WO2012137376A1 - 非水系二次電池用セパレータおよび非水系二次電池 - Google Patents
非水系二次電池用セパレータおよび非水系二次電池 Download PDFInfo
- Publication number
- WO2012137376A1 WO2012137376A1 PCT/JP2011/074259 JP2011074259W WO2012137376A1 WO 2012137376 A1 WO2012137376 A1 WO 2012137376A1 JP 2011074259 W JP2011074259 W JP 2011074259W WO 2012137376 A1 WO2012137376 A1 WO 2012137376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- secondary battery
- polyvinylidene fluoride
- weight
- aqueous secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/417—Polyolefins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/414—Synthetic resins, e.g. thermoplastics or thermosetting resins
- H01M50/426—Fluorocarbon polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
- H01M50/461—Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator for a non-aqueous secondary battery and a non-aqueous secondary battery.
- Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and camcorders. Further, in recent years, these batteries have been studied for application to automobiles and the like because of their high energy density.
- a technique is known that uses a separator in which a porous layer made of a polyvinylidene fluoride resin (hereinafter also referred to as an adhesive porous layer) is formed on a polyolefin microporous film, which is a conventional separator (for example, see Patent Document 1).
- an adhesive porous layer made of a polyvinylidene fluoride resin (hereinafter also referred to as an adhesive porous layer) is formed on a polyolefin microporous film, which is a conventional separator (for example, see Patent Document 1).
- the adhesive porous layer is hot-pressed over the electrode in a state containing the electrolytic solution, the electrode and the separator can be satisfactorily bonded and can function as an adhesive. Therefore, the cycle life of the soft pack battery can be improved.
- a battery element is manufactured by winding the electrode and the separator in an overlapped state, and the element is enclosed in the metal can exterior together with an electrolytic solution. Is made.
- a battery element is produced in the same manner as the battery with the above metal can, and this is put together with the electrolyte in the soft pack exterior.
- a battery is produced by encapsulating and finally adding a hot press process. Therefore, in the case of using the separator having the adhesive porous layer as described above, a battery element can be produced in the same manner as the battery with the above metal can outer case. There is also an advantage that no change is required.
- a positive electrode or a negative electrode of a general non-aqueous secondary battery includes a current collector, and an active material layer including an electrode active material and a binder resin formed on the current collector.
- the adhesive porous layer mentioned above adhere attaches with respect to the binder resin in an electrode, when making it join with an electrode by hot press. Therefore, in order to ensure better adhesiveness, it is preferable that the amount of the binder resin in the electrode is large.
- the binder resin used for the electrode is generally a polyvinylidene fluoride resin, but in recent years, the use of styrene-butadiene rubber is increasing. For an electrode using such a styrene-butadiene rubber, it has been difficult to obtain sufficient battery characteristics while achieving both ion permeability and adhesiveness in a separator having a conventional adhesive porous layer.
- the present invention provides a separator for a non-aqueous secondary battery that is superior in adhesion to an electrode as compared with the conventional one and that can ensure sufficient ion permeability even after being bonded to the electrode. With the goal.
- a separator for a non-aqueous secondary battery comprising: a porous substrate; and an adhesive porous layer containing a polyvinylidene fluoride resin formed on at least one surface of the porous substrate.
- a separator for a non-aqueous secondary battery wherein the vinylidene fluoride resin has a weight average molecular weight of 600,000 to 3,000,000.
- the total weight of both surfaces of the adhesive porous layer formed on both surfaces of the porous substrate is 1.0 g / m 2 or more and 3.0 g / m 2 or less, and one surface side of the adhesive porous layer 8.
- the porous substrate is a polyolefin microporous film containing polyethylene and polypropylene.
- Secondary battery separator. 12 A non-aqueous secondary battery using the separator according to any one of 1 to 11 above.
- the present invention it is possible to provide a separator for a non-aqueous secondary battery that is superior in adhesion to an electrode as compared with the conventional one and that can ensure sufficient ion permeability even after bonding to the electrode.
- a separator of the present invention it is possible to provide a non-aqueous secondary battery having a high energy density and a high performance aluminum laminate pack exterior.
- a separator for a non-aqueous secondary battery according to the present invention includes a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride-based resin formed on at least one surface of the porous substrate.
- the numerical value range indicated by “ ⁇ ” means a numerical range including an upper limit value and a lower limit value.
- the porous substrate means a substrate having pores or voids therein.
- a substrate include a microporous film, a porous sheet made of a fibrous material such as a nonwoven fabric and a paper sheet, or one or more other porous layers laminated on the microporous film or the porous sheet.
- the composite porous sheet etc. which were made to be mentioned can be mentioned.
- a microporous membrane is a membrane that has a large number of micropores inside and a structure in which these micropores are connected, and allows gas or liquid to pass from one surface to the other. Means.
- the material constituting the porous substrate can be either an organic material or an inorganic material having electrical insulation.
- a thermoplastic resin as a constituent material of the base material.
- the shutdown function is a function to prevent the thermal runaway of the battery by blocking the movement of ions by melting the thermoplastic resin and closing the pores of the porous substrate when the battery temperature rises.
- the thermoplastic resin a thermoplastic resin having a melting point of less than 200 ° C. is suitable, and polyolefin is particularly preferable.
- a polyolefin microporous membrane is suitable as a porous substrate using polyolefin.
- a polyolefin microporous membrane having sufficient mechanical properties and ion permeability and applied to a conventional separator for a non-aqueous secondary battery can be used.
- the polyolefin microporous membrane preferably contains polyethylene from the viewpoint of having the shutdown function described above, and the polyethylene content is preferably 95% by weight or more.
- a polyolefin microporous film containing polyethylene and polypropylene is preferable from the viewpoint of imparting heat resistance that does not easily break when exposed to high temperatures.
- a polyolefin microporous membrane include a microporous membrane in which polyethylene and polypropylene are mixed in one sheet.
- Such a microporous membrane preferably contains 95% by weight or more of polyethylene and 5% by weight or less of polypropylene from the viewpoint of achieving both a shutdown function and heat resistance.
- the polyolefin microporous membrane has a structure of at least two layers, and one of the two layers includes polyethylene and the other layer includes polypropylene.
- a polyolefin microporous membrane having a structure is also preferred.
- the weight average molecular weight of polyolefin is preferably 100,000 to 5,000,000. If the weight average molecular weight is less than 100,000, it may be difficult to ensure sufficient mechanical properties. On the other hand, if it exceeds 5 million, the shutdown characteristics may be deteriorated or molding may be difficult.
- Such a polyolefin microporous membrane can be produced, for example, by the following method. That is, (i) a step of extruding a molten polyolefin resin from a T-die to form a sheet, (ii) a step of subjecting the sheet to crystallization treatment, (iii) a step of stretching the sheet, and (iv) heat treatment of the sheet A method of forming the microporous film by sequentially performing the steps is performed.
- a step of melting a polyolefin resin together with a plasticizer such as liquid paraffin, extruding it from a T-die and cooling it to form a sheet (ii) a step of stretching the sheet, (iii) Examples include a method of forming a microporous film by sequentially performing a step of extracting a plasticizer from the sheet, and (iv) a step of heat-treating the sheet.
- a plasticizer such as liquid paraffin
- porous sheets made of fibrous materials include polyesters such as polyethylene terephthalate, polyolefins such as polyethylene and polypropylene, heat-resistant polymers such as aromatic polyamides and polyimides, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. Or a porous sheet made of a mixture of these fibrous materials.
- the composite porous sheet a structure in which a functional layer is laminated on a porous sheet made of a microporous film or a fibrous material can be adopted. Such a composite porous sheet is preferable in that a further function can be added by the functional layer.
- a porous layer made of a heat resistant resin or a porous layer made of a heat resistant resin and an inorganic filler can be used.
- the heat resistant resin include one or more heat resistant polymers selected from aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide.
- a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be suitably used.
- the composite method include a method of coating a functional sheet on a porous sheet, a method of bonding with an adhesive, and a method of thermocompression bonding.
- the film thickness of the porous substrate is preferably in the range of 5 to 25 ⁇ m from the viewpoint of obtaining good mechanical properties and internal resistance.
- the Gurley value (JIS P8117) of the porous substrate is preferably in the range of 50 to 800 seconds / 100 cc from the viewpoint of preventing short circuit of the battery and obtaining sufficient ion permeability.
- the puncture strength of the porous substrate is preferably 300 g or more from the viewpoint of improving the production yield.
- Polyvinylidene fluoride resin A polyvinylidene fluoride resin having a weight average molecular weight of 600,000 to 3,000,000 is applied to the separator for a non-aqueous secondary battery of the present invention.
- a polyvinylidene fluoride resin having a weight average molecular weight of 600,000 or more is applied, the adhesive strength with the electrode is sufficiently high, and the ion permeability after adhesion with the electrode becomes sufficient.
- the weight average molecular weight of the polyvinylidene fluoride resin is more preferably 800,000 or more. In addition, if the weight average molecular weight is 3 million or less, it is not necessary to increase the viscosity at the time of molding, so that good moldability can be obtained, and the porous structure suitable for good crystallization of the adhesive porous layer Can be obtained.
- the weight average molecular weight is more preferably 2 million or less, and further preferably 1.5 million or less.
- the weight average molecular weight of the polyvinylidene fluoride resin can be determined by gel permeation chromatography (GPC method).
- the polyvinylidene fluoride resin a homopolymer of vinylidene fluoride (that is, polyvinylidene fluoride), a copolymer of vinylidene fluoride and another copolymerizable monomer, or a mixture thereof is preferably used. It is done.
- the monomer copolymerizable with vinylidene fluoride one kind or two or more kinds such as tetrafluoroethylene, hexafluoropropylene, trifluoroethylene, trichloroethylene, and vinyl fluoride can be used.
- the polyvinylidene fluoride resin preferably contains 70 mol% or more of vinylidene fluoride as a structural unit.
- a polyvinylidene fluoride resin containing 98 mol% or more of vinylidene fluoride as a structural unit is preferable from the viewpoint of securing sufficient mechanical properties in the bonding step with the electrode.
- the above-mentioned polyvinylidene fluoride resin having a relatively high molecular weight can be obtained by emulsion polymerization or suspension polymerization, particularly preferably suspension polymerization.
- the separator for a non-aqueous secondary battery of the present invention comprises a porous substrate and an adhesive porous layer containing a polyvinylidene fluoride resin formed on at least one surface of the porous substrate.
- the adhesive porous layer is composed of a polyvinylidene fluoride-based resin, has a number of micropores inside, and has a structure in which these micropores are connected. It means a porous layer in which gas or liquid can pass from one side to the other side.
- the adhesive porous layer is an adhesive layer that adheres to the electrode by hot pressing in a state containing the electrolytic solution, it needs to exist as the outermost layer of the separator.
- the adhesive porous layer preferably has a sufficiently porous structure from the viewpoint of ion permeability.
- the value obtained by subtracting the Gurley value of the porous base material from the Gurley value of the non-aqueous secondary battery separator in a state where the adhesive porous layer is formed is 300 seconds / 100 cc or less, more preferably 150. Second / 100 cc or less, more preferably 100 sec / 100 cc or less. When this difference is higher than 300 seconds / 100 cc, the adhesive porous layer is too dense to inhibit ion permeation, and sufficient battery characteristics may not be obtained.
- the Gurley value of the separator for a non-aqueous secondary battery of the present invention is preferably in the range of 50 seconds / 100 cc to 800 seconds / 100 cc from the viewpoint of obtaining sufficient battery performance.
- the porosity of the separator for a non-aqueous secondary battery of the present invention is suitably in the range of 30% or more and 60% or less from the viewpoint of obtaining the effects of the present invention and good mechanical properties of the separator.
- the weight of the polyvinylidene fluoride resin is preferably in the range of 0.5 g / m 2 or more and 1.5 g / m 2 or less on one surface from the viewpoint of adhesion to the electrode, ion permeability and battery load characteristics. It is.
- the total weight of the polyvinylidene fluoride-based resin is preferably 1.0 g / m 2 or more and 3.0 g / m 2 or less.
- the weight difference between the front and back surfaces is also important.
- the total weight of both surfaces of the adhesive porous layer formed on the front and back of the porous substrate is 1.0 g / m 2 or more and 3.0 g / m 2 or less, and the adhesive porous layer It is preferable that the weight difference between the one side and the other side is 20% or less with respect to the total weight of both sides. If this exceeds 20%, curling may become prominent, which may hinder handling and may deteriorate cycle characteristics.
- the adhesive porous layer can be mixed with fillers or other additives made of inorganic or organic substances within a range that does not impair the effects of the present invention.
- a filler By mixing such a filler, it is possible to improve the slipperiness and heat resistance of the separator.
- the inorganic filler for example, a metal oxide such as alumina or a metal hydroxide such as magnesium hydroxide can be used.
- the organic filler for example, an acrylic resin or the like can be used.
- the separator for a non-aqueous secondary battery of the present invention described above is an adhesive porous material in which a solution containing a polyvinylidene fluoride resin is directly applied onto a porous substrate to solidify the polyvinylidene fluoride resin. It can be manufactured by a method in which the layer is formed integrally on the porous substrate.
- a polyvinylidene fluoride resin is dissolved in a solvent to prepare a coating solution.
- This coating solution is applied onto the porous substrate and immersed in an appropriate coagulation solution.
- the layer made of polyvinylidene fluoride resin has a porous structure.
- the coagulating liquid is removed by washing with water, and the adhesive porous layer can be integrally formed on the porous substrate by drying.
- a good solvent that dissolves the polyvinylidene fluoride resin can be used.
- a good solvent for example, a polar amide solvent such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylformamide and the like can be suitably used.
- a phase separation agent that induces phase separation in addition to the good solvent.
- phase separation agent include water, methanol, ethanol, propyl alcohol, butyl alcohol, butanediol, ethylene glycol, propylene glycol, and tripropylene glycol.
- Such a phase separation agent is preferably added in a range that can ensure a viscosity suitable for coating.
- what is necessary is just to mix or melt
- the composition of the coating solution preferably includes a polyvinylidene fluoride resin at a concentration of 3 to 10% by weight.
- a solvent it is preferable to use a mixed solvent containing 60% by weight or more of a good solvent and 40% by weight or less of a phase separation agent from the viewpoint of forming an appropriate porous structure.
- the coagulation liquid water, a mixed solvent of water and the good solvent, or a mixed solvent of water, the good solvent, and the phase separation agent can be used.
- a mixed solvent of water, a good solvent, and a phase separation agent is preferable.
- the mixing ratio of the good solvent and the phase separation agent should be adjusted to the mixing ratio of the mixed solvent used for dissolving the polyvinylidene fluoride resin.
- the concentration of water is preferably 40 to 90% by weight from the viewpoint of forming a good porous structure and improving productivity.
- the conventional coating methods such as Meyer bar, die coater, reverse roll coater, and gravure coater can be applied to the porous substrate.
- the adhesive porous layer is formed on both sides of the porous substrate, it is possible to solidify, wash and dry after coating the coating solution one side at a time. From the viewpoint of productivity, it is preferable to solidify, wash and dry after coating.
- the separator of this invention can be manufactured also with the dry-type coating method besides the wet coating method mentioned above.
- the dry coating method is a method in which a coating liquid containing a polyvinylidene fluoride resin and a solvent is applied onto a porous substrate, and the solvent is removed by volatilization by drying the coating liquid. How to get.
- the coating film tends to be a dense film compared to the wet coating method, and it is almost impossible to obtain a porous layer unless a filler or the like is added to the coating liquid.
- a filler or the like is added to the coating liquid.
- the separator of the present invention can also be produced by a method in which an adhesive porous layer and a porous substrate are prepared separately, and these sheets are superposed and combined by thermocompression bonding or an adhesive.
- a method of obtaining the adhesive porous layer as an independent sheet the coating liquid is applied onto the release sheet, and the adhesive porous layer is formed by using the wet coating method or the dry coating method described above. Examples include a method of peeling only the porous layer.
- Non-aqueous secondary battery of the present invention is characterized by using the separator of the present invention described above.
- the non-aqueous secondary battery has a configuration in which a separator is disposed between a positive electrode and a negative electrode, and these battery elements are enclosed in an exterior together with an electrolytic solution.
- a lithium ion secondary battery is suitable as the non-aqueous secondary battery.
- the structure which formed the electrode layer which consists of a positive electrode active material, binder resin, and a conductive support agent on a positive electrode collector can be employ
- the positive electrode active material include lithium cobaltate, lithium nickelate, spinel structure lithium manganate, and olivine structure lithium iron phosphate.
- the adhesive porous layer of the separator is disposed on the positive electrode side, since the polyvinylidene fluoride resin has excellent oxidation resistance, LiMn 1/2 Ni 1 1 that can operate at a high voltage of 4.2 V or higher.
- a positive electrode active material such as 2 O 2 or LiCo 1/3 Mn 1/3 Ni 1/3 O 2 can be easily applied.
- binder resin examples include polyvinylidene fluoride resin.
- conductive assistant examples include acetylene black, ketjen black, and graphite powder.
- current collector examples include aluminum foil having a thickness of 5 to 20 ⁇ m.
- the negative electrode a structure in which an electrode layer made of a negative electrode active material and a binder resin is formed on the negative electrode current collector can be adopted, and a conductive additive may be added to the electrode layer as necessary.
- a negative electrode active material for example, a carbon material that can occlude lithium electrochemically, a material that forms an alloy with lithium such as silicon or tin, and the like can be used.
- the binder resin include polyvinylidene fluoride resin and butylene-stadiene rubber.
- the separator for a non-aqueous secondary battery since the adhesiveness is good, sufficient adhesiveness can be ensured even when not only polyvinylidene fluoride resin but also a butylene-stadiene rubber is used as the negative electrode binder.
- the conductive assistant include acetylene black, ketjen black, and graphite powder.
- the current collector include copper foil having a thickness of 5 to 20 ⁇ m. Moreover, it can replace with said negative electrode and can also use metal lithium foil as a negative electrode.
- the electrolytic solution has a structure in which a lithium salt is dissolved in an appropriate solvent.
- the lithium salt include LiPF 6 , LiBF 4 , LiClO 4, and the like.
- the solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, fluoroethylene carbonate, and difluoroethylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and fluorine-substituted products thereof, ⁇ -butyrolactone, ⁇ -Cyclic esters such as valerolactone or a mixed solvent thereof can be suitably used.
- the separator provided with the conventional adhesive porous layer it may be difficult to exhibit the adhesion to the electrode depending on the type of the electrolytic solution used, but according to the separator of the present invention, the type of the electrolytic solution However, there is a great advantage in that good adhesiveness can be exhibited.
- the separator for a non-aqueous secondary battery of the present invention can be applied to a battery with a metal can exterior, but it is suitably used for a soft pack battery with an aluminum laminate film exterior because of its good adhesiveness to the electrode.
- the positive electrode and the negative electrode are joined via a separator, impregnated with an electrolytic solution, and enclosed in an aluminum laminate film.
- a non-aqueous secondary battery can be obtained by hot-pressing it.
- an electrode and a separator can be bonded well, and a non-aqueous secondary battery excellent in cycle life can be obtained.
- the adhesion between the electrode and the separator is good, the battery is excellent in safety.
- measuring method of film thickness It measured using the contact-type thickness meter (made by LITEMATIC Mitutoyo).
- the measurement terminal was a cylindrical one having a diameter of 5 mm, and was adjusted so that a load of 7 g was applied during the measurement.
- Weight A sample was cut into 10 cm ⁇ 10 cm and its weight was measured. The basis weight was determined by dividing the weight by the area.
- Weight of polyvinylidene fluoride resin The weight of the polyvinylidene fluoride resin was measured from the spectrum intensity of FK ⁇ using an energy dispersive X-ray fluorescence analyzer (EDX-800HS Shimadzu Corporation). In this measurement, the weight of the polyvinylidene fluoride resin on the surface irradiated with X-rays is measured. Therefore, when a porous layer made of polyvinylidene fluoride resin is formed on both the front and back surfaces, the weight of each polyvinylidene fluoride resin on the front and back surfaces is measured by measuring the front and back surfaces. The weight can be measured.
- the porosity of the separator for a non-aqueous secondary battery and the porous substrate was obtained from the following formula 1.
- ⁇ ⁇ 1 ⁇ Ws / (ds ⁇ t) ⁇ ⁇ 100
- ⁇ porosity (%)
- Ws basis weight (g / m 2 )
- ds true density (g / cm 3 )
- t film thickness ( ⁇ m).
- the porosity ⁇ (%) of the composite separator is calculated from the following formula 2. did.
- Wa weight per unit area of the base material (g / m 2)
- Wb weight of polyvinylidene fluoride resin (g / m 2)
- t represents the thickness ([mu] m).
- this coating solution was applied to both sides of a polyethylene microporous membrane (TN0901: SK) having a film thickness of 9 ⁇ m, a Gurley value of 160 seconds / 100 cc, and a porosity of 43%, and water / dimethylacetamide / tripropylene.
- Example 2 The non-aqueous secondary battery of the present invention was the same as Example 1 except that polyvinylidene fluoride having a weight average molecular weight of 630,000 (KF polymer W # 7200: manufactured by Kureha Chemical Co., Ltd.) was used as the polyvinylidene fluoride resin. A separator was obtained.
- Example 3 Polyvinylidene fluoride having a weight average molecular weight of 1,570,000 (KF polymer W # 7300: manufactured by Kureha Chemical Co., Ltd.) was used as the polyvinylidene fluoride resin.
- the polyvinylidene fluoride was dissolved in NMP at 5% by weight, and Al 2 O 3 (AL160SG-3: manufactured by Showa Denko) as an inorganic solid filler was dispersed at an equal weight with respect to the weight of the polyvinylidene fluoride resin to obtain a coating solution. Produced.
- Examples 4 to 7 Using the same coating solution and polyethylene microporous membrane as in Example 1, the coating amount was changed as shown in Table 1 by the same method to obtain the nonaqueous secondary battery separator of the present invention.
- Example 8 and 9 Using the same coating solution and polyethylene microporous membrane as in Example 1, the same method was used to change only the front and back coating amounts as shown in Table 1 to obtain the non-aqueous secondary battery separator of the present invention. It was.
- the polyethylene microporous membrane in Example 1 has a three-layer structure of polypropylene / polyethylene / polypropylene, and is a polyolefin microporous membrane (M824 Cellguard) having a film thickness of 12 ⁇ m, a Gurley value of 425 seconds / 100 cc, and a porosity of 38%.
- a separator for a non-aqueous secondary battery of the present invention was obtained in the same manner as Example 1 except that it was used instead.
- Example 1 A separator for a non-aqueous secondary battery is obtained in the same manner as in Example 1 except that polyvinylidene fluoride having a weight average molecular weight of 350,000 (KF polymer W # 1300: manufactured by Kureha Chemical Co., Ltd.) is used as the polyvinylidene fluoride resin. It was.
- a porous layer made of polyvinylidene fluoride resin was formed on a polyolefin microporous film by solidifying by immersing in a 30/20 weight ratio coagulation liquid (40 ° C.), washing with water, and drying.
- a separator for an aqueous secondary battery was obtained.
- Example 3 A separator for a non-aqueous secondary battery was obtained in the same manner as in Example 1 except that polyvinylidene fluoride having a weight average molecular weight of 500,000 (KF polymer # 1700: manufactured by Kureha Chemical Co., Ltd.) was used as the polyvinylidene fluoride resin. .
- the obtained polyvinylidene fluoride film was dense and an adhesive porous layer could not be formed.
- the Gurley value of the said composite film was measured, it was 2000 second / 100cc or more, and the permeability was remarkably bad.
- Adhesion test method The prepared positive electrode and negative electrode were joined via a separator, an electrolyte solution was impregnated therein, and this battery element was sealed in an aluminum laminate pack using a vacuum sealer to prepare a test cell.
- the electrolyte used here was 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio). After the test cell was pressed by a hot press, the cell was disassembled and the adhesion was evaluated by measuring the peel strength. The pressing conditions were such that the applied load was 20 kg per 1 cm 2 of electrode, the temperature was 90 ° C., and the time was 2 minutes.
- the horizontal axis represents the weight average molecular weight of the polyvinylidene fluoride resin
- the vertical axis represents the relative value of the peel strength when the peel strength obtained with the separator of Example 1 is 100.
- the resin used for the positive electrode is the same resin system as that used for the adhesive porous layer, but the binder on the negative electrode side is a modified styrene-butadiene copolymer, and the resin system is different from that of polyvinylidene fluoride. For this reason, severe press conditions are required to obtain a sufficient adhesive force. However, even if such a severe press condition is not used, if a polyvinylidene fluoride resin having a weight average molecular weight of 600,000 or more is used, the porous structure of the adhesive porous layer can be maintained and sufficient for both electrodes. Adhesive strength can be obtained.
- Table 1 shows the evaluation results of adhesiveness for all examples and comparative examples.
- the average value of the peel strength for the positive electrode and the negative electrode for the separator of Example 1 was set as 100, and the average value of the peel strength for the positive electrode and the negative electrode for each separator was relatively evaluated.
- Those having an average value of 70 or more are described as ⁇ , those having 50 or more and less than 70 are described as ⁇ , and those having less than 50 are described as ⁇ .
- a battery load characteristic test was performed as follows. First, a positive electrode and a negative electrode were produced in the same manner as the electrode used in the above-mentioned “adhesion test with electrode”. Lead tabs were welded to the positive electrode and the negative electrode, the positive and negative electrodes were joined via a separator, the electrolyte was soaked, and sealed in an aluminum pack using a vacuum sealer. The electrolyte used here was 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio).
- a test battery was produced by applying a load of 20 kg per 1 cm 2 of electrode with a hot press machine and performing hot pressing at 90 ° C. for 2 minutes.
- a relative discharge capacity of 2C based on a discharge capacity of 0.2C at 25 ° C. was measured, and this was used as an index of ion permeability after adhesion. Table 1 shows the measurement results for each sample.
- FIG. 2 shows the results of the adhesion test with Examples 1 and 4 to 7 described above.
- the horizontal axis in FIG. 2 represents the weight of the single-sided polyvinylidene fluoride resin
- the vertical axis represents the relative peel strength with the peel strength obtained when using the resin of Example 1 as 100.
- the weight of the polyvinylidene fluoride-based resin has a large influence on the adhesiveness, although the influence is small compared to the molecular weight.
- the weight of one side became smaller than 0.5 g / m ⁇ 2 >, the tendency for adhesiveness to fall was confirmed. Therefore, in terms of ensuring sufficient adhesiveness, the weight of the single-sided polyvinylidene fluoride resin is more preferably 0.5 g / m 2 or more.
- thermomechanical property measurement TMA
- Each separator was cut into a width of 4 mm and set so that the distance between chucks was 10 mm.
- the temperature at which the separator was broken was measured by increasing the temperature at an applied load of 10 mN and a temperature increase rate of 10 ° C./min.
- the separator of Example 1 was confirmed to break at 155 ° C., whereas the separator of Example 10 was confirmed to break at 180 ° C. It can be seen that applying a polyethylene microporous membrane containing polypropylene is preferable from the viewpoint of heat resistance.
- Example 1 and Comparative Examples 1 to 3 were tested for adhesion to electrodes in the same manner as described above using various electrolytic solutions.
- 1M LiPF 6 ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) is used as the electrolytic solution A
- 1M LiPF 6 ethylene carbonate / propylene carbonate / ethyl methyl carbonate (3/2/5 weight ratio) is used as the electrolytic solution B
- 1M LiPF 6 ethylene carbonate / propylene carbonate (1/1 weight ratio) was used as the electrolytic solution C.
- Table 4 The criteria for determining adhesiveness are the same as in Table 1.
- the non-aqueous secondary battery separator of the present invention can be suitably used for a non-aqueous secondary battery, and is particularly suitable for a non-aqueous secondary battery having an aluminum laminate exterior, which is important for bonding with an electrode.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
Description
1. 多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、前記ポリフッ化ビニリデン系樹脂の重量平均分子量が60万以上300万以下であることを特徴とする非水系二次電池用セパレータ。
2. 前記ポリフッ化ビニリデン系樹脂の重量平均分子量が60万以上150万以下であることを特徴とする上記1に記載の非水系二次電池用セパレータ。
3. 前記非水系二次電池用セパレータのガーレ値は50秒/100cc以上800秒/100cc以下であることを特徴とする上記1または2に記載の非水系二次電池用セパレータ。
4. 前記非水系二次電池用セパレータの空孔率は30%以上60%以下であることを特徴とする上記1~3のいずれかに記載の非水系二次電池用セパレータ。
5. 前記接着性多孔質層を形成した状態の前記非水系二次電池用セパレータのガーレ値から、前記多孔質基材のガーレ値を減算した値が、300秒/100cc以下であることを特徴とする上記1~4のいずれかに記載の非水系二次電池用セパレータ。
6. 前記接着性多孔質層の重量が0.5g/m2以上1.5g/m2以下であることを特徴とする上記1~5のいずれかに記載の非水系二次電池用セパレータ。
7. 前記接着性多孔質層は前記多孔質基材の表裏両面に形成されていることを特徴とする上記1~6のいずれかに記載の非水系二次電池用セパレータ。
8. 前記多孔質基材の両面に形成された前記接着性多孔質層の両面合計の重量が、1.0g/m2以上3.0g/m2以下であり、前記接着性多孔質層の一面側の重量と他面側の重量の差が、両面合計の重量に対して20%以下であることを特徴とする上記7に記載の非水系二次電池用セパレータ。
9. 前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜であることを特徴とする上記1~8のいずれかに記載の非水系二次電池用セパレータ。
10. 前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜であることを特徴とする上記1~8のいずれかに記載の非水系二次電池用セパレータ。
11. 前記ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含むことを特徴とする上記10に記載の非水系二次電池用セパレータ。
12. 上記1~11のいずれかに記載のセパレータを用いた非水系二次電池。
本発明において、多孔質基材とは内部に空孔ないし空隙を有する基材を意味する。このような基材としては、微多孔膜や、不織布、紙状シート等の繊維状物からなる多孔性シート、あるいは、これら微多孔膜や多孔性シートに他の多孔性層を1層以上積層させた複合多孔質シート等を挙げることができる。なお、微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。
本発明の非水系二次電池用セパレータには重量平均分子量が60万以上300万以下のポリフッ化ビニリデン系樹脂を適用する。重量平均分子量が60万以上のポリフッ化ビニリデン系樹脂を適用すると、電極との接着力が十分に高く、電極との接着後のイオン透過性も十分なものになる。なお、接着力が弱い場合は、より厳しい熱プレスによる接合条件を適用しなければならず、そのような厳しい熱プレスを行なった場合は、接着性多孔質層の多孔構造が破壊されてしまい、目詰まりによりイオン透過性が阻害されたり、接着性多孔質層が溶融して電極とポリオレフィン微多孔膜の界面から押し出されるといった不具合が生じる。ポリフッ化ビニリデン系樹脂の重量平均分子量は80万以上であることがさらに好ましい。また、重量平均分子量が300万以下であれば、成形時の粘度が高まらずに済むため良好な成形性が得られ、また、接着性多孔質層が良好に結晶化するために好適な多孔構造を得ることが可能となる。このような観点からは、重量平均分子量は200万以下がより好ましく、150万以下がさらに好ましい。ここでポリフッ化ビニリデン系樹脂の重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC法)により求めることができる。
本発明の非水系二次電池用セパレータは、上述したように、多孔質基材と、多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層とを備えている。ここで、接着性多孔質層とは、ポリフッ化ビニリデン系樹脂を含んで構成されており、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった多孔質層を意味する。また、接着性多孔質層は、電解液を含んだ状態で熱プレスによって電極と接着する接着層であるため、セパレータの最外層として存在する必要がある。当然、正極および負極の両方とセパレータを接着させた方がサイクル寿命の観点から好ましいので、多孔質基材の表裏に接着性多孔質層を形成させた方が好ましい。
上述した本発明の非水系二次電池用セパレータは、ポリフッ化ビニリデン系樹脂を含む溶液を多孔質基材上に直接塗工して、ポリフッ化ビニリデン系樹脂を固化させることで、接着性多孔質層を多孔質基材上に一体的に形成する方法で製造できる。
本発明の非水系二次電池は、上述した本発明のセパレータを用いたことを特徴とする。
本発明において、非水系二次電池は、正極および負極の間にセパレータが配置され、これらの電池素子が電解液と共に外装内に封入された構成となっている。非水系二次電池としてはリチウムイオン二次電池が好適である。
(ポリフッ化ビニリデン系樹脂の重量平均分子量の測定方法)
ポリフッ化ビニリデン系樹脂の重量平均分子量は以下のように測定した。日本分光社製のGPC装置「GPC-900」を用い、カラムに東ソー社製TSKgel SUPER AWM-Hを2本用い、溶媒にDMFを使用し、温度40℃、流量10ml/分にてゲルパーミエーションクロマトグラフィー(GPC法)によりポリスチレン換算分子量として測定した。
接触式の厚み計(LITEMATIC ミツトヨ社製)を用いて測定した。測定端子は直径5mmの円柱状のものを用い、測定中には7gの荷重が印加されるように調整して行った。
サンプルを10cm×10cmに切り出し、その重量を測定した。重量を面積で割ることで目付を求めた。
エネルギー分散型蛍光X線分析装置(EDX-800HS 島津製作所)を用いてFKαのスペクトル強度からポリフッ化ビニリデン系樹脂の重量を測定した。この測定ではX線を照射した面のポリフッ化ビニリデン系樹脂の重量が測定される。よって表裏両面にポリフッ化ビニリデン系樹脂からなる多孔質層を形成した場合、表裏各々の測定を行うことで表裏各々のポリフッ化ビニリデン系樹脂の重量が測定され、それを合計することで表裏合計の重量が測定できる。
非水系二次電池用セパレータ及び多孔質基材の空孔率は、下記式1から求めた。
ε={1-Ws/(ds・t)}×100… (式1)
ここで、ε:空孔率(%)、Ws:目付(g/m2)、ds:真密度(g/cm3)、t:膜厚(μm)である。
具体的に、例えばポリエチレン多孔質基材とポリフッ化ビニリデン系樹脂のみからなる多孔質層とを積層させた複合セパレータについては、当該複合セパレータの空孔率ε(%)は以下の式2から算出した。
ε={1―(Wa/0.95+Wb/1.78)/t}×100 … (式2)
ここで、Waは基材の目付(g/m2)、Wbはポリフッ化ビニリデン系樹脂の重量(g/m2)、tは膜厚(μm)である。
JIS P8117に従い、ガーレ式デンソメータ(G-B2C 東洋精機社製)にて測定した。
ポリフッ化ビニリデン系樹脂として重量平均分子量157万のポリフッ化ビニリデン(KFポリマー W#7300:クレハ化学社製)を用いた。該ポリフッ化ビニリデンを5重量%でジメチルアセトアミド/トリプロピレングリコール=7/3重量比である混合溶媒に溶解し、塗工液を作製した。この塗工液を、膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、水/ジメチルアセトアミド/トリプロピレングリコール=57/30/13重量比の凝固液(40℃)に浸漬することで、ポリマーを固化させた。これを水洗、乾燥することで、ポリオレフィン系微多孔膜の表裏両面にポリフッ化ビニリデン系樹脂からなる多孔質層が形成された、本発明の非水系二次電池用セパレータを得た。このセパレータの膜厚、目付け、空孔率、接着性多孔質層(PVdF層)の重量(両面の合計重量、表面の重量、裏面の重量、表面側の重量と裏面側の重量差の両面合計重量に対する割合)、ガーレ値の測定結果を表1に示す。なお、以下の実施例および比較例のセパレータについても同様に表1にまとめて示す。
ポリフッ化ビニリデン系樹脂として重量平均分子量63万のポリフッ化ビニリデン(KFポリマー W#7200:クレハ化学社製)を用いた点以外は実施例1と同様にして、本発明の非水系二次電池用セパレータを得た。
ポリフッ化ビニリデン系樹脂として重量平均分子量157万のポリフッ化ビニリデン(KFポリマー W#7300:クレハ化学社製)を用いた。該ポリフッ化ビニリデンを5重量%でNMPに溶解し、さらに無機固形フィラーとしてAl2O3(AL160SG-3:昭和電工製)をポリフッ化ビニリデン樹脂の重量に対し等重量分散させて塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、100℃で12時間真空乾燥させ、本発明の非水系二次電池用セパレータを得た。
実施例1と同様の塗工液およびポリエチレン微多孔膜を用い、同様の方法で、表1に示したように塗工量のみ変化させて本発明の非水系二次電池用セパレータを得た。
実施例1と同様の塗工液およびポリエチレン微多孔膜を用い、同様の方法で、表1に示したように表裏の塗工量のみ変化させて本発明の非水系二次電池用セパレータを得た。
実施例1におけるポリエチレン微多孔膜を、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造からなり、膜厚12μm、ガーレ値425秒/100cc、空孔率38%であるポリオレフィン微多孔膜(M824 セルガード社)に代えて用いた以外は、実施例1と同様にして本発明の非水系二次電池用セパレータを得た。
ポリフッ化ビニリデン系樹脂として重量平均分子量35万のポリフッ化ビニリデン(KFポリマー W#1300:クレハ化学社製)を用いた点以外は実施例1と同様にして、非水系二次電池用セパレータを得た。
共重合組成がフッ化ビニリデン/ヘキサフロロプロピレン/クロロトリフロロエチレン=92.0/4.5/3.5重量比となるポリフッ化ビニリデン系樹脂を乳化重合にて作製した。このポリフッ化ビニリデン系樹脂の重量平均分子量は41万であった。該ポリフッ化ビニリデンを8重量%でジメチルアセトアミド/トリプロピレングリコール=55/45重量比である混合溶媒に溶解し、塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、水/ジメチルアセトアミド/トリプロピレングリコール=50/30/20重量比の凝固液(40℃)に浸漬することで固化させ、これを水洗、乾燥することで、ポリオレフィン系微多孔膜にポリフッ化ビニリデン系樹脂からなる多孔質層が形成された非水系二次電池用セパレータを得た。
ポリフッ化ビニリデン系樹脂として重量平均分子量50万のポリフッ化ビニリデン(KFポリマー #1700:クレハ化学社製)を用いた点以外は実施例1と同様にして、非水系二次電池用セパレータを得た。
重量平均分子量が310万のポリフッ化ビニリデンを懸濁重合で重合した。このポリマーを用いたこと以外は実施例1と同様にして、ポリエチレン微多孔膜の両面に接着性多孔質層を形成しようとした。しかし、成形性が著しく困難であり、非水系二次電池用セパレータを作製することができなかった。
ポリフッ化ビニリデン系樹脂として重量平均分子量157万のポリフッ化ビニリデン(KFポリマー W#7300:クレハ化学社製)を用いた。該ポリフッ化ビニリデンを5重量%でNMPに溶解し塗工液を作製した。これを膜厚9μm、ガーレ値160秒/100cc、空孔率43%のポリエチレン微多孔膜(TN0901:SK社製)の両面に等量塗工し、100℃で12時間真空乾燥させた。しかし、得られたポリフッ化ビニリデン膜は緻密であり、接着性多孔質層を形成することはできなかった。なお、当該複合膜のガーレ値を測定したところ、2000秒/100cc以上であり、透過性が著しく悪いものであった。
(負極の作製)
負極活物質である人造黒鉛(MCMB25-28 大阪ガス化学社製)300g、バインダーである日本ゼオン製の「BM-400B」(スチレン-ブタジエン共重合体の変性体を40重量%含む水溶性分散液)7.5g、増粘剤であるカルボキシメチルセルロース3g、適量の水を双腕式混合機にて攪拌し、負極用スラリーを作製した。この負極用スラリーを負極集電体である厚さ10μmの銅箔に塗布し、得られた塗膜を乾燥し、プレスして負極活物質層を有する負極を作製した。
正極活物質であるコバルト酸リチウム(セルシードC 日本化学工業社製)粉末を89.5g、導電助剤のアセチレンブラック(デンカブラック 電気化学工業社製)4.5g、バインダーであるポリフッ化ビニリデン(KFポリマー W#1100 クレハ化学社製)を6重量%となるようにNMPに溶解した溶液をポリフッ化ビニリデンの重量が6重量%となるように双腕式混合機にて攪拌し、正極用スラリーを作製した。この正極用スラリーを正極集電体である厚さ20μmのアルミ箔に塗布し、得られた塗膜を乾燥し、プレスして正極活物質層を有する正極を作製した。
前記作製した正極と負極とをセパレータを介して接合させ、これに電解液をしみ込ませ、この電池素子をアルミラミネートパックに真空シーラーを用いて封入し、試験セルを作製した。ここで電解液は1M LiPF6 エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用いた。この試験セルを熱プレス機によりプレスした後にセルを解体し、剥離強度を測定することで接着性を評価した。プレス条件は印加荷重が電極1cm2当たり20kgの荷重がかかる条件で、温度は90℃、時間は2分とした。
上記接着性テストを実施例1、2及び比較例1、2、3のセパレータについて実施した。その結果を図1に示す。
各サンプルについて、接着後のイオン透過性を評価するために、次のようにして電池負荷特性試験を行なった。まず、上述した「電極との接着性テスト」で用いた電極と同様の方法で、正極と負極を作製した。この正極と負極にリードタブを溶接し、セパレータを介してこれら正負極を接合させ、電解液をしみ込ませてアルミパック中に真空シーラーを用いて封入した。ここで電解液は1M LiPF6 エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用いた。これを熱プレス機により電極1cm2当たり20kgの荷重をかけ、90℃で2分の熱プレスを行うことで試験電池を作製した。電池の負荷特性は25℃にて0.2Cの放電容量を基準にした2Cの相対放電容量を測定し、これを接着後のイオン透過性の指標とした。なお、表1に各サンプルの測定結果を示した。
接着条件を厳しくした場合の接着性とイオン透過性を検討するために、実施例1、2及び比較例1~3のセパレータを用いて、プレス条件を印加荷重が電極1cm2当たり20kgの荷重がかかる条件で、温度は110℃、時間は2分とした以外は同様の方法で、前記の「電極との接着性テスト」と「接着後のイオン透過性」を評価した。その結果を表2に示す。なお、接着性の判断基準については表1の場合と同様である。また、表1における接着条件での結果を「接着性1」および「負荷特性1」と称し、表2における接着条件での結果を「接着性2」および「負荷特性2」と称す。
実施例1及び4~7について、上述した電極との接着性テストの結果を図2に示す。図2の横軸は片面のポリフッ化ビニリデン系樹脂の重量、縦軸は実施例1のものを用いたときに得られた剥離強度を100として示した相対的な剥離強度である。ポリフッ化ビニリデン系樹脂の重量は、分子量に比べて影響は小さいものの、接着性に大きく影響していることが分かる。そして、片面の重量が0.5g/m2より小さくなると、接着性が低下する傾向が確認された。よって、十分な接着性を確保するという観点において、片面のポリフッ化ビニリデン系樹脂の重量は0.5g/m2以上であることがより好ましい。
実施例1及び4~7について上記の電池負荷特性試験を行った。その結果を図3に示す。横軸は片面のポリフッ化ビニリデン系樹脂の重量、縦軸は0.2C放電容量基準の2Cの相対放電容量である。ポリフッ化ビニリデン系樹脂重量が多くなると、放電性が低下する傾向が確認される。これはポリフッ化ビニリデン系樹脂からなる多孔質層により、電池の内部抵抗が増加するためと考えられる。片面のポリフッ化ビニリデン系樹脂の重量が1.5g/m2より大きくなると、放電性が低下することから、片面のポリフッ化ビニリデン系樹脂の重量は、1.5g/m2以下が特に好ましい。
実施例1、8、9のセパレータを用いた電池について、上記の電池負荷特性試験と同様の電池を作製し、25℃にてサイクル試験を実施した。充電条件は1C、4.2Vの定電流定電圧充電、放電条件は1C、2.75Vカットオフの定電流放電とした。ここでサイクル特性の指標は100サイクル後の容量維持率とした。その結果を表3に示す。
実施例1と実施例10のセパレータのそれぞれの耐熱性を、熱機械物性測定(TMA)により比較した。それぞれのセパレータを幅4mmに切り出しチャック間距離10mmとなるようにセットした。印加荷重10mNとし昇温速度10℃/minで昇温させていきセパレータが破断する温度を測定した。実施例1のセパレータは155℃で破断が確認されたの対し、実施例10のセパレータは180℃で破断が確認された。ポリプロピレンを含むポリエチレン微多孔膜を適用することは、耐熱性の観点から好ましいことが分かる。
実施例1と比較例1~3のセパレータについて、各種電解液を用いて、上記と同様にして電極との接着性テストを実施した。なお、電解液Aとして1M LiPF6 エチレンカーボネート/エチルメチルカーボネート(3/7重量比)を用い、電解液Bとして1M LiPF6 エチレンカーボネート/プロピレンカーボネート/エチルメチルカーボネート(3/2/5重量比)を用い、電解液Cとして1M LiPF6 エチレンカーボネート/プロピレンカーボネート(1/1重量比)を用いた。結果を表4に示す。なお、接着性の判断基準については表1の場合と同様である。
Claims (12)
- 多孔質基材と、前記多孔質基材の少なくとも一方の面に形成されたポリフッ化ビニリデン系樹脂を含む接着性多孔質層と、を備えた非水系二次電池用セパレータであって、
前記ポリフッ化ビニリデン系樹脂の重量平均分子量が60万以上300万以下であることを特徴とする非水系二次電池用セパレータ。 - 前記ポリフッ化ビニリデン系樹脂の重量平均分子量が60万以上150万以下であることを特徴とする請求項1に記載の非水系二次電池用セパレータ。
- 前記非水系二次電池用セパレータのガーレ値は50秒/100cc以上800秒/100cc以下であることを特徴とする請求項1または2に記載の非水系二次電池用セパレータ。
- 前記非水系二次電池用セパレータの空孔率は30%以上60%以下であることを特徴とする請求項1~3のいずれかに記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層を形成した状態の前記非水系二次電池用セパレータのガーレ値から、前記多孔質基材のガーレ値を減算した値が、300秒/100cc以下であることを特徴とする請求項1~4のいずれかに記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層の重量が0.5g/m2以上1.5g/m2以下であることを特徴とする請求項1~5のいずれかに記載の非水系二次電池用セパレータ。
- 前記接着性多孔質層は前記多孔質基材の表裏両面に形成されていることを特徴とする請求項1~6のいずれかに記載の非水系二次電池用セパレータ。
- 前記多孔質基材の両面に形成された前記接着性多孔質層の両面合計の重量が、1.0g/m2以上3.0g/m2以下であり、
前記接着性多孔質層の一面側の重量と他面側の重量の差が、両面合計の重量に対して20%以下であることを特徴とする請求項7に記載の非水系二次電池用セパレータ。 - 前記多孔質基材がポリエチレンを含むポリオレフィン微多孔膜であることを特徴とする請求項1~8のいずれかに記載の非水系二次電池用セパレータ。
- 前記多孔質基材がポリエチレンとポリプロピレンとを含むポリオレフィン微多孔膜であることを特徴とする請求項1~8のいずれかに記載の非水系二次電池用セパレータ。
- 前記ポリオレフィン微多孔膜が少なくとも2層以上の構造となっており、当該2層のうち一方の層はポリエチレンを含み、他方の層はポリプロピレンを含むことを特徴とする請求項10に記載の非水系二次電池用セパレータ。
- 請求項1~11のいずれかに記載のセパレータを用いた非水系二次電池。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/704,143 US9431641B2 (en) | 2011-04-08 | 2011-10-21 | Separator for nonaqueous secondary battery, and nonaqueous secondary battery |
EP11863141.5A EP2696393B1 (en) | 2011-04-08 | 2011-10-21 | Nonaqueous secondary battery separator and nonaqueous secondary battery |
KR1020137000124A KR101297770B1 (ko) | 2011-04-08 | 2011-10-21 | 비수계 이차 전지용 세퍼레이터 및 비수계 이차 전지 |
CN201180049804.5A CN103155218B (zh) | 2011-04-08 | 2011-10-21 | 非水系二次电池用隔膜及非水系二次电池 |
JP2012504980A JP5129895B2 (ja) | 2011-04-08 | 2011-10-21 | 非水系二次電池用セパレータおよび非水系二次電池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011086385 | 2011-04-08 | ||
JP2011-086385 | 2011-04-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012137376A1 true WO2012137376A1 (ja) | 2012-10-11 |
Family
ID=46968800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074259 WO2012137376A1 (ja) | 2011-04-08 | 2011-10-21 | 非水系二次電池用セパレータおよび非水系二次電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9431641B2 (ja) |
EP (1) | EP2696393B1 (ja) |
JP (1) | JP5129895B2 (ja) |
KR (1) | KR101297770B1 (ja) |
CN (1) | CN103155218B (ja) |
TW (1) | TWI524581B (ja) |
WO (1) | WO2012137376A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013073503A1 (ja) * | 2011-11-15 | 2013-05-23 | 帝人株式会社 | 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池 |
WO2014065258A1 (ja) * | 2012-10-22 | 2014-05-01 | ダイキン工業株式会社 | セパレータ及び二次電池 |
WO2015156127A1 (ja) * | 2014-04-11 | 2015-10-15 | 東レバッテリーセパレータフィルム株式会社 | 電池用セパレータ |
JP2017135111A (ja) * | 2015-03-24 | 2017-08-03 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2017162699A (ja) * | 2016-03-10 | 2017-09-14 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 巻回型二次電池用セパレータ(separator)、巻回型二次電池用セパレータの製造方法、扁平状巻回素子、巻回型二次電池、及び巻回型二次電池の製造方法 |
JP2018101613A (ja) * | 2016-12-20 | 2018-06-28 | 旭化成株式会社 | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス |
JP2019026796A (ja) * | 2017-08-02 | 2019-02-21 | 積水化学工業株式会社 | 合成樹脂フィルム、蓄電デバイス用セパレータ及び蓄電デバイス |
JP2019516206A (ja) * | 2016-03-23 | 2019-06-13 | シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. | 電気化学的装置用セパレータおよびその調製方法および使用 |
WO2021015157A1 (ja) | 2019-07-24 | 2021-01-28 | 三洋電機株式会社 | 非水電解質二次電池 |
WO2022025082A1 (ja) * | 2020-07-28 | 2022-02-03 | 帝人株式会社 | 電池の製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9755208B2 (en) | 2013-03-06 | 2017-09-05 | Teijin Limited | Non-aqueous-secondary-battery separator and non-aqueous secondary battery |
JP6137554B2 (ja) * | 2014-08-21 | 2017-05-31 | トヨタ自動車株式会社 | 非水電解質二次電池および該電池用のセパレータ |
CN107093689B (zh) | 2014-08-29 | 2018-05-29 | 住友化学株式会社 | 层叠体、间隔件和非水二次电池 |
JP7148198B2 (ja) * | 2015-03-05 | 2022-10-05 | 日本電気株式会社 | 二次電池用セパレータおよびそれを備えた二次電池 |
CN108292753B (zh) * | 2015-11-30 | 2022-04-22 | 日本瑞翁株式会社 | 非水系二次电池粘接层用组合物、非水系二次电池用粘接层以及非水系二次电池 |
KR101963313B1 (ko) * | 2016-05-02 | 2019-03-28 | 주식회사 엘지화학 | 이차전지의 제조방법 및 전극 조립체의 제조방법 |
KR101941144B1 (ko) * | 2016-05-02 | 2019-01-23 | 주식회사 엘지화학 | 이차전지의 제조방법 및 전극 조립체의 제조방법 |
US10680222B2 (en) * | 2017-12-19 | 2020-06-09 | GM Global Technology Operations LLC | Method of making thermally-stable composite separators for lithium batteries |
CN108539095B (zh) * | 2018-04-03 | 2021-06-15 | 上海恩捷新材料科技有限公司 | 电池涂布膜浆料、电池隔膜、二次电池及其制备方法 |
EP4190860A4 (en) * | 2020-07-28 | 2024-04-10 | Teijin Limited | NON-AQUEOUS SECONDARY BATTERY |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004146190A (ja) * | 2002-10-24 | 2004-05-20 | Tomoegawa Paper Co Ltd | リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池 |
JP2004296760A (ja) * | 2003-03-27 | 2004-10-21 | Tomoegawa Paper Co Ltd | 電子部品用セパレータ |
JP2005019156A (ja) * | 2003-06-25 | 2005-01-20 | Tomoegawa Paper Co Ltd | 電子部品用セパレータおよび電子部品 |
JP2005190736A (ja) * | 2003-12-24 | 2005-07-14 | Tomoegawa Paper Co Ltd | 電子部品用セパレーター |
JP2006120462A (ja) * | 2004-10-21 | 2006-05-11 | Sanyo Electric Co Ltd | 非水電解質電池 |
JP4127989B2 (ja) | 2001-09-12 | 2008-07-30 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6818352B2 (en) * | 1999-03-07 | 2004-11-16 | Teijin Limited | Lithium secondary cell, separator, cell pack, and charging method |
JP4303355B2 (ja) | 1999-04-26 | 2009-07-29 | 株式会社クレハ | ポリふっ化ビニリデン系樹脂、それからなる多孔膜およびその多孔膜を用いた電池 |
US6586138B2 (en) * | 2000-02-04 | 2003-07-01 | Amtek Research International Llc | Freestanding microporous separator including a gel-forming polymer |
KR100573358B1 (ko) * | 2002-09-17 | 2006-04-24 | 가부시키가이샤 도모에가와 세이시쇼 | 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지 |
KR100699215B1 (ko) | 2004-03-19 | 2007-03-27 | 가부시키가이샤 도모에가와 세이시쇼 | 전자부품용 세퍼레이터 및 그 제조 방법 |
JP2006027024A (ja) * | 2004-07-14 | 2006-02-02 | Asahi Kasei Chemicals Corp | 多層多孔膜 |
CN1744348A (zh) * | 2004-08-30 | 2006-03-08 | 北京东皋膜技术有限公司 | 用于锂离子二次电池的复合隔膜和具有该隔膜的锂离子二次电池 |
JP4986009B2 (ja) | 2005-04-04 | 2012-07-25 | ソニー株式会社 | 二次電池 |
WO2007013179A1 (ja) * | 2005-07-25 | 2007-02-01 | Teijin Limited | 非水系二次電池用セパレータ及びその製造方法 |
JP2007188777A (ja) * | 2006-01-13 | 2007-07-26 | Sony Corp | セパレータおよび非水電解質電池 |
CN101212035B (zh) * | 2006-12-29 | 2010-06-16 | 比亚迪股份有限公司 | 一种电池隔膜及其制备方法 |
US9293752B2 (en) * | 2007-01-30 | 2016-03-22 | Asahi Kasei E-Materials Corporation | Multilayer porous membrane and production method thereof |
JP4460028B2 (ja) * | 2007-06-06 | 2010-05-12 | 帝人株式会社 | 非水系二次電池セパレータ用ポリオレフィン微多孔膜基材、その製造方法、非水系二次電池セパレータおよび非水系二次電池 |
JP4801706B2 (ja) | 2008-09-03 | 2011-10-26 | 三菱樹脂株式会社 | セパレータ用積層多孔性フィルム、およびその製造方法 |
KR101943647B1 (ko) * | 2009-02-23 | 2019-01-29 | 가부시키가이샤 무라타 세이사쿠쇼 | 비수 전해질 조성물, 비수 전해질 이차 전지 및 비수 전해질 이차 전지의 제조 방법 |
-
2011
- 2011-10-21 EP EP11863141.5A patent/EP2696393B1/en active Active
- 2011-10-21 TW TW100138315A patent/TWI524581B/zh active
- 2011-10-21 CN CN201180049804.5A patent/CN103155218B/zh active Active
- 2011-10-21 US US13/704,143 patent/US9431641B2/en active Active
- 2011-10-21 KR KR1020137000124A patent/KR101297770B1/ko active IP Right Grant
- 2011-10-21 WO PCT/JP2011/074259 patent/WO2012137376A1/ja active Application Filing
- 2011-10-21 JP JP2012504980A patent/JP5129895B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4127989B2 (ja) | 2001-09-12 | 2008-07-30 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2004146190A (ja) * | 2002-10-24 | 2004-05-20 | Tomoegawa Paper Co Ltd | リチウムイオン二次電池用セパレータおよびこれを備えたリチウムイオン二次電池 |
JP2004296760A (ja) * | 2003-03-27 | 2004-10-21 | Tomoegawa Paper Co Ltd | 電子部品用セパレータ |
JP2005019156A (ja) * | 2003-06-25 | 2005-01-20 | Tomoegawa Paper Co Ltd | 電子部品用セパレータおよび電子部品 |
JP2005190736A (ja) * | 2003-12-24 | 2005-07-14 | Tomoegawa Paper Co Ltd | 電子部品用セパレーター |
JP2006120462A (ja) * | 2004-10-21 | 2006-05-11 | Sanyo Electric Co Ltd | 非水電解質電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2696393A4 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9368778B2 (en) | 2011-11-15 | 2016-06-14 | Teijin Limited | Separator for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery |
WO2013073503A1 (ja) * | 2011-11-15 | 2013-05-23 | 帝人株式会社 | 非水系二次電池用セパレータ及びその製造方法、並びに非水系二次電池 |
WO2014065258A1 (ja) * | 2012-10-22 | 2014-05-01 | ダイキン工業株式会社 | セパレータ及び二次電池 |
JPWO2014065258A1 (ja) * | 2012-10-22 | 2016-09-08 | ダイキン工業株式会社 | セパレータ及び二次電池 |
US10355258B2 (en) | 2014-04-11 | 2019-07-16 | Toray Industries, Inc. | Separator for battery |
WO2015156127A1 (ja) * | 2014-04-11 | 2015-10-15 | 東レバッテリーセパレータフィルム株式会社 | 電池用セパレータ |
US11183735B2 (en) | 2015-03-24 | 2021-11-23 | Teijin Limited | Separator for a non-aqueous secondary battery, and non-aqueous secondary battery |
JP2017135111A (ja) * | 2015-03-24 | 2017-08-03 | 帝人株式会社 | 非水系二次電池用セパレータ及び非水系二次電池 |
JP2017162699A (ja) * | 2016-03-10 | 2017-09-14 | 三星エスディアイ株式会社Samsung SDI Co., Ltd. | 巻回型二次電池用セパレータ(separator)、巻回型二次電池用セパレータの製造方法、扁平状巻回素子、巻回型二次電池、及び巻回型二次電池の製造方法 |
JP2019516206A (ja) * | 2016-03-23 | 2019-06-13 | シャンハイ、エナジー、ニュー、マテリアルズ、テクノロジー、カンパニー、リミテッドShanghai Energy New Materials Technology Co., Ltd. | 電気化学的装置用セパレータおよびその調製方法および使用 |
JP2018101613A (ja) * | 2016-12-20 | 2018-06-28 | 旭化成株式会社 | 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス |
JP2019026796A (ja) * | 2017-08-02 | 2019-02-21 | 積水化学工業株式会社 | 合成樹脂フィルム、蓄電デバイス用セパレータ及び蓄電デバイス |
JP7010621B2 (ja) | 2017-08-02 | 2022-01-26 | 住友化学株式会社 | 合成樹脂フィルム、蓄電デバイス用セパレータ及び蓄電デバイス |
WO2021015157A1 (ja) | 2019-07-24 | 2021-01-28 | 三洋電機株式会社 | 非水電解質二次電池 |
JP7539887B2 (ja) | 2019-07-24 | 2024-08-26 | パナソニックエナジー株式会社 | 非水電解質二次電池 |
WO2022025082A1 (ja) * | 2020-07-28 | 2022-02-03 | 帝人株式会社 | 電池の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2696393A4 (en) | 2014-02-12 |
CN103155218B (zh) | 2016-01-20 |
JPWO2012137376A1 (ja) | 2014-07-28 |
EP2696393A1 (en) | 2014-02-12 |
TW201242143A (en) | 2012-10-16 |
TWI524581B (zh) | 2016-03-01 |
US20130089771A1 (en) | 2013-04-11 |
KR101297770B1 (ko) | 2013-08-20 |
CN103155218A (zh) | 2013-06-12 |
KR20130031876A (ko) | 2013-03-29 |
US9431641B2 (en) | 2016-08-30 |
JP5129895B2 (ja) | 2013-01-30 |
EP2696393B1 (en) | 2016-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5129895B2 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP5432417B2 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
US9269938B2 (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
US10193117B2 (en) | Separator for nonaqueous secondary battery, and nonaqueous secondary battery | |
JP5670811B2 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP5964951B2 (ja) | 非水電解質電池用セパレータおよび非水電解質電池 | |
JP5603522B2 (ja) | 非水電解質電池用セパレータおよび非水電解質電池 | |
JP4988973B1 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP4988972B1 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
US20140242444A1 (en) | Separator for a non-aqueous secondary battery and non-aqueous secondary battery | |
JP5612797B1 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP5951982B2 (ja) | 非水系二次電池用セパレータおよび非水系二次電池 | |
JP2014026947A (ja) | 非水電解質電池用セパレータ及び非水電解質電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180049804.5 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2012504980 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11863141 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13704143 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011863141 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137000124 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |