WO2012133799A1 - 電動機の脈動抑制装置および電動機の脈動抑制方法 - Google Patents

電動機の脈動抑制装置および電動機の脈動抑制方法 Download PDF

Info

Publication number
WO2012133799A1
WO2012133799A1 PCT/JP2012/058631 JP2012058631W WO2012133799A1 WO 2012133799 A1 WO2012133799 A1 WO 2012133799A1 JP 2012058631 W JP2012058631 W JP 2012058631W WO 2012133799 A1 WO2012133799 A1 WO 2012133799A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
value
error
identification model
system identification
Prior art date
Application number
PCT/JP2012/058631
Other languages
English (en)
French (fr)
Inventor
山口 崇
裕吾 只野
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2012133799A1 publication Critical patent/WO2012133799A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present invention relates to a control device and a control method for automatically suppressing torque pulsation (hereinafter also referred to as torque ripple) of an electric motor or the like.
  • pulsation suppressing device for an electric motor for example, as disclosed in Patent Document 1, the pulsation of the electric motor is extracted by Fourier transform for an arbitrary order component, and learning control is performed so that the Fourier coefficient becomes 0,
  • a device for adding a pulsation compensation signal (compensation current) obtained by the control to an inverter current command is known.
  • Non-Patent Document 1 the system identification from the torque ripple compensation command to the shaft torque detection value is performed in advance, the frequency component of the torque pulsation of the shaft torque detection value is extracted, and this is multiplied by the inverse system of the system identification model.
  • a disturbance torque is estimated and a torque ripple compensation command is generated based on a difference between the estimated value of the disturbance torque and a command value (usually 0 value).
  • FIG. 1 shows the configuration of a control target device for torque ripple suppression control.
  • FIG. 1 showing the configuration of a control target device, a motor 2 (for example, a PMSM (Permanent Magnet Synchronous Motors)) driven by an inverter 1 and serving as a source of torque pulsation, and a load device 3 by a shaft 4 Are combined.
  • a motor 2 for example, a PMSM (Permanent Magnet Synchronous Motors) driven by an inverter 1 and serving as a source of torque pulsation
  • a load device 3 by a shaft 4
  • the shaft torque of the shaft 4 is measured by a shaft torque meter 5 and input as a torque detection value to the torque ripple suppression device 6, and the rotor position of the motor 2 is measured by a rotational position sensor 7 such as a rotary encoder to detect the phase.
  • the value is input to the torque ripple suppression device 6 as a value.
  • the torque ripple suppression device 6 includes a torque pulsation frequency component extraction unit that extracts a torque pulsation frequency component by Fourier transform based on the input torque detection value and phase detection value, and an inverse of the system identification model for the extracted component.
  • a torque ripple suppression control unit having a periodic disturbance observer that multiplies the system to estimate disturbance torque, and a compensation current generation unit that generates a compensation current from the estimated disturbance torque value and a compensation current command value and applies the compensation current to the inverter 1. ing.
  • torque pulsation is detected by feedback from the shaft torque meter 5, but this form is only an example, frame vibration detection by an acceleration sensor or the like installed on the frame, and rotational speed / position fluctuation by a rotational position sensor or the like. Detection or replacement with current pulsation detection by current sensor, motor shaft pulsation suppression, motor frame pulsation suppression, motor speed pulsation suppression or rotational position pulsation suppression, motor current pulsation control It is.
  • inverter 1 for example, a general control device that controls motor current (torque) by current vector control for realizing maximum torque / current control may be used.
  • the torque ripple suppression device 6 extracts a torque pulsation frequency component and generates a compensation current for suppressing it for each frequency component.
  • FIG. 2 shows a basic configuration of the torque ripple suppression control system in FIG. 1
  • FIG. 3 shows a control block showing only the torque ripple frequency component of the periodic disturbance observer in FIG.
  • T * Torque command value
  • T det Torque detection value
  • T An n-th order torque pulsation extraction component (cosine coefficient)
  • T Bn n-th order torque pulsation extraction component (sine coefficient)
  • rotational speed detection value
  • rotational phase detection value
  • id, iq d
  • q-axis current detection value id *
  • iq * : d
  • q-axis current command value iq 0 * : q-axis current command value (before compensation current superposition)
  • iqc * Torque ripple compensation current command value
  • I An n-order compensation current cosine coefficient
  • I Bn n-order compensation current sine coefficient
  • dI * An, dI * Bn n-order compensation current command value, dI ⁇ An, dI ⁇
  • 10 is an actual system
  • 11 is a torque to id
  • 12 is a current vector control unit
  • 13 is a current sensor
  • 14 Is a coordinate conversion unit
  • 15 is a rotation phase / speed detection unit
  • 61 is a torque pulsation frequency component extraction unit
  • 62 is a torque ripple suppression control unit
  • 63 is a compensation current generation unit
  • 621 is a periodic disturbance observer (Periodic Disturbance Observer). ing.
  • the torque-to-id, iq converter 11 converts the torque command value T * into a desired d-axis current command value id * and q-axis current command value iq 0 * .
  • the current vector control unit 12 performs current control on each axis in the general orthogonal rotating coordinate system d-axis q-axis.
  • the coordinate conversion unit 14 converts the three-phase alternating currents iu, iv, iw into currents id, iq in a dq axis orthogonal rotation coordinate system synchronized with the motor rotation coordinates.
  • the rotation phase / speed detection unit 15 converts information from the rotation position sensor 7 such as an encoder into information on the rotation phase and the rotation speed.
  • the torque ripple of the motor is a disturbance that periodically occurs according to the rotational phase ⁇ [rad]. Therefore, a means for extracting a torque ripple frequency component in synchronism with the motor rotational speed ⁇ [rad / s], that is, a torque pulsation frequency component extraction unit 61 is used, and a cosine coefficient T of an arbitrary order n (an integer multiple of the electrical rotational frequency).
  • An [Nm] and a sine coefficient T Bn [Nm] are converted.
  • the strict measurement means of the frequency component includes Fourier transform, but in this example, importance is placed on the ease of calculation, and the n-th order based on the rotational phase ⁇ as the shaft torque detection value T det [Nm] by the shaft torque meter 5. multiplied by the cosine wave-sine wave, by performing a low-pass filter G F respectively, it is carried out an approximate Fourier transform.
  • the transfer characteristic of the actual system 10 from the torque ripple compensation current command value iqc * to the shaft torque detection value T det is identified in advance. Since the system identification method is a general technique, an arbitrary method may be used.
  • the frequency transfer function of the real system 10 is defined as a complex vector P (j ⁇ ) related to the rotational speed ⁇ as shown in the equation (1).
  • P (j ⁇ ) P A (j ⁇ ) + jP B (j ⁇ ) (1) * P A : Real part of real system, P B : Imaginary part of real system.
  • the suppression control system constructs the control system with torque ripple synchronous coordinates
  • the frequency transfer characteristic of the arbitrary n-th order component is extracted from the expression (1), and the actual system of the torque ripple synchronous coordinates is represented by the expression (2). That is, the amplitude / phase characteristics of the system of an arbitrary n-order component can be expressed by a simple one-dimensional complex vector P n .
  • the real part / imaginary part axes are defined with reference to the rotational phase, and the cosine coefficient corresponds to the real part component and the sine coefficient corresponds to the imaginary part component.
  • P ⁇ n P ⁇ An + jP ⁇ Bn (3) * P ⁇ An : n-order component real part of identification result, P ⁇ Bn : n-order component imaginary part of identification result.
  • the system identification result of 1 to 1000 Hz is expressed as a complex vector every 1 Hz
  • a table composed of 1000 one-dimensional complex vector elements can be constructed. It is also possible to express the identification result by an approximate expression. Therefore, even in a complex system, the system model can always be expressed by a simple one-dimensional complex vector.
  • Disturbance torque is estimated in the form of a complex vector by multiplying the extracted and converted T An and T Bn by the inverse system of identification model (1 / (P An + jP Bn )). These processes are performed for each order component, and the compensation current generator 63 adds the deviation between the estimated disturbance torque values (dI ⁇ An, dI ⁇ Bn ) and the compensation current command values (dI * An, dI * Bn ) to the adder 17.
  • a, 17 to generate a torque ripple compensation current command value iqc * cosine coefficients of n order frequency components of the [a] iqc n * [a ] I an * [a] and sine coefficients I Bn * [a] and determined by B.
  • the conversion to the n-order compensation current command value iqcn * is calculated using the same rotational phase ⁇ as in the torque ripple synchronous coordinate conversion.
  • the I An *, I Bn *, through the low-pass filter G F are used by the disturbance observer 621 internally as component that does not pass through the actual system 10.
  • the converter 11 converts the torque command T * [NM] into dq-axis current command values id * and iq 0 * that realize the maximum torque / current control, and a combined value of the generated respective compensation current command values. Normal vector control is performed by superimposing iqc * on iq 0 * .
  • the contents of the arithmetic processing performed by the torque ripple suppression device 6 are the extraction of the shaft torque pulsation component, the torque ripple suppression, and the compensation current signal generation, and the other processing is performed by a general inverter.
  • the compensation current command value iqc * is superimposed on the q-axis current command value iq 0 * , but it is replaced with the d-axis current command value, the current command values for both the d-axis and the q-axis, the torque command value, and the like. Is also possible.
  • the feedback control response decreases due to the calculation dead time.
  • the control method handled in FIGS. 1 to 3 generates a sine wave / cosine wave having the same frequency as the periodic disturbance, and then adjusts the sine / cosine coefficient (equivalent to amplitude / phase). Therefore, this method is easier to deal with high frequency disturbances than a controller that collectively generates compensation currents in all frequency bands, and can be expected to improve periodic disturbance suppression performance.
  • a suppression controller torque ripple suppression device 6
  • This invention solves the said subject,
  • the objective is to provide the pulsation suppression apparatus and pulsation suppression method of an electric motor which can estimate a system identification model error.
  • the pulsation suppressing device for an electric motor according to claim 1 for solving the above-described problem is a d, q-axis current command value obtained by converting a torque command value of the motor into a d, q-axis current component of a rotating coordinate system in vector control.
  • a torque pulsation compensation current command value identified as a system identification model in an inverter that performs current control of the motor from the output current detection value of the inverter and a torque pulsation component extracted by Fourier transform of the torque pulsation of the motor A periodic disturbance observer that estimates a periodic disturbance torque by multiplying an inverse function of a frequency transfer function from the motor to the detected shaft torque of the motor, and a disturbance torque estimated value and a compensation current command value estimated by the periodic disturbance observer
  • the torque pulsation suppression control means for adding the torque pulsation compensation current command value generated from the d and q axis current command values and the transfer function are identified.
  • An error estimation means for obtaining a system identification model error by regarding a disturbance torque estimated value estimated by the periodic disturbance observer as a disturbance in a final state and comparing the estimated value with a shaft torque estimated value from the system identification model; It is characterized by having prepared.
  • a method for suppressing pulsation of an electric motor wherein d and q-axis current command values obtained by converting a torque command value of the motive force into d and q-axis current components of a rotating coordinate system in vector control, and output current detection of an inverter.
  • Inverter for controlling current of the motor from the value, and torque pulsation component extracted by Fourier transform of the torque pulsation of the motor, identified as a system identification model, shaft torque detection of the motor from the torque pulsation compensation current command value
  • a periodic turbulence observer that estimates the periodic disturbance torque by multiplying the inverse function of the frequency transfer function up to the value, and the torque pulsation compensation current generated from the estimated disturbance torque estimated by the periodic disturbance observer and the compensation current command value
  • a method for suppressing pulsation of an electric motor in a device comprising torque pulsation suppression control means for adding a command value to the d and q axis current command values,
  • the difference estimating means detects the shaft torque detected value in the initial state immediately before the torque pulsation suppression control starts by the torque pulsation suppression control means, and the torque pulsation suppression by the torque pulsation suppression control means.
  • the disturbance torque estimated value estimated by the periodic disturbance observer is regarded as a disturbance, and compared with the shaft torque estimated value estimated from the system identification model. And an error estimation step for obtaining a system identification model error.
  • the system identification model error can be estimated.
  • the motor pulsation suppressing device according to the first aspect, wherein the system identification model error obtained by the error estimating means is stored as table data using the rotation speed and torque of the motor as reference values. Storing means for correcting the system identification model using a system identification model error stored in the storage means.
  • a method for suppressing pulsation of an electric motor wherein the error estimation means uses the rotation speed and torque of the electric motor as reference values for the system identification model error obtained in the error estimation step.
  • a storage step of storing the data in the storage unit as table data is provided, and the system identification model is corrected using a system identification model error stored in the storage unit.
  • the pulsation suppressing device for an electric motor according to the second aspect, wherein the error estimating means is provided for a plurality of orders of torque pulsation frequency components to obtain a system identification model error in the torque pulsation frequency component of each order.
  • the system identification model is corrected.
  • the method for suppressing pulsation of an electric motor according to the sixth aspect, wherein the error estimating means is provided for a plurality of orders of torque pulsation frequency components, and the storing step is a system for torque pulsation frequency components of the respective orders.
  • the identification model error is stored in the storage means.
  • the motor pulsation suppressing device according to the second or third aspect, wherein the error estimating means is a torque generated by the torque pulsation control means at a frequency / torque operating point within an operating range of the electric motor.
  • the shaft torque detection value in the initial state immediately before the start of the pulsation suppression control is recorded in the storage means as an initial value, and after the torque pulsation suppression control is started by the torque pulsation suppression control means at the operating point, and the torque pulsation is
  • the estimated shaft torque estimated at the time of the canceled final state is recorded as the final value in the storage unit, the initial value is compared with the final value, a system identification model error is calculated, and the error calculation result is stored in the storage unit. After the system identification model error is saved, the operating point is changed without performing the torque pulsation suppression control, and the operating point after the change is changed.
  • the initial value, the recording of the final value is characterized by executing the storage of calculation and said error calculation result of system identification model error.
  • the motor pulsation suppression method is the motor pulsation suppression method according to the sixth or seventh aspect, wherein the error estimating means is a torque pulsation by the torque pulsation control means at a frequency / torque operating point within an operating range of the electric motor.
  • An initial value recording step of recording in the storage means the detected shaft torque value in the initial state immediately before the start of the suppression control, and after the start of the torque pulsation suppression control by the torque pulsation suppression control means at the operating point;
  • a final value recording step for recording in the storage means the estimated shaft torque value estimated in the final state where the torque pulsation was canceled, and an error for calculating the system identification model error by comparing the initial value and the final value.
  • a calculation step, a data storage step for storing the error calculation result in the storage means, and after storing the system identification model error The operating point is changed without performing the torque pulsation suppression control, and the initial value recording step, the final value recording step, the error calculation step, and the data storage step are executed at the operating point after the change. It is said.
  • the system identification model error can be estimated.
  • the system identification model can be corrected based on the estimated system identification model error, and optimal suppression control can be performed with the accurate identification model.
  • torque ripples of a plurality of orders can be suppressed. .
  • accurate system identification can be performed even when system identification cannot be performed thoroughly.
  • multiple torque ripple frequency components for which suppression and system identification model errors are to be estimated exist simultaneously, it is possible to record for multiple frequencies at one operating point, reducing the time to complete the entire measurement. can do.
  • the block diagram of the control object apparatus to which this invention is applied The basic block diagram of the torque ripple suppression control system in the apparatus of FIG.
  • FIG. 3 is a control block diagram showing only a torque ripple frequency component of a periodic disturbance observer in the control system of FIG. 2.
  • 1 is a control block diagram showing a first embodiment of the present invention.
  • the control block diagram which shows Example 2 of this invention.
  • the control block diagram which shows Example 3 of this invention.
  • the flowchart which shows the process sequence of Example 4 of this invention.
  • the present invention is not limited to the following embodiments.
  • the time immediately before the start of the suppression control is defined as the initial state
  • the state where the torque ripple is sufficiently canceled after the start of the suppression control is defined as the final state.
  • the identification model is estimated by comparison using error estimation means.
  • FIG. 4 is a diagram in which the error estimator of the present invention is added to the configuration of FIG. 3 and only frequency components are simplified.
  • Pn is a real plant (real system 10)
  • PDO is a periodic disturbance observer (621)
  • P ⁇ n is an identification model (system identification model)
  • 100 is an error estimator as error estimation means. Yes.
  • T n is a shaft torque (detected value) and corresponds to the n-th order torque pulsation extraction components T An and T Bn of FIG. dI ⁇ n is a disturbance estimated value estimated by the periodic disturbance observer PDO, and corresponds to the nth-order disturbance current estimated values dI ⁇ An and dI ⁇ Bn in FIG.
  • This dI ⁇ n is deviated from the disturbance command value I * n in the adder 17 (corresponding to the adders 17 A and 17 B in FIG. 3) via the switch sw which is turned on when the suppression control is started.
  • Differential output of the adder 17 is added to the periodic disturbance component (n Tsugigairan current) dI n in the adder 18.
  • T ⁇ n is a shaft torque estimated value estimated from the identification model P ⁇ n when the disturbance estimated value dI ⁇ n is regarded as a disturbance.
  • the error estimator 100 is the shaft torque T n in the initial state immediately before the start of the torque ripple suppression control (when the switch sw is off), after the start of the torque ripple suppression control (after the switch sw is turned on), and the torque ripple is sufficiently canceled out.
  • an error [Delta] Pn of the system identification model is output.
  • the relationship is expressed by equation (4).
  • the time from the initial state to the final state of the suppression control is relatively short, and no time change appears in the plant. Note that the value after the comma of the subscript indicates the value at time t.
  • equation (8) is transformed and equation (9) is obtained from the conditions of equations (4) and (6).
  • the state model T n, t0 before and after the suppression that can be observed and T ⁇ n, tn are compared by the error estimator 100 to estimate the identification model error, and the correct identification model can be learned.
  • Example 1 it was shown that an error in the system identification model is derived by performing suppression control once at a certain rotation speed / torque command.
  • the result of error estimation in FIG. 4 is stored in the memory 110 as shown in FIG. 5, the same parts as those in FIG. 4 are denoted by the same reference numerals, and the operation of the error estimator 100 is the same as that in FIG.
  • the memory 110 uses table data with the rotation speed ( ⁇ ) / torque (T) as reference values, and refers to this table again at the same rotation speed / torque command.
  • the recorded system identification error is output from the table, and the system identification model P ⁇ n (periodic disturbance observer PDO) inside the suppression control is corrected.
  • the identification model error can be estimated and corrected for a specific frequency component.
  • N orders of torque ripple frequency component
  • error-estimator-equipped PDOs 120P 1 to 120P N are provided, and an identification model for each order that suppresses the control system of FIG. It was configured to perform error estimation in parallel and simultaneously.
  • the PDOs 120P 1 to 120P N with error estimators are provided with the functions of the PDO of FIG. 5, the error estimator 100, and the memory 110 in combination, and an n-order disturbance command value (n-order compensation current command value) I
  • the estimated model error is estimated for * 1 to I * N , and disturbance estimated values dI ⁇ 1 to dI ⁇ N obtained as a result of correcting the system identification model based on the error are output.
  • the identification model error estimation result stored in the table data (stored in the memory 110) in the second and third embodiments is stored in the entire operating range of the device or a certain amount of operating points (the number of rotations). ⁇ Torque), the operation point was changed and repeated.
  • step S1 the torque ripple suppression control is turned off (the switch sw in FIGS. 5 and 6 is turned off), and the operating point is moved.
  • step S3 Next is determined whether the movement of the operating point is completed in step S2, if it is determined to be complete, in step S3, as an initial value the axial torque T n in the initial state immediately before the torque ripple suppression control starts Record in the memory 110.
  • step S4 the switch sw in FIGS. 5 and 6 is turned on to perform torque ripple suppression control.
  • step S5 it is determined whether or not the suppression is completed. If it is determined that the suppression is completed (torque ripple has been sufficiently canceled), in step S6, the estimated shaft torque T ⁇ estimated in the final state is determined. n is recorded in the memory 110 as a final value.
  • step S7 the switch sw in FIGS. 5 and 6 is turned off to turn off torque ripple suppression control.
  • step S8 by comparing the initial value T n and a final value T ⁇ n by error estimator 100 calculates the system identification error [Delta] P n, is stored in memory 110 in step S9.
  • step S10 it is determined whether or not the processing has been completed for all operating points (all ranges in which the device operates). If not completed, the processing in steps S1 to S9 is repeatedly executed to complete the processing at all operating points. If so, the process ends.
  • the inter-defect is interpolated by an arbitrary method. It is also possible to formulate the identification model from the obtained data.
  • the present invention is used, for example, for all variable speed devices in which torque pulsation is a problem, for example, suppression of shaft torque resonance of a dynamometer system, suppression of vibration of a motor housing (related to riding comfort such as an electric vehicle and an elevator). be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

システム同定モデル誤差を推定することができる電動機の脈動抑制装置を提供する。 インバータのベクトル制御により駆動される電動機(実プラントPn)の軸トルクTnに、トルクリプル補償電流指令値から軸トルク検出値までの周波数伝達関数の逆関数を乗算して外乱トルクを推定する周期外乱オブザーバPDOと、トルクリプル抑制制御開始直前の初期状態時の軸トルクTnとトルクリプル抑制制御開始後に十分トルクリプルが打ち消された最終状態時に、前記PDOにより推定された外乱推定値dI^nを外乱とみなしシステム同定モデルP^nから推定した軸トルク推定値T^nとを比較してシステム同定モデル誤差ΔPnを求める誤差推定器100と、前記誤差ΔPnを格納するメモリー110とを備え、メモリー110内の誤差ΔPnによってPDOのシステム同定モデルP^nを補正する。

Description

電動機の脈動抑制装置および電動機の脈動抑制方法
 本発明は、電動機等のトルク脈動(以下、トルクリプルと称することもある)を自動的に抑制する制御装置ならびに制御手法に関する。
 従来、電動機の脈動抑制装置としては、例えば特許文献1に開示されているように、電動機の脈動を任意の次数成分についてフーリエ変換で抽出し、そのフーリエ係数が0となるように学習制御し、その制御で得た脈動補償信号(補償電流)をインバータの電流指令に加える装置が知られている。
 また非特許文献1には、事前にトルクリプル補償指令から軸トルク検出値までのシステム同定を行い、軸トルク検出値のトルク脈動の周波数成分を抽出し、これに前記システム同定モデルの逆システムを乗算して外乱トルクを推定し、該外乱トルクの推定値と指令値(通常0値)との差分によりトルクリプル補償指令を生成することが開示されている。
 特許文献1および非特許文献1に開示されている技術を図1~図3とともに説明する。図1はトルクリプル抑制制御の制御対象機器の構成を示している。
 制御対象機器の構成を示す図1において、インバータ1により駆動されてトルク脈動の発生源となるモータ2(例えばPMSM(Permanent Magnet Synchronous Motors;永久磁石型同期モータ)と、負荷装置3はシャフト4によって結合されている。
 前記シャフト4の軸トルクは、軸トルクメータ5によって計測され、トルク検出値としてトルクリプル抑制装置6に入力され、またロータリエンコーダ等の回転位置センサ7によってモータ2の回転子位置が計測され、位相検出値としてトルクリプル抑制装置6に入力される。
 トルクリプル抑制装置6は、入力された前記トルク検出値および位相検出値に基づいて、トルク脈動周波数成分をフーリエ変換によって抽出するトルク脈動周波数成分抽出部と、前記抽出された成分にシステム同定モデルの逆システムを乗算して外乱トルクを推定する周期外乱オブザーバを有したトルクリプル抑制制御部と、前記外乱トルク推定値と補償電流指令値から補償電流を生成してインバータ1に与える補償電流生成部とを備えている。
 図1の例では、インバータ1で電流ベクトル制御することを考慮して、モータ2の回転に同期した回転座標(直交dq軸)上のd軸、q軸電流指令値(補償電流)を与えている。
 図1では、軸トルクメータ5のフィードバックによりトルク脈動を検出しているが、この形態はあくまでも一例であり、フレームに設置した加速度センサ等によるフレーム振動検出、回転位置センサ等による回転速度/位置変動検出、あるいは電流センサによる電流脈動検出に置き換え、電動機の軸の脈動抑制や電動機のフレームの脈動抑制、電動機の速度の脈動抑制あるいは回転位置の脈動抑制、電動機の電流の脈動制御をすることが可能である。
 前記インバータ1には、例えば最大トルク/電流制御を実現する電流ベクトル制御でモータ電流(トルク)を制御する一般的な制御装置を用いればよい。
 トルクリプル抑制装置6では、トルク脈動周波数成分を抽出して、それを周波数成分毎に抑制する補償電流を生成する。
 図2は図1におけるトルクリプル抑制制御系の基本構成を示し、図3は図1における周期外乱オブザーバのトルクリプル周波数成分のみを表した制御ブロックを示している。
 図2、図3中の各記号の定義は下記のとおりである。 
 T*:トルク指令値、Tdet:トルク検出値、
 TAn:n次トルク脈動抽出成分(余弦係数)、
 TBn:n次トルク脈動抽出成分(正弦係数)、
 ω:回転数検出値、θ:回転位相検出値、
 id,iq:d,q軸電流検出値、id*,iq*:d,q軸電流指令値、
 iq0 *:q軸電流指令値(補償電流重畳前)、
 iqc*:トルクリプル補償電流指令値
 IAn:n次補償電流余弦係数、IBn:n次補償電流正弦係数、
 iu,iv,iw:u,v,w相電流
 abz:回転センサ信号
 dI* An、dI* Bn:n次補償電流指令値、
 dI^An、dI^Bn:n次外乱電流推定値、
 dIn:n次外乱電流
 尚、添え字のnはn次周波数成分を意味する。
 図2、図3において、図1と同一部分は同一符号をもって表しており、10は実システム、11はトルクからid,iqへの変換部、12は電流ベクトル制御部、13は電流センサ、14は座標変換部、15は回転位相/速度検出部、61はトルク脈動周波数成分抽出部、62はトルクリプル抑制制御部、63は補償電流生成部、621は周期外乱オブザーバ(Periodic Disturbance Observer)を各々示している。
 図2、図3において、トルクからid,iqへの変換部11では、トルク指令値T*を所望のd軸電流指令値id*とq軸電流指令値iq0 *に変換する。一般には、最大トルク/電流制御を実現するような変換数式やテーブルなどが用いられる。電流ベクトル制御部12は、一般的な直交回転座標系d軸q軸において、各軸に対する電流制御を行う。座標変換部14は、3相交流電流iu,iv,iwをモータ回転座標に同期したdq軸直交回転座標系の電流id,iqに変換する。回転位相/速度検出部15は、エンコーダ等の回転位置センサ7の情報から回転位相および回転速度の情報に変換する。
 モータのトルクリプルは回転位相θ[rad]に準じて周期的に発生する外乱であることが知られている。そこで、モータ回転数ω[rad/s]に同期してトルクリプル周波数成分を抽出する手段、すなわちトルク脈動周波数成分抽出部61を用い、任意次数n(電気的回転周波数の整数倍)の余弦係数TAn[Nm]ならびに正弦係数TBn[Nm]に変換する。周波数成分の厳密な計測手段にはフーリエ変換などがあるが、本例では演算容易性を重視し、軸トルクメータ5による軸トルク検出値Tdet[Nm]に回転位相θを基準としたn次余弦波・正弦波を乗じ、それぞれに低域通過フィルタGFを施すことで、近似的なフーリエ変換を行っている。
 次に、制御を行う前に予め、トルクリプル補償電流指令値iqc*から軸トルク検出値Tdetまでの実システム10の伝達特性を同定する。システム同定手法は一般的な技術であるため、任意手法を用いればよい。
 ここで、実システム10の周波数伝達関数を回転速度ωに関する複素ベクトルP(jω)で(1)式のとおり定義する。
 P(jω)=PA(jω)+jPB(jω)  (1)
 ※PA:実システムの実部、PB:実システムの虚部。
 抑制制御系はトルクリプル同期座標で制御系を構築するため、(1)式から任意n次成分の周波数伝達特性のみを抽出し、トルクリプル同期座標の実システムを(2)式とする。つまり、任意n次成分のシステムの振幅・位相特性は、単純な1次元複素ベクトルPnで表現できる。なお、回転位相を基準として実部・虚部の軸を定義し、余弦係数が実部成分、正弦係数が虚部成分に対応する。
 Pn=PAn+jPBn  (2)
 ※PAn:実システムn次成分実部、PBn:実システムn次成分虚部。
抑制制御系におけるシステム同定結果についても、同様に1次元複素ベクトルで(3)式のとおり定義する。
 P^n=P^An+jP^Bn  (3)
 ※P^An:同定結果のn次成分実部、P^Bn:同定結果のn次成分虚部。
 例えば、1~1000Hzまでのシステム同定結果を1Hz毎に複素ベクトルで表現した場合、1000個の1次元複素ベクトルの要素からなるテーブルを構築することができる。同定結果を近似数式で表現することも可能である。よって、複雑なシステムであってもシステムモデルは常に簡素な1次元複素ベクトルで表現が可能である。
 前記抽出・変換したTAn,TBnに、同定モデルの逆システム(1/(PAn+jPBn))を乗算することで外乱トルクを複素ベクトルの形で推定する。これらの過程を各次成分で行い、補償電流生成部63では、外乱トルク推定値(dI^An、dI^Bn)と補償電流指令値(dI* An、dI* Bn)の偏差を加算器17A,17Bにより求めてトルクリプル補償電流指令値iqc*[A]のn次周波数成分iqcn *[A]の余弦係数IAn *[A]ならびに正弦係数IBn *[A]を生成する。n次補償電流指令値iqcn*への変換は、トルクリプル同期座標変換時と同一の回転位相θを用いて計算する。
 尚、前記IAn *、IBn *は、低域通過フィルタGFを通して、実システム10を通らない成分として外乱オブザーバ621内部で使用される。
 前記変換部11では、トルク指令T*[NM]から、最大トルク/電流制御を実現するdq軸電流指令値id*,iq0 *に変換し、前記生成した各次補償電流指令値の合成値iqc*をiq0 *に重畳して、通常のベクトル制御を行う。
 基本的に、トルクリプル抑制装置6で行なう演算処理内容は、軸トルク脈動成分抽出・トルクリプル抑制・補償電流信号生成であり、それ以外の処理については一般的なインバータで行なっている。
 本例ではq軸電流指令値iq0 *に補償電流指令値iqc*を重畳しているが、d軸電流指令値、d軸とq軸の双方の電流指令値、トルク指令値などに置き換えることも可能である。
 高周波帯域では演算無駄時間の影響を受けてフィードバック制御応答が低下する。一般に全周波数帯域でフィードバック抑制制御を行う方式では、高周波帯域の外乱抑圧性能が低下し、所望の補償電流生成が困難となる。一方図1~図3で取り扱う制御方式は、周期外乱と同一周波数の正弦波・余弦波を生成してから、その正弦・余弦係数(振幅・位相と等価)を調整対象とする。したがって、この方式は全周波数帯域の補償電流を一括して生成する制御器よりも高周波外乱への対応が容易になり、周期外乱抑圧性能の改善が期待できる。また、対象次数毎に並列に抑制制御器(トルクリプル抑制装置6)を構成すれば、同時に複数次数のトルクリプル抑制にも対応できる。
 上記の図2、図3の制御系に関して、制御の根幹を成し制御性能を左右するものはシステム同定モデルの真値に対する精度である。トルクリプル抑制能力向上のためには、より精度の高いシステム同定が求められる。
 しかしながら、同定モデルの高精度な取得は難しく、経年変化などによりシステムが変動することも予想される。真値との誤差は抑制完了までの収束時間の増大や、最悪の場合では位相誤差により抑制制御自身がトルクリプルを増大させ、制御を不安定にする可能性もある。このため、同定モデル誤差に対するロバスト性の向上が求められる。
 本発明は上記課題を解決するものであり、その目的は、システム同定モデル誤差を推定することができる電動機の脈動抑制装置および脈動抑制方法を提供することにある。
 上記課題を解決するための、請求項1に記載の電動機の脈動抑制装置は、電動機のトルク指令値をベクトル制御における回転座標系のd,q軸電流成分に変換したd,q軸電流指令値と、インバータの出力電流検出値とから電動機の電流制御を行なうインバータと、前記電動機のトルク脈動をフーリエ変換して抽出したトルク脈動成分に、システム同定モデルとして同定された、トルク脈動補償電流指令値から前記電動機の軸トルク検出値までの周波数伝達関数の逆関数を乗算して周期外乱トルクを推定する周期外乱オブザーバを有し、該周期外乱オブザーバで推定された外乱トルク推定値と補償電流指令値から生成したトルク脈動補償電流指令値を前記d,q軸電流指令値に加えるトルク脈動抑制制御手段と、前記伝達関数が同定された実システムにおける、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値と、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に、前記周期外乱オブザーバにより推定された外乱トルク推定値を外乱とみなし、前記システム同定モデルから推定した軸トルク推定値とを比較して、システム同定モデル誤差を求める誤差推定手段と、を備えたことを特徴としている。
 また請求項5に記載の電動機の脈動抑制方法は、動機のトルク指令値をベクトル制御における回転座標系のd,q軸電流成分に変換したd,q軸電流指令値と、インバータの出力電流検出値とから電動機の電流制御を行なうインバータと、前記電動機のトルク脈動をフーリエ変換して抽出したトルク脈動成分に、システム同定モデルとして同定された、トルク脈動補償電流指令値から前記電動機の軸トルク検出値までの周波数伝達関数の逆関数を乗算して周期外乱トルクを推定する周期外乱オブザーバを有し、該周期外乱オブザーバで推定された外乱トルク推定値と補償電流指令値から生成したトルク脈動補償電流指令値を前記d,q軸電流指令値に加えるトルク脈動抑制制御手段とを備えた装置における電動機の脈動抑制方法であって、誤差推定手段が、前記伝達関数が同定された実システムにおける、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値と、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に、前記周期外乱オブザーバにより推定された外乱トルク推定値を外乱とみなし、前記システム同定モデルから推定した軸トルク推定値とを比較して、システム同定モデル誤差を求める誤差推定ステップ、を備えたことを特徴としている。
 上記構成によれば、システム同定モデル誤差を推定することができる。
 また、請求項2に記載の電動機の脈動抑制装置は、請求項1において、前記誤差推定手段により求められたシステム同定モデル誤差を、前記電動機の回転数およびトルクを参照値とするテーブルデータとして格納する保存手段を備え、前記保存手段に格納されたシステム同定モデル誤差を用いて前記システム同定モデルを補正することを特徴としている。
 また請求項6に記載の電動機の脈動抑制方法は、請求項5において、前記誤差推定手段が、誤差推定ステップにより求められたシステム同定モデル誤差を、前記電動機の回転数およびトルクを参照値とするテーブルデータとして保存手段に格納する保存ステップを備え、前記保存手段に格納されたシステム同定モデル誤差を用いて前記システム同定モデルを補正することを特徴としている。
 上記構成によれば、システム同定モデルを補正し、正確な同定モデルにより最適な抑制制御を行うことができる。
 また、請求項3に記載の電動機の脈動抑制装置は、請求項2において、前記誤差推定手段をトルク脈動周波数成分の複数次数分設け、各次数のトルク脈動周波数成分におけるシステム同定モデル誤差を求めて、前記システム同定モデルの補正を行うことを特徴としている。
 また請求項7に記載の電動機の脈動抑制方法は、請求項6において、前記誤差推定手段はトルク脈動周波数成分の複数次数分設けられ、前記保存ステップは、前記各次数のトルク脈動周波数成分におけるシステム同定モデル誤差を前記保存手段に格納することを特徴としている。
 上記構成によれば、抑制およびシステム同定モデル誤差を推定すべきトルクリプル周波数成分が複数、同時に存在する場合においても、複数の次数のトルクリプルを抑制することができる。
 また、請求項4に記載の電動機の脈動抑制装置は、請求項2又は3において、前記誤差推定手段は、前記電動機の動作範囲内の周波数・トルクの動作点における、前記トルク脈動制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値を初期値として前記保存手段に記録し、前記動作点における、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に推定した軸トルク推定値を最終値として前記保存手段に記録し、前記初期値と最終値を比較してシステム同定モデル誤差を計算し、該誤差計算結果を前記保存手段に保存し、前記システム同定モデル誤差の保存後に、前記トルク脈動抑制制御を行わない状態で前記動作点を変更させ、該変更後の動作点において、前記初期値、最終値の記録、システム同定モデル誤差の計算および該誤差計算結果の保存を実行することを特徴としている。
 また請求項8に記載の電動機の脈動抑制方法は、請求項6又は7において、前記誤差推定手段が、前記電動機の動作範囲内の周波数・トルクの動作点における、前記トルク脈動制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値を初期値として前記保存手段に記録する初期値記録ステップと、前記動作点における、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に推定した軸トルク推定値を最終値として前記保存手段に記録する最終値記録ステップと、前記初期値と最終値を比較してシステム同定モデル誤差を計算する誤差計算ステップと、前記誤差計算結果を前記保存手段に保存するデータ保存ステップと、前記システム同定モデル誤差の保存後に、前記トルク脈動抑制制御を行わない状態で前記動作点を変更させ、該変更後の動作点において、前記初期値記録ステップ、最終値記録ステップ、誤差計算ステップおよびデータ保存ステップを実行することを特徴としている。
 上記構成によれば、システム同定を綿密に実施できない場合においても、正確なシステム同定を実施することができる。
(1)請求項1~8に記載の発明によれば、システム同定モデル誤差を推定することができる。
(2)請求項2、6に記載の発明によれば、推定したシステム同定モデル誤差に基づいて、システム同定モデルを補正し、正確な同定モデルにより最適な抑制制御を行うことができる。
(3)請求項3、7に記載の発明によれば、抑制およびシステム同定モデル誤差を推定すべきトルクリプル周波数成分が複数、同時に存在する場合においても、複数の次数のトルクリプルを抑制することができる。
(4)請求項4、8に記載の発明によれば、システム同定を綿密に実施できない場合においても、正確なシステム同定を実施することができる。さらに、抑制およびシステム同定モデル誤差を推定すべきトルクリプル周波数成分が複数、同時に存在する場合に、1動作点で複数の周波数に対して記録が可能であるので、全体の測定完了までの時間を短縮することができる。
本発明が適用される制御対象機器の構成図。 図1の装置におけるトルクリプル抑制制御系の基本構成図。 図2の制御系における周期外乱オブザーバのトルクリプル周波数成分のみを表した制御ブロック図。 本発明の実施例1を示す制御ブロック図。 本発明の実施例2を示す制御ブロック図。 本発明の実施例3を示す制御ブロック図。 本発明の実施例4の処理シーケンスを示すフローチャート。
 以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。本実施形態では、例えば図1~図3の脈動抑制装置において、抑制制御開始直前時点を初期状態とし、抑制制御開始後にトルクリプルが十分打ち消された状態を最終状態と定義し、この2つの状態を誤差推定手段により比較して同定モデルを推定するものである。
 図4は、本発明の誤差推定器を図3の構成に追加し、各周波数成分のみについて簡略化した図である。図4において、Pnは実プラント(実システム10)、PDOは周期外乱オブザーバ(621)、P^nは同定モデル(システム同定モデル)、100は誤差推定手段としての誤差推定器を各々示している。
 Tnは軸トルク(検出値)であり、図3のn次トルク脈動抽出成分TAn,TBnに相当する。dI^nは周期外乱オブザーバPDOにより推定された外乱推定値であり、図3のn次外乱電流推定値dI^An、dI^Bnに相当する。
 このdI^nは、抑制制御開始時にオンとなるスイッチswを介して加算器17(図3の加算器17A,17Bに相当)において外乱指令値I* nとの偏差がとられる。
 加算器17の偏差出力は、加算器18において周期外乱成分(n次外乱電流)dInと加算される。
 T^nは、前記外乱推定値dI^nを外乱としたときに同定モデルP^nから推定される軸トルク推定値である。
 誤差推定器100は、トルクリプル抑制制御開始直前時点(スイッチswのオフ時)の初期状態時の軸トルクTnと、トルクリプル抑制制御開始後(スイッチswのオン後)であり、且つトルクリプルが十分打ち消された最終状態時の軸トルク推定値T^nとを比較してシステム同定モデルの誤差ΔPnを出力する。
 上記のように構成された装置において、抑制制御を開始してからの経過時間をtとおき、初期状態[t=t0]における実プラントPn、周期外乱成分dIn、軸トルクTnの関係は(4)式となる。このとき抑制制御の初期状態と最終状態までの時間は比較的短時間であるとし、プラントに時間変化は現われないものとする。なお、添え字のカンマ後は時刻tの値であることを示している。
 dIn,t0・Pn=Tn,t0  (4)
 最終状態[t=tn]では、同定モデルP^nによって、外乱推定値dI^n,tnを外乱としたときの軸トルクが、軸トルク推定値T^n,tnとして(5)式から推定できる。
 dI^n,tn・P^n=T^n,tn  (5)
 時刻t0とtnの抑制制御前後で外乱に変化がなく、周期外乱を十分抑制している状態であるならば外乱と外乱推定値(補償指令)は同一となるので、(6)式が成り立つ。
 dIn,t0=dI^n,tn  (6)
 次に、同定モデルを真値と誤差ΔPnとの合算として(7)式で表しておく。
 P^n=Pn+ΔPn  (7)
 (7)式を(5)式へ代入し(8)式にて表す。
 dI^n,tn・(Pn+ΔPn)=T^n,tn  (8)
 最終的に(8)式を変形し、(4)式と(6)式の条件から(9)式を得る。
Figure JPOXMLDOC01-appb-M000001
 (9)式より、観測可能な抑制前後の状態量Tn,t0とT^n,tnを誤差推定器100により比較することで同定モデル誤差を推定し、正しい同定モデルを学習可能にする。
 実施例1では、ある回転数・トルク指令において抑制制御を一度行なうことでシステム同定モデルの誤差を導くことを示した。本実施例2では、図4において誤差推定を行なった結果を図5に示すようなメモリー110に保存するように構成した。図5において図4と同一部分は同一符号をもって示しており、誤差推定器100の動作は図4と同一となる。
 メモリー110は回転数(ω)・トルク(T)を参照値とするテーブルデータとし、再度同様の回転数・トルク指令時にはこのテーブルを参照する。テーブルからは記録したシステム同定誤差を出力し、抑制制御内部のシステム同定モデルP^n(周期外乱オブザーバPDO)を補正する。
 これにより一度学習を行なった回転数・トルクのポイントにおいては、その後正確な同定モデルにより最適な抑制制御を行うことが可能となる。
 実施例2では、ある特定の周波数成分について同定モデル誤差を推定し補正可能であることを示した。本実施例3では、図6に示すように、N個(トルクリプル周波数成分の次数n個)の誤差推定器付きPDO120P1~120PNを設け、図5の制御系を抑制する各次数に対する同定モデル誤差推定を並列・同時に実施するように構成した。
 誤差推定器付きPDO120P1~120PNは、図5のPDOと、誤差推定器100と、メモリー110の各機能を併せて備えており、n次の外乱指令値(n次補償電流指令値)I* 1~I* Nに対して、同定モデル誤差を推定し、その誤差によってシステム同定モデルを補正した結果の外乱推定値dI^1~dI^Nを各々出力する。
 上記構成によれば、抑制およびシステム同定モデル誤差を推定すべきトルクリプル周波数成分が複数、同時に存在する場合においても、対応することができる。
 本実施例4では、前記実施例2、3における、同定モデル誤差推定結果のテーブルデータへの保存(メモリー110への保存)を、機器が動作する範囲すべて、もしくは一定量の動作点(回転数・トルク)で、動作点を変更して繰り返し実施するように構成した。
 前記動作点の移動に伴い、動作点移動中はトルクリプル抑制制御をオフとし、移動後に動作が安定した段階でオンとして抑制制御を行い、初期値と最終値を更新し、最終的に回転数・トルクを参照値とするテーブルデータを完成させる。以上の処理シーケンスを図7に示す。
 図7において、まずステップS1では、トルクリプル抑制制御をオフ(図5、図6のスイッチswをオフ)として動作点を移動させる。
 次にステップS2において動作点の移動が完了したか否かを判定し、完了したと判定された場合は、ステップS3において、トルクリプル抑制制御開始直前の初期状態時の軸トルクTnを初期値としてメモリー110に記録する。
 次にステップS4において、図5、図6のスイッチswをオンにしてトルクリプル抑制制御を行なう。
 次にステップS5において抑制が完了したか否かを判定し、完了した(トルクリプルが十分に打ち消された)と判定された場合は、ステップS6において、当該最終状態時に推定した軸トルク推定値T^nを最終値としてメモリー110に記録する。
 次にステップS7において図5、図6のスイッチswをオフにしてトルクリプル抑制制御をオフとする。
 次にステップS8において、誤差推定器100により前記初期値Tnと最終値T^nを比較してシステム同定誤差ΔPnを計算し、ステップS9においてメモリー110に保存する。
 そしてステップS10において、全動作点(機器が動作する範囲すべて)について処理が完了したかどうかを判定し、未完了の場合は前記ステップS1~S9の処理を繰り返し実行し、全動作点で完了した場合は処理を終了する。
 また、前記全動作点ではなく、一定量の動作点で処理を行なった場合は、間欠点を任意の方式により補間する。また、得られたデータにより同定モデルを数式化することも可能である。
 上記の手法により、システム同定を綿密に実施できない場合においても、正確なシステム同定がトルクリプル抑制制御系を用いることで可能になる。
 尚、本実施例4を前記実施例3に適用すれば、1動作点で複数の周波数に対して記録が可能であるので、全体の測定完了までの時間を短縮することが可能である。
 本発明は、例えば、ダイナモメータシステムの軸トルク共振抑制、モータ筐体の振動抑制(電気自動車、エレベータなど乗り心地に関連するもの)、その他、トルク脈動が問題となる可変速装置全般に利用することができる。
 1…インバータ
 2…モータ
 3…負荷装置
 4…シャフト
 5…軸トルクメータ
 6…トルクリプル抑制装置
 7…回転位置センサ
 10…実システム
 11…変換部
 12…電流ベクトル制御部
 13…電流センサ
 14…座標変換部
 15…回転位相/速度検出部
 17,17A,17B,18…加算器
 61…トルク脈動周波数成分抽出部
 62…トルクリプル抑制制御部
 63…補償電流生成部
 100…誤差推定器
 110…メモリー
 120P1~120PN…誤差推定器付きPDO
 621…周期外乱オブザーバ

Claims (8)

  1. 電動機のトルク指令値をベクトル制御における回転座標系のd,q軸電流成分に変換したd,q軸電流指令値と、インバータの出力電流検出値とから電動機の電流制御を行なうインバータと、
     前記電動機のトルク脈動をフーリエ変換して抽出したトルク脈動成分に、システム同定モデルとして同定された、トルク脈動補償電流指令値から前記電動機の軸トルク検出値までの周波数伝達関数の逆関数を乗算して周期外乱トルクを推定する周期外乱オブザーバを有し、該周期外乱オブザーバで推定された外乱トルク推定値と補償電流指令値から生成したトルク脈動補償電流指令値を前記d,q軸電流指令値に加えるトルク脈動抑制制御手段と、
     前記伝達関数が同定された実システムにおける、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値と、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に、前記周期外乱オブザーバにより推定された外乱トルク推定値を外乱とみなし、前記システム同定モデルから推定した軸トルク推定値とを比較して、システム同定モデル誤差を求める誤差推定手段と、
     を備えたことを特徴とする電動機の脈動抑制装置。
  2. 前記誤差推定手段により求められたシステム同定モデル誤差を、前記電動機の回転数およびトルクを参照値とするテーブルデータとして格納する保存手段を備え、
     前記保存手段に格納されたシステム同定モデル誤差を用いて前記システム同定モデルを補正することを特徴とする請求項1に記載の電動機の脈動抑制装置。
  3. 前記誤差推定手段をトルク脈動周波数成分の複数次数分設け、各次数のトルク脈動周波数成分におけるシステム同定モデル誤差を求めて、前記システム同定モデルの補正を行うことを特徴とする請求項2に記載の電動機の脈動抑制装置。
  4. 前記誤差推定手段は、
     前記電動機の動作範囲内の周波数・トルクの動作点における、前記トルク脈動制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値を初期値として前記保存手段に記録し、
     前記動作点における、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に推定した軸トルク推定値を最終値として前記保存手段に記録し、
     前記初期値と最終値を比較してシステム同定モデル誤差を計算し、該誤差計算結果を前記保存手段に保存し、
     前記システム同定モデル誤差の保存後に、前記トルク脈動抑制制御を行わない状態で前記動作点を変更させ、該変更後の動作点において、前記初期値、最終値の記録、システム同定モデル誤差の計算および該誤差計算結果の保存を実行することを特徴とする請求項2又は3に記載の電動機の脈動抑制装置。
  5. 電動機のトルク指令値をベクトル制御における回転座標系のd,q軸電流成分に変換したd,q軸電流指令値と、インバータの出力電流検出値とから電動機の電流制御を行なうインバータと、
     前記電動機のトルク脈動をフーリエ変換して抽出したトルク脈動成分に、システム同定モデルとして同定された、トルク脈動補償電流指令値から前記電動機の軸トルク検出値までの周波数伝達関数の逆関数を乗算して周期外乱トルクを推定する周期外乱オブザーバを有し、該周期外乱オブザーバで推定された外乱トルク推定値と補償電流指令値から生成したトルク脈動補償電流指令値を前記d,q軸電流指令値に加えるトルク脈動抑制制御手段とを備えた装置における電動機の脈動抑制方法であって、
     誤差推定手段が、前記伝達関数が同定された実システムにおける、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値と、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に、前記周期外乱オブザーバにより推定された外乱トルク推定値を外乱とみなし、前記システム同定モデルから推定した軸トルク推定値とを比較して、システム同定モデル誤差を求める誤差推定ステップ、を備えたことを特徴とする電動機の脈動抑制方法。
  6. 前記誤差推定手段が、誤差推定ステップにより求められたシステム同定モデル誤差を、前記電動機の回転数およびトルクを参照値とするテーブルデータとして保存手段に格納する保存ステップを備え、
     前記保存手段に格納されたシステム同定モデル誤差を用いて前記システム同定モデルを補正することを特徴とする請求項5に記載の電動機の脈動抑制方法。
  7. 前記誤差推定手段はトルク脈動周波数成分の複数次数分設けられ、前記保存ステップは、前記各次数のトルク脈動周波数成分におけるシステム同定モデル誤差を前記保存手段に格納することを特徴とする請求項6に記載の電動機の脈動抑制方法。
  8. 前記誤差推定手段が、
     前記電動機の動作範囲内の周波数・トルクの動作点における、前記トルク脈動制御手段によるトルク脈動抑制制御開始直前の初期状態時の軸トルク検出値を初期値として前記保存手段に記録する初期値記録ステップと、
     前記動作点における、前記トルク脈動抑制制御手段によるトルク脈動抑制制御開始後であり、且つトルク脈動が打ち消された最終状態時に推定した軸トルク推定値を最終値として前記保存手段に記録する最終値記録ステップと、
     前記初期値と最終値を比較してシステム同定モデル誤差を計算する誤差計算ステップと、
     前記誤差計算結果を前記保存手段に保存するデータ保存ステップと、
     前記システム同定モデル誤差の保存後に、前記トルク脈動抑制制御を行わない状態で前記動作点を変更させ、該変更後の動作点において、前記初期値記録ステップ、最終値記録ステップ、誤差計算ステップおよびデータ保存ステップを実行することを特徴とする請求項6又は7に記載の電動機の脈動抑制方法。
PCT/JP2012/058631 2011-03-30 2012-03-30 電動機の脈動抑制装置および電動機の脈動抑制方法 WO2012133799A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-073860 2011-03-30
JP2011073860A JP5637042B2 (ja) 2011-03-30 2011-03-30 電動機の脈動抑制装置および電動機の脈動抑制方法

Publications (1)

Publication Number Publication Date
WO2012133799A1 true WO2012133799A1 (ja) 2012-10-04

Family

ID=46931494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058631 WO2012133799A1 (ja) 2011-03-30 2012-03-30 電動機の脈動抑制装置および電動機の脈動抑制方法

Country Status (2)

Country Link
JP (1) JP5637042B2 (ja)
WO (1) WO2012133799A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162710A (zh) * 2019-12-25 2020-05-15 江苏交科能源科技发展有限公司 一种永磁轮毂电机转矩脉动抑制方法
WO2020213062A1 (ja) * 2019-04-16 2020-10-22 三菱電機株式会社 モータ制御装置
CN113459824A (zh) * 2020-03-31 2021-10-01 安徽威灵汽车部件有限公司 电动汽车抖动抑制方法、装置以及电动汽车、存储介质
CN113459822A (zh) * 2020-03-31 2021-10-01 安徽威灵汽车部件有限公司 电动汽车抖动抑制方法、装置以及电动汽车、存储介质

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343384B1 (ko) 2012-11-29 2013-12-20 한국과학기술연구원 푸리에 코사인 급수법과 유체의 수두차 원리를 응용한 파동함수형 미세 맥동류 발생 장치 및 방법
JP5532115B1 (ja) * 2012-12-07 2014-06-25 株式会社明電舎 周期外乱自動抑制装置
WO2014167667A1 (ja) * 2013-04-10 2014-10-16 三菱電機株式会社 回転機制御装置
CN105492871B (zh) * 2013-08-26 2018-02-09 三菱电机株式会社 位置检测器的角度误差校正装置以及角度误差校正方法
JP6171729B2 (ja) * 2013-08-27 2017-08-02 株式会社明電舎 周期外乱自動抑制方法
JP2015126649A (ja) * 2013-12-27 2015-07-06 株式会社日立産機システム サーボ制御装置
JP6409313B2 (ja) * 2014-04-21 2018-10-24 株式会社明電舎 周期外乱自動抑制装置
WO2016067665A1 (ja) * 2014-10-30 2016-05-06 三菱電機株式会社 インバータ制御装置及びインバータ圧縮機
JP5868564B1 (ja) * 2014-10-30 2016-02-24 三菱電機株式会社 インバータ制御装置及びインバータ圧縮機
WO2017038094A1 (en) * 2015-08-31 2017-03-09 Canon Kabushiki Kaisha Driving apparatus, positioning apparatus, lithography apparatus, and article manufacturing method
CN110488749B (zh) * 2019-09-11 2020-08-21 台州学院 一种多轴运动系统的轮廓误差控制器及其控制方法
JP2021175365A (ja) * 2020-04-17 2021-11-01 国立大学法人電気通信大学 モータの制御方法及び制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024195A1 (ja) * 2008-08-26 2010-03-04 株式会社明電舎 電動機の外乱抑圧装置および外乱抑圧方法
JP2011015550A (ja) * 2009-07-02 2011-01-20 Sumitomo Heavy Ind Ltd 機械装置の制御装置及び機械装置の特性同定方法
JP2011050118A (ja) * 2009-08-25 2011-03-10 Meidensha Corp 電動機のトルク脈動抑制システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024195A1 (ja) * 2008-08-26 2010-03-04 株式会社明電舎 電動機の外乱抑圧装置および外乱抑圧方法
JP2011015550A (ja) * 2009-07-02 2011-01-20 Sumitomo Heavy Ind Ltd 機械装置の制御装置及び機械装置の特性同定方法
JP2011050118A (ja) * 2009-08-25 2011-03-10 Meidensha Corp 電動機のトルク脈動抑制システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TADANO, Y. ET AL.: "Periodic learning suppression control of torque ripple utilizing system identification for permanent magnet synchronous motors", POWER ELECTRONICS CONFERENCE (IPEC), 2010 INTERNATIONAL, 21 June 2010 (2010-06-21), pages 1363 - 1370, XP031729726 *
YAMAGUCHI ET AL.: "Gakushu Kino Tsuki Shuki Gairan Observer ni yoru Torque Ripple Yokusei Seigyo", NATIONAL CONVENTION RECORD I.E.E. JAPAN, vol. 2011, no. 4, 5 March 2011 (2011-03-05), pages 198 - 199 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213062A1 (ja) * 2019-04-16 2020-10-22 三菱電機株式会社 モータ制御装置
JPWO2020213062A1 (ja) * 2019-04-16 2021-10-21 三菱電機株式会社 モータ制御装置
CN113748597A (zh) * 2019-04-16 2021-12-03 三菱电机株式会社 电动机控制装置
JP7118249B2 (ja) 2019-04-16 2022-08-15 三菱電機株式会社 モータ制御装置
CN113748597B (zh) * 2019-04-16 2024-05-10 三菱电机株式会社 电动机控制装置
CN111162710A (zh) * 2019-12-25 2020-05-15 江苏交科能源科技发展有限公司 一种永磁轮毂电机转矩脉动抑制方法
CN113459824A (zh) * 2020-03-31 2021-10-01 安徽威灵汽车部件有限公司 电动汽车抖动抑制方法、装置以及电动汽车、存储介质
CN113459822A (zh) * 2020-03-31 2021-10-01 安徽威灵汽车部件有限公司 电动汽车抖动抑制方法、装置以及电动汽车、存储介质

Also Published As

Publication number Publication date
JP2012210067A (ja) 2012-10-25
JP5637042B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5637042B2 (ja) 電動機の脈動抑制装置および電動機の脈動抑制方法
JP5929863B2 (ja) 制御装置
JP5446988B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
EP2543133B1 (en) Current sensor error compensation
JP6489171B2 (ja) モータ制御装置
JP5800108B2 (ja) 周期外乱自動抑制装置
JP5877733B2 (ja) 電動モータの制御装置
JP2006191737A (ja) モータ制御装置及びこれを有するモータ駆動システム
JP5532115B1 (ja) 周期外乱自動抑制装置
JP6281367B2 (ja) モータ制御装置
JP5488043B2 (ja) モータのトルク制御装置
KR20140113260A (ko) 모터 제어 장치
JP5644203B2 (ja) 回転電気機械のトルクリプル抑制制御装置および制御方法
JP2004120888A (ja) Dcブラシレスモータのロータ角度検出装置
JP5074318B2 (ja) 同期電動機のロータ位置推定装置
JP6183554B2 (ja) 周期外乱自動抑制装置
JP5626090B2 (ja) 周期外乱抑制装置および周期外乱抑制方法
JP6519149B2 (ja) モータ制御装置
JP2010035352A (ja) 同期電動機のロータ位置推定装置
JP5163049B2 (ja) 交流電動機制御装置および交流電動機制御方法
JP6398462B2 (ja) 位置およびトルクセンサレスによるトルクリプル抑制装置
JP6675579B2 (ja) 永久磁石形同期電動機の制御装置
JP5106295B2 (ja) 同期電動機のロータ位置推定装置
JP6794693B2 (ja) 誘導電動機の制御装置
JP6409313B2 (ja) 周期外乱自動抑制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762869

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12762869

Country of ref document: EP

Kind code of ref document: A1