WO2012133664A1 - 超純水製造システム及び超純水の製造方法 - Google Patents

超純水製造システム及び超純水の製造方法 Download PDF

Info

Publication number
WO2012133664A1
WO2012133664A1 PCT/JP2012/058395 JP2012058395W WO2012133664A1 WO 2012133664 A1 WO2012133664 A1 WO 2012133664A1 JP 2012058395 W JP2012058395 W JP 2012058395W WO 2012133664 A1 WO2012133664 A1 WO 2012133664A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
sheet
ultrapure water
activated carbon
Prior art date
Application number
PCT/JP2012/058395
Other languages
English (en)
French (fr)
Inventor
邦洋 早川
大澤 公伸
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN2012800078895A priority Critical patent/CN103370283A/zh
Publication of WO2012133664A1 publication Critical patent/WO2012133664A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0036Flash degasification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/2804Sheets with a specific shape, e.g. corrugated, folded, pleated, helical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/003Coaxial constructions, e.g. a cartridge located coaxially within another

Definitions

  • the present invention relates to an ultrapure water production system and an ultrapure water production method used in various industries such as the electronics industry, liquid crystal, pharmaceuticals, foods, and research facilities.
  • Ultrapure water production systems that produce ultrapure water from treated water such as industrial water, city water, well water, river water, lake water, and factory wastewater are generally pretreatment units, primary pure water systems, It consists of a system and a terminal piping section. In the pretreatment section, treatments such as aggregation, precipitation, filtration, softening, iron removal, manganese removal, and adsorption are performed mainly for the purpose of removing insoluble substances so that the subsequent apparatus can be stably operated.
  • the primary pure water system is for producing pure water by treating the pretreated water treated in the pretreatment unit, and is mainly an ion exchange device, an electrodeionization device, a degassing membrane device, or a reverse osmosis membrane device. It is configured.
  • the sub-system is designed to further purify pure water produced by the primary pure water system and finish it into ultra-pure water.
  • the sub-system consists of a sub tank, an ultraviolet oxidation device, an ion exchange device, an ultrafiltration membrane device, etc. Has been. Then, the ultrapure water produced by the subsystem is sent to the use point at the terminal piping section, and the excess ultrapure water that has not been used at the use point is returned to the sub tank of the subsystem and is circulated. For example, as shown in FIG.
  • FIG. 10 which is a schematic system diagram showing a conventional ultrapure water production system, a raw water tank 41, a heat exchanger 42, a microfiltration (MF) membrane device 43, an activated carbon tower 44, a security filter 45, A pretreatment section provided between the activated carbon tower 44 and the safety filter 45 and having a chemical introduction means 46 for introducing a chemical such as sulfuric acid into the water to be treated, a pretreatment water tank 47, a reverse osmosis (RO) membrane device 48, deaeration (MD) membrane device 49, primary deionized water system having electrodeionization (EDI) device 50, subtank 51, heat exchange (H / E) device 52, ultraviolet sterilizer 53, terminal having terminal microfiltration membrane device 54
  • RO reverse osmosis
  • MD deaeration
  • EDI electrodeionization
  • H / E heat exchange
  • ultraviolet sterilizer 53 terminal having terminal microfiltration membrane device 54
  • There is an ultrapure water production system or the like that has a piping part and that
  • Such a conventional ultrapure water production system has an ideal device configuration in terms of stably supplying high-purity ultrapure water to the use point, but the equipment investment cost and operation from the user Due to demands for cost reduction and space saving, simplification of ultrapure water production system is strongly demanded.
  • a pretreatment unit, an ultrapure water production unit into which pretreated water treated in the pretreatment unit is introduced, and ultrapure water produced in the ultrapure water production unit are used points.
  • An ultrapure water production system comprising a terminal pipe unit that supplies excess ultrapure water to the ultrapure water production unit, wherein the ultrapure water production unit is introduced with at least pretreatment water.
  • a tank and a reverse osmosis membrane device, a deaeration device, an electrodeionization means, and a filtration membrane device for treating water from the tank, and excess ultrapure water returned from the terminal pipe section are There is an ultrapure water production system introduced into a tank (see Patent Document 1). However, further simplification is required.
  • an object of the present invention is to provide a more simplified ultrapure water production system and ultrapure water production method while maintaining the quality of the produced ultrapure water.
  • the ultrapure water production system of the present invention that solves the above problems includes a pretreatment section into which treated water is introduced, a pretreatment water tank in which the treated water treated in the pretreatment section is stored, and the pretreatment water tank.
  • the sheet-like member has a sheet-like mesh sheet having pores through which the water to be treated passes, and sheet surfaces of sheet-like spacers where the water to be treated is difficult to pass compared to the mesh sheet.
  • a small amount of the mesh sheet and the spacer. Ku and a part is characterized in that formed in the activated carbon fiber.
  • the spacer is preferably made of activated carbon fibers having a diameter of 0.1 to 100 ⁇ m. Moreover, you may have at least 1 or more decarbonation equipment in the upstream of the said electrodeionization apparatus. And it is preferable that the said electrodeionization apparatus has a bipolar membrane. Alternatively, the thickness of the demineralization chamber of the electrodeionization apparatus is preferably 2 to 5 mm. Moreover, it is preferable to have a terminal piping part which sends the ultrapure water discharged
  • treated water that has been subjected to activated carbon filtration treatment by an activated carbon filtration device is stored in a pretreatment water tank, and the treated water stored in the pretreatment water tank is treated with a reverse osmosis membrane device using a reverse osmosis membrane device.
  • the method for producing ultrapure water in which deionization processing is performed with an electrodeionization apparatus, wherein the activated carbon filtration device includes a filter body in which a sheet-like member is wound in a spiral shape and water to be treated is passed.
  • the sheet-like mesh sheet and the sheet surface of the sheet-like spacer in which the water to be treated is difficult to pass compared to the mesh sheet are overlapped, and at least a part of the mesh sheet and the spacer is activated carbon fiber. Formed It is characterized in.
  • the present invention it is possible to provide a simplified ultrapure water production system in which the quality of the produced ultrapure water is good and simplified. Therefore, it is possible to obtain ultrapure water with good water quality while reducing the capital investment cost and operation cost and saving space.
  • the ultrapure water production system of the present invention includes a pretreatment unit into which treated water is introduced, a pretreatment water tank in which treated water treated in the pretreatment unit is stored, and treated water from the pretreatment water tank.
  • a reverse osmosis membrane device and an ultrapure water production unit having an electrodeionization device are examples of a reverse osmosis membrane device and an ultrapure water production unit having an electrodeionization device.
  • the pretreatment part has an activated carbon filtration device
  • this activated carbon filtration device has a filter body whose sheet-like member is wound in a spiral shape, water to be treated is passed, and the shaft core of the filter body is
  • the filter body has a filtration tank filled therein so that the water passage direction is along, and the sheet-like member is a sheet-like mesh sheet having pores through which the water to be treated passes, and the mesh sheet
  • the sheet surfaces of the sheet-like spacers to which the water to be treated is difficult to pass are overlapped, and at least a part of the mesh sheets and the spacers are formed of activated carbon fibers.
  • the ultrapure water production system 10 includes a raw water tank 11 into which treated water (raw water) is introduced. And a pre-treatment unit having a heat exchanger 12 provided on the downstream side of the raw water tank 11 for heating the water to be treated, and an activated carbon filtration device 13 for subjecting the water to be treated heated by the heat exchanger 12 to an activated carbon filtration treatment. It has. Note that the heat exchanger 12 may not be provided if it is not necessary to heat the water to be treated.
  • the pretreatment water tank 14 which stores the to-be-processed water processed by the pretreatment part, the reverse osmosis membrane apparatus 15, the electrodeionization apparatus 16, and the microfiltration membrane apparatus 17 provided in order in the downstream of the pretreatment water tank 14 are provided. It has an ultrapure water production department. Then, the ultrapure water discharged from the ultrapure water production department, that is, the pipe for feeding the ultrapure water discharged from the microfiltration membrane device 17 to the use point, and the excess ultrapure water are returned to the pretreatment water tank 14.
  • the terminal piping part which consists of piping is comprised. Note that a pump P is appropriately provided between the devices as means for feeding the water to be treated. Further, in FIG. 1, a reducing agent introduction means 18 for introducing a reducing agent such as sodium hydrogen sulfite into the raw water tank 11 is provided.
  • FIG. 2 is a longitudinal sectional view of the direction of water to be treated showing the configuration of the activated carbon filtration device
  • FIG. 3 is a transverse sectional view showing the configuration of the activated carbon filtration device
  • FIG. It is a perspective view which shows a filter body.
  • the activated carbon filtration device 13 includes a cylindrical filtration tank 1 through which water to be treated is passed and a filter body 2 that captures turbidity in the water to be treated. Have.
  • the filter body 2 includes a core body 3 connected to both ends of the filtration tank 1 in the water flow direction, and a filter body main body 4 including a sheet-like member wound around the core material 3 in a spiral shape.
  • the sheet-like member includes a sheet-like mesh sheet 5 having pores through which the water to be treated passes, and a sheet-like spacer 6 formed of activated carbon fibers through which the water to be treated is difficult to pass compared to the mesh sheet 5. The faces are overlapped.
  • a circular plate 7 made of resin or the like provided with a plurality of holes to the extent that water to be treated containing turbidity (suspension material) or the like can freely pass is provided at both ends of the filtration tank 1 in the water flow direction.
  • the both ends of the core material 3 are fixed to the center of each plate 7.
  • the filter body 2 is filled into the filtration tank 1 whole inside so that the axial center of the filter body main body 4 may follow the water flow direction of to-be-processed water.
  • the gap between the inner wall of the filtration tank 1 and the outer periphery of the filter body 4 and the gap near the core 3 are filled with a water-impermeable member 8 through which the water to be treated such as an adhesive does not pass. Cannot pass through.
  • the shaft core of the filter body 4 is the center of the spiral of the filter body 4 wound in a spiral shape, and the core material 3 corresponds to this embodiment.
  • the spacer 6 is less likely to pass the water to be treated than the mesh sheet 5, so that most of the water to be treated passes through the pores of the mesh sheet 5.
  • the mesh sheet 5 is substantially longitudinally cut, that is, passes through the mesh sheet 5 in the surface direction, and turbidity contained in the water to be treated is trapped in the mesh sheet 5, and the water to be treated from which the turbidity has been removed is removed from the filtration tank 1. Discharged. In this way, the water to be treated is passed through the mesh sheet 5 having pores through which the water to be treated passes and capable of trapping turbidity, not vertically across the thickness direction, but longitudinally.
  • the activated carbon filtration device 13 By using the activated carbon filtration device 13 having a structure, clear treated water can be obtained. Therefore, the activated carbon filtration device 13 can suppress clogging or deterioration of the reverse osmosis membrane device 15 and deterioration of the electrodeionization device 16. Further, the activated carbon filtration device 13 is not filtered using a membrane as in the case of an ultrafiltration membrane device or a microfiltration membrane device, so it is difficult to block and is inexpensive.
  • the spacer 6 is made of activated carbon fiber, when the water to be treated comes into contact with the spacer 6, the oxidizing agent such as hypochlorous acid contained in the water to be treated reacts with the activated carbon fiber and is reduced. Is done. Therefore, the water to be treated discharged from the activated carbon filtration device 13 can be one in which the oxidizing agent has been almost completely removed.
  • the mesh sheet 5 is not particularly limited as long as the mesh sheet 5 has pores through which the water to be treated can pass and can remove the turbidity contained in the water to be treated to a desired extent.
  • FIG. 5 is an enlarged plan view of the main part of the mesh sheet 5 (FIG. 5A) and a cross-sectional view taken along the line AA ′ of FIG. 5A (FIG. 5B).
  • the distance between adjacent warp yarns 9a and adjacent weft yarns 9b of the mesh sheet 5, that is, the opening (indicated by OP in FIG. 5) is preferably about 200 to 4000 ⁇ m. ), That is, the space ratio (opening area) of the mesh sheet 5 in plan view is preferably about 40 to 98%, and the height of the intersection (thickness indicated by T in the figure) Is preferably 500 to 1200 ⁇ m.
  • T in the figure the height of the intersection
  • NBC turbidity can be removed especially suitably.
  • a mesh sheet having an intersection portion height of usually about 0.65 to 1.2 mm is used as a raw water flow path spacer. This is because it is preferable to use a mesh sheet having a lower intersection portion than the reverse osmosis membrane device. For example, it is preferable to use a mesh sheet having a height of the intersection portion of 2/3 times or less than the reverse osmosis membrane device 15.
  • the diameter D of the fibers that become the warp yarn 9a and the weft yarn 9b is preferably 0.1 to 0.6 mm, more preferably about 0.1 to 0.4 mm.
  • the thickness is too large, the formed pores become too large, and the suspended matter cannot be removed.
  • the material constituting the mesh sheet 5 examples include synthetic resins such as polyolefin, polyester, nylon, and polyvinylidene fluoride (PVDF), metal fibers, activated carbon fibers, and the like, from the viewpoint of chlorine resistance. Polyolefin is preferred.
  • the woven fabric was illustrated in FIG. 5, the nonwoven fabric which has a comparatively big void
  • the spacer 6 is not particularly limited as long as the water to be treated is less likely to pass through than the mesh sheet 5.
  • it may be a non-woven fabric formed of fibers having a diameter of 0.1 to 100 ⁇ m, preferably about 0.5 to 30 ⁇ m, or may be laminated by sticking them together or integrally forming them by heat fusion.
  • the spacer 6 since the to-be-processed water can be made to contact the mesh sheet
  • a spacer composed of a sheet is preferable.
  • the spacer 6 may be formed with materials other than activated carbon fiber.
  • the material of the spacer 6 include polyolefin, polyester, nylon, polyvinylidene fluoride (PVDF), and metal fiber.
  • PVDF polyvinylidene fluoride
  • metal fiber metal fiber.
  • polyolefin is preferable from the viewpoint of chemical resistance and economy.
  • the form in which the mesh sheet 5 and the spacer 6 are superposed is not particularly limited, and the sheet surfaces may be bonded together or integrally formed by heat fusion.
  • size of the mesh sheet 5 and the spacer 6 does not need to be the same, in order to process a to-be-processed water uniformly, it is preferable that it is substantially the same.
  • the length of the mesh sheet or the spacer 6 in the water passing direction depends on the turbidity of the water to be treated, the amount to be treated, the quality of the ultrapure water (treated water) to be obtained, etc., but may be about 200 to 1000 mm, for example. .
  • the material of the core material 3 around which the sheet member on which the mesh sheet 5 and the spacer 6 are superimposed is wound is not particularly limited, and plastic, metal, or the like can be used, but from the economical viewpoint, vinyl chloride piping (CVP piping) ) Is preferable.
  • the shape of the core material 3 is not particularly limited, and may be, for example, cylindrical or prismatic.
  • the method for winding the sheet member around the core member 3 is not particularly limited. For example, the end of the sheet member is fixed to the core member 3 with an adhesive or the like, and the sheet member is wound around the core member 3. It is sufficient to wind the film to have an arbitrary diameter according to the amount of water to be treated and the turbidity.
  • the filter tank 1 is not limited.
  • the material can be made of stainless steel or fiber reinforced plastic (FRP), and if the size is a hollow cylindrical shape (tubular shape), the diameter is 100 to 1000 mm.
  • the height can be 200 to 1000 mm.
  • the cylindrical filtration tank 1 in FIG. 2 it does not need to be a cylinder and may be the shape which can permeate
  • the filter body 2 having the filter body 4 wound around the core material 3 is used, but the number of windings is not limited, and the amount of water to be treated and the turbidity What is necessary is just to adjust suitably according to the quality etc. of the ultrapure water to request
  • the filter body 2 may be the filter body 2 wound only once. However, as the number of times of winding is increased, the shape of the mesh sheet 5 becomes easier to be held by the spacer 6, and the water to be treated is uniformly distributed to the treated water. This is preferable because the water treatment can be stabilized because it can be longitudinally cut.
  • a filter body 2 in which a filter body main body 4 is wound around a core material 3 is used as the filter body 2, but the core material 3 may be omitted.
  • the mesh sheet 5 may be passed by a spacer 6 or the like. If the shape at the time of water is hold
  • seat such as FRP
  • the spacer 6 may be made of a water-impermeable material so that the water to be treated does not leak, so that the spacer 6 also serves as the filtration tank 1.
  • the activated carbon filtration device 13 is treated water discharged from the activated carbon filtration device 13 in a direction opposite to the water flow direction of the treated water, a cleaning liquid, a mixed liquid of cleaning liquid and air, or treated water (raw water). ) It is preferable to perform so-called backwashing by passing water and discharging it outside the system. Thereby, contaminants, such as a turbidity adhering to members, such as the filter body 2 which the activated carbon filtration apparatus 13 has, can be removed.
  • the water to be treated stored in the pretreatment water tank 14 is supplied to the activated carbon filtration device 13 in the direction opposite to the water flow direction of the treated water to reverse the activated carbon filtration device 13.
  • the structure is washable.
  • the reverse osmosis membrane device 15 has a reverse osmosis membrane and performs membrane separation treatment by passing water to be treated so that ions such as HCO 3 ⁇ contained in the water to be treated, total organic carbon (TOC), etc.
  • the cross-sectional area of the water passage of the treated water is larger than the cross-sectional area of the mesh sheet 5 in the direction of water flow of the water to be treated. What has the width
  • the reverse osmosis membrane device 15 for example, a so-called spiral type of a shape obtained by winding a reverse osmosis membrane bound on a bag around a hollow core member having a water passage hole on its side surface, This is preferable because it can easily cope with an increase in size.
  • a spiral reverse osmosis membrane device having the same diameter as the activated carbon filtration device 13 is preferable.
  • treated water whose impurities have been subjected to membrane separation treatment by the reverse osmosis membrane is discharged from the hollow core material, and membrane separation treatment is performed by the reverse osmosis membrane from other than the core material. So-called concentrated water containing a lot of impurities is discharged.
  • any structure such as a flat membrane or a hollow fiber may be used.
  • reverse osmosis membranes examples include aromatic polyamide membranes.
  • the electrodeionization device 16 is not particularly limited as long as it can perform a deionization treatment that removes ions, CO 2 , silica, and the like that are contained in the water to be treated and not removed by the reverse osmosis membrane device 15.
  • a general electrodeionization apparatus can be used.
  • a general electrodeionization apparatus is, for example, a schematic configuration diagram showing a configuration example of an electrodeionization apparatus, and a plurality of anion exchanges between a cathode (cathode) and an anode (anode) as shown in FIG.
  • the concentration chamber 33 and the desalting chamber 34 are formed by alternately arranging the membrane 31 and the cation exchange membrane 32.
  • the concentration chamber 33 and the desalting chamber 34 are each filled with an ion exchange resin in a mixed bed or a single layer.
  • an electrodeionization apparatus when the water to be treated is passed, the treated water that has been deionized is discharged from the demineralization chamber 34, and ions, HCO 3 ⁇ , CO 3 2 ⁇ are discharged from the concentration chamber 33. Then, concentrated water containing a large amount of silica or the like is discharged.
  • an electrodeionization apparatus in which a scale component hardly precipitates.
  • the water to be treated contains high-concentration carbon dioxide CO 2
  • the carbon dioxide that has permeated from the demineralization chamber 34 on the anion exchange membrane 31 side to the concentration chamber 33 in the concentration chamber 33 of the electrodeionization apparatus in some cases, hydrogen ions HCO 3 ⁇ and the like react with calcium ions Ca 2+ or the like permeated from the desalination chamber 34 on the cation exchange membrane 32 side to the concentration chamber 33 to precipitate scale components (calcium carbonate or the like).
  • the bipolar membrane is a kind of composite membrane having a structure in which a cation exchange membrane and an anion exchange membrane are bonded together, and as a diaphragm used for water electrolysis or an aqueous solution of a salt which is a neutralized product of acid and alkali It is a known ion exchange membrane that has been widely used as a separation membrane for regenerating acid and alkali.
  • Such an electrodeionization apparatus is a schematic configuration diagram showing an example of the structure of an electrodeionization apparatus having a bipolar membrane.
  • a plurality of electrodeionization apparatuses are provided between a cathode (cathode) and an anode (anode).
  • a concentrating chamber 33 and a desalting chamber 34 are formed, and in each of the concentrating chamber 33 and the desalting chamber 34, an ion exchange resin is mixed. Alternatively, it is filled with a single layer.
  • the concentration chamber 33 is partitioned into a cathode side and an anode side by providing the concentration chamber 33 with the bipolar membrane 35.
  • the bipolar membrane 35 is provided so that the anion exchange membrane is located on the anode (anode) side and the cation exchange membrane is located on the cathode (cathode) side.
  • the treated water that has been deionized is discharged from the demineralization chamber 34, and ions, HCO 3 ⁇ , CO 3 2 ⁇ are discharged from the concentration chamber 33. Then, concentrated water containing a large amount of silica or the like is discharged.
  • the thickness of the desalting chamber 34 is preferably 2 to 5 mm. If it is less than 2 mm, the members constituting the desalting chamber 34 are likely to be easily deformed and water leakage is likely to occur, and if it exceeds 5 mm, the load on the desalting chamber 34 is high and scale is likely to precipitate.
  • the electrodeionization apparatus having the bipolar membrane since no ions are associated even if the thickness exceeds 5 mm, no scale is generated.
  • a degassing membrane device having a degassing membrane and capable of removing a gas such as carbon dioxide is provided. Even without this, precipitation of scale components such as calcium carbonate can be prevented, and the ultrapure water production system 10 can be stably operated.
  • the microfiltration membrane device 17 has a microfiltration membrane capable of removing fine particles, for example, a microfiltration membrane capable of removing fine particles of 0.02 to 10 ⁇ m, and is used in a conventional ultrapure water production system.
  • a microfiltration membrane device 17 can be used.
  • the microfiltration membrane device 17 may not be provided, or an ultrafiltration membrane with higher fine particle removal performance may be used.
  • the water to be treated discharged from the electrodeionization device 16 or the like is the intended ultrapure water.
  • the terminal piping section includes a terminal piping section composed of a pipe for feeding the obtained ultrapure water to the use point and a pipe for returning excess ultrapure water to the pretreatment water tank 14.
  • the ultrapure water sent to the use point is used in a user's washing machine or the like, but the water pressure used is, for example, about 0.1 to 0.3 MPa, and the terminal piping part increases to that pressure. It is preferable to have a pump.
  • the ultrapure water production system 10 of the present invention has a reductant storage for introducing a reductant into the water to be treated in order to prevent the reverse osmosis membrane device 15 and the electrodeionization device 16 from being deteriorated by an oxidant or the like.
  • You may have the reducing agent introduction means which consists of a tank, a pump, etc.
  • a reducing agent introduction means 18 for introducing a reducing agent into the raw water tank 11 is provided.
  • an ultrapure water production system having various devices such as an ion exchange resin tower, an ultraviolet irradiation oxidative decomposition apparatus, and an ultraviolet sterilizer at the subsequent stage of the electrodeionization apparatus 16 may be used.
  • an ion exchange resin tower, an ultraviolet oxidative decomposition device, an ultraviolet sterilization device, or the like is interposed between the electrodeionization device 16 and the microfiltration membrane device 17. Usually placed.
  • water to be treated examples include water containing a humic acid / fulvic acid organic substance, a biological metabolite such as sugar produced by algae, or a synthetic chemical substance such as a surfactant, specifically, industrial water. , City water, well water, river water, lake water, factory wastewater (especially biologically treated water obtained by biologically treating wastewater from the factory) and flocs (aggregates) formed by adding and aggregating flocculants to these Water that has been subjected to agglomeration treatment. Further, water added with an oxidizing agent such as sodium hypochlorite, hydrogen peroxide or ozone may be used for the purpose of suppressing the occurrence of troubles caused by microorganisms.
  • an oxidizing agent such as sodium hypochlorite, hydrogen peroxide or ozone may be used for the purpose of suppressing the occurrence of troubles caused by microorganisms.
  • the humic substance refers to a corrosive substance generated by the decomposition of plants and the like into microorganisms, and includes humic acid, and the water containing the humic substance is derived from humic substance and / or humic substance. It has a soluble COD component, suspended matter and chromaticity component.
  • examples of the flocculant for performing the flocculant treatment include a polymer flocculant and an inorganic flocculant.
  • polymer flocculant examples include poly (meth) acrylic acid, a copolymer of (meth) acrylic acid and (meth) acrylamide, and anionic organic polymer flocculants such as alkali metal salts thereof, From nonionic organic polymer flocculants such as poly (meth) acrylamide, cationic monomers such as dimethylaminoethyl (meth) acrylate or quaternary ammonium salts thereof, dimethylaminopropyl (meth) acrylamide or quaternary ammonium salts thereof And a cationic organic polymer flocculant such as a copolymer of a nonionic monomer copolymerizable with the cationic monomer, and the anionic monomer, cationic monomer or copolymerized with these monomers.
  • nonionic organic polymer flocculants such as poly (meth) acrylamide, cationic monomers such as dimethylaminoethyl (meth) acrylate or
  • the amount of the polymer flocculant added is not particularly limited and may be adjusted according to the properties of the water to be treated, but is generally 0.01 to 10 mg / L in solid content with respect to the water to be treated.
  • the inorganic flocculant include aluminum salts such as sulfuric acid band and polyaluminum chloride, and iron salts such as ferric chloride and ferrous sulfate.
  • the amount of the inorganic flocculant added is not particularly limited, and may be adjusted according to the properties of the water to be treated, but is generally 0.5 to 10 mg / L in terms of aluminum or iron with respect to the water to be treated. It is.
  • the pH of the water to be treated to which the polymer flocculant and the inorganic flocculant are added is pH 5.0-7. If it is about 0.0, aggregation is optimal.
  • the inorganic flocculant may be added before or after the polymer flocculant is added to the water to be treated, or may be added simultaneously with the polymer flocculant.
  • a reducing agent is added to the water to be treated as necessary.
  • the reducing agent By adding the reducing agent, the oxidizing agent contained in the water to be treated is reduced by the reducing agent, so that deterioration due to the oxidizing agent in the reverse osmosis membrane device 15 and the electrodeionization device 16 in the subsequent stage can be suppressed.
  • the reducing agent include sodium bisulfite, sodium sulfite, sodium thiosulfate, hydrazine, and the like.
  • the water to be treated heated by the heat exchanger 12 is introduced into the activated carbon filtration device 13. And the muddy substance contained in to-be-processed water is removed when the to-be-processed water introduced into the activated carbon filtration apparatus 13 cuts the mesh sheet 5 longitudinally. Further, when the water to be treated comes into contact with the spacer 6 formed of the activated carbon fiber, the oxidizing agent contained in the water to be treated is reduced with the activated carbon fiber. Therefore, the water to be treated discharged from the activated carbon filtration device 13 is one in which the oxidant has been almost completely removed and the turbidity has also been removed. The treated water discharged from the activated carbon filtration device 13 is stored in the pretreatment water tank 14.
  • the water to be treated stored in the pretreatment water tank 14 is passed through the reverse osmosis membrane device 15 to perform membrane separation treatment with the reverse osmosis membrane.
  • the treated water (treated water) discharged from the reverse osmosis membrane device 15 is deionized by passing it through the electrodeionization device 16, and the concentrated water discharged from the reverse osmosis membrane device 15 is pretreated. When it returns to the water tank 14 or there are many impurities, it removes out of the system.
  • the water to be treated (treated water) discharged from the electrodeionization device 16 is passed through the microfiltration membrane device 17 to perform membrane separation treatment with the microfiltration membrane, and is discharged from the electrodeionization device 16.
  • the concentrated water is returned to the pretreatment water tank 14.
  • the treated water discharged from the microfiltration membrane device 17 in this way that is, the intended ultrapure water is sent to the use point.
  • surplus ultrapure water is returned to the pretreatment water tank 14 via the terminal piping section.
  • the concentration of iron and aluminum in the water to be treated is low (for example, 0.06 ppm or less), and the total organic carbon concentration (TOC concentration).
  • TOC concentration total organic carbon concentration
  • the total organic carbon concentration (TOC concentration) is high, the total organic matter such as agglomeration treatment before the activated carbon filtration device 13 of the pretreatment section. A treatment for reducing the carbon concentration is required.
  • Examples of the decarboxylation facility include a decarboxylation tower and a device having a degassing membrane (degassing membrane device).
  • degassing membrane device When using a deaeration membrane apparatus, it is preferable to provide in the back
  • the electrodeionization device 16 when the electrodeionization device 16 is used, the load on the electrodeionization device can be reduced, and scale generation can be prevented. Therefore, the degassing membrane device is provided in front of the electrodeionization device. preferable.
  • FIG. 8 is a schematic system diagram showing another example of the ultrapure water production system of the present invention.
  • the same devices as those in FIG. 1 are denoted by the same reference numerals, and the configuration thereof is the same as described above, and the description thereof is omitted.
  • an ultrapure water production system 10 ⁇ / b> A having a decarboxylation tower heats the water to be treated provided in the raw water tank 11 into which the water to be treated (raw water) is introduced, and downstream of the raw water tank 11.
  • a pretreatment unit having a heat exchanger 12 and an activated carbon filtration device 13 that performs activated carbon filtration treatment of water to be treated heated by the heat exchanger 12 is provided. Note that the heat exchanger 12 may not be provided if it is not necessary to heat the water to be treated.
  • the pretreatment water tank 14 which stores the to-be-processed water processed by the pretreatment part, the reverse osmosis membrane apparatus 15, the electrodeionization apparatus 16, and the microfiltration membrane apparatus 17 provided in order in the downstream of the pretreatment water tank 14 are provided. It has an ultrapure water production department. Further, a decarboxylation tower 19 is provided immediately above the pretreatment water tank 14, and the treated water treated in the pretreatment section is stored in the pretreatment water tank 14 via the decarbonation tower 19. The decarboxylation tower 19 and the pretreatment water tank 14 are integrally configured. Of course, it is good also as an apparatus with which the decarboxylation tower 19 and the pretreatment water tank 14 were separated instead of the apparatus comprised integrally.
  • the decarboxylation tower 19 should just be provided one or more upstream in the electrodeionization apparatus 16, for example, between the heat exchanger 12 and the activated carbon filtration apparatus 13, or the pretreatment water tank 14 and reverse osmosis. It may be provided between the membrane device 15. Then, the ultrapure water discharged from the ultrapure water production department, that is, the pipe for feeding the ultrapure water discharged from the microfiltration membrane device 17 to the use point, and the excess ultrapure water are returned to the pretreatment water tank 14.
  • the terminal piping part which consists of piping is comprised. Note that a pump P is appropriately provided between the devices as means for feeding the water to be treated. Further, in FIG. 8, a pH adjusting agent introducing means for introducing the pH adjusting agent into the water to be treated is provided immediately after the activated carbon filtration device 13.
  • the decarboxylation tower 19 is not particularly limited as long as it is an apparatus capable of removing carbon dioxide contained in the water to be treated, and a decarboxylation tower used in a normal ultrapure water production system can be used.
  • a container filled with a filler a spray nozzle for passing water to be treated from the upper part of the container, a gas introducing means for blowing air or nitrogen gas from the lower part of the container and discharging the gas from the upper part of the container, It is what has.
  • the filler include 1 ⁇ 2 to 2 inch net rings and Raschig rings. If the size is less than 1 ⁇ 2 inch, although depending on the material and shape of the filler, the pressure loss becomes too large.
  • the size is more than 2 inches, sufficient carbon dioxide removal performance may not be obtained. Further, it is preferable to fill the filler so that the volume flow rate SV of the water to be treated is 30 to 100. If the volume flow rate is too low, the flow of water to be treated will be unevenly distributed and may not contact carbon dioxide, and carbon dioxide removal performance may not be obtained. If it is too high, pressure loss will be high and gases such as air and nitrogen will not flow uniformly. This is because the carbon dioxide removal performance may not be obtained without contact.
  • the water to be treated heated by the heat exchanger 12 is introduced into the activated carbon filtration device 13. And the muddy substance contained in to-be-processed water is removed when the to-be-processed water introduced into the activated carbon filtration apparatus 13 cuts the mesh sheet 5 longitudinally. Further, when the water to be treated comes into contact with the spacer 6 formed of the activated carbon fiber, the oxidizing agent contained in the water to be treated is reduced with the activated carbon fiber. Therefore, the water to be treated discharged from the activated carbon filtration device 13 is one in which the oxidant has been almost completely removed and the turbidity has also been removed.
  • the pH adjusting agent is introduced from the pH adjusting agent introducing means into the treated water discharged from the activated carbon filtration device 13 to adjust the pH of the treated water to a desired acidic value, for example, pH 4-5.
  • the pH adjuster include sulfuric acid, hydrochloric acid, nitric acid, potassium hydroxide, and sodium hydroxide.
  • the water to be treated whose pH is adjusted is passed through the spray nozzle from the upper part of the decarboxylation tower 19 in which air or nitrogen gas is blown from the lower part of the container filled with the filler and discharged from the upper part of the container.
  • air or nitrogen gas is blown from the lower part of the container filled with the filler and discharged from the upper part of the container.
  • the treated water from which the carbon dioxide has been removed falls into the pretreatment water tank 14 provided immediately below and is stored.
  • the water to be treated stored in the pretreatment water tank 14 is passed through the reverse osmosis membrane device 15 to perform membrane separation treatment with the reverse osmosis membrane.
  • the treated water (treated water) discharged from the reverse osmosis membrane device 15 is deionized by passing it through the electrodeionization device 16, and the concentrated water discharged from the reverse osmosis membrane device 15 is pretreated. When it returns to the water tank 14 or there are many impurities, it removes out of the system.
  • the water to be treated (treated water) discharged from the electrodeionization device 16 is passed through the microfiltration membrane device 17 to perform membrane separation treatment with the microfiltration membrane.
  • the concentrated water discharged from the electrodeionization device 16 contains a large amount of inorganic carbonic acid, but the inorganic carbonic acid cannot be removed by the reverse osmosis membrane device 15 under pH acidic conditions. Therefore, in order to remove the inorganic carbonic acid contained in the concentrated water from the electrodeionization apparatus 16, it is necessary to return the concentrated water to a stage prior to the decarbonation facility, and in this embodiment, the configuration is returned to the raw water tank 11. did.
  • the treated water discharged from the microfiltration membrane device 17 in this way that is, the intended ultrapure water is sent to the use point. In addition, surplus ultrapure water is returned to the pretreatment water tank 14 via the terminal piping section.
  • natural water tank 11 contains dissolved oxygen
  • Example 1 As treated water (raw water), city water, specifically, turbidity of 1.0 degree or less, residual chlorine (as.Cl 2 ): 0.5 ppm, water temperature: 20 ° C., iron concentration: 0.01 ppm, aluminum Water having a concentration of 0.05 ppm and a TOC concentration of 0.5 ppm was treated with the ultrapure water production system shown in FIG.
  • the configuration of each device is as follows.
  • the raw water pH was 7.1.
  • Filtration tank cylindrical container (vessel) with an inner diameter of 100 mm
  • Filter body mesh sheet made of warp and weft made of polyethylene fibers having a diameter of 0.3 mm, 1 m ⁇ 10 m shown in FIG.
  • the height T of the intersection is 0.5 mm, opening 3000 ⁇ m, opening area 80% 1 m ⁇ 10 m ⁇ 0.3 mm thick activated carbon nonwoven fabric with spacers made of activated carbon fibers with a diameter of 15 ⁇ m and a 1 m ⁇ 10 m ⁇ 0.1 mm thick film made of PET (polyethylene terephthalate) (Water impermeable film) and a sheet-like member in which these were superposed and the four corners were heat-sealed.
  • the sheet member is formed by wrapping 10 m around a pipe (core material) made of vinyl chloride having a diameter of 20 mm so that the water-impermeable film is on the outside, and a filter body having a diameter of 100 mm.
  • the gap between the inner wall and the outer periphery of the filter body or the gap near the core is filled with an adhesive that does not allow the water to be treated to pass through.
  • Reverse osmosis membrane device Connected two spiral type (diameter 100mm) using FILMTEC LE-4040 (the height of intersection of raw water flow path spacer: 0.85mm) manufactured by The Dow Chemical Company Water volume: 0.5m 3 / h Concentrated water volume: 1.1 m 3 / h
  • a concentration chamber and a desalination chamber are formed by alternately arranging a plurality of the following anion exchange membranes and cation exchange membranes between the cathode (cathode) and the anode (anode).
  • the following ion exchange resin was filled, and the following bipolar membrane was provided in the concentration chamber, so that the concentration chamber was partitioned into a cathode side and an anode side.
  • the thickness and membrane area of the desalting chamber and the concentration chamber are as follows.
  • Anion exchange membrane Asahi Kasei Kogyo Co., Ltd.
  • “Aciplex K501SB” Ion exchange resin An anion exchange resin ("SA10A” manufactured by Mitsubishi Chemical Corporation) and a cation exchange resin ("SK1B” manufactured by Mitsubishi Chemical Corporation) mixed at a volume mixing ratio of 6: 4.
  • Bipolar membrane A cation exchange membrane (CMB) manufactured by Tokuyama Soda is immersed in an aqueous ferrous chloride solution at 25 ° C. for 1 hour, washed thoroughly with ion exchange water, air-dried, and then cation exchange membrane by a polymer coating method. Made by applying a quaternized base-containing polymer containing amino groups to the surface.
  • Desalination chamber 10 mm thick
  • Concentration chamber 4 mm thick
  • Membrane area 300 cm 2 (300 mm ⁇ 100 mm) Treated water volume: 0.4 m 3 / hour
  • Concentrated water volume 0.1 m 3 / hour
  • Microfiltration membrane device manufactured by Advantech, hydrophilic PTFE (polytetrafluoroethylene) filter TCFH-050-S1FE
  • the electrical conductivity (specific resistance) in 25 degreeC was measured. Further, as shown in FIG. 9, the differential pressure of the reverse osmosis membrane device 15 at the time of treatment is expressed as a difference between the pressure P1 at the inlet of the reverse osmosis membrane device 15 and the pressure P2 at the outlet of the concentrated water (P1 ⁇ P2 (MPa)). Asked.
  • Example 2 As treated water (raw water), well water, specifically, turbidity of 1.0 degree or less, residual chlorine (as.Cl 2 ): 0.0 ppm, water temperature: 10 ° C., iron concentration: 0.1 ppm, aluminum Water having a concentration of 0.03 ppm and a TOC concentration of 0.2 ppm was treated with the ultrapure water production system shown in FIG.
  • the configuration of each device is as follows. Moreover, the pH of the to-be-processed water after addition of a pH adjuster was 5.0.
  • Filtration tank cylindrical container (vessel) with an inner diameter of 100 mm
  • Filter body mesh sheet made of warp and weft made of polyethylene fibers having a diameter of 0.3 mm, 1 m ⁇ 10 m shown in FIG.
  • the height T of the intersection is 0.5 mm, opening 3000 ⁇ m, opening area 80% 1 m ⁇ 10 m ⁇ 0.3 mm thick activated carbon nonwoven fabric with spacers made of activated carbon fibers with a diameter of 15 ⁇ m and a 1 m ⁇ 10 m ⁇ 0.1 mm thick film made of PET (polyethylene terephthalate) (Water impermeable film) and a sheet-like member in which these were superposed and the four corners were heat-sealed.
  • the sheet member is formed by wrapping 10 m around a pipe (core material) made of vinyl chloride having a diameter of 20 mm so that the water-impermeable film is on the outside, and a filter body having a diameter of 100 mm.
  • the gap between the inner wall and the outer periphery of the filter body or the gap near the core is filled with an adhesive that does not allow the water to be treated to pass through.
  • ⁇ Decarbonation device> A cylindrical container having an inner diameter of 250 mm and a height of 1500 mm filled with a 3/4 inch net ring to a height of 1000 mm was used as a decarboxylation tower, and this was connected to the upper part of the pretreatment water tank.
  • Reverse osmosis membrane device Connected two spiral type (diameter 100mm) using FILMTEC LE-4040 (the height of intersection of raw water flow path spacer: 0.85mm) manufactured by The Dow Chemical Company Water volume: 0.5m 3 / h Concentrated water volume: 1.1 m 3 / h
  • Electrodeionization apparatus A plurality of the following anion exchange membranes and cation exchange membranes are alternately arranged between a cathode (cathode) and an anode (anode) to form a concentration chamber and a desalting chamber, and a desalting chamber. And what filled the following ion exchange resin into the concentration chamber was used.
  • the thickness and membrane area of the desalting chamber and the concentration chamber are as follows.
  • Anion exchange membrane Asahi Kasei Kogyo Co., Ltd.
  • “Aciplex K501SB” Ion exchange resin An anion exchange resin ("SA10A” manufactured by Mitsubishi Chemical Corporation) and a cation exchange resin ("SK1B” manufactured by Mitsubishi Chemical Corporation) mixed at a volume mixing ratio of 6: 4.
  • Desalination chamber 5mm thick
  • Concentration chamber 4 mm thick
  • Membrane area 300 cm 2 (300 mm ⁇ 100 mm)
  • Treated water volume 0.4 m 3 / hour
  • Concentrated water volume 0.1 m 3 / hour
  • Microfiltration membrane device manufactured by Advantech, hydrophilic PTFE (polytetrafluoroethylene) filter TCFH-050-S1FE
  • Example 1 As water to be treated (raw water), water to be treated similar to that in Example 1 was treated with the ultrapure water production system shown in FIG. The configuration of each device is as follows. The pH of the raw water was 7.1.
  • Microfiltration membrane UNA-600A manufactured by Asahi Kasei Treated water volume: 2.5 m 3 / h
  • Reverse osmosis membrane device Reverse osmosis membrane: FILMTEC LE-4040 manufactured by The Dow Chemical Company (the height of the intersection of raw water flow path spacers: spiral type using 0.85 mm, diameter 100 mm) connected two treated water volume: 0.5m 3 / h Concentrated water volume: 1.1 m 3 / h
  • a concentration chamber and a desalination chamber are formed by alternately arranging a plurality of the following anion exchange membranes and cation exchange membranes between the cathode (cathode) and the anode (anode).
  • the one filled with the following ion exchange resin was used.
  • the thickness and membrane area of the desalting chamber and the concentration chamber are as follows.
  • Anion exchange membrane Asahi Kasei Kogyo Co., Ltd.
  • “Aciplex K501SB” Ion exchange resin An anion exchange resin ("SA10A” manufactured by Mitsubishi Chemical Corporation) and a cation exchange resin ("SK1B” manufactured by Mitsubishi Chemical Corporation) mixed at a volume mixing ratio of 6: 4.
  • Desalination chamber 15mm thick
  • Concentration chamber 15 mm thick
  • Membrane area 300 cm 2 (300 mm ⁇ 100 mm)
  • Treated water volume 0.4 m 3 / h
  • Concentrated water volume 0.1 m 3 / h
  • Comparative Example 2 As water to be treated (raw water), water to be treated similar to that in Example 2 was treated with the ultrapure water production system shown in FIG. The configuration of each device is the same as that of Comparative Example 1. Moreover, the pH of the to-be-processed water after addition of a pH adjuster was 5.0.
  • the specific resistances of the treated water obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were both 16.5 M ⁇ ⁇ cm, and the treated water obtained in Examples 1 and 2 was Comparative Example 1. 2 and high quality water comparable to the treated water obtained in 2.
  • the ultrapure water production system of Example 1 was 60% of the floor area of the ultrapure water production system of Comparative Example 1 and the production cost was 60%.
  • the ultrapure water production system of Example 2 was 70% of the floor area of the ultrapure water production system of Comparative Example 2, and the production cost was 65%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

被処理水が導入される前処理部と、該前処理部で処理された被処理水が貯留される前処理水槽、該前処理水槽から被処理水が導入される逆浸透膜装置及び電気脱イオン装置を有する超純水製造部とを具備し、前記前処理部は活性炭濾過装置を有し、該活性炭濾過装置は、シート状部材が渦巻状に巻回される濾過体本体と、被処理水が通水され、前記濾過体本体の軸芯が通水方向に沿うように前記濾過体本体が内部に充填される濾過槽とを有し、前記シート状部材は、被処理水が通過する空孔を有するシート状のメッシュシートと、メッシュシートに比べて被処理水が通過し難いシート状のスペーサーのシート面同士が重ねられたものであり、前記メッシュシート及び前記スペーサーの少なくとも一部は活性炭繊維で形成されたものである超純水製造システム。

Description

超純水製造システム及び超純水の製造方法
 本発明は、電子産業、液晶、製薬、食品等の各種産業や研究施設などにおいて利用される超純水製造システム及び超純水の製造方法に関する。 
 工業用水、市水、井水、河川水、湖沼水、工場廃水などの被処理水から超純水を製造する超純水製造システムは、一般的には前処理部、一次純水システム、サブシステム及び端末配管部で構成されている。前処理部では、後段の装置が安定して運転を行えるよう、不溶解性物質の除去を主目的として、凝集、沈殿、濾過、軟化、除鉄、除マンガン、吸着などの処理が行われる。一次純水システムは、前処理部で処理された前処理水を処理して純水を製造するものであり、主にイオン交換装置または電気脱イオン装置、脱気膜装置、逆浸透膜装置で構成されている。また、サブシステムは、一次純水システムで製造される純水をさらに高純度化して超純水に仕上げるものであり、例えばサブタンク、紫外線酸化装置、イオン交換装置、限外濾過膜装置等で構成されている。そして、サブシステムで製造された超純水は、端末配管部でユースポイントに送水され、ユースポイントで使用されなかった余剰の超純水は、サブシステムのサブタンクに戻され、循環処理される。例えば、従来技術の超純水製造システムを示す概略系統図である図10に示すように、原水槽41、熱交換器42、精密濾過(MF)膜装置43、活性炭塔44、保安フィルター45、活性炭塔44及び保安フィルター45の間に設けられ被処理水に硫酸等の薬品を導入する薬品導入手段46を有する前処理部と、前処理水槽47、逆浸透(RO)膜装置48、脱気(MD)膜装置49、電気脱イオン(EDI)装置50を有する一次純水システムと、サブタンク51、熱交換(H/E)器52、紫外線殺菌装置53、端末精密濾過膜装置54を有する端末配管部を有し、ポンプで被処理水が送液されて超純水が製造される超純水製造システム等がある。このような従来の超純水製造システムは、高純度の超純水を安定的にユースポイントに送水する点においては、理想的な装置構成となっているが、ユーザーからの設備投資費及び運転コストの削減要求や、省スペース化の要求から、超純水製造システムの簡素化が強く求められている。 
 これらの要求に対する技術として、前処理部と、該前処理部で処理された前処理水が導入される超純水製造部と、該超純水製造部で製造された超純水をユースポイントに送水し、余剰の超純水を該超純水製造部に戻す端末配管部とを備える超純水製造システムであって、該超純水製造部は、少なくとも、前処理水が導入されるタンクと、タンクからの水を処理する、逆浸透膜装置、脱気装置、電気脱イオン手段、及び濾過膜装置で構成され、かつ、前記端末配管部から戻される余剰の超純水は、該タンクに導入される超純水製造システムがある(特許文献1参照)。しかしながら、さらなる簡素化が求められている。 
特開2004-57935号公報
 本発明は上述した事情に鑑み、製造される超純水の水質を維持した上で、より簡素化された超純水製造システム及び超純水の製造方法を提供することを課題とする。 
 上記課題を解決する本発明の超純水製造システムは、被処理水が導入される前処理部と、該前処理部で処理された被処理水が貯留される前処理水槽、該前処理水槽から被処理水が導入される逆浸透膜装置及び電気脱イオン装置を有する超純水製造部とを具備し、前記前処理部は活性炭濾過装置を有し、該活性炭濾過装置は、シート状部材が渦巻状に巻回される濾過体本体と、被処理水が通水され、前記濾過体本体の軸芯が通水方向に沿うように前記濾過体本体が内部に充填される濾過槽とを有し、前記シート状部材は、被処理水が通過する空孔を有するシート状のメッシュシートと、メッシュシートに比べて被処理水が通過し難いシート状のスペーサーのシート面同士が重ねられたものであり、前記メッシュシート及び前記スペーサーの少なくとも一部は活性炭繊維で形成されたものであることを特徴とする。 
 前記スペーサーが、直径0.1~100μmの活性炭繊維で形成されたものであることが好ましい。
 また、前記電気脱イオン装置の上流側に、脱炭酸設備を少なくとも一つ以上有していてもよい。
 そして、前記電気脱イオン装置は、バイポーラ膜を有することが好ましい。
 あるいは、前記電気脱イオン装置の脱塩室の厚さが、2~5mmであることが好ましい。
 また、前記超純水製造部から排出された超純水をユースポイントに送水すると共に余剰の超純水を前記前処理水槽に戻す端末配管部を有することが好ましい。 
 本発明の超純水の製造方法は、活性炭濾過装置により活性炭濾過処理した被処理水を前処理水槽に貯留し、該前処理水槽に貯留した被処理水を逆浸透膜装置で逆浸透膜処理した後、電気脱イオン装置で脱イオン処理をする超純水の製造方法であって、前記活性炭濾過装置が、シート状部材が渦巻状に巻回される濾過体本体と、被処理水が通水され、前記濾過体本体の軸芯が通水方向に沿うように前記濾過体本体が内部に充填される濾過槽とを有し、前記シート状部材は、被処理水が通過する空孔を有するシート状のメッシュシートと、メッシュシートに比べて被処理水が通過し難いシート状のスペーサーのシート面同士が重ねられたものであり、前記メッシュシート及び前記スペーサーの少なくとも一部は活性炭繊維で形成されたものであることを特徴とする。 
 本発明によれば、製造される超純水の水質が良好で、且つ、簡素化された超純水製造システムを提供することができる。したがって、設備投資費及び運転コストを削減し、省スペース化を図りつつ、水質が良好な超純水を得ることができる。 
本発明の超純水製造システムの一例を示す概略系統図である。 活性炭濾過装置の構成を示す縦断面図である。 活性炭濾過装置の構成を示す横断面図である。 活性炭濾過装置の濾過体を示す斜視図である。 メッシュシートの要部拡大図である。 電気脱イオン装置の一構成例を示す概略構成図である。 バイポーラ膜を有する電気脱イオン装置の構成例を示す概略構成図である。 本発明の超純水製造システムの他の例を示す概略系統図である。 逆浸透膜の差圧の測定方法を示す図である。 従来技術の超純水製造システムを示す概略系統図である。
 以下に本発明を実施形態に基づいて詳細に説明する。
 本発明の超純水製造システムは、被処理水が導入される前処理部と、前処理部で処理された被処理水が貯留される前処理水槽と、前処理水槽から被処理水が導入される逆浸透膜装置及び電気脱イオン装置を有する超純水製造部とを具備する。そして、前処理部は活性炭濾過装置を有し、この活性炭濾過装置は、シート状部材が渦巻状に巻回される濾過体本体と、被処理水が通水され、濾過体本体の軸芯が通水方向に沿うように濾過体本体が内部に充填される濾過槽とを有し、シート状部材は、被処理水が通過する空孔を有するシート状のメッシュシートと、メッシュシートに比べて被処理水が通過し難いシート状のスペーサーのシート面同士が重ねられたものであり、メッシュシート及びスペーサーの少なくとも一部は活性炭繊維で形成されたものである。 
 具体的には、本発明の超純水製造システムの一例を示す概略系統図である図1に示すように、超純水製造システム10は、被処理水(原水)が導入される原水槽11と、原水槽11の下流側に設けられ被処理水を加熱する熱交換器12と、熱交換器12で加熱された被処理水を活性炭濾過処理する活性炭濾過装置13とを有する前処理部を具備する。なお、被処理水を加熱する必要が無ければ熱交換器12は有さなくてもよい。また、前処理部で処理された被処理水を貯留する前処理水槽14、前処理水槽14の下流側に順に設けられた逆浸透膜装置15、電気脱イオン装置16及び精密濾過膜装置17を有する超純水製造部を具備する。そして、超純水製造部から排出された超純水、すなわち、精密濾過膜装置17から排出された超純水をユースポイントに送水する配管と、余剰の超純水を前処理水槽14に戻す配管からなる端末配管部を具備する。なお、被処理水を送液する手段として、ポンプPが各装置間に適宜設けられている。また、図1においては、亜硫酸水素ナトリウム等の還元剤を原水槽11に導入する還元剤導入手段18が設けられている。 
 上記活性炭濾過装置13の一例について、図2~図5を用いて具体的に説明する。図2は、活性炭濾過装置の構成を示す被処理水の通水方向の縦断面図であり、図3は、活性炭濾過装置の構成を示す横断面図であり、図4は、活性炭濾過装置の濾過体を示す斜視図である。
 図2及び図3に示すように、活性炭濾過装置13は、被処理水が通水される筒状の濾過槽1と、通水される被処理水中の濁質を捕捉する濾過体2とを有する。該濾過体2は、濾過槽1の通水方向の両端に接続される芯材3と、芯材3に渦巻状に巻回されたシート状部材からなる濾過体本体4を有する。このシート状部材は、被処理水が通過する空孔を有するシート状のメッシュシート5と、メッシュシート5に比べて被処理水が通過し難い活性炭繊維で形成されたシート状のスペーサー6のシート面同士が重ねられたものである。 
 また、濾過槽1の通水方向両端には、濁質(懸濁物質)等を含有する被処理水が自由に通水できる程度の穴が複数設けられた樹脂製等の円形のプレート7が設けられ、各プレート7の中心に芯材3の両端が固定されている。そして、濾過体2は、濾過体本体4の軸芯が被処理水の通水方向に沿うように、濾過体2が濾過槽1内部全体に充填されている。また、濾過槽1の内壁と濾過体本体4の外周との隙間や、芯材3付近の隙間は、接着剤等の被処理水が通過しない水不透過部材8で埋められており被処理水が通過できない構成になっている。なお、濾過体本体4の軸芯とは、渦巻状に巻回された濾過体本体4の渦巻きの中心であり、本実施形態では芯材3が該当する。 
 このような活性炭濾過装置13に、被処理水を通水すると、スペーサー6はメッシュシート5に比べて被処理水が通過し難いため、被処理水の多くは、メッシュシート5の空孔を通りメッシュシート5を略縦断、すなわちメッシュシート5を面方向に通過し、その際被処理水に含まれる濁質がメッシュシート5にトラップされ、濁質が除去された被処理水が濾過槽1から排出される。このように、被処理水が通過する空孔を有し濁質を捕捉することができるメッシュシート5を、厚さ方向に横断するのではなく縦断するように、被処理水が通水される構造の活性炭濾過装置13とすることで、清澄な処理水が得られる。したがって、活性炭濾過装置13は、逆浸透膜装置15の閉塞や劣化、電気脱イオン装置16の劣化を抑制することができる。また、活性炭濾過装置13は、限外濾過膜装置又は精密濾過膜装置のように、膜を用いた濾過ではないので閉塞し難く、また安価である。 
 そして、スペーサー6が活性炭繊維で形成されたものであるため、このスペーサー6に被処理水が接触することにより、被処理水が含有する次亜塩素酸等の酸化剤が活性炭繊維と反応し還元される。したがって、活性炭濾過装置13から排出される被処理水は、酸化剤がほぼ完全に除去されたものとすることができる。 
 ここで、メッシュシート5は、被処理水が通過することができる空孔を有し被処理水が含有する濁質を所望の程度除去できればよく、特に限定はないが、例えば、図5に示すような、縦糸9aと横糸9bで形成された織物が挙げられる。なお、図5は、メッシュシート5の要部拡大平面図(図5(a))及び図5(a)のA-A´断面図(図5(b))である。 
 そして、メッシュシート5の隣り合う縦糸9a同士や隣り合う横糸9b同士の距離、すなわち、オープニング(図5中OPで示す。)は200~4000μm程度が好ましく、また、空孔(図5中斜線で示す。)の大きさ、すなわち、メッシュシート5の平面視の空間率(オープニングエリア)は40~98%程度とすることが好ましく、そして、交点部の高さ(図中Tで示す厚さ)は500~1200μmであることが好ましい。具体的な商品としては、例えば、100目~8目(NBC社)程度のものを用いればよい。この範囲であれば、特に好適に濁質を除去することができる。また、逆浸透膜装置15、例えば逆浸透膜を巻き回した形状のスパイラル型逆浸透膜装置では、交点部の高さが通常0.65~1.2mm程度のメッシュシートを原水流路スペーサーとして用いているので、逆浸透膜装置よりも交点部の高さの低いメッシュシートを用いることが好ましいためである。例えば、逆浸透膜装置15よりも交点部の高さが2/3倍以下のメッシュシートを用いることが好ましい。 
 また、縦糸9aや横糸9bとなる繊維の直径Dは、それぞれ直径0.1~0.6mmが好ましく、さらに好ましくは0.1~0.4mm程度である。被処理水の濁度や処理量にもよるが、被処理水を略縦断できるようにするためには、ある程度の太さの繊維で被処理水を通過させる空孔を形成する必要があり、また、太すぎると形成される空孔が大きくなりすぎて、濁質を除去できなくなるためである。 
 メッシュシート5を構成する糸等の材質としては、例えば、ポリオレフィン、ポリエステル、ナイロン、ポリフッ化ビニリデン(PVDF)などの合成樹脂や、金属繊維、活性炭繊維等が挙げられるが、耐塩素性の観点から、ポリオレフィンが好ましい。なお、図5においては、織物を例示したが、繊維で形成された比較的大きな空孔を有する不織布でもよい。 
 また、スペーサー6は、メッシュシート5に比べて被処理水が通過し難いシート状のものであれば特に限定されず、例えば、空孔を全く有さず被処理水を通過させない水不透過シートや、直径0.1~100μm、好ましくは0.5~30μm程度の繊維で形成された不織布等、又は、これらを貼り合わせたり熱融着で一体成型する等により重ねられたものとしてもよい。なお、スペーサー6が被処理水を通過させない水不透過シートであれば、被処理水をメッシュシート5に均一に接触させることができるので、スペーサー6は水不透過シートを有するものであることが好ましい。そして、不織布をスペーサー6として用いると、不織布表面の毛羽立ち部位で被処理水の濁質を捕捉することができ活性炭濾過装置13の濁質捕捉性を向上させることができるため、不織布と水不透過シートとからなるスペーサーとすることが好ましい。 
 なお、メッシュシート5の少なくとも一部が活性炭繊維を用いて形成されている場合は、スペーサー6は活性炭繊維以外の材質で形成されていてもよい。このようなスペーサー6の材質としては、例えば、ポリオレフィン、ポリエステル、ナイロン、ポリフッ化ビニリデン(PVDF)、金属繊維等が挙げられる。この中では、耐薬品性や経済性の観点からは、ポリオレフィンが好ましい。 
 そして、メッシュシート5及びスペーサー6を重ね合わせる形態に特に限定はなく、シート面同士を貼り合わせてもよく熱融着で一体成型してもよい。なお、メッシュシート5とスペーサー6の大きさは同一でなくてもよいが、均一に被処理水を処理するためには、ほぼ同一であることが好ましい。メッシュシートやスペーサー6の通水方向の長さは、被処理水の濁度、処理量や求める超純水(処理水)の品質等にもよるが、例えば、200~1000mm程度とすればよい。 
 このメッシュシート5及びスペーサー6を重ね合わせたシート部材を巻きつける芯材3の材質は特に限定されず、プラスチックや金属などを用いることができるが、経済性の観点からは塩化ビニル配管(CVP配管)とすることが好ましい。また、芯材3の形状も特に限定されず、例えば円柱状でも角柱状でもよい。なお、シート部材を芯材3に巻きつける方法も特に限定は無く、例えばシート部材の端部を接着剤等で芯材3に固定し、該芯材3を中心として、シート部材をのり巻き状に巻き込み、被処理水の処理量や濁度等に応じて、任意の径となるように巻きつければよい。 
 そして、濾過槽1に限定はなく、例えば材質はステンレス製や繊維強化プラスチック(FRP)製とすることができ、また、大きさは中空の円柱状(筒状)であれば、直径100~1000mm、高さ200~1000mmとすることができる。また、図2では、筒状の濾過槽1としたが、筒状でなくてもよく、通水できる形状、すなわち、中空であればよく、例えば角柱に空洞を設けた形状でもよい。 
 図2においては、濾過体2として、芯材3に3回巻回された濾過体本体4を有するものを用いたが、巻回す回数に制限はなく、被処理水の処理量及び濁度や求める超純水の品質等により適宜調節すればよい。濾過体本体4が1回のみ巻回された濾過体2としてもよいが、巻回す回数が多いほどスペーサー6によりメッシュシート5の形状が保持しやすくなり、被処理水が均一にメッシュシート5を縦断できるようになって、水処理が安定するため好ましい。 
 また、図2においては、濾過体2として、芯材3に濾過体本体4が巻回された物を用いたが、芯材3はなくてもよく、例えばスペーサー6等でメッシュシート5の通水時の形状を保持し、被処理水がメッシュシート5を面方向に通過(縦断)することができれば、濾過体本体4のみからなる濾過体2としてもよい。 
 また、図2においては、中空の円柱状の濾過槽1に濾過体2を充填した活性炭濾過装置13としたが、濾過体2にFRPなどのシートを巻きつけて被処理水が漏れないように接合したものとしてもよい。また、スペーサー6を水不透過の材質とし、被処理水が漏れないようにすることにより、スペーサー6が濾過槽1を兼ねるようにしてもよい。 
 なお、活性炭濾過装置13は、被処理水の通水方向とは逆方向に、活性炭濾過装置13から排出された被処理水、洗浄液、洗浄液と空気との混合液、又は、被処理水(原水)を通水して系外に排出するいわゆる逆洗を行なうことが好ましい。これにより活性炭濾過装置13が有する濾過体2等の部材に付着した濁質等の汚染物質を除去することができる。図1の超純水処理装置においては、前処理水槽14に貯留された被処理水を、被処理水の通水方向とは逆方向に活性炭濾過装置13に供給して活性炭濾過装置13を逆洗できる構造としている。 
 また、逆浸透膜装置15は、逆浸透膜を有し被処理水を通水して膜分離処理することにより、被処理水中に含まれるHCO 等のイオン、全有機炭素(TOC)などを除去することができる装置であれば特に限定はないが、メッシュシート5の被処理水通水方向の断面積よりも被処理水の通水路の断面積が大きい、例えば、スパイラル型のものではメッシュシート5の交点部の高さよりも原水流路の幅が大きいものが好ましい。そして、逆浸透膜装置15の形態に特に限定はないが、例えば、袋とじにした逆浸透膜を側面に通水孔を有する中空の芯材に巻き回した形状のいわゆるスパイラル型のものが、大型化に対応し易いため好ましい。特に、活性炭濾過装置13と同一の直径を有するスパイラル型の逆浸透膜装置とすることが好ましい。なお、スパイラル型の逆浸透膜装置を用いると、逆浸透膜で不純物を膜分離処理された処理水が、中空の芯材から排出され、芯材以外からは逆浸透膜で膜分離処理されていない不純物を多く含んだいわゆる濃縮水が排出される。また、スパイラル型のもの以外に、平膜や中空糸等、いずれの構造でもよい。 
 逆浸透膜としては、芳香族ポリアミド製の膜等が挙げられる。 
 また、電気脱イオン装置16は、被処理水中に含まれ逆浸透膜装置15で除去されなかったイオン、CO、シリカ等を除去する脱イオン処理をすることができるものであれば特に限定はなく、一般的な電気脱イオン装置を用いることができる。一般的な電気脱イオン装置は、例えば電気脱イオン装置の一構成例を示す概略構成図である図6に示すように、陰極(カソード)と陽極(アノード)との間に、複数のアニオン交換膜31とカチオン交換膜32とを交互に配列することにより、濃縮室33と脱塩室34とが形成されている。そして、濃縮室33及び脱塩室34には、それぞれイオン交換樹脂が、混床あるいは単一の層で充填されている。このような電気脱イオン装置では、被処理水が通水されると、脱イオン処理された処理水が脱塩室34から排出され、濃縮室33からはイオン、HCO 、CO 2-、シリカ等を多く含んだ濃縮水が排出される。 
 このような電気脱イオン装置の中でも、スケール成分が析出し難い電気脱イオン装置を用いることが好ましい。通水する被処理水が例えば高濃度の二酸化炭素COを含有する場合、電気脱イオン装置の濃縮室33内において、アニオン交換膜31側の脱塩室34から濃縮室33へ透過してきた炭酸水素イオンHCO 等と、カチオン交換膜32側の脱塩室34から濃縮室33へ透過してきたカルシウムイオンCa2+等が反応してスケール成分(炭酸カルシウム等)が析出してしまう場合があるが、例えば特開2001-198577号公報や特開2008-36486号公報に示すようなバイポーラ膜を有する電気脱イオン装置を用いることにより、濃縮室33でスケール成分が析出し難くなる。バイポーラ膜とは、カチオン交換膜とアニオン交換膜とが貼り合わされた構造の複合膜の一種であり、水の電気分解に用いる隔膜として、あるいは、酸とアルカリの中和生成物である塩の水溶液から酸とアルカリを再生する際の分離膜等として従来より広く使用されている公知のイオン交換膜である。 
 このような電気脱イオン装置は、バイポーラ膜を有する電気脱イオン装置の構成例を示す概略構成図である図7に示すように、陰極(カソード)と陽極(アノード)との間に、複数のアニオン交換膜31とカチオン交換膜32とを交互に配列することにより、濃縮室33と脱塩室34とが形成され、濃縮室33及び脱塩室34には、それぞれイオン交換樹脂が、混床あるいは単一の層で充填されている。そして、濃縮室33にバイポーラ膜35を設けることにより、濃縮室33が陰極側と陽極側とに区画されている。なお、バイポーラ膜35は、アニオン交換膜が陽極(アノード)側に、カチオン交換膜が陰極(カソード)側に位置するように設けられている。このような電気脱イオン装置では、被処理水が通水されると、脱イオン処理された処理水が脱塩室34から排出され、濃縮室33からはイオン、HCO 、CO 2-、シリカ等を多く含んだ濃縮水が排出される。この際、アニオン交換膜31側の脱塩室34から濃縮室33へ炭酸水素イオンHCO 等が透過し、また、カチオン交換膜32側の脱塩室34から濃縮室33へカルシウムイオンCa2+等が透過してくるが、バイポーラ膜35のカチオン交換膜及びアニオン交換膜でそれぞれ遮断されるため、濃縮室33内でスケールを形成されることを防止できる。 
 また、脱塩室34の厚さが小さい電気脱イオン装置を用いることにより、脱塩室34あたりのイオン量を低減できるため、濃縮室33でスケール成分が析出し難くなる。例えば、脱塩室34の厚さは、2~5mmとすることが好ましい。2mm未満では脱塩室34を構成する部材が変形しやすく水漏れしやすくなる可能性があり、また、5mmを超えると脱塩室34の負荷が高くスケールが析出しやすくなるためである。ただし、上記バイポーラ膜を有する電気脱イオン装置であれば、厚さが5mmを超えてもイオンが会合しないため、スケールは発生しない。 
 このようなバイポーラ膜を有する、又は、脱塩室34の厚さが小さい電気脱イオン装置を用いることにより、脱気膜を有し炭酸等の気体を除去することができる脱気膜装置を設けなくても、炭酸カルシウム等のスケール成分の析出を防止でき、安定的に超純水製造システム10を運転することができる。 
 また、精密濾過膜装置17は、微粒子を除去できる精密濾過膜、例えば、0.02~10μmの微粒子を除去できる精密濾過膜を有するものであり、従来の超純水製造システムで使用されている精密濾過膜装置17を用いることができる。勿論、求める超純水の品質によっては、この精密濾過膜装置17はなくてもよく、或いは、更に微粒子の除去性能の高い限外濾過膜を用いてもよい。このような精密濾過膜装置17、または精密濾過膜装置17を設けない場合は電気脱イオン装置16等から排出される被処理水が、目的とする超純水である。 
 端末配管部は、上述したように、得られた超純水をユースポイントに送水する配管と、余剰の超純水を前処理水槽14に戻す配管からなる端末配管部を具備するものである。ここで、ユースポイントに送水された超純水は、ユーザーの洗浄機等で使用されるが、使用する水圧は例えば0.1~0.3MPa程度であり、端末配管部はその圧力まで昇圧するポンプを有することが好ましい。 
 さらに、本発明の超純水製造システム10は、逆浸透膜装置15、電気脱イオン装置16の酸化剤等による劣化を防止するために、被処理水に還元剤を導入するための還元剤貯留槽及びポンプ等からなる還元剤導入手段を有していてもよい。図1においては、原水槽11に還元剤を導入する還元剤導入手段18を設けた構造とした。 
 また、求める超純水の品質によっては、イオン交換樹脂塔、紫外線照射酸化分解装置、紫外線殺菌装置等の種々の装置を、電気脱イオン装置16の後段に有する超純水製造システムとしてもよい。なお、微粒子除去目的で精密濾過膜装置17などを設置する場合には、イオン交換樹脂塔や紫外線酸化分解装置、紫外線殺菌装置などは、電気脱イオン装置16と精密濾過膜装置17との間に通常は配置される。 
 このような超純水製造システムを用いて、超純水を製造する方法例を以下に説明する。まず、原水槽11に被処理水(原水)を導入する。 
 被処理水としては、例えば、フミン酸・フルボ酸系有機物、藻類等が生産する糖などの生物代謝物、又は、界面活性剤等の合成化学物質などを含む水、具体的には、工業用水、市水、井水、河川水、湖沼水、工場廃水(特に、工場からの廃水を生物処理した生物処理水)や、これらに凝集剤を添加・撹拌等してフロック(凝集物)を形成する凝集処理をした水が挙げられる。また、これらに微生物によるトラブルの発生の抑制等を目的として次亜塩素酸ナトリウム、過酸化水素やオゾン等の酸化剤を添加した水でもよい。なお、フミン質とは、植物などが微生物に分解されることにより生じる腐食物質をいい、フミン酸等を含むものであり、フミン質を含有する水は、フミン質および/またはフミン質に由来する溶解性COD成分、懸濁物質や色度成分を有する。また、凝集処理を行うための凝集剤としては、高分子凝集剤や、無機凝集剤が挙げられる。高分子凝集剤としては、例えば、ポリ(メタ)アクリル酸、(メタ)アクリル酸と(メタ)アクリルアミドの共重合物、及び、それらのアルカリ金属塩等のアニオン系の有機系高分子凝集剤、ポリ(メタ)アクリルアミド等のノニオン系の有機系高分子凝集剤、ジメチルアミノエチル(メタ)アクリレートもしくはその4級アンモニウム塩、ジメチルアミノプロピル(メタ)アクリルアミドもしくはその4級アンモニウム塩等のカチオン性モノマーからなるホモポリマー、及び、それらカチオン性モノマーと共重合可能なノニオン性モノマーとの共重合体等のカチオン系の有機系高分子凝集剤、及び上記アニオン性モノマー、カチオン性モノマーやこれらモノマーと共重合可能なノニオン性モノマーとの共重合体である両性の有機系高分子凝集剤が挙げられる。高分子凝集剤の添加量に特に限定はなく、被処理水の性状に応じて調整すればよいが、被処理水に対して概ね固形分で0.01~10mg/Lである。また、無機凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム等のアルミニウム塩、塩化第二鉄、硫酸第一鉄等の鉄塩などが挙げられる。また、無機凝集剤の添加量にも特に限定はなく、処理する被処理水の性状に応じて調整すればよいが、被処理水に対して概ねアルミニウム又は鉄換算で0.5~10mg/Lである。また、被処理水の性状にもよるが、無機凝集剤としてポリ塩化アルミニウム(PAC)を用いた場合、高分子凝集剤及び無機凝集剤を添加した被処理水のpHを、pH5.0~7.0程度とすると、凝集が最適となる。無機凝集剤の添加は、高分子凝集剤を被処理水に添加する前でも後でもよく、また、高分子凝集剤と同時に添加してもよい。 
 次に、必要に応じて、被処理水に還元剤を添加する。還元剤を添加することにより、被処理水が含有する酸化剤が還元剤によって還元されるため、後段の逆浸透膜装置15や電気脱イオン装置16等の酸化剤による劣化を抑制することができる。還元剤としては、例えば、亜硫酸水素ナトリウム、亜硫酸ナトリウム、チオ硫酸ナトリウムやヒドラジン等が挙げられる。 
 次いで、熱交換器12によって加熱された被処理水を活性炭濾過装置13に導入する。そして、活性炭濾過装置13に導入された被処理水がメッシュシート5を縦断することにより、被処理水中に含まれる濁質が除去される。また、活性炭繊維で形成されたスペーサー6に被処理水が接触することにより、被処理水が含有する酸化剤が活性炭繊維で還元される。したがって、活性炭濾過装置13から排出される被処理水は、酸化剤がほぼ完全に除去されたものであり、且つ、濁質も除去されたものである。活性炭濾過装置13から排出された被処理水は、前処理水槽14に貯留する。 
 そして、前処理水槽14に貯留された被処理水を、逆浸透膜装置15に通水することにより逆浸透膜で膜分離処理する。この逆浸透膜装置15から排出された被処理水(処理水)を電気脱イオン装置16に通水することにより脱イオン処理し、また、逆浸透膜装置15から排出された濃縮水を前処理水槽14に戻す又は不純物が多い場合は系外に除去する。そして、電気脱イオン装置16から排出された被処理水(処理水)を精密濾過膜装置17に通水することにより精密濾過膜で膜分離処理し、また、電気脱イオン装置16から排出された濃縮水を、前処理水槽14に戻す。このように処理されて精密濾過膜装置17から排出された被処理水、すなわち目的とする超純水をユースポイントに送液する。また、余剰の超純水は、端末配管部を経由して前処理水槽14に戻す。なお、前処理水槽14に戻される被処理水が溶存酸素を含む場合は、配管の殺菌洗浄を行なったり、窒素ガスを導入することにより、微生物等の反応を抑制することが好ましい。 
 ここで、上述した図1に示す超純水製造システム10は、被処理水(原水)中の鉄や、アルミニウムの濃度が低く(例えば0.06ppm以下)、且つ、全有機炭素濃度(TOC濃度)が高い場合に適した超純水製造システムであり、中性のpHで運転する。pHが低い場合は、フミン質等の有機物が不溶化してしまい逆浸透膜を閉塞させる可能性があるためである。また、鉄やアルミニウムが高濃度の場合は、水酸化物になり逆浸透膜を閉塞させる可能性があるが、鉄やアルミニウムの濃度が低い場合はこの問題がほとんど生じないため、中性で運転させることができる。 
 一方、被処理水(原水)中の鉄や、アルミニウムの濃度が高く、且つ、全有機炭素濃度(TOC濃度)が低い場合は、図1に示す超純水製造システムに加えて、さらに、電気脱イオン装置16の上流側に、少なくとも一つの脱炭酸設備を有する超純水製造システムとすることが好ましい。このように、脱炭酸設備を有する超純水製造システムを、低いpH(例えばpH4~5)、すなわち酸性側で運転することにより、鉄やアルミニウムの濃度が高い場合であっても、鉄やアルミニウムがイオン状になり逆浸透膜を閉塞させることを防止することができ、安定して運転することができる。なお、被処理水(原水)中の鉄やアルミニウムの濃度に係らず、全有機炭素濃度(TOC濃度)が高い場合は、前処理部の活性炭濾過装置13よりも前段において凝集処理などの全有機炭素濃度を低減するための処理が必要となる。 
 脱炭酸設備としては、脱炭酸塔や脱気膜を有する装置(脱気膜装置)が挙げられる。脱気膜装置を用いる場合には、脱気膜の汚れを防止できる点で逆浸透膜装置15の後段に設けることが好ましい。また、電気脱イオン装置16を用いた場合には、電気脱イオン装置の負荷を減らすことができ、また、スケール生成を防止できるため、脱気膜装置は電気脱イオン装置の前段に設けることが好ましい。
 また、脱炭酸設備として、脱炭酸塔を用いてもよい。このような脱炭酸設備として脱炭酸塔を有する超純水製造システムについて、本発明の超純水製造システムの他の例を示す概略系統図である図8を用いて説明する。なお、図1と同じ装置には同じ番号を付してあり、これらの構成は上記と同様であり、その説明は省略する。 
 図8に示すように、脱炭酸塔を有する超純水製造システム10Aは、被処理水(原水)が導入される原水槽11と、原水槽11の下流側に設けられ被処理水を加熱する熱交換器12と、熱交換器12で加熱された被処理水を活性炭濾過処理する活性炭濾過装置13とを有する前処理部を具備する。なお、被処理水を加熱する必要が無ければ熱交換器12は有さなくてもよい。また、前処理部で処理された被処理水を貯留する前処理水槽14、前処理水槽14の下流側に順に設けられた逆浸透膜装置15、電気脱イオン装置16及び精密濾過膜装置17を有する超純水製造部を具備する。また、前処理水槽14の直上には、脱炭酸塔19が設けられ、前処理部で処理された被処理水が脱炭酸塔19を経由して前処理水槽14に貯留される構造であり、脱炭酸塔19と前処理水槽14は一体的に構成されている。勿論、一体的に構成された装置ではなく、脱炭酸塔19と、前処理水槽14とを別れた装置としてもよい。また、脱炭酸塔19は、電気脱イオン装置16の上流側に一つ以上設けられていればよく、例えば、熱交換器12と活性炭濾過装置13との間や、前処理水槽14と逆浸透膜装置15との間に設けられていてもよい。そして、超純水製造部から排出された超純水、すなわち、精密濾過膜装置17から排出された超純水をユースポイントに送水する配管と、余剰の超純水を前処理水槽14に戻す配管からなる端末配管部を具備する。なお、被処理水を送液する手段として、ポンプPが各装置間に適宜設けられている。また、図8においては、pH調整剤を被処理水に導入するpH調整剤導入手段が、活性炭濾過装置13の直後に設けられている。 
 脱炭酸塔19は、被処理水中に含まれる二酸化炭素を除去することができる装置であれば特に限定はなく、通常の超純水製造システムで使用される脱炭酸塔を使用することができる。例えば、内部に充填材を充填した容器と、この容器の上部から被処理水を通水するスプレーノズルと、容器の下部から空気あるいは窒素ガスを吹き込み容器上部からこのガスを排出するガス導入手段とを有するものである。充填材としては、1/2~2インチのネットリングや、ラシヒリング等が挙げられる。1/2インチ未満の大きさでは、充填物の材質や形状等にも依るが圧力損失が大きくなりすぎ、また、2インチより大きいと十分な二酸化炭素除去性能が得られない場合がある。また、被処理水の体積流量SVが30~100になるように、充填材を充填することが好ましい。体積流量が低すぎると被処理水の流れが偏り十分接触せず二酸化炭素除去性能が得られない恐れがあり、また、高すぎると圧力損失が高く空気や窒素等のガスが均一に流れなくなり十分接触せず二酸化炭素除去性能が得られない恐れがあるためである。 
 このような超純水製造システム10Aを用いて、超純水を製造する方法例を以下に説明する。まず、原水槽11に被処理水(原水)を導入する。次に、必要に応じて、被処理水に還元剤を添加する。 
 次いで、熱交換器12によって加熱された被処理水を活性炭濾過装置13に導入する。そして、活性炭濾過装置13に導入された被処理水がメッシュシート5を縦断することにより、被処理水中に含まれる濁質が除去される。また、活性炭繊維で形成されたスペーサー6に被処理水が接触することにより、被処理水が含有する酸化剤が活性炭繊維で還元される。したがって、活性炭濾過装置13から排出される被処理水は、酸化剤がほぼ完全に除去されたものであり、且つ、濁質も除去されたものである。 
 そして、活性炭濾過装置13から排出された被処理水に、pH調整剤導入手段からpH調整剤を導入して、被処理水のpHを酸性の所望の値、例えばpH4~5に調整する。pH調整剤としては、例えば、硫酸、塩酸、硝酸、水酸化カリウム、水酸化ナトリウムが挙げられる。 
 そして、pHを調整した被処理水を、充填材が充填された容器の下部から空気或いは窒素ガスを吹きこみ容器上部から排出されるようにした脱炭酸塔19の上部から、スプレーノズルで通水することにより、二酸化炭素を除去する。この二酸化炭素が除去された被処理水は、直下に設けられている前処理水槽14へと落下し、貯留される。 
 次に、前処理水槽14に貯留された被処理水を、逆浸透膜装置15に通水することにより逆浸透膜で膜分離処理する。この逆浸透膜装置15から排出された被処理水(処理水)を電気脱イオン装置16に通水することにより脱イオン処理し、また、逆浸透膜装置15から排出された濃縮水を前処理水槽14に戻す又は不純物が多い場合は系外に除去する。そして、電気脱イオン装置16から排出された被処理水(処理水)を精密濾過膜装置17に通水することにより精密濾過膜で膜分離処理する。なお、電気脱イオン装置16から排出された濃縮水には無機炭酸が多量に含有されているが、pHが酸性の条件では逆浸透膜装置15で無機炭酸は除去できない。したがって、電気脱イオン装置16からの濃縮水中に含まれる無機炭酸を除去するために脱炭酸設備よりも前段に濃縮水を返送する必要があり、本実施の形態では原水槽11に戻される構成とした。このように処理されて精密濾過膜装置17から排出された被処理水、すなわち目的とする超純水を、ユースポイントに送液する。また、余剰の超純水は、端末配管部を経由して前処理水槽14に戻す。なお、前処理水槽14や原水槽11に戻される被処理水が溶存酸素を含む場合は、配管の殺菌性状や、窒素ガスを導入することにより、微生物等の反応を抑制することが好ましい。 
 以下、実施例及び比較例に基づいてさらに詳述するが、本発明はこの実施例により何ら限定されるものではない。 
 (実施例1)
 被処理水(原水)として、市水、具体的には、濁度1.0度以下、残留塩素(as.Cl):0.5ppm、水温:20℃、鉄濃度:0.01ppm、アルミニウム濃度:0.05ppm、TOC濃度:0.5ppmの水を、図1に示す超純水製造システムで処理した。なお、各装置の構成は以下の通りである。また、原水pHは7.1であった。 
<還元剤導入手段>
 タンク:イワキ(株)製EWN-B11-VC1J-WPO
 ポンプ:イワキ(株)製CT-U120N
 還元剤:亜硫酸水素ナトリウム 
<活性炭濾過装置>
 濾過槽:内径100mmの円筒状容器(ベッセル)
 濾過体:メッシュシートをポリエチレン製の直径0.3mmの繊維からなる縦糸及び横糸で形成された図5に示す1m×10mで交点部の高さTが0.5mm、オープニング3000μm、オープニングエリア80%の織物とし、スペーサーを直径15μmの活性炭繊維で形成された1m×10m×厚さ0.3mmの活性炭不織布1枚と、PET(ポリエチレンテレフタラート)製の1m×10m×厚さ0.1mmのフィルム(水不透過フィルム)とからなるものとし、これらを重ね合わせて四隅を熱融着したシート状部材を作製した。そして、このシート部材を水不透過フィルムが外側になるようにして直径20mmの塩化ビニル製のパイプ(芯材)に10m巻きつけて形成した、直径100mmの濾過体
 水不透過部材:濾過槽の内壁と濾過体本体の外周との隙間や、芯材付近の隙間を、被処理水を通過させない接着剤で充填したもの
 濾過装置の通水量:1.6m/h(LV=200m/h) 
<逆浸透膜装置>
 逆浸透膜:ザ・ダウ・ケミカル・カンパニー製FILMTEC LE-4040(原水流路スペーサーの交点部の高さ:0.85mm)を用いたスパイラル型のもの(直径100mm)を2本連結したもの
 処理水量:0.5m/h
 濃縮水量:1.1m/h 
<電気脱イオン装置>
 陰極(カソード)と陽極(アノード)との間に、複数の以下のアニオン交換膜とカチオン交換膜とを交互に配列することにより濃縮室と脱塩室を形成すると共に脱塩室および濃縮室に以下のイオン交換樹脂を充填し、更に濃縮室に以下のバイポーラ膜を設けることにより、濃縮室を陰極側と陽極側とに区画したものを用いた。なお、脱塩室および濃縮室の厚さや膜面積は以下の通りである。
 アニオン交換膜: 旭化成工業(株)「アシプレックスA501SB」
 カチオン交換膜: 旭化成工業(株)「アシプレックスK501SB」
 イオン交換樹脂: アニオン交換樹脂(三菱化学(株)製「SA10A」)とカチオン交換樹脂(三菱化学(株)製「SK1B」)とを体積混合比率6:4で混合したもの。
 バイポーラ膜:徳山ソーダ製カチオン交換膜(CMB)を塩化第一鉄水溶液に25℃で1時間浸漬した後、イオン交換水で十分に洗浄して、風乾し、その後、ポリマー被膜法によりカチオン交換膜表面に4級塩基化したアミノ基を含むポリマーを塗布して作製したもの
 脱塩室:厚さ10mm
 濃縮室:厚さ4mm
 膜面積:300cm(300mm×100mm)
 処理水量:0.4m/時間
 濃縮水量:0.1m/時間 
<精密濾過膜装置>
 精密濾過膜:アドバンテック社製 親水性PTFE(ポリテトラフルオロエチレン)フィルター TCFH-050-S1FEで全量濾過 
 精密濾過膜から排出された被処理水について、25℃での導電率(比抵抗)を測定した。また、処理時における逆浸透膜装置15の差圧を、図9に示すように、逆浸透膜装置15の入口の圧力P1と濃縮水出口の圧力P2の差(P1-P2(MPa))として求めた。
 (実施例2)
 被処理水(原水)として、井水、具体的には、濁度1.0度以下、残留塩素(as.Cl):0.0ppm、水温:10℃、鉄濃度:0.1ppm、アルミニウム濃度:0.03ppm、TOC濃度:0.2ppmの水を、図8に示す超純水製造システムで処理した。なお、各装置の構成は以下の通りである。また、pH調整剤添加後の被処理水のpHは5.0であった。 
<pH調整剤導入手段>
 タンク:イワキ(株)製EWN-B11-VC1J-WPO
 ポンプ:イワキ(株)製CT-U120N
 pH調整剤:10%硫酸 
<活性炭濾過装置>
 濾過槽:内径100mmの円筒状容器(ベッセル)
 濾過体:メッシュシートをポリエチレン製の直径0.3mmの繊維からなる縦糸及び横糸で形成された図5に示す1m×10mで交点部の高さTが0.5mm、オープニング3000μm、オープニングエリア80%の織物とし、スペーサーを直径15μmの活性炭繊維で形成された1m×10m×厚さ0.3mmの活性炭不織布1枚と、PET(ポリエチレンテレフタラート)製の1m×10m×厚さ0.1mmのフィルム(水不透過フィルム)とからなるものとし、これらを重ね合わせて四隅を熱融着したシート状部材を作製した。そして、このシート部材を水不透過フィルムが外側になるようにして直径20mmの塩化ビニル製のパイプ(芯材)に10m巻きつけて形成した、直径100mmの濾過体
 水不透過部材:濾過槽の内壁と濾過体本体の外周との隙間や、芯材付近の隙間を、被処理水を通過させない接着剤で充填したもの
 濾過装置の通水量:1.6m/h(LV=200m/h) 
<脱炭酸装置>
 内径250mm、高さ1500mmの筒型の容器の内部に、3/4インチのネットリングを1000mmの高さまで充填したものを脱炭酸塔とし、これを前処理水槽の上部に接続した。 
<逆浸透膜装置>
 逆浸透膜:ザ・ダウ・ケミカル・カンパニー製FILMTEC LE-4040(原水流路スペーサーの交点部の高さ:0.85mm)を用いたスパイラル型のもの(直径100mm)を2本連結したもの
 処理水量:0.5m/h
 濃縮水量:1.1m/h 
<電気脱イオン装置>
 電気脱イオン装置
 陰極(カソード)と陽極(アノード)との間に、複数の以下のアニオン交換膜とカチオン交換膜とを交互に配列することにより濃縮室と脱塩室を形成すると共に脱塩室および濃縮室に以下のイオン交換樹脂を充填したものを用いた。なお、脱塩室および濃縮室の厚さや膜面積は以下の通りである。
 アニオン交換膜: 旭化成工業(株)「アシプレックスA501SB」
 カチオン交換膜: 旭化成工業(株)「アシプレックスK501SB」
 イオン交換樹脂:アニオン交換樹脂(三菱化学(株)製「SA10A」)とカチオン交換樹脂(三菱化学(株)製「SK1B」)とを体積混合比率6:4で混合したもの。
 脱塩室:厚さ5mm
 濃縮室:厚さ4mm
 膜面積:300cm(300mm×100mm)
 処理水量:0.4m/時間
 濃縮水量:0.1m/時間 
<精密濾過膜装置>
 精密濾過膜:アドバンテック社製 親水性PTFE(ポリテトラフルオロエチレン)フィルター TCFH-050-S1FEで全量濾過 
 (比較例1)
 被処理水(原水)として、実施例1と同様の被処理水を、図10に示す超純水製造システムで処理した。なお、各装置の構成は以下の通りである。また、原水のpHは7.1であった。 
<精密濾過膜装置>
 精密濾過膜:旭化成製 UNA-600A
 処理水量:2.5m/h 
<活性炭塔>
 栗田工業CF-50を2基連結したもの
 処理水量:2.5m/h 
<保安フィルター>
 ロキテクノ製 DIA(II)糸巻きフィルター×5本
 処理水量:2.5m/h 
<薬品導入手段>
 タンク:イワキ(株)製 CT-U120N
 ポンプ:イワキ(株)製 EWN-B11-VC1J-WPO
 薬品:10%硫酸 
<逆浸透膜装置>
 逆浸透膜:ザ・ダウ・ケミカル・カンパニー製FILMTEC LE-4040(原水流路スペーサーの交点部の高さ:0.85mmを用いたスパイラル型のもの、直径100mm)2本連結したもの
 処理水量:0.5m/h
 濃縮水量:1.1m/h 
<脱気膜装置>
 三菱レイヨン製MHF1704
 処理水量:0.5m/h 
<電気脱イオン装置>
 陰極(カソード)と陽極(アノード)との間に、複数の以下のアニオン交換膜とカチオン交換膜とを交互に配列することにより濃縮室と脱塩室を形成すると共に脱塩室および濃縮室に以下のイオン交換樹脂を充填したものを用いた。なお、脱塩室および濃縮室の厚さや膜面積は以下の通りである。
 アニオン交換膜: 旭化成工業(株)「アシプレックスA501SB」
 カチオン交換膜: 旭化成工業(株)「アシプレックスK501SB」
 イオン交換樹脂:アニオン交換樹脂(三菱化学(株)製「SA10A」)とカチオン交換樹脂(三菱化学(株)製「SK1B」)とを体積混合比率6:4で混合したもの。
 脱塩室:厚さ15mm
 濃縮室:厚さ15mm
 膜面積:300cm(300mm×100mm)
 処理水量:0.4m/h
 濃縮水量:0.1m/h 
<紫外線殺菌装置>
 栗田工業NPX-1/2
 処理水量:0.4m/h 
<端末精密濾過膜装置>
 アドバンテック社製TCFH-050-S1FE
 処理水量:0.4m/h 
 (比較例2)
 被処理水(原水)として、実施例2と同様の被処理水を、図10に示す超純水製造システムで処理した。なお、各装置の構成は比較例1と同じである。また、pH調整剤添加後の被処理水のpHは5.0であった。 
 この結果、実施例1~2及び比較例1~2で得られた処理水の比抵抗は、いずれも16.5MΩ・cmであり、実施例1及び2で得られた処理水は比較例1及び2で得られた処理水と同程度の高品質な水であった。また、実施例1の超純水製造システムは比較例1の超純水製造システムの床面積の60%、及び、製造コストは60%であった。また、実施例2の超純水製造システムは比較例2の超純水製造システムの床面積の70%、及び、製造コストは65%であった。 
 1 濾過槽、 2 濾過体、 3 芯材、 4 濾過体本体、 5 メッシュシート、 6 スペーサー、 7 プレート、 8 水不透過部材、 9a 縦糸、 9b 横糸、 10、10A 超純水製造システム、 11 原水槽、 12 熱交換器、 13 活性炭濾過装置、 14 前処理水槽、 15 逆浸透膜装置、 16 電気脱イオン装置、 17 精密濾過膜装置

Claims (7)

  1.  被処理水が導入される前処理部と、該前処理部で処理された被処理水が貯留される前処理水槽、該前処理水槽から被処理水が導入される逆浸透膜装置及び電気脱イオン装置を有する超純水製造部とを具備し、
     前記前処理部は活性炭濾過装置を有し、該活性炭濾過装置は、シート状部材が渦巻状に巻回される濾過体本体と、被処理水が通水され、前記濾過体本体の軸芯が通水方向に沿うように前記濾過体本体が内部に充填される濾過槽とを有し、前記シート状部材は、被処理水が通過する空孔を有するシート状のメッシュシートと、メッシュシートに比べて被処理水が通過し難いシート状のスペーサーのシート面同士が重ねられたものであり、前記メッシュシート及び前記スペーサーの少なくとも一部は活性炭繊維で形成されたものであることを特徴とする超純水製造システム。 
  2.  前記スペーサーが、直径0.1~100μmの活性炭繊維で形成されたものであることを特徴とする請求項1に記載する超純水製造システム。 
  3.  前記電気脱イオン装置の上流側に、脱炭酸設備を少なくとも一つ以上有することを特徴とする請求項1または2に記載する超純水製造システム。 
  4.  前記電気脱イオン装置は、バイポーラ膜を有することを特徴とする請求項1~3のいずれか一項に記載する超純水製造システム。 
  5.  前記電気脱イオン装置の脱塩室の厚さが、2~5mmであることを特徴とする請求項1~4のいずれか一項に記載する超純水製造システム。 
  6.  前記超純水製造部から排出された超純水をユースポイントに送水すると共に余剰の超純水を前記前処理水槽に戻す端末配管部を有することを特徴とする請求項1~5のいずれか一項に記載する超純水製造システム。 
  7.  活性炭濾過装置により活性炭濾過処理した被処理水を前処理水槽に貯留し、該前処理水槽に貯留した被処理水を逆浸透膜装置で逆浸透膜処理した後、電気脱イオン装置で脱イオン処理をする超純水の製造方法であって、
     前記活性炭濾過装置が、シート状部材が渦巻状に巻回される濾過体本体と、被処理水が通水され、前記濾過体本体の軸芯が通水方向に沿うように前記濾過体本体が内部に充填される濾過槽とを有し、前記シート状部材は、被処理水が通過する空孔を有するシート状のメッシュシートと、メッシュシートに比べて被処理水が通過し難いシート状のスペーサーのシート面同士が重ねられたものであり、前記メッシュシート及び前記スペーサーの少なくとも一部は活性炭繊維で形成されたものであることを特徴とする超純水の製造方法。 
PCT/JP2012/058395 2011-03-31 2012-03-29 超純水製造システム及び超純水の製造方法 WO2012133664A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012800078895A CN103370283A (zh) 2011-03-31 2012-03-29 超纯水制造系统及超纯水的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011077837A JP2012210593A (ja) 2011-03-31 2011-03-31 超純水製造システム及び超純水の製造方法
JP2011-077837 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133664A1 true WO2012133664A1 (ja) 2012-10-04

Family

ID=46931366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058395 WO2012133664A1 (ja) 2011-03-31 2012-03-29 超純水製造システム及び超純水の製造方法

Country Status (3)

Country Link
JP (1) JP2012210593A (ja)
CN (1) CN103370283A (ja)
WO (1) WO2012133664A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139475A (ja) * 2014-01-27 2015-08-03 株式会社日本トリム 透析液調製用水の製造装置
JP2020000983A (ja) * 2018-06-27 2020-01-09 栗田工業株式会社 純水製造装置、純水の製造方法
CN116969625A (zh) * 2023-06-26 2023-10-31 高频(北京)科技股份有限公司 一种半导体超纯水循环使用的废水处理设备及处理废水的工艺

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056476B2 (ja) * 2012-12-28 2017-01-11 栗田工業株式会社 純水製造システム
JP2015116511A (ja) * 2013-12-16 2015-06-25 日本錬水株式会社 医薬精製水製造装置および医薬精製水の製造方法
JP2015147162A (ja) * 2014-02-05 2015-08-20 Toto株式会社 電解水生成装置および衛生洗浄装置
CN104817203B (zh) * 2015-05-08 2017-01-04 飞潮(无锡)过滤技术有限公司 一种新型担孢子工艺过滤装置
CN105198133A (zh) * 2015-09-23 2015-12-30 浙江工商大学 一种防止电去离子装置结垢的超纯水制备系统及方法
CN105347591A (zh) * 2015-12-09 2016-02-24 青岛海大北方节能环保有限公司 一种电驱动膜制备直饮水工艺及其设备
EP3580179B1 (en) 2017-02-13 2024-01-17 Merck Patent GmbH A method for producing ultrapure water
EP3580177B1 (en) 2017-02-13 2023-12-13 Merck Patent GmbH Method and system for producing ultrapure water
WO2018146310A1 (en) 2017-02-13 2018-08-16 Merck Patent Gmbh A method for producing ultrapure water
SG11201907773XA (en) * 2017-03-07 2019-09-27 Kurita Water Ind Ltd Method for managing operation of reverse osmosis membrane device and reverse osmosis membrane treatment system
JP6933914B2 (ja) 2017-03-30 2021-09-08 メタウォーター株式会社 膜ろ過方法
US11090588B2 (en) * 2017-12-21 2021-08-17 Pepsico, Inc. Water filtration system
JP6699681B2 (ja) * 2018-03-06 2020-05-27 栗田工業株式会社 逆浸透膜装置の運転管理方法および逆浸透膜処理システム
JP7065723B2 (ja) * 2018-07-31 2022-05-12 オルガノ株式会社 水処理システム及びその運転方法、並びに保護装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899080A (ja) * 1994-09-30 1996-04-16 Suntory Ltd 濾過用充填材
JPH08206470A (ja) * 1995-02-02 1996-08-13 Kurita Water Ind Ltd スパイラル型膜エレメント
JP2004057935A (ja) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd 超純水製造システム
JP2005052767A (ja) * 2003-08-06 2005-03-03 Nippon Rensui Co Ltd 電気再生式純水製造装置
JP2006187731A (ja) * 2005-01-06 2006-07-20 Kurita Water Ind Ltd 分離膜及び水処理装置
JP2006272067A (ja) * 2005-03-28 2006-10-12 Kurita Water Ind Ltd 分離膜及び水処理装置
JP2007296484A (ja) * 2006-05-01 2007-11-15 Unitika Ltd 水処理用フィルター
JP2007326029A (ja) * 2006-06-07 2007-12-20 Kurita Water Ind Ltd 純水または超純水の製造方法および装置
JP2008023415A (ja) * 2006-07-18 2008-02-07 Kurita Water Ind Ltd スパイラル型膜モジュール及び水処理方法
JP2008212871A (ja) * 2007-03-06 2008-09-18 Kurita Water Ind Ltd 純水製造方法及び装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085682A (zh) * 2006-06-05 2007-12-12 上海三邦水处理技术有限公司 一种反渗透后置软化器制备工业超纯水的工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899080A (ja) * 1994-09-30 1996-04-16 Suntory Ltd 濾過用充填材
JPH08206470A (ja) * 1995-02-02 1996-08-13 Kurita Water Ind Ltd スパイラル型膜エレメント
JP2004057935A (ja) * 2002-07-29 2004-02-26 Kurita Water Ind Ltd 超純水製造システム
JP2005052767A (ja) * 2003-08-06 2005-03-03 Nippon Rensui Co Ltd 電気再生式純水製造装置
JP2006187731A (ja) * 2005-01-06 2006-07-20 Kurita Water Ind Ltd 分離膜及び水処理装置
JP2006272067A (ja) * 2005-03-28 2006-10-12 Kurita Water Ind Ltd 分離膜及び水処理装置
JP2007296484A (ja) * 2006-05-01 2007-11-15 Unitika Ltd 水処理用フィルター
JP2007326029A (ja) * 2006-06-07 2007-12-20 Kurita Water Ind Ltd 純水または超純水の製造方法および装置
JP2008023415A (ja) * 2006-07-18 2008-02-07 Kurita Water Ind Ltd スパイラル型膜モジュール及び水処理方法
JP2008212871A (ja) * 2007-03-06 2008-09-18 Kurita Water Ind Ltd 純水製造方法及び装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015139475A (ja) * 2014-01-27 2015-08-03 株式会社日本トリム 透析液調製用水の製造装置
JP2020000983A (ja) * 2018-06-27 2020-01-09 栗田工業株式会社 純水製造装置、純水の製造方法
CN116969625A (zh) * 2023-06-26 2023-10-31 高频(北京)科技股份有限公司 一种半导体超纯水循环使用的废水处理设备及处理废水的工艺

Also Published As

Publication number Publication date
JP2012210593A (ja) 2012-11-01
CN103370283A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2012133664A1 (ja) 超純水製造システム及び超純水の製造方法
US6398965B1 (en) Water treatment system and process
Warsinger et al. A review of polymeric membranes and processes for potable water reuse
US6328896B1 (en) Process for removing strong oxidizing agents from liquids
US8628653B2 (en) Electrodeionization apparatus
JP5561473B2 (ja) 濾過装置及び水処理装置
US20160159671A1 (en) Method and apparatus for treating water containing boron
JP2012206008A (ja) 酸化剤含有水の処理方法及び水処理装置
GB2249307A (en) Process for purifying water by means of a combination of electrodialysis and reverse osmosis
WO2003022751A1 (fr) Procede de traitement par osmose inverse a plusieurs etages
JP2004358440A (ja) 電気式脱イオン水製造装置の運転方法及び電気式脱イオン水製造装置
CN111954568B (zh) 一种基于双极膜的盐水回收系统
WO2011065222A1 (ja) 窒素化合物含有酸性液の処理装置および処理方法
JP2009190025A (ja) 飲料水の製造方法
Kim et al. Effect of fouling reduction by ozone backwashing in a microfiltration system with advanced new membrane material
JP4993136B2 (ja) 純水製造装置及び純水製造方法
JP4499239B2 (ja) 脱イオン水製造装置
JP4449092B2 (ja) 純水製造装置および方法
JP4439674B2 (ja) 脱イオン水製造装置
JP5158393B2 (ja) 純水製造装置及び純水製造方法
JP4505965B2 (ja) 純水の製造方法
JP2012196630A (ja) 酸性液の処理装置及び処理方法
WO2021045191A1 (ja) 酸性水溶液の製造装置及び酸性水溶液の製造方法
WO2020085106A1 (ja) 逆浸透処理装置及び逆浸透処理方法
JP2011183275A (ja) 水処理方法及び超純水製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763988

Country of ref document: EP

Kind code of ref document: A1