
    상기 (b) 단계에서,
    상기 다이아몬드 지립이 전착되는 상기 와이어의 외주면 잔부 영역은, 상기 와이어의 길이 방향을 따라 스파이럴(spiral) 형상을 갖도록 형성되는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  5. (a) 와이어의 주입 시, 상기 와이어가 회전하는 동시에 상기 와이어의 외주면에 대해 일 방향으로 마스킹 액을 인쇄하여 패터닝을 처리하는 단계; 및
    (b) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 영역에 다이아몬드 지립을 전착하는 단계;를 포함하는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  6. 제 5 항에 있어서,
    상기 (a) 단계에서,
    상기 마스킹 액의 인쇄는,
    상기 와이어의 외주면에 대향하여 단일의 인쇄 노즐이 이격 배치되되,
    주입과 동시에 회전하는 상기 와이어의 외주면 상으로 미리 정해진 패턴 경로를 따라 상기 마스킹 액이 인쇄되도록, 상기 인쇄 노즐의 인쇄 주기가 조절되는 방식에 의해 이루어지는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  7. 제 6 항에 있어서,
    상기 마스킹 액의 인쇄는,
    잉크젯 방식으로 구현되는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  8. 제 5 항에 있어서,
    상기 (b) 단계에서,
    상기 다이아몬드 지립이 전착되는 상기 와이어의 외주면 잔부 영역은, 상기 와이어의 길이 방향을 따라 스파이럴(spiral) 형상을 갖도록 형성되는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  9. (a) 와이어의 외주면을 마스킹 액으로 전면 코팅하는 단계;
    (b) 상기 마스킹 액이 전면 코팅된 상기 와이어를 미리 정해진 패턴으로 노광을 주고 에칭을 실시하여 패터닝 처리하는 단계; 및
    (c) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 영역에 다이아몬드 지립을 전착하는 단계;를 포함하는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  10. 제 9 항에 있어서,
    상기 (b) 단계에서,
    상기 노광은, UV광을 조사하는 방식으로 이루어지는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  11. 제 9 항에 있어서,
    상기 (c) 단계에서,
    상기 다이아몬드 지립이 전착되는 상기 와이어의 외주면 잔부 영역은, 상기 와이어의 길이 방향을 따라 스파이럴(spiral) 형상을 갖도록 형성되는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  12. (a) 와이어의 외주면을 따라 미리 정해진 패턴으로 마스킹 테이프를 부착하여 패터닝 처리하는 단계;
    (b) 상기 패터닝 처리된 영역을 제외한 상기 와이어의 외주면 잔부 구간에 다이아몬드 지립을 전착하는 단계; 및
    (c) 부착된 상기 마스킹 테이프를 상기 와이어로부터 제거하는 단계;를 포함하는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  13. 제 12 항에 있어서,
    상기 (a) 단계에서,
    상기 마스킹 테이프를 부착하여 상기 와이어의 외주면을 패터닝 처리하는 방법은,
    상기 마스킹 테이프에 미리 복수개의 천공홀을 상기 와이어의 길이 방향을 따라 스파이럴(spiral) 형상으로 배열 형성하고, 상기 천공홀이 형성된 상기 마스킹 테이프를 상기 와이어의 외주면에 부착하는 방식으로 이루어지는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  14. 제 12 항에 있어서,
    상기 (a) 단계에서,
    상기 마스킹 테이프를 부착하여 상기 와이어의 외주면을 패터닝 처리하는 방법은,
    상기 와이어의 길이 방향을 따라 스파이럴 형상의 궤적으로 상기 와이어의 외주면에 대해 상기 마스킹 테이프를 부착하는 방식으로 이루어지는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우 제조 방법.
  15. 와이어의 외주면 중 일부 구간에 비전도성 물질 패턴이 형성되어 있으며,
    상기 와이어 외주면 중 나머지 구간에 다이아몬드 지립이 전착되어 있는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우.
  16. 제15항에 있어서,
    상기 비전도성 물질은
    상기 와이어의 길이 방향을 따라 스파이럴 형상의 궤적으로 형성되어 있는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우.
  17. 제15항에 있어서,
    상기 다이아몬드 지립은 상기 와이어의 길이 방향을 따라 스파이럴 형상의 궤적으로 형성되어 있는 것을 특징으로 하는 전착 다이아몬드 와이어 쏘우.
PCT/KR2012/001943 2011-04-05 2012-03-19 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법 WO2012138063A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/009,879 US9776306B2 (en) 2011-04-05 2012-03-19 Method for manufacturing an electrodeposited diamond wire saw using patterned non-conductive materials
JP2014503587A JP5710067B2 (ja) 2011-04-05 2012-03-19 非伝導性物質のパターニング処理方式を用いた電着ダイヤモンドワイヤーソー及びその製造方法
EP12768219.3A EP2695973B1 (en) 2011-04-05 2012-03-19 Method for manufacturing an electrodeposited diamond wire saw
CN2012800173828A CN103476972A (zh) 2011-04-05 2012-03-19 用于使用图案化的不导电材料来制造电镀金刚石线锯的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110031177A KR101121254B1 (ko) 2011-04-05 2011-04-05 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법
KR10-2011-0031177 2011-04-05

Publications (2)

Publication Number Publication Date
WO2012138063A2 true WO2012138063A2 (ko) 2012-10-11
WO2012138063A3 WO2012138063A3 (ko) 2013-03-07

Family

ID=46141599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001943 WO2012138063A2 (ko) 2011-04-05 2012-03-19 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법

Country Status (7)

Country Link
US (1) US9776306B2 (ko)
EP (1) EP2695973B1 (ko)
JP (1) JP5710067B2 (ko)
KR (1) KR101121254B1 (ko)
CN (1) CN103476972A (ko)
MY (1) MY165665A (ko)
WO (1) WO2012138063A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031012A (zh) * 2012-12-14 2013-04-10 长沙岱勒新材料科技有限公司 一种组合物及其用于制备金刚石线锯的方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101121254B1 (ko) 2011-04-05 2012-03-22 이화다이아몬드공업 주식회사 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법
CN102828212B (zh) * 2012-09-12 2014-10-15 南京航空航天大学 空间立体布局式快速复合电刷镀金刚石线锯装置
KR101506910B1 (ko) * 2012-09-27 2015-03-30 티디케이가부시기가이샤 이방성 도금 방법 및 박막 코일
CN103882500B (zh) * 2014-04-04 2016-03-02 山东大学 磨粒群节块状排布的电镀线锯丝的制作方法及装置
CN106273008A (zh) * 2015-06-02 2017-01-04 江苏友和工具有限公司 电镀金刚石绳锯制备工艺
SG11202002908PA (en) 2017-09-28 2020-04-29 Saint Gobain Abrasives Inc Abrasive article and method of forming
CN110181698B (zh) * 2019-04-25 2021-04-23 南京大学连云港高新技术研究院 一种结构稳固式金刚石线及其制备方法
CN112428443A (zh) * 2021-01-27 2021-03-02 天津市镍铠表面处理技术有限公司 环形线锯及其制作方法
CN113275659B (zh) * 2021-04-25 2022-03-08 江苏聚成金刚石科技有限公司 一种超细高强度合金钨丝金刚石线锯及其制备方法
CN113857950A (zh) * 2021-09-13 2021-12-31 泰兴市中博钻石科技股份有限公司 一种非镀衣金钢石线连继生产工艺
CN114540901B (zh) * 2022-01-27 2023-09-26 隆基绿能科技股份有限公司 一种金刚线及其制备方法
CN114986405B (zh) * 2022-06-28 2023-10-24 泰科材料技术(广州)有限公司 一种超细磨料颗粒有序排布方法
CN115948785A (zh) * 2023-02-23 2023-04-11 江苏三超金刚石工具有限公司 一种新型上砂工艺电镀金刚线的制备方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2633681A (en) * 1951-10-08 1953-04-07 Sam Sam Women Cutting surface for wire
US3886926A (en) * 1973-07-19 1975-06-03 George H Hall Wire saw
US4078906A (en) * 1976-09-29 1978-03-14 Elgin Diamond Products Co., Inc. Method for making an abrading tool with discontinuous diamond abrading surfaces
AU1215788A (en) * 1987-02-27 1988-09-01 Diabrasive International Ltd. Flexible abrasives
JPH03202281A (ja) * 1989-12-28 1991-09-04 Nippon Micro Kooteingu Kk 任意の微細凹凸パターンを表面上に有する研磨テープの製造方法
US5380390B1 (en) * 1991-06-10 1996-10-01 Ultimate Abras Systems Inc Patterned abrasive material and method
JPH0639729A (ja) * 1992-05-29 1994-02-15 Canon Inc 精研削砥石およびその製造方法
JP2515212B2 (ja) * 1992-08-21 1996-07-10 憲一 石川 ワイヤソ―の固定砥粒ワイヤの製造装置
JP3557231B2 (ja) 1993-09-24 2004-08-25 憲一 石川 ダイヤモンド電着ワイヤ工具及びその製造方法
US6478831B2 (en) * 1995-06-07 2002-11-12 Ultimate Abrasive Systems, L.L.C. Abrasive surface and article and methods for making them
JP3754488B2 (ja) * 1996-03-22 2006-03-15 憲一 石川 固定砥粒ワイヤの製造方法及び螺旋コーティング装置
TW394723B (en) * 1997-04-04 2000-06-21 Sung Chien Min Abrasive tools with patterned grit distribution and method of manufacture
JP2004358640A (ja) 2003-06-09 2004-12-24 Goei Seisakusho:Kk 電着工具の製造方法及び電着工具
JP2005014522A (ja) * 2003-06-27 2005-01-20 Toshiba Mach Co Ltd フィルム・シート成形装置
KR100526822B1 (ko) * 2003-07-31 2005-11-08 이화다이아몬드공업 주식회사 칩 배출이 용이한 비드
JP4083177B2 (ja) * 2005-02-25 2008-04-30 株式会社ノリタケスーパーアブレーシブ ワイヤソー
JP4871543B2 (ja) * 2005-08-01 2012-02-08 株式会社アライドマテリアル 電着砥石の製造方法
JP4829626B2 (ja) 2006-01-31 2011-12-07 日本精線株式会社 ソーワイヤー及びその製造方法
JP2007324255A (ja) * 2006-05-31 2007-12-13 Matsushita Electric Ind Co Ltd レジスト膜形成方法およびレジスト膜形成装置
CN100482420C (zh) * 2007-04-06 2009-04-29 大连理工大学 一种磨料三维多层可控优化排布电镀工具制作方法
JP5286968B2 (ja) * 2008-06-23 2013-09-11 株式会社中村超硬 ワイヤーソーの製造方法
CN102458768A (zh) * 2009-06-05 2012-05-16 应用材料公司 用于制造磨料线的设备和方法
KR20110018642A (ko) * 2009-08-18 2011-02-24 일진다이아몬드(주) 와이어쏘
JP2012157908A (ja) * 2011-01-28 2012-08-23 Sumco Corp 硬脆性材料のスライス方法
KR101121254B1 (ko) 2011-04-05 2012-03-22 이화다이아몬드공업 주식회사 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 제조 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2695973A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031012A (zh) * 2012-12-14 2013-04-10 长沙岱勒新材料科技有限公司 一种组合物及其用于制备金刚石线锯的方法
WO2014090125A1 (zh) * 2012-12-14 2014-06-19 长沙岱勒新材料科技有限公司 一种组合物及其用于制备金刚石线锯的方法

Also Published As

Publication number Publication date
EP2695973B1 (en) 2017-10-18
EP2695973A2 (en) 2014-02-12
KR101121254B1 (ko) 2012-03-22
CN103476972A (zh) 2013-12-25
US9776306B2 (en) 2017-10-03
MY165665A (en) 2018-04-18
EP2695973A4 (en) 2014-12-17
WO2012138063A3 (ko) 2013-03-07
JP5710067B2 (ja) 2015-04-30
US20140246005A1 (en) 2014-09-04
JP2014509957A (ja) 2014-04-24

Similar Documents

Publication Publication Date Title
WO2012138063A2 (ko) 비전도성 물질의 패터닝 처리 방식을 이용한 전착 다이아몬드 와이어 쏘우 및 그 제조 방법
WO2012148173A2 (ko) 방전가공용 전극선 및 그 제조방법
WO2011155768A2 (ko) 스케일 제거장치
WO2020213836A1 (ko) Sic 엣지 링
WO2011028074A2 (en) Cutting/polishing tool and manufacturing method thereof
WO2020036360A1 (ko) 프레임 일체형 마스크의 제조 방법 및 프레임
WO2017111523A1 (ko) 도금 장치 및 도금 방법
US11373907B2 (en) Method of manufacturing device chip
WO2018147678A1 (ko) 시드층을 이용한 회로형성방법 및 시드층의 선택적 에칭을 위한 에칭액 조성물
WO2020226292A1 (ko) 적층 구조체, 이를 포함하는 연성동박적층필름, 및 상기 적층 구조체의 제작방법
WO2015147401A1 (ko) 패드 컨디셔너 제조방법 및 패드 컨디셔너
WO2019124927A1 (ko) 용접 액화 취성에 대한 저항성 및 도금 밀착성이 우수한 알루미늄 합금 도금강판
WO2020076021A1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
WO2020122370A1 (ko) 투명전도막의 제조방법
WO2010131866A2 (ko) 싱글볼 가공장치
US7060622B2 (en) Method of forming dummy wafer
WO2013191469A1 (ko) 원자층 증착 장치
WO2018066877A1 (ko) 홀 가공 방법
WO2020032513A1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법
WO2010137810A2 (ko) 싱글볼 가공장치의 수평방식의 헤드부
WO2015119397A1 (ko) 인쇄회로기판, 이를 포함하는 패키지 기판 및 이의 제조 방법
WO2017111374A1 (ko) 풋 프린트를 줄일 수 있는 인터백 타입의 증착 시스템
WO2018062860A2 (ko) 균일처리장치 및 산세장치
WO2022092846A1 (ko) 증착 마스크 스틱 중간체
WO2019093642A1 (ko) 소재 회전방식의 실리콘 필라멘트 자동 연마기 및 이를 이용한 연마시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768219

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014503587

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012768219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012768219

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14009879

Country of ref document: US