WO2012133446A1 - ワイヤレス給受電装置およびワイヤレス電力伝送システム - Google Patents

ワイヤレス給受電装置およびワイヤレス電力伝送システム Download PDF

Info

Publication number
WO2012133446A1
WO2012133446A1 PCT/JP2012/057992 JP2012057992W WO2012133446A1 WO 2012133446 A1 WO2012133446 A1 WO 2012133446A1 JP 2012057992 W JP2012057992 W JP 2012057992W WO 2012133446 A1 WO2012133446 A1 WO 2012133446A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
reception
coil
receiving
Prior art date
Application number
PCT/JP2012/057992
Other languages
English (en)
French (fr)
Inventor
則之 福島
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2013507633A priority Critical patent/JP5804052B2/ja
Publication of WO2012133446A1 publication Critical patent/WO2012133446A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a wireless power supply / reception device and a wireless power transmission system for performing power transmission without contact.
  • the wireless power feeding device includes a power feeding coil
  • the wireless power receiving device also includes a power receiving coil
  • the electromagnetic induction action is not used between the power feeding coil and the power receiving coil.
  • Power transmission is performed by contact (wireless).
  • the wireless power feeder includes a power feeding resonance circuit having a power feeding coil and a power feeding capacitor, and the wireless power receiving device also has a power receiving coil and a power receiving capacitor.
  • a resonance circuit is provided, and power transmission is performed between the power supply resonance circuit and the power reception resonance circuit in a non-contact (wireless) manner using a magnetic field resonance phenomenon.
  • the wireless power feeding apparatus may include an exciting coil for supplying power to the power feeding resonance circuit, and the wireless power receiving apparatus may also include a load coil that receives power from the power receiving resonance circuit.
  • Patent Document 1 A wireless power transmission system using this kind of magnetic field resonance phenomenon (magnetic field resonance phenomenon) is disclosed in Patent Document 1.
  • Patent Documents 2 and 3 disclose wireless power transmission systems that use this type of magnetic field resonance phenomenon (magnetic field resonance phenomenon).
  • each of the plurality of wireless power receiving devices has a switch for controlling the feeding / non-feeding of AC power from the resonance circuit to the rectifier circuit, and the power receiving timing is set for each wireless power receiving device. Control and change the power receiving priority for each wireless power receiving device.
  • a wireless power transmission system disclosed in Patent Document 3 is a system related to power feeding from a base station to an electric vehicle.
  • a base station In order to efficiently charge a secondary battery mounted on the electric vehicle, a base station, an electric vehicle, Is estimated. Specifically, before power is supplied from the base station to the electric vehicle, the distance measuring AC power source mounted on the electric vehicle is used to sequentially switch the two power receiving coils mounted on the electric vehicle to the base station by switching the switch. Power transmission is performed, the distance between the resonance coil on the base station side and each resonance coil on the electric vehicle side is estimated, and the positional relationship between the base station and the electric vehicle is estimated from these two estimated distances.
  • a base station other facilities such as a gas station can be considered in addition to a house.
  • other facilities such as a gas station can be considered in addition to a house.
  • the power transmission distance and the magnitude of transmission power differ depending on the type of base station.
  • demand for rapid charging is also expected.
  • power supply from the road or the like to the electric vehicle or power transmission between the electric vehicles can be considered while traveling on the road. In this case, it is expected that the relative distance and the magnitude of the transmission power differ depending on the vehicle speed.
  • an object of the present invention is to provide a wireless power supply / reception device and a wireless power transmission system that can cope with various power transmission situations.
  • a wireless power receiving and receiving device of the present invention includes a power receiving and receiving coil, a power receiving and receiving capacitor for constituting a power receiving coil and a resonance circuit, a coupling coil electromagnetically coupled to the power receiving and receiving coil, and an alternating current for transmitting power from the power receiving and receiving coil.
  • a power adjustment unit for adjusting at least one of adjustment of power and adjustment of AC power received by the power supply / reception coil, and connection of the power supply / reception coil, power supply / reception capacitor, and coupling coil to the power adjustment unit
  • a switching control unit for controlling the switching unit.
  • the switching unit and the switching control unit appropriately determine the power feeding path when functioning as the power feeding device and the power receiving path when functioning as the power receiving device according to various power transmission situations. It is possible to switch to
  • the power supply / reception coil and the power supply / reception capacitor constitute a resonance circuit and use the magnetic resonance phenomenon.
  • a power feeding path and a power receiving path that do not use a coupling coil a coupling coil coupled with a power feeding coil by electromagnetic induction is called an exciter coil, and a coupling coil coupled with a power receiving coil by electromagnetic induction is called a load coil
  • an exciting coil is configured. It is possible to reduce power supply loss and power reception loss due to power transmission using electromagnetic induction between the resonant circuit and the resonant circuit or between the resonant circuit and the load coil.
  • the power supply / reception coil and the power supply / reception capacitor do not constitute a resonance circuit, and electromagnetic induction can be used. According to this, the loss resulting from the power supply / reception capacitor can be suppressed.
  • this wireless power receiving / receiving device if a resonance circuit is formed by connecting the power receiving / receiving coil and the power receiving / receiving capacitor without connecting the power receiving / receiving coil and the coupling coil to the power adjustment unit, it also functions as a wireless relay device. can do.
  • the power adjustment unit functions as both a power supply device and a power reception device, thereby enabling bidirectional power transmission.
  • the switching control unit described above controls the switching unit or supplies power to the power adjusting unit so that a coupling coil is connected to the power adjusting unit and a power receiving coil and a power receiving capacitor are connected to form a resonance circuit. Control the switching unit to connect the power receiving coil, or connect the power receiving coil and the power receiving capacitor without connecting the power receiving coil and the coupling coil to the power adjusting unit to form a resonance circuit. In this way, the switching unit may be controlled.
  • the switching control unit described above may control the switching unit so that the power supply / reception coil and the power supply / reception capacitor form a resonance circuit when the power supply / reception coil is connected to the power adjustment unit.
  • the switching control unit described above may control the switching unit so that the power receiving / receiving coil and the power receiving / receiving capacitor do not form a resonance circuit when the power feeding / receiving coil is connected to the power adjusting unit.
  • the switching control unit described above may control the switching unit according to a signal from the outside. According to this, it is suitable when switching a power feeding path and a power receiving path according to a user switching operation, for example, switching between normal charging / rapid charging.
  • the wireless power receiving and receiving device further includes a position recognizing unit that recognizes the position of the power receiving / receiving partner, and the switching control unit controls the switching unit according to the position recognized by the position recognizing unit. May be. According to this, the power feeding path or the power receiving path can be appropriately and autonomously switched by the switching control unit according to the position of the power receiving / receiving partner, that is, the relative distance from the power receiving / receiving partner.
  • the wireless power receiving and receiving apparatus further includes a power measuring unit that measures the supplied and received power, and the switching control unit described above controls the switching unit according to the supplied and received power measured by the power measuring unit. Also good. According to this, the switching control unit can appropriately and autonomously switch the power feeding path or the power receiving path according to the power feeding power or the power receiving power.
  • the wireless power transmission system of the present invention includes at least two wireless power receiving / receiving devices described above, and performs bidirectional power transmission between these wireless power receiving / receiving devices in a contactless manner.
  • FIG. 1 is a circuit block diagram showing an example of the configuration of a wireless power transmission system and a wireless power supply / reception device according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a transmission path in a power transmission direction different from that in FIG.
  • FIG. 3 is a diagram illustrating an example of another power feeding path and power receiving path by the switching unit illustrated in FIG. 1.
  • FIG. 4 is a diagram illustrating an example of another power feeding path and power receiving path by the switching unit illustrated in FIG. 1.
  • FIG. 5 is a diagram illustrating an example of another power feeding path and power receiving path by the switching unit illustrated in FIG. 1.
  • FIG. 6 is a diagram illustrating an example of a power feeding path of the wireless power receiving and receiving apparatus shown in FIG. FIG.
  • FIG. 7 is a diagram illustrating an example of a power receiving path of the wireless power receiving and receiving apparatus alone illustrated in FIG.
  • FIG. 8 is a diagram illustrating an example of a relay route by the switching unit illustrated in FIG. 1.
  • FIG. 9 is a circuit block diagram showing an example of the configuration of the wireless power transmission system and the wireless power supply / reception device according to the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of another power feeding path and power receiving path by the switching unit illustrated in FIG. 9.
  • FIG. 11 is a circuit block diagram illustrating an example of a configuration of a wireless power transmission system and a wireless power supply / reception device according to the third embodiment of the present invention.
  • FIG. 12 is a circuit block diagram illustrating an example of a configuration of a wireless power transmission system and a wireless power supply / reception device according to the fourth embodiment of the present invention.
  • FIG. 1 is a circuit block diagram showing an example of a configuration of a wireless power transmission system according to the first embodiment of the present invention.
  • the wireless power transmission system 1 includes a base station having a power generation facility (for example, a house having a commercial power facility or a solar power generation facility, a facility having a commercial power facility (for example, a gas station), or a road) or a power storage facility.
  • a power generation facility for example, a house having a commercial power facility or a solar power generation facility, a facility having a commercial power facility (for example, a gas station), or a road) or a power storage facility.
  • Wireless power supply / reception device 100 installed in a moving body (for example, an electric vehicle (EV) equipped with a secondary battery) and a moving body (for example, an electric vehicle (EV) equipped with a secondary battery) equipped with power storage equipment
  • the wireless power supply / reception device 200 is provided, and bidirectional power transmission is performed between the wireless power supply / reception device 100 and the wireless power supply / reception device 200 in a contactless manner. Since the wireless power receiving and receiving apparatuses 100 and 200 have substantially the same configuration, only one configuration will be described below.
  • the wireless power supply / reception device 100 includes a power supply / reception coil 11, a power supply / reception capacitor 12 for configuring the power supply / reception coil 11 and the resonance circuit 10, and a coupling coil (excited coil, load) electromagnetically coupled to the power supply / reception coil 11.
  • Coil) 13 coupling transformer 14, power adjustment unit 20, switching unit 30, and switching control unit 40.
  • the inductance of the power supply / reception coil 11 and the capacitance of the power supply / reception capacitor 12 are set so that the resonance frequency of the resonance circuit 10 and the frequency (drive frequency) of AC power from the power transmission function unit, which will be described later, substantially coincide.
  • the power adjustment unit 20 includes a power transmission function unit 21 and a power reception function unit 22.
  • the power transmission function unit 21 receives AC power or DC power as input power Ein, adjusts (converts) this power into high-frequency AC power, and outputs transmission power for power transmission from the power supply / reception coil 11.
  • the power reception function unit 22 adjusts (converts) / stabilizes (smooths) the high-frequency AC power received by the power supply / reception coil 11 and outputs it to the load 300.
  • Switching between the power transmission function unit 21 and the power reception function unit 22 is performed according to a control signal from the switching control unit 40 using, for example, a switch element.
  • the power transmission function unit 21 adjusts the magnitude, frequency, and the like of the transmission power in accordance with a control signal from the switching control unit 40.
  • the power reception function unit 22 adjusts the magnitude of the power supplied to the load 300 in accordance with a control signal from the switching control unit 40.
  • the switching unit 30 includes switch elements 31 and 32.
  • the switch element 31 is disposed between the coupling coil 13 and the power adjustment unit 20 and switches connection / disconnection between the coupling coil 13 and the power adjustment unit 20.
  • the switch element 32 is arranged between the power supply / reception coil 11, the power supply / reception capacitor 12, and the power adjustment unit 20, and the connection / disconnection of the power supply / reception coil 11, the power supply / reception capacitor 12, and the power adjustment unit 20. Switch. Specifically, the switch element 32 adjusts the power of a resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 when the power supply / reception coil 11 and the power adjustment unit 20 are electrically connected directly. Connect to the unit 20.
  • the switch element 32 electrically disconnects the power supply / reception coil 11 and the power adjustment unit 20, the power supply / reception is formed so as to form a resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12.
  • the coil 11 and the power supply / reception capacitor 12 are electrically connected directly.
  • the switch elements 31 and 32 for example, a high power relay or a semiconductor switch is used. In this embodiment, an example in which the switch element is provided only on one line in the parallel wiring is shown, but the switch element may be provided only on the other line in the parallel wiring, and the switch element is provided on both lines. It may be provided.
  • the switching control unit 40 switches between power transmission / reception of the power adjustment unit 20.
  • the switching control unit 40 controls the switching unit 30 to switch the path during power supply / reception.
  • the switching control unit 40 performs these switching according to an external signal corresponding to a user operation.
  • the power transmission function unit 21 in the power adjusting unit 20 is selectively selected by the switching control unit 40.
  • the power reception function unit 22 in the power adjustment unit 20 is selectively connected by the switching control unit 40.
  • a power feeding path is selectively formed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power transmission function unit 21 are connected by the switch element 31.
  • the power supply / reception coil 11 and the power supply / reception capacitor 12 are connected by the switch element 32, and a resonance circuit is formed by the power supply / reception coil 11 and the power supply / reception capacitor 12.
  • the coupling coil 13 functions as an exciting coil that supplies the transmission power output from the power transmission function unit 21 to the power supply and reception coil 11.
  • a power reception path is selectively formed by the switch elements 31 and 32 in the switching unit 30. That is, the coupling coil 13 and the power receiving function unit 22 are connected by the switch element 31. Further, the power supply / reception coil 11 and the power supply / reception capacitor 12 are connected by the switch element 32, and a resonance circuit is formed by the power supply / reception coil 11 and the power supply / reception capacitor 12.
  • the coupling coil 13 functions as a load coil that receives AC power received by the power supply / reception coil 11 and outputs the AC power to the power reception function unit 22.
  • the power transmission function unit 21 in the power adjusting unit 20 is selected by the switching control unit 40.
  • the power reception function unit 22 in the power adjustment unit 20 is selectively connected by the switching control unit 40.
  • a power feeding path is selectively formed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power transmission function unit 21 are connected by the switch element 31.
  • the power supply / reception coil 11 and the power supply / reception capacitor 12 are connected by the switch element 32, and a resonance circuit is formed by the power supply / reception coil 11 and the power supply / reception capacitor 12.
  • the coupling coil 13 functions as an exciting coil.
  • a power receiving path is selectively formed by the switch elements 31 and 32 in the switching unit 30. That is, the coupling coil 13 and the power receiving function unit 22 are connected by the switch element 31. Further, the power supply / reception coil 11 and the power supply / reception capacitor 12 are connected by the switch element 32, and a resonance circuit is formed by the power supply / reception coil 11 and the power supply / reception capacitor 12. In this case, the coupling coil 13 functions as a load coil.
  • the power adjustment unit 20 functions as both a power supply device and a power reception device. Bidirectional wireless power transmission is possible by simply switching the direction. Thereby, for example, it is possible to easily switch between charging from the house to the electric vehicle and supplying power from the electric vehicle to the house.
  • the coupling coil 13 can serve as the excite coil at the time of electric power feeding, and the load coil at the time of electric power reception. (Switching between power feeding path and power receiving path)
  • the power feeding path can be changed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power transmission function unit 21 are disconnected from each other by the switch element 31, and a resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 is connected to the power transmission function unit 21 by the switch element 32.
  • the power reception path can be changed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power reception function unit 22 are disconnected from each other by the switch element 31, and the resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 is connected to the power reception function unit 22 by the switch element 32.
  • the power supply path that does not use the exciting coil and the power reception path that does not use the load coil can be easily changed. be able to. Thereby, it is possible to reduce power supply loss and power reception loss due to power transmission using electromagnetic induction between the exciting coil and the resonance circuit or between the resonance circuit and the load coil.
  • the relative distance and the magnitude of transmitted power differ depending on the type of base station, that is, the home and other facilities. In addition to normal charging, demand for rapid charging is also expected.
  • the power transmission distance between the wireless power supply / reception device 100 and the wireless power supply / reception device 200 varies depending on the relative speed between the base station and the vehicle depending on the vehicle speed and position, or the wireless power supply / reception device 100 wirelessly receives and receives power. It is anticipated that the magnitude of the transmitted power to device 200 will be different.
  • the power feeding path of the power feeding device and the power receiving path of the power receiving device can be appropriately switched according to various power transmission situations.
  • the power feeding path of the power feeding side device and the power receiving path of the power receiving side device may be different (asymmetric).
  • a resonance circuit including the coupling coil 13 and the power transmission function unit 21 connected by the switch element 31 and the power supply / reception coil 11 and the power supply / reception capacitor 12 by the switch element 32 is received by the switch element 32.
  • the wireless power receiving / receiving device 200 for example, the coupling coil 13 and the power receiving function unit 22 are disconnected from each other by the switch element 31, and the resonance circuit including the power receiving / receiving coil 11 and the power receiving / receiving capacitor 12 is received by the switch element 32. Connect to the unit 22.
  • the coupling coil 13 and the power transmission function unit 21 are disconnected by the switch element 31, and the resonance composed of the power supply / reception coil 11 and the power supply / reception capacitor 12 by the switch element 32.
  • the circuit is connected to the power transmission function unit 21.
  • the wireless power supply / reception device 200 for example, the coupling coil 13 and the power reception function unit 22 are connected by the switch element 31, and the resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 is formed by the switch element 32.
  • the power feeding path and the power receiving path may be different in one wireless power receiving and receiving apparatus.
  • the coupling coil 13 and the power transmission function unit 21 are disconnected by the switch element 31, and the resonance circuit including the power supply / reception coil 11 and power supply / reception capacitor 12 is transmitted by the switch element 32. Connect to the unit 21.
  • the coupling coil 13 and the power reception function unit 22 are connected by the switch element 31, and the resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 is formed by the switch element 32. To do.
  • the wireless power supply / reception device of the present embodiment can also be used as a relay device (so-called repeater coil) that relays power transmitted from the wireless power supply / reception device 100 to the wireless power supply / reception device 200. It is possible to function.
  • a relay device so-called repeater coil
  • the coupling coil 13 and the power receiving function unit 22 are disconnected from each other by the switch element 31, and the resonance composed of the power receiving coil 11 and the power receiving capacitor 12 by the switch element 32. A circuit is formed, and this resonance circuit is also disconnected from the power receiving function unit 22.
  • FIG. 9 is a circuit block diagram showing an example of the configuration of the wireless power transmission system according to the second embodiment of the present invention.
  • This wireless power transmission system 1A is different from the first embodiment in that the wireless power transmission system 1 includes wireless power supply / reception devices 100A and 200A instead of the wireless power supply / reception devices 100 and 200. Since the wireless power supply / reception devices 100A and 200A have substantially the same configuration, only one configuration will be described below.
  • Wireless power supply / reception device 100A is different from the first embodiment in that connection of power supply / reception capacitor 12 is different in wireless power supply / reception device 100.
  • the switch element 32 of the switching unit 30 is a resonant circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 when the power supply / reception coil 11 and the power adjustment unit 20 are connected.
  • the switch element 32 of the switching unit 30 is connected to the power adjusting unit 20 when the power receiving coil 11 and the power adjusting unit 20 are connected. Only the power receiving coil 11 is electrically connected directly to the power adjustment unit 20.
  • the power supply / reception coil 11 and the power adjustment unit 20 are connected, the power supply / reception coil 11 and the power supply / reception capacitor 12 do not form a resonance circuit, and the transmission power from the wireless power feeder 100A is electromagnetic induction.
  • the action will be used.
  • the other configuration of the wireless power receiving / receiving apparatus 100A is the same as that of the wireless power receiving / receiving apparatus 100.
  • the switch element is provided only on one line in the parallel wiring is shown.
  • the switch element may be provided only on the other line in the parallel wiring, and the switch element is provided on both lines. It may be provided.
  • the power feeding path can be selectively formed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power transmission function unit 21 are directly and electrically connected by the switch element 31, and a resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 is formed by the switch element 32.
  • the power reception path can be selectively formed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power receiving function unit 22 are directly and electrically connected by the switch element 31, and the resonance circuit including the power supply / reception coil 11 and the power supply / reception capacitor 12 is formed by the switch element 32.
  • the power feeding path can be changed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power transmission function unit 21 are electrically disconnected by the switch element 31, and the power supply / reception coil 11 and the power transmission function unit 21 are electrically directly connected by the switch element 32.
  • One end of the power reception capacitor 12 is disconnected, and the power supply / reception coil 11 and the power supply / reception capacitor 12 do not form a resonance circuit. That is, the resonance circuit 10 of the wireless power supply / reception device 100 ⁇ / b> A does not have a resonance frequency in the vicinity of the frequency of the AC power output from the power transmission function unit 21.
  • the power reception path can be changed by the switch elements 31 and 32 in the switching unit 30.
  • the coupling coil 13 and the power receiving function unit 22 are electrically disconnected by the switch element 31, and the power supply / reception coil 11 and the power receiving function unit 22 are electrically directly connected by the switch element 32.
  • One end of the power reception capacitor 12 is disconnected, and the power supply / reception coil 11 and the power supply / reception capacitor 12 do not form a resonance circuit. That is, the resonance circuit 10 of the wireless power supply / reception device 200 ⁇ / b> A does not have a resonance frequency in the vicinity of the frequency of the AC power output from the power transmission function unit 21.
  • the wireless power supply / reception devices 100A and 200A and the wireless power transmission system 1A of the second embodiment also have the same advantages as the wireless power reception / reception devices 100 and 200 and the wireless power transmission system 1 of the first embodiment. Obtainable.
  • FIG. 11 is a circuit block diagram showing an example of the configuration of a wireless power transmission system according to the third embodiment of the present invention.
  • the wireless power transmission system 1B is different from the first embodiment in that the wireless power transmission system 1 includes wireless power supply / reception devices 100B and 200B instead of the wireless power supply / reception devices 100 and 200. Since the wireless power supply / reception devices 100B and 200B have substantially the same configuration, only one configuration will be described below.
  • the wireless power supply / reception device 100B is different from the first embodiment in that the wireless power supply / reception device 100 further includes a position recognition unit 50.
  • Other configurations of the wireless power supply / reception device 100 ⁇ / b> B are the same as those of the wireless power supply / reception device 100.
  • the position recognition unit 50 is a sensor that recognizes the position of the power transmission partner. For example, the position recognition unit 50 recognizes the relative distance to the power transmission partner and transmits the information to the switching control unit 40.
  • the switching control unit 40 controls the switching unit 30 according to the information from the position recognition unit 50, and switches the power feeding path and the power receiving path in the same manner as described above.
  • the switching control unit 40 stores in advance settings of a power feeding path and a power receiving path corresponding to the relative distance to the power transmission partner, and switches the power feeding path or the power receiving path according to the corresponding setting.
  • the wireless power receiving and receiving devices 100B and 200B and the wireless power transmission system 1B of the third embodiment also have the same advantages as the wireless power receiving and receiving devices 100 and 200 and the wireless power transmission system 1 of the first embodiment. Obtainable.
  • the switching control part 40 switches a power feeding path and a power receiving path according to the signal from the outside, according to switching operation of a user like switching of normal charge / quick charge, for example. This is suitable for switching between a power feeding path and a power receiving path.
  • the switching control unit 40 can appropriately and autonomously switch the power feeding path or the power receiving path according to the relative distance from the power transmission partner.
  • FIG. 12 is a circuit block diagram showing an example of the configuration of a wireless power transmission system according to the fourth embodiment of the present invention.
  • the wireless power transmission system 1C is different from the first embodiment in that the wireless power transmission system 1 includes wireless power supply / reception devices 100C and 200C instead of the wireless power supply / reception devices 100 and 200. Since the wireless power supply / reception devices 100C and 200C have substantially the same configuration, only one configuration will be described below.
  • the wireless power supply / reception device 100 ⁇ / b> C is different from the first embodiment in that the wireless power supply / reception device 100 further includes a power measurement unit 60.
  • the other configuration of the wireless power receiving / receiving device 100C is the same as that of the wireless power receiving / receiving device 100.
  • the power measuring unit 60 is a sensor that measures the supplied power or the received power. For example, the power measurement unit 60 transmits information on the measured power supply power or power reception power to the switching control unit 40.
  • the switching control unit 40 controls the switching unit 30 according to the information from the power measuring unit 60 and switches the power feeding path and the power receiving path in the same manner as described above.
  • the switching control unit 40 stores in advance the power supply path or the power reception path setting corresponding to the power supply or the power reception, and switches the power supply path or the power reception path according to the corresponding setting.
  • the wireless power supply / reception devices 100C and 200C and the wireless power transmission system 1C according to the fourth embodiment also have the same advantages as the wireless power reception / reception devices 100 and 200 and the wireless power transmission system 1 according to the first embodiment. Obtainable.
  • the switching control unit 40 can appropriately and autonomously switch the power feeding path or the power receiving path according to the power feeding power or the power receiving power.
  • the switching control unit 40 includes a power feeding path and a power receiving path according to any one of an external signal, a position of a power transmission partner (that is, a relative distance), power feeding power, and power receiving power.
  • the power supply path and the power reception path are appropriately switched according to any two or more parameters of the signal from the outside, the position of the power transmission partner (that is, the relative distance), the power supply power, and the power reception power. Also good.
  • a wireless power supply / reception device capable of bidirectional power transmission is illustrated, but the features of the present invention can also be applied to a wireless power supply / reception device having only one of a power supply function and a power reception function. is there.
  • one of the power adjustment units 20 of the wireless power supply / reception device 100 and the wireless power reception / reception device 200 includes only the power transmission function unit 21,
  • the other power adjustment unit 20 of the wireless power supply / reception device 200 may include only the power reception function unit 22.
  • the wireless power transmission systems 1A, 1B, and 1C of the second to fourth embodiments can be similarly changed.
  • the features of the present invention can be applied not only to power transmission but also to signal transmission.
  • the wireless power transmission system of the present invention can also be applied to a case where an analog signal or a digital signal is transmitted in a non-contact manner using a magnetic field resonance phenomenon.
  • the present invention is a charging system for a mobile body including a power storage facility, for example, an electric vehicle (EV) including a secondary battery, and a base station (for example, a commercial power facility or a solar power generation facility including a power generation facility).
  • a power storage facility for example, an electric vehicle (EV) including a secondary battery
  • a base station for example, a commercial power facility or a solar power generation facility including a power generation facility.
  • Two-way wireless power transmission is performed with a house equipped with, a facility equipped with commercial power equipment (for example, a gas station) or a road), or a mobile body equipped with power storage equipment (for example, an electric vehicle (EV) equipped with a secondary battery)
  • the present invention can be applied to a system, for example, an industrial transport vehicle or a robot.
  • the element for the magnetic field resonance phenomenon is referred to as a “coil”, but may be referred to as a “transmitter” or an “antenna” depending on the related technical field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 本発明に係る一実施形態のワイヤレス給受電装置100は、給受電コイル11と、給受電コイル11と共振回路を構成するための給受電コンデンサ12と、給受電コイル11と電磁結合する結合コイル13と、給受電コイル11から送電するための交流電力の調整、及び、給受電コイル11によって受電する交流電力の調整のうちの少なくとも何れか一方の調整を行う電力調整部20と、電力調整部20に対する給受電コイル11、給受電コンデンサ12、及び、結合コイル13の接続を切り換える切換部30と、切換部30を制御する切換制御部40とを備える。

Description

ワイヤレス給受電装置およびワイヤレス電力伝送システム
 本発明は、非接触で電力伝送を行うためのワイヤレス給受電装置、及び、ワイヤレス電力伝送システムに関する。
 近年、環境課題解決(例えば、CO2排出量の削減)のために、電気自動車(Electric Vehicle:EV)化が進んでいる。電気自動車普及のためには、人に負担をかけない簡単で安全な二次電池充電方法が望まれている(例えば、比較的重い充電ケーブル接続の負担の軽減や、感電等の回避といった安全性の向上)。そこで、磁気結合(電磁結合)の一種である電磁誘導作用や磁場共振現象(磁場共鳴現象)を利用した非接触給電が注目されている。
 また、環境課題解決のために、ソーラー発電電力などの自然エネルギーを二次電池に貯め、その貯めたエネルギーを活用する技術を取り入れた住宅が普及し始めている。この場合、自然エネルギーを十分に貯められる蓄電容量の大きな二次電池が必要であり、電気自動車に搭載された二次電池を用いることが望まれている。この場合にも、磁気結合(電磁結合)の一種である電磁誘導作用や磁場共振現象(磁場共鳴現象)を利用した非接触給電が注目されている。
 これらの非接触給電では、基地局としての住宅から電気自動車への給電と、電気自動車から基地局への給電とを容易に選択できる、すなわち、容易に双方向電力伝送を行うことができるワイヤレス給受電装置の実現が望まれている。
 ところで、電磁誘導作用を利用するワイヤレス電力伝送システムでは、ワイヤレス給電装置は給電コイルを備え、ワイヤレス受電装置も受電コイルを備え、これら給電コイルと受電コイルとの間で電磁誘導作用を利用して非接触(無線)で電力伝送が行われる。
 また、磁場共振現象(磁場共鳴現象)を利用するワイヤレス電力伝送システムでは、ワイヤレス給電装置は給電コイルと給電コンデンサとを有する給電共振回路を備え、ワイヤレス受電装置も受電コイルと受電コンデンサとを有する受電共振回路を備え、これら給電共振回路と受電共振回路との間で磁場共振現象を利用して非接触(無線)で電力伝送が行われる。なお、このワイヤレス電力伝送システムでは、ワイヤレス給電装置は、給電共振回路に電力を供給するためのエキサイトコイルを備え、ワイヤレス受電装置も、受電共振回路から電力を受けるロードコイルを備えてもよい。
 この種の磁場共振現象(磁場共鳴現象)を利用するワイヤレス電力伝送システムが、特許文献1に開示されている。
 また、特許文献2及び3にも、この種の磁場共振現象(磁場共鳴現象)を利用するワイヤレス電力伝送システムが開示されている。
 特許文献2に開示のワイヤレス電力伝送システムは、複数のワイヤレス受電装置それぞれが、共鳴回路から整流回路への交流電力の給電/非給電を制御するスイッチを有し、ワイヤレス受電装置ごとに受電タイミングを制御して、ワイヤレス受電装置ごとに受電の優先度を変える。
 また、特許文献3に開示のワイヤレス電力伝送システムは、基地局から電気自動車への給電に関するシステムであり、電気自動車に搭載された二次電池を効率よく充電するために、基地局と電気自動車との位置関係を推定する。具体的には、基地局から電気自動車への給電を行う前に、電気自動車に搭載された距離計測用交流電源により、電気自動車に搭載された二組の受電コイルからスイッチ切換によって順次基地局へ電力伝送を行い、基地局側の共鳴コイルと電気自動車側のそれぞれの共鳴コイルとの距離を推定し、この二つの推定距離から基地局と電気自動車との位置関係を推定する。
国際公開特許WO/2007/008646 特開2011-19291号公報 特開2010-183813号公報
 ところで、上記したように、基地局から電気自動車への給電と、電気自動車から基地局への給電との双方向電力伝送を行う場合、様々な電力伝送状況に対応できるワイヤレス給受電装置の実現が望まれている。
 例えば、基地局としては、住宅以外にもガソリンスタンド等の他の施設が考えられる。このように、基地局の種類によって、電力伝送距離、伝送電力の大きさが異なることが予想される。また、通常充電のみならず、急速充電の要望も予想される。また、道路走行中に道路等から電気自動車への給電や、電気自動車同士の電力伝送が考えられる。この場合、車両速度によっても相対距離、伝送電力の大きさが異なることが予想される。
 そこで、本発明は、様々な電力伝送状況に対応可能なワイヤレス給受電装置、及び、ワイヤレス電力伝送システムを提供することを目的としている。
 本発明のワイヤレス給受電装置は、給受電コイルと、給受電コイルと共振回路を構成するための給受電コンデンサと、給受電コイルと電磁結合する結合コイルと、給受電コイルから送電するための交流電力の調整、及び、給受電コイルによって受電する交流電力の調整のうちの少なくとも何れか一方の調整を行う電力調整部と、電力調整部に対する給受電コイル、給受電コンデンサ、及び、結合コイルの接続を切り換える切換部と、切換部を制御する切換制御部とを備える。
 このワイヤレス給受電装置によれば、切換部及び切換制御部によって、様々な電力伝送状況に応じて、給電装置として機能する場合の給電経路、及び、受電装置として機能する場合の受電経路を、適切に切り換えることが可能となる。
 例えば、伝送電力が小さい場合や、伝送距離が長い場合などには、給受電コイルと給受電コンデンサとが共振回路を構成して、磁気共鳴現象を利用する。更に、結合コイル(給電コイルと電磁誘導により結合する結合コイルをエキサイトコイル、受電コイルと電磁誘導により結合する結合コイルをロードコイルと呼ぶ。)を利用しない給電経路、受電経路を構成すると、エキサイトコイルと共振回路間、又は、共振回路とロードコイル間の電磁誘導を利用した電力伝送に起因する給電損失、受電損失を低減することができる。
 また、給受電コイルと給受電コンデンサとが共振回路を構成せず、電磁誘導作用を利用することもできる。これによれば、給受電コンデンサに起因する損失を抑制することができる。
 また、このワイヤレス給受電装置によれば、給受電コイル及び結合コイルを電力調整部に接続せず、給受電コイルと給受電コンデンサとを接続して共振回路を形成すると、ワイヤレス中継装置としても機能することができる。
 また、このワイヤレス給受電装置によれば、電力調整部によって、給電装置としても、受電装置としても機能するので、双方向電力伝送を可能とする。
 上記した切換制御部は、電力調整部に結合コイルを接続すると共に、給受電コイルと給受電コンデンサとを接続して共振回路を形成するように、切換部を制御するか、電力調整部に給受電コイルを接続するように、切換部を制御するか、又は、電力調整部に給受電コイル及び結合コイルを接続することなく、給受電コイルと給受電コンデンサとを接続して共振回路を形成するように、切換部を制御してもよい。
 また、上記した切換制御部は、電力調整部に給受電コイルを接続する場合に、給受電コイルと給受電コンデンサとが共振回路を構成するように、切換部を制御してもよい。
 また、上記した切換制御部は、電力調整部に給受電コイルを接続する場合に、給受電コイルと給受電コンデンサとが共振回路を構成しないように、切換部を制御してもよい。
 また、上記した切換制御部は、外部からの信号に応じて、切換部を制御してもよい。これによれば、例えば通常充電/急速充電の切換のように、ユーザの切換操作に応じて給電経路、受電経路の切換を行う場合に好適である。
 また、上記したワイヤレス給受電装置は、給受電相手の位置を認識する位置認識部を更に有し、上記した切換制御部は、位置認識部によって認識された位置に応じて、切換部を制御してもよい。これによれば、切換制御部によって、給受電相手の位置、すなわち給受電相手との相対距離に応じて、給電経路又は受電経路を適切にかつ自律的に切り換えることができる。
 また、上記したワイヤレス給受電装置は、給受電電力を計測する電力計測部を更に有し、上記した切換制御部は、電力計測部によって計測した給受電電力に応じて、切換部を制御してもよい。これによれば、切換制御部によって、給電電力又は受電電力に応じて、給電経路又は受電経路を適切にかつ自律的に切り換えることができる。
 本発明のワイヤレス電力伝送システムは、上記したワイヤレス給受電装置を少なくとも2つ備え、これらのワイヤレス給受電装置の間で非接触で双方向電力伝送を行う。
 このワイヤレス電力伝送システムによれば、上記したワイヤレス給受電装置を備えているので、様々な電力伝送状況に応じて、給電経路及び受電経路を適切に切り換えることが可能となる。
 本発明によれば、様々な電力伝送状況に応じて、給電経路及び受電経路を適切に切り換えることが可能となる。
図1は、本発明の第1の実施形態に係るワイヤレス電力伝送システム及びワイヤレス給受電装置の構成の一例を示す回路ブロック図である。 図2は、図1とは異なる電力伝送方向の伝送経路の一例を示す図である。 図3は、図1に示す切換部による別の給電経路及び受電経路の一例を示す図である。 図4は、図1に示す切換部による別の給電経路及び受電経路の一例を示す図である。 図5は、図1に示す切換部による別の給電経路及び受電経路の一例を示す図である。 図6は、図1に示すワイヤレス給受電装置単体の給電経路の一例を示す図である。 図7は、図6に示すワイヤレス給受電装置単体の受電経路の一例を示す図である。 図8は、図1に示す切換部による中継経路の一例を示す図である。 図9は、本発明の第2の実施形態に係るワイヤレス電力伝送システム及びワイヤレス給受電装置の構成の一例を示す回路ブロック図である。 図10は、図9に示す切換部による別の給電経路及び受電経路の一例を示す図である。 図11は、本発明の第3の実施形態に係るワイヤレス電力伝送システム及びワイヤレス給受電装置の構成の一例を示す回路ブロック図である。 図12は、本発明の第4の実施形態に係るワイヤレス電力伝送システム及びワイヤレス給受電装置の構成の一例を示す回路ブロック図である。
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係るワイヤレス電力伝送システムの構成の一例を示す回路ブロック図である。このワイヤレス電力伝送システム1は、発電設備を備える基地局(例えば、商用電力設備や太陽光発電設備を備える住宅、商用電力設備を備える施設(例えば、ガソリンスタンド)、又は、道路)又は蓄電設備を備える移動体(例えば、二次電池を備える電気自動車(EV))に設置されるワイヤレス給受電装置100と、蓄電設備を備える移動体(例えば、二次電池を備える電気自動車(EV))に設置されるワイヤレス給受電装置200とを備え、ワイヤレス給受電装置100とワイヤレス給受電装置200との間において非接触で双方向電力伝送を行うものである。ワイヤレス給受電装置100,200は略同一の構成であるので、以下では、一方の構成のみを説明する。
 ワイヤレス給受電装置100は、給受電コイル11と、給受電コイル11と共振回路10を構成するための給受電コンデンサ12と、給受電コイル11と電磁気的に結合された結合コイル(エキサイトコイル、ロードコイル)13と、結合トランス14と、電力調整部20と、切換部30と、切換制御部40とを備える。共振回路10の共振周波数と、後述する送電機能部からの交流電力の周波数(駆動周波数)とがほぼ一致するように、給受電コイル11のインダクタンスと給受電コンデンサ12のキャパシタンスが設定されている。
 電力調整部20は、送電機能部21と受電機能部22とを有する。送電機能部21は、入力電力Einとして交流電力又は直流電力を受け、この電力を高周波交流電力に調整(変換)して、給受電コイル11から送電するための送電電力を出力する。一方、受電機能部22は、給受電コイル11によって受電する高周波交流電力を調整(変換)/安定化(平滑化)して、負荷300に出力する。
 送電機能部21と受電機能部22との切換は、例えば、スイッチ素子を用いて、切換制御部40からの制御信号に応じて行う。また、送電機能部21は、送電電力の大きさや周波数等の調整を、切換制御部40からの制御信号に応じて行う。また、受電機能部22は、負荷300に供給する電力の大きさの調整を、切換制御部40からの制御信号に応じて行う。
 切換部30は、スイッチ素子31,32を有する。スイッチ素子31は、結合コイル13と電力調整部20との間に配置され、結合コイル13と電力調整部20との接続/非接続を切り換える。一方、スイッチ素子32は、給受電コイル11、給受電コンデンサ12、及び、電力調整部20の間に配置され、給受電コイル11、給受電コンデンサ12、及び、電力調整部20の接続/非接続を切り換える。具体的には、スイッチ素子32は、給受電コイル11と電力調整部20とを電気的に直接的に接続する際には、給受電コイル11と給受電コンデンサ12とからなる共振回路を電力調整部20に接続する。一方、スイッチ素子32は、給受電コイル11と電力調整部20とを電気的に非接続にする際には、給受電コイル11と給受電コンデンサ12とからなる共振回路を形成するように給受電コイル11と給受電コンデンサ12とを電気的に直接的に接続する。スイッチ素子31,32としては、例えば、高電力用リレーや半導体スイッチを用いる。なお、本実施形態では、平行配線における一方のラインのみにスイッチ素子を設ける一例を示したが、平行配線における他方のラインのみにスイッチ素子を設けてもよく、また、両方のラインにスイッチ素子を設けてもよい。
 切換制御部40は、電力調整部20の送電/受電を切り換える。また、切換制御部40は、切換部30を制御して給受電時の経路を切り換える。本実施形態では、切換制御部40は、これらの切換を、ユーザ操作に対応した外部信号に応じて行う。
 次に、双方向電力伝送の伝送方向の切換、給電時の給電経路及び受電時の受電経路の切換について詳細に説明する。
(双方向電力伝送の伝送方向の切換)
 図1に示すように、ワイヤレス給受電装置100からワイヤレス給受電装置200へ電力伝送を行う場合、ワイヤレス給受電装置100では、切換制御部40によって電力調整部20における送電機能部21が選択的に接続され、ワイヤレス給受電装置200では、切換制御部40によって電力調整部20における受電機能部22が選択的に接続される。
 また、ワイヤレス給受電装置100において、切換部30におけるスイッチ素子31,32によって給電経路が選択的に形成される。例えば、スイッチ素子31によって結合コイル13と送電機能部21とが接続される。また、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とが接続され、給受電コイル11と給受電コンデンサ12とによって共振回路が形成される。この場合、結合コイル13は、送電機能部21から出力された送電電力を給受電コイル11に供給するエキサイトコイルとして機能する。
 同様に、ワイヤレス給受電装置200において、切換部30におけるスイッチ素子31,32によって受電経路が選択的に形成される。すなわち、スイッチ素子31によって結合コイル13と受電機能部22とが接続される。また、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とが接続され、給受電コイル11と給受電コンデンサ12とによって共振回路が形成される。この場合、結合コイル13は、給受電コイル11によって受電された交流電力を受け取り受電機能部22に出力するロードコイルとして機能する。
 一方、図2に示すように、ワイヤレス給受電装置200からワイヤレス給受電装置100へ電力伝送を行う場合、ワイヤレス給受電装置200では、切換制御部40によって電力調整部20における送電機能部21が選択的に接続され、ワイヤレス給受電装置100では、切換制御部40によって電力調整部20における受電機能部22が選択的に接続される。
 また、ワイヤレス給受電装置200において、切換部30におけるスイッチ素子31,32によって給電経路が選択的に形成される。例えば、スイッチ素子31によって結合コイル13と送電機能部21とが接続される。また、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とが接続され、給受電コイル11と給受電コンデンサ12とによって共振回路が形成される。この場合、結合コイル13は、エキサイトコイルとして機能する。
 同様に、ワイヤレス給受電装置100において、切換部30におけるスイッチ素子31,32によって受電経路が選択的に形成される。すなわち、スイッチ素子31によって結合コイル13と受電機能部22とが接続される。また、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とが接続され、給受電コイル11と給受電コンデンサ12とによって共振回路が形成される。この場合、結合コイル13は、ロードコイルとして機能する。
 このように、第1の実施形態のワイヤレス給受電装置100,200、及び、ワイヤレス電力伝送システム1によれば、電力調整部20によって、給電装置としても、受電装置としても機能するので、給受電方向を簡単に切り換えて双方向ワイヤレス電力伝送が可能となる。これにより、例えば、住宅から電気自動車への充電と、電気自動車から住宅への電力供給との切換を、容易に実現できる。その際、第1の実施形態によれば、結合コイル13が、給電時のエキサイトコイルと受電時のロードコイルとを兼用することができる。
(給電経路及び受電経路の切換)
 図3に示すように、ワイヤレス給受電装置100では、切換部30におけるスイッチ素子31,32によって給電経路を変更できる。例えば、スイッチ素子31によって結合コイル13と送電機能部21とを非接続とし、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を送電機能部21に接続する。
 同様に、ワイヤレス給受電装置200でも、切換部30におけるスイッチ素子31,32によって受電経路を変更できる。例えば、スイッチ素子31によって結合コイル13と受電機能部22とを非接続とし、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を受電機能部22に接続する。
 このように、第1の実施形態のワイヤレス給受電装置100,200、及び、ワイヤレス電力伝送システム1によれば、エキサイトコイルを利用しない給電経路、ロードコイルを利用しない受電経路に、容易に変更することができる。これにより、エキサイトコイルと共振回路間、又は、共振回路とロードコイル間の電磁誘導を利用した電力伝送に起因する給電損失、受電損失を低減することができる。
 例えば、基地局と電気自動車とで電力伝送を行う場合、基地局の種類、すなわち、自宅、その他の施設によって、相対距離、伝送電力の大きさが異なることが予想される。また、通常充電のみならず、急速充電の要望も予想される。また、道路走行中に道路等から電気自動車へ電力伝送を行う場合や、電気自動車同士で電力伝送を行う場合も予想される。この場合、車両速度や位置によって、基地局と車両との相対位置の違いによりワイヤレス給受電装置100とワイヤレス給受電装置200との電力伝送距離が異なることや、ワイヤレス給受電装置100からワイヤレス給受電装置200への伝送電力の大きさが異なることが予想される。第1の実施形態によれば、様々な電力伝送状況に応じて、給電装置の給電経路及び受電装置の受電経路を適切に切り換えることが可能となる。
 以下では、給電経路及び受電経路の更なる切換パターンについて例示する。
 例えば、図4及び図5に示すように、給電側装置の給電経路と受電側装置の受電経路とを異ならせてもよい(非対称)。
 図4によれば、ワイヤレス給受電装置100では、例えば、スイッチ素子31によって結合コイル13と送電機能部21とを接続し、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を形成する。一方、ワイヤレス給受電装置200では、例えば、スイッチ素子31によって結合コイル13と受電機能部22とを非接続とし、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を受電機能部22に接続する。
 図5によれば、ワイヤレス給受電装置100では、例えば、スイッチ素子31によって結合コイル13と送電機能部21とを非接続とし、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を送電機能部21に接続する。一方、ワイヤレス給受電装置200では、例えば、スイッチ素子31によって結合コイル13と受電機能部22とを接続し、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を形成する。
 また、例えば、図6及び図7に示すように、1つのワイヤレス給受電装置において、給電経路と受電経路とを異ならせてもよい。
 図6によれば、給電時、例えば、スイッチ素子31によって結合コイル13と送電機能部21とを非接続とし、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を送電機能部21に接続する。一方、図7によれば、受電時、例えば、スイッチ素子31によって結合コイル13と受電機能部22とを接続し、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を形成する。
 また、例えば、図8に示すように、本実施形態のワイヤレス給受電装置は、ワイヤレス給受電装置100からワイヤレス給受電装置200へ伝送される電力を中継する中継装置(いわゆる、リピータコイル)としても機能することが可能である。
 図8によれば、ワイヤレス給受電装置200では、例えば、スイッチ素子31によって結合コイル13と受電機能部22とを非接続とし、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を形成すると共に、この共振回路も受電機能部22に非接続とする。
[第2の実施形態]
 図9は、本発明の第2の実施形態に係るワイヤレス電力伝送システムの構成の一例を示す回路ブロック図である。このワイヤレス電力伝送システム1Aは、ワイヤレス電力伝送システム1においてワイヤレス給受電装置100,200に代えてワイヤレス給受電装置100A,200Aを備える構成で第1の実施形態と異なる。ワイヤレス給受電装置100A,200Aは略同一の構成であるので、以下では、一方の構成のみを説明する。
 ワイヤレス給受電装置100Aは、ワイヤレス給受電装置100において給受電コンデンサ12の接続が異なる点で第1の実施形態と異なる。言い換えると、ワイヤレス給受電装置100では、切換部30のスイッチ素子32は、給受電コイル11と電力調整部20とを接続する際には、給受電コイル11と給受電コンデンサ12とからなる共振回路を電力調整部20に電気的に直接的に接続したが、ワイヤレス給受電装置100Aでは、切換部30のスイッチ素子32は、給受電コイル11と電力調整部20とを接続する際には、給受電コイル11のみを電力調整部20に電気的に直接的に接続する。すなわち、給受電コイル11と電力調整部20とが接続される場合には、給受電コイル11と給受電コンデンサ12とは共振回路を構成せず、ワイヤレス給電装置100Aからの伝送電力は、電磁誘導作用を利用することとなる。ワイヤレス給受電装置100Aのその他の構成は、ワイヤレス給受電装置100と同一である。なお、本実施形態でも、平行配線における一方のラインのみにスイッチ素子を設ける一例を示したが、平行配線における他方のラインのみにスイッチ素子を設けてもよく、また、両方のラインにスイッチ素子を設けてもよい。
 図9に示すように、ワイヤレス給受電装置100Aでも、切換部30におけるスイッチ素子31,32によって給電経路を選択的に形成できる。例えば、スイッチ素子31によって結合コイル13と送電機能部21とを電気的に直接的に接続し、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を形成する。
 同様に、ワイヤレス給受電装置200Aでも、切換部30におけるスイッチ素子31,32によって受電経路を選択的に形成できる。例えば、スイッチ素子31によって結合コイル13と受電機能部22とを電気的に直接的に接続し、スイッチ素子32によって給受電コイル11と給受電コンデンサ12とからなる共振回路を形成する。
 また、図10に示すように、ワイヤレス給受電装置100Aでも、切換部30におけるスイッチ素子31,32によって給電経路を変更できる。例えば、スイッチ素子31によって結合コイル13と送電機能部21とを電気的に非接続とし、スイッチ素子32によって給受電コイル11と送電機能部21とを電気的に直接的に接続することにより、給受電コンデンサ12の一端は非接続となり、給受電コイル11と給受電コンデンサ12とによって共振回路を形成しない。すなわち、ワイヤレス給受電装置100Aの共振回路10は、送電機能部21から出力される交流電力の周波数近傍で共振周波数を有さない。
 同様に、ワイヤレス給受電装置200Aでも、切換部30におけるスイッチ素子31,32によって受電経路を変更できる。例えば、スイッチ素子31によって結合コイル13と受電機能部22とを電気的に非接続とし、スイッチ素子32によって給受電コイル11と受電機能部22とを電気的に直接的に接続することにより、給受電コンデンサ12の一端は非接続となり、給受電コイル11と給受電コンデンサ12とによって共振回路を形成しない。すなわち、ワイヤレス給受電装置200Aの共振回路10は、送電機能部21から出力される交流電力の周波数近傍で共振周波数を有さない。
 この第2の実施形態のワイヤレス給受電装置100A,200A、及び、ワイヤレス電力伝送システム1Aでも、第1の実施形態のワイヤレス給受電装置100,200、及び、ワイヤレス電力伝送システム1と同様の利点を得ることができる。
 また、第2の実施形態によれば、給受電コイルのみによる電磁誘導作用を利用した簡易な双方向非接触電力伝送が実現できる。また、給受電コンデンサに起因する損失を抑制することができる。
[第3の実施形態]
 図11は、本発明の第3の実施形態に係るワイヤレス電力伝送システムの構成の一例を示す回路ブロック図である。このワイヤレス電力伝送システム1Bは、ワイヤレス電力伝送システム1においてワイヤレス給受電装置100,200に代えてワイヤレス給受電装置100B,200Bを備える構成で第1の実施形態と異なる。ワイヤレス給受電装置100B,200Bは略同一の構成であるので、以下では、一方の構成のみを説明する。
 ワイヤレス給受電装置100Bは、ワイヤレス給受電装置100において位置認識部50を更に備える構成で第1の実施形態と異なる。ワイヤレス給受電装置100Bのその他の構成は、ワイヤレス給受電装置100と同一である。
 位置認識部50は、電力伝送相手の位置を認識するセンサである。例えば、位置認識部50は、電力伝送相手との相対距離を認識し、その情報を切換制御部40へ送信する。
 すると、切換制御部40は、位置認識部50からの情報に応じて切換部30を制御し、上記同様に給電経路、受電経路を切り換える。例えば、切換制御部40は、電力伝送相手との相対距離に対応した給電経路及び受電経路の設定を予め記憶しており、対応の設定に従って給電経路又は受電経路を切り換える。
 この第3の実施形態のワイヤレス給受電装置100B,200B、及び、ワイヤレス電力伝送システム1Bでも、第1の実施形態のワイヤレス給受電装置100,200、及び、ワイヤレス電力伝送システム1と同様の利点を得ることができる。
 ところで、第1の実施形態では、切換制御部40は外部からの信号に応じて給電経路、受電経路の切換を行うので、例えば通常充電/急速充電の切換のように、ユーザの切換操作に応じて給電経路、受電経路の切換を行う場合に好適である。
 一方、この第3の実施形態によれば、切換制御部40によって、電力伝送相手との相対距離に応じて、給電経路又は受電経路を適切にかつ自律的に切り換えることができる。
[第4の実施形態]
 図12は、本発明の第4の実施形態に係るワイヤレス電力伝送システムの構成の一例を示す回路ブロック図である。このワイヤレス電力伝送システム1Cは、ワイヤレス電力伝送システム1においてワイヤレス給受電装置100,200に代えてワイヤレス給受電装置100C,200Cを備える構成で第1の実施形態と異なる。ワイヤレス給受電装置100C,200Cは略同一の構成であるので、以下では、一方の構成のみを説明する。
 ワイヤレス給受電装置100Cは、ワイヤレス給受電装置100において電力計測部60を更に備える構成で第1の実施形態と異なる。ワイヤレス給受電装置100Cのその他の構成は、ワイヤレス給受電装置100と同一である。
 電力計測部60は、給電電力又は受電電力を計測するセンサである。例えば、電力計測部60は、計測した給電電力又は受電電力の情報を切換制御部40へ送信する。
 すると、切換制御部40は、電力計測部60からの情報に応じて切換部30を制御し、上記同様に給電経路、受電経路を切り換える。例えば、切換制御部40は、給電電力又は受電電力に対応した給電経路及び受電経路の設定を予め記憶しており、対応の設定に従って給電経路又は受電経路を切り換える。
 この第4の実施形態のワイヤレス給受電装置100C,200C、及び、ワイヤレス電力伝送システム1Cでも、第1の実施形態のワイヤレス給受電装置100,200、及び、ワイヤレス電力伝送システム1と同様の利点を得ることができる。
 また、この第4の実施形態によれば、切換制御部40によって、給電電力又は受電電力に応じて、給電経路又は受電経路を適切にかつ自律的に切り換えることができる。
 なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。例えば、本実施形態では、切換制御部40は、外部からの信号、電力伝送相手の位置(すなわち、相対距離)、給電電力及び受電電力のうちの何れか1つに応じて給電経路、受電経路を切り換えたが、外部からの信号、電力伝送相手の位置(すなわち、相対距離)、給電電力及び受電電力のうちの何れか2つ以上のパラメータに応じて給電経路、受電経路を適切に切り換えてもよい。
 また、本実施形態では、双方向電力伝送が可能なワイヤレス給受電装置を例示したが、本発明の特徴は、給電機能及び受電機能の何れか一方のみを備えるワイヤレス給受電装置にも適用可能である。例えば、第1の実施形態のワイヤレス電力伝送システム1において、ワイヤレス給受電装置100及びワイヤレス給受電装置200のうちの一方の電力調整部20が送電機能部21のみを備え、ワイヤレス給受電装置100及びワイヤレス給受電装置200のうちの他方の電力調整部20が受電機能部22のみを備える形態であってもよい。なお、第2~4の実施形態のワイヤレス電力伝送システム1A,1B,1Cにおいても同様に変更可能である。
 また、本発明の特徴は、電力伝送のみならず、信号伝送においても適用可能である。例えば、磁場共振現象を利用して、アナログ信号やデジタル信号を非接触で伝送する場合にも、本発明のワイヤレス電力伝送システムを適用可能である。
 なお、本発明は、蓄電設備を備える移動体、例えば、二次電池を備える電気自動車(EV)の充電システムであって、発電設備を備える基地局(例えば、商用電力設備や太陽光発電設備を備える住宅、商用電力設備を備える施設(例えば、ガソリンスタンド)、又は、道路)、又は、蓄電設備を備える移動体(例えば、二次電池を備える電気自動車(EV)と双方向ワイヤレス電力伝送を行うシステムに適用可能である。例えば、産業用途の搬送車や、ロボットへの適用も可能である。
 なお、本明細書では、磁場共振現象のための素子を「コイル」と称したが、関連の技術分野によっては、「トランスミッタ」や「アンテナ」等と称することもある。
 以上、好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置及び詳細において変更され得ることができることは、当業者によって認識される。本発明は実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲及びその精神の範囲から来るすべての修正及び変更に権利を請求する。
 様々な電力伝送状況に対応する用途に適用することができる。
 1,1A,1B,1C ワイヤレス電力伝送システム
 100,100A,100B,100C ワイヤレス給受電装置
 200,200A,200B,200C ワイヤレス給受電装置
 300 負荷
 10 共振回路
 11 給受電コイル
 12 給受電コンデンサ
 13 結合コイル
 14 結合トランス
 20 電力調整部
 21 送電機能部
 22 受電機能部
 30 切換部
 31,32 スイッチ素子
 40 切換制御部
 50 位置認識部
 60 電力計測部

Claims (8)

  1.  給受電コイルと、
     前記給受電コイルと共振回路を構成するための給受電コンデンサと、
     前記給受電コイルと電磁結合する結合コイルと、
     前記給受電コイルから送電するための交流電力の調整、及び、前記給受電コイルによって受電する交流電力の調整のうちの少なくとも何れか一方の調整を行う電力調整部と、
     前記電力調整部に対する前記給受電コイル、前記給受電コンデンサ、及び、前記結合コイルの接続を切り換える切換部と、
     前記切換部を制御する切換制御部と、
    を備える、ワイヤレス給受電装置。
  2.  前記切換制御部は、
     前記電力調整部に前記結合コイルを接続すると共に、前記給受電コイルと前記給受電コンデンサとを接続して共振回路を形成するように、前記切換部を制御するか、
     前記電力調整部に前記給受電コイルを接続するように、前記切換部を制御するか、又は、
     前記電力調整部に前記給受電コイル及び前記結合コイルを接続することなく、前記給受電コイルと前記給受電コンデンサとを接続して共振回路を形成するように、前記切換部を制御する、
    請求項1に記載のワイヤレス給受電装置。
  3.  前記切換制御部は、
     前記電力調整部に前記給受電コイルを接続する場合に、前記給受電コイルと前記給受電コンデンサとが共振回路を構成するように、前記切換部を制御する、
    請求項2に記載のワイヤレス給受電装置。
  4.  前記切換制御部は、
     前記電力調整部に前記給受電コイルを接続する場合に、前記給受電コイルと前記給受電コンデンサとが共振回路を構成しないように、前記切換部を制御する、
    請求項2に記載のワイヤレス給受電装置。
  5.  前記切換制御部は、外部からの信号に応じて、前記切換部を制御する、
    請求項1~4の何れか1項に記載のワイヤレス給受電装置。
  6.  給受電相手の位置を認識する位置認識部を更に有し、
     前記切換制御部は、前記位置認識部によって認識された位置に応じて、前記切換部を制御する、
    請求項1~4の何れか1項に記載のワイヤレス給受電装置。
  7.  給受電電力を計測する電力計測部を更に有し、
     前記切換制御部は、前記電力計測部によって計測した給受電電力に応じて、前記切換部を制御する、
    請求項1~4の何れか1項に記載のワイヤレス給受電装置。
  8.  請求項1に記載のワイヤレス給受電装置を少なくとも2つ備え、これらのワイヤレス給受電装置の間で非接触で双方向電力伝送を行うワイヤレス電力伝送システム。
PCT/JP2012/057992 2011-03-30 2012-03-27 ワイヤレス給受電装置およびワイヤレス電力伝送システム WO2012133446A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013507633A JP5804052B2 (ja) 2011-03-30 2012-03-27 ワイヤレス給受電装置およびワイヤレス電力伝送システム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161469211P 2011-03-30 2011-03-30
US61/469211 2011-03-30
US13/334779 2011-12-22
US13/334,779 US9006935B2 (en) 2011-03-30 2011-12-22 Wireless power feeder/receiver and wireless power transmission system

Publications (1)

Publication Number Publication Date
WO2012133446A1 true WO2012133446A1 (ja) 2012-10-04

Family

ID=46926245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057992 WO2012133446A1 (ja) 2011-03-30 2012-03-27 ワイヤレス給受電装置およびワイヤレス電力伝送システム

Country Status (3)

Country Link
US (1) US9006935B2 (ja)
JP (1) JP5804052B2 (ja)
WO (1) WO2012133446A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219888A (ja) * 2012-04-06 2013-10-24 Hitachi Cable Ltd 非接触給電システム
JP2015023631A (ja) * 2013-07-17 2015-02-02 株式会社アドバンテスト 電磁界抑制器、それを用いたワイヤレス送電システム
JP2015177738A (ja) * 2014-03-13 2015-10-05 エルジー イノテック カンパニー リミテッド 無線電力送信装置及び方法
KR20160051501A (ko) * 2014-11-03 2016-05-11 주식회사 한림포스텍 무선 전력 전송 및 충전 시스템
JP2017511101A (ja) * 2014-01-22 2017-04-13 パワーバイプロキシ リミテッド 誘導電力伝送システムのための結合コイル電力制御
WO2017168873A1 (ja) * 2016-03-30 2017-10-05 日立マクセル株式会社 非接触送受電装置
US10355532B2 (en) 2016-11-02 2019-07-16 Apple Inc. Inductive power transfer
US10608470B2 (en) 2012-10-29 2020-03-31 Apple Inc. Receiver for an inductive power transfer system and a method for controlling the receiver

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730406B1 (ko) * 2010-09-15 2017-04-26 삼성전자주식회사 무선 전력 전송 및 수신 장치
CN104137648B (zh) 2011-12-29 2017-06-27 阿塞里克股份有限公司 在感应加热炊具上操作的无线厨房用具
WO2013098016A1 (en) * 2011-12-29 2013-07-04 Arcelik Anonim Sirketi Wireless kitchen appliance operated on an induction heating cooker
TWM442642U (en) * 2012-07-11 2012-12-01 ming-xiang Ye Bidirectional wireless power device
WO2014010049A1 (ja) * 2012-07-11 2014-01-16 パイオニア株式会社 盗電検査装置及び方法、コンピュータプログラム並びに記録媒体
US9859755B2 (en) * 2012-07-16 2018-01-02 Qualcomm Incorporated Device alignment and identification in inductive power transfer systems
KR101931256B1 (ko) * 2012-07-25 2018-12-20 삼성전자주식회사 무선 전력 수신 장치 및 방법
KR101991341B1 (ko) * 2013-01-04 2019-06-20 삼성전자 주식회사 무선 전력 수신 장치 및 무선 전력 전송 시스템
KR102040717B1 (ko) * 2013-05-16 2019-11-27 삼성전자주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
KR102083563B1 (ko) * 2013-07-22 2020-03-03 삼성전자주식회사 무선 전력 전송 시스템에서의 간섭 제어 방법 및 장치
US9762068B2 (en) 2013-09-26 2017-09-12 Fairchild Korea Semiconductor Ltd. Wireless power transfer system
US10116230B2 (en) 2013-12-30 2018-10-30 Eaton Capital Unlimited Company Methods, circuits and articles of manufacture for configuring DC output filter circuits
US20150229135A1 (en) * 2014-02-10 2015-08-13 Shahar Porat Wireless load modulation
US9692238B2 (en) * 2014-02-18 2017-06-27 Panasonic Corporation Wireless power transmission system and power transmitting device
US9991048B2 (en) * 2014-06-24 2018-06-05 The Board Of Trustees Of The University Of Alabama Wireless power transfer systems and methods
US9656563B2 (en) * 2014-07-31 2017-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. Modular wireless electrical system
KR102208692B1 (ko) * 2014-08-26 2021-01-28 한국전자통신연구원 에너지 충전 장치 및 방법
US9984815B2 (en) 2014-12-22 2018-05-29 Eaton Capital Unlimited Company Wireless power transfer apparatus and power supplies including overlapping magnetic cores
US10038324B2 (en) * 2015-01-06 2018-07-31 Eaton Intelligent Power Limited Methods, circuits and articles of manufacture for controlling wireless power transfer responsive to controller circuit states
CN104821644B (zh) * 2015-05-25 2017-07-14 青岛大学 一种机器人无线充电方法
US10333357B1 (en) * 2015-08-15 2019-06-25 Jaber Abu Qahouq Methods and systems for arrangement and control of wireless power transfer and receiving
US10923957B2 (en) 2015-11-18 2021-02-16 The University Of Hong Kong Wireless power transfer system
WO2017084599A1 (en) * 2015-11-18 2017-05-26 The University Of Hong Kong A wireless power transfer system
KR20240006716A (ko) * 2016-03-18 2024-01-15 글로벌 에너지 트랜스미션, 컴퍼니 무선 전력 전송을 위한 시스템
US10097046B2 (en) 2016-03-18 2018-10-09 Global Energy Transmission, Co. Wireless power assembly
EP3602734A1 (en) * 2017-03-24 2020-02-05 TDK Electronics AG Power supply system for wireless power transfer
US20200274398A1 (en) * 2018-05-01 2020-08-27 Global Energy Transmission, Co. Systems and methods for wireless power transferring
CN109004768B (zh) * 2018-06-26 2022-05-31 华为技术有限公司 一种无线充电的装置和方法
JP7390806B2 (ja) * 2019-06-07 2023-12-04 清水建設株式会社 クレーンフック部の給電システムおよびクレーンフック部の給電方法
US11990766B2 (en) 2019-07-02 2024-05-21 Eaton Intelligent Power Limited Wireless power transfer apparatus with radially arrayed magnetic structures

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158151A (ja) * 2008-12-01 2010-07-15 Toyota Industries Corp 非接触電力伝送装置
JP2010183813A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010263663A (ja) * 2009-04-28 2010-11-18 Sanyo Electric Co Ltd 電池内蔵機器と充電台

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8947041B2 (en) * 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
JP5499534B2 (ja) 2009-07-07 2014-05-21 ソニー株式会社 非接触受電装置、非接触受電装置における受電方法および非接触給電システム
JP2011030294A (ja) 2009-07-22 2011-02-10 Sony Corp 二次電池装置
JP5434330B2 (ja) 2009-07-22 2014-03-05 ソニー株式会社 電力受信装置、電力伝送システム、充電装置および電力伝送方法
JP2011029799A (ja) 2009-07-23 2011-02-10 Sony Corp 非接触給電通信装置、非接触受電通信装置、給電通信制御方法および受電通信制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158151A (ja) * 2008-12-01 2010-07-15 Toyota Industries Corp 非接触電力伝送装置
JP2010183813A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010263663A (ja) * 2009-04-28 2010-11-18 Sanyo Electric Co Ltd 電池内蔵機器と充電台

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219888A (ja) * 2012-04-06 2013-10-24 Hitachi Cable Ltd 非接触給電システム
US10608470B2 (en) 2012-10-29 2020-03-31 Apple Inc. Receiver for an inductive power transfer system and a method for controlling the receiver
JP2015023631A (ja) * 2013-07-17 2015-02-02 株式会社アドバンテスト 電磁界抑制器、それを用いたワイヤレス送電システム
JP2017511101A (ja) * 2014-01-22 2017-04-13 パワーバイプロキシ リミテッド 誘導電力伝送システムのための結合コイル電力制御
US9973009B2 (en) 2014-03-13 2018-05-15 Lg Innotek Co., Ltd. Wireless power transmisson apparatus and wireless power transmisson method
JP2015177738A (ja) * 2014-03-13 2015-10-05 エルジー イノテック カンパニー リミテッド 無線電力送信装置及び方法
KR20160051501A (ko) * 2014-11-03 2016-05-11 주식회사 한림포스텍 무선 전력 전송 및 충전 시스템
KR102316575B1 (ko) * 2014-11-03 2021-10-26 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 및 충전 시스템
KR20210129621A (ko) * 2014-11-03 2021-10-28 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 및 충전 시스템
KR102550054B1 (ko) * 2014-11-03 2023-06-30 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 및 충전 시스템
KR20230104557A (ko) * 2014-11-03 2023-07-10 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 및 충전 시스템
KR102679964B1 (ko) 2014-11-03 2024-07-01 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 및 충전 시스템
JP2017184414A (ja) * 2016-03-30 2017-10-05 日立マクセル株式会社 非接触送受電装置
WO2017168873A1 (ja) * 2016-03-30 2017-10-05 日立マクセル株式会社 非接触送受電装置
US10355532B2 (en) 2016-11-02 2019-07-16 Apple Inc. Inductive power transfer

Also Published As

Publication number Publication date
US20120248890A1 (en) 2012-10-04
US9006935B2 (en) 2015-04-14
JP5804052B2 (ja) 2015-11-04
JPWO2012133446A1 (ja) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5804052B2 (ja) ワイヤレス給受電装置およびワイヤレス電力伝送システム
US10205351B2 (en) Wireless power transmitter, wireless power repeater and wireless power transmission method
US20170244286A1 (en) Wireless power repeater and method thereof
JP5533337B2 (ja) 非接触充電通信システム
US20140125145A1 (en) Wireless Power Repeater and Method Thereof
JP2011223739A (ja) 給電装置、受電装置、およびワイヤレス給電システム
JP2011167036A (ja) 車両用給電装置および受電装置
WO2013002240A1 (ja) 給電システムの設計方法及び給電システム
US9912194B2 (en) Wireless power apparatus and operation method thereof
US9590454B2 (en) Power transmitter, repeater, power receiver, and wireless power transmission system
JP2014128077A (ja) 受電機器及び非接触電力伝送装置
WO2015035924A1 (zh) 无线充电装置与方法以及使用该装置的移动终端
WO2013136431A1 (ja) 電力受電装置及び電力受電方法
KR20170042944A (ko) 가변 스위칭 주파수를 이용한 무선 충전 방법 및 장치
JP5962408B2 (ja) 受電機器及び非接触電力伝送装置
KR20210129618A (ko) 무선 전력 송수신 장치
JP2016015808A (ja) 受電機器及び非接触電力伝送装置
JP6535003B2 (ja) 無線電力受信装置
JP2015080296A (ja) 受電機器及び非接触電力伝送装置
JP5888201B2 (ja) 受電機器、及び非接触電力伝送装置
WO2015083578A1 (ja) 非接触電力伝送装置及び受電機器
CN110495068A (zh) 无线电力收发设备及其相关方法
JP2014090633A (ja) 非接触電力伝送装置
KR101396497B1 (ko) 중계장치를 이용한 무선 전력 전송장치
KR20130009645A (ko) 무선 전력 수신기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763744

Country of ref document: EP

Kind code of ref document: A1