WO2012137573A1 - 燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラ、ボイラ及びボイラの運転方法 - Google Patents

燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラ、ボイラ及びボイラの運転方法 Download PDF

Info

Publication number
WO2012137573A1
WO2012137573A1 PCT/JP2012/055850 JP2012055850W WO2012137573A1 WO 2012137573 A1 WO2012137573 A1 WO 2012137573A1 JP 2012055850 W JP2012055850 W JP 2012055850W WO 2012137573 A1 WO2012137573 A1 WO 2012137573A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
air
flame
burner
nozzle
Prior art date
Application number
PCT/JP2012/055850
Other languages
English (en)
French (fr)
Inventor
啓吾 松本
和宏 堂本
直文 阿部
潤 葛西
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011081876A external-priority patent/JP5670804B2/ja
Priority claimed from JP2011081877A external-priority patent/JP5763389B2/ja
Priority claimed from JP2011081879A external-priority patent/JP5854620B2/ja
Priority claimed from JP2011138563A external-priority patent/JP5778499B2/ja
Priority claimed from JP2011138564A external-priority patent/JP5778500B2/ja
Priority to KR1020157014776A priority Critical patent/KR101609523B1/ko
Priority to MX2013011125A priority patent/MX344736B/es
Priority to MX2016009825A priority patent/MX357868B/es
Priority to KR1020147030043A priority patent/KR20140136057A/ko
Priority to BR112013024962A priority patent/BR112013024962A2/pt
Priority to KR1020147030038A priority patent/KR101547083B1/ko
Priority to MX2016009826A priority patent/MX357869B/es
Priority to KR1020157014656A priority patent/KR101547095B1/ko
Priority to MX2016009824A priority patent/MX354825B/es
Priority to KR1020137025379A priority patent/KR101486690B1/ko
Priority to CN201280014605.5A priority patent/CN103443543B/zh
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP12768148.4A priority patent/EP2696139B1/en
Priority to EP15185739.8A priority patent/EP2998651B1/en
Priority to MX2016009831A priority patent/MX354826B/es
Priority to PL15185735T priority patent/PL2995857T3/pl
Priority to EP15185737.2A priority patent/EP3015766B1/en
Priority to US14/007,858 priority patent/US9671108B2/en
Priority to KR1020147030040A priority patent/KR101500921B1/ko
Priority to EP15185735.6A priority patent/EP2995857B1/en
Priority to KR1020147030042A priority patent/KR101531808B1/ko
Priority to UAA201311324A priority patent/UA112430C2/uk
Publication of WO2012137573A1 publication Critical patent/WO2012137573A1/ja
Priority to US15/241,309 priority patent/US20160356489A1/en
Priority to US15/241,737 priority patent/US20160356494A1/en
Priority to US15/241,356 priority patent/US20160356490A1/en
Priority to US15/241,600 priority patent/US20170045221A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/005Burners for combustion of pulverulent fuel burning a mixture of pulverulent fuel delivered as a slurry, i.e. comprising a carrying liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • F23C6/045Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection with staged combustion in a single enclosure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/20Burner staging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • F23D2201/101Nozzle tips tiltable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2203/00Feeding arrangements
    • F23K2203/20Feeding/conveying devices
    • F23K2203/201Feeding/conveying devices using pneumatic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific

Definitions

  • the present invention relates to a combustion burner applied to a boiler for generating steam for power generation or factory use, for example, a solid fuel burning burner for burning a solid fuel (powder fuel) such as pulverized coal, and a solid fuel burning
  • a combustion burner applied to a boiler for generating steam for power generation or factory use
  • a solid fuel burning burner for burning a solid fuel (powder fuel) such as pulverized coal
  • a solid fuel burning such as pulverized coal
  • the present invention relates to a boiler, a boiler that generates steam by burning solid fuel and air, and a method for operating the boiler.
  • a conventional pulverized coal fired boiler has a furnace having a hollow shape and installed in the vertical direction, and a plurality of combustion burners are disposed on the furnace wall along the circumferential direction, and a plurality of combustion burners are provided in the vertical direction. It is arranged over the steps.
  • the combustion burner is supplied with an air-fuel mixture of pulverized coal (fuel) obtained by pulverizing coal and primary air, and also supplied with high-temperature secondary air, and blows the air-fuel mixture and secondary air into the furnace. This forms a flame and can be burned in this furnace.
  • This furnace has a flue connected to the top, and this flue is provided with a superheater, reheater, economizer, etc. for recovering the heat of exhaust gas, and it was generated by combustion in the furnace. Heat exchange is performed between the exhaust gas and water, and steam can be generated.
  • the combustion burner of the present invention includes a fuel nozzle capable of injecting a fuel gas mixed with solid fuel and air, a secondary air nozzle capable of injecting air from the outside of the fuel nozzle, and a shaft at the tip of the fuel nozzle.
  • the flow of the fuel gas flowing through the fuel nozzle is rectified by the rectifying member, and at the rear end of the flame holder.
  • the flow separation is suppressed, and the flow rate is substantially constant, so that the solid fuel is prevented from being deposited on the wall surface of the fuel nozzle, and an appropriate flow of the fuel gas can be realized.
  • the rectifying member is disposed with a predetermined gap from the flame holder.
  • a predetermined gap is secured between the rectifying member and the flame holder, so that the fuel gas flowing between the rectifying member and the flame holder is rectified and the flame holding function by the flame holder. Can be fully exhibited.
  • the rectifying member is provided so that the distance from the flame holder is substantially the same along the flow direction of the fuel gas.
  • the flow rate of the fuel gas flowing between the rectifying member and the flame holder is substantially constant because the distance between the rectifying member and the flame holder is substantially the same along the flow direction of the fuel gas. Accumulation of solid fuel on the fuel nozzle and adhesion of solid fuel to the flame holder can be suppressed. Moreover, since the flow path does not become extremely narrow, blockage can be prevented.
  • the flame stabilizer is provided with a widened portion on the downstream side in the fuel gas flow direction, while the rectifying member is provided with a tapered portion on the downstream side in the fuel gas flow direction. It is a feature.
  • the flame stabilizer is provided with a widened portion on the downstream side in the fuel gas flow direction, while the rectifying member is provided at a position not facing the widened portion.
  • the rectifying member at a position that does not face the widened portion of the flame holder, the flow path of the fuel gas between the wide portion of the flame holder and the fuel nozzle is not narrowed, and the flow rate of the fuel gas is reduced. It is possible to suppress the deposition of the solid fuel on the fuel nozzle and the adhesion of the solid fuel to the flame holder.
  • the rectifying member is provided along the inner wall surface of the fuel nozzle.
  • the rectifying member on the inner wall surface of the fuel nozzle, a separate mounting member is not required, the assembling property can be improved, and the manufacturing cost can be reduced.
  • the flame holder is arranged so that the first flame holding member arranged along the horizontal direction intersects with the second flame holding member arranged along the vertical direction. It is characterized by a structure.
  • each of the first flame holding member and the second flame holding member includes a plurality of flame holding members, and the first flame holding members are arranged with a plurality of predetermined gaps in the vertical direction.
  • the plurality of second flame holding members are arranged with a predetermined gap in the horizontal direction, and the plurality of first flame holding members and the plurality of second flame holding members are arranged to intersect each other. It is said.
  • the combustion burner of the present invention is characterized in that the width of one of the first flame holding member and the second flame holding member is set larger than the width of the other.
  • the flame holding function in the horizontal direction can be improved by the wide first flame holding member.
  • the second flame holding member does not adversely affect the second flame holding member when the direction of the nozzle is swung up and down for steam temperature control or the like. It becomes possible to improve the flame function. This is because when the nozzle moves up and down, the position of the flame holding member with respect to the position where the solid fuel is blown changes greatly when the first flame holding member is used, but hardly changes when the second flame holding member is used. .
  • the combustion burner of the present invention includes a fuel nozzle capable of injecting a fuel gas mixed with solid fuel and air, a secondary air nozzle capable of injecting air from the outside of the fuel nozzle, and a tip portion of the fuel nozzle. And a guide member that guides the fuel gas flowing in the fuel nozzle to the shaft center side.
  • the guide member that guides the fuel gas flowing in the fuel nozzle to the axial center side, the fuel gas flowing in the fuel nozzle is guided to the axial center side of the fuel nozzle by this guide member.
  • the internal flame holding performance can be improved, and the amount of NOx generated can be reduced.
  • the combustion burner of the present invention is characterized in that the guide member guides the fuel gas in a direction away from the secondary air blown by the secondary air nozzle.
  • the guide member guides the fuel gas in a direction away from the secondary air, the mixing of the fuel gas and the secondary air is suppressed, and the outer periphery of the combustion flame is maintained at a low temperature.
  • the amount of NOx generated by mixing the gas and the secondary air can be reduced.
  • the guide member is arranged along the inner wall surface of the fuel nozzle.
  • the guide member along the inner wall surface of the fuel nozzle, the fuel gas flowing through the fuel nozzle is effectively guided to the axial center side, thereby guiding the fuel gas in the direction away from the secondary air. be able to.
  • the combustion burner according to the present invention is characterized in that the guide member is disposed at the tip of the fuel nozzle so as to face the flame holder.
  • the internal flame holding performance can be improved by arranging the guide member so as to face the flame holder.
  • the combustion burner according to the present invention is characterized in that the guide member is disposed at a position facing the inner wall surface of the fuel nozzle in the flame holder.
  • the fuel gas flowing along the flame holder can be effectively collected and held at the tip of the flame holder by the guide member.
  • the combustion burner according to the present invention is characterized in that the guide member is arranged upstream of the flame holder in the fuel gas flow direction.
  • the guide member and the flame holder are separated from each other, the guide member does not impair the flame holding function of the flame holder.
  • the flame holder is parallel to the two first flame holding members that are parallel with a predetermined gap in the vertical direction along the horizontal direction and with a predetermined gap in the horizontal direction along the vertical direction.
  • the two second flame holding members are arranged so as to intersect with each other, and the guide member is arranged outside the position where the first flame holding member and the second flame holding member intersect. It is characterized by.
  • the flame holder a double cross structure, it becomes possible to ensure a sufficient flame holding function, and the fuel gas flowing in the fuel nozzle can be effectively guided to the axial center side by the guide member.
  • the flame holder has a widened portion on the downstream side in the flow direction of the fuel gas, and the guide member is arranged to face the widened portion.
  • the combustion burner of the present invention has two flame holding members that are parallel to each other with a predetermined gap in the vertical direction along the horizontal direction, and the tip portion of the flame holding member faces the axial center side of the fuel nozzle. It is characterized by constituting a guide member.
  • the structure can be simplified by configuring the guide member with the flame holding member.
  • the solid fuel burning burner of the present invention is used in the burner portion of a solid fuel burning boiler that performs low NOx combustion separately into a burner portion and an additional air charging portion, and the powdered solid fuel and air are fed into the furnace.
  • a solid fuel-burning burner is provided with a fuel burner for charging powdered fuel and primary air into the furnace, and a secondary air charging port for injecting secondary air from the outer periphery of the fuel burner.
  • a cross-type split member in which members in a plurality of directions are crossed as an internal flame holding member is disposed in the road front portion, and the width dimension of the split member is different for each direction.
  • the solid fuel burning burner has a fuel burner that inputs powdered fuel and primary air into the furnace, and a secondary air input port that injects secondary air from the outer periphery of the fuel burner.
  • a cross-type split member in which members in a plurality of directions are crossed as internal flame holding at the front part of the flow path of the fuel burner, and the width dimension of the split member varies depending on the direction, so the outlet opening
  • the split member installed near the center divides the flow path of pulverized coal and air, disturbs the flow inside, and forms a recirculation zone in front of the split member, thus functioning as an internal flame holding mechanism. As a result, it is possible to suppress the high temperature oxygen remaining region formed on the outer periphery of the flame.
  • the cross-type split member is preferably wide in the vertical direction, so that the positional relationship with the splitter member hardly changes even when the nozzle angle is changed in the vertical direction.
  • the cross-type split member is preferably wide in the left-right direction. This enhances the lateral splitter function, so that direct interference with the secondary air introduced from above and below is prevented. Can be suppressed.
  • cross-type split members are disposed in at least one of the left-right direction and the up-down direction, and at least one central part in the left-right direction and the up-down direction is wide.
  • the solid fuel burning burner of the present invention is used in the burner portion of a solid fuel burning boiler that performs low NOx combustion separately in a burner portion and an additional air charging portion, and a fuel burner having an internal flame holding, and a flame holding
  • a solid-fuel-burning burner for supplying a solid fuel and air in powder form into the furnace, wherein the solid-fuel burning burner inputs the powder fuel and primary air into the furnace
  • the shielding member which reduces a flow-path cross-sectional area is provided in at least 1 place of the crossing angle part formed by the said split member crossing, It is characterized by the above-mentioned.
  • the solid fuel-fired burner has a fuel burner that inputs powdered fuel and primary air into the furnace, and a secondary air input port that injects secondary air from the outer periphery of the fuel burner.
  • a cross-type split member in which members in a plurality of directions are crossed at the front part of the flow path of the fuel burner, and the flow path is cut off at least at one of the intersecting corners formed by the crossing of the split members. Since the shielding member for reducing the area is provided, the internal flame holding function by the cross-type split member can be further enhanced.
  • the solid fuel-fired boiler preferably performs low-NOx combustion separately in a burner part and an additional air input part, so that the reduction can be further enhanced by dividing the additional input air.
  • the solid fuel-fired boiler according to the present invention is characterized in that a solid fuel-fired burner for charging pulverized fuel and air into the furnace is disposed at a corner portion or a wall surface portion in the furnace.
  • the center of the outlet opening of the fuel burner A split member arranged in the vicinity and functioning as an internal flame holding mechanism divides the flow path of the pulverized fuel and air to disturb the flow.
  • air mixing and diffusion are promoted to the inside of the flame, and the ignition surface is further subdivided, so that the ignition position approaches the center of the flame and the unburned portion of the fuel is reduced. That is, oxygen easily enters the center of the flame, so that internal ignition is effectively performed, and therefore, rapid reduction is performed inside the flame and the amount of NOx generated is reduced.
  • the solid fuel-fired burner of the present invention is used in the burner portion of a solid fuel-fired boiler that performs low-NOx combustion separately in a burner portion and an additional air input portion, and inputs solid powder fuel and air into the furnace.
  • a solid fuel-burning burner includes a fuel burner that inputs pulverized fuel and primary air into the furnace, and a call secondary port that injects secondary air from the outer periphery of the fuel burner, and a forward portion of the flow path of the fuel burner
  • a split member is disposed as an internal flame-holding member, and a part of the end adjacent to the secondary call port is removed on the outer peripheral side of the split member.
  • the solid fuel burning burner includes a fuel burner that inputs pulverized fuel and primary air into the furnace, and a call secondary port that injects secondary air from the outer periphery of the fuel burner.
  • a split member is disposed as an internal flame holding member at the front portion of the flow path of the fuel burner, and a part of the end adjacent to the secondary call port is removed on the outer peripheral side of the split member.
  • the split member installed near the center of the outlet opening divides the flow path of pulverized coal and air to disturb the flow inside. Furthermore, since this split member forms a recirculation zone in front of the split member, it functions as an internal flame holding mechanism. As a result, it is possible to suppress the high temperature oxygen remaining region formed on the outer periphery of the flame.
  • the internal flame holding member is preferably a cross-type split member in which members in a plurality of directions are crossed.
  • the cross-type split member preferably has at least one end portion of a plurality of directions removed, whereby the ignition source at the end portion of the split member is reduced and internal ignition is performed. Can be promoted. That is, it is sufficient that at least one of the upper and lower and left and right end portions of the cross-type split member that intersects the upper and lower and left and right directions is removed.
  • three or more cross-type split members are disposed in at least one of the vertical and horizontal directions, and at least one of the cross-type split members disposed in the central part of the vertical and horizontal directions is removed. It is preferable that the split member does not exist in a region that is considered to contribute most to the peripheral ignition.
  • the solid fuel-fired boiler preferably performs low-NOx combustion separately in a burner part and an additional air input part, so that the reduction can be further enhanced by dividing the additional input air.
  • the solid fuel-fired boiler according to the present invention is characterized in that a solid fuel-fired burner for charging pulverized fuel and air into the furnace is disposed at a corner portion or a wall surface portion in the furnace.
  • the center of the outlet opening of the fuel burner A split member arranged in the vicinity and functioning as an internal flame holding mechanism divides the flow path of the pulverized fuel and air to disturb the flow.
  • air mixing and diffusion are promoted to the inside of the flame, and the ignition surface is further subdivided, so that the ignition position approaches the center of the flame and the unburned portion of the fuel is reduced. That is, oxygen easily enters the center of the flame, so that internal ignition is effectively performed, and therefore, rapid reduction is performed inside the flame and the amount of NOx generated is reduced.
  • the split member can suppress ignition that becomes an ignition source, and the flame holding function can be effectively used on the center side of the split member that is inside the flame. .
  • a boiler according to the present invention includes a furnace that burns solid fuel and air, a heat exchanger that performs heat exchange in the furnace and recovers heat, and a fuel gas that is a mixture of solid fuel and primary air in the furnace.
  • the control device controls the air amount adjusting device in accordance with the volatile content of the solid fuel, and this air amount adjusting device adjusts the air amount supplied to the fuel nozzle, the secondary air nozzle, and the additional air nozzle.
  • the amount of primary air, the amount of secondary air, and the amount of additional air are adjusted according to the volatile content of the solid fuel, so that the volatile content of the solid fuel can be combusted properly and the solid fuel is combusted properly. Therefore, it is possible to improve the boiler operation efficiency by suppressing the generation of NOx and unburned components.
  • control device controls the air amount adjusting device according to the volatile content of the solid fuel, and distributes the total air amount of the primary air and the secondary air and the air amount of the additional air. It is characterized by adjusting.
  • the total air amount of the primary air and the secondary air is the amount of air necessary for burning the volatile matter of the solid fuel, and the sum of the primary air and the secondary air according to the volatile matter of the solid fuel. By changing the amount of air, the volatile matter of the solid fuel can be combusted properly.
  • the furnace is provided with a tertiary air nozzle capable of blowing tertiary air from the outside of the secondary air nozzle, and the control device sets the air amount adjusting device according to the volatile matter of the solid fuel. And controlling the distribution of the total air amount of the primary air and the secondary air and the total air amount of the tertiary air and the additional air.
  • the volatile matter of the solid fuel can be combusted appropriately by changing the total air amount of the primary air and the secondary air.
  • control device controls the air amount adjusting device so that the primary air amount and the additional air amount are set to predetermined air amounts, and the secondary air according to the volatile content of the solid fuel. And the distribution of the tertiary air.
  • the primary air is a carrier air for transporting the solid fuel
  • the additional air completes the combustion of the solid fuel and suppresses the generation of NOx.
  • the boiler according to the present invention is characterized in that the control device increases the distribution of the secondary air when the volatile content of the solid fuel increases.
  • the secondary air is combustion air for mixing the fuel gas and burning the solid fuel, if the volatile matter content of the solid fuel increases, the distribution of the secondary air increases, The volatile matter can be combusted properly.
  • the boiler operating method of the present invention includes a furnace for burning solid fuel and air, a heat exchanger for performing heat exchange in the furnace to recover heat, and solid fuel and primary air in the furnace.
  • a fuel nozzle capable of injecting mixed fuel gas, a secondary air nozzle capable of injecting secondary air into the furnace from outside the fuel nozzle, and the fuel nozzle and the secondary air nozzle in the furnace are added above the fuel nozzle.
  • the distribution of secondary air and tertiary air is adjusted according to the volatile content of the solid fuel.
  • the volatile content of the solid fuel can be combusted properly and the solid fuel can be combusted properly. It is possible to improve the boiler operating efficiency by suppressing the generation of NOx and unburned fuel.
  • the boiler operation method of the present invention is characterized in that the distribution of secondary air is increased when the volatile content of the solid fuel increases.
  • the secondary air is combustion air for mixing the fuel gas and burning the solid fuel, if the volatile matter content of the solid fuel increases, the distribution of the secondary air increases, The volatile matter can be combusted properly.
  • a fuel nozzle capable of injecting fuel gas mixed with solid fuel and air
  • a secondary air nozzle capable of injecting air from the outside of the fuel nozzle
  • a shaft at the tip of the fuel nozzle Since the flame holder provided on the core side and the rectifying member provided between the inner wall surface of the fuel nozzle and the flame holder are provided, an appropriate flow of the fuel gas can be realized.
  • a fuel nozzle capable of injecting a fuel gas in which solid fuel and air are mixed
  • a secondary air nozzle capable of injecting air from the outside of the fuel nozzle
  • a tip portion of the fuel nozzle Since a flame holder provided on the shaft center side and a guide member that guides the fuel gas flowing in the fuel nozzle to the shaft center side are provided, an appropriate flow of the fuel gas can be realized. Flame performance can be improved.
  • the multi-directional split member functioning as an internal flame holding mechanism is provided at the outlet opening of the fuel burner, the outlet of the fuel burner at which the split members intersect In the vicinity of the center of the opening, the flow path of the pulverized fuel and air can be divided to disturb the flow, and the split member subdivides the ignition surface. Therefore, the ignition position is closer to the center of the flame, and since the oxygen concentration is relatively low in the center, rapid reduction is performed inside the flame, and the amount of NOx finally emitted from the solid fuel-fired boiler Is reduced. Furthermore, by providing the splitters in a plurality of directions, the air diffusion inside is promoted, and it is possible to suppress the occurrence of an unburned portion due to local extreme oxygen deficiency in the flame.
  • the multi-directional split member functioning as an internal flame holding mechanism is provided at the outlet opening of the fuel burner, the outlet of the fuel burner at which the split members intersect In the vicinity of the center of the opening, the flow path of the pulverized fuel and air can be divided to disturb the flow, and the split member subdivides the ignition surface. Therefore, the ignition position is closer to the center of the flame, and since the oxygen concentration is relatively low in the center, rapid reduction is performed inside the flame, and the amount of NOx finally emitted from the solid fuel-fired boiler Is reduced. Furthermore, by providing the splitters in a plurality of directions, the air diffusion inside is promoted, and it is possible to suppress the occurrence of an unburned portion due to local extreme oxygen deficiency in the flame.
  • the distribution of secondary air, tertiary air, additional air, and the like is adjusted according to the volatile content of the solid fuel. It is possible to improve the operation efficiency by properly burning the volatile matter.
  • FIG. 1 is a front view illustrating a combustion burner according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view illustrating the combustion burner according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a modification of the combustion burner according to the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a modification of the combustion burner according to the first embodiment.
  • FIG. 5 is a front view illustrating a modification of the combustion burner according to the first embodiment.
  • FIG. 6 is a cross-sectional view illustrating a modification of the combustion burner according to the first embodiment.
  • FIG. 7 is a cross-sectional view illustrating a modification of the combustion burner according to the first embodiment.
  • FIG. 1 is a front view illustrating a combustion burner according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view illustrating the combustion burner according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating
  • FIG. 8 is a front view illustrating a modification of the combustion burner according to the first embodiment.
  • FIG. 9 is a schematic configuration diagram illustrating a pulverized coal fired boiler to which the combustion burner of Example 1 is applied.
  • FIG. 10 is a plan view illustrating a combustion burner in the pulverized coal burning boiler according to the first embodiment.
  • FIG. 11 is a cross-sectional view illustrating a combustion burner according to Embodiment 2 of the present invention.
  • FIG. 12 is a cross-sectional view illustrating a combustion burner according to a third embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a combustion burner according to Embodiment 4 of the present invention.
  • FIG. 14 is a cross-sectional view illustrating a combustion burner according to a fifth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view illustrating a combustion burner according to Embodiment 6 of the present invention.
  • FIG. 16 is a front view illustrating a combustion burner according to Embodiment 7 of the present invention.
  • FIG. 17 is a cross-sectional view illustrating a combustion burner according to the seventh embodiment.
  • FIG. 18 is a schematic configuration diagram illustrating a pulverized coal fired boiler to which the combustion burner of Example 7 is applied.
  • FIG. 19 is a plan view illustrating a combustion burner in the pulverized coal burning boiler according to the seventh embodiment.
  • FIG. 20 is a cross-sectional view illustrating a combustion burner according to an eighth embodiment of the present invention.
  • FIG. 21 is a front view illustrating a combustion burner according to Embodiment 9 of the present invention.
  • FIG. 22 is a front view illustrating a combustion burner according to Embodiment 10 of the present invention.
  • FIG. 23 is a cross-sectional view illustrating a combustion burner according to Embodiment 11 of the present invention.
  • FIG. 24 is a cross-sectional view illustrating a modification of the combustion burner according to the eleventh embodiment.
  • FIG. 25 is a diagram showing Example 12 for a solid fuel burning (coal fuel burning) burner according to the present invention, (a) is a front view of the solid fuel burning burner as seen from inside a furnace, and (b) is (a).
  • FIG. 2 is a cross-sectional view of the solid fuel burning burner taken along the line AA (a longitudinal sectional view of the solid fuel burning burner).
  • FIG. 26 is a diagram showing an air supply system that supplies air to the solid fuel burning burner of FIG.
  • FIG. 27 is a longitudinal sectional view showing a configuration example of a solid fuel burning (coal burning) boiler according to the present invention.
  • FIG. 28 is a horizontal (horizontal) cross-sectional view of FIG.
  • FIG. 29 is an explanatory diagram showing an outline of a solid fuel-fired boiler that includes an additional air input unit and that inputs air in multiple stages.
  • 30A is a diagram showing an example of a cross-sectional shape of the split member of the solid fuel burning burner shown in FIG. 25, FIG.
  • FIG. 30B is a diagram showing a first modification of the cross-sectional shape, and FIG. The figure which shows this 2nd modification, (d) is a figure which shows the 3rd modification of a cross-sectional shape.
  • FIG. 31 is a view showing Example 14 for a solid fuel burning (coal fuel burning) burner according to the present invention, (a) is a front view of the solid fuel burning burner as seen from inside a furnace, and (b) is (a).
  • FIG. 2 is a cross-sectional view of the solid fuel burning burner shown in FIG. 32A is a cross-sectional view taken along the line CC of FIG. 31A showing one shape example of the shielding member, and FIG. 32B is a cross-sectional view showing another shape example of the shielding member shown in FIG.
  • FIG. 33 is a view showing Example 15 of a solid fuel burning (coal fuel burning) burner for a swirl combustion boiler according to the present invention, (a) is a front view of the solid fuel burning burner as seen from inside a furnace, ) Is an AA cross-sectional view (a vertical cross-sectional view of the solid fuel-burning burner) of the solid fuel-burning burner shown in FIG.
  • FIG. 34 is a diagram showing an air supply system that supplies air to the solid fuel burning burner of FIG.
  • FIG. 35 is a longitudinal sectional view showing a configuration example of a solid fuel fired boiler (coal fired boiler) according to the present invention.
  • 36 is a horizontal (horizontal) cross-sectional view of FIG. FIG.
  • FIG. 37 is an explanatory diagram showing an outline of a solid fuel-fired boiler that is provided with an additional air input unit and that inputs air in multiple stages.
  • FIG. 38 is a diagram showing an example of a cross-sectional shape of the split member of the solid fuel burning burner shown in FIG. 33, (b) a diagram showing a first modification of the cross-sectional shape, and (c) a cross-sectional shape. The figure which shows this 2nd modification, (d) is a figure which shows the 3rd modification of a cross-sectional shape.
  • FIG. 39 is a schematic configuration diagram illustrating a pulverized coal burning boiler as a boiler according to Embodiment 17 of the present invention.
  • FIG. 40 is a plan view showing a combustion burner in the pulverized coal burning boiler of Example 17.
  • FIG. 41 is a front view illustrating the combustion burner according to the seventeenth embodiment.
  • FIG. 42 is a cross-sectional view illustrating a combustion burner according to the seventeenth embodiment.
  • FIG. 43 is a graph showing the NOx generation amount and the unburned component generation amount for the primary air and the secondary air.
  • Patent Document 1 As a combustion burner of a conventional pulverized coal fired boiler, there is one described in Patent Document 1 described above.
  • the combustion apparatus described in Patent Document 1 by providing a flame holder between the center inside the pulverized coal injection hole (primary flow path) and the outer peripheral portion, the pulverized coal concentrated flow is supplied to the flame holder. It is made to collide and enables stable low NOx combustion over a wide load range.
  • Embodiment 1 solves this problem and aims to provide a combustion burner capable of realizing an appropriate flow of fuel gas in which solid fuel and air are mixed.
  • FIG. 1 is a front view illustrating a combustion burner according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating the combustion burner according to the first embodiment
  • FIGS. 3 and 4 are modifications of the combustion burner according to the first embodiment.
  • FIG. 5 is a front view showing a modification of the combustion burner of the first embodiment
  • FIGS. 6 and 7 are sectional views showing a modification of the combustion burner of the first embodiment
  • FIG. FIG. 9 is a schematic configuration diagram showing a pulverized coal burning boiler to which the combustion burner of the first embodiment is applied
  • FIG. 10 is a combustion in the pulverized coal burning boiler of the first embodiment. It is a top view showing a burner.
  • the pulverized coal fired boiler to which the combustion burner of Example 1 is applied can use the pulverized coal obtained by pulverizing coal as a solid fuel, burn the pulverized coal with the combustion burner, and recover the heat generated by the combustion. Boiler.
  • the pulverized coal burning boiler 10 is a conventional boiler, and includes a furnace 11 and a combustion device 12.
  • the furnace 11 has a rectangular hollow shape and is installed along the vertical direction.
  • a combustion device 12 is provided at the lower part of the furnace wall constituting the furnace 11.
  • the combustion apparatus 12 has a plurality of combustion burners 21, 22, 23, 24, and 25 attached to the furnace wall.
  • the combustion burners 21, 22, 23, 24, and 25 are arranged as four sets at equal intervals along the circumferential direction, and 5 sets along the vertical direction. Five stages are arranged.
  • Each combustion burner 21, 22, 23, 24, 25 is connected to a pulverized coal machine (mill) 31, 32, 33, 34, 35 via a pulverized coal supply pipe 26, 27, 28, 29, 30. ing.
  • the pulverized coal machines 31, 32, 33, 34, and 35 are supported in a housing so that the pulverization table can be driven to rotate with a rotation axis along the vertical direction, and face the upper side of the pulverization table.
  • a plurality of crushing rollers are configured to be rotatably supported in conjunction with the rotation of the crushing table.
  • the pulverized coal supplied to the pulverized coal supply pipes 26 and 27 is pulverized to a predetermined size and classified by carrier air (primary air). , 28, 29, 30 can be supplied to the combustion burners 21, 22, 23, 24, 25.
  • the furnace 11 is provided with a wind box 36 at the mounting position of each combustion burner 21, 22, 23, 24, 25, and one end portion of an air duct 37 is connected to the wind box 36, and this air
  • the duct 37 has a blower 38 attached to the other end. Therefore, the combustion air (secondary air and tertiary air) sent by the blower 38 is supplied from the air supply pipe 37 to the wind box 36, and the combustion burners 21, 22, 23, 24, 25.
  • each combustion burner 21, 22, 23, 24, 25 can blow a pulverized fuel mixture (fuel gas) obtained by mixing pulverized coal and primary air into the furnace 11. Secondary air can be blown into the furnace 11, and a flame can be formed by igniting the pulverized fuel mixture with an ignition torch (not shown).
  • a pulverized fuel mixture fuel gas obtained by mixing pulverized coal and primary air into the furnace 11.
  • Secondary air can be blown into the furnace 11, and a flame can be formed by igniting the pulverized fuel mixture with an ignition torch (not shown).
  • each combustion burner 21, 22, 23, 24, 25 injects oil fuel into the furnace 11 to form a flame.
  • the furnace 11 has a flue 40 connected to the upper portion thereof, and a superheater (superheater) 41 and 42 for recovering heat of exhaust gas as a convection heat transfer section, and a reheater 43 and 44 in the flue 40.
  • the economizers 45, 46 and 47 are provided, and heat exchange is performed between the exhaust gas generated by the combustion in the furnace 11 and water.
  • the flue 40 is connected to an exhaust gas pipe 48 through which exhaust gas subjected to heat exchange is discharged downstream.
  • This exhaust gas pipe 48 is provided with an air heater 49 between the air duct 37 and performs heat exchange between the air flowing through the air duct 37 and the exhaust gas flowing through the exhaust gas pipe 48, and the combustion burners 21, 22, 23, The temperature of the combustion air supplied to 24 and 25 can be raised.
  • the exhaust gas pipe 48 is provided with a denitration device, an electrostatic precipitator, an induction blower, and a desulfurization device, and a chimney is provided at the downstream end.
  • the generated pulverized coal together with the conveying air passes through the pulverized coal supply pipes 26, 27, 28, 29, and 30 and the combustion burners 21, 22, 23, 24, 25. Also, heated combustion air is supplied from the air duct 37 to the combustion burners 21, 22, 23, 24, 25 via the wind box 36. Then, the combustion burners 21, 22, 23, 24, and 25 blow the pulverized fuel mixture mixed with the pulverized coal and the carrier air into the furnace 11 and blow the combustion air into the furnace 11 and ignite at this time. Can form a flame. In the furnace 11, the pulverized fuel mixture and the combustion air are burned to generate a flame. When a flame is generated in the lower part of the furnace 11, the combustion gas (exhaust gas) rises in the furnace 11, and the flue 40 is discharged.
  • exhaust gas exhaust gas
  • the interior is maintained in a reducing atmosphere by setting the air supply amount to be less than the theoretical air amount with respect to the pulverized coal supply amount. Then, NOx generated by the combustion of the pulverized coal is reduced in the furnace 11, and then additional air is supplied to complete the oxidation combustion of the pulverized coal, thereby reducing the amount of NOx generated by the combustion of the pulverized coal. .
  • the exhaust gas that has passed through the economizers 45, 46, and 47 of the flue 40 is subjected to removal of harmful substances such as NOx by a catalyst in a denitration device (not shown) in the exhaust gas pipe 48, and the particulate matter is collected by an electric dust collector Is removed, and after the sulfur content is removed by the desulfurizer, it is discharged from the chimney into the atmosphere.
  • combustion apparatus 12 since each combustion burner 21, 22, 23, 24, 25 which comprises this combustion apparatus 12 has comprised the substantially the same structure, it is located in the uppermost stage. Only the combustion burner 21 will be described.
  • the combustion burner 21 is composed of combustion burners 21 a, 21 b, 21 c, and 21 d provided on four wall surfaces in the furnace 11.
  • Each combustion burner 21a, 21b, 21c, 21d is connected to each branch pipe 26a, 26b, 26c, 26d branched from the pulverized coal supply pipe 26, and each branch pipe 37a, 37b, 37c branched from the air duct 37. , 37d are connected.
  • each combustion burner 21a, 21b, 21c, 21d on each wall surface of the furnace 11 blows into the furnace 11 a pulverized fuel mixture in which pulverized coal and carrier air are mixed, and the pulverized fuel mixture Blow combustion air to the outside. Then, by igniting the pulverized fuel mixture from each combustion burner 21a, 21b, 21c, 21d, four flames F1, F2, F3, F4 can be formed, and this flame F1, F2, F3, F4. Is a flame swirl flow swirling counterclockwise as viewed from above the furnace 11 (in FIG. 10).
  • the fuel nozzle 51, the secondary air nozzle 52, and the tertiary air nozzle are arranged from the center side. 53 and a flame holder 54 are provided.
  • the fuel nozzle 51 is capable of blowing a fuel gas (a fine fuel mixture) obtained by mixing pulverized coal (solid fuel) and carrier air (primary air).
  • the secondary air nozzle 52 is disposed outside the first nozzle 51 and can blow combustion air (secondary air) into the outer peripheral side of the fuel gas injected from the fuel nozzle 51.
  • the tertiary air nozzle 53 is disposed outside the secondary air nozzle 52 and can blow tertiary air into the outer peripheral side of the secondary air injected from the secondary air nozzle 52.
  • the flame holder 54 is disposed in the fuel nozzle 51 at the downstream side in the fuel gas blowing direction and at the axial center, thereby functioning for ignition of the fuel gas and flame holding. To do.
  • This flame holder 54 is a so-called so-called “flame shape” in which first flame holding members 61 and 62 along the horizontal direction and second flame holding members 63 and 64 along the vertical direction (vertical direction) are arranged in a cross shape. It has a double cross split structure.
  • Each first flame holding member 61, 62 has a flat portion 61a, 62a having a flat plate shape and a front end portion (downstream end portion in the fuel gas flow direction) of the flat portions 61a, 62a.
  • widened portions 61b and 62b which are integrally provided.
  • the widened portions 61b and 62b have an isosceles triangular cross section, the width increases toward the downstream side in the fuel gas flow direction, and the front end is a plane perpendicular to the fuel gas flow direction.
  • the second flame holding members 63 and 64 have the same structure.
  • the fuel nozzle 51 and the secondary air nozzle 52 have a long tubular structure, the fuel nozzle 51 has a rectangular opening 51a, and the secondary air nozzle 52 has a rectangular ring-shaped opening. Since it has 52a, the fuel nozzle 51 and the secondary air nozzle 52 have a double tube structure.
  • a tertiary air nozzle 53 is arranged as a double pipe structure outside the fuel nozzle 51 and the secondary air nozzle 52, and has a rectangular ring-shaped opening 53a.
  • the opening 52a of the secondary air nozzle 52 is disposed outside the opening 51a of the fuel nozzle 51
  • the opening 53a of the tertiary air nozzle 53 is disposed outside the opening 52a of the secondary air nozzle 52. It will be arranged.
  • the tertiary air nozzle 53 may be a tertiary air nozzle by arranging a plurality of nozzles separately on the outer peripheral side of the secondary air nozzle 52 without being arranged as a double tube structure.
  • nozzles 51, 52, 53 are arranged with openings 51a, 52a, 53a aligned on the same plane.
  • the flame holder 54 is supported by a plate material (not shown) from the inner wall surface of the fuel nozzle 51 or the upstream side of the flow path through which the fuel gas flows. Further, since the fuel nozzle 51 has a plurality of flame holding members 61, 62, 63, 64 as flame holders 54 disposed therein, the fuel gas flow path is divided into nine. Become. In the flame holder 54, the widened portions 61b and 62b whose widths are widened at the front end portions are located, and the widened portions 61b and 62b have the front end surfaces aligned on the same plane as the opening 51a.
  • a rectifying member 55 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 54.
  • the rectifying member 55 has a predetermined gap with the inner wall surface of the fuel nozzle 51 and is disposed with a predetermined gap with the flame holder 54.
  • the rectifying member 55 has a structure in which the first rectifying members 65 and 66 along the horizontal direction and the second rectifying members 67 and 68 along the vertical direction (vertical direction) are arranged in a frame shape. is there. That is, the first rectifying member 65 is positioned between the upper wall of the fuel nozzle 51 and the first flame holding member 61, and the first rectifying member 66, the lower wall of the fuel nozzle 51, the first flame holding member 62, Located between.
  • the second rectifying member 67 is located between the side wall (left wall in FIG. 1) of the fuel nozzle 51 and the second flame holding member 63, and the second rectifying member 68 is the side wall (see FIG. 1 is located between the right wall) and the second flame holding member 64.
  • straightening members 65 and 66 are flat part 65a, 66a which makes the flat shape with the constant thickness, and the front-end part (downstream end part of the flow direction of fuel gas) of this flat part 65a, 66a. It has the taper details 65b and 66b provided integrally.
  • the tapered portions 65b and 66b have an isosceles triangular cross section, the width becomes narrower toward the downstream side in the fuel gas flow direction, and the front end has an acute angle.
  • the second rectifying members 67 and 68 have the same structure.
  • each flame-holding member 61, 62, 63, 64 and each rectifying member 65, 66, 67, 68 have substantially the same length in the fuel gas flow direction, and are orthogonal to the fuel gas flow direction. It is arranged facing the direction.
  • Each of the flame holding members 61, 62, 63, 64 and each of the rectifying members 65, 66, 67, 68 has the widened portions 61b, 62b and the tapered portions 65b, 66b, which are almost equal in length in the fuel gas flow direction. It is the same, and is arrange
  • the flame stabilizer 54 and the rectifying member 55 are provided with the above-described widened portions 61b and 62b and the tapered portions 65b and 66b, they are orthogonal to the flow direction of the fuel gas in the flame holder 54 and the rectifying member 55. The distance in the direction in which the gas flows is almost the same along the flow direction of the fuel gas.
  • the fuel gas obtained by mixing pulverized coal and primary air is blown into the furnace from the opening 51 a of the fuel nozzle 51, and the secondary air is discharged from the secondary air nozzle 52 on the outside thereof.
  • the air is blown into the furnace through the opening 52 a, and the tertiary air is blown into the furnace through the opening 53 a of the tertiary air nozzle 53 on the outside thereof.
  • the fuel gas is branched and ignited by the flame holder 54 at the opening 51a of the fuel nozzle 51, and burns to become a combustion gas.
  • combustion of fuel gas is accelerated
  • the ratio of the secondary air and the tertiary air can be adjusted to obtain optimum combustion.
  • the flame holder 54 has a split shape, the fuel gas is branched by the flame holder 54 at the opening 51 a of the fuel nozzle 51. At this time, the flame holder 54 is moved to the fuel nozzle 51. In the central region of the opening 51a, ignition and flame holding of the fuel gas are performed in this central region. Thereby, the internal flame holding of the combustion flame (flame holding in the central region of the opening 51a of the fuel nozzle 51) is realized.
  • the outer peripheral portion of the combustion flame becomes low temperature, and the temperature of the outer peripheral portion of the combustion flame in a high oxygen atmosphere can be lowered by the secondary air. The amount of NOx generated at the outer periphery is reduced.
  • the combustion burner 21 since the combustion burner 21 employs a structure that holds the internal flame, it is preferable that the fuel gas and the combustion air (secondary air and tertiary air) are supplied as a straight flow. That is, it is preferable that the fuel nozzle 51, the secondary air nozzle 52, and the tertiary air nozzle 53 have a structure that supplies the fuel gas, the secondary air, and the tertiary air as a straight flow without swirling. Since the fuel gas, the secondary air, and the tertiary air are injected as a straight flow to form a combustion flame, the gas circulation in the combustion flame is suppressed in the configuration in which the combustion flame is held inside. Thereby, the outer peripheral part of a combustion flame is maintained with low temperature, and the NOx generation amount by mixing with secondary air is reduced.
  • the fuel gas and the combustion air secondary air and tertiary air
  • a rectifying member 55 is provided between the fuel nozzle 51 and the flame holder 54 with a predetermined gap therebetween. Therefore, in particular, the fuel gas flowing between the flame holder 54 and the rectifying member 55 is rectified, so that the fuel gas does not peel off at the rear end portion of the flame holder 54, and the fuel gas directed toward the tip portion disappears. Since a flow is formed, the flame holder 54 can secure a sufficient flame holding force at the tip.
  • widening portions 61 b and 62 b are provided at the front end portion of the flame holder 54, and tapered portions 65 b and 66 b are provided at the front end portion of the rectifying member 55, so that they are formed between the flame holder 54 and the rectifying member 55.
  • the flow path is substantially the same in cross-sectional area in the longitudinal direction, the flow velocity of the fuel gas flowing therethrough is made uniform, and the flow velocity of the fuel gas is reduced as a whole. Can secure a sufficient flame holding power. Further, in the pulverized coal fired boiler, it is necessary to adjust the steam temperature and the exhaust gas characteristics, and it is possible to ensure internal flame holding by the rectifying member 55 also at that time.
  • the structure of the flame holder 54 and the rectifying member 55 in the combustion burner 21 is not limited to the above-described embodiment.
  • a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 are provided from the center side, and a flame holder 71 is provided.
  • the flame holder 71 is disposed in the fuel nozzle 51 on the downstream side in the fuel gas blowing direction and on the axial center side, thereby functioning for ignition of the fuel gas and flame holding. Is.
  • This flame holder 71 is a so-called double cross split in which first flame holding members 72 and 73 along the horizontal direction and second flame holding members (not shown) along the vertical direction are arranged in a cross shape. It is a structure.
  • the first flame-holding members 72 and 73 have an isosceles triangular cross section and have a widened shape whose width increases toward the downstream side in the fuel gas flow direction, and the front end is in the fuel gas flow direction. It becomes a plane orthogonal to. Note that each second flame holding member has a similar structure.
  • the fuel gas is branched by the flame holder 71 at the opening 51a of the fuel nozzle 51, so that the internal flame of the combustion flame can be obtained by wrapping around the front end surface side, and the secondary air is used in a high oxygen atmosphere.
  • the temperature of the outer peripheral part of the combustion flame in the above becomes lower, and the amount of NOx generated in the outer peripheral part of the combustion flame is reduced.
  • fuel gas flowing between the rectifying member 55 and the flame holder 71 is rectified, so that the fuel gas is not peeled off, and the flow rate of the fuel gas flowing therethrough is made uniform, and the flow rate is increased.
  • the flame holder 71 can secure a sufficient flame holding force at the tip.
  • a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 are provided from the center side, and a flame holder 54 is provided.
  • a rectifying member 75 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 54.
  • the rectifying member 75 has a predetermined gap with the inner wall surface of the fuel nozzle 51 and is disposed with a predetermined gap with the flame holder 54. That is, the rectifying member 75 has a structure in which the first rectifying members 76 and 77 along the horizontal direction and the second rectifying member (not shown) along the vertical direction (vertical direction) are arranged in a frame shape. It is.
  • Each of the first rectifying members 76 and 77 has a flat plate shape with a constant thickness.
  • Each second rectifying member has the same structure.
  • the flow straightening members 76 and 77 are slightly shorter in the flow direction of the fuel gas than the flame holding members 61 and 62, and are arranged to face each other in the direction perpendicular to the flow direction of the fuel gas. Yes.
  • the flat portions 61a and 62a of the flame holding members 61 and 62 and the rectifying members 76 and 77 have substantially the same length in the fuel gas flow direction.
  • the flame stabilizer 54 and the rectifying member 75 have a shape in which the above-described widened portions 61b and 62b are provided, the distance in the direction perpendicular to the fuel gas flow direction in the flame holder 54 and the rectifying member 75 is It is almost the same along the flow direction of the fuel gas.
  • the flame holder 54 is provided with widened portions 61b and 62b on the downstream side in the fuel gas flow direction, while the rectifying member 75 is provided at a position not facing the widened portions 61b and 62b.
  • the fuel gas is branched by the flame holder 54 at the opening of the fuel nozzle 51, so that the internal flame of the combustion flame can be held by flowing around the front end face side, and the secondary air is brought into a high oxygen atmosphere.
  • the temperature of the outer peripheral part of a certain combustion flame is lowered, and the amount of NOx generated in the outer peripheral part of the combustion flame is reduced.
  • the fuel gas flowing between the rectifying member 75 and the flame holder 54 is rectified, so that the fuel gas is not peeled off, and the flow rate of the fuel gas flowing therethrough is made uniform so that the flow rate is increased.
  • the flame holder 54 can secure a sufficient flame holding force at the tip.
  • a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 are provided from the center side, and a flame holder 81 is provided.
  • a rectifying member 55 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 81.
  • the flame holder 81 is disposed in the fuel nozzle 51 on the downstream side in the fuel gas blowing direction and on the axial center side, thereby functioning for ignition of the fuel gas and flame holding. Is.
  • This flame holder 81 has a so-called double cross split structure in which first flame holding members 82 and 83 along the horizontal direction and second flame holding members 84 and 85 along the vertical direction are arranged in a cross shape. It is what makes.
  • the first flame holding members 82 and 83 are set to have a larger width than the second flame holding members 84 and 85.
  • the fuel gas is branched by the flame holder 81 at the opening 51 a of the fuel nozzle 51, so that the combustion gas can be held inside by wrapping around the front end face side, and the secondary air is used in a high oxygen atmosphere.
  • the temperature of the outer peripheral part of the combustion flame in the above becomes lower, and the amount of NOx generated in the outer peripheral part of the combustion flame is reduced.
  • the first flame holding members 82 and 83 are wider than the second flame holding members 84 and 85, the first flame holding members 82 and 83 are higher than the second flame holding members 84 and 85.
  • the burner 21 of the present embodiment is a swirl combustion method, and since air is supplied from above and below the fuel gas, it is effective to ensure a high flame holding capability in the horizontal direction for internal flame holding.
  • the wide first flame holding members 82 and 83 are arranged.
  • 83 makes it possible to improve the flame holding function in the horizontal direction.
  • a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 are provided from the center side, and a flame holder 91 is provided.
  • the flame holder 91 is disposed in the fuel nozzle 51 on the downstream side in the fuel gas blowing direction and on the axial center side, thereby functioning for ignition of the fuel gas and flame holding. Is.
  • This flame holder 91 is a so-called double cross split in which first flame holding members 92 and 93 along the horizontal direction and second flame holding members (not shown) along the vertical direction are arranged in a cross shape. It is a structure.
  • the first flame holding members 92 and 93 include flat portions 92a and 93a, widened portions 92b and 93b, and tapered portions 92c and 93c.
  • the tapered portions 92c and 93c are provided at the rear end portion. The width is narrower toward the upstream side in the flow direction of the fuel gas. Note that each second flame holding member has a similar structure.
  • a rectifying member 95 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 91.
  • the rectifying member 95 has a predetermined gap from the inner wall surface of the fuel nozzle 51 and is arranged with a predetermined gap from the flame holder 91. That is, the rectifying member 95 has a structure in which the first rectifying members 96 and 97 along the horizontal direction and the second rectifying member (not shown) along the vertical direction (vertical direction) are arranged in a frame shape. It is.
  • Each of the first rectifying members 96 and 97 has flat portions 96a and 97a, tapered portions 96b and 97b, and tapered portions 96c and 97c, and the tapered portions 96c and 97c are provided at the rear end portion. The width is narrower toward the upstream side in the flow direction of the fuel gas.
  • Each second rectifying member has the same structure.
  • the fuel gas is branched by the flame holder 91 at the opening 51a of the fuel nozzle 51, so that the internal flame of the combustion flame can be obtained by wrapping around the front end face side, and the secondary air is used in a high oxygen atmosphere.
  • the temperature of the outer peripheral part of the combustion flame in the above becomes lower, and the NOx generation amount in the outer peripheral part of the combustion flame is reduced.
  • the fuel gas flowing between the flame stabilizer 91 is rectified by the rectifying member 95, so that the fuel gas is not separated, and the flow rate of the fuel gas flowing therethrough is made uniform so that the flow rate is increased.
  • this flame holder 91 can ensure a sufficient flame holding force at the tip.
  • the flame stabilizer 91 and the rectifying member 95 are provided with the tapered portions 92c, 93c, 96c, and 97c, the fuel gas smoothly flows along the flame holder 91 and the rectifying member 95, and the peeling is performed. Is suppressed.
  • a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 are provided from the center side, and a flame holder 54 is provided.
  • a rectifying member 101 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 54.
  • the flow regulating member 101 has a predetermined gap with the inner wall surface of the fuel nozzle 51 and is disposed with a predetermined gap with the flame holder 54. That is, the straightening member 101 has a structure in which the first straightening members 102 and 103 along the horizontal direction and the second straightening member (not shown) along the vertical direction (vertical direction) are arranged in a frame shape. It is.
  • the first rectifying members 102 and 103 are widened integrally provided at the flat portions 102a and 103a having a flat plate shape with a constant thickness and the front end portions (downstream end portions in the fuel gas flow direction). Parts 102b and 103b. Each second rectifying member has the same structure.
  • the flow straightening members 102 and 103 are slightly shorter in the flow direction of the fuel gas than the flame holding members 61 and 62, and are arranged to face each other in a direction perpendicular to the flow direction of the fuel gas. Yes. That is, the flat portions 61a and 62a of the flame holding members 61 and 62 and the rectifying members 102 and 103 have substantially the same length in the fuel gas flow direction.
  • the fuel gas is branched by the flame holder 54 at the opening of the fuel nozzle 51, so that the internal flame of the combustion flame can be held by flowing around the front end face side, and the secondary air is brought into a high oxygen atmosphere.
  • the temperature of the outer peripheral part of a certain combustion flame is lowered, and the amount of NOx generated in the outer peripheral part of the combustion flame is reduced.
  • the fuel gas flowing between the rectifying member 101 and the flame holder 54 is rectified, so that the separation of the fuel gas is eliminated, and the flow rate of the fuel gas flowing therethrough is made uniform so that the flow rate is increased.
  • the flame holder 54 can secure a sufficient flame holding force at the tip.
  • the flow straightening member 101 is shorter than the flame holder 54, even if the widened portions 102b and 103b are provided at the tip portion to provide a flame holding function, the passage area of the fuel nozzle 51 is not extremely narrowed.
  • the flame holding power can be improved, and even a flame-retardant fuel can be stably burned.
  • a fuel nozzle 111, a secondary air nozzle 112, and a tertiary air nozzle 113 are provided from the center side, and a flame holder 114 is provided.
  • a rectifying member 115 is provided between the inner wall surface of the fuel nozzle 111 and the flame holder 114.
  • the fuel nozzle 111 has a circular opening, and the secondary air nozzle 112 and the tertiary air nozzle 113 similarly have a cylindrical shape.
  • Such a configuration is particularly applied to a configuration in which the combustion burners 21 are arranged to face each other.
  • the flame holder 114 is disposed in the fuel nozzle 111 at the downstream side in the fuel gas blowing direction and at the axial center side, thereby functioning for ignition of the fuel gas and flame holding. It is.
  • the flame holder 114 is arranged so as to intersect two flame holding members along the horizontal direction and two flame holding members along the vertical direction.
  • the flow regulating member 115 has a predetermined gap with the inner wall surface of the fuel nozzle 111 and is disposed with a predetermined gap with the flame holder 114. That is, the rectifying member 115 has a structure in which two rectifying members along the horizontal direction and two rectifying members along the vertical direction are arranged in a frame shape.
  • the fuel gas is branched by the flame holder 114 at the opening of the fuel nozzle 111, so that the internal flame of the combustion flame can be held by wrapping around the front end face side, and the secondary air is brought into a high oxygen atmosphere.
  • the temperature of the outer peripheral part of a certain combustion flame is lowered, and the amount of NOx generated in the outer peripheral part of the combustion flame is reduced.
  • the fuel gas flowing between the flame stabilizer 114 is rectified by the rectifying member 115, so that the fuel gas is not peeled off, and the flow rate of the fuel gas flowing therethrough is made uniform so that the flow rate is increased.
  • this flame holder 114 can secure a sufficient flame holding force at the tip.
  • the fuel nozzle 51 capable of injecting the fuel gas in which the pulverized coal and the primary air are mixed, and the secondary air 2 can be injected from the outside of the fuel nozzle 51.
  • a secondary air nozzle 52 is provided, a flame holder 54 is provided on the axial center side at the tip of the fuel nozzle 51, and a rectifying member 55 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 54. .
  • the rectifying member 55 between the inner wall surface of the fuel nozzle 51 and the flame holder 54, the flow of the fuel gas flowing through the fuel nozzle 51 is rectified by the rectifying member 55, and the flame holder 54.
  • the separation of the fuel gas flow at the rear end of the fuel nozzle 51 is suppressed, and the flow velocity is substantially constant, and the pulverized coal fuel is suppressed from being deposited (or adhered) on the inner wall surface of the fuel nozzle 51.
  • a proper flow of fuel gas can be realized.
  • the rectifying member 55 is arranged with a predetermined gap from the flame holder 54. Therefore, by ensuring a predetermined gap between the flow straightening member 55 and the flame holder 54, the flow of the fuel gas flowing between the flow straightening member 55 and the flame holder 54 is rectified, and the flame holder. Therefore, the flame holding function of the flame holder 54 can be sufficiently exhibited.
  • the distance between the flame holder 54 and the rectifying member 55 is set to be substantially the same along the fuel gas flow direction by the rectifying member 55. Therefore, the flow rate of the fuel gas flowing between the rectifying member 55 and the flame holder 54 is approximately the same as the distance from the flame holder 54 by the rectifying member 55 along the flow direction of the fuel gas. As a result, the accumulation of the pulverized coal fuel at the fuel nozzle 51 and the adhesion of the pulverized coal fuel to the flame holder 54 can be suppressed.
  • the widening portions 61b and 62b are provided on the downstream side in the fuel gas flow direction in the flame holder 54, while the tapered portions 65b and 62b are provided on the downstream side in the fuel gas flow direction in the rectifying member 55.
  • 66b is provided. Therefore, by providing the widened portions 61b and 62b at the tip of the flame holder 54, it is possible to achieve reliable flame holding, while by providing the tapered portions 65b and 66b at the tip of the rectifying member 55, The distance between the flame unit 54 and the rectifying member 55 can be made substantially constant in the fuel gas flow direction.
  • the flame holder 54 is arranged along the vertical direction with the two first flame holding members 61 and 62 that are parallel with a predetermined gap in the vertical direction along the horizontal direction.
  • the second flame holding members 63 and 64 that are parallel with a predetermined gap in the horizontal direction are arranged so as to intersect each other. Therefore, it is possible to ensure a sufficient flame holding function by making the flame holder 54 have a double cross structure.
  • the widening portions 61b and 62b are provided on the downstream side in the fuel gas flow direction in the flame holder 54, while the rectifying member 75 is opposed to the widening portion widening portions 61b and 62b. It is provided at a position that does not. Therefore, the flow path of the fuel gas between the widened portions 61b and 62b of the flame holder 54 and the fuel nozzle 51 is narrowed by providing the rectifying member 75 at a position not facing the widened portions 61b and 62b of the flame holder 54. In other words, the flow rate of the fuel gas is substantially constant, and the accumulation of the pulverized coal fuel at the fuel nozzle 51 and the adhesion of the pulverized coal fuel to the flame holder 54 can be suppressed.
  • FIG. 11 is a cross-sectional view showing a combustion burner according to Embodiment 2 of the present invention.
  • symbol is attached
  • the combustion burner 21 is provided with a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 from the center side, and a flame holder. 121 is provided.
  • a rectifying member 122 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 121.
  • the flame holder 121 is arranged in the horizontal direction along the axial center of the fuel nozzle 51, and the configuration thereof is substantially the same as the first flame holding members 61 and 62 described in the first embodiment. ing.
  • the flame holder 121 has a widened portion whose width increases toward the downstream side in the fuel gas flow direction, and the front end is a plane perpendicular to the fuel gas flow direction.
  • the rectifying member 122 is fixed along the inner wall surface of the fuel nozzle 51 so as to be arranged with a predetermined gap from the flame holder 121. That is, the rectifying member 122 includes first rectifying members 123 and 124 that extend in the horizontal direction, and an inclined portion 123a that vertically opposes the widened portion of the flame holder 121 at the downstream end in the fuel gas flow direction. , 124a are provided. In this case, the first rectifying members 123 and 124 are directly fixed to the inner wall surface of the fuel nozzle 51, but a supporting member may be extended from the upstream portion of the fuel nozzle 51 to support the first rectifying members 123 and 124. .
  • the flame holder 121 and the rectifying member 122 have a shape in which the above-described widened portion and the inclined portions 123a and 124a are provided facing each other, and are orthogonal to the fuel gas flow direction in the flame holder 121 and the rectifying member 122.
  • the distance in the direction is substantially the same along the flow direction of the fuel gas.
  • the fuel gas is branched by the flame holder 121 at the opening 51a of the fuel nozzle 51, so that the combustion gas can be held inside by being circulated toward the front end face side, and the secondary air can be used in a high oxygen atmosphere.
  • the temperature of the outer peripheral part of the combustion flame in the above becomes lower, and the NOx generation amount in the outer peripheral part of the combustion flame is reduced.
  • the fuel gas flowing between the rectifying member 122 and the flame holder 121 is rectified, so that the fuel gas is not peeled off, and the flow rate of the fuel gas flowing therethrough is made uniform so that the flow rate is increased.
  • the flame holder 121 can ensure a sufficient flame holding force at the tip.
  • the rectifying member 122 is provided on the inner wall surface of the fuel nozzle 51. Therefore, by providing the rectifying member 122 on the inner wall surface of the fuel nozzle 51, it is possible to easily support the rectifying member 122 without using an attachment member or the like, and to improve the assembling property of the rectifying member 122. And manufacturing cost can be reduced. Further, the mixing of the secondary air can be delayed, and the high temperature and high oxygen region on the outer periphery can be reduced.
  • FIG. 12 is a cross-sectional view showing a combustion burner according to Embodiment 3 of the present invention.
  • symbol is attached
  • the combustion burner 21 is provided with a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 from the center side, and a flame stabilizer. 131 is provided.
  • a rectifying member 135 is provided inside the flame holder 131.
  • the flame holder 131 is arranged along the horizontal direction at the axial center of the fuel nozzle 51, and is arranged so as to intersect two flame holding members along the horizontal direction and two flame holding members along the vertical direction.
  • the rectifying member 135 is located between the flame holding members in the flame holder 131 and intersects the horizontal direction and the vertical direction to form a cross shape, and the flame holder 131 and the rectifying member 136. It has 2nd rectification
  • the first rectifying member 136 is fixed to the inner wall surface of the fuel nozzle 51 so as to be arranged with a predetermined gap from the flame holder 131. Further, the second rectifying members 137 and 138 are fixed to the inner wall surface of the fuel nozzle 51 on the upstream side of the fuel gas from the flame holder 131, and guide the fuel gas flowing through the fuel nozzle 51 to the center side thereof. be able to.
  • the flame holder 132 can secure a sufficient flame holding force at the tip.
  • the first rectifying member 136 having a cross shape located inside the flame holder 131 and the upstream side of the flame holder 131 is located.
  • Second rectifying members 137 and 138 are provided. Therefore, the fuel gas flowing in the fuel nozzle 51 is guided to the center of the fuel nozzle 51 by the second rectifying members 137 and 138, and the flow is rectified by the first rectifying member 136. Appropriate flow can be realized.
  • FIG. 13 is a cross-sectional view showing a combustion burner according to Example 4 of the present invention.
  • symbol is attached
  • the combustion burner 21 is provided with a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 from the center side, and a flame holder. 54 is provided.
  • a rectifying member 141 is provided inside the flame holder 54.
  • the flame holder 131 is disposed along the horizontal direction at the axial center of the fuel nozzle 51.
  • the flow regulating member 141 has a cross shape that intersects the horizontal direction and the vertical direction inside the flame holder 54. In this case, the rectifying member 141 has a tip portion located upstream from the flame holder 54.
  • the fuel gas is branched by the flame holder 54 at the fuel nozzle 51, so that the combustion flame can be held inside by flowing around the front end face side, and the combustion flame in a high oxygen atmosphere by the secondary air.
  • the temperature of the outer peripheral portion of the fuel becomes lower, and the amount of NOx generated in the outer peripheral portion of the combustion flame is reduced.
  • the fuel gas flowing between the flame stabilizer 54 and the flame stabilizer 54 is rectified by the rectifying member 141, so that the fuel gas is not peeled off.
  • the flame holder 54 can secure a sufficient flame holding force at the tip.
  • the rectifying member 141 is provided inside the flame holder 54 so as to be fixed to the inner wall surface of the fuel nozzle 51. Therefore, the flow of the fuel gas flowing in the fuel nozzle 51 is rectified by the rectifying member 141, and an appropriate flow of the fuel gas can be realized.
  • FIG. 14 is a cross-sectional view showing a combustion burner according to Embodiment 5 of the present invention.
  • symbol is attached
  • the combustion burner 21 is provided with a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 from the center side, and a flame holder. 121 is provided.
  • a rectifying member 151 is provided between the inner wall surface of the fuel nozzle 51 and the flame holder 121.
  • the flame holder 121 is arranged in the horizontal direction along the axial center of the fuel nozzle 51, and the configuration thereof is substantially the same as the first flame holding members 61 and 62 described in the first embodiment. ing.
  • the rectifying member 151 has a predetermined gap with the inner wall surface of the fuel nozzle 51 and is disposed with a predetermined gap with the flame holder 121. That is, the rectifying member 151 has a structure in which the first rectifying members 152 and 153 along the horizontal direction and the second rectifying member (not shown) along the vertical direction (vertical direction) are arranged in a frame shape. It is.
  • straightening member 152,153 is inclined and arrange
  • Each second rectifying member has the same structure.
  • each rectifying member 152, 153 has a tip close to the flame holder 121, the gap between the rectifying members 152, 153 and the flame holder 121 becomes narrower toward the downstream side. Yes.
  • the fuel gas is branched by the flame holder 121 at the opening of the fuel nozzle 51, so that the internal flame of the combustion flame can be held around the front end face side, and the secondary air is brought into a high oxygen atmosphere.
  • the temperature of the outer peripheral part of a certain combustion flame is lowered, and the amount of NOx generated in the outer peripheral part of the combustion flame is reduced.
  • the fuel gas flowing between the rectifying member 151 and the flame holder 121 is rectified, so that the separation of the fuel gas is eliminated, and the flow rate of the fuel gas flowing therethrough is made uniform so that the flow rate is increased.
  • the flame holder 121 can ensure a sufficient flame holding force at the tip.
  • the rectifying member 151 is provided outside the flame holder 121 so as to be fixed to the inner wall surface of the fuel nozzle 51, and the tip portion approaches the flame holder 121 side. It is inclined to. Therefore, the flow of the fuel gas flowing in the fuel nozzle 51 is rectified by the rectifying member 151, and an appropriate flow of the fuel gas can be realized.
  • FIG. 15 is a cross-sectional view showing a combustion burner according to Embodiment 6 of the present invention.
  • symbol is attached
  • the combustion burner 21 is provided with a fuel nozzle 51, a secondary air nozzle 52, and a tertiary air nozzle 53 from the center side. 161 is provided.
  • This flame holder 161 is a so-called double cross split in which first flame holding members 162 and 163 along the horizontal direction and second flame holding members (not shown) along the vertical direction are arranged in a cross shape. It is a structure.
  • the first flame holding members 162 and 163 have a plate shape with a predetermined thickness. Note that each second flame holding member has a similar structure.
  • the outer surfaces of the flame holding members 162 and 163 in the flame holder 161 function as rectifying members.
  • the fuel gas is branched by the flame holder 161 at the opening 51a of the fuel nozzle 51, so that the combustion flame can be held inside by flowing around the front end surface side, and the secondary air can be used in a high oxygen atmosphere.
  • the temperature of the outer peripheral part of the combustion flame in the above becomes lower, and the NOx generation amount in the outer peripheral part of the combustion flame is reduced.
  • the fuel gas flowing between the fuel nozzle 51 and the flame holder 161 is rectified by the outer surface of the flame holder 161, so that the fuel gas is not peeled off, and the flow rate of the fuel gas flowing therethrough Is made uniform and the flow velocity is reduced, so that the flame holder 161 can secure a sufficient flame holding force at the tip.
  • each flame holder has been described in various ways, but this configuration is not limited to that described above. That is, the burner of the present invention realizes internal flame holding, and it is sufficient that a flame holder is provided on the axial center side of the fuel nozzle, not the inner wall surface of the fuel nozzle. The position and the like may be appropriately set, and the flame holding member may be separated from the inner wall surface of the fuel nozzle. Moreover, although the structure of the rectification
  • the combustion apparatus 12 is configured by arranging four combustion burners 21, 22, 23, 24, and 25 provided on the wall surface of the furnace 11 along the vertical direction. It is not limited to this configuration. That is, the combustion burner may be arranged at the corner without being arranged on the wall surface.
  • the combustion apparatus is not limited to the swirl combustion method, and may be a front combustion method in which the combustion burner is disposed on one wall surface, or an opposed combustion method in which the combustion burner is disposed opposite to the two wall surfaces.
  • the flame holder of the present invention is provided with the widened portion having a triangular cross-sectional shape.
  • the present invention is not limited to this shape, and may have a rectangular shape or the widened portion may be eliminated.
  • Patent Document 1 As a combustion burner of a conventional pulverized coal fired boiler, for example, there is one described in Patent Document 1 described above.
  • the combustion apparatus described in Patent Document 1 by providing a flame holder between the center inside the pulverized coal injection hole (primary flow path) and the outer periphery, the pulverized coal concentrated flow collides with the flame holder.
  • stable low NOx combustion is possible over a wide load range.
  • the present invention solves the above-described problems, and an object of the present invention is to provide a combustion burner that can achieve a proper flow of fuel gas in which solid fuel and air are mixed to reduce the amount of NOx generated. .
  • FIG. 16 is a front view showing a combustion burner according to a seventh embodiment of the present invention
  • FIG. 17 is a sectional view showing the combustion burner of the seventh embodiment
  • FIG. 18 is a pulverized coal to which the combustion burner of the seventh embodiment is applied.
  • FIG. 19 is a schematic configuration diagram showing a burning boiler
  • FIG. 19 is a plan view showing a combustion burner in the pulverized coal burning boiler of Example 7.
  • the pulverized coal burning boiler to which the combustion burner of Example 7 is applied can use the pulverized coal obtained by pulverizing coal as a solid fuel, burn the pulverized coal with the combustion burner, and recover the heat generated by the combustion. Boiler.
  • the pulverized coal fired boiler 210 is a conventional boiler, and includes a furnace 211 and a combustion device 212.
  • the furnace 211 has a hollow shape of a square cylinder and is installed along the vertical direction, and a combustion device 212 is provided at the lower part of the furnace wall constituting the furnace 211.
  • the combustion apparatus 212 has a plurality of combustion burners 221, 222, 223, 224, and 225 attached to the furnace wall.
  • the combustion burners 221, 222, 223, 224, and 225 are arranged as four sets at equal intervals along the circumferential direction, and five sets along the vertical direction. Five stages are arranged.
  • Each combustion burner 221, 222, 223, 224, 225 is connected to a pulverized coal machine (mill) 231, 232, 233, 234, 235 via a pulverized coal supply pipe 226, 227, 228, 229, 230. ing.
  • the pulverized coal machines 231, 232, 233, 234, 235 are supported in a housing so that the grinding table can be driven to rotate with a rotation axis along the vertical direction, and face the upper side of the grinding table.
  • a plurality of crushing rollers are configured to be rotatably supported in conjunction with the rotation of the crushing table.
  • the pulverized coal supplied to the pulverized coal supply pipes 226 and 227 is pulverized to a predetermined size and classified by carrier air (primary air). , 228, 229, 230 to the combustion burners 221, 222, 223, 224, 225.
  • the furnace 211 is provided with a wind box 236 at the mounting position of each combustion burner 221, 222, 223, 224, 225, and one end of an air duct 237 is connected to the wind box 236, and this air
  • the duct 237 has a blower 238 attached to the other end. Therefore, the combustion air (secondary air and tertiary air) sent by the blower 238 is supplied from the air duct 237 to the wind box 236, and the combustion burners 221, 222, 223, 224, 225 are supplied from the wind box 236. Can be supplied to.
  • each combustion burner 221, 222, 223, 224, 225 can blow a pulverized fuel mixture (fuel gas) obtained by mixing pulverized coal and primary air into the furnace 211. Secondary air can be blown into the furnace 211, and a flame can be formed by igniting the pulverized fuel mixture with an ignition torch (not shown).
  • a pulverized fuel mixture fuel gas obtained by mixing pulverized coal and primary air into the furnace 211.
  • Secondary air can be blown into the furnace 211, and a flame can be formed by igniting the pulverized fuel mixture with an ignition torch (not shown).
  • each combustion burner 221, 222, 223, 224, 225 injects oil fuel into the furnace 211 to form a flame.
  • the furnace 211 has a flue 240 connected to the upper part thereof, and superheaters (superheaters) 241 and 242 and a reheater 243 and 244 for recovering heat of exhaust gas as a convection heat transfer section.
  • superheaters superheaters
  • reheater 243 and 244 for recovering heat of exhaust gas as a convection heat transfer section.
  • economizers 245, 246, and 247 are provided, and heat exchange is performed between exhaust gas generated by combustion in the furnace 211 and water.
  • the flue 240 is connected to an exhaust gas pipe 248 from which exhaust gas subjected to heat exchange is discharged downstream.
  • This exhaust gas pipe 248 is provided with an air heater 249 between the air duct 237 and performs heat exchange between the air flowing through the air duct 237 and the exhaust gas flowing through the exhaust gas pipe 248, and combustion burners 221, 222, 223, and so on.
  • the temperature of the combustion air supplied to 224 and 225 can be raised.
  • the exhaust gas pipe 248 is provided with a denitration device, an electrostatic precipitator, an induction blower, and a desulfurization device, and a chimney is provided at the downstream end.
  • the generated pulverized coal together with the carrier air passes through the pulverized coal supply pipes 226, 227, 228, 229, 230 and the combustion burners 221, 222, 223, and so on. 224, 225.
  • the heated combustion air is supplied from the air duct 237 to the combustion burners 221, 222, 223, 224, and 225 through the wind box 236.
  • the combustion burners 221, 222, 223, 224, and 225 inject the pulverized fuel mixture in which the pulverized coal and the carrier air are mixed into the furnace 211 and the combustion air into the furnace 211 and ignite at this time. Can form a flame.
  • the pulverized fuel mixture and the combustion air are combusted to generate a flame.
  • the combustion gas exhaust gas
  • the flue 240 is discharged.
  • the inside is maintained in a reducing atmosphere by setting the air supply amount to be less than the theoretical air amount with respect to the pulverized coal supply amount.
  • the NOx generated by the combustion of the pulverized coal is reduced in the furnace 211, and then additional air is additionally supplied to complete the oxidative combustion of the pulverized coal, thereby reducing the amount of NOx generated by the combustion of the pulverized coal. .
  • the steam taken out in the middle of the expansion process in the turbine is introduced into the reheaters 243 and 244, is overheated again, and is returned to the turbine.
  • the furnace 211 was demonstrated as a drum type (steam drum), it is not limited to this structure.
  • the exhaust gas that has passed through the economizers 245, 246, and 247 of the flue 240 is subjected to removal of harmful substances such as NOx by a catalyst in a denitration device (not shown) in the exhaust gas pipe 248, and the particulate matter is collected by an electric dust collector. Is removed, and after the sulfur content is removed by the desulfurizer, it is discharged from the chimney into the atmosphere.
  • each combustion burner 221,222,223,224,225 which comprises this combustion apparatus 212 has comprised the substantially same structure, it is located in the uppermost stage. Only the combustion burner 221 will be described.
  • the combustion burner 221 includes combustion burners 221 a, 221 b, 221 c, and 221 d provided on four wall surfaces in the furnace 211.
  • Each combustion burner 221a, 221b, 221c, 221d is connected to each branch pipe 226a, 226b, 226c, 226d branched from the pulverized coal supply pipe 226, and each branch pipe 237a, 237b, 237c branched from the air duct 237. , 237d are connected.
  • each combustion burner 221a, 221b, 221c, 221d on each wall surface of the furnace 211 blows into the furnace 211 a pulverized fuel mixture in which pulverized coal and carrier air are mixed, and the pulverized fuel mixture Blow combustion air to the outside. Then, by igniting the pulverized fuel mixture from each combustion burner 221a, 221b, 221c, 221d, four flames F1, F2, F3, F4 can be formed, and this flame F1, F2, F3, F4 Is a flame swirl flow swirling counterclockwise as viewed from above the furnace 211 (in FIG. 19).
  • the fuel nozzle 251, the secondary air nozzle 252, and the tertiary air nozzle are arranged from the center side. 253 and a flame holder 254 are provided.
  • the fuel nozzle 251 is capable of injecting a fuel gas (fine fuel mixture) obtained by mixing pulverized coal (solid fuel) and carrier air (primary air).
  • the secondary air nozzle 252 is disposed outside the fuel nozzle 251 and can blow combustion air (secondary air) into the outer peripheral side of the fuel gas injected from the fuel nozzle 251.
  • the tertiary air nozzle 253 is disposed outside the secondary air nozzle 252 and can blow tertiary air into the outer peripheral side of the secondary air injected from the secondary air nozzle 252.
  • the flame holder 254 is disposed in the fuel nozzle 51 at the downstream side in the fuel gas blowing direction and at the axial center side, thereby functioning for fuel gas ignition and flame holding. Is.
  • This flame holder 254 is a so-called so-called cross-shaped arrangement of first flame holding members 261 and 262 along the horizontal direction and second flame holding members 263 and 264 along the vertical direction (vertical direction). It has a double cross split structure.
  • Each of the first flame holding members 261 and 262 has a flat portion 261a and 262a having a flat plate shape and a front end portion (downstream end portion in the fuel gas flow direction) of the flat portions 2261a and 262a. Wide portions 61b and 262b provided integrally with each other.
  • the widened portions 261b and 262b have an isosceles triangular cross section, the width is widened toward the downstream side in the fuel gas flow direction, and the front end is a plane perpendicular to the fuel gas flow direction.
  • the second flame holding members 263 and 264 have the same structure.
  • the fuel nozzle 251 and the secondary air nozzle 252 have a long tubular structure, the fuel nozzle 251 has a rectangular opening 251a, and the secondary air nozzle 252 has a rectangular ring-shaped opening. Since it has 252a, the fuel nozzle 251 and the secondary air nozzle 252 have a double tube structure.
  • a tertiary air nozzle 253 is arranged as a double pipe structure outside the fuel nozzle 251 and the secondary air nozzle 252, and has a rectangular ring-shaped opening 253a.
  • the opening 252a of the secondary air nozzle 252 is disposed outside the opening 251a of the fuel nozzle 251, and the opening 253a of the tertiary air nozzle 253 is disposed outside the opening 252a of the secondary air nozzle 252. It will be arranged.
  • the tertiary air nozzle 253 may be arranged as a tertiary air nozzle by arranging a plurality of nozzles separately on the outer peripheral side of the secondary air nozzle 252 instead of being arranged as a double pipe structure.
  • nozzles 251, 252, 253 are arranged with openings 251a, 252a, 253a aligned on the same plane.
  • the flame holder 254 is supported by a plate material (not shown) from the inner wall surface of the fuel nozzle 251 or the upstream side of the flow path through which the fuel gas flows.
  • the fuel nozzle 251 has a plurality of flame holding members 261, 262, 263, 264 as flame holders 254 disposed therein, so that the fuel gas flow path is divided into nine.
  • the flame holder 254 has widened portions 261b and 262b whose widths are widened at the front end, and the widened portions 261b and 262b are aligned on the same plane as the opening 251a.
  • a guide member 255 that guides the fuel gas flowing in the fuel nozzle 251 to the axial center side is provided.
  • the guide member 255 guides the fuel gas in a direction away from the secondary air blown by the secondary air nozzle 252.
  • the guide member 255 is disposed along the circumferential direction on the inner wall surface at the tip of the fuel nozzle 251. That is, the guide member 255 is provided on the upper guide member 265 disposed along the upper wall surface of the fuel nozzle 251, the lower guide member 266 disposed along the lower wall surface of the fuel nozzle 251, and the left and right wall surfaces of the fuel nozzle 251. And left and right guide members 267 and 268 which are disposed along. And this guide member 255 is arrange
  • the guide member 255 has a triangular cross section, and is formed with an inclined surface 269 that increases in width toward the downstream side in the flow direction of the fuel gas, and the front end extends in the flow direction of the fuel gas.
  • the planes are orthogonal to each other and are aligned on the same plane as the openings 251a and 252a.
  • the guide member 55 is formed by cutting out the positions intersecting with the flame holding members 261, 262, 263, 264.
  • a fuel gas in which pulverized coal and primary air are mixed is blown into the furnace from the opening 251a of the fuel nozzle 251, and the secondary air is discharged from the secondary air nozzle 252 on the outside thereof.
  • the air is blown into the furnace from the opening 252a, and the tertiary air is blown into the furnace from the opening 253a of the tertiary air nozzle 253 on the outside thereof.
  • the fuel gas is branched and ignited by the flame holder 254 at the opening 251a of the fuel nozzle 251, and burns to become a combustion gas.
  • combustion of fuel gas is accelerated
  • the ratio of the secondary air and the tertiary air can be adjusted to obtain optimum combustion.
  • the flame holder 254 has a split shape, so that the fuel gas is branched by the flame holder 254 at the opening 251a of the fuel nozzle 251, and at this time, the flame holder 254 is moved to the fuel nozzle 251. In the central region of the opening 251a, ignition and flame holding of the fuel gas are performed in this central region. As a result, internal flame holding of the combustion flame (flame holding in the center region of the opening 251a of the fuel nozzle 251) is realized.
  • the outer peripheral portion of the combustion flame becomes low temperature, and the temperature of the outer peripheral portion of the combustion flame in a high oxygen atmosphere can be lowered by the secondary air. The amount of NOx generated at the outer periphery is reduced.
  • the combustion burner 221 since the combustion burner 221 employs a structure that holds the internal flame, it is preferable that the fuel gas and the combustion air (secondary air and tertiary air) are supplied as a straight flow. That is, it is preferable that the fuel nozzle 251, the secondary air nozzle 252, and the tertiary air nozzle 253 have a structure for supplying the fuel gas, the secondary air, and the tertiary air as a straight flow without swirling. Since the fuel gas, the secondary air, and the tertiary air are injected as a straight flow to form a combustion flame, the gas circulation in the combustion flame is suppressed in the configuration in which the combustion flame is held inside. Thereby, the outer peripheral part of a combustion flame is maintained with low temperature, and the NOx generation amount by mixing with secondary air is reduced.
  • the guide member 255 is arranged at the entire circumference at the front end portion of the fuel nozzle 251, so that the fuel gas flowing in the fuel nozzle 251 is caused by the inclined surface 269 of the guide member 255. It is guided to the axial center side, that is, the flame holder 254 side. Then, the fuel gas blown into the furnace by the fuel nozzle 251 is guided in a direction away from the secondary air blown by the secondary air nozzle 252. Therefore, the internal flame holding by the flame holder 254 is appropriately performed by separating the fuel gas from the secondary air that is relatively faster than the fuel gas. Further, the fuel gas is separated from the secondary air, so that the amount of NOx generated by mixing with the secondary air is reduced. Furthermore, pulverized coal can be appropriately supplied toward the flame holder 254.
  • the fuel nozzle 251 capable of injecting the fuel gas in which the pulverized coal and the primary air are mixed, and the secondary air can be injected from the outside of the fuel nozzle 251.
  • a secondary air nozzle 252 is provided, a flame holder 254 is provided on the axial center side at the tip of the fuel nozzle 251, and a guide member 255 for guiding the fuel gas flowing in the fuel nozzle 251 to the axial center side is provided.
  • the fuel gas flowing in the fuel nozzle 251 is guided to the axial center side of the fuel nozzle 251, that is, the flame holder 254 side by the guide member 255, and the proper flow of the fuel gas in the fuel nozzle 251 is caused.
  • the internal flame holding performance by the flame holder 254 can be improved.
  • the guide member 255 guides the fuel gas in a direction away from the secondary air blown by the secondary air nozzle 252. Therefore, the fuel gas is guided in a direction away from the secondary air by the guide member 255, and mixing of the fuel gas and the secondary air is suppressed, and the internal flame holding performance by the flame holder 254 can be improved. In addition, since the outer peripheral portion of the combustion flame is maintained at a low temperature, the amount of NOx generated by mixing the combustion gas and the secondary air can be reduced.
  • the guide member 255 is arranged along the inner wall surface of the fuel nozzle 251. Therefore, the fuel gas flowing in the entire fuel nozzle 251 can be effectively guided to the flame stabilizer 254 side, and the fuel gas can be guided in a direction away from the secondary air. The internal flame holding performance by the flame holder 254 can be improved.
  • the guide member 255 is disposed at the tip of the fuel nozzle 251 so as to face the flame holder 254.
  • the guide member 255 is disposed so as to face the widened portions 261b and 262b in the flame holder 254. Therefore, by guiding the fuel gas to the widened portions 261b and 262b in the flame holder 254 by the guide member 255, a sufficient flame holding function can be secured and the internal flame holding performance can be improved.
  • FIG. 20 is a sectional view showing a combustion burner according to Example 8 of the present invention.
  • symbol is attached
  • the combustion burner 221 is provided with a fuel nozzle 251, a secondary air nozzle 252, and a tertiary air nozzle 253 from the center side, and a flame stabilizer. 254 is provided.
  • a guide member 271 for guiding the fuel gas in a direction away from the secondary air blown by the secondary air nozzle 252 is provided by guiding the fuel gas flowing in the fuel nozzle 251 toward the axial center.
  • the guide member 271 does not face the flame holder 254 disposed in the fuel nozzle 251, that is, upstream of the flame holder 254 in the fuel gas flow direction and on the inner wall surface of the fuel nozzle 251. Arranged along the circumferential direction.
  • the guide member 271 has a ring shape that protrudes from the inner wall surface of the fuel nozzle 251 toward the flame holder 254, and a guide surface (inclined surface or curved surface) 272 that guides the fuel gas in the fuel nozzle 251 to the axial center side. Is formed.
  • the guide member 271 is disposed at the entire circumference at the front end portion of the fuel nozzle 251, so that the fuel gas flowing in the fuel nozzle 251 is guided by the guide surface 272 of the guide member 271. It is guided to the axial center side, that is, the flame holder 254 side. Then, the fuel gas blown into the furnace by the fuel nozzle 251 is guided in a direction away from the secondary air blown by the secondary air nozzle 252. Therefore, the internal flame holding by the flame holder 254 is appropriately performed by separating the fuel gas from the secondary air that is relatively faster than the fuel gas. Further, the fuel gas is separated from the secondary air, so that the amount of NOx generated by mixing with the secondary air is reduced.
  • the fuel nozzle 251 capable of injecting fuel gas mixed with pulverized coal and primary air, and the secondary air capable of injecting secondary air from the outside of the fuel nozzle 251.
  • the secondary air nozzle 252 is provided, a flame holder 254 is provided on the axial center side at the tip of the fuel nozzle 251, and a guide member 271 for guiding the fuel gas flowing in the fuel nozzle 251 to the axial center side is provided from the flame holder 254. It is provided upstream in the flow direction of the fuel gas.
  • the fuel gas flowing in the fuel nozzle 251 is guided to the axial center side of the fuel nozzle 251, that is, the flame holder 254 side by the guide member 271, so that an appropriate flow of the fuel gas is generated in the fuel nozzle 251.
  • the internal flame holding performance by the flame holder 254 can be improved.
  • the guide member 271 is provided on the upstream side of the flame holder 254, the fuel gas can be effectively guided to the flame holder 254, and the internal flame holding performance of the flame holder 254 is improved. be able to.
  • the guide member 271 is not provided on the tip end side in the fuel nozzle 251, the guide member 271 itself does not function as a flame holder.
  • FIG. 21 is a front view showing a combustion burner according to Embodiment 9 of the present invention.
  • symbol is attached
  • the combustion burner 221 is provided with a fuel nozzle 251, a secondary air nozzle 252, and a tertiary air nozzle 253 from the center side. 254 is provided.
  • a guide member for guiding the fuel gas in a direction away from the secondary air blown by the secondary air nozzle 252 is provided by guiding the fuel gas flowing in the fuel nozzle 251 toward the axial center.
  • This guide member is disposed at a position facing the inner wall surface of the fuel nozzle 251 at the widened portions 261b and 262b in the flame holder 254. That is, in the flame holder 254, the first flame holding members 261 and 262 along the horizontal direction and the second flame holding members 263 and 264 along the vertical direction are arranged so as to intersect with each other, and the guide members are respectively It is comprised as notch surface 261c, 262c, 263c, 264c formed in the edge part of the wide part 261b, 262b in the flame holding members 261,262,263,264. Each notch surface 261c, 262c, 263c, 264c is formed to have a tapered shape by forming inclined surfaces on both sides of the end portion when the flame holding members 261, 262, 263, 264 are viewed from the front. Has been.
  • the notch surfaces 261c, 262c, 263c, 264c as guide members are formed at the end portions of the flame holding members 261, 262, 263, 264 of the flame holder 254, so that the fuel nozzle
  • the fuel gas flowing in 251 is guided to the axial center side, that is, the inner side in the longitudinal direction of each flame-holding member 261, 262, 263, 264 by the notch surfaces 261c, 262c, 263c, 264c. That is, when the fuel gas passes through the vicinity of the cutout surfaces 261c, 262c, 263c, 264c of each flame holding member 261, 262, 263, 264, the front side of each flame holding member 261, 262, 263, 264 becomes negative pressure. As the fuel gas is drawn into the negative pressure region, a flow indicated by an arrow in FIG. 21 is generated.
  • the fuel gas blown into the furnace by the fuel nozzle 251 is guided in a direction away from the secondary air blown by the secondary air nozzle 252. Therefore, the internal flame holding by the flame holder 254 is appropriately performed by separating the fuel gas from the secondary air that is relatively faster than the fuel gas. Further, the fuel gas is separated from the secondary air, so that the amount of NOx generated by mixing with the secondary air is reduced.
  • the fuel nozzle 251 capable of injecting the fuel gas in which the pulverized coal and the primary air are mixed, and the secondary air can be injected from the outside of the fuel nozzle 251.
  • a secondary air nozzle 252 and a flame holder 254 provided on the axial center side at the tip of the fuel nozzle 251, and a guide member for guiding the fuel gas flowing through the fuel nozzle 251 to the axial center side of the flame holder 254.
  • Cutout surfaces 261c, 262c, 263c, and 264c are formed at the ends of the flame holding members 261, 262, 263, and 264, respectively.
  • the fuel gas flowing in the fuel nozzle 251 is guided to the axial center side of the fuel nozzle 251 by the notch surfaces 261c, 262c, 263c, and 264c, that is, the center side of the flame holder 254.
  • the guide member is configured by forming the notch surfaces 261c, 262c, 263c, and 264c at the end of the flame holder 254, the apparatus can be simplified.
  • the guide member is a notched surface 261c, 262c, 263c, 264c having a tapered shape formed at the end in the longitudinal direction of the flame holding members 261, 262, 263, 264. It is not limited to this shape.
  • the longitudinal ends of the flame holding members 261, 262, 263, and 264 are cut out only on one side to form a cut surface, or in the direction orthogonal to the longitudinal direction of the flame holding members 261, 262, 263, and 264.
  • a notch portion that is separated from the inner wall surface of the fuel nozzle 251 may be used.
  • each notch surface 261c, 262c, 263c, 264c may have a shape in which the downstream side in the fuel gas flow direction is widened in the same manner as the widened portions 261b, 262b.
  • FIG. 22 is a front view showing a combustion burner according to Example 10 of the present invention.
  • symbol is attached
  • the combustion burner 221 is provided with a fuel nozzle 251, a secondary air nozzle 252, and a tertiary air nozzle 253 from the center side, and a flame stabilizer. 254 is provided.
  • a guide member for guiding the fuel gas in a direction away from the secondary air blown by the secondary air nozzle 252 is provided by guiding the fuel gas flowing in the fuel nozzle 251 toward the axial center.
  • This guide member is disposed as a triangular plate 281, 282, 283, 284 outside the position where the first flame holding members 261, 262 and the second flame holding members 263, 264 intersect. Specifically, outside the position where the widened portions 261b and 262b of the first flame holding members 261 and 262 intersect with the widened portions (not shown) of the second flame holding members 263 and 264, that is, the axis of the fuel nozzle 251. It is arranged on the opposite side to the center.
  • Each of the triangular plates 281, 282, 283, 284 is formed in a triangular shape by forming inclined surfaces outside the intersecting corners when the flame holding members 261, 262, 263, 264 are viewed from the front. Has been.
  • the triangular plates 281, 282, 283, and 284 are disposed outside the flame holders 261, 262, 263, and 264 of the flame holder 54 so that they flow through the fuel nozzle 251.
  • the fuel gas is guided by the triangular plates 281, 282, 283, and 284 to the axial center side, that is, the center of each flame-holding member 261, 262, 263, and 264. That is, when the fuel gas passes in the vicinity of each triangular plate 281, 282, 283, 284, the front side of each triangular plate 281, 282, 283, 284 becomes negative pressure, the fuel gas is drawn into this negative pressure region, A flow indicated by an arrow in FIG. 22 occurs.
  • the fuel gas blown into the furnace by the fuel nozzle 251 is guided in a direction away from the secondary air blown by the secondary air nozzle 252. Therefore, the internal flame holding by the flame holder 254 is appropriately performed by separating the fuel gas from the secondary air that is relatively faster than the fuel gas. Further, the fuel gas is separated from the secondary air, so that the amount of NOx generated by mixing with the secondary air is reduced.
  • the fuel nozzle 251 capable of injecting a fuel gas in which pulverized coal and primary air are mixed, and the secondary air can be injected from the outside of the fuel nozzle 251.
  • a secondary air nozzle 252 and a flame holder 254 provided on the axial center side at the tip of the fuel nozzle 251, and a guide member for guiding the fuel gas flowing through the fuel nozzle 251 to the axial center side of the flame holder 254.
  • Triangular plates 281, 282, 283, and 284 are disposed outside the positions where the flame holding members 261, 262, 263, and 264 cross each other.
  • the fuel gas flowing in the fuel nozzle 251 is guided to the axial center side of the fuel nozzle 251 by the triangular plates 281, 282, 283 and 284, that is, to the center side of the flame holder 254.
  • An appropriate flow of the fuel gas can be realized, and as a result, the internal flame holding performance by the flame holder 254 can be improved.
  • the flame holder 254 includes two first flame holding members 261 and 262 that are parallel with a predetermined gap in the vertical direction along the horizontal direction, and two that are parallel with a predetermined gap in the horizontal direction along the vertical direction.
  • the second flame holding members 263 and 264 are arranged so as to intersect with each other.
  • the flame holder 254 have a double cross structure. Further, by using the triangular plates 281, 282, 283, and 284 as the guide members, the fuel gas flowing in the fuel nozzle 251 can be effectively guided to the axial center side.
  • the guide members are triangular plates 281, 282, 283, and 284, but are not limited to this shape.
  • the triangular plates 281, 282, 283, and 284 may have a shape in which the downstream side in the fuel gas flow direction widens in the same manner as the widened portions 261 b and 262 b.
  • FIG. 23 is a cross-sectional view illustrating a combustion burner according to an eleventh embodiment of the present invention
  • FIG. 24 is a cross-sectional view illustrating a modification of the combustion burner according to the eleventh embodiment.
  • symbol is attached
  • the combustion burner 221 is provided with a fuel nozzle 251, a secondary air nozzle 252, and a tertiary air nozzle 253 from the center side, and a flame stabilizer. 291 is provided.
  • a guide member for guiding the fuel gas in a direction away from the secondary air blown by the secondary air nozzle 252 is provided by guiding the fuel gas flowing in the fuel nozzle 251 toward the axial center.
  • the flame holder 291 has flame holding members 292 and 293 along the horizontal direction, and the flame holding members 292 and 293 have flat portions 292a and 293a having flat thicknesses and flat portions.
  • Wide portions 292b and 293b are provided integrally at the front ends (downstream ends in the fuel gas flow direction) of the portions 292a and 293a.
  • the widened portions 292b and 293b have an isosceles triangular cross section, the width is increased toward the downstream side in the fuel gas flow direction, and the front end is a plane perpendicular to the fuel gas flow direction.
  • the flame holding members 292 and 293 constitute a guide member with the front end portion facing the axial center side of the fuel nozzle 251. That is, the flame holding members 292 and 293 are arranged at the axial center of the fuel nozzle 251 by arranging the widened portions 292b and 293b formed at the front end portions closer to the rear end portions of the flat portions 292a and 293a. It is inclined with respect to it.
  • the flame holder 291 in the fuel nozzle 251 is arranged so that the front end portions of the flame holding members 292 and 293 are close to each other.
  • the flame holding members 292 and 293 are guided to the axial center side. That is, since the front end portions of the flame holding members 292 and 293 are close to each other, the fuel gas becomes high speed between the flame holding members 292 and 293, while it is low speed between the fuel nozzle 251 and the flame holding members 292 and 293. As a whole, it is guided to the axial center side of the fuel nozzle 251.
  • the fuel gas blown into the furnace by the fuel nozzle 251 is guided in a direction away from the secondary air blown by the secondary air nozzle 252. Therefore, the internal flame holding by the flame holder 291 is appropriately performed when the fuel gas is separated from the secondary air that is relatively faster than the fuel gas. Further, the fuel gas is separated from the secondary air, so that the amount of NOx generated by mixing with the secondary air is reduced.
  • the inclination angle of the flame holding members 292 and 293 constituting the flame holder 291 may be adjustable. That is, as shown in FIG. 24, the flame holding members 292 and 293 are supported by the support shafts 295 and 296 along the horizontal direction orthogonal to the fuel gas flow direction of the fuel nozzle 251 so as to be rotatable up and down. It can be rotated by a driving device 297. That is, the inclination angle of the flame holding members 292 and 293 can be individually adjusted by the driving device 297.
  • the drive device 297 individually adjusts the angles of the flame holding members 292 and 293 based on the nature and speed of the fuel gas, the speed of the secondary air, the combustion state in the furnace 211, and the like. It is possible to maintain the optimum state of blowing fuel gas.
  • the fuel nozzle 251 capable of injecting the fuel gas in which the pulverized coal and the primary air are mixed, and the secondary air can be injected from the outside of the fuel nozzle 251.
  • a flame holder 291 is provided on the axial center side at the tip of the fuel nozzle 251, and the flame holder 291 serves as a guide member for guiding the fuel gas flowing through the fuel nozzle 251 to the axial center side.
  • the flame holding members 292 and 293 are arranged so that the front end faces the axial center side of the fuel nozzle 251.
  • the fuel gas flowing in the fuel nozzle 251 is guided to the axial center side of the fuel nozzle 251 by the inclined flame holding members 292 and 293, that is, to the center portion side of the flame holder 291.
  • An appropriate flow of the fuel gas can be realized, and as a result, the internal flame holding performance by the flame holder 291 can be improved.
  • the guide member is configured by the arrangement of the flame holding members 292 and 293 in the flame holder 291, the structure can be simplified.
  • the inclination angle of the flame holding members 292 and 293 can be individually adjusted by the driving device 297. Therefore, for example, the optimum inhalation of the fuel gas is achieved by changing the angles of the flame holding members 292 and 293 based on the nature and speed of the fuel gas, the speed of the secondary air, the combustion state in the furnace 211, and the like. It becomes possible to maintain the state.
  • the burner of the present invention realizes internal flame holding, and it is sufficient that a flame holder is provided not on the inner wall surface of the fuel nozzle 251 but on the axial center side of the fuel nozzle 251.
  • the number, position, etc. may be set as appropriate, and the flame holding member may be separated from the inner wall surface of the fuel nozzle 251.
  • the configuration of the guide member has been described with various examples, but this configuration is not limited to the above-described configuration. That is, it is only necessary that the fuel gas in the fuel nozzle can be guided to the axial center side by the guide member.
  • the flame holder of the present invention is provided with the widened portion having a triangular cross-sectional shape.
  • the present invention is not limited to this shape, and may have a rectangular shape or the widened portion may be eliminated.
  • the guide member of the present invention is provided on the inner wall surface of the fuel nozzle or the flame holder.
  • another member is provided between the inner wall surface of the fuel nozzle and the flame holder. May be.
  • a guide member may be provided between the inner wall surface of the fuel nozzle and the flame holder along a direction parallel to or intersecting with the flame holder, so that the guide member may have a rectangular shape or a rhombus frame shape. .
  • the combustion device 212 is configured by arranging four combustion burners 221, 222, 223, 224, and 225 provided on the wall surface of the furnace 211 in five stages along the vertical direction. It is not limited to this configuration. That is, the combustion burner may be arranged at the corner without being arranged on the wall surface.
  • the combustion apparatus is not limited to the swirl combustion method, and may be a front combustion method in which the combustion burner is disposed on one wall surface, or an opposed combustion method in which the combustion burner is disposed opposite to the two wall surfaces.
  • solid fuel fired boilers include, for example, pulverized coal fired boilers that burn pulverized coal (coal) as solid fuel.
  • pulverized coal fired boiler two types of combustion systems are known: a swirl combustion boiler and an opposed combustion boiler.
  • secondary air input ports for supplying secondary air are installed above and below the primary air supplied from the coal-fired burner (solid fuel-fired burner) together with the pulverized coal of fuel.
  • the flow rate of the secondary air around the coal burning burner is adjusted.
  • the primary air described above is an amount of air necessary for conveying the pulverized coal of fuel, and therefore, the amount of air is defined in a roller mill device that pulverizes coal into pulverized coal.
  • the secondary air quantity of a swirl combustion boiler is generally required for combustion of pulverized coal.
  • the total primary air amount is subtracted from the total air amount.
  • external flame holding is performed in which pulverized coal is separated into dark and light on the outer periphery, and further, ignition on the outer periphery of the flame is enhanced.
  • Patent Document 4 described above also discloses a flame holder configured by an outer peripheral flame holder and a split.
  • the outer peripheral flame stabilizer is the main, and the split is auxiliary.
  • conventional coal-fired burners have a flame holding mechanism (adjustment of tip angle, swivel, etc.) on the outer periphery of the burner, and a secondary air (or tertiary air) input port immediately adjacent to the outer periphery. It is common to do. For this reason, ignition occurs at the outer periphery of the flame, and a large amount of air is mixed at the outer periphery of the flame. As a result, the combustion around the flame proceeds in a high temperature state where the oxygen concentration is high in the high temperature oxygen remaining region around the flame, and therefore NOx is generated around the flame.
  • the counter-fired boiler is also ignited on the outer periphery of the flame by turning, which is a factor that NOx is similarly generated on the outer periphery of the flame.
  • the high-temperature oxygen remaining formed on the outer periphery of the flame It is desired to suppress the region and reduce the final NOx generation amount discharged from the additional air input unit.
  • the present invention has been made in view of the above circumstances, and its object is to suppress (weaken) the high-temperature oxygen residual region formed on the outer periphery of the flame, thereby exhausting it from the additional air input unit.
  • Another object of the present invention is to provide a solid fuel-fired burner and a solid fuel-fired boiler that can reduce the final NOx generation amount.
  • a present Example demonstrates the swirl combustion boiler provided with the solid fuel burning burner which uses pulverized coal (coal which is a powder solid fuel) as a fuel as an example of a solid fuel burning burner and a solid fuel burning boiler.
  • the swirl combustion boiler 310 shown in FIG. 27 to FIG. 29 reduces the region from the burner unit 312 to the additional air input unit (hereinafter referred to as “AA unit”) 314 by inputting air into the furnace 311 in multiple stages.
  • the atmosphere is designed to reduce NOx in combustion exhaust gas.
  • reference numeral 320 denotes a solid fuel burning burner for charging pulverized coal (powdered solid fuel) and air
  • 315 is an additional air charging nozzle for charging additional air.
  • the solid fuel-burning burner 320 is connected to a pulverized coal mixture transport pipe 316 that transports pulverized coal with primary air and an air supply duct 317 that supplies secondary air.
  • An air supply duct 317 for supplying secondary air is connected to the input nozzle 315.
  • the above-described swirl combustion boiler 310 is of the swirl combustion type in which the solid fuel-burning burner 320 for charging the pulverized coal (coal) and air of the pulverized fuel into the furnace 311 is disposed at each corner portion of each stage.
  • a burner unit 312 is employed, and a swirl combustion method is employed in which one or more swirl flames are formed in each stage.
  • a solid fuel burning burner 320 shown in FIG. 25 includes a pulverized coal burner (fuel burner) 321 that inputs pulverized coal and air, and secondary air input ports 330 that are respectively disposed above and below the pulverized coal burner 321. .
  • the secondary air input port 330 is opened as a flow rate adjusting means for each secondary air supply line branched from the air supply duct 317 as shown in FIG.
  • a damper 340 capable of adjusting the degree is provided.
  • the above-mentioned pulverized coal burner 321 is provided so as to surround the rectangular primary coal port 322 for introducing the pulverized coal conveyed by primary air and the primary coal port 322, and a part of the secondary air. And a call secondary port 323 for injecting. As shown in FIG. 26, the call secondary port 323 is also provided with a damper 340 whose opening degree can be adjusted as a flow rate adjusting means. Note that the call primary port 322 may be circular or elliptical.
  • a split member 324 in a plurality of directions is disposed in the front portion of the flow path of the pulverized coal burner 321, that is, in the front portion of the flow path of the primary coal port 322, and is fixed to a support member or the like (not shown).
  • the split member 324 has a lattice shape in which a total of two split members 324 have a predetermined interval, one in the vertical direction and one in the horizontal direction at the outlet opening of the primary call port 322. It is arranged.
  • the two split members 324 are cross-types arranged in a lattice shape in two different directions, the vertical direction and the horizontal direction, so that the outlet opening of the primary coal port 322 in the pulverized coal burner 321 is formed.
  • the number of split members 324 may be plural in both the vertical direction and the horizontal direction.
  • pressure loss is large, the flow velocity in a jet nozzle falls, and ignition inside is accelerated
  • the split member 324 having such a configuration suppresses the high-temperature oxygen remaining region H formed on the outer periphery of the flame F, and is effective in reducing the final NOx generation amount discharged from the AA portion 314.
  • the above-described split member 324 can disrupt the flow of pulverized coal and air smoothly by adopting, for example, a cross-sectional shape as shown in FIGS. 30 (a) to 30 (d).
  • the split member 324 shown in FIG. 30A has a triangular cross-sectional shape.
  • the illustrated triangle is an equilateral triangle or an isosceles triangle, and is arranged so that one side of the outlet side toward the furnace 311 is substantially orthogonal to the flow direction of pulverized coal and air.
  • an arrangement is adopted in which one of the corners forming the triangular cross section is oriented in the direction of flow of pulverized coal and air.
  • the split member 324A shown in FIG. 30B has a substantially T-shaped cross-sectional shape, and a surface substantially orthogonal to the flow direction of the pulverized coal and air is disposed on the outlet side facing the furnace 311. Note that by deforming such a substantially T-shaped cross-sectional shape, for example, as shown in FIG. 30C, a split member 324A ′ having a trapezoidal cross-sectional shape may be used.
  • the split member 324B shown in FIG. 30 (d) has a substantially L-shaped cross-sectional shape. That is, it is a cross-sectional shape obtained by cutting off a part of the above-described substantially T-shape, and in particular, when arranged in the left-right (horizontal) direction, if the L-shape is formed by removing the upper convex portion, It is possible to prevent pulverized coal from accumulating on the split member 324B. Note that the separation performance necessary for the split member 324B can be ensured by enlarging the lower convex portion by removing the upper convex portion.
  • the cross-sectional shape of the above-described split member 324 and the like is not limited to the illustrated example, for example, substantially Y-shaped.
  • the split member 324 installed in the vicinity of the center of the outlet opening of the pulverized coal burner 321 divides the flow path of the pulverized coal and air to disturb the flow inside, and also splits the split member 324. In order to form a recirculation zone in front (downstream side), it functions as an internal flame holding mechanism.
  • the conventional solid fuel-burning burner 320 is radiated around the flame and ignites the pulverized coal of fuel. When pulverized coal is ignited on the outer periphery of the flame, NOx is generated in the high-temperature oxygen remaining region H (see FIG. 25 (b)) on the outer periphery of the flame where high-temperature oxygen remains and remains without being fully reduced to increase NOx emissions. I am letting.
  • the provision of the split member 324 that functions as an internal flame holding mechanism causes the pulverized coal to ignite inside the flame. For this reason, NOx is generated inside the flame, and the NOx generated inside the flame contains a large amount of hydrocarbons having a reducing action, so that it is rapidly reduced in the flame in the air-deficient state. Accordingly, it is possible to stop flame holding by installing a flame holder on the outer periphery of the flame, that is, a solid fuel-burning burner 320 having a structure not having a flame holding mechanism on the outer periphery of the burner, and to suppress NOx generation on the outer periphery of the flame. .
  • an intersection where the split members 324 in different directions intersect with each other can be easily provided near the center of the outlet opening of the pulverized coal burner 321.
  • the flow path of pulverized coal and air is divided into a plurality near the center, The flow is disturbed when diverting to multiple. That is, when the split member 324 is unidirectionally left and right, the diffusion and ignition of air in the central portion is delayed and there is a local extreme air shortage region, which causes an increase in unburned components.
  • the cross type in which the intersecting portions are formed by being arranged in the direction the mixing of air inside the flame is promoted and the ignition surface is subdivided, and as a result, the unburned portion can be reduced.
  • the split member 324 is disposed so as to form an intersection, air mixing / diffusion is promoted inside the flame, and the ignition surface is further subdivided, so that the ignition position is the center of the flame.
  • a cross type member having different splitter widths W for each direction is arranged.
  • a vertical split member hereinafter referred to as “vertical splitter”
  • a horizontal split member hereinafter referred to as “vertical splitter”
  • lateral splitter Each of which is called a “lateral splitter”) 324H.
  • the splitter width Wv of the vertical splitter 324V is wider and wider (Wv> Wh) than the splitter width Wh of the horizontal splitter 324H, but the reverse configuration may be used. That is, the split member 324 shown in the figure reinforces the vertical splitter function to relatively lower the horizontal splitter function, so that the splitter width Wv of the vertical splitter 324V is larger than the splitter width Wh of the horizontal splitter 324H. It is a set structure. Such a configuration corresponds to a change in the angle of the fuel burner 321 whose angle can be adjusted.
  • the fuel burner 321 appropriately changes the burner angle (nozzle angle) ⁇ in the vertical direction in order to adjust the steam temperature generated in the swirl combustion boiler 310 to a desired value. Can do. However, even if the burner angle ⁇ changes, the split member 324 fixed and supported in place does not change the angle integrally with the fuel burner 321. For this reason, the positional relationship between the fuel burner 321 and the split member 324 varies according to the change in the burner angle ⁇ .
  • the split member 324 having a relatively wide splitter width Wv of the vertical splitter 324V and strengthening the vertical splitter function has the splitter width Wh of the horizontal splitter 324H narrowed to a necessary minimum. The positional change due to the change in the burner angle ⁇ is minimized.
  • the split member 324 is a cross type in which the splitter 324H is left in the vertical and left and right directions while leaving the horizontal splitter 324H having a small splitter width W, it is possible to promote air mixing and maintain the subdivision of the ignition surface. .
  • the split member 324 allows the air to easily enter the center of the flame, and as a result, the burner angle ⁇ is maintained while maintaining the advantage of the cross type that the reduction of unburned portion can be achieved by promoting the ignition at the center. It is possible to keep the burner performance substantially constant while minimizing fluctuations in the positional relationship due to changes.
  • the splitter width Wh of the horizontal splitter 324H is wider and wider than the splitter width Wv of the vertical splitter 324V (Wh > Wv). This is because if the splitter width Wv of the vertical splitter 324V is larger than necessary, the splitter function is strengthened and tends to become an ignition source of pulverized coal.
  • the ignition near the upper and lower ends of the vertical splitter 324V is in a situation where the ignition on the flame periphery tends to directly interfere with the secondary air because the ignition source is located near the secondary air input port 330.
  • a large amount of air is mixed with the pulverized coal ignited on the outer periphery of the flame using the vertical splitter 324V as an ignition source. Therefore, NOx is generated in the high-temperature oxygen remaining region H on the outer periphery of the flame where high-temperature oxygen remains. To do. This NOx remains without being sufficiently reduced, and causes the final NOx emission amount to increase.
  • the ignition source is reduced and reduced in the vicinity of the secondary air input port 330 existing above and below the pulverized coal burner 321. . That is, a negative pressure region serving as a large recirculation region is formed on the downstream side of the wide horizontal splitter 324H, and a strong splitter function is exerted. Therefore, the flow of pulverized coal and primary air flows in the central portion in the vertical direction. It becomes easy to concentrate on.
  • the vicinity of both ends of the vertical splitter 324V is used as an ignition source, and the amount of pulverized coal that is ignited on the outer periphery of the flame and mixed with a large amount of air is greatly reduced.
  • mixing / diffusion of pulverized coal and primary air is promoted to the inside of the flame, and air (oxygen) easily enters the center of the flame.
  • internal ignition is effectively performed, so that rapid reduction inside the flame is performed and the amount of NOx generated is reduced.
  • the air mixing is promoted and the ignition surface is subdivided. Is made.
  • the solid fuel burning burner 320 provided with the cross-type split member 324 air easily enters the center of the flame, and as a result, the unburned portion can be reduced by promoting ignition in the center.
  • the split member 324 provided in the solid fuel burning burner 320 is composed of split members 324 arranged in a plurality of directions having different splitter widths W, and three or more central splitters arranged in the same direction.
  • the width W is wide and the peripheral portion is relatively narrow.
  • the split member 324 thus configured has a wide splitter at the center of the solid fuel burning burner 320, the splitter function at the center is strengthened, preventing internal ignition while preventing external ignition. Ignition can be strengthened. That is, since the solid fuel burning burner 320 of the present embodiment includes the cross-type split member 324 having a wide central portion, the presence of a splitter serving as an ignition source at the outer peripheral portion of the pulverized coal burner 321 is minimized. Therefore, external ignition can be prevented or suppressed, and the splitter function at the center has been strengthened, so that air can easily enter the center of the flame. Reduction of fuel becomes possible.
  • three splitters are provided on each of the upper and lower sides and the left and right sides, and only one of the splitters arranged at the center of the upper and lower sides and the left and right sides is wide.
  • the number and position of the splitters to be performed are not limited to this.
  • four splitters may be provided on the upper and lower sides and the left and right sides, and the two upper and lower and left and right central portions may be wide.
  • the splitter disposed in the central portion does not need to be wide at both the top and bottom and the left and right.
  • only the top and bottom or only the left and right disposed at the center may be wide. Accordingly, a configuration in which three or more splitters are arranged only in one of a plurality of directions and the central portion is wide, and in the other direction, the width is wide or narrow, or the width is narrow is one.
  • the width is wide or narrow
  • the split member 324 provided in the solid fuel burning burner 320A includes a plurality of splitters arranged in a plurality of directions. A shielding member attached to the crossing corner is provided.
  • the split member 324 is formed so as to intersect with each other as a function reinforcing member of the split member 324 in order to further improve the function of the split member 324 and achieve the purpose of increasing the ignition surface inside the flame and strengthening the internal flame holding.
  • the shielding member which reduces a flow-path cross-sectional area is provided in at least one place of the crossing angle part.
  • the shielding member described above is preferably, for example, a triangular plate 350 attached to the split member 324 so as to close the intersection center portion side of the intersection angle portion, and the opening area of the call primary port 322 viewed from the inside of the furnace is That is, the cross-sectional areas of the pulverized coal and the primary air are reduced by an amount corresponding to the area of the triangular plate 350.
  • the triangular plate 350 not only reduces the cross-sectional area of the pulverized coal and the primary air, but also increases the ignition surface inside the flame and has a function of guiding the flow of the pulverized coal and the primary air to the center. ing.
  • the triangular plate 350 is a shielding member that is formed on the downstream side of the split member 324 so as to increase the negative pressure region serving as a recirculation region, and can enhance the flame holding effect of the split member 324. it can. Therefore, it is only necessary to be provided in at least one of the four intersecting corners formed at the intersections of the splitters 324H and 324V that intersect vertically and horizontally.
  • the shielding member described above is not limited to the triangular plate (triangular plate-like member) 350 shown in FIG. 32 (a).
  • the shielding member may be a plate material having a quarter or oval shape.
  • a triangular pyramid 350A shown in FIG. 32B may be provided with an inclined surface that once leads the flow outward to form a recirculation zone.
  • the function of the split member 324 is further improved, the ignition surface inside the flame is increased, and the internal flame holding is enhanced. Can be achieved.
  • the final generation of NOx discharged from the AA portion 314 is suppressed by suppressing the high temperature oxygen remaining region H formed on the outer periphery of the flame F.
  • the amount can be reduced.
  • this invention is not limited to the Example mentioned above, For example, it can change suitably in the range which does not deviate from the summary, such as powder solid fuel not being limited to pulverized coal.
  • conventional coal-fired burners have a flame holding mechanism (adjustment of tip angle, swivel, etc.) on the outer periphery of the burner, and a secondary air (or tertiary air) input port immediately adjacent to the outer periphery. It is common to do. For this reason, ignition occurs at the outer periphery of the flame, and a large amount of air is mixed at the outer periphery of the flame. As a result, the combustion around the flame proceeds in a high temperature state where the oxygen concentration is high in the high temperature oxygen remaining region around the flame, and therefore NOx is generated around the flame.
  • the counter-fired boiler is also ignited on the outer periphery of the flame by turning, which is a factor that NOx is similarly generated on the outer periphery of the flame.
  • the high-temperature oxygen remaining formed on the outer periphery of the flame It is desired to suppress the region and reduce the final NOx generation amount discharged from the additional air input unit.
  • the present invention has been made in view of the above circumstances, and its object is to suppress (weaken) the high-temperature oxygen residual region formed on the outer periphery of the flame, thereby exhausting it from the additional air input unit.
  • Another object of the present invention is to provide a solid fuel-fired burner and a solid fuel-fired boiler that can reduce the final NOx generation amount.
  • the swirl combustion boiler 410 shown in FIGS. 35 to 37 reduces the region from the burner unit 412 to the additional air input unit (hereinafter referred to as “AA unit”) 414 by inputting air into the furnace 411 in multiple stages.
  • the atmosphere is designed to reduce NOx in combustion exhaust gas.
  • reference numeral 420 denotes a solid fuel burning burner that inputs pulverized coal (powdered solid fuel) and air
  • reference numeral 415 denotes an additional air injection nozzle that inputs additional air
  • the solid fuel-fired burner 420 is connected to a pulverized coal mixture transport pipe 416 that transports pulverized coal with primary air and an air supply duct 417 that supplies secondary air, and additional air is supplied.
  • An air supply duct 417 for supplying secondary air is connected to the input nozzle 415.
  • the above-described swirl combustion boiler 410 is of the swirl combustion type in which the solid fuel-fired burner 420 that inputs pulverized coal (coal) and air of pulverized fuel into the furnace 411 is disposed at each corner portion of each stage.
  • a swirl combustion method is adopted in which one or a plurality of swirl flames are formed in each stage.
  • a solid fuel burning burner 420 shown in FIG. 33 includes a pulverized coal burner (fuel burner) 421 that inputs pulverized coal and air, and a call secondary port that injects secondary air from the outer periphery of the pulverized coal burner 421.
  • secondary air ports for injecting secondary air from the outer periphery of the pulverized coal burner 421 include secondary air input ports 430 respectively disposed above and below the pulverized coal burner 421, and a call secondary port 423 described later. It consists of.
  • the secondary air input port 430 is opened as a flow rate adjusting unit for each secondary air supply line branched from the air supply duct 417 in order to adjust the air flow rate for each port.
  • a damper 440 capable of adjusting the degree is provided.
  • the above-mentioned pulverized coal burner 421 is provided so as to surround the rectangular primary call port 422 into which the pulverized coal conveyed by the primary air is introduced and the primary call port 422, and a part of the secondary air. And a call secondary port 423. As shown in FIG. 34, the call secondary port 423 is also provided with a damper 440 whose opening degree can be adjusted as a flow rate adjusting means. Note that the call primary port 422 may be circular or elliptical.
  • a split member 424 is disposed at the front of the flow path of the pulverized coal burner 421, that is, at the front of the flow path of the primary coal port 422, and is fixed to a support member (not shown).
  • a support member not shown
  • one split member 424 is disposed in the horizontal direction at a substantially central position in the vertical direction at the outlet opening of the primary call port 422. Both end portions in the direction are removed portions 424a that are partially removed.
  • the removal unit 424a is indicated by a broken line.
  • the length (length from the axial center) L2 of the split member 424 obtained by removing a part of the end adjacent to the call secondary port 423 from the split member 424 is the pulverized coal burner.
  • the dimension ratio L2 / L1 is set so that L2 / L1> 0.2. To do.
  • the dimensional ratio L2 / L1 is more preferably L2 / L1> 0.6.
  • the above-described split member 424 can disrupt the flow of pulverized coal and air smoothly by adopting a cross-sectional shape as shown in FIGS. 38 (a) to 38 (d), for example.
  • the split member 424 shown in FIG. 38A has a triangular cross-sectional shape.
  • the illustrated triangle is an equilateral triangle or an isosceles triangle, and is arranged so that one side of the outlet side toward the furnace 411 is substantially orthogonal to the flow direction of pulverized coal and air.
  • an arrangement is adopted in which one of the corners forming the triangular cross section is oriented in the direction of flow of pulverized coal and air.
  • the split member 424A shown in FIG. 38B has a substantially T-shaped cross-sectional shape, and a surface substantially orthogonal to the flow direction of pulverized coal and air is disposed on the outlet side facing the furnace 411.
  • a split member 424A ′ having a trapezoidal cross-sectional shape may be used.
  • the split member 424B shown in FIG. 38D has a substantially L-shaped cross-sectional shape. That is, it is a cross-sectional shape obtained by cutting off a part of the above-described substantially T-shape, and in particular, when arranged in the left-right (horizontal) direction, if the L-shape is formed by removing the upper convex portion, It is possible to prevent pulverized coal from being deposited on the split member 424B. Note that the separation performance necessary for the split member 424B can be ensured by enlarging the lower protrusion by the amount corresponding to the removal of the upper protrusion.
  • the cross-sectional shape of the above-described split member 424 or the like is not limited to the illustrated example, for example, substantially Y-shaped.
  • the split member 424 of the present embodiment is not limited to this. Therefore, the split member 424 described above has, for example, two in each of the vertical direction and the horizontal direction, and a total of four have a predetermined interval. It may be arranged in a lattice shape. In this case, for the two in the vertical direction, the upper and lower ends close to the secondary air input port 430 are removed, and for the two in the left and right direction, the left and right ends of the call primary port 422 are provided. Aspects are selectable. That is, when the four split members 424 are installed, the call primary port in the pulverized coal burner 421 is formed by a cross type arranged in a lattice shape in two different directions, the vertical direction and the horizontal direction. The exit opening of 422 is subdivided (9 divisions). Moreover, in the part pinched
  • the portion to be removed may not be aligned with the position of the above-described split member 424 in the left-right direction, for example, with respect to the split member 424 in the vertical direction.
  • the end of the split member 424 can completely suppress ignition at the outer peripheral portion by removing all directions, it is desirable to have a structure in which no flame holder is installed on the outer peripheral portion.
  • the removing unit 424a described above may be provided in a direction in which the amount of secondary air increases, that is, in a direction in which the secondary air input port 430 is provided adjacent to the outer periphery (upper and lower) of the call secondary port 423. Good.
  • the split member 424 installed near the center of the outlet opening of the pulverized coal burner 421 divides the flow path of the pulverized coal and air to disturb the flow inside, and also splits the split member 424. In order to form a recirculation zone in front (downstream side), it functions as an internal flame holding mechanism.
  • the conventional solid fuel-burning burner 420 radiates around the flame and ignites the pulverized coal of fuel. When pulverized coal is ignited on the flame periphery, NOx is generated in the high-temperature oxygen remaining region H (see FIG. 33B) where the high-temperature oxygen remains and remains unreduced to increase NOx emissions. I am letting.
  • the provision of the split member 424 that functions as an internal flame holding mechanism causes the pulverized coal to ignite inside the flame. For this reason, NOx is generated inside the flame, and the NOx generated inside the flame contains a large amount of hydrocarbons having a reducing action, so that it is rapidly reduced in the flame in the air-deficient state. Accordingly, if the solid fuel-burning burner 420 having a structure in which the flame holding mechanism is not provided on the outer periphery of the burner by forming the removal portion 424a by stopping the flame holding in which the flame holder is installed on the outer periphery of the flame, It is also possible to suppress the generation of NOx.
  • an intersection where the split members 424 in different directions intersect can be easily provided near the center of the outlet opening of the pulverized coal burner 421.
  • the flow path of the pulverized coal and air is divided into a plurality near the center in the outlet opening of the pulverized coal burner 421.
  • the flow is disturbed when diverting to multiple. That is, when the split member 424 is unidirectionally left and right, air diffusion and ignition in the central portion are delayed and there is a local extreme air shortage region, which causes an increase in the unburned amount.
  • the intersecting portions are formed by being arranged in the direction, the mixing of air inside the flame is promoted and the ignition surface is subdivided, and as a result, the unburned portion can be reduced.
  • the split member 424 is disposed so as to form an intersection, air mixing / diffusion is promoted inside the flame, and the ignition surface is subdivided, so that the ignition position is the center of the flame.
  • the split member 424 in this embodiment, at least a part of the end portions of the split member 424 on the outer peripheral side and adjacent to the call secondary port 423, that is, the left and right end portions are removed. That's fine.
  • the upper and lower ends are removed from the vertical split member 424 on the outer peripheral side. That is, the split member 424 has no split member 424 in the outer peripheral area where the upper and lower ends of the split member 424 are removed, and the distance from the split member 424 to the call secondary port 423 and the secondary air input port 430 increases. Yes.
  • the cross-type split member 424 ignites at the left and right end portions in the lateral direction, but in swirl combustion, the amount of secondary air blown around the flame from the left and right direction is limited. The left and right ends are left and the ignition surface is secured.
  • the split member 424 from which the upper and lower ends adjacent to the call secondary port 423 and the secondary air input port 430 are removed can enhance the ignition inside the pulverized coal burner 420, and can also increase the high temperature oxygen region around the flame, particularly the flame. The formation of high-temperature oxygen regions at the upper and lower ends can be prevented.
  • the removal of the end portion of the split member 424 described above is not limited to the first modified example.
  • two split members 424 are provided on each of the upper, lower, left and right sides.
  • all of the upper and lower ends of the split member 424 in the vertical direction near the call secondary port 423 and the secondary air input port 430 are removed.
  • the number of the split members 424 may be one, or three or more.
  • three split members 424 are arranged on each of the upper, lower, left, and right sides.
  • the split member 424 in the up and down direction in this modification is such that only one of the upper and lower ends near the call secondary port 423 and the secondary air input port 430 is disposed at the center.
  • the upper and lower end portions are at least.
  • the fourth modified example is the same as the second modified example and the third modified example in that three split members 424 are arranged vertically and horizontally.
  • one split member 424 arranged at the center of the top, bottom, left and right is provided up to the end, and the split member 424 disposed at both ends thereof has all the top, bottom, left and right ends removed. Yes.
  • the split member 424 of the fourth modified example has a structure in which the split member 424 does not exist in the outer peripheral portion except for the upper, lower, left, and right central portions, and the split member 424 is almost in the region considered to contribute most to the peripheral ignition. Does not exist.
  • the split member 424 having a configuration example such as the fourth modification is an effective prevention measure of the outer periphery ignition in which the split member 424 is an ignition source.
  • the split member 424 of the present embodiment may remove at least a part of the left and right end portions that can be the peripheral ignition source as required, as in the fifth modified example, for example.
  • outer periphery ignition may occur at both the left and right ends in the horizontal direction, so the structure in which all the upper and lower and left and right ends are removed completely eliminates external ignition. It is effective to prevent.
  • the secondary air input ports are provided on the left and right sides of the pulverized coal burner 421, for the same reason as the upper and lower secondary air input ports 430, the left and right ends are also deleted to reduce the ignition source. It is desirable.
  • the solid fuel burning burner of this embodiment is provided with a plurality of concentric secondary air input ports on the outer periphery of the primary call port having a circular cross section.
  • the secondary air input port is constituted by two stages, for example, an internal secondary air input port and an external secondary air input port, but is not limited thereto.
  • a plurality of split members in two different directions are arranged in a lattice pattern (for example, a total of four in the vertical and horizontal directions) at the center of the outlet of the primary call port.
  • the number, arrangement, cross-sectional shape, and the like described in the fifteenth embodiment can be applied to the split member, but it is particularly desirable to remove the end portion over the entire circumference because it is circular.
  • a configuration may be adopted in which a circular split member is provided, a plurality of radial split members are arranged inside the circular shape, and the circular circumferential direction is divided into a plurality.
  • the circular split member may be a plurality of concentric circles.
  • the final NOx generation amount discharged from the AA portion 414 is suppressed by suppressing the high temperature oxygen remaining region H formed on the outer periphery of the flame. Can be reduced.
  • this invention is not limited to the Example mentioned above, For example, it can change suitably in the range which does not deviate from the summary, such as powder solid fuel not being limited to pulverized coal.
  • pulverized coal In pulverized coal fired boilers, pulverized coal (coal) is used as a solid fuel. In this case, coal contains moisture and volatile components, and the amount of moisture varies depending on the type of coal. Therefore, operation control of the boiler according to the water
  • the pulverized coal burner described in Patent Document 5 and a boiler using the pulverized coal burner are a pulverized coal mixture passage for injecting a pulverized coal mixture of pulverized coal and carrier air, and a high temperature effective for releasing volatile matter of the pulverized coal.
  • a high-temperature gas supply passage for ejecting a high-temperature gas having a low oxygen concentration is provided.
  • the coal fired boiler apparatus described in Patent Document 6 includes a temperature detector that detects the temperature of primary air that feeds pulverized coal to the coal fired boiler, and a primary air temperature that adjusts the temperature of the primary air.
  • the adjusting means and a control device for controlling the primary air temperature adjusting means so that the primary air reaches a predetermined temperature based on the detection result of the temperature detector are provided.
  • the pulverized coal is heated to adjust moisture and volatile matter and then burned in the furnace.
  • This invention solves the subject mentioned above, and it aims at providing the operating method of the boiler which improves the operating efficiency by combusting solid fuel and the volatile matter contained in this solid fuel appropriately To do.
  • FIG. 39 is a schematic configuration diagram showing a pulverized coal burning boiler as a boiler according to Example 17 of the present invention
  • FIG. 40 is a plan view showing a combustion burner in the pulverized coal burning boiler of Example 17
  • FIG. 42 is a front view showing the combustion burner of Example 17,
  • FIG. 42 is a cross-sectional view showing the combustion burner of Example 17,
  • FIG. 43 is a graph showing the NOx generation amount and the unburned matter generation amount with respect to the primary air and the secondary air. is there.
  • the pulverized coal burning boiler to which the combustion burner of Example 17 is applied can use the pulverized coal obtained by pulverizing coal as a solid fuel, burn the pulverized coal with the combustion burner, and recover the heat generated by the combustion. Boiler.
  • the pulverized coal burning boiler 510 is a conventional boiler, and has a furnace 511 and a combustion device 512.
  • the furnace 511 is installed along the vertical direction in the shape of a hollow square tube, and a combustion device 512 is provided below the furnace wall that constitutes the furnace 511.
  • the combustion apparatus 512 has a plurality of combustion burners 521, 522, 523, 524, 525 mounted on the furnace wall.
  • the combustion burners 521, 522, 523, 524, and 525 are arranged as four sets at equal intervals along the circumferential direction, and 5 sets along the vertical direction, that is, Five stages are arranged.
  • Each combustion burner 521, 522, 523, 524, 525 is connected to a pulverized coal machine (mill) 531, 532, 533, 534, 535 via a pulverized coal supply pipe 526, 527, 528, 529, 530. ing.
  • the pulverized coal machines 531, 532, 533, 534, and 535 are supported in a housing so that the crushing table can be driven to rotate with a rotation axis along the vertical direction, and face the upper side of the crushing table.
  • a plurality of crushing rollers are configured to be rotatably supported in conjunction with the rotation of the crushing table.
  • the pulverized coal supplied to the pulverized coal supply pipes 526 and 527 is pulverized to a predetermined size and classified by the carrier air (primary air). , 528, 529, 530 to the combustion burners 521, 522, 523, 524, 525.
  • the furnace 511 is provided with a wind box 536 at the mounting position of each combustion burner 521, 522, 523, 524, 525, and one end of an air duct 537 is connected to the wind box 536.
  • the duct 537 has a blower 538 attached to the other end.
  • the furnace 511 is provided with an additional air nozzle 539 above the mounting position of each combustion burner 521, 522, 523, 524, 525, and a branched air duct 540 branched from the air duct 537 to the additional air nozzle 539. The ends of are connected.
  • the combustion air (secondary air and tertiary air) sent by the blower 538 is supplied from the air duct 537 to the wind box 536, and the combustion burners 521, 522, 523, 524, 525 are supplied from the wind box 36.
  • the additional air nozzle 539 can be supplied from the branch air duct 540.
  • each combustion burner 521, 522, 523, 524, 525 can inject a pulverized fuel mixture (fuel gas) obtained by mixing pulverized coal and primary air into the furnace 511. Secondary air and tertiary air can be blown into the furnace 511, and a flame can be formed by igniting the pulverized fuel mixture with an ignition torch (not shown).
  • a pulverized fuel mixture fuel gas
  • Secondary air and tertiary air can be blown into the furnace 511, and a flame can be formed by igniting the pulverized fuel mixture with an ignition torch (not shown).
  • the pulverized coal supply pipes 526, 527, 528, 529, and 530 are provided with flow rate adjusting valves 541, 542, 543, 544, and 545 capable of adjusting the amount of pulverized fuel mixture, and the air duct 537 includes combustion air.
  • a flow rate adjustment valve 546 capable of adjusting the amount of (secondary air, tertiary air) is provided, and the branch air duct 540 is provided with a flow rate adjustment valve 547 capable of adjusting the additional air amount.
  • the control apparatus 548 can adjust the opening degree of each flow regulating valve 541,542,543,544,545,546,547.
  • the pulverized coal supply pipes 526, 527, 528, 529, and 530 may not be provided with the flow rate adjustment valves 541, 542, 543, 544, and 545.
  • each combustion burner 521, 522, 523, 524, 525 injects oil fuel into the furnace 511 to form a flame.
  • the furnace 511 has a flue 550 connected to the upper portion thereof, and a superheater (superheater) 551 and 552 for recovering heat of exhaust gas as a convection heat transfer section, and a reheater 553 and 554.
  • economizers 555, 556, and 557 are provided, and heat exchange is performed between exhaust gas generated by combustion in the furnace 511 and water.
  • the flue 550 is connected to an exhaust gas pipe 558 from which exhaust gas subjected to heat exchange is discharged downstream.
  • the exhaust gas pipe 558 is provided with an air heater 559 between the air duct 557 and performs heat exchange between the air flowing through the air duct 537 and the exhaust gas flowing through the exhaust gas pipe 558, and the combustion burners 521, 522, 523
  • the combustion air supplied to 524 and 525 can be heated.
  • the exhaust gas pipe 558 is provided with a denitration device, an electrostatic precipitator, an induction blower, and a desulfurization device, and a chimney is provided at the downstream end.
  • the generated pulverized coal together with the conveying air passes through the pulverized coal supply pipes 526, 527, 528, 529, and 530, and the combustion burners 521, 522, 523 524, 525.
  • the heated combustion air is supplied from the air duct 537 to each combustion burner 521, 522, 523, 524, 525 through the wind box 536, and is supplied from the branch air duct 540 to the additional air nozzle 539.
  • the combustion burners 521, 522, 523, 524, and 525 inject the pulverized fuel mixture in which the pulverized coal and the carrier air are mixed into the furnace 511 and the combustion air into the furnace 511 and ignite at this time. Can form a flame.
  • the additional air nozzle 539 can perform combustion control by blowing additional air into the furnace 511. In this furnace 511, the pulverized fuel mixture and combustion air are burned to generate a flame. When a flame is generated in the lower part of the furnace 511, the combustion gas (exhaust gas) rises in the furnace 511, and the flue It is discharged to 550.
  • the interior is maintained in a reducing atmosphere by setting the air supply amount to be less than the theoretical air amount with respect to the pulverized coal supply amount.
  • the NOx generated by the combustion of the pulverized coal is reduced in the furnace 511, and then additional air (additional air) is additionally supplied to complete the oxidative combustion of the pulverized coal.
  • additional air additional air
  • the amount of NOx generated by the combustion of the pulverized coal Is reduced.
  • the exhaust gas that has passed through the economizers 555, 556, and 557 of the flue 550 is subjected to removal of harmful substances such as NOx by a catalyst in a denitration device (not shown) in an exhaust gas pipe 558, and particulate matter is collected by an electric dust collector. Is removed, and after the sulfur content is removed by the desulfurizer, it is discharged from the chimney into the atmosphere.
  • each combustion burner 521,522,523,524,525 which comprises this combustion apparatus 512 has comprised the substantially the same structure, it is located in the uppermost stage. Only the combustion burner 521 will be described.
  • the combustion burner 521 is composed of combustion burners 521a, 521b, 521c, and 521d provided on four wall surfaces in the furnace 511.
  • Each combustion burner 521a, 521b, 521c, 521d is connected to each branch pipe 526a, 526b, 526c, 526d branched from the pulverized coal supply pipe 526 and each branch pipe 537a, 537b, 537c branched from the air duct 537. , 537d are connected.
  • each combustion burner 521a, 521b, 521c, 521d on each wall surface of the furnace 511 blows into the furnace 511 a pulverized fuel mixture in which pulverized coal and carrier air are mixed, and the pulverized fuel mixture Blow combustion air to the outside. Then, by igniting the pulverized fuel mixture from each combustion burner 521a, 521b, 521c, 521d, four flames F1, F2, F3, F4 can be formed, and this flame F1, F2, F3, F4 Is a flame swirl flow swirling counterclockwise as viewed from above the furnace 511 (in FIG. 40).
  • the fuel nozzle 561, the secondary air nozzle 562, and the tertiary air nozzle are arranged from the center side. 563 and a flame holder 564 are provided.
  • the fuel nozzle 561 is capable of injecting a fuel gas (a pulverized fuel mixture) obtained by mixing pulverized coal (solid fuel) and carrier air (primary air).
  • the secondary air nozzle 562 is disposed outside the first nozzle 561 and can blow combustion air (secondary air) into the outer peripheral side of the fuel gas injected from the fuel nozzle 561.
  • the tertiary air nozzle 563 is disposed outside the secondary air nozzle 562 and can blow the tertiary air to the outer peripheral side of the secondary air injected from the secondary air nozzle 562.
  • the flame holder 564 is disposed in the fuel nozzle 561 on the downstream side in the fuel gas blowing direction and on the axial center side, thereby functioning for ignition of the fuel gas and flame holding. To do.
  • the flame holder 564 has a so-called double cross split structure in which two flame holding members along the horizontal direction and two flame holding members along the vertical direction (vertical direction) are arranged in a cross shape. Is.
  • the flame holder 564 has a widened portion at the front end portion (downstream end portion in the fuel gas flow direction) of each flame holding member.
  • the fuel nozzle 561 and the secondary air nozzle 562 have a long tubular structure, the fuel nozzle 561 has a rectangular opening 561a, and the secondary air nozzle 562 has a rectangular ring-shaped opening. Since it has 562a, the fuel nozzle 561 and the secondary air nozzle 562 have a double tube structure.
  • a tertiary air nozzle 563 is arranged as a double pipe structure outside the fuel nozzle 561 and the secondary air nozzle 562, and has a rectangular ring-shaped opening 563a.
  • the opening 562a of the secondary air nozzle 562 is disposed outside the opening 561a of the fuel nozzle 561, and the opening 563a of the tertiary air nozzle 563 is disposed outside the opening 562a of the secondary air nozzle 562. It will be arranged.
  • nozzles 561, 562, 563 are arranged with openings 561a, 562a, 563a aligned on the same plane.
  • the flame holder 564 is supported by a plate material (not shown) from the inner wall surface of the fuel nozzle 561 or the upstream side of the flow path through which the fuel gas flows. Further, since the fuel nozzle 561 has a plurality of flame holding members as the flame holder 564 disposed therein, the fuel gas flow path is divided into nine.
  • the flame holder 564 has a widened portion with a widened width at the front end, and the widened portion has a front end face that is flush with the opening 561a.
  • the fuel nozzle 561 is connected to the pulverized coal supply pipe 526 from the pulverized coal machine 531.
  • the secondary air nozzle 562 is connected to one connecting duct 566 from which the air duct 537 from the blower 538 is branched, and the tertiary air nozzle 563 is connected to the other connecting duct 567 from which the air duct 537 is branched.
  • a flow rate adjusting valve (three-way valve or damper) 568 is attached to a branch portion between the duct 537 and each of the connecting ducts 566 and 567.
  • the control apparatus 548 (refer FIG. 39) can adjust the opening degree of this flow regulating valve 568, and can adjust distribution of the air to each connection duct 566,567.
  • a fuel gas in which pulverized coal and primary air are mixed is blown into the furnace from the opening 561a of the fuel nozzle 561, and secondary air is discharged from the secondary air nozzle 562 on the outside thereof.
  • the air is blown into the furnace from the opening 562a, and the tertiary air is blown into the furnace from the opening 563a of the tertiary air nozzle 563 on the outside thereof.
  • the fuel gas is branched and ignited by the flame holder 564 at the opening 561a of the fuel nozzle 561, and burns to become fuel gas.
  • combustion of fuel gas is accelerated
  • the outer peripheral part of a combustion flame is cooled because tertiary air is blown into the outer periphery of a combustion flame.
  • the flame holder 564 has a split shape, so that the fuel gas is branched by the flame holder 564 at the opening 561a of the fuel nozzle 561. At this time, the flame holder 564 is moved to the fuel nozzle 561. In the central region of the opening 561a, ignition and flame holding of the fuel gas are performed in this central region. Thereby, internal flame holding of the combustion flame (flame holding in the central region of the opening 561a of the fuel nozzle 561) is realized.
  • the outer peripheral portion of the combustion flame becomes low temperature, and the temperature of the outer peripheral portion of the combustion flame in a high oxygen atmosphere can be lowered by the secondary air. The amount of NOx generated at the outer periphery is reduced.
  • the combustion burner 521 employs a structure that holds the internal flame, it is preferable that the fuel gas and the combustion air (secondary air and tertiary air) are supplied as a straight flow. That is, it is preferable that the fuel nozzle 561, the secondary air nozzle 562, and the tertiary air nozzle 563 have a structure that supplies the fuel gas, the secondary air, and the tertiary air as a straight flow without swirling. Since the fuel gas, the secondary air, and the tertiary air are injected as a straight flow to form a combustion flame, the gas circulation in the combustion flame is suppressed in the configuration in which the combustion flame is held inside. Thereby, the outer peripheral part of a combustion flame is maintained with low temperature, and the NOx generation amount by mixing with secondary air is reduced.
  • pulverized coal (coal) is used as a solid fuel, and since this pulverized coal contains volatile components, the combustion form differs depending on the volatile components. End up.
  • the control device 548 has the opening degree of each flow rate adjustment valve 541, 542, 543, 544, 545, 546, 547, 568.
  • the amount of fuel gas, the amount of secondary air, the amount of secondary air, and the amount of additional air can be adjusted.
  • the amount of tertiary air and the amount of additional air are adjusted.
  • control device 548 desirably adjusts the distribution of the total air amount of the primary air and the secondary air and the air amount of the additional air according to the volatile content of the pulverized coal.
  • the distribution of the total air amount of primary air and secondary air and the total air amount of tertiary air and additional air are adjusted.
  • the control device 548 distributes the secondary air and the tertiary air according to the volatile matter of the pulverized coal. Adjust. And the control apparatus 548 is made to increase distribution of secondary air, if the volatile matter of pulverized coal increases.
  • the fuel nozzle 561 blows a fuel gas, which is a mixture of pulverized coal and primary air, into the furnace 511. Since the primary air is air for conveying pulverized coal, the pulverized coal in this fuel gas is used. And primary air amount, that is, the primary air amount is determined by the pulverized coal machines 531, 532, 533, 534, 535. Further, the additional air nozzle 539 performs oxidative combustion by injecting combustion air with respect to the combustion by the combustion burners 521, 522, 523, 524, 525, and completes the combustion. Here, since the additional air from the additional air nozzle 539 strengthens the reducing atmosphere in the main combustion zone and reduces the NOx emission, the additional air amount is determined for each boiler.
  • a fuel gas which is a mixture of pulverized coal and primary air
  • the secondary air nozzle 562 blows air supplied from the air duct 537 through the connection duct 566 into the furnace 11 as secondary air, and is mainly mixed with the fuel gas blown from the fuel nozzle 561. And used as combustion air for combustion.
  • the tertiary air nozzle 563 blows the air supplied from the air duct 537 through the connection duct 566 into the furnace 511 as the tertiary air, and is similar to the additional air nozzle 359, and is the additional air for the combustion flame. Used as.
  • the control device 548 changes the opening degree of the flow rate adjustment valve 568 to thereby obtain the total air amount of the primary air and the secondary air and the total air amount of the tertiary air and the additional air, that is, the secondary air.
  • the control device 548 decreases the tertiary air amount while increasing the secondary air amount to change the distribution of the secondary air and the tertiary air.
  • the combustion burners 521, 522, 523, 524, and 525 mainly burn volatile matter of pulverized coal in the ignition part (near the opening 551a of the fuel nozzle 551), and the amount of air here is excessive. Then, the amount of NOx generated increases, and if the amount of air here becomes insufficient, the smooth combustion of pulverized coal does not proceed and the amount of unburned matter generated increases.
  • the amount of air that can suppress the generation amount of NOx and the generation amount of unburned fuel is set in consideration of the volatile matter of pulverized coal in the ignition part. There is a need.
  • the volatile content of the pulverized coal is measured before the coal is input to each of the pulverized coal machines 531, 532, 533, 534, 535, and is input to the control device 548 as this volatile content data.
  • the distribution ratio of secondary air and tertiary air to the volatile matter of pulverized coal varies depending on the form of the boiler, the form of combustion by the combustion burners 521, 522, 523, 524, 525, and so on, and is set in advance through experiments. For example, a map is created and stored in the control device 548.
  • the fuel gas is blown into the furnace 511 by the fuel nozzle 561, the secondary air is blown by the secondary air nozzle 562, and the tertiary air nozzle 563. Due to this, tertiary air is blown.
  • the fuel gas is ignited and burned by the flame holder 564, and further, the secondary air is mixed and burned.
  • a main combustion region is formed in the furnace 511.
  • the tertiary air being blown in by the tertiary air nozzle 563 with respect to the outer side of this main combustion area
  • the additional air nozzle 539 blows additional air into the furnace 511 to perform combustion control.
  • the combustion gas in which the fuel gas from the fuel nozzle 561 of the combustion burners 521, 522, 523, 524, and 525 and the secondary air from the secondary air nozzle 562 burned in the furnace 511 is less than the theoretical air amount,
  • the inside is maintained in a reducing atmosphere.
  • the NOx generated by the combustion of the pulverized coal is reduced by the tertiary air, and thereafter, the oxidation combustion of the pulverized coal is completed by the additional air, and the amount of NOx generated by the combustion of the pulverized coal is reduced.
  • the control device 548 determines the combustion burner 521 based on the volatile content of pulverized coal measured in advance and the distribution ratio map of secondary air and tertiary air with respect to the volatile content of pulverized coal stored in advance.
  • the distribution ratio of the secondary air and the tertiary air in 522, 523, 524, 525 is obtained, and the opening degree of the flow rate adjustment valve 568 is set.
  • the control apparatus 548 adjusts the opening degree of the flow regulating valve 568 based on this set opening degree.
  • the amount of secondary air from the secondary air nozzle 562 and the amount of tertiary air from the tertiary air nozzle 563 are compared with the amount of volatile matter of pulverized coal. It becomes the optimal amount, and pulverized coal and volatile matter burn properly.
  • the furnace 511 that combusts pulverized coal and air, the superheaters 551 and 552 that recover heat by performing heat exchange in the furnace 511, and the pulverized coal in the furnace 511.
  • Nozzle 561 capable of injecting fuel gas mixed with primary air
  • secondary air nozzle 562 capable of injecting secondary air into furnace 511
  • tertiary air nozzle capable of injecting tertiary air into furnace 511 563
  • an additional air nozzle 539 capable of blowing additional air above the fuel nozzle 561 and the secondary air nozzle 562 in the furnace 511
  • a control device 548 for controlling the opening degree of the flow rate adjustment valve 568 according to the volatile content of the pulverized coal is provided.
  • control device 548 controls the opening degree of the flow rate adjustment valve 568 according to the volatile content of the pulverized coal, and adjusts the distribution of the air amount to the secondary air nozzle 562 and the air amount to the tertiary air nozzle 563.
  • the secondary air amount and the tertiary air amount are adjusted according to the volatile content of the pulverized coal, and the volatile content of the pulverized coal can be combusted appropriately, and the pulverized coal is combusted appropriately. It is possible to improve the boiler operation efficiency by suppressing the generation of NOx and unburned fuel.
  • pulverized coal and its volatile matter can be combusted appropriately, maintaining a predetermined fuel-air ratio.
  • the control device 548 increases the distribution of secondary air when the volatile content of pulverized coal increases. Since the secondary air is combustion air for burning pulverized coal by mixing with fuel gas, when the volatile content of the pulverized coal increases, the distribution of the secondary air increases to increase the pulverized coal and its Volatile components can be combusted properly.
  • the distribution of the secondary air and the tertiary air is adjusted by the pulverized coal burning boiler 510 according to the volatile content of the pulverized coal. Therefore, the volatile matter of the pulverized coal can be combusted properly, the pulverized coal can be combusted properly, and the generation efficiency of the boiler can be improved by suppressing the generation of NOx and unburned matter.
  • the distribution of the secondary air is increased when the volatile content of the pulverized coal is increased by adjusting the distribution of the secondary air amount and the tertiary air amount. It is not limited to.
  • the amount of air (amount of air for conveyance) in the pulverized coal machines 531, 532, 533, 534, 535 may be increased or decreased, or the amount of additional air may be increased or decreased.
  • the boiler of the present invention is not limited to the configuration of the pulverized coal burning boiler 510 and the configuration and number of the combustion burners 521, 522, 523, 524, 525, and the like.
  • the combustion device 512 is configured by arranging four combustion burners 521, 522, 523, 524, and 525 provided on the wall surface of the furnace 511 along the vertical direction.
  • the configuration is not limited. That is, the combustion burner may be arranged at the corner without being arranged on the wall surface.
  • the combustion apparatus is not limited to the swirl combustion method, and may be a front combustion method in which the combustion burner is disposed on one wall surface, or an opposed combustion method in which the combustion burner is disposed opposite to the two wall surfaces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)

Abstract

 燃焼バーナにおいて、微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル(51)と、この燃料ノズル(51)の外側から2次空気を吹き込み可能な2次空気ノズル(52)とを設けると共に、燃料ノズル(51)の先端部における軸中心側に保炎器(54)を設け、燃料ノズル(51)の内壁面とこの保炎器(54)との間に整流部材(55)を設けることで、固体燃料と空気とが混合した燃料ガスの適正な流れを実現可能とする。

Description

燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラ、ボイラ及びボイラの運転方法
 本発明は、発電用または工場用などのために蒸気を生成するためのボイラに適用される燃焼バーナ、例えば、微粉炭等の固体燃料(粉体燃料)を焚く固体燃料焚きバーナ及び固体燃料焚きボイラ、固体燃料と空気を燃焼させることで蒸気を生成するボイラ及びボイラの運転方法に関するものである。
 例えば、従来の微粉炭焚きボイラは、中空形状をなして鉛直方向に設置される火炉を有し、この火炉壁に複数の燃焼バーナが周方向に沿って配設されると共に、上下方向に複数段にわたって配置されている。この燃焼バーナは、石炭が粉砕された微粉炭(燃料)と1次空気との混合気が供給されると共に、高温の2次空気が供給され、この混合気と2次空気を火炉内に吹き込むことで火炎を形成し、この火炉内で燃焼可能となっている。そして、この火炉は、上部に煙道が連結され、この煙道に排ガスの熱を回収するための過熱器、再熱器、節炭器などが設けられており、火炉での燃焼により発生した排ガスと水との間で熱交換が行われ、蒸気を生成することができる。
 このような微粉炭焚きボイラや燃焼バーナとしては、例えば、下記特許文献に記載されたものがある。
特開平08-135919号公報 特開2006-189188号公報 特開平8-296815号公報 特願平9-203505号公報 特開2006-057903号公報 特開2008-145007号公報
 上述した従来の燃焼バーナにあっては、微粉炭と空気との燃料ガスが保炎器に衝突したとき、この保炎器の後端部で流れが剥離し、保炎器前端部での保炎能力を十分に発揮することが困難となってしまう。また、従来のボイラにあっては、微粉炭が水分や揮発分を有していることから、ボイラの運転出力に基づいて運転パラメータを調整するしかなく、石炭の性状から直接運転パラメータを設定することが困難である。
 本発明は、固体燃料と空気とが混合した燃料ガスの適正な流れを実現可能とする燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラを提供することを目的とする。
 また、本発明は、固体燃料及びこの固体燃料に含有する揮発分を適正に燃焼して運転効率の向上を図るボイラ及びボイラの運転方法を提供することを目的とする。
 本発明の燃焼バーナは、固体燃料と空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、該燃料ノズルの外側から空気を吹き込み可能な2次空気ノズルと、前記燃料ノズルの先端部における軸心側に設けられる保炎器と、前記燃料ノズルの内壁面と前記保炎器との間に設けられる整流部材と、備えることを特徴とするものである。
 従って、燃料ノズルの内壁面と保炎器との間に整流部材が設けられることで、燃料ノズル内を流れる燃料ガスは、この整流部材によりその流れが整流され、保炎器の後端部における流れの剥離が抑制されると共に、流速がほぼ一定となって固体燃料が燃料ノズルの壁面に堆積することが抑制されることとなり、燃料ガスの適正な流れを実現することができる。
 本発明の燃焼バーナでは、前記整流部材は、前記保炎器と所定の隙間をもって配置されることを特徴としている。
 従って、整流部材と保炎器との間に所定の隙間が確保されることで、整流部材と保炎器との間を流れる燃料ガスは、その流れが整流され、保炎器による保炎機能を十分に発揮させることが可能となる。
 本発明の燃焼バーナでは、前記整流部材は、前記保炎器との距離が燃料ガスの流れ方向に沿ってほぼ同じになるように設けられることを特徴としている。
 従って、整流部材により保炎器との距離が燃料ガスの流れ方向に沿ってほぼ同じになることで、この整流部材と保炎器との間を流れる燃料ガスは、その流速がほぼ一定となり、燃料ノズルへの固体燃料の堆積や保炎器への固体燃料の付着を抑制することができる。また、流路が極端に狭くなることがないことから、閉塞を防止することができる。
 本発明の燃焼バーナでは、前記保炎器は、燃料ガスの流れ方向における下流側に拡幅部が設けられる一方、前記整流部材は、燃料ガスの流れ方向における下流側に先細部が設けられることを特徴としている。
 従って、保炎器の先端部に拡幅部を設けることで、確実な保炎を実現することかできる一方、整流部材の先端部に先細部を設けることで、保炎器と整流部材との距離を燃料ガスの流れ方向でほぼ一定とすることができる。
 本発明の燃焼バーナでは、前記保炎器は、燃料ガスの流れ方向における下流側に拡幅部が設けられる一方、前記整流部材は、前記拡幅部に対向しない位置に設けられることを特徴としている。
 従って、保炎器の拡幅部に対向しない位置に整流部材を設けることで、保炎器の拡幅部と燃料ノズルとの間における燃料ガスの流路が狭くなることはなく、燃料ガスの流速がほぼ一定とし、燃料ノズルへの固体燃料の堆積や保炎器への固体燃料の付着を抑制することができる。
 本発明の燃焼バーナでは、前記整流部材は、前記燃料ノズルの内壁面に沿って設けられることを特徴としている。
 従って、整流部材を燃料ノズルの内壁面に設けることで、別途取付部材などを不要とし、組付性を向上することができると共に、製造コストを低減することができる。
 本発明の燃焼バーナでは、前記保炎器は、水平方向に沿って配置される第1保炎部材と、鉛直方向に沿って配置される第2保炎部材とが交差するように配置された構造をなすことを特徴としている。
 従って、保炎器を第1保炎部材と第2保炎部材とが交差する構造とすることで、十分な保炎機能を確保することが可能となる。
 本発明の燃焼バーナでは、前記第1保炎部材と前記第2保炎部材とは、それぞれ複数の保炎部材からなり、前記第1保炎部材が複数鉛直方向に所定隙間をもって配置される一方、前記第2保炎部材が複数水平方向に所定隙間をもって配置され、前記複数の第1保炎部材と前記複数の第2保炎部材とが交差するように配置された構造をなすことを特徴としている。
 従って、保炎器をダブルクロス構造とすることで、十分な保炎機能を確保することが可能となる。
 本発明の燃焼バーナでは、前記第1保炎部材と前記第2保炎部材のいずれか一方の幅を他方の幅に対して大きな幅に設定することを特徴としている。
 従って、水平方向に沿って配置された第1保炎部材の幅を大きくすると、この幅の広い第1保炎部材により水平方向における保炎機能を向上することが可能となる。また、鉛直方向に沿って配置された第2保炎部材の幅を大きくすると、蒸気温度制御などのためにノズルの向きを上下に振るときに第2保炎部材が悪影響を与えることなく、保炎機能を向上することが可能となる。これは、ノズルが上下に動いたとき、固体燃料の吹き込み位置に対する保炎部材の位置が、第1保炎部材だと大きく変わるのに対し、第2保炎部材だとほとんど変わらないからである。
 また、本発明の燃焼バーナは、固体燃料と空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、該燃料ノズルの外側から空気を吹き込み可能な2次空気ノズルと、前記燃料ノズルの先端部における軸心側に設けられる保炎器と、前記燃料ノズル内を流れる燃料ガスを軸心側に導く案内部材と、備えることを特徴とするものである。
 従って、燃料ノズル内を流れる燃料ガスを軸心側に導く案内部材が設けられることで、燃料ノズル内を流れる燃料ガスは、この案内部材により燃料ノズルの軸心側に導かれることとなり、燃料ガスの適正な流れを実現することができ、その結果、内部保炎性能を向上することができ、NOx発生量を低減することができる。
 本発明の燃焼バーナでは、前記案内部材は、前記2次空気ノズルにより吹き込まれる2次空気から離間する方向に燃料ガスを導くことを特徴としている。
 従って、案内部材により、燃料ガスが2次空気から離間する方向に導かれることとなり、燃料ガスと2次空気との混合が抑制され、燃焼火炎の外周部が低温のまま維持されるため、燃焼ガスと2次空気との混合によるNOx発生量を低減することができる。
 本発明の燃焼バーナでは、前記案内部材は、前記燃料ノズルの内壁面に沿って配置されることを特徴としている。
 従って、案内部材を燃料ノズルの内壁面に沿って配置することで、効果的に燃料ノズル内を流れる燃料ガスを軸心側に導くことで、この燃料ガスを2次空気から離間する方向に導くことができる。
 本発明の燃焼バーナでは、前記案内部材は、前記燃料ノズルの先端部に前記保炎器と対向して配置されることを特徴としている。
 従って、案内部材を保炎器と対向して配置することで、内部保炎性能を向上することができる。
 本発明の燃焼バーナでは、前記案内部材は、前記保炎器における前記燃料ノズルの内壁面と対向する位置に配置されることを特徴としている。
 従って、保炎器に沿って流れる燃料ガスを案内部材により効果的に保炎器の先端部に集めて保炎することが可能となる。
 本発明の燃焼バーナでは、前記案内部材は、前記保炎器より燃料ガスの流れ方向の上流側に配置されることを特徴としている。
 従って、案内部材と保炎器が離間していることから、案内部材が保炎器における保炎機能を損なわせることがない。
 本発明の燃焼バーナでは、前記保炎器は、水平方向に沿って鉛直方向に所定隙間をもって平行をなす2つの第1保炎部材と、鉛直方向に沿って水平方向に所定隙間をもって平行をなす2つの第2保炎部材とが交差するように配置された構造をなし、前記案内部材は、前記第1保炎部材と前記第2保炎部材とが交差する位置の外側に配置されることを特徴としている。
 従って、保炎器をダブルクロス構造とすることで、十分な保炎機能を確保することが可能となり、案内部材により燃料ノズル内を流れる燃料ガスを効果的に軸心側に導くことができる。
 本発明の燃焼バーナでは、前記保炎器は、燃料ガスの流れ方向における下流側に拡幅部を有し、前記案内部材は、前記拡幅部に対向して配置されることを特徴としている。
 従って、十分な保炎機能を確保することが可能となる。
 本発明の燃焼バーナでは、水平方向に沿って鉛直方向に所定隙間をもって平行をなす2つの保炎部材を有し、前記保炎部材の先端部が前記燃料ノズルの軸心側を向くことで前記案内部材を構成することを特徴としている。
 従って、保炎部材により案内部材を構成することで、構造の簡素化を可能とすることができる。
 また、本発明の固体燃料焚きバーナは、バーナ部と追加空気投入部とに分けて低NOx燃焼を行う固体燃料焚きボイラの前記バーナ部に用いられ、粉体の固体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射する2次空気投入ポートとを備え、前記燃料バーナの流路前方部に、内部保炎として複数方向の部材を交差させたクロスタイプのスプリット部材を配設し、該スプリット部材の幅寸法が方向毎に異なることを特徴とするものである。
 このような固体燃料焚きバーナによれば、固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射する2次空気投入ポートとを備え、燃料バーナの流路前方部に、内部保炎として複数方向の部材を交差させたクロスタイプのスプリット部材を配設し、該スプリット部材の幅寸法が方向毎に異なるので、出口開口中央付近に設置したスプリット部材は、微粉炭及び空気の流路を分割して流れを内部で乱すとともに、スプリット部材の前方に再循環域を形成するため、内部保炎機構として機能する。この結果、火炎の外周に形成される高温酸素残存領域の抑制が可能となる。
 上記の発明において、前記クロスタイプのスプリット部材は、上下方向が幅広であることが好ましく、これにより、ノズル角度を上下方向に変化させてもスプリッタ部材との位置関係に変化が生じにくくなる。
 上記の発明において、前記クロスタイプのスプリット部材は、左右方向が幅広であることが好ましく、これにより、横方向のスプリッタ機能が強くなるので、上下方向から投入される2次空気との直接干渉を抑制できる。
 上記の発明において、前記クロスタイプのスプリット部材は、左右方向及び上下方向の少なくとも一方に3本以上配設され、かつ、左右方向及び上下方向の少なくとも一方の中央部が幅広であることが好ましく、これにより、外周着火を防止しながら内部着火を強化することができる。
 また、本発明の固体燃料焚きバーナは、バーナ部と追加空気投入部とに分けて低NOx燃焼を行う固体燃料焚きボイラの前記バーナ部に用いられ、内部保炎を有する燃料バーナと、保炎しない2次空気投入ポートとを備え、粉体の固体燃料及び空気を炉内へ投入する固体燃料焚きバーナであって、前記固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射する2次空気投入ポートとを備え、前記燃料バーナの流路前方部に複数方向の部材を交差させたクロスタイプのスプリット部材を配設し、前記スプリット部材が交差して形成される交差角部の少なくとも1箇所に流路断面積を低減する遮蔽部材を設けたことを特徴とするものである。
 このような固定燃料焚きバーナによれば、固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射する2次空気投入ポートとを備え、燃料バーナの流路前方部に複数方向の部材を交差させたクロスタイプのスプリット部材を配設し、スプリット部材が交差して形成される交差角部の少なくとも1箇所に流路断面積を低減する遮蔽部材を設けたので、クロスタイプのスプリット部材による内部保炎機能をさらに強化することができる。
 上記の発明において、前記固体燃料焚きボイラは、バーナ部と追加空気投入部とに分けて低NOx燃焼を行うことが好ましく、これにより、追加投入空気を分けることでさらに還元を強めることができる。
 本発明の固体燃料焚きボイラは、粉体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されていることを特徴とするものである。
 このような固体燃料焚きボイラによれば、粉体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されているので、燃料バーナの出口開口中央付近に配置されて内部保炎機構として機能するスプリット部材が粉体燃料及び空気の流路を分割して流れを乱す。この結果、空気の混合及び拡散が火炎の内部まで促進されるようになり、さらに着火面が細分化されることにより、着火位置が火炎の中央に寄って燃料の未燃分を低減する。すなわち、火炎の中心部まで酸素が入り込みやすくなるので、内部着火が効果的に行われるようになり、従って、火炎内部で迅速な還元が行われてNOxの発生量は低減される。
 本発明の固体燃料焚きバーナは、バーナ部と追加空気投入部とに分けて低NOx燃焼を行う固体燃料焚きボイラの前記バーナ部に用いられ、粉体の固体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射するコール2次ポートとを備え、前記燃料バーナの流路前方部に内部保炎用部材としてスプリット部材を配設し、該スプリット部材の外周側で前記コール2次ポートに隣接する端部の一部が除去されていることを特徴とするものである。
 このような固体燃料焚きバーナによれば、固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射するコール2次ポートとを備え、前記燃料バーナの流路前方部に内部保炎用部材としてスプリット部材を配設し、該スプリット部材の外周側でコール2次ポートに隣接する端部の一部が除去されているので、出口開口中央付近に設置したスプリット部材は、微粉炭及び空気の流路を分割して流れを内部で乱す。さらに、このスプリット部材は、スプリット部材の前方に再循環域を形成するため、内部保炎機構として機能する。この結果、火炎の外周に形成される高温酸素残存領域の抑制が可能となる。
 特に、スプリット部材の端部を除去した領域では、スプリット部材を着火源とする着火を抑制できるようになり、かつ、火炎内部となるスプリット部材の中心部側で保炎機能を有効に活用できる。
 上記の発明において、前記内部保炎用部材は、複数方向の部材を交差させたクロスタイプのスプリット部材であることが望ましい。
 上記の発明において、前記内部保炎用部材のスプリット部材は、少なくとも一方向に複数本配設されていることが望ましい。
 上記の発明において、前記クロスタイプのスプリット部材は、複数方向のうち少なくとも一方向の端部が除去されていることが望ましく、これにより、スプリット部材の端部における着火源を低減して内部着火の促進が可能になる。すなわち、上下及び左右の2方向を交差させたクロスタイプのスプリット部材は、上下及び左右の端部のうち、少なくともいずれかが除去されていればよい。
 特に、旋回燃焼方式の場合には、上下方向の端部を除去したスプリット部材とすることが望ましく、これにより、2次空気と直接干渉しやすい上下端に高温高酸素領域が形成されることを防止できる。
 上記の発明において、前記クロスタイプのスプリット部材は、上下及び左右方向の少なくとも一方に3本以上配設され、上下左右の中央部に配置された少なくとも一方を残して端部が除去されていることが好ましく、これにより、最も外周着火に寄与すると考えられる領域にはスプリット部材が存在しない構造となる。
 上記の発明において、前記固体燃料焚きボイラは、バーナ部と追加空気投入部とに分けて低NOx燃焼を行うことが好ましく、これにより、追加投入空気を分けることでさらに還元を強めることができる。
 本発明の固体燃料焚きボイラは、粉体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されていることを特徴とするものである。
 このような固体燃料焚きボイラによれば、粉体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されているので、燃料バーナの出口開口中央付近に配置されて内部保炎機構として機能するスプリット部材が粉体燃料及び空気の流路を分割して流れを乱す。この結果、空気の混合及び拡散が火炎の内部まで促進されるようになり、さらに着火面が細分化されることにより、着火位置が火炎の中央に寄って燃料の未燃分を低減する。すなわち、火炎の中心部まで酸素が入り込みやすくなるので、内部着火が効果的に行われるようになり、従って、火炎内部で迅速な還元が行われてNOxの発生量は低減される。
 特に、スプリット部材の端部を除去した領域では、スプリット部材が着火源となる着火を抑制できるようになり、かつ、火炎内部となるスプリット部材の中心部側で保炎機能を有効に活用できる。
 本発明のボイラは、固体燃料と空気を燃焼させる火炉と、該火炉内で熱交換を行って熱を回収する熱交換器と、前記火炉に固体燃料と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、前記火炉に該燃料ノズルの外側から2次空気を吹き込み可能な2次空気ノズルと、前記火炉における前記燃料ノズル及び前記2次空気ノズルより上方に追加空気を吹き込み可能な追加空気ノズルと、前記燃料ノズルと前記2次空気ノズルと前記追加空気ノズルへ供給する空気量を調整可能な空気量調整装置と、固体燃料の揮発分に応じて前記空気量調整装置を制御する制御装置と、を備えることを特徴とするものである。
 従って、制御装置は、固体燃料の揮発分に応じて空気量調整装置を制御し、この空気量調整装置は、燃料ノズルと2次空気ノズルと追加空気ノズルへ供給する空気量を調整することで、固体燃料の揮発分に応じて1次空気量、2次空気量、追加空気量が調整されることとなり、固体燃料の揮発分を適正に燃焼することができると共に、固体燃料を適正に燃焼することができ、NOxや未燃分の発生を抑制してボイラ運転効率の向上を図ることができる。
 本発明のボイラでは、前記制御装置は、固体燃料の揮発分に応じて前記空気量調整装置を制御し、1次空気と2次空気との合計空気量と、追加空気の空気量との配分を調整することを特徴としている。
 従って、1次空気と2次空気との合計空気量が固体燃料の揮発分を燃焼させるために必要な空気量であり、固体燃料の揮発分に応じて1次空気と2次空気との合計空気量を変更することで、固体燃料の揮発分を適正に燃焼することができる。
 本発明のボイラでは、前記火炉に前記2次空気ノズルの外側から3次空気を吹き込み可能な3次空気ノズルを設け、前記制御装置は、固体燃料の揮発分に応じて前記空気量調整装置を制御し、1次空気と2次空気との合計空気量と、3次空気と追加空気との合計空気量との配分を調整することを特徴としている。
 従って、1次空気と2次空気との合計空気量を変更することで、固体燃料の揮発分を適正に燃焼することができる。
 本発明のボイラでは、前記制御装置は、前記空気量調整装置を制御し、1次空気量と追加空気量を予め設定された所定の空気量とし、固体燃料の揮発分に応じて2次空気と3次空気との配分を調整することを特徴としている。
 従って、1次空気は、固体燃料を搬送するための搬送用空気であり、追加空気は、固体燃料の燃焼を完結させてNOxの発生を抑制するものであることから、これらを所定の空気量とし、固体燃料の揮発分に応じて2次空気と3次空気との配分を調整することで、所定の燃空比を維持しながら、固体燃料とその揮発分を適正に燃焼することができる。
 本発明のボイラでは、前記制御装置は、固体燃料の揮発分が増加すると、2次空気の配分を増加することを特徴としている。
 従って、2次空気は燃料ガスと混合して固体燃料を燃焼させるための燃焼用空気であることから、固体燃料の揮発分が増加すると、2次空気の配分を増加することで、固体燃料とその揮発分を適正に燃焼することができる。
 また、本発明のボイラの運転方法は、固体燃料と空気を燃焼させる火炉と、該火炉内で熱交換を行って熱を回収する熱交換器と、前記火炉に固体燃料と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、前記火炉に該燃料ノズルの外側から2次空気を吹き込み可能な2次空気ノズルと、前記火炉における前記燃料ノズル及び前記2次空気ノズルより上方に追加空気を吹き込み可能な追加空気ノズルと、を備えるボイラにおいて、固体燃料の揮発分に応じて2次空気と3次空気との配分を調整する、ことを特徴とするものである。
 従って、固体燃料の揮発分に応じて2次空気と3次空気との配分を調整することで、固体燃料の揮発分を適正に燃焼することができると共に、固体燃料を適正に燃焼することができ、NOxや未燃分の発生を抑制してボイラ運転効率の向上を図ることができる。
 本発明のボイラの運転方法では、固体燃料の揮発分が増加すると2次空気の配分を増加することを特徴としている。
 従って、2次空気は燃料ガスと混合して固体燃料を燃焼させるための燃焼用空気であることから、固体燃料の揮発分が増加すると、2次空気の配分を増加することで、固体燃料とその揮発分を適正に燃焼することができる。
 本発明の燃焼バーナによれば、固体燃料と空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、燃料ノズルの外側から空気を吹き込み可能な2次空気ノズルと、燃料ノズルの先端部における軸心側に設けられる保炎器と、燃料ノズルの内壁面と保炎器との間に設けられる整流部材とを設けるので、燃料ガスの適正な流れを実現することができる。
 また、本発明の燃焼バーナによれば、固体燃料と空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、燃料ノズルの外側から空気を吹き込み可能な2次空気ノズルと、燃料ノズルの先端部における軸心側に設けられる保炎器と、燃料ノズル内を流れる燃料ガスを軸心側に導く案内部材とを設けるので、燃料ガスの適正な流れを実現することができ、その結果、内部保炎性能を向上することができる。
 また、本発明の固体燃料焚きバーナ及び固体燃料焚きボイラによれば、燃料バーナの出口開口に内部保炎機構として機能する複数方向のスプリット部材を設けたので、スプリット部材が交差する燃料バーナの出口開口中央付近では、粉体燃料及び空気の流路を分割して流れを乱すことができ、さらに、スプリット部材が着火面を細分化する。従って、着火位置が火炎の中央に寄り、中央では相対的に酸素濃度が低いため、火炎内部で迅速な還元が行われるようになり、固体燃料焚きボイラから最終的に排出されるNOxの発生量は低減される。さらには、複数方向のスプリッタを設けたことで、内部の空気拡散が促進され、火炎が局所的に極端な酸素不足となり、未燃分が発生することを抑制できる。
 即ち、火炎の外周に形成される高温酸素残存領域を抑制し、追加空気投入部から排出される最終的なNOx発生量の低減が可能になる。換言すれば、火炎の外周に形成される高温酸素残存領域が抑制されることにより、予混合燃焼に近い燃焼をする火炎内部で発生したNOxが効果的に還元されるので、追加空気投入部に到達するNOx量の減少及び追加空気投入により発生するNOx量の減少により、最終的に排出されるNOx量が減少するという顕著な効果が得られる。
 また、本発明の固体燃料焚きバーナ及び固体燃料焚きボイラによれば、燃料バーナの出口開口に内部保炎機構として機能する複数方向のスプリット部材を設けたので、スプリット部材が交差する燃料バーナの出口開口中央付近では、粉体燃料及び空気の流路を分割して流れを乱すことができ、さらに、スプリット部材が着火面を細分化する。従って、着火位置が火炎の中央に寄り、中央では相対的に酸素濃度が低いため、火炎内部で迅速な還元が行われるようになり、固体燃料焚きボイラから最終的に排出されるNOxの発生量は低減される。さらには、複数方向のスプリッタを設けたことで、内部の空気拡散が促進され、火炎が局所的に極端な酸素不足となり、未燃分が発生することを抑制できる。
 即ち、火炎の外周に形成される高温酸素残存領域を抑制し、追加空気投入部から排出される最終的なNOx発生量の低減が可能になる。換言すれば、火炎の外周に形成される高温酸素残存領域が抑制されることにより、予混合燃焼に近い燃焼をする火炎内部で発生したNOxが効果的に還元されるので、追加空気投入部に到達するNOx量の減少及び追加空気投入により発生するNOx量の減少により、最終的に排出されるNOx量が減少するという顕著な効果が得られる。
 また、本発明のボイラ及びボイラの運転方法によれば、固体燃料の揮発分に応じて2次空気、3次空気、追加空気などの配分を調整するので、固体燃料及びこの固体燃料に含有する揮発分を適正に燃焼して運転効率の向上を図ることができる。
図1は、本発明の実施例1に係る燃焼バーナを表す正面図である。 図2は、実施例1の燃焼バーナを表す断面図である。 図3は、実施例1の燃焼バーナにおける変形例を表す断面図である。 図4は、実施例1の燃焼バーナにおける変形例を表す断面図である。 図5は、実施例1の燃焼バーナにおける変形例を表す正面図である。 図6は、実施例1の燃焼バーナにおける変形例を表す断面図である。 図7は、実施例1の燃焼バーナにおける変形例を表す断面図である。 図8は、実施例1の燃焼バーナにおける変形例を表す正面図である。 図9は、実施例1の燃焼バーナが適用された微粉炭焚きボイラを表す概略構成図である。 図10は、実施例1の微粉炭焚きボイラにおける燃焼バーナを表す平面図である。 図11は、本発明の実施例2に係る燃焼バーナを表す断面図である。 図12は、本発明の実施例3に係る燃焼バーナを表す断面図である。 図13は、本発明の実施例4に係る燃焼バーナを表す断面図である。 図14は、本発明の実施例5に係る燃焼バーナを表す断面図である。 図15は、本発明の実施例6に係る燃焼バーナを表す断面図である。 図16は、本発明の実施例7に係る燃焼バーナを表す正面図である。 図17は、実施例7の燃焼バーナを表す断面図である。 図18は、実施例7の燃焼バーナが適用された微粉炭焚きボイラを表す概略構成図である。 図19は、実施例7の微粉炭焚きボイラにおける燃焼バーナを表す平面図である。 図20は、本発明の実施例8に係る燃焼バーナを表す断面図である。 図21は、本発明の実施例9に係る燃焼バーナを表す正面図である。 図22は、本発明の実施例10に係る燃焼バーナを表す正面図である。 図23は、本発明の実施例11に係る燃焼バーナを表す断面図である。 図24は、実施例11の燃焼バーナの変形例を表す断面図である。 図25は、本発明に係る固体燃料焚き(石炭燃料焚き)バーナについて実施例12を示す図で、(a)は固体燃料焚きバーナを火炉内から見た正面図、(b)は(a)に示す固体燃料焚きバーナのA-A断面図(固体燃料焚きバーナの縦断面図)である。 図26は、図25の固体燃料焚きバーナに空気を供給している空気供給系統を示す図である。 図27は、本発明に係る固体燃料焚き(石炭焚き)ボイラの構成例を示す縦断面図である。 図28は、図24の横(水平)断面図である。 図29は、追加空気投入部を備えて空気を多段投入する固体燃料焚きボイラの概要を示す説明図である。 図30は、図25に示した固体燃料焚きバーナのスプリット部材について、(a)は断面形状の一例を示す図、(b)断面形状の第1変形例を示す図、(c)は断面形状の第2変形例を示す図、(d)は断面形状の第3変形例を示す図である。 図31は、本発明に係る固体燃料焚き(石炭燃料焚き)バーナについて実施例14を示す図で、(a)は固体燃料焚きバーナを火炉内から見た正面図、(b)は(a)に示す固体燃料焚きバーナのB-B断面図(固体燃料焚きバーナの縦断面図)である。 図32は、(a)は遮蔽部材の一形状例を示す図31(a)のC-C断面図、(b)は(a)に示した遮蔽部材の他の形状例を示す断面図である。 図33は、本発明に係る旋回燃焼ボイラ用の固体燃料焚き(石炭燃料焚き)バーナについて実施例15を示す図で、(a)は固体燃料焚きバーナを火炉内から見た正面図、(b)は(a)に示す固体燃料焚きバーナのA-A断面図(固体燃料焚きバーナの縦断面図)である。 図34は、図33の固体燃料焚きバーナに空気を供給している空気供給系統を示す図である。 図35は、本発明に係る固体燃料焚きボイラ(石炭焚きボイラ)の構成例を示す縦断面図である。 図36は、図35の横(水平)断面図である。 図37は、追加空気投入部を備えて空気を多段投入する固体燃料焚きボイラの概要を示す説明図である。 図38は、図33に示した固体燃料焚きバーナのスプリット部材について、(a)は断面形状の一例を示す図、(b)断面形状の第1変形例を示す図、(c)は断面形状の第2変形例を示す図、(d)は断面形状の第3変形例を示す図である。 図39は、本発明の実施例17に係るボイラとしての微粉炭焚きボイラを表す概略構成図である。 図40は、実施例17の微粉炭焚きボイラにおける燃焼バーナを表す平面図である。 図41は、実施例17の燃焼バーナを表す正面図である。 図42は、実施例17の燃焼バーナを表す断面図である。 図43は、1次空気及び2次空気に対するNOx発生量及び未燃分発生量を表すグラフである。
 以下に添付図面を参照して、本発明の燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラ、ボイラ及びボイラの運転方法の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 従来の微粉炭焚きボイラの燃焼バーナとしては、上述した特許文献1に記載されたものがある。この特許文献1に記載された燃焼装置では、微粉炭噴出孔(1次流路)内部の中心と外周部との間に保炎器を設けることで、この保炎器に微粉炭濃縮流を衝突させ、広い負荷範囲において安定して低NOx燃焼を可能としている。
 しかし、この従来の燃焼装置にあっては、微粉炭と空気との燃料ガスが保炎器に衝突したとき、この保炎器の後端部で流れが剥離し、保炎器前端部での保炎能力を十分に発揮することが困難となってしまう。また。微粉炭と空気との燃料ガスが流れる流路にて、保炎器の近傍では、この保炎器の配置により流路断面積が小さくなり、その上流側に比べて燃料ガスの流速が速くなる。すると、保炎器の上流側で燃料ガスの流速が遅くなり、この燃料ガスに含まれる微粉炭が流路の下部に堆積あるいは付着してしまう。
 実施例1は、この課題を解決するものであり、固体燃料と空気とが混合した燃料ガスの適正な流れを実現可能とする燃焼バーナを提供することを目的とする。
 図1は、本発明の実施例1に係る燃焼バーナを表す正面図、図2は、実施例1の燃焼バーナを表す断面図、図3及び図4は、実施例1の燃焼バーナにおける変形例を表す断面図、図5は、実施例1の燃焼バーナにおける変形例を表す正面図、図6及び図7は、実施例1の燃焼バーナにおける変形例を表す断面図、図8は、実施例1の燃焼バーナにおける変形例を表す正面図、図9は、実施例1の燃焼バーナが適用された微粉炭焚きボイラを表す概略構成図、図10は、実施例1の微粉炭焚きボイラにおける燃焼バーナを表す平面図である。
 実施例1の燃焼バーナが適用された微粉炭焚きボイラは、石炭を粉砕した微粉炭を固体燃料として用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能なボイラである。
 この実施例1において、図9に示すように、微粉炭焚きボイラ10は、コンベンショナルボイラであって、火炉11と燃焼装置12とを有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置され、この火炉11を構成する火炉壁の下部に燃焼装置12が設けられている。
 燃焼装置12は、火炉壁に装着された複数の燃焼バーナ21,22,23,24,25を有している。本実施例にて、この燃焼バーナ21,22,23,24,25は、周方向に沿って4個均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。
 そして、各燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して微粉炭機(ミル)31,32,33,34,35に連結されている。この微粉炭機31,32,33,34,35は、図示しないが、ハウジング内に鉛直方向に沿った回転軸心をもって粉砕テーブルが駆動回転可能に支持され、この粉砕テーブルの上方に対向して複数の粉砕ローラが粉砕テーブルの回転に連動して回転可能に支持されて構成されている。従って、石炭が複数の粉砕ローラと粉砕テーブルとの間に投入されると、ここで所定の大きさまで粉砕され、搬送空気(1次空気)により分級された微粉炭を微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に供給することができる。
 また、火炉11は、各燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられており、この風箱36に空気ダクト37の一端部が連結されており、この空気ダクト37は、他端部に送風機38が装着されている。従って、送風機38により送られた燃焼用空気(2次空気、3次空気)を、空気供給配管37から風箱36に供給し、この風箱36から各燃焼バーナ21,22,23,24,25に供給することができる。
 そのため、燃焼装置12にて、各燃焼バーナ21,22,23,24,25は、微粉炭と1次空気とを混合した微粉燃料混合気(燃料ガス)を火炉11内に吹き込み可能であると共に、2次空気を火炉11内に吹き込み可能となっており、図示しない点火トーチにより微粉燃料混合気に点火することで、火炎を形成することができる。
 なお、一般的に、ボイラの起動時には、各燃焼バーナ21,22,23,24,25は、油燃料を火炉11内に噴射して火炎を形成している。
 火炉11は、上部に煙道40が連結されており、この煙道40に、対流伝熱部として排ガスの熱を回収するための過熱器(スーパーヒータ)41,42、再熱器43,44、節炭器(エコノマイザ)45,46,47が設けられており、火炉11での燃焼で発生した排ガスと水との間で熱交換が行われる。
 煙道40は、その下流側に熱交換を行った排ガスが排出される排ガス管48が連結されている。この排ガス管48は、空気ダクト37との間にエアヒータ49が設けられ、空気ダクト37を流れる空気と、排ガス管48を流れる排ガスとの間で熱交換を行い、燃焼バーナ21,22,23,24,25に供給する燃焼用空気を昇温することができる。
 なお、排ガス管48は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。
 従って、微粉炭機31,32,33,34,35が駆動すると、生成された微粉炭が搬送用空気と共に微粉炭供給管26,27,28,29,30を通して燃焼バーナ21,22,23,24,25に供給される。また、加熱された燃焼用空気が空気ダクト37から風箱36を介して各燃焼バーナ21,22,23,24,25に供給される。すると、燃焼バーナ21,22,23,24,25は、微粉炭と搬送用空気とが混合した微粉燃料混合気を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、このときに着火することで火炎を形成することができる。この火炉11では、微粉燃料混合気と燃焼用空気とが燃焼して火炎が生じ、この火炉11内の下部で火炎が生じると、燃焼ガス(排ガス)がこの火炉11内を上昇し、煙道40に排出される。
 なお、火炉11では、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、内部が還元雰囲気に保持される。そして、微粉炭の燃焼により発生したNOxが火炉11で還元され、その後、アディショナルエアが追加供給されることで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
 このとき、図示しない給水ポンプから供給された水は、節炭器45,46,47によって予熱された後、図示しない蒸気ドラムに供給され火炉壁の各水管(図示せず)に供給される間に加熱されて飽和蒸気となり、図示しない蒸気ドラムに送り込まれる。更に、図示しない蒸気ドラムの飽和蒸気は過熱器41,42に導入され、燃焼ガスによって過熱される。過熱器41,42で生成された過熱蒸気は、図示しない発電プラント(例えば、タービン等)に供給される。また、タービンでの膨張過程の中途で取り出した蒸気は、再熱器43,44に導入され、再度過熱されてタービンに戻される。なお、火炉11をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。
 その後、煙道40の節炭器45,46,47を通過した排ガスは、排ガス管48にて、図示しない脱硝装置にて、触媒によりNOxなどの有害物質が除去され、電気集塵機で粒子状物質が除去され、脱硫装置により硫黄分が除去された後、煙突から大気中に排出される。
 ここで、燃焼装置12について詳細に説明するが、この燃焼装置12を構成する各燃焼バーナ21,22,23,24,25は、ほぼ同様の構成をなしていることから、最上段に位置する燃焼バーナ21についてのみ説明する。
 燃焼バーナ21は、図10に示すように、火炉11における4つの壁面に設けられる燃焼バーナ21a,21b,21c,21dから構成されている。各燃焼バーナ21a,21b,21c,21dは、微粉炭供給管26から分岐した各分岐管26a,26b,26c,26dが連結されると共に、空気ダクト37から分岐した各分岐管37a,37b,37c,37dが連結されている。
 従って、火炉11の各壁面にある各燃焼バーナ21a,21b,21c,21dは、火炉11に対して、微粉炭と搬送用空気が混合した微粉燃料混合気を吹き込むと共に、その微粉燃料混合気の外側に燃焼用空気を吹き込む。そして、各燃焼バーナ21a,21b,21c,21dからの微粉燃料混合気に着火することで、4つの火炎F1,F2,F3,F4を形成することができ、この火炎F1,F2,F3,F4は、火炉11の上方から見て(図10にて)反時計周り方向に旋回する火炎旋回流となる。
 このように構成された燃焼バーナ21(21a,21b,21c,21d)にて、図1及び図2に示すように、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器54が設けられている。燃料ノズル51は、微粉炭(固体燃料)と搬送用空気(1次空気)とを混合した燃料ガス(微粉燃料混合気)を吹き込み可能なものである。2次空気ノズル52は、第1ノズル51の外側に配置され、燃料ノズル51から噴射された燃料ガスの外周側に燃焼用空気(2次空気)を吹き込み可能なものである。3次空気ノズル53は、2次空気ノズル52の外側に配置され、2次空気ノズル52噴射された2次空気の外周側に3次空気を吹き込み可能なものである。
 また、保炎器54は、燃料ノズル51内であって、燃料ガスの吹き込み方向の下流側で、且つ、軸中心心側に配置されることで、燃料ガスの着火用及び保炎用として機能するものである。この保炎器54は、水平方向に沿う第1保炎部材61,62と、鉛直方向(上下方向)に沿う第2保炎部材63,64とを十字形状をなすように配置した、所謂、ダブルクロススプリット構造をなすものである。そして、各第1保炎部材61,62は、その厚さが一定な平板形状をなす平坦部61a,62aと、この平坦部61a,62aの前端部(燃料ガスの流れ方向の下流端部)に一体に設けられた拡幅部61b,62bを有している。この拡幅部61b,62bは、断面が二等辺三角形状をなし、燃料ガスの流れ方向の下流側に向って幅が広くなり、前端がこの燃料ガスの流れ方向に直交する平面となっている。なお、図示しないが、各第2保炎部材63,64についても同様の構造となっている。
 そのため、燃料ノズル51及び2次空気ノズル52は、長尺な管状構造を有し、燃料ノズル51は、矩形状の開口部51aを有し、2次空気ノズル52は、矩形リング状の開口部52aを有していることから、燃料ノズル51と2次空気ノズル52とは、二重管構造となっている。燃料ノズル51及び2次空気ノズル52の外側に、3次空気ノズル53が二重管構造として配置されており、矩形リング状の開口部53aを有している。その結果、燃料ノズル51の開口部51aの外側に2次空気ノズル52の開口部52aが配設され、この2次空気ノズル52の開口部52aの外側に3次空気ノズル53の開口部53aが配設されることとなる。なお、3次空気ノズル53は、二重管構造として配置せずに、2次空気ノズル52の外周側に別途複数のノズルを配置して3次空気ノズルとしてもよい。
 これらのノズル51,52,53は、開口部51a,52a,53aが同一面上に揃えられて配置されている。また、保炎器54は、燃料ノズル51の内壁面、または、燃料ガスが流れる流路の上流側から図示しない板材により支持されている。また、燃料ノズル51は、内部にこの保炎器54としての複数の保炎部材61,62,63,64が配置されていることから、燃料ガスの流路が9つに分割されることとなる。そして、保炎器54は、前端部に幅が広がった拡幅部61b,62bが位置することとなり、この拡幅部61b,62bは、前端面が開口部51aと同一面上に揃えられている。
 また、実施例1の燃焼バーナ21では、燃料ノズル51の内壁面と保炎器54との間に整流部材55が設けられている。この整流部材55は、燃料ノズル51の内壁面と所定の隙間をもつと共に、保炎器54と所定の隙間をもって配置されている。
 即ち、整流部材55は、水平方向に沿う第1整流部材65,66と、鉛直方向(上下方向)に沿う第2整流部材67,68とを枠形状をなすように配置した構造をなすものである。即ち、第1整流部材65は、燃料ノズル51の上壁と第1保炎部材61との間に位置し、第1整流部材66と、燃料ノズル51の下壁と第1保炎部材62との間に位置している。また、第2整流部材67は燃料ノズル51の側壁(図1にて、左壁)と第2保炎部材63との間に位置し、第2整流部材68は、燃料ノズル51の側壁(図1にて、右壁)と第2保炎部材64との間に位置している。
 そして、各第1整流部材65,66は、その厚さが一定な平板形状をなす平坦部65a,66aと、この平坦部65a,66aの前端部(燃料ガスの流れ方向の下流端部)に一体に設けられた先細部65b,66bを有している。この先細部65b,66bは、断面が二等辺三角形状をなし、燃料ガスの流れ方向の下流側に向って幅が狭くなり、前端が鋭角となっている。なお、図示しないが、各第2整流部材67,68についても同様の構造となっている。
 この場合、各保炎部材61,62,63,64と各整流部材65,66,67,68とは、燃料ガスの流れ方向の長さがほぼ同様であり、燃料ガスの流れ方向に直交する方向に対向して配置されている。なお、各保炎部材61,62,63,64と各整流部材65,66,67,68とは、拡幅部61b,62bと先細部65b,66bも、燃料ガスの流れ方向の長さがほぼ同様であり、燃料ガスの流れ方向に直交する方向に対向して配置されている。
 保炎器54と整流部材55は、上述した拡幅部61b,62bと先細部65b,66bが設けられた形状となすことから、保炎器54と整流部材55とおける燃料ガスの流れ方向に直交する方向の距離が、燃料ガスの流れ方向に沿ってほぼ同じとなっている。
 従って、この燃焼バーナ21では、微粉炭と1次空気とを混合した燃料ガスが燃料ノズル51の開口部51aから炉内に吹き込まれると共に、その外側にて2次空気が2次空気ノズル52の開口部52aから炉内に吹き込まれ、その外側にて3次空気が3次空気ノズル53の開口部53aから炉内に吹き込まれる。このとき、燃料ガスは、燃料ノズル51の開口部51aにて、保炎器54により分岐されて着火され、燃焼して燃焼ガスとなる。また、この燃料ガスの外周に2次空気が吹き込まれることで、燃料ガスの燃焼が促進される。また、燃焼火炎の外周に、3次空気が吹き込まれることで、2次空気と3次空気の割合を調整し、最適な燃焼を得ることができる。
 そして、この燃焼バーナ21では、保炎器54がスプリット形状をなすので、燃料ガスが燃料ノズル51の開口部51aにて保炎器54により分岐され、このとき、保炎器54が燃料ノズル51の開口部51aの中央領域に配置され、この中央領域にて、燃料ガスの着火及び保炎が行われる。これにより、燃焼火炎の内部保炎(燃料ノズル51の開口部51aの中央領域における保炎)が実現される。
 そのため、燃焼火炎の外部保炎が行われる構成と比較して、燃焼火炎の外周部が低温となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度を低くでき、燃焼火炎の外周部におけるNOx発生量が低減される。
 また、燃焼バーナ21では、内部保炎する構成が採用されるため、燃料ガス及び燃焼空気(2次空気及び3次空気)が直進流として供給されることが好ましい。即ち、燃料ノズル51、2次空気ノズル52、3次空気ノズル53が、燃料ガス、2次空気、3次空気を旋回させることなく直進流として供給する構造を有することが好ましい。この燃料ガス、2次空気、3次空気が直進流として噴射されて燃焼火炎が形成されるため、燃焼火炎を内部保炎する構成において、燃焼火炎内のガス循環が抑制される。これにより燃焼火炎の外周部が低温のまま維持され、2次空気との混合によるNOx発生量が低減される。
 更に、燃焼バーナ21では、燃料ノズル51と保炎器54との間に、それぞれと所定の隙間をもって整流部材55が設けられている。そのため、特に、保炎器54と整流部材55との間に流れる燃料ガスが整流されることで、保炎器54の後端部における燃料ガスの剥離がなくなり、先端部に向けた燃料ガスの流れが形成されるため、この保炎器54は、先端部で十分な保炎力を確保することができる。
 また、保炎器54の先端部に拡幅部61b,62bが設けられ、整流部材55の先端部に先細部65b,66bが設けられることから、保炎器54と整流部材55との間に形成される流路は、その長手方向でほぼ同様の通路断面積となり、ここを流れる燃料ガスの流速が均一化され、燃料ガスの流速が全体として低減するため、この保炎器54は、先端部で十分な保炎力を確保することができる。また、微粉炭焚きボイラでは、蒸気温度や排ガス特性を調整する必要があり、その際にも整流部材55により内部保炎確保することが可能となる。
 なお、燃焼バーナ21にて、保炎器54及び整流部材55の構成は、上述した実施例に限定されるものではない。
 例えば、図3に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器71が設けられている。この保炎器71は、燃料ノズル51内であって、燃料ガスの吹き込み方向の下流側で、且つ、軸中心心側に配置されることで、燃料ガスの着火用及び保炎用として機能するものである。この保炎器71は、水平方向に沿う第1保炎部材72,73と、鉛直方向に沿う第2保炎部材(図示略)とを十字形状をなすように配置した、所謂、ダブルクロススプリット構造をなすものである。そして、第1保炎部材72,73は、断面が二等辺三角形状をなして燃料ガスの流れ方向の下流側に向って幅が広くなる拡幅形状となっており、前端が燃料ガスの流れ方向に直交する平面となっている。なお、各第2保炎部材についても同様の構造となっている。
 従って、燃料ガスが燃料ノズル51の開口部51aにて保炎器71により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材55により保炎器71との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器71は、先端部で十分な保炎力を確保することができる。
 また、図4に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器54が設けられている。そして、燃料ノズル51の内壁面と保炎器54との間に整流部材75が設けられている。この整流部材75は、燃料ノズル51の内壁面と所定の隙間をもつと共に、保炎器54と所定の隙間をもって配置されている。即ち、整流部材75は、水平方向に沿う第1整流部材76,77と、鉛直方向(上下方向)に沿う第2整流部材(図示略)とを枠形状をなすように配置した構造をなすものである。そして、各第1整流部材76,77は、その厚さが一定な平板形状をなしている。なお、各第2整流部材についても同様の構造となっている。
 この場合、各整流部材76,77は、各保炎部材61,62より燃料ガスの流れ方向の長さが若干短くなっており、燃料ガスの流れ方向に直交する方向に対向して配置されている。即ち、各保炎部材61,62の平坦部61a,62aと各整流部材76,77とは、燃料ガスの流れ方向の長さがほぼ同様となっている。
 保炎器54と整流部材75は、上述した拡幅部61b,62bが設けられた形状となすことから、保炎器54と整流部材75とおける燃料ガスの流れ方向に直交する方向の距離が、燃料ガスの流れ方向に沿ってほぼ同じとなっている。そして、この保炎器54は、燃料ガスの流れ方向における下流側に拡幅部61b,62bが設けられる一方、整流部材75は、この拡幅部61b,62bに対向しない位置に設けられている。
 従って、燃料ガスが燃料ノズル51の開口部にて保炎器54により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材75により保炎器54との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器54は、先端部で十分な保炎力を確保することができる。
 また、図5に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器81が設けられている。そして、燃料ノズル51の内壁面と保炎器81との間に整流部材55が設けられている。この保炎器81は、燃料ノズル51内であって、燃料ガスの吹き込み方向の下流側で、且つ、軸中心心側に配置されることで、燃料ガスの着火用及び保炎用として機能するものである。この保炎器81は、水平方向に沿う第1保炎部材82,83と、鉛直方向に沿う第2保炎部材84,85とを十字形状をなすように配置した、所謂、ダブルクロススプリット構造をなすものである。そして、第1保炎部材82,83は、第2保炎部材84,85に比べて大きな幅に設定されている。
 従って、燃料ガスが燃料ノズル51の開口部51aにて保炎器81により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。この場合、第1保炎部材82,83は、第2保炎部材84,85より幅広であることから、第1保炎部材82,83は、第2保炎部材84,85より高い保炎能力を有している。本実施例のバーナ21は、旋回燃焼方式であり、燃料ガスの上下から空気の供給があることから、内部保炎のために水平方向に高い保炎能力を確保することが有効となる。
 ここでは、水平方向に沿った第1保炎部材82,83を鉛直方向に沿った第2保炎部材84,85より大きな幅に設定することで、この幅の広い第1保炎部材82,83により水平方向における保炎機能を向上することが可能となる。一方で、鉛直方向に沿った第2保炎部材84,85を水平方向に沿った第1保炎部材82,83より大きな幅に設定するように構成してもよい。この場合、蒸気温度制御などのために燃料ノズル51の向きを上下に振るときに、第2保炎部材84,85が悪影響を与えることなく、保炎機能を向上することが可能となる。これは、燃料ノズル51が上下に動いたとき、燃料ガスの吹き込み位置に対する保炎部材の位置が、第1保炎部材82,83だと大きく変わるのに対し、第2保炎部材84,85だとほとんど変わらないからである。
 また、図6に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器91が設けられている。この保炎器91は、燃料ノズル51内であって、燃料ガスの吹き込み方向の下流側で、且つ、軸中心心側に配置されることで、燃料ガスの着火用及び保炎用として機能するものである。この保炎器91は、水平方向に沿う第1保炎部材92,93と、鉛直方向に沿う第2保炎部材(図示略)とを十字形状をなすように配置した、所謂、ダブルクロススプリット構造をなすものである。そして、第1保炎部材92,93は、平坦部92a,93aと拡幅部92b,93bと先細部92c,93cとを有しており、先細部92c,93cは、後端部に設けられて燃料ガスの流れ方向の上流側に向って幅が狭くなっている。なお、各第2保炎部材についても同様の構造となっている。
 そして、燃料ノズル51の内壁面と保炎器91との間に整流部材95が設けられている。この整流部材95は、燃料ノズル51の内壁面と所定の隙間をもつと共に、保炎器91と所定の隙間をもって配置されている。即ち、整流部材95は、水平方向に沿う第1整流部材96,97と、鉛直方向(上下方向)に沿う第2整流部材(図示略)とを枠形状をなすように配置した構造をなすものである。そして、各第1整流部材96,97は、平坦部96a,97aと先細部96b,97bと先細部96c,97cとを有しており、先細部96c,97cは、後端部に設けられて燃料ガスの流れ方向の上流側に向って幅が狭くなっている。なお、各第2整流部材についても同様の構造となっている。
 従って、燃料ガスが燃料ノズル51の開口部51aにて保炎器91により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材95により保炎器91との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器91は、先端部で十分な保炎力を確保することができる。また、保炎器91及び整流部材95は、先細部92c,93c,96c,97cが設けられていることで、燃料ガスが保炎器91や整流部材95に沿って滑らかに流れることとなり、剥離が抑制される。
 また、図7に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器54が設けられている。そして、燃料ノズル51の内壁面と保炎器54との間に整流部材101が設けられている。この整流部材101は、燃料ノズル51の内壁面と所定の隙間をもつと共に、保炎器54と所定の隙間をもって配置されている。即ち、整流部材101は、水平方向に沿う第1整流部材102,103と、鉛直方向(上下方向)に沿う第2整流部材(図示略)とを枠形状をなすように配置した構造をなすものである。そして、各第1整流部材102,103は、その厚さが一定な平板形状をなす平坦部102a,103aと、その前端部(燃料ガスの流れ方向の下流端部)に一体に設けられた拡幅部102b,103bを有している。なお、各第2整流部材についても同様の構造となっている。
 この場合、各整流部材102,103は、各保炎部材61,62より燃料ガスの流れ方向の長さが若干短くなっており、燃料ガスの流れ方向に直交する方向に対向して配置されている。即ち、各保炎部材61,62の平坦部61a,62aと各整流部材102,103とは、燃料ガスの流れ方向の長さがほぼ同様となっている。
 従って、燃料ガスが燃料ノズル51の開口部にて保炎器54により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材101により保炎器54との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器54は、先端部で十分な保炎力を確保することができる。更に、整流部材101が保炎器54より短いことから、先端部に拡幅部102b,103bを設けて保炎機能を付与しても、燃料ノズル51の通路面積を極端に狭くすることがなく、保炎力を向上することができ、難燃性の燃料であっても安定燃焼させることができる。
 また、図8に示すように、燃焼バーナ21にて、中心側から燃料ノズル111と、2次空気ノズル112と、3次空気ノズル113とが設けられると共に、保炎器114が設けられている。そして、燃料ノズル111の内壁面と保炎器114との間に整流部材115が設けられている。この場合、燃料ノズル111は、円形の開口部を有しており、2次空気ノズル112と3次空気ノズル113も、同様に、円筒形状をなしている。このような構成は、特に、燃焼バーナ21を対向して配置した構成に適用される。
 保炎器114は、燃料ノズル111内であって、燃料ガスの吹き込み方向の下流側で、且つ、軸中心心側に配置されることで、燃料ガスの着火用及び保炎用として機能するものである。この保炎器114は、水平方向に沿う2つの保炎部材と鉛直方向に沿う2つの保炎部材を交差するように配置している。また、整流部材115は、燃料ノズル111の内壁面と所定の隙間をもつと共に、保炎器114と所定の隙間をもって配置されている。即ち、整流部材115は、水平方向に沿う2つの整流部材と鉛直方向に沿う2つの整流部材とを枠形状をなすように配置した構造をなすものである。
 従って、燃料ガスが燃料ノズル111の開口部にて保炎器114により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材115により保炎器114との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器114は、先端部で十分な保炎力を確保することができる。
 このように実施例1の燃焼バーナにあっては、微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル51と、この燃料ノズル51の外側から2次空気を吹き込み可能な2次空気ノズル52とを設けると共に、燃料ノズル51の先端部における軸中心側に保炎器54を設け、燃料ノズル51の内壁面とこの保炎器54との間に整流部材55を設けている。
 従って、燃料ノズル51の内壁面と保炎器54との間に整流部材55を設けることで、燃料ノズル51内を流れる燃料ガスは、この整流部材55によりその流れが整流され、保炎器54の後端部における燃料ガスの流れの剥離が抑制されると共に、流速がほぼ一定となって微粉炭燃料が燃料ノズル51の内壁面に堆積(または、付着)することが抑制されることとなり、燃料ガスの適正な流れを実現することができる。
 また、実施例1の燃焼バーナでは、整流部材55を保炎器54と所定の隙間をもって配置している。従って、整流部材55と保炎器54との間に所定の隙間が確保されることで、整流部材55と保炎器54との間を流れる燃料ガスは、その流れが整流されて保炎器54に適正に導入されることとなり、保炎器54による保炎機能を十分に発揮させることが可能となる。
 また、実施例1の燃焼バーナでは、整流部材55により、保炎器54と整流部材55との距離が燃料ガスの流れ方向に沿ってほぼ同じになるように設定している。従って、整流部材55により保炎器54との距離が燃料ガスの流れ方向に沿ってほぼ同じになることで、この整流部材55と保炎器54との間を流れる燃料ガスは、その流速がほぼ一定となり、燃料ノズル51の微粉炭燃料の堆積や保炎器54への微粉炭燃料の付着を抑制することができる。
 また、実施例1の燃焼バーナでは、保炎器54における燃料ガスの流れ方向における下流側に拡幅部61b,62bを設ける一方、整流部材55における燃料ガスの流れ方向における下流側に先細部65b,66bを設けている。従って、保炎器54の先端部に拡幅部61b,62bを設けることで、確実な保炎を実現することかできる一方、整流部材55の先端部に先細部65b,66bを設けることで、保炎器54と整流部材55との距離を燃料ガスの流れ方向でほぼ一定とすることができる。
 また、実施例1の燃焼バーナにあっては、保炎器54を、水平方向に沿って鉛直方向に所定隙間をもって平行をなす2つの第1保炎部材61,62と、鉛直方向に沿って水平方向に所定隙間をもって平行をなす2つの第2保炎部材63,64とが交差するように配置した構造としている。従って、保炎器54をダブルクロス構造とすることで、十分な保炎機能を確保することが可能となる。
 また、実施例1の燃焼バーナにあっては、保炎器54における燃料ガスの流れ方向における下流側に拡幅部61b,62bを設ける一方、整流部材75をこの拡幅部拡幅部61b,62bに対向しない位置に設けている。従って、保炎器54の拡幅部61b,62bに対向しない位置に整流部材75を設けることで、保炎器54の拡幅部61b,62bと燃料ノズル51との間における燃料ガスの流路が狭くなることはなく、燃料ガスの流速がほぼ一定とし、燃料ノズル51の微粉炭燃料の堆積や保炎器54への微粉炭燃料の付着を抑制することができる。
 図11は、本発明の実施例2に係る燃焼バーナを表す断面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例2の燃焼バーナにおいて、図11に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器121が設けられている。そして、燃料ノズル51の内壁面と保炎器121との間に整流部材122が設けられている。
 保炎器121は、燃料ノズル51の軸中心部に水平方向に沿うように配置されており、その構成は、実施例1で説明した第1保炎部材61,62とほぼ同様の構成となっている。即ち、保炎器121は、燃料ガスの流れ方向の下流側に向って幅が広くなる拡幅部を有し、前端が燃料ガスの流れ方向に直交する平面となっている。
 整流部材122は、燃料ノズル51の内壁面に沿って固定されることで、保炎器121と所定の隙間をもって配置されている。即ち、整流部材122は、水平方向に沿う第1整流部材123,124を有しており、燃料ガスの流れ方向の下流端部に、保炎器121の拡幅部に上下に対向する傾斜部123a,124aが設けられている。この場合、第1整流部材123,124を燃料ノズル51の内壁面に直接固定したが、燃料ノズル51の上流部から支持部材を延設して第1整流部材123,124を支持してもよい。
 そのため、保炎器121と整流部材122は、上述した拡幅部と傾斜部123a,124aが対向して設けられた形状となり、保炎器121と整流部材122とおける燃料ガスの流れ方向に直交する方向の距離が、燃料ガスの流れ方向に沿ってほぼ同じとなっている。
 従って、燃料ガスが燃料ノズル51の開口部51aにて保炎器121により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材122により保炎器121との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器121は、先端部で十分な保炎力を確保することができる。
 このように実施例2の燃焼バーナにあっては、整流部材122を燃料ノズル51の内壁面に設けている。従って、整流部材122を燃料ノズル51の内壁面に設けることで、別途、取付部材などを不要とし、簡単に整流部材122を支持することが可能となり、整流部材122の組付性を向上することができると共に、製造コストを低減することができる。また、2次空気の混合を遅らせることができ、更に、外周の高温高酸素領域を低減することができる。
 図12は、本発明の実施例3に係る燃焼バーナを表す断面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例3の燃焼バーナにおいて、図12に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器131が設けられている。そして、この保炎器131の内側に整流部材135が設けられている。
 保炎器131は、燃料ノズル51の軸中心部に水平方向に沿うように配置されており、水平方向に沿う2つの保炎部材と鉛直方向に沿う2つの保炎部材を交差するように配置されている。また、整流部材135は、保炎器131における各保炎部材の間に位置して水平方向と鉛直方向に交差して十字形状をなす第1整流部材136と、保炎器131及び整流部材136より上流側に位置して燃料ノズル51の内壁面に固定される第2整流部材137,138とを有している。
 第1整流部材136は、燃料ノズル51の内壁面に固定されることで、保炎器131と所定の隙間をもって配置されている。また、第2整流部材137,138は、保炎器131より燃料ガスの上流側で、燃料ノズル51の内壁面に固定されており、燃料ノズル51内を流れる燃料ガスをその中心部側に導くことができる。
 従って、燃料ガスが燃料ノズル51にて保炎器132,133により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、第2整流部材137,138により燃料ガスが燃料ノズル51の中心部側に導き、第1整流部材136により保炎器132との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器132は、先端部で十分な保炎力を確保することができる。
 このように実施例3の燃焼バーナにあっては、整流部材135として、保炎器131の内側に位置して十字形状をなす第1整流部材136と、保炎器131より上流側に位置する第2整流部材137,138とを設けている。従って、燃料ノズル51内を流れる燃料ガスは、この第2整流部材137,138により燃料ノズル51の中心部側に導かれ、第1整流部材136によりその流れが整流されることとなり、燃料ガスの適正な流れを実現することができる。
 図13は、本発明の実施例4に係る燃焼バーナを表す断面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例4の燃焼バーナにおいて、図13に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器54が設けられている。そして、この保炎器54の内側に整流部材141が設けられている。保炎器131は、燃料ノズル51の軸中心部に水平方向に沿うように配置されている。整流部材141は、保炎器54の内側で水平方向と鉛直方向に交差して十字形状をなしている。この場合、整流部材141は、先端部が保炎器54より上流側に位置している。
 従って、燃料ガスが燃料ノズル51にて保炎器54により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材141により保炎器54との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器54は、先端部で十分な保炎力を確保することができる。
 このように実施例4の燃焼バーナにあっては、保炎器54の内側に燃料ノズル51の内壁面に固定するように整流部材141を設けている。従って、燃料ノズル51内を流れる燃料ガスは、整流部材141によりその流れが整流されることとなり、燃料ガスの適正な流れを実現することができる。
 図14は、本発明の実施例5に係る燃焼バーナを表す断面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例5の燃焼バーナにおいて、図14に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器121が設けられている。そして、燃料ノズル51の内壁面と保炎器121との間に整流部材151が設けられている。
 保炎器121は、燃料ノズル51の軸中心部に水平方向に沿うように配置されており、その構成は、実施例1で説明した第1保炎部材61,62とほぼ同様の構成となっている。整流部材151は、燃料ノズル51の内壁面と所定の隙間をもつと共に、保炎器121と所定の隙間をもって配置されている。即ち、整流部材151は、水平方向に沿う第1整流部材152,153と、鉛直方向(上下方向)に沿う第2整流部材(図示略)とを枠形状をなすように配置した構造をなすものである。そして、各第1整流部材152,153は、先端部が保炎器121に接近し、後端部が保炎器121から離間するように傾斜配置されている。なお、各第2整流部材についても同様の構造となっている。
 この場合、各整流部材152,153は、先端部が保炎器121に接近していることから、整流部材152,153と保炎器121との間の隙間が下流側に行くほど狭くなっている。
 従って、燃料ガスが燃料ノズル51の開口部にて保炎器121により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、整流部材151により保炎器121との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器121は、先端部で十分な保炎力を確保することができる。
 このように実施例5の燃焼バーナにあっては、保炎器121の外側に燃料ノズル51の内壁面に固定するように整流部材151を設け、先端部を保炎器121側に接近するように傾斜させている。従って、燃料ノズル51内を流れる燃料ガスは、整流部材151によりその流れが整流されることとなり、燃料ガスの適正な流れを実現することができる。
 図15は、本発明の実施例6に係る燃焼バーナを表す断面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例6の燃焼バーナにおいて、図15に示すように、燃焼バーナ21にて、中心側から燃料ノズル51と、2次空気ノズル52と、3次空気ノズル53とが設けられると共に、保炎器161が設けられている。この保炎器161は、水平方向に沿う第1保炎部材162,163と、鉛直方向に沿う第2保炎部材(図示略)とを十字形状をなすように配置した、所謂、ダブルクロススプリット構造をなすものである。そして、第1保炎部材162,163は、所定厚さの板形状となっている。なお、各第2保炎部材についても同様の構造となっている。
 本実施例は、この保炎器161における各保炎部材162,163の外面が整流部材として機能する。
 従って、燃料ガスが燃料ノズル51の開口部51aにて保炎器161により分岐されることで、前端面側に回りこんで燃焼火炎の内部保炎が可能となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度が低くなり、燃焼火炎の外周部におけるNOx発生量が低減される。また、このとき、保炎器161の外面により燃料ノズル51と保炎器161との間に流れる燃料ガスが整流されることで、燃料ガスの剥離がなくなり、また、ここを流れる燃料ガスの流速が均一化されて流速が低減するため、この保炎器161は、先端部で十分な保炎力を確保することができる。
 なお、上述した各実施例にて、各保炎器の構成を各種挙げて説明したが、この構成は上述したものに限定されるものではない。即ち、本発明のバーナは、内部保炎を実現するものであり、燃料ノズルの内壁面ではなくて、燃料ノズルの軸心側に保炎器が設けられていればよく、保炎部材の数や位置などは適宜設定すればよいものであり、保炎部材が燃料ノズルの内壁面から離間していてもよいものである。また、整流部材の構成も各種挙げて説明したが、この構成も上述したものに限定されるものではない。即ち、整流部材が燃料ノズルの内壁面と保炎器との間にあればよいものであり、保炎器が複数ある場合には、整流部材が保炎器の間に配置されることも含んでいる。
 また、上述した各実施例では、燃焼装置12として、火炉11の壁面に設けられる4つの各燃焼バーナ21,22,23,24,25を鉛直方向に沿って5段配置して構成したが、この構成に限定されるものではない。即ち、燃焼バーナを壁面に配置せずにコーナーに配置してもよい。また、燃焼装置は、旋回燃焼方式に限らず、燃焼バーナを一つの壁面に配置したフロント燃焼方式、燃焼バーナを二つの壁面に対向配置した対向燃焼方式としてもよい。
 また、本発明の保炎器は、三角形断面形状の拡幅部を設けたが、この形状に限定されるものではなく四角形状でもよく、拡幅部をなくしてもよいものである。
 従来の微粉炭焚きボイラの燃焼バーナとしては、例えば、上述した特許文献1に記載されたものがある。特許文献1に記載された燃焼装置では、微粉炭噴出孔(1次流路)内部の中心と外周部との間に保炎器を設けることで、この保炎器に微粉炭濃縮流を衝突させ、広い負荷範囲において安定して低NOx燃焼を可能としている。
 しかし、この従来の燃焼装置にあっては、微粉炭と空気との燃焼ガスが保炎器に衝突したとき、この保炎器の後端部で流れが剥離し、保炎器前端部での保炎能力を十分に発揮することが困難となってしまう。すると、保炎器の外側で着火が発生し、NOxが発生してしまうという問題がある。
 本発明は、上述した課題を解決するものであり、固体燃料と空気とが混合した燃料ガスの適正な流れを実現してNOx発生量を低減可能とする燃焼バーナを提供することを目的とする。
 図16は、本発明の実施例7に係る燃焼バーナを表す正面図、図17は、実施例7の燃焼バーナを表す断面図、図18は、実施例7の燃焼バーナが適用された微粉炭焚きボイラを表す概略構成図、図19は、実施例7の微粉炭焚きボイラにおける燃焼バーナを表す平面図である。
 実施例7の燃焼バーナが適用された微粉炭焚きボイラは、石炭を粉砕した微粉炭を固体燃料として用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能なボイラである。
 この実施例7において、図18に示すように、微粉炭焚きボイラ210は、コンベンショナルボイラであって、火炉211と燃焼装置212とを有している。火炉211は、四角筒の中空形状をなして鉛直方向に沿って設置され、この火炉211を構成する火炉壁の下部に燃焼装置212が設けられている。
 燃焼装置212は、火炉壁に装着された複数の燃焼バーナ221,222,223,224,225を有している。本実施例にて、この燃焼バーナ221,222,223,224,225は、周方向に沿って4個均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。
 そして、各燃焼バーナ221,222,223,224,225は、微粉炭供給管226,227,228,229,230を介して微粉炭機(ミル)231,232,233,234,235に連結されている。この微粉炭機231,232,233,234,235は、図示しないが、ハウジング内に鉛直方向に沿った回転軸心をもって粉砕テーブルが駆動回転可能に支持され、この粉砕テーブルの上方に対向して複数の粉砕ローラが粉砕テーブルの回転に連動して回転可能に支持されて構成されている。従って、石炭が複数の粉砕ローラと粉砕テーブルとの間に投入されると、ここで所定の大きさまで粉砕され、搬送空気(1次空気)により分級された微粉炭を微粉炭供給管226,227,228,229,230から燃焼バーナ221,222,223,224,225に供給することができる。
 また、火炉211は、各燃焼バーナ221,222,223,224,225の装着位置に風箱236が設けられており、この風箱236に空気ダクト237の一端部が連結されており、この空気ダクト237は、他端部に送風機238が装着されている。従って、送風機238により送られた燃焼用空気(2次空気、3次空気)を、空気ダクト237から風箱236に供給し、この風箱236から各燃焼バーナ221,222,223,224,225に供給することができる。
 そのため、燃焼装置212にて、各燃焼バーナ221,222,223,224,225は、微粉炭と1次空気とを混合した微粉燃料混合気(燃料ガス)を火炉211内に吹き込み可能であると共に、2次空気を火炉211内に吹き込み可能となっており、図示しない点火トーチにより微粉燃料混合気に点火することで、火炎を形成することができる。
 なお、一般的に、ボイラの起動時には、各燃焼バーナ221,222,223,224,225は、油燃料を火炉211内に噴射して火炎を形成している。
 火炉211は、上部に煙道240が連結されており、この煙道240に、対流伝熱部として排ガスの熱を回収するための過熱器(スーパーヒータ)241,242、再熱器243,244、節炭器(エコノマイザ)245,246,247が設けられており、火炉211での燃焼で発生した排ガスと水との間で熱交換が行われる。
 煙道240は、その下流側に熱交換を行った排ガスが排出される排ガス管248が連結されている。この排ガス管248は、空気ダクト237との間にエアヒータ249が設けられ、空気ダクト237を流れる空気と、排ガス管248を流れる排ガスとの間で熱交換を行い、燃焼バーナ221,222,223,224,225に供給する燃焼用空気を昇温することができる。
 なお、排ガス管248は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。
 従って、微粉炭機231,232,233,234,235が駆動すると、生成された微粉炭が搬送用空気と共に微粉炭供給管226,227,228,229,230を通して燃焼バーナ221,222,223,224,225に供給される。また、加熱された燃焼用空気が空気ダクト237から風箱236を介して各燃焼バーナ221,222,223,224,225に供給される。すると、燃焼バーナ221,222,223,224,225は、微粉炭と搬送用空気とが混合した微粉燃料混合気を火炉211に吹き込むと共に燃焼用空気を火炉211に吹き込み、このときに着火することで火炎を形成することができる。この火炉211では、微粉燃料混合気と燃焼用空気とが燃焼して火炎が生じ、この火炉211内の下部で火炎が生じると、燃焼ガス(排ガス)がこの火炉211内を上昇し、煙道240に排出される。
 なお、火炉211では、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、内部が還元雰囲気に保持される。そして、微粉炭の燃焼により発生したNOxが火炉211で還元され、その後、アディショナルエアが追加供給されることで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
 このとき、図示しない給水ポンプから供給された水は、節炭器245,246,247によって予熱された後、図示しない蒸気ドラムに供給され火炉壁の各水管(図示せず)に供給される間に加熱されて飽和蒸気となり、図示しない蒸気ドラムに送り込まれる。更に、図示しない蒸気ドラムの飽和蒸気は過熱器241,242に導入され、燃焼ガスによって過熱される。過熱器241,242で生成された過熱蒸気は、図示しない発電プラント(例えば、タービン等)に供給される。また、タービンでの膨張過程の中途で取り出した蒸気は、再熱器243,244に導入され、再度過熱されてタービンに戻される。なお、火炉211をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。
 その後、煙道240の節炭器245,246,247を通過した排ガスは、排ガス管248にて、図示しない脱硝装置にて、触媒によりNOxなどの有害物質が除去され、電気集塵機で粒子状物質が除去され、脱硫装置により硫黄分が除去された後、煙突から大気中に排出される。
 ここで、燃焼装置212について詳細に説明するが、この燃焼装置212を構成する各燃焼バーナ221,222,223,224,225は、ほぼ同様の構成をなしていることから、最上段に位置する燃焼バーナ221についてのみ説明する。
 燃焼バーナ221は、図19に示すように、火炉211における4つの壁面に設けられる燃焼バーナ221a,221b,221c,221dから構成されている。各燃焼バーナ221a,221b,221c,221dは、微粉炭供給管226から分岐した各分岐管226a,226b,226c,226dが連結されると共に、空気ダクト237から分岐した各分岐管237a,237b,237c,237dが連結されている。
 従って、火炉211の各壁面にある各燃焼バーナ221a,221b,221c,221dは、火炉211に対して、微粉炭と搬送用空気が混合した微粉燃料混合気を吹き込むと共に、その微粉燃料混合気の外側に燃焼用空気を吹き込む。そして、各燃焼バーナ221a,221b,221c,221dからの微粉燃料混合気に着火することで、4つの火炎F1,F2,F3,F4を形成することができ、この火炎F1,F2,F3,F4は、火炉211の上方から見て(図19にて)反時計周り方向に旋回する火炎旋回流となる。
 このように構成された燃焼バーナ221(221a,221b,221c,221d)にて、図16及び図17に示すように、中心側から燃料ノズル251と、2次空気ノズル252と、3次空気ノズル253とが設けられると共に、保炎器254が設けられている。燃料ノズル251は、微粉炭(固体燃料)と搬送用空気(1次空気)とを混合した燃料ガス(微粉燃料混合気)を吹き込み可能なものである。2次空気ノズル252は、燃料ノズル251の外側に配置され、燃料ノズル251から噴射された燃料ガスの外周側に燃焼用空気(2次空気)を吹き込み可能なものである。3次空気ノズル253は、2次空気ノズル252の外側に配置され、2次空気ノズル252から噴射された2次空気の外周側に3次空気を吹き込み可能なものである。
 また、保炎器254は、燃料ノズル51内であって、燃料ガスの吹き込み方向の下流側で、且つ、軸中心側に配置されることで、燃料ガスの着火用及び保炎用として機能するものである。この保炎器254は、水平方向に沿う第1保炎部材261,262と、鉛直方向(上下方向)に沿う第2保炎部材263,264とを十字形状をなすように配置した、所謂、ダブルクロススプリット構造をなすものである。そして、各第1保炎部材261,262は、その厚さが一定な平板形状をなす平坦部261a,262aと、この平坦部2261a,262aの前端部(燃料ガスの流れ方向の下流端部)に一体に設けられた拡幅部61b,262bを有している。この拡幅部261b,262bは、断面が二等辺三角形状をなし、燃料ガスの流れ方向の下流側に向って幅が広くなり、前端がこの燃料ガスの流れ方向に直交する平面となっている。なお、図示しないが、各第2保炎部材263,264についても同様の構造となっている。
 そのため、燃料ノズル251及び2次空気ノズル252は、長尺な管状構造を有し、燃料ノズル251は、矩形状の開口部251aを有し、2次空気ノズル252は、矩形リング状の開口部252aを有していることから、燃料ノズル251と2次空気ノズル252とは、二重管構造となっている。燃料ノズル251及び2次空気ノズル252の外側に、3次空気ノズル253が二重管構造として配置されており、矩形リング状の開口部253aを有している。その結果、燃料ノズル251の開口部251aの外側に2次空気ノズル252の開口部252aが配設され、この2次空気ノズル252の開口部252aの外側に3次空気ノズル253の開口部253aが配設されることとなる。なお、3次空気ノズル253は、二重管構造として配置せずに、2次空気ノズル252の外周側に別途複数のノズルを配置して3次空気ノズルとしてもよい。
 これらのノズル251,252,253は、開口部251a,252a,253aが同一面上に揃えられて配置されている。また、保炎器254は、燃料ノズル251の内壁面、または、燃料ガスが流れる流路の上流側から図示しない板材により支持されている。また、燃料ノズル251は、内部にこの保炎器254としての複数の保炎部材261,262,263,264が配置されていることから、燃料ガスの流路が9つに分割されることとなる。そして、保炎器254は、前端部に幅が広がった拡幅部261b,262bが位置することとなり、この拡幅部261b,262bは、前端面が開口部251aと同一面上に揃えられている。
 また、実施例7の燃焼バーナ221では、燃料ノズル251内を流れる燃料ガスを軸心側に導く案内部材255が設けられている。この案内部材255は、2次空気ノズル252により吹き込まれる2次空気から離間する方向に燃料ガスを導くものである。
 この案内部材255は、燃料ノズル251の先端部にその内壁面に周方向に沿って配置されている。即ち、案内部材255は、燃料ノズル251の上壁面に沿って配置される上案内部材265と、燃料ノズル251の下壁面に沿って配置される下案内部材266と、燃料ノズル251の左右壁面に沿って配置される左右案内部材267,268とを有している。そして、この案内部材255は、燃料ノズル251の先端部に保炎器254の拡幅部261b,262bに対向するように配置されている。そして、案内部材255は、断面が三角形状をなし、燃料ガスの流れ方向の下流側に向ってその幅が広くなるような傾斜面269が形成されており、前端がこの燃料ガスの流れ方向に直交する平面となり、開口部251a,252aと同一面上に揃えられている。なお、この案内部材55は、各保炎部材261,262,263,264と交差する位置が切り欠かれて形成されている。
 従って、この燃焼バーナ221では、微粉炭と1次空気とを混合した燃料ガスが燃料ノズル251の開口部251aから炉内に吹き込まれると共に、その外側にて2次空気が2次空気ノズル252の開口部252aから炉内に吹き込まれ、その外側にて3次空気が3次空気ノズル253の開口部253aから炉内に吹き込まれる。このとき、燃料ガスは、燃料ノズル251の開口部251aにて、保炎器254により分岐されて着火され、燃焼して燃焼ガスとなる。また、この燃料ガスの外周に2次空気が吹き込まれることで、燃料ガスの燃焼が促進される。また、燃焼火炎の外周に、3次空気が吹き込まれることで、2次空気と3次空気の割合を調整し、最適な燃焼を得ることができる。
 そして、この燃焼バーナ221では、保炎器254がスプリット形状をなすので、燃料ガスが燃料ノズル251の開口部251aにて保炎器254により分岐され、このとき、保炎器254が燃料ノズル251の開口部251aの中央領域に配置され、この中央領域にて、燃料ガスの着火及び保炎が行われる。これにより、燃焼火炎の内部保炎(燃料ノズル251の開口部251aの中央領域における保炎)が実現される。
 そのため、燃焼火炎の外部保炎が行われる構成と比較して、燃焼火炎の外周部が低温となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度を低くでき、燃焼火炎の外周部におけるNOx発生量が低減される。
 また、燃焼バーナ221では、内部保炎する構成が採用されるため、燃料ガス及び燃焼空気(2次空気及び3次空気)が直進流として供給されることが好ましい。即ち、燃料ノズル251、2次空気ノズル252、3次空気ノズル253が、燃料ガス、2次空気、3次空気を旋回させることなく直進流として供給する構造を有することが好ましい。この燃料ガス、2次空気、3次空気が直進流として噴射されて燃焼火炎が形成されるため、燃焼火炎を内部保炎する構成において、燃焼火炎内のガス循環が抑制される。これにより燃焼火炎の外周部が低温のまま維持され、2次空気との混合によるNOx発生量が低減される。
 更に、燃焼バーナ221では、燃料ノズル251の前端部に全周に位置して案内部材255が配置されていることから、燃料ノズル251内を流れる燃料ガスは、この案内部材255の傾斜面269により軸心側、つまり、保炎器254側に導かれる。すると、燃料ノズル251により炉内に吹き込まれる燃料ガスは、2次空気ノズル252により吹き込まれる2次空気から離間する方向に導かれる。そのため、燃料ガスは、この燃料ガスより比較的高速となる2次空気から離れることで、保炎器254による内部保炎が適正に行われることとなる。また、燃料ガスは、この燃料ガスが2次空気から離れることで、2次空気との混合によるNOx発生量が低減される。更に、保炎器254に向けて微粉炭を適正に供給することができる。
 このように実施例7の燃焼バーナにあっては、微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル251と、この燃料ノズル251の外側から2次空気を吹き込み可能な2次空気ノズル252とを設けると共に、燃料ノズル251の先端部における軸中心側に保炎器254を設け、燃料ノズル251内を流れる燃料ガスを軸心側に導く案内部材255を設けている。
 従って、燃料ノズル251内を流れる燃料ガスは、この案内部材255により燃料ノズル251の軸心側、つまり、保炎器254側に導かれることとなり、燃料ノズル251内で燃料ガスの適正な流れを実現することができ、その結果、保炎器254による内部保炎性能を向上することができる。
 また、実施例7の燃焼バーナでは、案内部材255は、2次空気ノズル252により吹き込まれる2次空気から離間する方向に燃料ガスを導いている。従って、案内部材255により、燃料ガスが2次空気から離間する方向に導かれることとなり、燃料ガスと2次空気との混合が抑制され、保炎器254による内部保炎性能を向上することができると共に、燃焼火炎の外周部が低温のまま維持されるため、燃焼ガスと2次空気との混合によるNOx発生量を低減することができる。
 また、実施例7の燃焼バーナでは、案内部材255を燃料ノズル251の内壁面に沿って配置している。従って、燃料ノズル251の全域にわたって効果的にこの燃料ノズル251内を流れる燃料ガスを保炎器254側に導くことができると共に、この燃料ガスを2次空気から離間する方向に導くことができ、保炎器254による内部保炎性能を向上することができる。
 また、実施例7の燃焼バーナでは、案内部材255を燃料ノズル251の先端部に保炎器254と対向して配置している。この場合、案内部材255を保炎器254における拡幅部261b,262bに対向して配置している。従って、案内部材255により燃料ガスを保炎器254における拡幅部261b,262bに導くことで、十分な保炎機能を確保して内部保炎性能を向上することができる。
 図20は、本発明の実施例8に係る燃焼バーナを表す断面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例8の燃焼バーナにおいて、図20に示すように、燃焼バーナ221にて、中心側から燃料ノズル251と、2次空気ノズル252と、3次空気ノズル253とが設けられると共に、保炎器254が設けられている。そして、燃料ノズル251内を流れる燃料ガスを軸心側に導くことで、2次空気ノズル252により吹き込まれる2次空気から離間する方向に燃料ガスを導く案内部材271が設けられている。
 この案内部材271は、燃料ノズル251内に配置された保炎器254に対向しない位置、つまり、この保炎器254より燃料ガスの流れ方向の上流側であって、燃料ノズル251の内壁面に周方向に沿って配置されている。この案内部材271は、燃料ノズル251の内壁面から保炎器254側に突出するリング状をなし、燃料ノズル251内の燃料ガスを軸心側に導く案内面(傾斜面または湾曲面)272が形成されている。
 従って、燃焼バーナ221では、燃料ノズル251の前端部に全周に位置して案内部材271が配置されていることから、燃料ノズル251内を流れる燃料ガスは、この案内部材271の案内面272により軸心側、つまり、保炎器254側に導かれる。すると、燃料ノズル251により炉内に吹き込まれる燃料ガスは、2次空気ノズル252により吹き込まれる2次空気から離間する方向に導かれる。そのため、燃料ガスは、この燃料ガスより比較的高速となる2次空気から離れることで、保炎器254による内部保炎が適正に行われることとなる。また、燃料ガスは、この燃料ガスが2次空気から離れることで、2次空気との混合によるNOx発生量が低減される。
 このように実施例8の燃焼バーナにあっては、微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル251と、この燃料ノズル251の外側から2次空気を吹き込み可能な2次空気ノズル252とを設けると共に、燃料ノズル251の先端部における軸中心側に保炎器254を設け、燃料ノズル251内を流れる燃料ガスを軸心側に導く案内部材271を保炎器254より燃料ガスの流れ方向の上流側に設けている。
 従って、燃料ノズル251内を流れる燃料ガスは、この案内部材271により燃料ノズル251の軸心側、つまり、保炎器254側に導かれることとなり、燃料ノズル251内で燃料ガスの適正な流れを実現することができ、その結果、保炎器254による内部保炎性能を向上することができる。また、案内部材271が保炎器254より上流側に設けられていることで、燃料ガスを保炎器254に効果的に導くことが可能となり、保炎器254による内部保炎性能を向上することができる。また、案内部材271が燃料ノズル251内の先端部側に設けられていないことから、案内部材271自体が保炎器として機能することがない。
 図21は、本発明の実施例9に係る燃焼バーナを表す正面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例9の燃焼バーナにおいて、図21に示すように、燃焼バーナ221にて、中心側から燃料ノズル251と、2次空気ノズル252と、3次空気ノズル253とが設けられると共に、保炎器254が設けられている。そして、燃料ノズル251内を流れる燃料ガスを軸心側に導くことで、2次空気ノズル252により吹き込まれる2次空気から離間する方向に燃料ガスを導く案内部材が設けられている。
 この案内部材は、保炎器254における拡幅部261b,262bにて、燃料ノズル251の内壁面と対向する位置に配置されている。即ち、保炎器254は、水平方向に沿う第1保炎部材261,262と、鉛直方向に沿う第2保炎部材263,264とが交差して配置されており、案内部材は、この各保炎部材261,262,263,264における拡幅部261b,262bの端部に形成された切欠面261c,262c,263c,264cとして構成されている。この各切欠面261c,262c,263c,264cは、各保炎部材261,262,263,264を正面から見て、端部の両側に傾斜面が形成されることで先細形状となるように形成されている。
 従って、燃焼バーナ221では、保炎器254の各保炎部材261,262,263,264の端部に案内部材としての切欠面261c,262c,263c,264cが形成されていることから、燃料ノズル251内を流れる燃料ガスは、この各切欠面261c,262c,263c,264cにより軸心側、つまり、各保炎部材261,262,263,264の長手方向の内側に導かれる。つまり、燃料ガスが各保炎部材261,262,263,264の切欠面261c,262c,263c,264cの近傍を通過するとき、各保炎部材261,262,263,264の前面側が負圧となり、燃料ガスがこの負圧領域に引き込まれることで、図21に矢印で表す流れが発生する。
 すると、燃料ノズル251により炉内に吹き込まれる燃料ガスは、2次空気ノズル252により吹き込まれる2次空気から離間する方向に導かれる。そのため、燃料ガスは、この燃料ガスより比較的高速となる2次空気から離れることで、保炎器254による内部保炎が適正に行われることとなる。また、燃料ガスは、この燃料ガスが2次空気から離れることで、2次空気との混合によるNOx発生量が低減される。
 このように実施例9の燃焼バーナにあっては、微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル251と、この燃料ノズル251の外側から2次空気を吹き込み可能な2次空気ノズル252とを設けると共に、燃料ノズル251の先端部における軸中心側に保炎器254を設け、燃料ノズル251内を流れる燃料ガスを軸心側に導く案内部材として、保炎器254の各保炎部材261,262,263,264の端部に切欠面261c,262c,263c,264cを形成している。
 従って、燃料ノズル251内を流れる燃料ガスは、この切欠面261c,262c,263c,264cにより燃料ノズル251の軸心側、つまり、保炎器254の中心側に導かれることとなり、燃料ノズル251内で燃料ガスの適正な流れを実現することができ、その結果、保炎器254による内部保炎性能を向上することができる。また、保炎器254の端部に切欠面261c,262c,263c,264cを形成することで案内部材を構成していることから、装置の簡素化を可能とすることができる。
 なお、この実施例9にて、案内部材を、保炎部材261,262,263,264における長手方向の端部に形成された先細形状をなす切欠面261c,262c,263c,264cとしたが、この形状に限定されるものではない。例えば、保炎部材261,262,263,264における長手方向の端部を一辺側だけ切り欠いて切欠面を形成したり、保炎部材261,262,263,264の長手方向に直交する方向で切断することで、燃料ノズル251の内壁面から離間させるような切欠部としたりしてもよい。また、各切欠面261c,262c,263c,264cは、拡幅部261b,262bと同様に、燃料ガスの流れ方向の下流側が拡幅する形状としてもよい。
 図22は、本発明の実施例10に係る燃焼バーナを表す正面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例10の燃焼バーナにおいて、図22に示すように、燃焼バーナ221にて、中心側から燃料ノズル251と、2次空気ノズル252と、3次空気ノズル253とが設けられると共に、保炎器254が設けられている。そして、燃料ノズル251内を流れる燃料ガスを軸心側に導くことで、2次空気ノズル252により吹き込まれる2次空気から離間する方向に燃料ガスを導く案内部材が設けられている。
 この案内部材は、第1保炎部材261,262と第2保炎部材263,264とが交差する位置の外側に三角板281,282,283,284として配置されている。具体的には、第1保炎部材261,262の拡幅部261b,262bと第2保炎部材263,264の拡幅部(図示略)とが交差する位置の外側、つまり、燃料ノズル251の軸中心とは反対側に配置されている。この各三角板281,282,283,284は、各保炎部材261,262,263,264を正面から見て、交差した角部の外側に傾斜面が形成されることで三角形状をなして形成されている。
 従って、燃焼バーナ221では、保炎器54の各保炎部材261,262,263,264が交差する外側に三角板281,282,283,284が配置されていることから、燃料ノズル251内を流れる燃料ガスは、この各三角板281,282,283,284により軸心側、つまり、各保炎部材261,262,263,264の中央部に導かれる。つまり、燃料ガスが各三角板281,282,283,284の近傍を通過するとき、各三角板281,282,283,284の前面側が負圧となり、燃料ガスがこの負圧領域に引き込まれることで、図22に矢印で表す流れが発生する。
 すると、燃料ノズル251により炉内に吹き込まれる燃料ガスは、2次空気ノズル252により吹き込まれる2次空気から離間する方向に導かれる。そのため、燃料ガスは、この燃料ガスより比較的高速となる2次空気から離れることで、保炎器254による内部保炎が適正に行われることとなる。また、燃料ガスは、この燃料ガスが2次空気から離れることで、2次空気との混合によるNOx発生量が低減される。
 このように実施例10の燃焼バーナにあっては、微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル251と、この燃料ノズル251の外側から2次空気を吹き込み可能な2次空気ノズル252とを設けると共に、燃料ノズル251の先端部における軸中心側に保炎器254を設け、燃料ノズル251内を流れる燃料ガスを軸心側に導く案内部材として、保炎器254の各保炎部材261,262,263,264が交差する位置の外側に三角板281,282,283,284が配置されている。
 従って、燃料ノズル251内を流れる燃料ガスは、この三角板281,282,283,284により燃料ノズル251の軸心側、つまり、保炎器254の中心側に導かれることとなり、燃料ノズル251内で燃料ガスの適正な流れを実現することができ、その結果、保炎器254による内部保炎性能を向上することができる。また、保炎器254を、水平方向に沿って鉛直方向に所定隙間をもって平行をなす2つの第1保炎部材261,262と、鉛直方向に沿って水平方向に所定隙間をもって平行をなす2つの第2保炎部材263,264とが交差するように配置した構造としている。従って、保炎器254をダブルクロス構造とすることで、十分な保炎機能を確保することが可能となる。更に、案内部材を三角板281,282,283,284とすることで、燃料ノズル251内を流れる燃料ガスを効果的に軸心側に導くことができる。
 なお、この実施例10にて、案内部材を、三角板281,282,283,284としたが、この形状に限定されるものではない。例えば、各三角板281,282,283,284を、拡幅部261b,262bと同様に、燃料ガスの流れ方向の下流側が拡幅する形状としてもよい。
 図23は、本発明の実施例11に係る燃焼バーナを表す断面図、図24は、実施例11の燃焼バーナの変形例を表す断面図である。なお、上述した実施例と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
 実施例11の燃焼バーナにおいて、図23に示すように、燃焼バーナ221にて、中心側から燃料ノズル251と、2次空気ノズル252と、3次空気ノズル253とが設けられると共に、保炎器291が設けられている。そして、燃料ノズル251内を流れる燃料ガスを軸心側に導くことで、2次空気ノズル252により吹き込まれる2次空気から離間する方向に燃料ガスを導く案内部材が設けられている。
 即ち、保炎器291は、水平方向に沿う保炎部材292,293を有し、この保炎部材292,293は、その厚さが一定な平板形状をなす平坦部292a,293aと、この平坦部292a,293aの前端部(燃料ガスの流れ方向の下流端部)に一体に設けられた拡幅部292b,293bを有している。この拡幅部292b,293bは、断面が二等辺三角形状をなし、燃料ガスの流れ方向の下流側に向って幅が広くなり、前端がこの燃料ガスの流れ方向に直交する平面となっている。
 そして、この保炎部材292,293は、前端部が燃料ノズル251の軸心側を向くことで案内部材を構成している。つまり、保炎部材292,293は、前端部に形成された拡幅部292b,293b同士が、平坦部292a,293aの後端部同士より接近して配置することで、燃料ノズル251の軸中心に対して傾斜している。
 従って、燃焼バーナ221では、燃料ノズル251内の保炎器291にて、保炎部材292,293の前端部が接近するように配置していることから、燃料ノズル251内を流れる燃料ガスは、この保炎部材292,293により軸心側に導かれる。つまり、保炎部材292,293の前端部が接近しているため、燃料ガスは、保炎部材292,293間で高速になる一方、燃料ノズル251と保炎部材292,293との間で低速となり、全体として燃料ノズル251の軸中心側に導かれる。
 すると、燃料ノズル251により炉内に吹き込まれる燃料ガスは、2次空気ノズル252により吹き込まれる2次空気から離間する方向に導かれる。そのため、燃料ガスは、この燃料ガスより比較的高速となる2次空気から離れることで、保炎器291による内部保炎が適正に行われることとなる。また、燃料ガスは、この燃料ガスが2次空気から離れることで、2次空気との混合によるNOx発生量が低減される。
 この場合、保炎器291を構成する保炎部材292,293の傾斜角度を調整可能としてもよい。即ち、図24に示すように、保炎部材292,293は、燃料ノズル251の燃料ガスの流れ方向に直交する水平方向に沿う支持軸295,296により上下に回動自在に支持されており、駆動装置297により回動可能となっている。即ち、保炎部材292,293は、駆動装置297によりその傾斜角度を個別に調整可能となっている。
 従って、例えば、燃料ガスの性質や速度、2次空気の速度、また、火炉211内の燃焼状態などに基づいて、駆動装置297が保炎部材292,293の角度を個別に調整することで、燃料ガスの最適な吹き込み状態を維持することが可能となる。
 このように実施例11の燃焼バーナにあっては、微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル251と、この燃料ノズル251の外側から2次空気を吹き込み可能な2次空気ノズル252とを設けると共に、燃料ノズル251の先端部における軸中心側に保炎器291を設け、燃料ノズル251内を流れる燃料ガスを軸心側に導く案内部材として、保炎器291における保炎部材292,293を前端部が燃料ノズル251の軸心側を向くように配置している。
 従って、燃料ノズル251内を流れる燃料ガスは、傾斜した保炎部材292,293により燃料ノズル251の軸心側、つまり、保炎器291の中央部側に導かれることとなり、燃料ノズル251内で燃料ガスの適正な流れを実現することができ、その結果、保炎器291による内部保炎性能を向上することができる。また、案内部材を保炎器291における保炎部材292,293の配置により構成したことで、構造の簡素化を可能とすることができる。
 また、実施例11の燃焼バーナでは、駆動装置297により保炎部材292,293の傾斜角度を個別に調整可能としている。従って、例えば、燃料ガスの性質や速度、2次空気の速度、また、火炉211内の燃焼状態などに基づいて保炎部材292,293の角度が変更されることで、燃料ガスの最適な吹き込み状態を維持することが可能となる。
 なお、上述した各実施例にて、保炎器254,291の構成を各種挙げて説明したが、この構成は上述したものに限定されるものではない。即ち、本発明のバーナは、内部保炎を実現するものであり、燃料ノズル251の内壁面ではなくて、燃料ノズル251の軸心側に保炎器が設けられていればよく、保炎部材の数や位置などは適宜設定すればよいものであり、保炎部材が燃料ノズル251の内壁面から離間していてもよいものである。また、案内部材の構成も各種挙げて説明したが、この構成も上述したものに限定されるものではない。即ち、案内部材により燃料ノズル内の燃料ガスを軸心側に導くことができればよいものである。
 また、本発明の保炎器は、三角形断面形状の拡幅部を設けたが、この形状に限定されるものではなく四角形状でもよく、拡幅部をなくしてもよいものである。
 また、上述した各実施例では、本発明の案内部材を燃料ノズルの内壁面や保炎器に設けて構成したが、燃料ノズルの内壁面と保炎器との間に別部材を設けて構成してもよい。例えば、燃料ノズルの内壁面と保炎器との間に保炎器と平行または交差する方向に沿って案内部材を設けることで、この案内部材を四角形状や菱形をなす枠形などとしてもよい。
 また、上述した各実施例では、燃焼装置212として、火炉211の壁面に設けられる4つの各燃焼バーナ221,222,223,224,225を鉛直方向に沿って5段配置して構成したが、この構成に限定されるものではない。即ち、燃焼バーナを壁面に配置せずにコーナーに配置してもよい。また、燃焼装置は、旋回燃焼方式に限らず、燃焼バーナを一つの壁面に配置したフロント燃焼方式、燃焼バーナを二つの壁面に対向配置した対向燃焼方式としてもよい。
 従来、固体燃料焚きのボイラには、例えば、固体燃料として微粉炭(石炭)を焚く微粉炭焚きボイラがある。このような微粉炭焚きボイラにおいては、旋回燃焼ボイラ及び対向燃焼ボイラという二種類の燃焼方式が知られている。
 このうち、微粉炭焚きの旋回燃焼ボイラにおいては、燃料の微粉炭とともに石炭焚きバーナ(固体燃料焚きバーナ)から投入される1次空気の上下に2次空気投入用の2次空気投入ポートを設置して、石炭焚きバーナ周囲の2次空気について流量調整を行っている。上述した1次空気は、燃料の微粉炭を搬送するために必要な空気量であるから、石炭を粉砕して微粉炭とするローラミル装置において空気量が規定される。そして、上述した2次空気は、旋回燃焼ボイラ内において火炎全体を形成するために必要となる空気量を吹き込むものであるから、旋回燃焼ボイラの2次空気量は、概ね微粉炭の燃焼に必要な全空気量から1次空気量を差し引いたものとなる。また、旋回燃焼ボイラのバーナにおいては、微粉炭を外周に濃淡分離し、さらに、火炎外周の着火を強化する外部保炎が行われている。
 これに対して、対向燃焼ボイラのバーナにおいては、例えば、上述した特許文献2に開示されているように、1次空気(微粉炭供給)の外周側に2次空気及び3次空気を導入して空気導入量の微調整を行うことが行われている。即ち、火炉内から見て円形としたバーナの外周に保炎機構(先端角度の調整、旋回等)を設置するとともに、バーナ外周に近接して2次空気や3次空気の投入口を同心円状に設置する外部保炎構造のバーナが一般的である。
 また、従来の微粉炭焚きバーナにおいては、例えば、上述した特許文献3に開示されているように、微粉炭を外周に濃淡分離し、さらに火炎外周の着火を強化することが行われている。また、上述した特許文献4にも、外周保炎器及びスプリットにより構成された保炎器が開示されている。この場合、外周保炎器がメインであり、スプリットは補助的なものとなっている。
 ところで、上述した従来の旋回燃焼ボイラにおいては、石炭焚きバーナの上下に設けられる2次空気投入用の2次空気投入ポートが各々1本とされ、2次空気投入ポートから投入される2次空気量の微調整はできない構成となっている。このため、火炎の外周には高温酸素残存領域が形成されることとなり、特に2次空気が集中する領域では、高温酸素残存領域が強くなってNOx発生量を増加させる要因となるため好ましくない。
 また、従来の石炭焚きバーナは、バーナ外周に保炎機構(先端角度の調整、旋回等)を設置し、さらに、すぐ外周に近接して2次空気(あるいは3次空気)の投入ポートを設置することが一般的である。このため、火炎の外周で着火が起こり、火炎の外周において大量の空気が混合されることとなる。この結果、火炎外周の燃焼は、火炎外周の高温酸素残存領域において酸素濃度が高い高温状態で進行することになり、従って、NOxは火炎外周で発生していた。このようにして、火炎外周の高温酸素残存領域で発生したNOxは、火炎の外周を通過するので、火炎内部と比較して還元が遅れることとなり、これが石炭焚きボイラからNOxを発生させる要因となっていた。
 一方、対向燃焼ボイラにおいても、旋回により、火炎外周で着火するため、火炎の外周で同様にNOxが発生する要因となっていた。
 このような背景から、上述した従来の石炭焚きバーナ及び石炭焚きボイラのように、粉体の固体燃料を焚く固体燃料焚きバーナ及び固体燃料焚きボイラにおいては、火炎の外周に形成される高温酸素残存領域を抑制し、追加空気投入部から排出される最終的なNOx発生量を低減することが望まれる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、火炎の外周に形成される高温酸素残存領域を抑制(弱く)することにより、追加空気投入部から排出される最終的なNOx発生量の低減を可能にした固体燃料焚きバーナ及び固体燃料焚きボイラを提供することにある。
 以下、本発明に係る固体燃料焚きバーナ及び固体燃料焚きボイラの一実施例を図面に基づいて説明する。なお、本実施例では、固体燃料焚きバーナ及び固体燃料焚きボイラの一例として、微粉炭(粉体の固体燃料である石炭)を燃料とする固体燃料焚きバーナを備えた旋回燃焼ボイラについて説明するが、これに限定されることはない。
 図27から図29に示す旋回燃焼ボイラ310は、火炉311内へ空気を多段で投入することにより、バーナ部312から追加空気投入部(以下、「AA部」と呼ぶ)314までの領域を還元雰囲気にして燃焼排ガスの低NOx化を図っている。
 図中の符号320は微粉炭(粉体の固体燃料)及び空気を投入する固体燃料焚きバーナ、315は追加空気を投入する追加空気投入ノズルである。固体燃料焚きバーナ320には、例えば、図27に示すように、微粉炭を1次空気で搬送する微粉炭混合気輸送管316及び2次空気を供給する送気ダクト317が接続され、追加空気投入ノズル315には、2次空気を供給する送気ダクト317が接続されている。
 このように、上述した旋回燃焼ボイラ310は、粉体燃料の微粉炭(石炭)及び空気を火炉311内へ投入する固体燃料焚きバーナ320が各段の各コーナ部に配置される旋回燃焼方式のバーナ部312とされ、各段にそれぞれ1または複数の旋回火炎が形成される旋回燃焼方式を採用している。
 図25に示す固体燃料焚きバーナ320は、微粉炭及び空気を投入する微粉炭バーナ(燃料バーナ)321と、微粉炭バーナ321の上下に各々配置された2次空気投入ポート330とを備えている。
 2次空気投入ポート330は、ポート毎の空気流量調整を可能にするため、例えば、図26に示すように、送気ダクト317から分岐した2次空気の供給ライン毎に、流量調整手段として開度調整可能なダンパ340を備えている。
 上述した微粉炭バーナ321は、1次空気により搬送された微粉炭を投入する矩形状のコール1次ポート322と、コール1次ポート322の周囲を取り囲むように設けられて2次空気の一部を投入するコール2次ポート323とを備えている。なお、コール2次ポート323についても、図26に示すように、流量調整手段として開度調整可能なダンパ340を備えている。なお、コール1次ポート322は、円形や楕円でもよい。
 微粉炭バーナ321の流路前方部には、即ち、コール1次ポート322の流路前方部には複数方向のスプリット部材324が配設され、図示省略の支持部材等に固定されている。このスプリット部材324は、例えば、図25(a)に示すように、コール1次ポート322の出口開口部において上下方向及び左右方向に各々1本ずつ、合計2本が所定の間隔を有する格子状に配設されている。
 即ち、2本のスプリット部材324は、上下方向及び左右方向の異なる2方向に向けて格子状に配設されるクロスタイプとすることで、微粉炭バーナ321におけるコール1次ポート322の出口開口部を細分化(4分割)しているが、スプリット部材324の数については、上下方向及び左右方向共に複数本としてもよい。
 また、スプリット部材324に挟まれる部分では、圧損が大きく、噴出口での流速が低下し、より内部での着火が促進される。
 このような構成のスプリット部材324は、火炎Fの外周に形成される高温酸素残存領域Hを抑制し、AA部314から排出される最終的なNOx発生量の低減に有効である。
 上述したスプリット部材324は、例えば、図30(a)から図30(d)に示すような断面形状を採用することにより、微粉炭及び空気の流れをスムーズに分離させて乱すことができる。
 図30(a)に示すスプリット部材324は、三角形の断面形状を有している。図示の三角形は正三角形や二等辺三角形であり、火炉311内に向けた出口側の一辺が微粉炭及び空気の流れ方向と略直交するように配置されている。換言すれば、三角形断面を形成する角部の1つを、微粉炭及び空気の流れ方向に向けた配置が採用されている。
 図30(b)に示すスプリット部材324Aは、略T字状の断面形状を有し、火炉311内に向けた出口側に微粉炭及び空気の流れ方向と略直交する面が配置されている。なお、このような略T字状断面形状を変形させることにより、例えば、図30(c)に示すように、台形状の断面形状を有するスプリット部材324A′としてもよい。
 また、図30(d)に示すスプリット部材324Bは、略L字状の断面形状を有している。即ち、上述した略T字状の一部を切り取ったような断面形状であり、特に、左右(水平)方向に配置する場合においては、上方の凸部を除去した略L字形状にすれば、スプリット部材324Bに微粉炭が堆積することを防止できる。なお、上方の凸部を除去した分、下方の凸部を大きくすることで、スプリット部材324Bに必要な分離性能を確保することができる。
 しかし、上述したスプリット部材324等の断面形状については、例えば、略Y字形状等のように、図示の例に限定されることはない。
 このように構成した固体燃料焚きバーナ320において、微粉炭バーナ321の出口開口中央付近に設置したスプリット部材324は、微粉炭及び空気の流路を分割して流れを内部で乱すとともに、スプリット部材324の前方(下流側)に再循環域を形成するため、内部保炎機構として機能する。
 一般に、従来の固体燃料焚きバーナ320は、火炎外周で輻射を受けて燃料の微粉炭に着火する。火炎外周で微粉炭に着火すると、NOxは高温の酸素が残存する火炎外周の高温酸素残存領域H(図25(b)参照)で発生し、十分に還元されないまま残存してNOx排出量を増加させている。
 しかし、内部保炎機構として機能するスプリット部材324が設けられたことにより、微粉炭は火炎内部で着火するようになる。このため、NOxは火炎内部で発生し、火炎内部で発生したNOxは還元作用を有する炭化水素類を多く含んでいることから、空気不足の状態にある火炎内で迅速に還元される。従って、火炎外周に保炎器を設置する保炎をやめて、即ち、バーナ外周に保炎機構を設置しない構造の固体燃料焚きバーナ320とし、火炎外周でのNOx発生を抑制することも可能になる。
 特に、複数方向のスプリット部材324を配設したクロスタイプとすることにより、微粉炭バーナ321の出口開口中央付近に対し、異なる方向のスプリット部材324を交差させた交差部を容易に設けることができる。このような交差部が微粉炭バーナ321の出口開口中央付近に存在していると、微粉炭バーナ321の出口開口においては、中央付近で微粉炭及び空気の流路が複数に分割されるので、複数に分流する際に流れが乱される。
 即ち、スプリット部材324が左右一方向の場合、中央部における空気の拡散や着火が遅れて局所的に極端な空気不足領域が存在し、未燃分増加の原因になるが、スプリット部材324を複数方向に配設して交差部が形成されるクロスタイプでは、火炎内部での空気の混合が促進されるとともに着火面が細分化されるので、結果として未燃分の低減が可能になる。
 換言すれば、交差部を形成するようにスプリット部材324を配設すれば、空気の混合・拡散が火炎の内部で促進され、さらに着火面が細分化されることにより、着火位置が火炎の中央部(軸中心部)に寄って微粉炭の未燃分を低減する。即ち、火炎の中心部まで酸素が入り込みやすくなるので、内部着火が効果的に行われるようになり、従って、火炎内部で迅速な還元が行われてNOxの発生量は低減される。
 この結果、火炎外周に設置した保炎器による保炎をやめ、火炎外周に保炎器のない固体燃料焚きバーナ320を用いて火炎外周でのNOx発生を抑制することは、より一層容易になる。
 このような複数方向のスプリット部材324において、本実施例では、スプリット部材324を炉内側から見た部材幅寸法をスプリッタ幅Wとした場合、方向毎にスプリッタ幅Wが異なるクロスタイプのものを配設している。
 例えば、図25(a)に示すクロスタイプの構成例では、コール1次ポート322の出口開口部に上下方向のスプリット部材(以下、「縦スプリッタ」と呼ぶ)324V及び左右方向のスプリット部材(以下、「横スプリッタ」と呼ぶ)324Hが各々1本ずつ配設されている。
 そして、縦スプリッタ324Vのスプリッタ幅Wvが、横スプリッタ324Hのスプリッタ幅Whより太く広い幅広(Wv>Wh)となっているが、逆の構成としてもよい。
 即ち、図示のスプリット部材324は、縦方向のスプリッタ機能を強化することにより、横方向のスプリッタ機能を相対的に低下させるため、縦スプリッタ324Vのスプリッタ幅Wvを横スプリッタ324Hのスプリッタ幅Whより大きく設定した構造である。
 このような構成は、角度調整可能な燃料バーナ321の角度変化に対応するものである。
 燃料バーナ321は、例えば、図25(b)に示すように、旋回燃焼ボイラ310で生成する蒸気温度を所望の値に調整するため、バーナ角度(ノズル角度)αを上下方向に適宜変化させることができる。
 しかしながら、バーナ角度αが変化しても、適所に固定支持されているスプリット部材324は、燃料バーナ321と一体に角度変化しない。このため、燃料バーナ321とスプリット部材324との位置関係は、バーナ角度αの変化に応じて変動することとなる。
 上述したバーナ角度αを上下に変化させると、微粉炭及び1次空気を投入する際には、微粉炭流と横スプリッタ324Hとの位置関係が変動する。このような位置関係の変動は、横スプリッタ324Hのスプリッタ幅Whが幅広になるほど大きな影響を受けるようになるので、結果的にバーナ性能も影響を受けて一定に保つことは困難になる。従って、燃料バーナ321のバーナ角度αが変化しても、バーナ性能が影響を受けないようにすることが望まれる。
 そこで、本実施例においては、縦スプリッタ324Vのスプリッタ幅Wvを相対的に幅広とし、縦方向のスプリッタ機能を強化したスプリット部材324は、横スプリッタ324Hのスプリッタ幅Whが必要最小限まで狭められ、バーナ角度αの変化による位置関係の変動を最小限に抑えたものである。
 従って、スプリット部材324は、スプリッタ幅Wの小さい横スプリッタ324Hを残し、上下及び左右の両方向にスプリッタが存在するクロスタイプとなるので、空気の混合促進及び着火面の細分化を維持することができる。このため、スプリット部材324は、火炎の中心部まで空気が入り込みやすくなり、結果として中央部の着火促進により未燃分の低減が可能になるというクロスタイプの利点を維持したまま、バーナ角度αの変化による位置関係の変動を最小限に抑えて、バーナ性能を略一定に保つことができる。
 また、2次空気投入ポート330が微粉炭バーナ321の上下方向に配置される旋回燃焼方式の場合には、横スプリッタ324Hのスプリッタ幅Whが、縦スプリッタ324Vのスプリッタ幅Wvより太く広い幅広(Wh>Wv)とする。
 これは、縦スプリッタ324Vのスプリッタ幅Wvが必要以上に大きいと、スプリッタ機能が強くなって微粉炭の着火源となりやすいためである。
 しかも、縦スプリッタ324Vの上下両端部付近での着火は、着火源が2次空気投入ポート330に近い位置にあるため、火炎外周での着火が2次空気と直接干渉しやすい状況にある。この結果、縦スプリッタ324Vを着火源として火炎外周で着火した微粉炭には多量の空気が混合されることとなり、従って、高温の酸素が残存する火炎外周の高温酸素残存領域HでNOxを発生する。このNOxは、十分に還元されないまま残存し、最終的なNOx排出量を増加させる原因となる。
 しかし、横スプリッタ324Hのスプリッタ幅Whを幅広とし、横スプリッタ324Hのスプリッタ機能を強化すると、微粉炭バーナ321の上下に存在する2次空気投入ポート330の近傍では着火源が縮小されて小さくなる。即ち、幅広とした横スプリッタ324Hの下流側には、大きな再循環域となる負圧領域が形成され、強いスプリッタ機能が発揮されるため、微粉炭及び1次空気の流れは上下方向の中心部に集中しやすくなる。
 この結果、縦スプリッタ324Vの両端部付近を着火源とし、火炎外周で着火するとともに大量の空気が混合される微粉炭量は大幅に減少する。一方、微粉炭及び1次空気の混合・拡散は、火炎の内部まで促進されて空気(酸素)が火炎の中心部まで入り込みやすくなる。この結果、内部着火が効果的に行われるようになるので、火炎内部における迅速な還元が行われてNOxの発生量は低減される。
 この場合、縦スプリッタ324Vを残すことにより、即ち、スプリッタ幅Wvの小さい縦スプリッタ324Vを設けて上下及び左右に存在するクロスタイプのスプリット部材324とすることにより、空気の混合促進及び着火面の細分化がなされる。このため、クロスタイプのスプリット部材324を備えた固体燃料焚きバーナ320は、火炎の中心部まで空気が入り込みやすくなり、結果として中央部の着火促進により未燃分の低減が可能になる。
 次に、本発明の実施例13に係る固体燃料焚きバーナを説明する。
 この実施例では、固体燃料焚きバーナ320に設けられたスプリット部材324が、スプリッタ幅Wの異なる複数方向に配置したスプリット部材324により構成され、かつ、同方向に3本以上配置した中央部のスプリッタ幅Wを幅広にして周辺部を相対的に狭めた構成となっている。
 このように構成されたスプリット部材324は、固体燃料焚きバーナ320の中央部に幅広にしたスプリッタが配置されているので、中央部のスプリッタ機能が強化された構造となり、外部着火を防止しながら内部着火を強化できるようになる。
 即ち、本実施例の固体燃料焚きバーナ320は、中央部を幅広にしたクロスタイプのスプリット部材324を備えているので、微粉炭バーナ321の外周部で着火源となるスプリッタの存在が最小限に抑えられることにより、外部着火の防止または抑制が可能となり、さらに、中央部のスプリッタ機能が強化されたことにより、火炎の中心部まで空気が入り込みやすくなり、結果として中央部の着火促進により未燃分の低減が可能になる。
 ところで、上述した構成例では、上下及び左右に各々3本のスプリッタを配設し、上下及び左右の中央に配置された1本のみを幅広としているが、スプリッタの数は勿論のこと、幅広とするスプリッタの数や位置等については、これに限定されることはない。
 例えば、上下及び左右に4本のスプリッタを配設し、上下及び左右の中央部となる2本ずつを幅広としてもよい。また、中央部に配置されたスプリッタは、上下及び左右の両方を幅広とする必要はなく、例えば、中央部に配置された上下のみまたは左右のみを幅広としてもよい。従って、複数方向の一方にのみ3本以上のスプリッタを配置して中央部を幅広とし、他の方向については、幅広または幅の狭い1本とする構成や、幅の狭い1本とする構成等も包含される。
 次に、本発明の実施例14に係る固体燃料焚きバーナを図31に基づいて説明する。なお、上述した実施例と同様の部分には同じ符号を付し、その詳細な説明は省略する。この実施例では、微粉炭及び1次空気の流れを火炎内部の中央部(軸中心側)に導くため、固体燃料焚きバーナ320Aに設けられたスプリット部材324が、複数方向に配置したスプリッタどうしの交差角部に取り付けた遮蔽部材を備えている。即ち、スプリット部材324の機能をより一層向上させ、火炎内部の着火面増加や内部保炎強化を図るという目的を達成するため、スプリット部材324の機能補強部材として、スプリット部材324が交差して形成される交差角部の少なくとも1箇所に、流路断面積を低減する遮蔽部材を設けたものである。
 上述した遮蔽部材は、例えば、交差角部の交差中心部側を塞ぐようにしてスプリット部材324に取り付けられた三角板350が好適であり、炉内側から見たコール1次ポート322の開口面積は、即ち微粉炭及び1次空気の流路断面積は、三角板350の面積に相当する分だけ減少する。この三角板350は、微粉炭及び1次空気の流路断面積を低減するだけでなく、火炎内部の着火面を増加するとともに、微粉炭及び1次空気の流れを中央部に導く機能も有している。
 換言すれば、三角板350は、スプリット部材324の下流側に形成されて再循環域となる負圧領域を増大させるように設置する遮蔽部材であり、スプリット部材324の保炎効果を強化することができる。
 従って、上下及び左右に交差するスプリッタ324H,324Vの交差部に形成された4箇所の交差角部のうち、少なくとも1箇所に設けられていればよい。
 また、上述した遮蔽部材は、図32(a)に示した三角板(三角形の板状部材)350に限定されることはなく、例えば、円形や楕円形を1/4にした形状の板材としてもよい。さらに、例えば、図32(b)に示す三角錐350Aのように、流れをいったん外向きに導いて再循環域を形成する傾斜面を備えたものでもよい。
 このように、スプリッタ324H,324Vの交差部に、三角板350や三角錐350Aのような遮蔽部材を設けると、スプリット部材324の機能はより一層向上し、火炎内部の着火面増加や内部保炎強化を達成できる。
 上述した本実施例の固体燃料焚きバーナ及び固体燃料焚きボイラによれば、火炎Fの外周に形成される高温酸素残存領域Hを抑制することにより、AA部314から排出される最終的なNOx発生量の低減が可能になる。
 なお、本発明は上述した実施例に限定されることはなく、例えば、粉体の固体燃料が微粉炭に限定されないなど、その要旨を逸脱しない範囲内において適宜変更することができる。
 さて、従来の石炭焚きバーナは、バーナ外周に保炎機構(先端角度の調整、旋回等)を設置し、さらに、すぐ外周に近接して2次空気(あるいは3次空気)の投入ポートを設置することが一般的である。このため、火炎の外周で着火が起こり、火炎の外周において大量の空気が混合されることとなる。この結果、火炎外周の燃焼は、火炎外周の高温酸素残存領域において酸素濃度が高い高温状態で進行することになり、従って、NOxは火炎外周で発生していた。このようにして、火炎外周の高温酸素残存領域で発生したNOxは、火炎の外周を通過するので、火炎内部と比較して還元が遅れることとなり、これが石炭焚きボイラからNOxを発生させる要因となっていた。
 一方、対向燃焼ボイラにおいても、旋回により、火炎外周で着火するため、火炎の外周で同様にNOxが発生する要因となっていた。
 このような背景から、上述した従来の石炭焚きバーナ及び石炭焚きボイラのように、粉体の固体燃料を焚く固体燃料焚きバーナ及び固体燃料焚きボイラにおいては、火炎の外周に形成される高温酸素残存領域を抑制し、追加空気投入部から排出される最終的なNOx発生量を低減することが望まれる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、火炎の外周に形成される高温酸素残存領域を抑制(弱く)することにより、追加空気投入部から排出される最終的なNOx発生量の低減を可能にした固体燃料焚きバーナ及び固体燃料焚きボイラを提供することにある。
 以下、本発明に係る固体燃料焚きバーナ及び固体燃料焚きボイラの一実施例を図面に基づいて説明する。なお、本実施例では、固体燃料焚きバーナ及び固体燃料焚きボイラの一例として、微粉炭(粉体の固体燃料である石炭)を燃料とする固体燃料焚きバーナを備えた旋回燃焼ボイラについて説明するが、これに限定されることはない。
 図35から図37に示す旋回燃焼ボイラ410は、火炉411内へ空気を多段で投入することにより、バーナ部412から追加空気投入部(以下、「AA部」と呼ぶ)414までの領域を還元雰囲気にして燃焼排ガスの低NOx化を図っている。
 図中の符号420は微粉炭(粉体の固体燃料)及び空気を投入する固体燃料焚きバーナ、415は追加空気を投入する追加空気投入ノズルである。固体燃料焚きバーナ420には、例えば、図35に示すように、微粉炭を1次空気で搬送する微粉炭混合気輸送管416及び2次空気を供給する送気ダクト417が接続され、追加空気投入ノズル415には、2次空気を供給する送気ダクト417が接続されている。
 このように、上述した旋回燃焼ボイラ410は、粉体燃料の微粉炭(石炭)及び空気を火炉411内へ投入する固体燃料焚きバーナ420が各段の各コーナ部に配置される旋回燃焼方式のバーナ部412とされ、各段にそれぞれ1または複数の旋回火炎が形成される旋回燃焼方式を採用している。
 図33に示す固体燃料焚きバーナ420は、微粉炭及び空気を投入する微粉炭バーナ(燃料バーナ)421と、微粉炭バーナ421の外周から2次空気を噴射するコール2次ポートとを備えている。本実施例において、微粉炭バーナ421の外周から2次空気を噴射する2次空気ポートは、微粉炭バーナ421の上下に各々配置された2次空気投入ポート430と、後述するコール2次ポート423とにより構成される。
 2次空気投入ポート430は、ポート毎の空気流量調整を可能にするため、例えば、図34に示すように、送気ダクト417から分岐した2次空気の供給ライン毎に、流量調整手段として開度調整可能なダンパ440を備えている。
 上述した微粉炭バーナ421は、1次空気により搬送された微粉炭を投入する矩形状のコール1次ポート422と、コール1次ポート422の周囲を取り囲むように設けられて2次空気の一部を投入するコール2次ポート423とを備えている。なお、コール2次ポート423についても、図34に示すように、流量調整手段として開度調整可能なダンパ440を備えている。なお、コール1次ポート422は、円形や楕円でもよい。
 微粉炭バーナ421の流路前方部には、即ち、コール1次ポート422の流路前方部にはスプリット部材424が配設され、図示省略の支持部材等に固定されている。このスプリット部材424は、例えば、図33(a)に示すように、コール1次ポート422の出口開口部において、上下方向の略中心位置に水平方向の1本が配設され、水平(左右)方向の両端部が部分的に除去された除去部424aとなっている。なお、図33(a)において、除去部424aは破線で表示されている。
 この場合、図33に示すように、スプリット部材424からコール2次ポート423に隣接する端部の一部を除去したスプリット部材424の長さ(軸中心からの長さ)L2は、微粉炭バーナ421の流路幅、即ち、コール1次ポート422の流路幅(軸中心からの流路幅)をL1とした場合、寸法比L2/L1がL2/L1>0.2となるように設定する。また、この寸法比L2/L1は、より好ましい値はL2/L1>0.6である。即ち、スプリット部材424から端部の一部を除去する除去部424aについては、上述した寸法比がL2/L1>0.2の条件を満たすように、より好ましくはL2/L1>0.6の条件を満たすように設けたものが望ましい。
 上述したスプリット部材424は、例えば、図38(a)から図38(d)に示すような断面形状を採用することにより、微粉炭及び空気の流れをスムーズに分離させて乱すことができる。
 図38(a)に示すスプリット部材424は、三角形の断面形状を有している。図示の三角形は正三角形や二等辺三角形であり、火炉411内に向けた出口側の一辺が微粉炭及び空気の流れ方向と略直交するように配置されている。換言すれば、三角形断面を形成する角部の1つを、微粉炭及び空気の流れ方向に向けた配置が採用されている。
 図38(b)に示すスプリット部材424Aは、略T字状の断面形状を有し、火炉411内に向けた出口側に微粉炭及び空気の流れ方向と略直交する面が配置されている。なお、このような略T字状断面形状を変形させることにより、例えば、図38(c)に示すように、台形状の断面形状を有するスプリット部材424A′としてもよい。
 図38(d)に示すスプリット部材424Bは、略L字状の断面形状を有している。即ち、上述した略T字状の一部を切り取ったような断面形状であり、特に、左右(水平)方向に配置する場合においては、上方の凸部を除去した略L字形状にすれば、スプリット部材424Bに微粉炭が堆積することを防止できる。なお、上方の凸部を除去した分、下方の凸部を大きくすることで、スプリット部材424Bに必要な分離性能を確保することができる。
 しかし、上述したスプリット部材424等の断面形状については、例えば、略Y字形状等のように、図示の例に限定されることはない。
 ところで、本実施例のスプリット部材424はこれに限定されることはなく、従って、上述したスプリット部材424は、例えば、上下方向及び左右方向に各々2本ずつ、合計4本が所定の間隔を有する格子状に配設されたものでもよい。この場合、上下方向の2本については、2次空気投入ポート430に近い上下両端部が除去され、左右方向の2本については、コール1次ポート422の左右両端部まで設けられるなど、種々の態様が選択可能である。
 即ち、4本のスプリット部材424を設置する場合には、上下方向及び左右方向の異なる2方向に向けて格子状に配設されるクロスタイプとすることで、微粉炭バーナ421におけるコール1次ポート422の出口開口部を細分化(9分割)している。また、スプリット部材424に挟まれる部分では、圧損が大きく、噴出口での流速が低下し、より内部での着火が促進される。
 なお、除去する部分(除去部424a)は、例えば、上下方向のスプリット部材424については、上述した左右方向のスプリット部材424の位置にあわせなくてもよい。また、スプリット部材424の端部は、全方向を除去することにより、外周部での着火を完全に抑制できるため、外周に保炎器を設置しない構造とすることが望ましい。
 また、上述した除去部424aは、2次空気量がより多くなる方向、即ち、コール2次ポート423の外周(上下)に2次空気投入ポート430が隣接して設けられた方向に設けてもよい。
 このように構成した固体燃料焚きバーナ420において、微粉炭バーナ421の出口開口中央付近に設置したスプリット部材424は、微粉炭及び空気の流路を分割して流れを内部で乱すとともに、スプリット部材424の前方(下流側)に再循環域を形成するため、内部保炎機構として機能する。
 一般に、従来の固体燃料焚きバーナ420は、火炎外周で輻射を受けて燃料の微粉炭に着火する。火炎外周で微粉炭に着火すると、NOxは高温の酸素が残存する火炎外周の高温酸素残存領域H(図33(b)参照)で発生し、十分に還元されないまま残存してNOx排出量を増加させている。
 しかし、内部保炎機構として機能するスプリット部材424が設けられたことにより、微粉炭は火炎内部で着火するようになる。このため、NOxは火炎内部で発生し、火炎内部で発生したNOxは還元作用を有する炭化水素類を多く含んでいることから、空気不足の状態にある火炎内で迅速に還元される。従って、火炎外周に保炎器を設置する保炎をやめて、即ち、除去部424aを形成することによりバーナ外周に保炎機構を設置しない構造の固体燃料焚きバーナ420とすれば、火炎外周でのNOx発生を抑制することも可能になる。
 特に、複数方向のスプリット部材424を配設したクロスタイプとすることにより、微粉炭バーナ421の出口開口中央付近に対し、異なる方向のスプリット部材424を交差させた交差部を容易に設けることができる。このような交差部が微粉炭バーナ421の出口開口中央付近に存在していると、微粉炭バーナ421の出口開口においては、中央付近で微粉炭及び空気の流路が複数に分割されるので、複数に分流する際に流れが乱される。
 即ち、スプリット部材424が左右一方向の場合、中央部における空気の拡散や着火が遅れて局所的に極端な空気不足領域が存在し、未燃分増加の原因になるが、スプリット部材424を複数方向に配設して交差部が形成されるクロスタイプでは、火炎内部での空気の混合が促進されるとともに着火面が細分化されるので、結果として未燃分の低減が可能になる。
 換言すれば、交差部を形成するようにスプリット部材424を配設すれば、空気の混合・拡散が火炎の内部で促進され、さらに着火面が細分化されることにより、着火位置が火炎の中央部(軸中心部)に寄って微粉炭の未燃分を低減する。即ち、火炎の中心部まで酸素が入り込みやすくなるので、内部着火が効果的に行われるようになり、従って、火炎内部で迅速な還元が行われてNOxの発生量は低減される。
 この結果、火炎外周に設置した保炎器による保炎をやめ、火炎外周に保炎器のない固体燃料焚きバーナ420を用いて火炎外周でのNOx発生を抑制することは、より一層容易になる。
 このような複数方向のスプリット部材424において、本実施例では、スプリット部材424の外周側でかつコール2次ポート423に隣接する複数個所の端部、即ち、左右端部の少なくとも一部を除去すればよい。
 図33(a)に示す構成例の第1変形例では、上述したように、外周側となる上下方向のスプリット部材424から上下両端部を除去する。即ち、スプリット部材424の上下両端部を除去した外周側の領域は、スプリット部材424が存在せず、しかも、スプリット部材424からコール2次ポート423及び2次空気投入ポート430までの距離が増している。なお、クロスタイプのスプリット部材424は、横方向の左右端部でも外周着火が生じるものの、旋回燃焼においては、左右方向から火炎の周囲に吹き込まれる2次空気量が限られるため、本実施例では左右両端部を残して着火面を確保している。
 この結果、スプリット部材424が存在しない上下両端の外周側領域では、スプリット部材424を着火源とする着火が生じなくなり、一方、火炎内部となるスプリット部材424の中心部側では、保炎機能を有効に活用できる。従って、2次空気投入量が多い2次空気投入ポート430に近いため、2次空気と直接干渉しやすい上下両端部側の領域では、着火が生じにくくなることにより、火炎外周に高温高酸素領域が形成されることを防止または抑制できる。即ち、コール2次ポート423及び2次空気投入ポート430に隣接する上下両端部を除去したスプリット部材424は、微粉炭バーナ420の内部で着火を強化できるとともに、火炎外周の高温酸素領域、特に火炎上下端の高温酸素領域が形成されることを防止できる。
 ところで、上述したスプリット部材424の端部除去は、第1変形例に限定されることはない。
 示す第2変形例では、スプリット部材424が上下左右に各々2本ずつ配設されている。この場合、上述した実施例と同様に、上下方向のスプリット部材424について、コール2次ポート423及び2次空気投入ポート430に近い上下両端部の全てが除去されている。このスプリット部材424は、1本としてもよいし、3本以上でもよい。
 第3変形例では、スプリット部材424が上下左右に各々3本ずつ配設されている。この変形例における上下方向のスプリット部材424は、コール2次ポート423及び2次空気投入ポート430に近い上下両端部のうち、中央に配置された1本のみが除去されている。なお、上下方向のスプリット部材424については、特に上下両端部を除去しない上下方向のスプリット部材424については、より上下端部あるいは全体のスプリッタ幅Wを狭めて着火面積を低減することが望ましい。
 このように、微粉炭バーナ421の上下に隣接してコール2次ポート423及び2次空気投入ポート430が配設されている旋回燃焼ボイラ用の固体燃料焚きバーナ420においては、上下両端部の少なくとも一部を除去したクロスタイプのスプリット部材424を設置することにより、特に2次空気と直接干渉しやすい上下端に高温高酸素領域が形成されることを防止または抑制できる。
 こうして火炎の外周に形成される高温酸素残存領域が抑制されると、予混合燃焼に近い燃焼をする火炎内部で発生したNOxが効果的に還元されるようになる。従って、AA部414まで到達するNOx量の減少や追加空気投入により発生するNOx量の減少により、AA部414から最終的に排出されるNOx量が減少する。
 また、第4変形例では、クロスタイプのスプリット部材424が、上下及び左右方向の少なくとも一方に3本以上配設され、上下左右の中央部に配置された少なくとも一方を残して端部が除去されている。
 即ち、第4変形例は、スプリット部材424が上下左右に各々3本ずつ配設されている構成は第2変形例及び第3変形例と同じである。しかし、この変形例では、上下及び左右の中央に配置された1本のスプリット部材424が端部まで設けられ、その両端に配置されたスプリット部材424は、上下左右の端部が全て除去されている。
 このように、第4変形例のスプリット部材424とすれば、上下左右の中央部を除く外周部にスプリット部材424が存在しない構造となり、最も外周着火に寄与すると考えられる領域にはほとんどスプリット部材424が存在していない。このため、第4変形例のような構成例のスプリット部材424は、スプリット部材424が着火源となる外周着火の有効な防止策となる。
 また、本実施例のスプリット部材424は、例えば、第5変形例のように、必要に応じて外周着火源となりうる左右端部の少なくとも一部を除去してもよい。
 即ち、保炎器として機能するクロスタイプのスプリット部材424においては、横方向の左右両端部でも外周着火を生じることがあるので、上下及び左右の端部を全部除去した構造は、外部着火を完全に防止するために有効である。特に、微粉炭バーナ421の左右に2次空気投入ポートを設ける場合には、上述した上下の2次空気投入ポート430と同様の理由により、左右の端部も削除して着火源を低減することが望ましい。
 次に、本発明の実施例16に係る対向燃焼ボイラに適用される固体燃料焚きバーナを説明する。
 本実施例の固体燃料焚きバーナには、円形断面としたコール1次ポートの外周に、複数の同心円状とした2次空気投入ポートが設けられている。この2次空気投入ポートは、例えば、内部2次空気投入ポート及び外部2次空気投入ポートの2段で構成されるが、これに限定されることはない。
 また、コール1次ポートの出口中心部には、異なる2方向のスプリット部材が格子状に複数本(例えば、縦及び横方向に合計4本)配設されている。この場合のスプリット部材については、実施例15で説明した数、配置及び断面形状等を適用可能であるが、特に、円形であることから、全周にわたって端部を除去することが望ましい。あるいは、円形スプリット部材を設けて円形内部に放射状スプリット部材を複数本配設し、円形の周方向を複数に分割した構成としてもよい。この場合、円形スプリット部材については、複数の同心円としてもよい。
 上述した本実施例の固体燃料焚きバーナ及び固体燃料焚きボイラによれば、火炎の外周に形成される高温酸素残存領域Hを抑制することにより、AA部414から排出される最終的なNOx発生量の低減が可能になる。
 なお、本発明は上述した実施例に限定されることはなく、例えば、粉体の固体燃料が微粉炭に限定されないなど、その要旨を逸脱しない範囲内において適宜変更することができる。
 微粉炭焚きボイラでは、固体燃料として微粉炭(石炭)を使用している。この場合、石炭は、水分や揮発分を含んでおり、その種類によって水分量がばらついている。そのため、石炭に含まれる水分や揮発分に応じたボイラの運転制御が必要となる。
 石炭の揮発分を考慮したボイラの運転制御としては、例えば、上述した特許文献に記載されたものがある。特許文献5に記載された微粉炭バーナおよびこれを用いたボイラは、微粉炭と搬送空気との微粉炭混合気を噴出する微粉炭混合気通路と、微粉炭の揮発分放出に有効な高温で低酸素濃度である高温ガスを噴出する高温ガス供給通路を設けたものである。また、特許文献6に記載された石炭焚きボイラ装置は、微粉炭を石炭焚きボイラに送給する1次空気の温度を検出する温度検出器と、1次空気の温度を調整する1次空気温度調整手段と、温度検出器の検出結果を基に1次空気が所定温度となる様に1次空気温度調整手段を制御する制御装置とを設けたものである。
 上述した従来のボイラにあっては、いずれも微粉炭を加熱することで、水分や揮発分を調整してから火炉内で燃焼させている。この場合、ボイラの運転出力に基づいて運転パラメータを調整するしかなく、石炭の性状から直接運転パラメータを設定することが困難である。
 本発明は、上述した課題を解決するものであり、固体燃料及びこの固体燃料に含有する揮発分を適正に燃焼して運転効率の向上を図るボイラ及びボイラの運転方法を提供することを目的とする。
 図39は、本発明の実施例17に係るボイラとしての微粉炭焚きボイラを表す概略構成図、図40は、実施例17の微粉炭焚きボイラにおける燃焼バーナを表す平面図、図41は、実施例17の燃焼バーナを表す正面図、図42は、実施例17の燃焼バーナを表す断面図、図43は、1次空気及び2次空気に対するNOx発生量及び未燃分発生量を表すグラフである。
 実施例17の燃焼バーナが適用された微粉炭焚きボイラは、石炭を粉砕した微粉炭を固体燃料として用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収することが可能なボイラである。
 この本実施例において、図39に示すように、微粉炭焚きボイラ510は、コンベンショナルボイラであって、火炉511と燃焼装置512とを有している。火炉511は、四角筒の中空形状をなして鉛直方向に沿って設置され、この火炉511を構成する火炉壁の下部に燃焼装置512が設けられている。
 燃焼装置512は、火炉壁に装着された複数の燃焼バーナ521,522,523,524,525を有している。本実施例にて、この燃焼バーナ521,522,523,524,525は、周方向に沿って4個均等間隔で配設されたものが1セットとして、鉛直方向に沿って5セット、つまり、5段配置されている。
 そして、各燃焼バーナ521,522,523,524,525は、微粉炭供給管526,527,528,529,530を介して微粉炭機(ミル)531,532,533,534,535に連結されている。この微粉炭機531,532,533,534,535は、図示しないが、ハウジング内に鉛直方向に沿った回転軸心をもって粉砕テーブルが駆動回転可能に支持され、この粉砕テーブルの上方に対向して複数の粉砕ローラが粉砕テーブルの回転に連動して回転可能に支持されて構成されている。従って、石炭が複数の粉砕ローラと粉砕テーブルとの間に投入されると、ここで所定の大きさまで粉砕され、搬送空気(1次空気)により分級された微粉炭を微粉炭供給管526,527,528,529,530から燃焼バーナ521,522,523,524,525に供給することができる。
 また、火炉511は、各燃焼バーナ521,522,523,524,525の装着位置に風箱536が設けられており、この風箱536に空気ダクト537の一端部が連結されており、この空気ダクト537は、他端部に送風機538が装着されている。更に、火炉511は、各燃焼バーナ521,522,523,524,525の装着位置より上方にアディショナル空気ノズル539が設けられており、このアディショナル空気ノズル539に空気ダクト537から分岐した分岐空気ダクト540の端部が連結されている。従って、送風機538により送られた燃焼用空気(2次空気、3次空気)を、空気ダクト537から風箱536に供給し、この風箱36から各燃焼バーナ521,522,523,524,525に供給することができると共に、分岐空気ダクト540からアディショナル空気ノズル539に供給することができる。
 そのため、燃焼装置512にて、各燃焼バーナ521,522,523,524,525は、微粉炭と1次空気とを混合した微粉燃料混合気(燃料ガス)を火炉511内に吹き込み可能であると共に、2次空気及び3次空気を火炉511内に吹き込み可能となっており、図示しない点火トーチにより微粉燃料混合気に点火することで、火炎を形成することができる。
 また、微粉炭供給管526,527,528,529,530は、微粉燃料混合気量を調整可能な流量調整弁541,542,543,544,545が設けられ、空気ダクト537は、燃焼用空気(2次空気、3次空気)量を調整可能な流量調整弁546が設けられ、分岐空気ダクト540は、追加空気量を調整可能な流量調整弁547が設けられている。そして、制御装置548は、各流量調整弁541,542,543,544,545,546,547の開度を調整可能となっている。この場合、微粉炭供給管526,527,528,529,530に流量調整弁541,542,543,544,545を設けなくてもよい。
 なお、一般的に、ボイラの起動時には、各燃焼バーナ521,522,523,524,525は、油燃料を火炉511内に噴射して火炎を形成している。
 火炉511は、上部に煙道550が連結されており、この煙道550に、対流伝熱部として排ガスの熱を回収するための過熱器(スーパーヒータ)551,552、再熱器553,554、節炭器(エコノマイザ)555,556,557が設けられており、火炉511での燃焼で発生した排ガスと水との間で熱交換が行われる。
 煙道550は、その下流側に熱交換を行った排ガスが排出される排ガス管558が連結されている。この排ガス管558は、空気ダクト557との間にエアヒータ559が設けられ、空気ダクト537を流れる空気と、排ガス管558を流れる排ガスとの間で熱交換を行い、燃焼バーナ521,522,523,524,525に供給する燃焼用空気を昇温することができる。
 なお、排ガス管558は、図示しないが、脱硝装置、電気集塵機、誘引送風機、脱硫装置が設けられ、下流端部に煙突が設けられている。
 従って、微粉炭機531,532,533,534,535が駆動すると、生成された微粉炭が搬送用空気と共に微粉炭供給管526,527,528,529,530を通して燃焼バーナ521,522,523,524,525に供給される。また、加熱された燃焼用空気が空気ダクト537から風箱536を介して各燃焼バーナ521,522,523,524,525に供給されると共に、分岐空気ダクト540からアディショナル空気ノズル539に供給される。すると、燃焼バーナ521,522,523,524,525は、微粉炭と搬送用空気とが混合した微粉燃料混合気を火炉511に吹き込むと共に燃焼用空気を火炉511に吹き込み、このときに着火することで火炎を形成することができる。また、アディショナル空気ノズル539は、追加空気を火炉511に吹き込み、燃焼制御を行うことができる。この火炉511では、微粉燃料混合気と燃焼用空気とが燃焼して火炎が生じ、この火炉511内の下部で火炎が生じると、燃焼ガス(排ガス)がこの火炉511内を上昇し、煙道550に排出される。
 なお、火炉511では、空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、内部が還元雰囲気に保持される。そして、微粉炭の燃焼により発生したNOxが火炉511で還元され、その後、追加空気(アディショナルエア)が追加供給されることで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
 このとき、図示しない給水ポンプから供給された水は、節炭器555,556,557によって予熱された後、図示しない蒸気ドラムに供給され火炉壁の各水管(図示せず)に供給される間に加熱されて飽和蒸気となり、図示しない蒸気ドラムに送り込まれる。更に、図示しない蒸気ドラムの飽和蒸気は過熱器551,552に導入され、燃焼ガスによって過熱される。過熱器551,552で生成された過熱蒸気は、図示しない発電プラント(例えば、タービン等)に供給される。また、タービンでの膨張過程の中途で取り出した蒸気は、再熱器553,554に導入され、再度過熱されてタービンに戻される。なお、火炉511をドラム型(蒸気ドラム)として説明したが、この構造に限定されるものではない。
 その後、煙道550の節炭器555,556,557を通過した排ガスは、排ガス管558にて、図示しない脱硝装置にて、触媒によりNOxなどの有害物質が除去され、電気集塵機で粒子状物質が除去され、脱硫装置により硫黄分が除去された後、煙突から大気中に排出される。
 ここで、燃焼装置512について詳細に説明するが、この燃焼装置512を構成する各燃焼バーナ521,522,523,524,525は、ほぼ同様の構成をなしていることから、最上段に位置する燃焼バーナ521についてのみ説明する。
 燃焼バーナ521は、図40に示すように、火炉511における4つの壁面に設けられる燃焼バーナ521a,521b,521c,521dから構成されている。各燃焼バーナ521a,521b,521c,521dは、微粉炭供給管526から分岐した各分岐管526a,526b,526c,526dが連結されると共に、空気ダクト537から分岐した各分岐管537a,537b,537c,537dが連結されている。
 従って、火炉511の各壁面にある各燃焼バーナ521a,521b,521c,521dは、火炉511に対して、微粉炭と搬送用空気が混合した微粉燃料混合気を吹き込むと共に、その微粉燃料混合気の外側に燃焼用空気を吹き込む。そして、各燃焼バーナ521a,521b,521c,521dからの微粉燃料混合気に着火することで、4つの火炎F1,F2,F3,F4を形成することができ、この火炎F1,F2,F3,F4は、火炉511の上方から見て(図40にて)反時計周り方向に旋回する火炎旋回流となる。
 このように構成された燃焼バーナ521(521a,521b,521c,521d)にて、図41及び図42に示すように、中心側から燃料ノズル561と、2次空気ノズル562と、3次空気ノズル563とが設けられると共に、保炎器564が設けられている。燃料ノズル561は、微粉炭(固体燃料)と搬送用空気(1次空気)とを混合した燃料ガス(微粉燃料混合気)を吹き込み可能なものである。2次空気ノズル562は、第1ノズル561の外側に配置され、燃料ノズル561から噴射された燃料ガスの外周側に燃焼用空気(2次空気)を吹き込み可能なものである。3次空気ノズル563は、2次空気ノズル562の外側に配置され、2次空気ノズル562から噴射された2次空気の外周側に3次空気を吹き込み可能なものである。
 また、保炎器564は、燃料ノズル561内であって、燃料ガスの吹き込み方向の下流側で、且つ、軸中心心側に配置されることで、燃料ガスの着火用及び保炎用として機能するものである。この保炎器564は、水平方向に沿う2つの保炎部材と、鉛直方向(上下方向)に沿う2つの保炎部材とを十字形状をなすように配置した、所謂、ダブルクロススプリット構造をなすものである。そして、保炎器564は、各保炎部材の前端部(燃料ガスの流れ方向の下流端部)に拡幅部が形成されている。
 そのため、燃料ノズル561及び2次空気ノズル562は、長尺な管状構造を有し、燃料ノズル561は、矩形状の開口部561aを有し、2次空気ノズル562は、矩形リング状の開口部562aを有していることから、燃料ノズル561と2次空気ノズル562とは、二重管構造となっている。燃料ノズル561及び2次空気ノズル562の外側に、3次空気ノズル563が二重管構造として配置されており、矩形リング状の開口部563aを有している。その結果、燃料ノズル561の開口部561aの外側に2次空気ノズル562の開口部562aが配設され、この2次空気ノズル562の開口部562aの外側に3次空気ノズル563の開口部563aが配設されることとなる。
 これらのノズル561,562,563は、開口部561a,562a,563aが同一面上に揃えられて配置されている。また、保炎器564は、燃料ノズル561の内壁面、または、燃料ガスが流れる流路の上流側から図示しない板材により支持されている。また、燃料ノズル561は、内部にこの保炎器564としての複数の保炎部材が配置されていることから、燃料ガスの流路が9つに分割されることとなる。そして、保炎器564は、前端部に幅が広がった拡幅部が位置することとなり、この拡幅部は、前端面が開口部561aと同一面上に揃えられている。
 また、燃焼バーナ521にて、燃料ノズル561は、微粉炭機531からの微粉炭供給管526が接続されている。2次空気ノズル562は、送風機538からの空気ダクト537が分岐した一方の連結ダクト566が接続され、3次空気ノズル563は、この空気ダクト537が分岐した他方の連結ダクト567が接続され、空気ダクト537と各連結ダクト566,567との分岐部に流量調整弁(三方弁またはダンパ)568が装着されている。そして、制御装置548(図39参照)は、この流量調整弁568の開度を調整可能であり、各連結ダクト566,567への空気の配分を調整可能となっている。
 従って、この燃焼バーナ521では、微粉炭と1次空気とを混合した燃料ガスが燃料ノズル561の開口部561aから炉内に吹き込まれると共に、その外側にて2次空気が2次空気ノズル562の開口部562aから炉内に吹き込まれ、その外側にて3次空気が3次空気ノズル563の開口部563aから炉内に吹き込まれる。このとき、燃料ガスは、燃料ノズル561の開口部561aにて、保炎器564により分岐されて着火され、燃焼して燃料ガスとなる。また、この燃料ガスの外周に2次空気が吹き込まれることで、燃料ガスの燃焼が促進される。また、燃焼火炎の外周に、3次空気が吹き込まれることで、燃焼火炎の外周部が冷却される。
 そして、この燃焼バーナ521では、保炎器564がスプリット形状をなすので、燃料ガスが燃料ノズル561の開口部561aにて保炎器564により分岐され、このとき、保炎器564が燃料ノズル561の開口部561aの中央領域に配置され、この中央領域にて、燃料ガスの着火及び保炎が行われる。これにより、燃焼火炎の内部保炎(燃料ノズル561の開口部561aの中央領域における保炎)が実現される。
 そのため、燃焼火炎の外部保炎が行われる構成と比較して、燃焼火炎の外周部が低温となり、2次空気により高酸素雰囲気下にある燃焼火炎の外周部の温度を低くでき、燃焼火炎の外周部におけるNOx発生量が低減される。
 また、燃焼バーナ521では、内部保炎する構成が採用されるため、燃料ガス及び燃焼空気(2次空気及び3次空気)が直進流として供給されることが好ましい。即ち、燃料ノズル561、2次空気ノズル562、3次空気ノズル563が、燃料ガス、2次空気、3次空気を旋回させることなく直進流として供給する構造を有することが好ましい。この燃料ガス、2次空気、3次空気が直進流として噴射されて燃焼火炎が形成されるため、燃焼火炎を内部保炎する構成において、燃焼火炎内のガス循環が抑制される。これにより燃焼火炎の外周部が低温のまま維持され、2次空気との混合によるNOx発生量が低減される。
 ところで、本実施例の微粉炭焚きボイラ510では、固体燃料として微粉炭(石炭)を使用しており、この微粉炭は、揮発分を含んでいることから、その揮発分により燃焼形態が相違してしまう。
 そこで、本実施例の微粉炭焚きボイラ510では、図39及び図42に示すように、制御装置548は、各流量調整弁541,542,543,544,545,546,547,568の開度を変更することで、燃料ガス量、2次空気量、3次空気量、追加空気量を調整可能となっていることから、微粉炭の揮発分に応じてこの燃料ガス量、2次空気量、3次空気量、追加空気量を調整している。
 この場合、制御装置548は、微粉炭の揮発分に応じて、1次空気と2次空気との合計空気量と、追加空気の空気量との配分を調整することが望ましく、具体的には、1次空気と2次空気との合計空気量と、3次空気と追加空気との合計空気量との配分を調整する。
 本実施例では、1次空気量と追加空気量が予め設定された所定の空気量であることから、制御装置548は、微粉炭の揮発分に応じて2次空気と3次空気との配分を調整する。そして、制御装置548は、微粉炭の揮発分が増加すると、2次空気の配分を増加するようにしている。
 即ち、燃料ノズル561は、微粉炭と1次空気とを混合した燃料ガスを火炉511内に吹き込むものであり、1次空気は微粉炭の搬送用空気であることから、この燃料ガスにおける微粉炭と1次空気との配分、つまり、1次空気量は、微粉炭機531,532,533,534,535により決定してしまう。また、アディショナル空気ノズル539は、燃焼バーナ521,522,523,524,525による燃焼に対して、燃焼用空気を投入することで酸化燃焼を行い、燃焼を完結させる。ここで、アディショナル空気ノズル539からの追加空気は、主燃焼ゾーンでの還元雰囲気を強めてNOxの排出量を減少させるものであることから、ボイラごとにその追加空気量が決まってしまう。
 一方、2次空気ノズル562は、空気ダクト537から連結ダクト566を通って供給された空気を2次空気として火炉11内に吹き込むものであり、主に燃料ノズル561から吹き込まれた燃料ガスと混合して燃焼する燃焼用空気として使用される。3次空気ノズル563は、空気ダクト537から連結ダクト566を通って供給された空気を3次空気として火炉511内に吹き込むものであり、主にアディショナル空気ノズル359と同様に、燃焼火炎に対する追加空気として使用される。
 そのため、制御装置548は、流量調整弁568の開度を変更することで、1次空気と2次空気との合計空気量と、3次空気と追加空気との合計空気量、つまり、2次空気と3次空気との空気量の配分を調整することで、微粉炭の揮発分量の変動に対応している。ここで、制御装置548は、微粉炭の揮発分量が増加すると、3次空気量を減少する一方、2次空気量を増加して2次空気と3次空気の配分を変更している。
 ここで、図43に示すように、1次空気と2次空気との合計空気量が増加すると、NOxの発生量が増加する一方、未燃分の発生量が減少する。即ち、燃焼バーナ521,522,523,524,525は、着火部(燃料ノズル551の開口部551a近傍)で微粉炭の揮発分が主に燃焼するものであり、ここでの空気量が過剰になると、NOxの発生量が増加し、ここでの空気量が不足すると、微粉炭の円滑な燃焼が進行せずに未燃分の発生量が増加する。そのため、この燃焼バーナ521,522,523,524,525では、着火部で微粉炭の揮発分を考慮し、NOxの発生量と未燃分の発生量が低く抑えられる量の空気量を設定する必要がある。
 なお、微粉炭の揮発分は、石炭を各微粉炭機531,532,533,534,535に投入する前に計測しておき、この揮発分量データとして制御装置548に入力しておく。また、微粉炭の揮発分に対する2次空気と3次空気との配分比率は、ボイラの形態や燃焼バーナ521,522,523,524,525による燃焼形態などにより異なることから、予め実験により設定し、例えば、マップを作成して制御装置548に記憶しておく。
 従って、燃焼バーナ521,522,523,524,525にて、火炉511に対して、燃料ノズル561により燃料ガスが吹き込まれ、2次空気ノズル562により2次空気が吹き込まれ、3次空気ノズル563により3次空気が吹き込まれる。このとき、燃料ガスは、保炎器564で着火されて燃焼し、更に2次空気が混合されて燃焼し、このとき、火炉511内に主燃焼領域が形成される。そして、この主燃焼領域の外側に対して、3次空気ノズル563により3次空気が吹き込まれることで、燃焼火炎の外周部が冷却されると共に燃焼が促進される。続いて、アディショナル空気ノズル539は、火炉511に対して追加空気を吹き込み、燃焼制御を行う。
 つまり、火炉511にて、燃焼バーナ521,522,523,524,525の燃料ノズル561からの燃料ガスと2次空気ノズル562からの2次空気が燃焼した燃焼ガスは、理論空気量未満となり、内部が還元雰囲気に保持される。そして、微粉炭の燃焼により発生したNOxは、3次空気により還元され、その後、追加空気により微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。
 このとき、制御装置548は、事前に計測した微粉炭の揮発分量と、予め記憶された微粉炭の揮発分量に対する2次空気と3次空気との配分比率マップとに基づいて、燃焼バーナ521,522,523,524,525における2次空気と3次空気の配分比率を求め、流量調整弁568の開度を設定する。そして、制御装置548は、この設定した開度に基づいて、流量調整弁568の開度を調整する。すると、燃焼バーナ521,522,523,524,525にて、2次空気ノズル562からの2次空気量と、3次空気ノズル563からの3次空気量が、微粉炭の揮発分量に対して最適な量となり、微粉炭並びに揮発分が適正に燃焼する。
 このように実施例17のボイラにあっては、微粉炭と空気を燃焼させる火炉511と、この火炉511内で熱交換を行って熱を回収する過熱器551,552と、火炉511に微粉炭と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズル561と、火炉511に2次空気を吹き込み可能な2次空気ノズル562と、火炉511に3次空気を吹き込み可能な3次空気ノズル563と、火炉511における燃料ノズル561及び2次空気ノズル562より上方に追加空気を吹き込み可能なアディショナル空気ノズル539と、2次空気量と3次空気量との配分を行う流量調整弁568と、微粉炭の揮発分に応じて流量調整弁568の開度を制御する制御装置548とを設けている。
 従って、制御装置548は、微粉炭の揮発分に応じて流量調整弁568の開度を制御し、2次空気ノズル562への空気量と、3次空気ノズル563への空気量の配分を調整することで、微粉炭の揮発分に応じて2次空気量と3次空気量が調整されることとなり、微粉炭の揮発分を適正に燃焼することができると共に、微粉炭を適正に燃焼することができ、NOxや未燃分の発生を抑制してボイラ運転効率の向上を図ることができる。また、所定の燃空比を維持しながら、微粉炭とその揮発分を適正に燃焼することができる。
 また、実施例17のボイラでは、制御装置548は、微粉炭の揮発分が増加すると、2次空気の配分を増加するようにしている。2次空気は、燃料ガスと混合して微粉炭を燃焼させるための燃焼用空気であることから、微粉炭の揮発分が増加すると、2次空気の配分を増加することで、微粉炭とその揮発分を適正に燃焼することができる。
 また、実施例17のボイラの運転方法にあっては、微粉炭焚きボイラ510にて、微粉炭の揮発分に応じて2次空気と3次空気との配分を調整するようにしている。従って、微粉炭の揮発分を適正に燃焼することができると共に、微粉炭を適正に燃焼することができ、NOxや未燃分の発生を抑制してボイラ運転効率の向上を図ることができる。
 なお、上述した実施例では、2次空気量と3次空気量との配分を調整することで、微粉炭の揮発分が増加すると、2次空気の配分を増加するようにしたが、この構成に限定されるものではない。例えば、微粉炭機531,532,533,534,535における空気量(搬送用空気量)を増減させたり、追加空気量を増減させたりしてもよい。
 また、本発明のボイラは、微粉炭焚きボイラ510の構成や燃焼バーナ521,522,523,524,525の構成や数などに限定されるものではない。
 また、上述した実施例では、燃焼装置512として、火炉511の壁面に設けられる4つの各燃焼バーナ521,522,523,524,525を鉛直方向に沿って5段配置して構成したが、この構成に限定されるものではない。即ち、燃焼バーナを壁面に配置せずにコーナーに配置してもよい。また、燃焼装置は、旋回燃焼方式に限らず、燃焼バーナを一つの壁面に配置したフロント燃焼方式、燃焼バーナを二つの壁面に対向配置した対向燃焼方式としてもよい。
 10 微粉炭焚きボイラ
 11 火炉
 21,22,23,24,25 燃焼バーナ
 51,111 燃料ノズル
 52,112 2次空気ノズル
 53,113 3次空気ノズル
 54,71,81,91,114,121,131,161 保炎器
 55,75,95,101,115,135,141,151 整流部材
 210 微粉炭焚きボイラ
 211 火炉
 221,222,223,224,225 燃焼バーナ
 251 燃料ノズル
 252 2次空気ノズル
 253 3次空気ノズル
 254,291 保炎器
 255,271 案内部材
 261,262,263,264 保炎部材
 261c,262c,263c,264c 切欠面(案内部材)
 281,282,283,284 三角板(案内部材)
 297 駆動装置
 310 旋回燃焼ボイラ
 311 火炉
 312 バーナ部
 314 追加空気投入部(AA部)
 320,320A 固体燃料焚きバーナ
 321 微粉炭バーナ(燃料バーナ)
 322 コール1次ポート
 323 コール2次ポート
 324 スプリット部材
 324V 縦スプリッタ
 324H 横スプリッタ
 330 2次空気投入ポート
 340 ダンパ
 350 三角板(遮蔽部材)
 350A 三角錐(遮蔽部材)
 410 旋回燃焼ボイラ
 411 火炉
 412 バーナ部
 414 追加空気投入部(AA部)
 420 固体燃料焚きバーナ
 421 微粉炭バーナ(燃料バーナ)
 422 コール1次ポート
 423 コール2次ポート
 424 スプリット部材
 424a 除去部
 430 2次空気投入ポート
 440 ダンパ
 510 微粉炭焚きボイラ
 511 火炉
 521,522,523,524,525 燃焼バーナ
 537 空気ダクト
 539 アディショナル空気ノズル(追加空気ノズル)
 540 分岐空気ダクト
 541,542,543,544,545,546,547,568 流量調整弁(空気量調整装置)
 548 制御装置
 551,552 過熱器(熱交換器)
 553,554 再熱器(熱交換器)
 555,556,557 節炭器(熱交換器)
 561 燃料ノズル
 562 2次空気ノズル
 563 3次空気ノズル

Claims (39)

  1.  固体燃料と空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、
     該燃料ノズルの外側から空気を吹き込み可能な2次空気ノズルと、
     前記燃料ノズルの先端部における軸心側に設けられる保炎器と、
     前記燃料ノズルの内壁面と前記保炎器との間に設けられる整流部材と、
     備えることを特徴とする燃焼バーナ。
  2.  前記整流部材は、前記保炎器と所定の隙間をもって配置されることを特徴とする請求項1に記載の燃焼バーナ。
  3.  前記整流部材は、前記保炎器との距離が燃料ガスの流れ方向に沿ってほぼ同じになるように設けられることを特徴とする請求項1または2に記載の燃焼バーナ。
  4.  前記保炎器は、燃料ガスの流れ方向における下流側に拡幅部が設けられる一方、前記整流部材は、燃料ガスの流れ方向における下流側に先細部が設けられることを特徴とする請求項1から3のいずれか一つに記載の燃焼バーナ。
  5.  前記保炎器は、燃料ガスの流れ方向における下流側に拡幅部が設けられる一方、前記整流部材は、前記拡幅部に対向しない位置に設けられることを特徴とする請求項1から3のいずれか一つに記載の燃焼バーナ。
  6.  前記整流部材は、前記燃料ノズルの内壁面に沿って設けられることを特徴とする請求項2に記載の燃焼バーナ。
  7.  前記保炎器は、水平方向に沿って配置される第1保炎部材と、鉛直方向に沿って配置される第2保炎部材とが交差するように配置された構造をなすことを特徴とする請求項1から6のいずれか一つに記載の燃焼バーナ。
  8.  前記第1保炎部材と前記第2保炎部材とは、それぞれ複数の保炎部材からなり、前記第1保炎部材が複数鉛直方向に所定隙間をもって配置される一方、前記第2保炎部材が複数水平方向に所定隙間をもって配置され、前記複数の第1保炎部材と前記複数の第2保炎部材とが交差するように配置された構造をなすことを特徴とする請求項7に記載の燃焼バーナ。
  9.  前記第1保炎部材と前記第2保炎部材のいずれか一方の幅を他方の幅に対して大きな幅に設定することを特徴とする請求項7または8に記載の燃焼バーナ。
  10.  固体燃料と空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、
     該燃料ノズルの外側から空気を吹き込み可能な2次空気ノズルと、
     前記燃料ノズルの先端部における軸心側に設けられる保炎器と、
     前記燃料ノズル内を流れる燃料ガスを軸心側に導く案内部材と、
     備えることを特徴とする燃焼バーナ。
  11.  前記案内部材は、前記2次空気ノズルにより吹き込まれる2次空気から離間する方向に燃料ガスを導くことを特徴とする請求項10に記載の燃焼バーナ。
  12.  前記案内部材は、前記燃料ノズルの内壁面に沿って配置されることを特徴とする請求項10または11に記載の燃焼バーナ。
  13.  前記案内部材は、前記燃料ノズルの先端部に前記保炎器と対向して配置されることを特徴とする請求項10に記載の燃焼バーナ。
  14.  前記案内部材は、前記保炎器における前記燃料ノズルの内壁面と対向する位置に配置されることを特徴とする請求項10または11に記載の燃焼バーナ。
  15.  前記案内部材は、前記保炎器より燃料ガスの流れ方向の上流側に配置されることを特徴とする請求項10または11に記載の燃焼バーナ。
  16.  前記保炎器は、水平方向に沿って鉛直方向に所定隙間をもって平行をなす2つの第1保炎部材と、鉛直方向に沿って水平方向に所定隙間をもって平行をなす2つの第2保炎部材とが交差するように配置された構造をなし、前記案内部材は、前記第1保炎部材と前記第2保炎部材とが交差する位置の外側に配置されることを特徴とする請求項10または11に記載の燃焼バーナ。
  17.  前記保炎器は、燃料ガスの流れ方向における下流側に拡幅部を有し、前記案内部材は、前記拡幅部に対向して配置されることを特徴とする請求項10から16のいずれか一つに記載の燃焼バーナ。
  18.  水平方向に沿って鉛直方向に所定隙間をもって平行をなす2つの保炎部材を有し、前記保炎部材の先端部が前記燃料ノズルの軸心側を向くことで前記案内部材を構成することを特徴とする請求項10または11に記載の燃焼バーナ。
  19.  固体燃料焚きボイラの前記バーナ部に用いられ、粉体の固体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射する2次空気投入ポートとを備え、
     前記燃料バーナの流路前方部に、内部保炎として複数方向の部材を交差させたクロスタイプのスプリット部材を配設し、該スプリット部材の幅寸法が方向毎に異なることを特徴とする固体燃料焚きバーナ。
  20.  前記クロスタイプのスプリット部材は、上下方向が幅広であることを特徴とする請求項19に記載の固体燃料焚きバーナ。
  21.   前記クロスタイプのスプリット部材は、左右方向が幅広であることを特徴とする請求項19に記載の固体燃料焚きバーナ。
  22.  前記クロスタイプのスプリット部材は、左右方向及び上下方向の少なくとも一方に3本以上配設され、かつ、左右方向及び上下方向の少なくとも一方の中央部が幅広であることを特徴とする請求項19に記載の固体燃料焚きバーナ。
  23.  固体燃料焚きボイラの前記バーナ部に用いられ、内部保炎を有する燃料バーナと、保炎しない2次空気投入ポートとを備え、粉体の固体燃料及び空気を炉内へ投入する固体燃料焚きバーナであって、
     前記固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射する2次空気投入ポートとを備え、
     前記燃料バーナの流路前方部に複数方向の部材を交差させたクロスタイプのスプリット部材を配設し、前記スプリット部材が交差して形成される交差角部の少なくとも1箇所に流路断面積を低減する遮蔽部材を設けたことを特徴とする固定燃料焚きバーナ。
  24.  前記固体燃料焚きボイラがバーナ部と追加空気投入部とに分けて低NOx燃焼を行うことを特徴とする請求項19から23のいずれか一つに記載の固体燃料焚きバーナ。
  25.  粉体燃料及び空気を炉内へ投入する請求項19から24のいずれか一つに記載の固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されていることを特徴とする固体燃料焚きボイラ。
  26.  固体燃料焚きボイラの前記バーナ部に用いられ、粉体の固体燃料及び空気を炉内へ投入する固体燃料焚きバーナが、粉体燃料及び一次空気を炉内へ投入する燃料バーナと、該燃料バーナの外周から2次空気を噴射するコール2次ポートとを備え、
     前記燃料バーナの流路前方部に内部保炎用部材としてスプリット部材を配設し、該スプリット部材の外周側で前記コール2次ポートに隣接する端部の一部が除去されていることを特徴とする固体燃料焚きバーナ。
  27.  前記内部保炎用部材が、複数方向の部材を交差させたクロスタイプのスプリット部材であることを特徴とする請求項26に記載の固体燃料焚きバーナ。
  28.  前記内部保炎用部材のスプリット部材は、少なくとも一方向に複数本配設されていることを特徴とする請求項26または27に記載の固体燃料焚きバーナ。
  29.  前記クロスタイプのスプリット部材は、複数方向のうち少なくとも一方向の端部が除去されていることを特徴とする請求項27または28に記載の固体燃料焚きバーナ。
  30.  前記クロスタイプのスプリット部材は、上下及び左右方向の少なくとも一方に3本以上配設され、上下左右の中央部に配置された少なくとも一方を残して端部が除去されていることを特徴とする請求項28に記載の固体燃料焚きバーナ。
  31.  前記固体燃料焚きボイラがバーナ部と追加空気投入部とに分けて低NOx燃焼を行うことを特徴とする請求項26から29のいずれか一つに記載の固体燃料焚きバーナ。
  32.  粉体燃料及び空気を炉内へ投入する請求項26から31のいずれか一つに記載の固体燃料焚きバーナが、前記炉内のコーナ部あるいは壁面部に配置されていることを特徴とする固体燃料焚きボイラ。
  33.  固体燃料と空気を燃焼させる火炉と、
     該火炉内で熱交換を行って熱を回収する熱交換器と、
     前記火炉に固体燃料と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、
     前記火炉に該燃料ノズルの外側から2次空気を吹き込み可能な2次空気ノズルと、
     前記火炉における前記燃料ノズル及び前記2次空気ノズルより上方に追加空気を吹き込み可能な追加空気ノズルと、
     前記燃料ノズルと前記2次空気ノズルと前記追加空気ノズルへ供給する空気量を調整可能な空気量調整装置と、
     固体燃料の揮発分に応じて前記空気量調整装置を制御する制御装置と、
     を備えることを特徴とするボイラ。
  34.  前記制御装置は、固体燃料の揮発分に応じて前記空気量調整装置を制御し、1次空気と2次空気との合計空気量と、追加空気の空気量との配分を調整することを特徴とする請求項33に記載のボイラ。
  35.  前記火炉に前記2次空気ノズルの外側から3次空気を吹き込み可能な3次空気ノズルを設け、前記制御装置は、固体燃料の揮発分に応じて前記空気量調整装置を制御し、1次空気と2次空気との合計空気量と、3次空気と追加空気との合計空気量との配分を調整することを特徴とする請求項33または34に記載のボイラ。
  36.  前記制御装置は、前記空気量調整装置を制御し、1次空気量と追加空気量を予め設定された所定の空気量とし、固体燃料の揮発分に応じて2次空気と3次空気との配分を調整することを特徴とする請求項35に記載のボイラ。
  37.  前記制御装置は、固体燃料の揮発分が増加すると、2次空気の配分を増加することを特徴とする請求項33から36のいずれか一つに記載のボイラ。
  38.  固体燃料と空気を燃焼させる火炉と、
     該火炉内で熱交換を行って熱を回収する熱交換器と、
     前記火炉に固体燃料と1次空気とを混合した燃料ガスを吹き込み可能な燃料ノズルと、
     前記火炉に該燃料ノズルの外側から2次空気を吹き込み可能な2次空気ノズルと、
     前記火炉における前記燃料ノズル及び前記2次空気ノズルより上方に追加空気を吹き込み可能な追加空気ノズルと、
     を備えるボイラにおいて、
     固体燃料の揮発分に応じて2次空気と3次空気との配分を調整する、
     ことを特徴とするボイラの運転方法。
  39.  固体燃料の揮発分が増加すると2次空気の配分を増加することを特徴とする請求項38に記載のボイラの運転方法。
PCT/JP2012/055850 2011-04-01 2012-03-07 燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラ、ボイラ及びボイラの運転方法 WO2012137573A1 (ja)

Priority Applications (25)

Application Number Priority Date Filing Date Title
EP15185737.2A EP3015766B1 (en) 2011-04-01 2012-03-07 Combustion burner
US14/007,858 US9671108B2 (en) 2011-04-01 2012-03-07 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
KR1020147030040A KR101500921B1 (ko) 2011-04-01 2012-03-07 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
EP15185735.6A EP2995857B1 (en) 2011-04-01 2012-03-07 Combustion burner
KR1020147030042A KR101531808B1 (ko) 2011-04-01 2012-03-07 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
EP15185739.8A EP2998651B1 (en) 2011-04-01 2012-03-07 Boiler and method for operating boiler
MX2016009825A MX357868B (es) 2011-04-01 2012-03-07 Quemador de combustion, quemador de combustion de combustible solido, hervidor de combustion de combustible solido, hervidor y metodo para poner en operacion el hervidor.
KR1020147030043A KR20140136057A (ko) 2011-04-01 2012-03-07 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
BR112013024962A BR112013024962A2 (pt) 2011-04-01 2012-03-07 queimador de combustão, caldeira, e, método para operar uma caldeira
KR1020147030038A KR101547083B1 (ko) 2011-04-01 2012-03-07 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
MX2016009826A MX357869B (es) 2011-04-01 2012-03-07 Quemador de combustion, quemador de combustion de combustible solido, hervidor de combustion de combustible solido, hervidor y metodo para poner en operacion el hervidor.
KR1020157014656A KR101547095B1 (ko) 2011-04-01 2012-03-07 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
MX2016009824A MX354825B (es) 2011-04-01 2012-03-07 Quemador de combustión, quemador de combustión de combustible sólido, hervidor de combustión de combustible sólido, hervidor y método para poner en operación el hervidor.
KR1020137025379A KR101486690B1 (ko) 2011-04-01 2012-03-07 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
CN201280014605.5A CN103443543B (zh) 2011-04-01 2012-03-07 燃烧器、烧固体燃料燃烧器及烧固体燃料锅炉、锅炉及锅炉的运转方法
KR1020157014776A KR101609523B1 (ko) 2011-04-01 2012-03-07 연소 버너, 고체 연료 연소 버너 및 고체 연료 연소 보일러, 보일러 및 보일러의 운전 방법
EP12768148.4A EP2696139B1 (en) 2011-04-01 2012-03-07 Solid-fuel-fired burner and solid-fuel-fired boiler
MX2013011125A MX344736B (es) 2011-04-01 2012-03-07 Quemador de combustión, quemador de combustión de combustible sólido, hervidor de combustión de combustible sólido, hervidor y método para poner en operación el hervidor.
MX2016009831A MX354826B (es) 2011-04-01 2012-03-07 Quemador de combustión, quemador de combustión de combustible sólido, hervidor de combustión de combustible sólido, hervidor y método para poner en operación el hervidor.
PL15185735T PL2995857T3 (pl) 2011-04-01 2012-03-07 Palnik do spalania
UAA201311324A UA112430C2 (uk) 2011-04-01 2012-07-03 Пальник
US15/241,600 US20170045221A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US15/241,356 US20160356490A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US15/241,737 US20160356494A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US15/241,309 US20160356489A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011081876A JP5670804B2 (ja) 2011-04-01 2011-04-01 燃焼バーナ
JP2011081879A JP5854620B2 (ja) 2011-04-01 2011-04-01 ボイラ及びボイラの運転方法
JP2011-081877 2011-04-01
JP2011-081879 2011-04-01
JP2011081877A JP5763389B2 (ja) 2011-04-01 2011-04-01 燃焼バーナ
JP2011-081876 2011-04-01
JP2011-138564 2011-06-22
JP2011138564A JP5778500B2 (ja) 2011-06-22 2011-06-22 固体燃料焚きバーナ及び固体燃料焚きボイラ
JP2011-138563 2011-06-22
JP2011138563A JP5778499B2 (ja) 2011-06-22 2011-06-22 固体燃料焚きバーナ及び固体燃料焚きボイラ

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US14/007,858 A-371-Of-International US9671108B2 (en) 2011-04-01 2012-03-07 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US15/241,737 Division US20160356494A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US15/241,309 Division US20160356489A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US15/241,600 Division US20170045221A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler
US15/241,356 Division US20160356490A1 (en) 2011-04-01 2016-08-19 Combustion burner, solid-fuel-combustion burner, solid-fuel-combustion boiler, boiler, and method for operating boiler

Publications (1)

Publication Number Publication Date
WO2012137573A1 true WO2012137573A1 (ja) 2012-10-11

Family

ID=46968977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055850 WO2012137573A1 (ja) 2011-04-01 2012-03-07 燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラ、ボイラ及びボイラの運転方法

Country Status (12)

Country Link
US (5) US9671108B2 (ja)
EP (5) EP3015766B1 (ja)
KR (7) KR101547095B1 (ja)
CN (1) CN103443543B (ja)
BR (1) BR112013024962A2 (ja)
ES (1) ES2738321T3 (ja)
MX (5) MX357869B (ja)
MY (1) MY166869A (ja)
PL (1) PL2995857T3 (ja)
TW (1) TWI531762B (ja)
UA (1) UA114369C2 (ja)
WO (1) WO2012137573A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158079A1 (ja) * 2015-03-31 2016-10-06 三菱日立パワーシステムズ株式会社 燃焼バーナ及びボイラ
WO2016158081A1 (ja) * 2015-03-31 2016-10-06 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2016194379A (ja) * 2015-03-31 2016-11-17 三菱日立パワーシステムズ株式会社 燃焼バーナ及びボイラ
JP2017053602A (ja) * 2015-09-11 2017-03-16 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2017142042A (ja) * 2016-02-12 2017-08-17 三菱日立パワーシステムズ株式会社 燃焼バーナ及び燃焼装置並びにボイラ
US10677457B2 (en) 2015-09-11 2020-06-09 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler equipped with the same
CN113970250A (zh) * 2020-07-23 2022-01-25 中冶长天国际工程有限责任公司 一种喷吹结构及其导流装置

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE536195C2 (sv) 2011-10-12 2013-06-18 Ecomb Ab Publ Tillförselanordning för förbränningskammare och metod därför
US10403238B2 (en) * 2014-06-03 2019-09-03 Lenovo (Singapore) Pte. Ltd. Presentation of representations of input with contours having a width based on the size of the input
FI127083B (en) * 2015-10-30 2017-11-15 Outotec Finland Oy Burner and atomizer for a burner
JP6667311B2 (ja) * 2016-02-15 2020-03-18 三菱日立パワーシステムズ株式会社 燃焼バーナ及び燃焼バーナのメンテナンス方法
JP6699887B2 (ja) * 2016-06-07 2020-05-27 株式会社東芝 インバータおよびインバータ装置
JP6797714B2 (ja) * 2017-02-22 2020-12-09 三菱パワー株式会社 燃焼装置
CN109140428B (zh) * 2017-06-14 2024-03-26 山西三合盛智慧科技股份有限公司 一种切圆煤粉解耦燃烧器组、燃烧装置和燃烧方法
CN107024795B (zh) * 2017-06-19 2020-03-20 上海天马微电子有限公司 一种显示面板和显示装置
EP3438532A1 (en) * 2017-07-31 2019-02-06 General Electric Technology GmbH Coal nozzle assembly for a steam generation apparatus
JP6926009B2 (ja) * 2018-02-01 2021-08-25 三菱パワー株式会社 燃焼バーナ及びボイラ
KR102080564B1 (ko) * 2018-10-02 2020-02-24 두산중공업 주식회사 미분탄 버너의 노즐 팁
JP7086831B2 (ja) * 2018-12-26 2022-06-20 三菱重工業株式会社 燃焼バーナ、ボイラ及び燃焼バーナの組立方法
CN111550778A (zh) * 2019-02-11 2020-08-18 美一蓝技术公司 水平焙烧的燃烧器
JP7105707B2 (ja) * 2019-02-13 2022-07-25 三菱重工業株式会社 アフタエアポート及びこれを備えた燃焼装置
CN110195860B (zh) * 2019-06-03 2020-05-22 吉林大学 一种锅炉四角切圆燃烧火焰中心偏移调整方法
CN112902150B (zh) * 2021-02-07 2022-02-22 哈尔滨工业大学 一种在电站前墙或后墙锅炉的燃烧系统及方法
US20230038688A1 (en) * 2021-08-03 2023-02-09 General Electric Technology Gmbh Pulverized solid fuel nozzle tip assembly with carbon tip portion
KR102713399B1 (ko) * 2022-05-03 2024-10-08 한국전력공사 보일러의 연소장치 및 암모니아 버너

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263014A (ja) * 1984-06-11 1985-12-26 Hitachi Ltd 燃焼制御方法
JPH01217109A (ja) * 1988-02-23 1989-08-30 Babcock Hitachi Kk 微粉炭バーナ
JPH08135919A (ja) 1994-11-11 1996-05-31 Babcock Hitachi Kk 燃焼装置
JPH08200618A (ja) * 1995-01-27 1996-08-06 Hitachi Ltd 微粉炭燃焼バーナ
JPH08296815A (ja) 1995-04-25 1996-11-12 Mitsubishi Heavy Ind Ltd 微粉炭焚きバーナ
JPH09203505A (ja) 1996-01-29 1997-08-05 Babcock Hitachi Kk 固体燃料用バーナと固体燃焼システム
JP2006057903A (ja) 2004-08-19 2006-03-02 Mitsubishi Heavy Ind Ltd 微粉炭バーナおよびこれを用いたボイラ
JP2006189188A (ja) 2005-01-05 2006-07-20 Babcock Hitachi Kk 固体燃料バーナおよび燃焼方法
JP2008145007A (ja) 2006-12-07 2008-06-26 Ihi Corp 石炭焚きボイラ装置
JP2009204256A (ja) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JP2010139180A (ja) * 2008-12-12 2010-06-24 Mitsubishi Heavy Ind Ltd 旋回燃焼ボイラ
JP2010270992A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 石炭焚ボイラ
JP2010270991A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 石炭焚ボイラ
JP2010270993A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 燃料バーナ及び旋回燃焼ボイラ
JP2010270990A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 燃料バーナ及び旋回燃焼ボイラ

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE333600A (fr) * 1926-02-01 1926-05-31 Forges & Acieries Commercy Perfectionnements aux dispositifs de chauffage au charbon pulvérisés
US2760508A (en) * 1951-10-25 1956-08-28 Bailey Meter Co Bias adjusting means for fluid pressure relay
US2895435A (en) * 1954-03-15 1959-07-21 Combustion Eng Tilting nozzle for fuel burner
US3823875A (en) * 1973-08-24 1974-07-16 T Bauer Burner nozzle tip for pulverized coal and method for its production
DE3027587A1 (de) * 1980-07-21 1982-02-25 Klöckner-Humboldt-Deutz AG, 5000 Köln Brenner fuer feste brennstoffe
JPS5887063A (ja) 1981-11-17 1983-05-24 Matsushita Electric Ind Co Ltd 印字位置制御方法
JPS58198606A (ja) 1982-05-14 1983-11-18 Hitachi Ltd 微粉炭の低NOx燃焼法
US4634054A (en) 1983-04-22 1987-01-06 Combustion Engineering, Inc. Split nozzle tip for pulverized coal burner
JPS6078207A (ja) 1983-10-03 1985-05-02 Babcock Hitachi Kk 低νox型燃焼装置
JPS60171307A (ja) * 1984-02-15 1985-09-04 Babcock Hitachi Kk ΝOxを低減する燃焼装置
US4622922A (en) 1984-06-11 1986-11-18 Hitachi, Ltd. Combustion control method
DE3520781A1 (de) * 1985-06-10 1986-12-11 Stubinen Utveckling AB, Stockholm Verfahren und vorrichtung zum verbrennen fluessiger und/oder fester brennstoffe in pulverisierter form
JPS6298114A (ja) 1985-10-23 1987-05-07 Mitsubishi Heavy Ind Ltd バ−ナノズル
JPS62288406A (ja) 1986-06-09 1987-12-15 Babcock Hitachi Kk 微粉炭バ−ナ
JPH0167440U (ja) 1987-10-20 1989-04-28
JP2638040B2 (ja) * 1988-02-23 1997-08-06 バブコツク日立株式会社 微粉炭燃焼装置
US4836772A (en) * 1988-05-05 1989-06-06 The Babcock & Wilcox Company Burner for coal, oil or gas firing
JPH0217305A (ja) 1988-07-04 1990-01-22 Babcock Hitachi Kk 微粉炭直接点火式バーナ
JPH03203505A (ja) 1989-12-29 1991-09-05 Fujitsu Ltd 磁気浮上搬送装置
GB2240619A (en) * 1990-02-06 1991-08-07 Lintec Engineering Swivel nozzle burner
EP0445938B1 (en) * 1990-03-07 1996-06-26 Hitachi, Ltd. Pulverized coal burner, pulverized coal boiler and method of burning pulverized coal
US5152051A (en) 1991-04-29 1992-10-06 Amp Incorporated Tool for terminating an electrical cable to a connector
US5343820A (en) * 1992-07-02 1994-09-06 Combustion Engineering, Inc. Advanced overfire air system for NOx control
GB9322016D0 (en) * 1993-10-26 1993-12-15 Rolls Royce Power Eng Improvements in or relating to solid fuel burners
JPH07260106A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd 微粉炭燃焼バーナ及び微粉炭燃焼装置
JP3073396B2 (ja) 1994-06-17 2000-08-07 三菱重工業株式会社 微粉炭バーナ
JPH08219415A (ja) * 1995-02-17 1996-08-30 Babcock Hitachi Kk 固体燃料用バーナと微粉炭燃焼装置
JP3765429B2 (ja) 1995-10-17 2006-04-12 バブコック日立株式会社 微粉炭バーナ
JP3062582B2 (ja) 1995-11-07 2000-07-10 株式会社日立製作所 微粉炭燃焼装置の炉内状態予測方法と装置
JPH09170714A (ja) 1995-12-18 1997-06-30 Babcock Hitachi Kk 微粉炭焚バーナ
JP3830582B2 (ja) 1996-07-26 2006-10-04 バブコック日立株式会社 微粉炭燃焼バーナ
DK0856700T3 (da) * 1996-08-22 2004-05-17 Babcock Hitachi Kk Brænder og forbrændingsenhed forsynet med denne
EP0836049B1 (en) * 1996-10-08 2001-12-12 Ansaldo Caldaie S.P.A. Pulverized coal injection nozzle
JPH10220707A (ja) 1997-02-10 1998-08-21 Babcock Hitachi Kk 粉末固体燃料用バーナと該バーナを備えた燃焼装置
JP3009370B2 (ja) * 1997-03-07 2000-02-14 株式会社日立製作所 微粉炭バーナ、微粉炭ボイラ及び微粉炭燃焼方法
JP2995013B2 (ja) * 1997-03-31 1999-12-27 三菱重工業株式会社 微粉状燃料燃焼バーナ
JPH11132414A (ja) 1997-10-31 1999-05-21 Babcock Hitachi Kk 超低NOxバーナ
JPH11281010A (ja) 1998-03-26 1999-10-15 Babcock Hitachi Kk 固体燃料燃焼バーナと固体燃料燃焼装置
US6058855A (en) * 1998-07-20 2000-05-09 D. B. Riley, Inc. Low emission U-fired boiler combustion system
EP0976977B1 (en) * 1998-07-29 2003-03-26 Mitsubishi Heavy Industries, Ltd. Pulverized coal burner
JP2000205556A (ja) 1999-01-11 2000-07-25 Babcock Hitachi Kk 貫流ボイラ装置の運転方法
US6260491B1 (en) * 1999-09-13 2001-07-17 Foster Wheeler Corporation Nozzle for feeding combustion providing medium into a furnace
EP1306614B1 (en) 2000-08-04 2015-10-07 Mitsubishi Hitachi Power Systems, Ltd. Solid fuel burner
US6699031B2 (en) * 2001-01-11 2004-03-02 Praxair Technology, Inc. NOx reduction in combustion with concentrated coal streams and oxygen injection
JP3679998B2 (ja) * 2001-01-31 2005-08-03 三菱重工業株式会社 微粉炭バーナ
US6439136B1 (en) * 2001-07-03 2002-08-27 Alstom (Switzerland) Ltd Pulverized solid fuel nozzle tip with ceramic component
JP3790489B2 (ja) * 2002-03-25 2006-06-28 三菱重工業株式会社 微粉固体燃料燃焼装置
JP4150968B2 (ja) * 2003-11-10 2008-09-17 株式会社日立製作所 固体燃料バーナと固体燃料バーナの燃焼方法
JP4261401B2 (ja) 2004-03-24 2009-04-30 株式会社日立製作所 バーナと燃料燃焼方法及びボイラの改造方法
AU2005229668B2 (en) * 2004-11-04 2008-03-06 Babcock-Hitachi K.K. Overfiring air port, method for manufacturing air port, boiler, boiler facility, method for operating boiler facility and method for improving boiler facility
JP4664179B2 (ja) 2005-10-17 2011-04-06 バブコック日立株式会社 ボイラ設備及びボイラ設備の運転方法並びにボイラ設備の改修方法
US7216594B2 (en) * 2005-05-03 2007-05-15 Alstom Technology, Ltc. Multiple segment ceramic fuel nozzle tip
KR101421744B1 (ko) 2006-01-11 2014-07-22 바브콕-히다찌 가부시끼가이샤 미분탄 연소 보일러 및 미분탄 연소 방법
US8113824B2 (en) 2006-06-01 2012-02-14 Babcock & Wilcox Power Generation Group, Inc. Large diameter mid-zone air separation cone for expanding IRZ
CA2664769C (en) * 2006-09-27 2013-03-19 Babcock-Hitachi Kabushiki Kaisha Burner, and combustion equipment and boiler comprising burner
US20080206696A1 (en) * 2007-02-28 2008-08-28 Wark Rickey E Tilt nozzle for coal-fired burner
US8701572B2 (en) * 2008-03-07 2014-04-22 Alstom Technology Ltd Low NOx nozzle tip for a pulverized solid fuel furnace
JP2010139182A (ja) 2008-12-12 2010-06-24 Mitsubishi Heavy Ind Ltd 旋回燃焼ボイラ
JP2011127836A (ja) 2009-12-17 2011-06-30 Mitsubishi Heavy Ind Ltd 固体燃料焚きバーナ及び固体燃料焚きボイラ
US8561553B2 (en) * 2009-12-17 2013-10-22 Babcock Power Services, Inc. Solid fuel nozzle tip assembly
JP5374404B2 (ja) 2009-12-22 2013-12-25 三菱重工業株式会社 燃焼バーナおよびこの燃焼バーナを備えるボイラ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263014A (ja) * 1984-06-11 1985-12-26 Hitachi Ltd 燃焼制御方法
JPH01217109A (ja) * 1988-02-23 1989-08-30 Babcock Hitachi Kk 微粉炭バーナ
JPH08135919A (ja) 1994-11-11 1996-05-31 Babcock Hitachi Kk 燃焼装置
JPH08200618A (ja) * 1995-01-27 1996-08-06 Hitachi Ltd 微粉炭燃焼バーナ
JPH08296815A (ja) 1995-04-25 1996-11-12 Mitsubishi Heavy Ind Ltd 微粉炭焚きバーナ
JPH09203505A (ja) 1996-01-29 1997-08-05 Babcock Hitachi Kk 固体燃料用バーナと固体燃焼システム
JP2006057903A (ja) 2004-08-19 2006-03-02 Mitsubishi Heavy Ind Ltd 微粉炭バーナおよびこれを用いたボイラ
JP2006189188A (ja) 2005-01-05 2006-07-20 Babcock Hitachi Kk 固体燃料バーナおよび燃焼方法
JP2008145007A (ja) 2006-12-07 2008-06-26 Ihi Corp 石炭焚きボイラ装置
JP2009204256A (ja) * 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd 微粉炭バーナ
JP2010139180A (ja) * 2008-12-12 2010-06-24 Mitsubishi Heavy Ind Ltd 旋回燃焼ボイラ
JP2010270992A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 石炭焚ボイラ
JP2010270991A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 石炭焚ボイラ
JP2010270993A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 燃料バーナ及び旋回燃焼ボイラ
JP2010270990A (ja) * 2009-05-22 2010-12-02 Mitsubishi Heavy Ind Ltd 燃料バーナ及び旋回燃焼ボイラ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696139A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10605455B2 (en) 2015-03-31 2020-03-31 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler
JPWO2016158079A1 (ja) * 2015-03-31 2017-10-19 三菱日立パワーシステムズ株式会社 燃焼バーナ及びボイラ
JP2016194379A (ja) * 2015-03-31 2016-11-17 三菱日立パワーシステムズ株式会社 燃焼バーナ及びボイラ
CN107429911B (zh) * 2015-03-31 2021-12-28 三菱动力株式会社 燃烧器以及锅炉
RU2661993C1 (ru) * 2015-03-31 2018-07-23 Мицубиси Хитачи Пауэр Системз, Лтд. Горелка для сжигания и котел, оснащенный такой горелкой для сжигания
CN107250668A (zh) * 2015-03-31 2017-10-13 三菱日立电力系统株式会社 燃烧器以及具备该燃烧器的锅炉
WO2016158081A1 (ja) * 2015-03-31 2016-10-06 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
CN107429911A (zh) * 2015-03-31 2017-12-01 三菱日立电力系统株式会社 燃烧器以及锅炉
WO2016158079A1 (ja) * 2015-03-31 2016-10-06 三菱日立パワーシステムズ株式会社 燃焼バーナ及びボイラ
RU2664749C1 (ru) * 2015-03-31 2018-08-22 Мицубиси Хитачи Пауэр Системз, Лтд. Горелка для сжигания и котел
US10458645B2 (en) 2015-03-31 2019-10-29 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler provided with same
US10591154B2 (en) 2015-03-31 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler
US10677457B2 (en) 2015-09-11 2020-06-09 Mitsubishi Hitachi Power Systems, Ltd. Combustion burner and boiler equipped with the same
JP2017053602A (ja) * 2015-09-11 2017-03-16 三菱日立パワーシステムズ株式会社 燃焼バーナ及びこれを備えたボイラ
JP2017142042A (ja) * 2016-02-12 2017-08-17 三菱日立パワーシステムズ株式会社 燃焼バーナ及び燃焼装置並びにボイラ
CN113970250A (zh) * 2020-07-23 2022-01-25 中冶长天国际工程有限责任公司 一种喷吹结构及其导流装置

Also Published As

Publication number Publication date
US20160356490A1 (en) 2016-12-08
EP3015766B1 (en) 2019-05-08
KR20140141682A (ko) 2014-12-10
KR101609523B1 (ko) 2016-04-05
EP3015766A1 (en) 2016-05-04
EP2696139A1 (en) 2014-02-12
EP2696139B1 (en) 2022-04-13
KR101531808B1 (ko) 2015-06-25
EP2998651A1 (en) 2016-03-23
CN103443543B (zh) 2015-11-25
TW201307757A (zh) 2013-02-16
KR101547095B1 (ko) 2015-08-24
MY166869A (en) 2018-07-24
KR101547083B1 (ko) 2015-08-24
BR112013024962A2 (pt) 2016-12-20
TWI531762B (zh) 2016-05-01
EP2998651B1 (en) 2019-01-09
KR20140142327A (ko) 2014-12-11
KR20140142326A (ko) 2014-12-11
US20140011141A1 (en) 2014-01-09
KR20140136057A (ko) 2014-11-27
MX357869B (es) 2018-07-25
US9671108B2 (en) 2017-06-06
CN103443543A (zh) 2013-12-11
PL2995857T3 (pl) 2019-11-29
KR101500921B1 (ko) 2015-03-12
ES2738321T3 (es) 2020-01-21
US20170045221A1 (en) 2017-02-16
US20160356489A1 (en) 2016-12-08
UA114369C2 (uk) 2017-05-25
EP2995857B1 (en) 2019-05-08
MX2013011125A (es) 2014-03-12
MX344736B (es) 2017-01-04
EP2995857A1 (en) 2016-03-16
EP2696139A4 (en) 2015-12-02
MX357868B (es) 2018-07-25
MX354825B (es) 2018-03-21
US20160356494A1 (en) 2016-12-08
KR101486690B1 (ko) 2015-01-26
KR20150068502A (ko) 2015-06-19
KR20130126719A (ko) 2013-11-20
MX354826B (es) 2018-03-21
EP3018407A1 (en) 2016-05-11
KR20150068499A (ko) 2015-06-19

Similar Documents

Publication Publication Date Title
WO2012137573A1 (ja) 燃焼バーナ、固体燃料焚きバーナ並びに固体燃料焚きボイラ、ボイラ及びボイラの運転方法
WO2011074281A1 (ja) 固体燃料焚きバーナ及び固体燃料焚きボイラ
JP6408134B2 (ja) 燃焼バーナ及びボイラ
JP5901737B2 (ja) 燃焼バーナ
JP5670804B2 (ja) 燃焼バーナ
JP5386230B2 (ja) 燃料バーナ及び旋回燃焼ボイラ
JP5854620B2 (ja) ボイラ及びボイラの運転方法
JP5763389B2 (ja) 燃焼バーナ
JP5799443B2 (ja) 燃料バーナ、固体燃料焚きバーナ及び固体燃料焚きボイラ
JP5629901B2 (ja) 固体燃料焚きバーナ及び固体燃料焚きボイラ
JP5778499B2 (ja) 固体燃料焚きバーナ及び固体燃料焚きボイラ
JP6049814B2 (ja) 固体燃料焚きバーナ及び固体燃料焚きボイラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137025379

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013002749

Country of ref document: CL

Ref document number: 14007858

Country of ref document: US

Ref document number: MX/A/2013/011125

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: IDW00201304498

Country of ref document: ID

Ref document number: 2012768148

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005432

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: A201311324

Country of ref document: UA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024962

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013024962

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130927