WO2012137489A1 - 超音波流量計測装置 - Google Patents

超音波流量計測装置 Download PDF

Info

Publication number
WO2012137489A1
WO2012137489A1 PCT/JP2012/002334 JP2012002334W WO2012137489A1 WO 2012137489 A1 WO2012137489 A1 WO 2012137489A1 JP 2012002334 W JP2012002334 W JP 2012002334W WO 2012137489 A1 WO2012137489 A1 WO 2012137489A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
flow rate
sensor mounting
flow
measurement
Prior art date
Application number
PCT/JP2012/002334
Other languages
English (en)
French (fr)
Inventor
宮田 肇
慎 中野
藤井 裕史
尾崎 行則
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013508766A priority Critical patent/JPWO2012137489A1/ja
Priority to US13/984,633 priority patent/US9372105B2/en
Priority to CN201280016739.0A priority patent/CN103459988B/zh
Priority to EP12767854.8A priority patent/EP2696174A4/en
Publication of WO2012137489A1 publication Critical patent/WO2012137489A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/14Casings, e.g. of special material

Definitions

  • the present invention relates to an ultrasonic flow rate measuring device for measuring a flow rate of gas or the like.
  • FIG. 14 is a diagram showing a cross-sectional configuration of a conventional ultrasonic flow rate measuring apparatus 100.
  • the ultrasonic flow measuring device 100 includes a flow measuring tube 121 that allows a fluid to be measured to flow from one to the other.
  • an ultrasonic sensor 122a is provided on the upstream side and an ultrasonic sensor 122b is provided on the downstream side, which are opposed to each other with the flow rate measuring pipe 121 interposed therebetween and inclined at a predetermined angle with respect to the center line.
  • Ultrasonic sensors 122a and 122b are disposed in recesses 125a and 125b provided in flow measurement tube 121.
  • Bulk ultrasonic transmission members 123a and 123b are provided in the internal spaces of the recesses 125a and 125b, and flow measurement is performed by preventing the fluid to be measured from entering the recesses 125a and 125b (for example, (See Patent Document 1).
  • FIG. 15 is a diagram showing a cross-sectional configuration of another example of the conventional ultrasonic flow measuring device 150.
  • the ultrasonic flow rate measuring device 150 also includes recesses 125a and 125b to which the ultrasonic sensors 122a and 122b are attached.
  • suppression members 124a and 124b for restricting the fluid to be measured from flowing to the sensor side are disposed at openings where the ultrasonic waves exit to the flow path (see, for example, Patent Document 2). ).
  • the ultrasonic transmission members 123a and 123b and the suppression members 124a and 124b are provided in order to suppress the flow of the fluid to be measured into the recesses 125a and 125b.
  • the disturbance of the flow of the fluid to be measured in the measurement part (ultrasonic wave propagation path) of the flow measurement tube 121 and the recesses 125a and 125b is reduced, and the deterioration of measurement accuracy is reduced.
  • a separate member is required, there is a problem that the cost increases due to an increase in material costs and man-hours.
  • the present invention has been made in view of the above-described conventional problems, and provides an ultrasonic flow measurement device that realizes stabilization of measurement accuracy and low power while suppressing an increase in cost.
  • An ultrasonic flow rate measuring apparatus includes a measurement flow path through which a fluid to be measured flows, an opening formed in the measurement flow path, and a sensor mounting housing having a sensor mounting recess communicating with the opening. Yes.
  • a pair of ultrasonic sensors arranged in the sensor mounting recess for measuring the flow velocity of the fluid to be measured; and a flow rate measuring unit for detecting a flow rate based on the propagation time of the ultrasonic waves between the pair of ultrasonic sensors.
  • the suppression body which is provided in an opening part and suppresses the flow of the fluid to be measured to the sensor mounting recess, and the suppression body is integrally formed with the sensor mounting housing.
  • the restraining body that restricts the flow into the sensor mounting recess is also molded at the same time, so there is no need to provide separate members and increase the number of assembly steps, Disturbance of the fluid to be measured that occurs in the sensor mounting recess can be suppressed, and measurement accuracy can be stabilized and power consumption can be reduced.
  • FIG. 1 is a cross-sectional view showing a configuration of an ultrasonic flow rate measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the flow rate measurement unit in the embodiment of the present invention.
  • FIG. 3 is a diagram for explaining a flow rate measurement operation using ultrasonic waves in the embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing the configuration of the flow rate measurement unit in the embodiment of the present invention.
  • FIG. 5 is a perspective view showing a configuration of a mold for molding the sensor mounting housing in the embodiment of the present invention.
  • FIG. 6 is a diagram showing the result of fluid analysis of the flow of the fluid to be measured when there is no suppressor in the opening of the ultrasonic wave propagation portion in the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a configuration of an ultrasonic flow rate measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the flow rate measurement unit
  • FIG. 7 is a perspective view showing the configuration of the slider type in the first embodiment of the present invention.
  • FIG. 8 is a perspective view showing the configuration of the sensor mounting housing according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing the relationship between the sensor mounting housing and the slider type in the first exemplary embodiment of the present invention.
  • FIG. 10 is a diagram showing the result of fluid analysis showing the effect of the suppressor in the first embodiment of the present invention.
  • FIG. 11 is a perspective view showing a slider type configuration in the second embodiment of the present invention.
  • FIG. 12 is a perspective view showing a configuration of a sensor mounting housing according to the second embodiment of the present invention.
  • FIG. 13 is a diagram showing a cross-sectional configuration of another example of the ultrasonic flow rate measuring apparatus according to the second embodiment of the present invention.
  • FIG. 14 is a diagram showing a cross-sectional configuration of a conventional ultrasonic flow rate measuring apparatus.
  • FIG. 15 is a diagram showing a cross-sectional configuration of another example of a conventional ultrasonic flow measuring device.
  • FIG. 1 is a cross-sectional view showing a configuration of an ultrasonic flow rate measuring device 50 according to an embodiment of the present invention.
  • white arrows indicate the flow of fluid (measuring fluid).
  • the ultrasonic flow measuring device 50 includes a fluid supply path 3.
  • the fluid supply path 3 includes a drive part 4a including an electromagnetic device such as a stepping motor and a valve body 4b linked to the drive part 4a in the middle of the flow path, and has a shut-off valve 4 opened and closed by the valve body 4b. .
  • the shut-off valve 4 When the shut-off valve 4 is open, the fluid to be measured flows out from the fluid supply path 3 into the meter housing 2.
  • the ultrasonic flow rate measuring device 50 includes a measurement channel 1 through which a fluid to be measured flows.
  • the measurement channel 1 has a rectangular cross section.
  • the fluid to be measured filled in the meter housing 2 flows into the measurement flow channel 1 from the inlet side 1a of the measurement flow channel 1, and further passes through the fluid outflow passage 6 connected to the downstream side 1b of the meter housing 2. It flows out to the outside.
  • the shut-off valve 4 is set to close when there is an abnormality in the fluid flow or when an earthquake is detected by a seismic device (not shown). When the shutoff valve 4 is closed, the fluid to be measured does not flow out from the fluid supply path 3 into the meter housing 2.
  • the ultrasonic flow measurement device 50 includes a flow measurement unit 26.
  • FIG. 2 is a cross-sectional view of the flow rate measurement unit 26 in the embodiment of the present invention.
  • a sensor mounting housing 7 is connected to the short side thereof.
  • a pair of ultrasonic sensors 8 and 9 constituting a flow velocity detection unit are arranged so as to reflect and transmit / receive ultrasonic waves at the opposing wall 52.
  • the ultrasonic sensors 8 and 9 are disposed in sensor mounting recesses 10 and 11 provided obliquely with respect to the measurement flow path 1.
  • the ultrasonic wave is propagated in the measurement flow path 1 between the ultrasonic sensors 8 and 9 through the openings 12 and 13 formed in the measurement flow path 1 of the sensor mounting housing 7.
  • a suppressing body 20 see FIG.
  • the suppressing body 20 is integrally formed with the sensor mounting housing 7.
  • the sensor mounting recesses 10 and 11 communicate with the openings 12 and 13.
  • ultrasonic sensors 8 and 9 may be installed on the same side surface of the measurement flow path 1 and may constitute an ultrasonic propagation path using reflection on the wall surface on the opposite side. Thereby, size reduction of the measurement flow path 1 is attained.
  • the driving of the ultrasonic sensors 8 and 9, the measurement of the ultrasonic propagation time, the detection of the flow rate, and the driving of the shut-off valve 4 at the time of abnormality are performed by the control unit 5 (see FIG. 1).
  • FIG. 3 is a diagram for explaining a flow rate measurement operation using ultrasonic waves in the embodiment of the present invention.
  • the ultrasonic sensors 8 and 9 are arranged on the same plane of the rectangular cross section of the measurement channel 1.
  • the transmission / reception propagation path of the ultrasonic wave is a V-shaped propagation path reflected by the facing wall 52, and the ultrasonic wave is transmitted between the pair of ultrasonic sensors 8 and 9 arranged on the upstream side and the downstream side. Transmission / reception is performed.
  • the propagation time T1 until the ultrasonic wave emitted from the upstream ultrasonic sensor 8 is received by the downstream ultrasonic sensor 9 is measured.
  • the propagation time T2 until the ultrasonic wave emitted from the downstream ultrasonic sensor 9 is received by the upstream ultrasonic sensor 8 is measured.
  • the flow rate is calculated by the calculation unit of the control unit 5 functioning as a flow rate measurement unit by the following calculation formula.
  • the flow rate measuring unit detects the flow rate of the fluid to be measured based on the propagation time of the ultrasonic wave between the pair of ultrasonic sensors 8 and 9.
  • V is the flow velocity of the fluid to be measured in the flow direction of the measurement channel 1. Further, as shown in FIG. 3, the angle between the flow direction of the measurement flow path 1 and the ultrasonic propagation path is ⁇ , and the distance of the ultrasonic propagation path between the ultrasonic sensors 8 and 9 is 2 ⁇ L, When the sound velocity of the measurement fluid is C, the flow velocity V is calculated by the following equation.
  • T1 2 ⁇ L / (C + V cos ⁇ ) Equation (1)
  • T2 2 ⁇ L / (C ⁇ Vcos ⁇ ) Equation (2)
  • the sound velocity C is eliminated from the equation for subtracting the reciprocal of T2 from the reciprocal of T1, thereby obtaining equation (3).
  • the flow velocity V (2 ⁇ L / 2 cos ⁇ ) ((1 / T1) ⁇ (1 / T2)) Equation (3)
  • the angle ⁇ and the distance L are known, the flow velocity V can be calculated from the values of the propagation times T1 and T2.
  • the angle ⁇ 45 degrees
  • the distance L 35 mm
  • the sound velocity C 340 m / s
  • the flow velocity V 8 m / s
  • T1 2.0 ⁇ 10 ⁇ 4 seconds
  • T2 2.1 ⁇ 10 ⁇ 4 seconds
  • the ultrasonic propagation path between the ultrasonic sensors 8 and 9 is not necessarily limited to the V-shaped propagation path as described above.
  • the flow velocity can be measured as long as the propagation path traverses the measurement flow path 1 at least once and the propagation time of the ultrasonic wave changes due to the change in the flow velocity. .
  • FIG. 4 is an exploded perspective view showing the configuration of the flow rate measurement unit 26 in the embodiment of the present invention.
  • the flow rate measurement unit 26 is constituted by two molded parts, the sensor mounting housing 7 and the measurement flow path 1.
  • FIG. 5 is a perspective view showing a configuration of a mold for molding the sensor mounting housing 7 in the embodiment of the present invention.
  • the mold for molding the sensor mounting housing 7 includes an upper mold 14 and a lower mold 15.
  • the upper mold 14 is formed with slider molds 16 and 17 for forming recesses for attaching the ultrasonic sensors 8 and 9.
  • the sensor mounting recesses 10 and 11 and the openings 12 and 13 are formed by slider molds 16 and 17.
  • FIG. 6 is a diagram showing the result of fluid analysis of the flow of the fluid to be measured when there is no suppressor in the opening 12 of the ultrasonic wave propagation portion in the embodiment of the present invention.
  • a large vortex flow is generated in the sensor mounting recess 10 which is a space between the ultrasonic sensor 8 and the measurement flow path 1.
  • the ultrasonic wave propagates through this portion, the ultrasonic wave is disturbed by the vortex flow, so that an error occurs in the measured propagation time, and accurate measurement of the flow rate passing through the measurement flow path 1 becomes difficult.
  • a restraining member such as a wire mesh is separately provided in the opening connected from the sensor mounting recess 10 to the measurement flow path 1. It was. However, in this method, since it is necessary to attach a restraining member made of a separate member, there has been a strong demand to avoid as much as possible from the viewpoint of cost reduction and assembly man-hour reduction.
  • the sensor mounting housing 7 in the embodiment of the present invention is manufactured using a processing method by molding. At this time, the sensor mounting recesses 10 and 11 for mounting the sensor are also integrally processed by inserting auxiliary molds called slider molds 16 and 17 into the mold for molding the sensor mounting body. It is.
  • FIG. 7 is a perspective view showing the configuration of the slider molds 16 and 17 in the first embodiment of the present invention.
  • FIG. 8 is a perspective view showing the configuration of the sensor mounting housing 7 according to the first embodiment of the present invention.
  • the slider molds 16, 17 have flat portions 18 at the tip portions thereof for contacting the lower mold 15 in order to form the openings 12, 13.
  • the flat portion 18 is configured by a plane that is flush with the wall surface of the measurement channel 1 that is in contact with the openings 12 and 13.
  • a plurality of grooves 19 are formed in the flat portion 18 in a straight line perpendicular to the flow of the fluid to be measured in the measurement flow path 1.
  • the depth direction of the groove 19 is configured to be perpendicular to the ultrasonic emission surfaces of the pair of ultrasonic sensors 8 and 9.
  • the suppressing body 20 is formed by a groove 19 provided at the tip of the slider molds 16 and 17.
  • the suppressing body 20 can be formed. Further, the flow of the fluid to be measured can be suppressed as much as possible, and the influence on the attenuation of the ultrasonic wave propagation can be reduced.
  • FIG. 9 is a diagram showing the relationship between the sensor mounting housing 7 and the slider molds 16 and 17 in the first embodiment of the present invention.
  • FIG. 9 shows the relationship between the cross-sectional configuration of the sensor mounting housing 7 shown in FIG. 8 and the side views of the slider dies 16 and 17.
  • the suppressing body 20 is configured at a position corresponding to the groove 19 provided in the slider molds 16, 17 of the sensor mounting housing 7 by molding with the slider molds 16, 17. Is possible.
  • FIG. 10 is a diagram showing the result of fluid analysis showing the effect of the suppressing body 20 in the first embodiment of the present invention.
  • the groove shape in the sensor mounting recesses 10 and 11 is simply formed in the slider molds 16 and 17.
  • the occurrence of inflow of the fluid to be measured can be suppressed, and the measurement accuracy can be improved.
  • a separate member is not required as in the prior art, it is possible to reduce material costs and man-hours.
  • FIG. 11 is a perspective view showing the configuration of the slider mold 32 according to the second embodiment of the present invention.
  • FIG. 12 is a perspective view showing the configuration of the sensor mounting housing 7 according to the second embodiment of the present invention.
  • the configuration of the ultrasonic flow rate measuring device 50 and the mold in the present embodiment is the same as that of the first embodiment except for the configuration of the slider mold 32, and thus the description thereof is omitted.
  • a lattice-like groove 33 is formed at the tip of the slider mold 32.
  • the groove 33 is formed in a direction perpendicular to the flow in the measurement flow path 1, and the depth direction of the groove 33 is configured to be perpendicular to the ultrasonic emission surfaces of the pair of ultrasonic sensors 8 and 9. ing.
  • the sensor mounting housing 7 is molded by the same method as in the first embodiment.
  • the lattice-like suppressing body 34 can be formed integrally with the sensor mounting housing 7, and the effect of suppressing the disturbance of the fluid to be measured in the further sensor mounting recesses 10 and 11 can be achieved. Obtainable.
  • FIG. 13 is a diagram showing a cross-sectional configuration of another example of the ultrasonic flow rate measuring device 54 according to the second embodiment of the present invention.
  • the ultrasonic flow rate measuring device 54 includes a flow rate measurement tube 21 (measurement flow channel) for flowing a fluid to be measured from one to the other. Further, an ultrasonic sensor 22a is provided on the upstream side and an ultrasonic sensor 22b is provided on the downstream side, which are opposed to each other with the flow rate measuring tube 21 interposed therebetween and are inclined at a predetermined angle with respect to the center line.
  • Ultrasonic sensors 22a and 22b are disposed in recesses (sensor mounting recesses) 25a and 25b provided in the flow rate measuring tube 21. It is also possible to configure the above-described suppressors 20 and 34 integrally with the flow rate measurement tube 21 in the opening portions of the recesses 25a and 25b that are in contact with the flow rate measurement tube 21. As a result, the fluid to be measured can be prevented from entering the recesses 25a and 25b, and the flow rate can be measured with high accuracy.
  • the suppressing body that suppresses the flow of the fluid to be measured into the sensor mounting recess is formed at the same time as the casing. For this reason, stable measurement performance, cost reduction, and downsizing can be realized.
  • the opening ratio of the opening can be increased as compared with a conventional suppression member using a wire mesh or the like. For this reason, it is difficult to obstruct the passage of ultrasonic waves, and the sensitivity is less likely to deteriorate when transmitting and receiving ultrasonic waves. Therefore, it is possible to reduce the drive input of the ultrasonic sensor and to reduce the power consumption.
  • the present invention it is possible to achieve an extraordinary effect of realizing stable measurement accuracy and low power while suppressing an increase in cost. Therefore, it is useful as an ultrasonic flow rate measuring device that measures flow rates of various fluids including a gas meter.

Abstract

 超音波流量計測装置であって、被計測流体が流れる計測流路と、計測流路に形成された開口部、および、開口部に連通したセンサ取付け窪み(10,11)を有するセンサ取付け筐体(7)とを備えている。また、センサ取付け窪み(10,11)に配置され、被計測流体の流速を測定する一対の超音波センサと、一対の超音波センサ間の超音波の伝搬時間に基づいて流量を検出する流量計測部とを備えている。さらに、開口部に設けられ、センサ取付け窪み(10,11)への被計測流体の流入を抑制する抑制体(20)を備え、抑制体(20)は、センサ取付け筐体(7)と一体成形されている。

Description

超音波流量計測装置
 本発明は、ガス等の流量を計測する超音波流量計測装置に関する。
 従来の超音波流量計測装置について説明する。
 図14は、従来の超音波流量計測装置100の断面構成を示す図である。
 図14に示すように、超音波流量計測装置100は、被計測流体を一方から他方に流す流量測定管121を備えている。また、流量測定管121を挟んで対向し、かつ、中心線に対して所定角度傾けて、上流側に超音波センサ122aが、下流側に超音波センサ122bが、それぞれ設けられている。
 超音波センサ122a,122bは、流量測定管121に設けられた凹部125a,125bに配置されている。凹部125a,125bの内部空間には、バルク状の超音波透過部材123a,123bが設けられており、被計測流体の凹部125a,125bへの進入を防止して流量計測を行っていた(例えば、特許文献1を参照)。
 また、図15は、従来の超音波流量計測装置150の他の例の断面構成を示す図である。図15に示すように、超音波流量計測装置150も、超音波センサ122a,122bの取付けられた凹部125a,125bを備えている。凹部125a,125bにおける、超音波が流路へ出る開口部には、被計測流体がセンサ側に流れ込むことを規制するための抑止部材124a,124bが配置されている(例えば、特許文献2を参照)。
 しかしながら、上述した従来の構成においては、被計測流体の凹部125a,125bへの流れ込みを抑止するために、超音波透過部材123a,123bや抑止部材124a,124bを設けている。これにより、流量測定管121の計測部(超音波の伝搬路)および、凹部125a,125bでの被計測流体の流れの乱れが小さくなり、計測精度の悪化が低減される。しかしながら、別途部材を必要とするために、材料費や工数の増加によりコストが上がるという課題がある。
 さらに、超音波センサ122a,122bにおける超音波の受信レベルが低下するため、超音波センサ122a,122bの駆動入力を低減し難いという課題がある。このため、都市ガスやLPG(Liquefied petroleum gas)のような家庭用の燃料ガスを計量するガスメータのように、僅かの電池容量で、例えば10年という長期間にわたって使用し続ける際には、低電力化が難しいという課題もある。
特開昭63-26537号公報 特開2004-101542号公報
 本発明は、上述した従来の課題に鑑みてなされたものであり、コストアップを抑えつつ、測定精度の安定化および低電力化を実現する超音波流量計測装置を提供するものである。
 本発明の超音波流量計測装置は、被計測流体が流れる計測流路と、計測流路に形成された開口部、および、開口部に連通したセンサ取付け窪みを有するセンサ取付け筐体とを備えている。また、センサ取付け窪みに配置され、被計測流体の流速を測定する一対の超音波センサと、一対の超音波センサ間の超音波の伝搬時間に基づいて流量を検出する流量計測部とを備えている。さらに、開口部に設けられ、センサ取付け窪みへの被計測流体の流入を抑制する抑制体とを備え、抑制体は、センサ取付け筐体と一体成形されている。
 この構成により、センサ取付け筐体を成型する時に、センサ取付け窪みへの流れ込みを規制する抑制体も同時に成型されるため、別部材を設けてコストアップになることや組立工数を増やす事が無く、センサ取付け窪みに発生する被計測流体の乱れを抑制し、測定精度の安定化および低電力化を実現することができる。
図1は、本発明の実施の形態における超音波流量計測装置の構成を示す断面図である。 図2は、本発明の実施の形態における流量計測ユニットの断面図である。 図3は、本発明の実施の形態における、超音波による流量計測動作を説明するための図である。 図4は、本発明の実施の形態における流量計測ユニットの構成を示す分解斜視図である。 図5は、本発明の実施の形態における、センサ取付け筐体を成型加工する金型の構成を示す斜視図である。 図6は、本発明の実施の形態における、超音波伝搬部の開口部に抑制体が無い場合の被計測流体の流れの流体解析の結果を示す図である。 図7は、本発明の第1の実施の形態におけるスライダ型の構成を示す斜視図である。 図8は、本発明の第1の実施の形態におけるセンサ取付け筐体の構成を示す斜視図である。 図9は、本発明の第1の実施の形態における、センサ取付け筐体とスライダ型との関係を示す図である。 図10は、本発明の第1の実施の形態における、抑制体の効果を示す流体解析の結果を示す図である。 図11は、本発明の第2の実施の形態におけるスライダ型の構成を示す斜視図である。 図12は、本発明の第2の実施の形態におけるセンサ取付け筐体の構成を示す斜視図である。 図13は、本発明の第2の実施の形態における、別の例の超音波流量計測装置の断面構成を示す図である。 図14は、従来の超音波流量計測装置の断面構成を示す図である。 図15は、従来の超音波流量計測装置の他の例の断面構成を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって本発明が限定されるものではない。
 (第1の実施の形態)
 図1は、本発明の実施の形態における超音波流量計測装置50の構成を示す断面図である。図1において、白抜きの矢印は、流体(被計測流体)の流れを示している。
 図1に示したように、超音波流量計測装置50は、流体供給路3を備えている。流体供給路3は、流路の途中に、ステッピングモータ等の電磁装置を含む駆動部4aと、駆動部4aと連係した弁体4bとを含み、弁体4bによって開閉される遮断弁4を有する。遮断弁4が開放状態においては、流体供給路3より被計測流体がメータ筐体2内部に流出される。超音波流量計測装置50は、被計測流体が流れる計測流路1を備えている。計測流路1は、断面が長方形等の矩形で構成されている。メータ筐体2内部に充満した被計測流体は、計測流路1の入口側1aから計測流路1に流入し、さらにはその下流側1bに接続された流体流出路6を経てメータ筐体2外部へと流出する。
 なお、遮断弁4は、流体流動に異常があった時や、感震器(図示せず)等により地震が検知されたとき等に閉じるように設定されている。遮断弁4が閉じた状態においては、被計測流体が流体供給路3からメータ筐体2内部に流出しない。
 超音波流量計測装置50は、流量計測ユニット26を備えている。図2は、本発明の実施の形態における流量計測ユニット26の断面図である。
 計測流路1が断面長方形の場合、例えばその短辺側に、センサ取付け筐体7が接続されている。センサ取付け筐体7には、流速検知部を構成する一対の超音波センサ8,9が、超音波を対向壁52で反射して送受信するように配置されている。超音波センサ8,9は、計測流路1に対して斜めに設けたセンサ取付け窪み10,11に配置されている。超音波センサ8,9間で、センサ取付け筐体7の計測流路1に形成された開口部12,13を通して、計測流路1内での超音波の伝搬が行われる。開口部12,13には、センサ取付け窪み10,11への被計測流体の流入を抑制する抑制体20(図8参照)が設けられている。抑制体20の構成や作用については、後述するが、抑制体20は、センサ取付け筐体7と一体成型されている。センサ取付け窪み10,11は、開口部12,13に連通している。
 なお、一対の超音波センサ8,9の配置は上述の例に限定されない。超音波センサ8,9は、計測流路1の同一側面に設置され、対向側の壁面での反射を利用した超音波の伝搬路が構成されればよい。これにより、計測流路1の小型化が可能となる。
 超音波センサ8,9の駆動、超音波の伝搬時間の測定、および、流量の検出、さらに、異常時の遮断弁4の駆動は、制御部5(図1参照)によって行われる。
 次に、超音波流量計測装置50を用いた、超音波による流量計測動作を説明する。図3は、本発明の実施の形態における、超音波による流量計測動作を説明するための図である。
 本実施の形態においては、一対の超音波センサ8,9をユニット化するために、計測流路1の矩形断面の同一面上に、超音波センサ8,9を配置している。
 このため、超音波の送受信の伝搬経路は、対向壁52で反射させたV字型の伝搬路となり、上流側と下流側に配置された一対の超音波センサ8,9間で、超音波の送受信が行われる。
 このような構成において、上流側の超音波センサ8から発せられた超音波が、下流側の超音波センサ9で受信されるまでの伝搬時間T1を計測する。一方、下流側の超音波センサ9から発せられた超音波が上流側の超音波センサ8で受信されるまでの伝搬時間T2を計測する。
 このようにして測定された伝搬時間T1およびT2を基に、以下の演算式により、流量計測部として機能する制御部5の演算部で流量が算出される。流量計測部は、一対の超音波センサ8,9間の超音波の伝搬時間に基づいて、被計測流体の流量を検出する。
 計測流路1の流動方向の被計測流体の流速をVとする。また、図3に示したように、計測流路1の流動方向と超音波伝搬路とのなす角度をθとし、超音波センサ8,9間の超音波伝搬路の距離を2×L、被測定流体の音速をCとすると、流速Vは以下の式にて算出される。
 T1=2×L/(C+Vcosθ) 式(1)
 T2=2×L/(C-Vcosθ) 式(2)
 式(1)および式(2)において、T1の逆数からT2の逆数を引き算する式より音速Cを消去して、式(3)を得る。
 V=(2×L/2cosθ)((1/T1)-(1/T2))   式(3)
 ここで、角度θおよび距離Lは既知なので、伝搬時間T1およびT2の値より流速Vを算出することができる。空気の流量を計ることを考慮して、角度θ=45度、距離L=35mm、音速C=340m/s、流速V=8m/sと想定すると、T1=2.0×10-4秒、T2=2.1×10-4秒であり、瞬時計測が可能となる。
 なお、超音波センサ8,9間の超音波伝搬路は、必ずしも上記したようなV字型の伝搬路に限定されない。例えば、それ以外の構成の伝搬路であっても、計測流路1を少なくとも一回以上横切り、流速の変化により超音波の伝搬時間が変化する伝搬路であれば、流速の計測は可能である。
 次に、本発明の実施の形態におけるセンサ取付け筐体7の成型方法について説明する。
 図4は、本発明の実施の形態における流量計測ユニット26の構成を示す分解斜視図である。
 図4に示すように、流量計測ユニット26は、センサ取付け筐体7および計測流路1の、二つの成型部品によって構成されている。
 図5は、本発明の実施の形態における、センサ取付け筐体7を成型加工する金型の構成を示す斜視図である。
 図5に示したように、センサ取付け筐体7を成型加工する金型は、上型14と下型15とで構成されている。上型14には、超音波センサ8,9を取付ける窪みを形成するためのスライダ型16、17が形成されている。センサ取付け窪み10,11および開口部12,13は、スライダ型16,17によって成型される。
 ここで、本発明の実施の形態における、抑制体20を有する超音波流量計測装置50の作用および効果について説明する。
 図6は、本発明の実施の形態における、超音波伝搬部の開口部12に抑制体が無い場合の被計測流体の流れの流体解析の結果を示す図である。
 図6に示したように、超音波センサ8と計測流路1との間の空間であるセンサ取付け窪み10に大きな渦流れが発生している。この部分を超音波が伝搬するとき、超音波がこの渦流れに乱されるので、計測される伝搬時間に誤差が生じ、計測流路1を通過する流量の正確な測定が困難になる。
 従来は、センサ取付け窪み10の部分に被計測流体の流れが生じないようにするために、センサ取付け窪み10の部分から計測流路1へと繋がる開口部分に、金網等の抑止部材を別途設けていた。しかしながら、この方法では、別部材からなる抑制部材を取付ける事が必要になるので、コスト削減および組立工数削減の観点から、できるだけ避けたいとの要望が強かった。
 本発明の実施の形態におけるセンサ取付け筐体7は、成型による加工方法を用いて作製する。このとき、センサ取付けのためのセンサ取付け窪み10,11の部分も、センサ取付け本体を成型するための金型内にスライダ型16,17という補助型を挿入することで、一体的に加工するものである。
 図7は、本発明の第1の実施の形態におけるスライダ型16,17の構成を示す斜視図である。また、図8は、本発明の第1の実施の形態におけるセンサ取付け筐体7の構成を示す斜視図である。
 図7に示すように、スライダ型16,17の先端部分には、開口部12、13を形成するために下型15と当接するための平坦部18を有している。平坦部18は、開口部12,13に接する計測流路1の壁面と同一平面となる平面で構成される。これにより、計測流路1の壁面と開口部12,13の抑制体20との一体化がなされ、計測流路1内の流れをスムーズにでき、安定した流量計測を行うことが可能である。
 また、平坦部18には、複数の溝19を、計測流路1内の被計測流体の流れに対して垂直な直線状に形成している。また、溝19の深さ方向は、一対の超音波センサ8,9の超音波放出面に対して垂直な方向になるように構成されている。抑制体20は、スライダ型16,17の先端部分に設けられた溝19によって形成される。
 これにより、図8に示すように、センサ取付け筐体7の成型時に、溝19に筐体の構成材料が流れ込むことにより、一体的にセンサ取付け窪み10の部分に被計測流体の流れ込みを抑止するための抑制体20を形成することができる。また、被計測流体の流れ込みが極力抑えられるとともに、超音波伝搬の減衰に与える影響を小さくできる。
 図9は、本発明の第1の実施の形態における、センサ取付け筐体7とスライダ型16,17との関係を示す図である。図9には、図8に示したセンサ取付け筐体7の断面構成と、スライダ型16,17の側面図との関係を示している。図9に示したように、スライダ型16,17によって成型することによって、センサ取付け筐体7の、スライダ型16,17に設けられた溝19に対応した位置に、抑制体20を構成することが可能となる。
 図10は、本発明の第1の実施の形態における、抑制体20の効果を示す流体解析の結果を示す図である。
 図10に示したように、図6で示した開口部12に抑制体20を設けない状態と比較して、超音波センサ8のセンサ取付け窪み10における、渦の発生等の流れの乱れが少なくなっている。なお、この抑制体20の作用は、超音波センサ9のセンサ取付け窪み11においても同様である。
 以上述べたように、本実施の形態においては、センサ取付け筐体7の金型を作製する際、スライダ型16,17に溝形状を形成するだけで、センサ取付け窪み10,11の部分への被計測流体の流入の発生を抑止でき、測定精度を向上することができる。また、従来のように別部材を必要としないので、材料コストの低減および工数の低減を図ることができる。
 (第2の実施の形態)
 図11は、本発明の第2の実施の形態におけるスライダ型32の構成を示す斜視図である。図12は、本発明の第2の実施の形態におけるセンサ取付け筐体7の構成を示す斜視図である。
 本実施の形態における、超音波流量計測装置50や金型の構成は、スライダ型32の構成以外、第1の実施の形態と同じであるので、その説明を省略する。
 本実施の形態では、図11に示すようにスライダ型32の先端部分に、格子状の溝33を形成している。溝33は、計測流路1内の流れに対して垂直方向に形成され、溝33の深さ方向は、一対の超音波センサ8,9の超音波放出面に対して垂直になるよう構成されている。成型後の格子状の抑制体34の開口方向を超音波センサ8,9の発信面に対して垂直とすることにより、開口部12,13で発生する渦等の流れの乱れが、より小さく分散され、被計測流体の流れ込みを、より性能良く規制することが可能である。
 このスライダ型32を用いて、第1の実施の形態と同様の方法でセンサ取付け筐体7を成型する。これにより、図12に示すような、格子状の抑制体34をセンサ取付け筐体7と一体に形成することができ、さらなるセンサ取付け窪み10,11部分の被計測流体の乱れを抑制する効果を得ることができる。
 従来のように、別途、金網等の流れ込み抑制部材を必要とする場合には、計測流路1およびセンサ取付け筐体7の二部品構成が必須である。しかしながら、各実施の形態で述べたような成型加工を用いる場合には、別体の抑制部材を設ける必要がないので、センサ取付け筐体7および計測流路1の一体加工も可能となる。つまり、センサ取付け筐体7および計測流路1を一体構成とすることができる。よって、さらなる組立工数の低減が図れ、コストダウンが可能であるとともに、一体で加工できるため、組立による精度ばらつきが無くなり、より高精度の計測が可能となる。
 なお、計測流路1の構成によっては、上記した構成の詳細な仕様が変更されることが考えられる。よって、本発明は、上述した実施の形態によって限定されるものではない。
 図13は、本発明の第2の実施の形態における、別の例の超音波流量計測装置54の断面構成を示す図である。
 図13に示すように、超音波流量計測装置54は、被計測流体を一方から他方に流す流量測定管21(計測流路)を備えている。また、流量測定管21を挟んで対向し、かつ、中心線に対して所定角度傾けて、上流側に超音波センサ22aが、下流側に超音波センサ22bが、それぞれ設けられている。
 超音波センサ22a,22bは、流量測定管21に設けられた凹部(センサ取付け窪み)25a,25bに配置されている。この凹部25a,25bの流量測定管21に接する開口部に、上述した抑制体20,34を流量測定管21と一体に構成することも可能である。これにより、被計測流体の凹部25a,25bへの進入を防止して、高精度の流量計測を行うことが可能である。
 以上述べたように、本実施の形態の超音波流量計測装置によれば、センサ取付け窪みに対する被計測流体の流れ込みを抑制する抑制体を、成型加工の時に筐体と同時に形成する。このため、安定した計測性能、低コスト化、および小型化を実現することができる。また、金網等を用いる従来の抑制部材と比較して、開口部の開口率を大きく構成することができる。このため、超音波が通過する際の邪魔になりにくく、超音波を送受信する際の感度低下も起こりにくい。よって、超音波センサの駆動入力を小さくすることが可能であり、低電力化が可能である。
 以上述べたように、本発明によれば、コストアップを抑えつつ、測定精度の安定化および低電力化を実現するという格別な効果を奏することができる。よって、ガスメータをはじめとして種々な流体の流量を計測する超音波流量計測装置等として有用である。
 1  計測流路
 1a  入口側
 1b  下流側
 2  メータ筐体
 3  流体供給路
 4  遮断弁
 4a  駆動部
 4b  弁体
 5  制御部
 6  流体流出路
 7  センサ取付け筐体
 8,9,22a,22b  超音波センサ
 10,11  センサ取付け窪み
 12,13  開口部
 14  上型
 15  下型
 16,17,32  スライダ型
 19,33  溝
 20,34  抑制体
 21  流量測定管
 25a,25b 凹部
 26  流量計測ユニット
 50,54  超音波流量計測装置
 52  対向壁

Claims (7)

  1. 被計測流体が流れる計測流路と、
    前記計測流路に形成された開口部、および、前記開口部に連通したセンサ取付け窪みを有するセンサ取付け筐体と、
    前記センサ取付け窪みに配置され、前記被計測流体の流速を測定する一対の超音波センサと、
    前記一対の超音波センサ間の超音波の伝搬時間に基づいて流量を検出する流量計測部と、
    前記開口部に設けられ、前記センサ取付け窪みへの前記被計測流体の流入を抑制する抑制体とを備え、
    前記抑制体は、前記センサ取付け筐体と一体成形された
    超音波流量計測装置。
  2. 前記センサ取付け窪みおよび前記開口部はスライダ型で成型され、前記抑制体は、前記スライダ型の先端部分に設けられた溝によって形成される
    請求項1に記載の超音波流量計測装置。
  3. 前記スライダ型の先端部分には、前記開口部に接する前記計測流路の壁面と同一平面となる平面を有する
    請求項1に記載の超音波流量計測装置。
  4. 前記センサ取付け筐体および前記計測流路が一体構成である
    請求項1に記載の超音波流量計測装置。
  5. 前記一対の超音波センサが、前記計測流路の同一側面に設置され、
    対向側の壁面での反射を利用した超音波の伝搬路が構成される
    請求項1に記載の超音波流量計測装置。
  6. 前記スライダ型の先端部分に設けられた前記溝は、前記計測流路の流れに対して垂直方向に直線状に形成され、
    前記溝の深さ方向が、前記一対の超音波センサの超音波放出面に対して垂直になるよう構成される請求項2に記載の超音波流量計測装置。
  7. 前記スライダ型の先端の溝は、格子状であり、
    前記溝は、前記計測流路内の流れに対して垂直方向に形成され、
    前記溝の深さ方向は、前記一対の超音波センサの超音波放出面に対して垂直になるよう構成される請求項2に記載の超音波流量計測装置。
PCT/JP2012/002334 2011-04-05 2012-04-04 超音波流量計測装置 WO2012137489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013508766A JPWO2012137489A1 (ja) 2011-04-05 2012-04-04 超音波流量計測装置
US13/984,633 US9372105B2 (en) 2011-04-05 2012-04-04 Ultrasonic flow rate measurement device
CN201280016739.0A CN103459988B (zh) 2011-04-05 2012-04-04 超声波流量计测装置
EP12767854.8A EP2696174A4 (en) 2011-04-05 2012-04-04 ULTRASOUND FLOWMETER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011083297 2011-04-05
JP2011-083297 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012137489A1 true WO2012137489A1 (ja) 2012-10-11

Family

ID=46968898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002334 WO2012137489A1 (ja) 2011-04-05 2012-04-04 超音波流量計測装置

Country Status (5)

Country Link
US (1) US9372105B2 (ja)
EP (1) EP2696174A4 (ja)
JP (1) JPWO2012137489A1 (ja)
CN (1) CN103459988B (ja)
WO (1) WO2012137489A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077750A (ja) * 2012-10-12 2014-05-01 Panasonic Corp 超音波メータ
JP2019196968A (ja) * 2018-05-09 2019-11-14 アズビル金門株式会社 超音波流量計

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103087A (ja) * 2010-11-10 2012-05-31 Panasonic Corp 超音波流量計測ユニット
BR112015003632A2 (pt) 2012-08-22 2017-09-26 Miitors Aps medidor ultrassônico de fluxo, método de montagem de um medidor ultrassônico de fluxo.
JP6368916B2 (ja) * 2015-04-16 2018-08-08 パナソニックIpマネジメント株式会社 流量計測装置
MX2018011344A (es) * 2016-03-21 2019-01-31 Envirofit Int Inc Metodos y sistemas de distribucion de gas de petroleo licuado.
DK3734236T3 (da) 2016-07-13 2023-08-21 Gwf Messsysteme Ag Flowmåler med en målekanal
EP3376177B1 (en) * 2017-03-14 2019-11-20 Endress + Hauser Flowtec AG Ultrasonic flowmeter
US11118950B2 (en) * 2017-04-20 2021-09-14 Siemens Schweiz Ag Ultrasonic flow meter
EP3633329B1 (en) * 2017-05-22 2021-12-15 Panasonic Intellectual Property Management Co., Ltd. Gas meter
DE102017130976A1 (de) * 2017-12-21 2019-06-27 Endress+Hauser Flowtec Ag Clamp-On-Ultraschall-Durchflussmessgerät und Verfahren zum Justieren des Clamp-On-Ultraschall-Durchflussmessgeräts
ES2930200T3 (es) * 2018-06-08 2022-12-07 Panasonic Ip Man Co Ltd Dispositivo de seguridad de gas
EP3588017A1 (de) * 2018-06-27 2020-01-01 Sensus Spectrum LLC Ultraschallmessvorrichtung
JP2020024180A (ja) * 2018-08-09 2020-02-13 パナソニックIpマネジメント株式会社 超音波流量計
JP7223956B2 (ja) * 2018-08-31 2023-02-17 パナソニックIpマネジメント株式会社 超音波流量計
CN113295222A (zh) * 2020-02-21 2021-08-24 北京昌民技术有限公司 超声波流量计
EP4204769A1 (de) 2020-10-14 2023-07-05 Gwf Ag Durchflussmesser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326537B2 (ja) 1978-03-01 1988-05-30 Kunihiko Kanda
WO2000055581A1 (fr) * 1999-03-17 2000-09-21 Matsushita Electric Industrial Co., Ltd. Debitmetre a ultrasons
JP2004101542A (ja) 1999-03-17 2004-04-02 Matsushita Electric Ind Co Ltd 超音波流量計測装置
JP2006090952A (ja) * 2004-09-27 2006-04-06 Saginomiya Seisakusho Inc 超音波流量計およびその製造方法
JP2009014672A (ja) * 2007-07-09 2009-01-22 Panasonic Corp 超音波式流体計測装置の多層流路部材
JP2009288151A (ja) * 2008-05-30 2009-12-10 Ricoh Elemex Corp 超音波流量計
JP2010164558A (ja) * 2008-12-18 2010-07-29 Panasonic Corp 流体の流れ計測装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326537A (ja) 1986-07-18 1988-02-04 Kawasaki Steel Corp 超音波流量計
ES2131672T3 (es) * 1993-01-30 1999-08-01 Kromschroeder Ag G Medidor de flujo para fluido.
CN1293369C (zh) * 1999-06-24 2007-01-03 松下电器产业株式会社 流量计
EP1612520B1 (en) * 2003-02-24 2019-01-16 Panasonic Corporation Ultrasonic type fluid measuring device
EP1610587B1 (en) * 2003-04-28 2011-06-15 Panasonic Corporation Ultrasonic sensor
KR100861827B1 (ko) * 2003-11-10 2008-10-07 마츠시타 덴끼 산교 가부시키가이샤 초음파 유량계와 그 제조 방법
DE102004060065B4 (de) * 2004-12-14 2016-10-20 Robert Bosch Gmbh Ultraschall Durchflussmesser mit Leitelementen
TW200739039A (en) * 2005-08-12 2007-10-16 Celerity Inc Ultrasonic flow sensor
DE102005038599A1 (de) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Ultraschallmesseinheit mit integrierter Feuchteermittlung
JP4729442B2 (ja) * 2006-06-12 2011-07-20 日立オートモティブシステムズ株式会社 流量測定装置,流量測定通路及びその製造方法
EP2180298A4 (en) 2007-07-09 2011-10-12 Panasonic Corp MULTILAYER CHANNEL ELEMENT FOR ULTRASONIC LIQUID MEASURING DEVICE AND ULTRASONIC LIQUID MEASURING DEVICE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326537B2 (ja) 1978-03-01 1988-05-30 Kunihiko Kanda
WO2000055581A1 (fr) * 1999-03-17 2000-09-21 Matsushita Electric Industrial Co., Ltd. Debitmetre a ultrasons
JP2004101542A (ja) 1999-03-17 2004-04-02 Matsushita Electric Ind Co Ltd 超音波流量計測装置
JP2006090952A (ja) * 2004-09-27 2006-04-06 Saginomiya Seisakusho Inc 超音波流量計およびその製造方法
JP2009014672A (ja) * 2007-07-09 2009-01-22 Panasonic Corp 超音波式流体計測装置の多層流路部材
JP2009288151A (ja) * 2008-05-30 2009-12-10 Ricoh Elemex Corp 超音波流量計
JP2010164558A (ja) * 2008-12-18 2010-07-29 Panasonic Corp 流体の流れ計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696174A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077750A (ja) * 2012-10-12 2014-05-01 Panasonic Corp 超音波メータ
JP2019196968A (ja) * 2018-05-09 2019-11-14 アズビル金門株式会社 超音波流量計

Also Published As

Publication number Publication date
CN103459988A (zh) 2013-12-18
EP2696174A1 (en) 2014-02-12
US9372105B2 (en) 2016-06-21
CN103459988B (zh) 2016-08-17
US20130312537A1 (en) 2013-11-28
JPWO2012137489A1 (ja) 2014-07-28
EP2696174A4 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2012137489A1 (ja) 超音波流量計測装置
EP2639560B1 (en) Ultrasonic flow rate measurement device
JP2010164558A (ja) 流体の流れ計測装置
WO2012086156A1 (ja) 超音波流量計
WO2012164859A1 (ja) 超音波式流量計測ユニットおよびこれを用いたガス流量計
JP2017173200A (ja) 直管型ガスメータ
WO2020044887A1 (ja) 超音波流量計
CN106030254A (zh) 气体流量计
JP5816831B2 (ja) 超音波流量計
JP4936856B2 (ja) 流量計
JP4455000B2 (ja) ガスメータ
JP2012177572A (ja) 超音波式流体計測装置
JP6134899B2 (ja) 流量計測ユニット
JP2014077750A (ja) 超音波メータ
JP6306434B2 (ja) 超音波流量計
JP2009264906A (ja) 流量計
JP3922233B2 (ja) 超音波流量計測装置
JP7373771B2 (ja) 物理量計測装置
JP3824236B2 (ja) 超音波流量計測装置
JP2021110685A (ja) 超音波流量計
JP4942254B2 (ja) ガスメータ
JP2003202254A5 (ja)
JP4453341B2 (ja) 超音波流量計
CN108700447B (zh) 气量计
JP3436247B2 (ja) 超音波流量計測装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12767854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508766

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012767854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012767854

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13984633

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE