WO2015035924A1 - 无线充电装置与方法以及使用该装置的移动终端 - Google Patents

无线充电装置与方法以及使用该装置的移动终端 Download PDF

Info

Publication number
WO2015035924A1
WO2015035924A1 PCT/CN2014/086291 CN2014086291W WO2015035924A1 WO 2015035924 A1 WO2015035924 A1 WO 2015035924A1 CN 2014086291 W CN2014086291 W CN 2014086291W WO 2015035924 A1 WO2015035924 A1 WO 2015035924A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
charged
current
charging
signal
Prior art date
Application number
PCT/CN2014/086291
Other languages
English (en)
French (fr)
Inventor
田帆
张玉超
王富超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015035924A1 publication Critical patent/WO2015035924A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a wireless charging apparatus and method, and a mobile terminal using the same.
  • mobile terminals such as mobile phones, tablet computers, etc.
  • screens are getting larger and larger, so power consumption is getting larger and larger, and battery capacity is limited, which requires frequent Charge it.
  • Current mainstream mobile terminal charging technologies include: traditional power adapters (including chargers, train stations, airport charging stations, etc.), wireless charging trays and digital charging companions.
  • the power adapter is the most widely used battery, but it has the least flexibility. It can only be used in fixed environments such as homes and offices. It cannot be moved and charged. It needs to be connected to the grid at a fixed location for charging, and must be prepared. A charger or charger can be carried around to charge the battery in different environments.
  • the wireless charging tray is a near-field wireless charging device. It is also required to be inserted into a socket connected to the power grid during use, and then the mobile terminal is placed on the surface of the charging source of the charging tray to charge the mobile terminal by electromagnetic induction.
  • the charging technology can only charge the mobile terminal by connecting the power grid to a specific location through a peripheral device, and there are certain restrictions in actual use.
  • the main object of the present invention is to provide a wireless charging apparatus and method and a mobile terminal using the same, which can realize charging independent of a fixed grid, so that charging is more flexible.
  • a first aspect of the present invention provides a wireless charging apparatus including: a bidirectional converter and a controller, the bidirectional converter being connected in series with a DC power source;
  • the bidirectional converter includes a first field effect transistor, a second field effect transistor, a first capacitor, a second capacitor, a first diode, a second diode, and an induction coil; the first field effect transistor and the a combination of a combination of the second field effect transistor in series with the first capacitor and the second capacitor in series, and a combination of the first diode and the second diode in series are connected in parallel Between the positive and negative electrodes of the DC power source, wherein the drain of the first FET and the cathode of the first diode are connected to the anode of the DC power source, and the source of the second FET is And a positive pole of the second diode is connected to a cathode of the DC power source; one end of the induction coil is simultaneously connected to a node between the first capacitor and the second capacitor, and the first diode a connection point with the second diode, the other end being connected at a connection point between a source of the first field effect transistor and a drain of the second
  • the bidirectional converter is configured to convert the direct current power of the direct current power source into alternating current power, and transmit the alternating current power to the device to be charged by electromagnetic induction coupling to charge the device to be charged; or, for electromagnetic induction coupling Receiving an alternating current from the power supply device, and converting the received alternating current into direct current to charge the direct current power source;
  • the controller is respectively connected to a gate of the first FET and a gate of the second FET, and the controller is configured to control the first FET and the second FET Alternatingly conducting to charge the device to be charged; or for controlling the first field effect transistor and the second field effect transistor to be all turned off to charge the DC power source.
  • the controller is further configured to generate a first power query signal during charging of the device to be charged, where the first power query signal is used to query the The current power of the device to be charged;
  • the bidirectional converter is further configured to transmit the first power query signal to the device to be charged;
  • the bidirectional converter is further configured to receive a first power feedback signal that feeds back a current power of the device to be charged;
  • the controller is further configured to: according to the first power feedback signal, when the device to be charged When the previous electric quantity is less than any one of 10%-100% of the total electric quantity, continue to control the first FET and the second FET to be alternately turned on to continue charging the device to be charged; When the current power of the device to be charged is greater than or equal to any one of 10%-100% of the total power, the bidirectional converter is controlled to be disconnected from the DC power source to stop charging the device to be charged.
  • the wireless charging device further includes a modulating device, the one end of the modulating device being connected to the positive pole of the DC power source The other end is connected to the negative pole of the DC power source;
  • the modulating device is configured to modulate the first power query signal into the alternating current converted by the direct current;
  • the bidirectional converter is further configured to transmit the first power query signal to the device to be charged, and the method further includes: the bidirectional converter is further configured to transmit, to the device to be charged, the signal carrying the first power query AC power to transmit the first power query signal to the device to be charged.
  • the controller is further configured to generate a first charging end for notifying that the charging device is charging end signal;
  • the bidirectional converter is further configured to transmit the first charging end signal to the device to be charged;
  • the bidirectional converter is further configured to receive a first end feedback signal that the device to be charged confirms the end of charging
  • the controller is further configured to: when the first end feedback signal is received, control the bidirectional converter to be disconnected from the DC power source to stop charging the device to be charged.
  • the controller is further configured to generate a first charging end for notifying that the charging device is charging end signal;
  • the bidirectional converter is further configured to transmit the first charging end signal to the device to be charged;
  • the bidirectional converter is further configured to receive the first end of the charging device to confirm the end of charging Feed signal
  • the controller is further configured to: when the first end feedback signal is received, control the bidirectional converter to be disconnected from the DC power source to stop charging the device to be charged.
  • the bidirectional converter is further configured to receive a second power query signal from the power supply device during charging of the DC power source, The second power query signal is used to query the current power of the DC power source;
  • the bidirectional converter is further configured to generate and transmit a second power feedback signal that feeds back the current power of the DC power source.
  • the second detection circuit further includes a second detection circuit connected to an anode of the DC power supply The other end is connected to the negative pole of the DC power source;
  • the bidirectional converter is further configured to receive a second power query signal from the power supply device during charging of the DC power source, specifically: the bidirectional converter is further configured to receive during charging of the DC power source An alternating current from the power supply device carrying the second power inquiry signal;
  • the second detecting circuit is configured to extract the second power query signal from the alternating current carrying the second power query signal.
  • the wireless charging device further includes a dummy load, and the one end of the dummy load is connected to the positive pole of the DC power source. The other end is connected to a negative pole of the DC power source; the dummy load is used to change a load of the wireless charging device to change a current flowing through the induction coil;
  • the bidirectional converter is further configured to generate and transmit a second power feedback signal that feeds back the current power of the DC power source, specifically: the controller is further configured to control the dummy load and the bidirectional converter to be regularly connected. Or disconnected to cause a regular change in current flowing through the induction coil to form the second power feedback signal for transmission to the power supply device.
  • the method further includes a detecting device, where the detecting device is connected to the controller And detecting whether the device to be charged exists in the vicinity of the wireless charging device during charging of the device to be charged;
  • the controller is further configured to continue to control the first FET and the second FET to be alternately turned on when the detecting device detects the device to be charged, to continue to be the device to be charged Charging; when the detecting device does not detect the device to be charged, controlling the bidirectional converter to be disconnected from the DC power source to stop charging the device to be charged.
  • the detecting device comprises a Hall sensor or an infrared sensor.
  • a second aspect of the present invention provides a mobile terminal, comprising: a battery, the first aspect, and the wireless charging device of any of the possible implementations of the first aspect; the first field effect of the wireless charging device a node of the drain of the tube connected to one end of the first capacitor and the anode of the first diode is connected to the anode of the battery, and the source of the second field effect transistor of the wireless charging device and one end of the second capacitor And a node connected to the positive electrode of the second diode is connected to the negative electrode of the battery.
  • a third aspect of the present invention provides a method of operating a wireless charging device according to any of the first aspect and the first aspect of the first aspect, comprising:
  • the alternating current from the power supply device is received by electromagnetic induction coupling, and the received alternating current is converted into direct current to charge the direct current power source.
  • the method further includes:
  • the first FET and the second field effect are continuously controlled.
  • the tubes are alternately turned on to continue charging the device to be charged; and when the current power of the device to be charged is greater than or equal to any one of 10%-100% of the total amount of power, controlling the bidirectional converter and the The DC power supply is disconnected to stop charging the device to be charged.
  • the method further includes:
  • the transmitting the first power query signal to the device to be charged specifically includes: transmitting, to the device to be charged, an alternating current carrying the first power query signal, to implement transmitting the first to the device to be charged A power inquiry signal.
  • Sensing a current change of the induction coil of the device to be charged wherein the law of the current change carries a first power feedback signal that feeds back the current power of the device to be charged, and the current of the bidirectional converter changes according to the current Varying to implement receiving the first power feedback signal;
  • the stopping the charging of the device to be charged specifically includes:
  • the bidirectional converter When receiving the first end feedback signal, the bidirectional converter is controlled to be disconnected from the DC power source to stop charging the device to be charged.
  • the method further includes:
  • the method further includes:
  • the receiving, by the power receiving device, the second power query signal specifically includes: receiving the power supply device An alternating current carrying the second power inquiry signal;
  • the generating, by the second power feedback signal, the current power of the DC power source is specifically:
  • the bidirectional converter is regularly turned on or off to cause a regular change in current flowing through the induction coil to form the second communication feedback signal and transmit to the power supply device.
  • the wireless charging device and method provided by the invention and the mobile terminal using the same can control the conduction and disconnection of the first field effect transistor and the second field effect transistor respectively according to requirements: when controlling the first field effect When the tube and the second field effect transistor are alternately turned on, the bidirectional converter can convert the direct current power supplied by the direct current power source into alternating current power, and transmit it to the device to be charged, thereby charging the device to be charged; when the controller controls the first field effect transistor and When the second FET is simultaneously disconnected, the bidirectional converter can convert the received alternating current into direct current to charge the direct current power source; that is, the direct current power source connected to the wireless charging device can serve as both a power provider and an electric energy source.
  • the wireless charging device can charge the wireless charging device wirelessly through other power sources, such as terminals, so that the wireless charging device is more flexible in use. When the mobile terminal is provided with the wireless charging device, bidirectional charging and discharging between the mobile terminals can be further realized.
  • FIG. 1 is a schematic structural diagram of a wireless charging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a current flow direction when a first FET T1 is turned on and a second FET T2 is turned off as a power supplier of a DC power supply connected to the wireless charging device;
  • Figure 3 is a DC power supply connected to a wireless charging device as a provider of electrical energy, a second field effect a schematic diagram of current flow when the tube T2 is turned on and the first field effect transistor T1 is turned off;
  • Figure 4 is an equivalent circuit diagram of the capacitance and inductance portions of the bidirectional converter
  • FIG. 5 is a schematic diagram of current flow in a circuit when a DC power source connected to a wireless charging device is used as a receiver of electric energy, and an AC current terminal voltage received by the induction coil L is higher than a voltage at the D terminal;
  • FIG. 6 is a schematic diagram of a current flow in a circuit when a DC power source connected to a wireless charging device is used as a receiver of electric energy, and an alternating current D terminal voltage received by the induction coil L is higher than a C terminal voltage;
  • FIG. 7 is another schematic structural diagram of a wireless charging apparatus according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of modulation of a first power inquiry signal in the wireless charging device of FIG. 7;
  • FIG. 9 is another schematic structural diagram of a wireless charging apparatus according to an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of a wireless charging apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of charging processes of two wireless charging devices according to an embodiment of the present invention.
  • FIG. 12 is a flowchart of a method for operating a wireless charging apparatus according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a working method of a wireless charging apparatus according to an embodiment of the present invention.
  • an embodiment of the present invention provides a wireless charging apparatus, including: a bidirectional converter 1 and a controller 2, wherein the bidirectional converter 1 is connected in series with a DC power supply 3; wherein the bidirectional converter 1 includes a first field.
  • the combination of the series connection of the tubes T2, the combination of the first capacitor C1 and the second capacitor C2, and the combination of the first diode D1 and the second diode D2 are connected in parallel
  • the first field effect transistor T1 Drain a node connected to one end of the first capacitor C1 and the cathode of the first diode D1 is connected to the anode of the DC power source 3
  • the source of the second field effect transistor T2 and one end of the second capacitor C2 and the second diode a node connected to the anode of the tube D2 is connected to the cathode of the DC power source 3
  • one end of the induction coil L is connected to a node between the first capacitor C1 and the second capacitor C2, and the first diode D1 and the second diode D2 The other end is connected to the
  • the wireless charging device can control the conduction and disconnection of the first field effect transistor T1 and the second field effect transistor T2 as needed: when controlling the first field effect transistor T1 and the second field When the effect tube T2 is alternately turned on, the bidirectional converter 1 can convert the direct current power supplied from the direct current power source 3 into alternating current power, and transmit it to the device to be charged, thereby charging the device to be charged; when the controller 2 controls the first field effect transistor T1 and When the second field effect transistor T2 is simultaneously turned off, the bidirectional converter 1 can convert the received alternating current into direct current to charge the direct current power source 3; that is, the direct current power source 3 connected to the wireless charging device can serve as a power supplier. It can also be used as a power receiver.
  • the wireless charging device does not rely on the grid to replenish power.
  • the wireless charging device can be wirelessly charged by other power sources, such as terminals, so that the wireless charging device is more flexible in use.
  • the mobile terminal is provided with the wireless charging device, bidirectional charging and discharging between the mobile terminals can be further realized.
  • the wireless charging device provided by the embodiment of the present invention can supply power to the device to be charged in an electromagnetic induction coupling manner according to the electric energy storage condition of the DC power source 3 connected thereto, or electromagnetically
  • the inductive coupling method receives power from the power supply device.
  • the DC power source 3 is a device that can provide external power or store electrical energy, such as various rechargeable batteries.
  • the wireless charging device provided by the embodiment of the present invention will be described in detail by taking the DC power source 3 connected to the wireless charging device as a provider of electric energy and a receiver of electric energy as an example.
  • the current flow in the circuit is as shown in FIG. 2 and FIG. 3, and the electric energy is input to the wireless charging device from the A and B terminals, and is connected to the C and D terminals. Transfer to the device to be charged.
  • the controller 2 controls the first field effect transistor T1 and the second field effect transistor T2 to be alternately turned on and off at a certain time interval, thereby converting the direct current power supplied from the direct current power source 3 into an alternating current.
  • the first field effect transistor T1 is turned on, and the second field effect transistor T2 is turned off.
  • the second field effect transistor T2 is turned on, and the first field effect transistor T1 is turned off.
  • the controller 2 controls the first field effect transistor T1 to be turned on and the second field effect transistor T2 to be turned off
  • the current flows as indicated by a broken line with an arrow in FIG. 2, and the current is from the positive electrode of the direct current power source 3.
  • the first field effect transistor T1, the induction coil L, and the second capacitor C2 flow through the A end, and then flow to the negative pole of the DC power source 3 through the B end.
  • the current forms an oscillation between the induction coil L and the second capacitor C2, and a magnetic field is generated around the induction coil L, which in turn generates a current in the induction coil of the nearby device to be charged, thereby realizing the transmission of the electric energy to the device to be charged.
  • the DC power supply 3 can only supply current flowing in one direction, when the current continues for a period of time, it will enter the steady state of the circuit, and the second capacitor C2 will block the DC current so that the current cannot oscillate and be transmitted. Therefore, in order to convert direct current into alternating current and continue to be transmitted to the device to be charged, the direction of current flowing through the induction coil L must be changed before the circuit enters a steady state. Therefore, the controller 2 should control the first field effect transistor T1 and the second field effect transistor T2 to be alternately turned on so that the direction of the current flowing through the induction coil L changes before the circuit enters the steady state.
  • the controller 2 controls the first FET T1 to be turned on, the controller 2 controls the first FET T1 to be turned off before the charging and discharging process of the second capacitor C2 and the induction coil L enters the steady state.
  • the two field effect transistors T2 are turned on, and the current flow direction at this time can be indicated by a broken line with an arrow in FIG.
  • the controller 2 controls the second field effect transistor T2 to be turned on
  • the first field effect transistor T1 When disconnected, the current flows from the anode of the DC power source 3 through the first capacitor C1, the induction coil L, and the second field effect transistor T2 to the cathode of the DC power source 3.
  • the current forms an oscillation between the induction coil L and the first capacitor C1, and a magnetic field is generated around the induction coil L, which in turn generates a current in the induction coil of the nearby device to be charged, thereby realizing the transmission of the electric energy to the device to be charged.
  • the first field effect transistor T1 and the second field effect transistor T2 are alternately turned on at a certain time interval, and a continuously changing current is generated between the ends of the induction coil L, that is, between the output terminals C and D.
  • the size continues to change, and the direction is reversed repeatedly, that is, the direct current of the direct current power source 3 is converted into an alternating current, thereby exciting an electromagnetic field, and transmitting the electric energy to the device to be charged by electromagnetic induction coupling.
  • the controller 2 alternately turns on the first field effect transistor T1 and the second field effect transistor T2, and the current forms an oscillation between the induction coil L and the first capacitor C1 or between the induction coil L and the second capacitor C2.
  • the oscillating alternating current is transmitted by the induction coil L to the device to be charged.
  • the coupling coefficient of the two is generally less than 1, and there is a leakage inductance when the energy is transmitted.
  • 4 is an equivalent circuit diagram of the capacitance and inductance portions of the bidirectional converter. As shown in FIG.
  • the leakage inductance in the circuit is equivalent to connecting another induction coil L' in series with the induction coil L, which should be added to the induction.
  • the voltage across the coil L is partially applied to both ends of the leakage inductance induction coil L', so that the voltage across the induction coil L is lowered, so that the energy emitted from the induction coil L is correspondingly reduced, thereby affecting the energy transmission efficiency. .
  • another function of the first capacitor C1 and the second capacitor C2 is to reduce or eliminate the influence of leakage inductance in the circuit.
  • the controller 2 controls the first FET T1 and the second FET T2 to be alternately turned on, the current is between the induction coil L and the first capacitor C1 or between the induction coil L and the second capacitor C2.
  • the oscillation is formed, as shown in FIG. 4, when oscillating, the circuit connection of the capacitance and the inductance part of the bidirectional converter is equivalent to the parallel connection of the first capacitor C1 and the second capacitor C2, and then connected in series with the induction coil L, and the leakage inductance in the circuit This is equivalent to connecting another induction coil L' in series with the induction coil L.
  • the second capacitor C2 When the current oscillates between the induction coil L and the first capacitor C1, the second capacitor C2 is in a discharge state, and the entire circuit forms a series resonance, when the frequency of the alternating current is a series resonance frequency, The series impedance of the parallel capacitance of the first capacitor C1 and the second capacitor C2 and the induction coil L' is 0, which eliminates the influence of the reactance of the leakage inductance induction coil L' on the circuit, thereby compensating for the leakage inductance in the circuit; When the frequency of the alternating current is close to the series resonant frequency, the series impedance of the parallel capacitance of the first capacitor C1 and the second capacitor C2 and the induction coil L' is reduced, which reduces the influence of the reactance of the leakage inductance induction coil L' on the circuit.
  • the leakage inductance in the circuit is partially compensated; similarly, when the current oscillates between the induction coil L and the second capacitor C2, the first capacitor C1 is in a discharging state, and at this time, the first capacitor C1 and the second capacitor C2
  • the shunt capacitor also eliminates or reduces the effect of the reactance of the leakage inductance induction coil L' on the circuit.
  • the DC power source 3 connected to the wireless charging device When the DC power source 3 connected to the wireless charging device is used as a receiver of electric energy, the DC power source 3 corresponds to an electric energy storage device such as a battery.
  • the induction coil L corresponds to the secondary induction coil and is capable of receiving electric energy supplied from the power supply device.
  • the two ends of the induction coil L, that is, the C and D terminals are AC input terminals; the A and B terminals are DC output terminals, wherein the A end is connected to the positive pole of the DC power source 3, and the B end is connected to the negative pole of the DC power source 3.
  • the controller 2 controls the first field effect transistor T1 and the second field effect transistor T2 to be turned off, that is, the voltage applied by the controller 2 to the gates of the first field effect transistor T1 and the second field effect transistor T2 is such that T1 and The conductive channel in T2 is not turned on, but at this time, the body diodes parasitic on the first field effect transistor T1 and the second field effect transistor T2 still function.
  • the body diode of the first field effect transistor T1 and the body diode of the second field effect transistor T2 are respectively equivalent to a common diode, and the drain of the field effect transistor is equivalent to the negative electrode of the diode, and the source of the field effect transistor is equivalent.
  • the anode of the diode Then, the body diode of the first field effect transistor T1 and the body diode of the second field effect transistor T2 and the first diode D1 and the second diode D2 constitute a full bridge rectifier circuit.
  • the current flow of the alternating current received by the induction coil L at a certain moment can be indicated by a dotted line with an arrow in FIG. 5.
  • the AC current is higher than the D voltage at the C terminal of the induction coil L (corresponding to the power source), and the current flows through the first diode D1 from the C terminal in sequence, the DC power source (corresponding to the load being the battery), and the second field effect. Tube T2, which finally flows back to the D end, forms a complete loop.
  • the current of the alternating current received by the induction coil L at another moment flows to the virtual state with an arrow as shown in FIG. Line shown.
  • the alternating current is higher than the voltage at the terminal D of the induction coil L (corresponding to the power source), and the current flows through the first field effect transistor T1 from the D terminal in sequence, and the direct current power source (equivalent to the load is the battery), the second two The pole tube D2 finally flows back to the C end to form a complete loop.
  • the conversion of the bidirectional converter 1 can always ensure that the current flows from the A terminal to the DC power source 3, and the B terminal returns to the bidirectional converter, thereby storing the electric energy in the DC power supply 3.
  • the bidirectional converter 1 uses only two FETs, two capacitors, two diodes and one induction coil, and the circuit is simple and the manufacturing cost is low; and when the DC power source 3 connected to the wireless charging device is provided as electric energy
  • the first capacitor C1 and the second capacitor C2 can alternately compensate the leakage inductance generated in the circuit, thereby reducing energy leakage and effectively improving energy transmission efficiency.
  • the wireless charging device causes the DC power source connected thereto to serve as a provider or receiver of the power, and realizes transmission of the power between the DC power source and the device to be charged or the power supply device, but the present invention is not limited thereto.
  • the wireless charging device can communicate with the device to be charged or the power supply device, for example, information about the current power status, confirming the end of charging, and the like, so as to enable wireless The charging device and the device to be charged or the power supply device can communicate with each other.
  • the controller 2 in the wireless charging device can also be used.
  • the bidirectional converter 1 can also transmit the first power query signal to the device to be charged, and receive a first power feedback signal that feeds back the current power of the device to be charged;
  • the current electric quantity value fed back by the electric quantity feedback signal when the current electric quantity of the equipment to be charged is less than any one of 10%-100% of the total electric quantity, the controller 2 continues to control the first FET T1 and the second FET T2 is alternately turned on to continue charging the device to be charged; when the current amount of the device to be charged is greater than or equal to any one of 10%-100% of the total amount of power, the controller 2 controls the bidirectional converter 1 and the DC power supply.
  • any one of 10%-100% of the total amount of electricity The value is set by the operator. For example, when any one of 10%-100% of the total power is set to 90%, that is, when the current power of the device to be charged is less than 90% of the total power, continue to The charging device is charged. When the current power of the device to be charged is greater than or equal to 90% of the total power, the device to be charged is stopped.
  • the method for setting the specific value is not limited in the embodiment of the present invention.
  • the first power query signal generated by the controller 2 includes a DC component and a frequency component with a lower frequency. Due to anti-interference and improved transmission efficiency, it is often not suitable as a transmission signal. Therefore, the first power inquiry must be performed.
  • the signal is converted into a signal whose frequency band is suitable for transmission in the channel of the bidirectional converter 1.
  • the first power query signal is modulated into the carrier by using the alternating current transmitting the electrical energy as a carrier, forming a modulated signal, and transmitting the modulated signal through the bidirectional converter 1 to complete the energy transmission. Information transfer.
  • the first power query signal may be modulated into a carrier by using amplitude modulation, frequency modulation, or phase modulation.
  • the amplitude modulation that is, the amplitude of the carrier alternating current changes according to the transformation of the characteristics of the first communication signal, and accordingly, the frequency or phase of the frequency modulation or phase modulation, that is, the carrier alternating current, changes with the change of the characteristics of the first communication signal.
  • the wireless charging device further includes a modulation device 4, one end of which is connected to the anode of the DC power source 3, and the other end of which is connected to the cathode of the DC power source 3;
  • the modulating device 4 is configured to modulate the first power query signal into the alternating current converted by the direct current, so that the first power query signal is transmitted with the alternating current to the device to be charged.
  • the bidirectional converter 1 transmits the first electric quantity inquiry signal to the device to be charged, and the bidirectional converter 1 transmits the alternating current carrying the first electric quantity inquiry signal to the device to be charged, thereby realizing the transmission to the device to be charged.
  • the modulating device 4 can be an amplitude modulation device, a frequency modulation device, or a phase modulation device.
  • the sine wave a is an alternating current that transmits electric energy, that is, an alternating current converted from direct current
  • the square wave b is a first electric quantity inquiry signal generated by the controller 2.
  • the amplitude modulation device loads the square wave b into the sine wave a such that the amplitude of the sine wave a changes with the transformation of the characteristic of the square wave b, thereby forming an alternating current c carrying the first electric quantity inquiry signal, and forming the alternating current c carrying the first electric quantity inquiry signal AC power c is transmitted to the device to be charged lose.
  • the amplitude modulation device may be a switch type circuit, such as a dual diode balanced amplitude modulation circuit, a diode ring amplitude modulation circuit, a diode bridge type amplitude modulation circuit, or a transistor circuit, such as a base amplitude modulation circuit, a collector amplitude modulation circuit, etc., as long as The amplitude modulation can be realized, and the present invention does not limit this.
  • a switch type circuit such as a dual diode balanced amplitude modulation circuit, a diode ring amplitude modulation circuit, a diode bridge type amplitude modulation circuit, or a transistor circuit, such as a base amplitude modulation circuit, a collector amplitude modulation circuit, etc.
  • the wireless charging device further includes a first detecting circuit 5, such as a filter, etc., the first detecting circuit 5 is connected at one end to the positive pole of the direct current power source 3, and the other end is connected to the negative pole of the direct current power source 3;
  • the bidirectional converter 1 receives the first power feedback signal that feeds back the current power of the device to be charged, and may specifically include: the bidirectional converter 1 can also sense the current change of the induction coil of the device to be charged, and the law of the current change carries feedback to be charged.
  • the first electric quantity feedback signal of the current electric quantity of the device, the current of the bidirectional converter 1 changes according to the current change of the induction coil of the equipment to be charged, thereby realizing receiving the first electric quantity feedback signal; when the current flowing through the bidirectional converter 1 changes
  • the current flowing through the first detecting circuit 5 also changes correspondingly, and the first detecting circuit 5 can detect the regularity change, that is, the first electric quantity feedback signal is extracted and transmitted to Controller 2.
  • the wireless charging device stops charging the device to be charged, first sending a first charging end signal to the device to be charged to notify the charging device to end charging; when receiving the device to be charged to confirm the charging end When the feedback signal is finished, stop charging the device to be charged.
  • the first charging end signal is also generated by the controller 2, and is transmitted to the device to be charged through the bidirectional converter 1.
  • the specific transmission mode and the first power query signal transmission manner may be the same, and are not described herein again;
  • the first end feedback signal of the charging device confirming the end of charging is also received by the bidirectional converter 1.
  • the specific receiving mode and the receiving mode of the first electric quantity feedback signal may be the same, and details are not described herein again.
  • a field effect transistor can be disposed between the DC power source 3 and the bidirectional converter 1, and the gate of the FET is connected to the controller 2, and the controller 2 controls the conduction or disconnection of the FET by controlling the FET.
  • a third FET can be disposed between the anode of the DC power source 3 and the drain of the first FET T1, and the The gate of the three field effect transistor is connected to the controller 2.
  • the bidirectional converter 1 When the controller 2 controls the conduction of the third FET, the bidirectional converter 1 is connected to the DC power source 3 to charge the device to be charged; when the controller 2 controls When the third FET is turned off, the bidirectional converter 1 is disconnected from the DC power source 3, thereby stopping charging of the device to be charged.
  • the wireless charging device further includes a detecting device, such as a Hall sensor or an infrared sensor or other type of sensor.
  • a detecting device 8 is further included, which is connected to the controller 2.
  • the detecting device 8 can detect whether there is a device to be charged in the vicinity of the wireless charging device to prevent the device to be charged from suddenly leaving during charging, and the wireless charging device is still in the state of transmitting power outward. , causing unnecessary power loss.
  • the detecting device 8 detects the device to be charged, it continues to control the first field effect transistor T1 and the second field effect transistor T2 to be alternately turned on to continue charging the device to be charged; when the detecting device 8 detects no When the device to be charged is reached, the bidirectional converter 1 is controlled to be disconnected from the DC power source 3 to stop charging the device to be charged.
  • the detecting device 8 as a Hall sensor as an example, the working process of the detecting device 8 will be described in detail. Since the Hall sensor is sensitive to changes in the surrounding magnetic field, the magnetic steel can be mounted on the wireless charging device, and the specific installation position is not limited, as long as there is a suitable space for installation; when the magnetic field near the wireless charging device changes It will be detected by the Hall sensor, and it can be considered that there is a device to be charged around; when the magnetic field near the wireless charging device does not change, it can be considered that there is no device to be charged around, that is, the device to be charged is not detected.
  • the bidirectional converter 1 can also receive the communication signal of the power supply device, and according to the content of the communication signal,
  • the transmission feedback signal for example, the bidirectional converter 1 can receive a second power inquiry signal for querying the current power of the DC power source, and can also generate and transmit a second power feedback signal to the power supply device to feed back the current power of the DC power supply;
  • the second charging end signal of the power supply device can also be received, and a second end feedback signal can also be generated and transmitted to the power supply device to confirm the end of the charging process.
  • the wireless charging device may further include a second detecting circuit 6, such as a filter, etc.
  • the second detecting circuit 6 has one end connected to the positive pole of the direct current power source and the other end connected to the negative pole of the direct current power source.
  • the bidirectional converter 1 can receive the second power query signal by receiving the second power signal from the power supply device. And transmitted to controller 2.
  • the wireless charging device may further include a dummy load 7, such as a resistor, an inductor or a capacitor, etc., the dummy load 7; the dummy load may change the load of the wireless charging device to change the current flowing through the induction coil.
  • a dummy load 7 such as a resistor, an inductor or a capacitor, etc.
  • the specific manner in which the bidirectional converter generates and transmits the second power feedback signal to the power supply device may be: the controller 2 controls the regular load on or off of the dummy load and the bidirectional converter 1 to make the current law flowing through the induction coil L The change occurs in nature, thereby forming a second power feedback signal and transmitting it to the power supply device.
  • the dummy load 7 as a resistor as an example, the generation and transmission process of the second power feedback signal will be specifically described.
  • One end of the dummy load 7 is connected to the positive pole of the DC power source 3, and the other end is connected to the cathode of the DC power source 3. It can also be considered that the dummy load is connected in parallel with the bidirectional converter 1.
  • a switch such as a field effect transistor, may be connected in series with the resistor, and the controller 2 controls the dummy load 7 to be turned on or off by controlling the on and off of the switch.
  • the resistor is turned on with the bidirectional converter 1, that is, a resistor is connected in parallel with the bidirectional converter 1.
  • the load carried by the induction coil L is changed from the original bidirectional converter 1 to the bidirectional converter 1 and the resistor connected in parallel thereto, which is equivalent to increasing the load of the wireless charging device, thereby increasing the flow.
  • the current flowing through the induction coil L can be regularly changed to form a second electric quantity feedback signal; when the current flowing through the induction coil L changes regularly At this time, the current flowing through the induction coil of the power supply device is also regularly changed, so that the transmission of the second power feedback signal to the power supply device is realized.
  • the bidirectional converter 1 can also receive the second charging end signal of the power supply device, and can generate and transmit a second end feedback signal to the power supply device.
  • the receiving manner of the second charging end signal and the receiving manner of the second power query signal may be the same, and details are not described herein; the generating and transmitting manner of the second ending feedback signal may be the same as the generating and transmitting manner of the second power feedback signal. I will not repeat them here.
  • the mobile phone A and the mobile phone B are respectively provided with any one of the wireless charging devices in the above embodiments.
  • the wireless charging device can enable the mobile phone to serve as a provider of electric energy, charge the device to be charged, and charge the process.
  • the signal can be transmitted, and the mobile phone can be used as a receiver of electric energy to charge itself, and the signal can be transmitted during the charging process.
  • the mobile phone A has sufficient power
  • the mobile phone B has insufficient power and needs to be charged
  • the mobile phone A is equivalent to the power supply device
  • the mobile phone B is equivalent to the device to be charged
  • the mobile phone A can charge the mobile phone B by electromagnetic induction coupling.
  • the mobile phone A and the mobile phone B are placed back to back, and the structure of the wireless charging device of the mobile phone A and the mobile phone B is as shown in FIG.
  • the wireless charging device of the mobile phone A is turned on, and the state of outputting the electric energy to the outside is adjusted, that is, the adjustment controller 2A controls the bidirectional converter 1A to be connected to the battery 3A, and controls the first field effect transistor T a1 and the second field effect.
  • the tube T a2 is alternately turned on.
  • the controller 2A is not limited, and may be in a software mode or a hardware mode.
  • the detecting device 8A of the mobile phone A detects the mobile phone B, it sends a power inquiry signal to the mobile phone B to know the current power of the mobile phone B.
  • the power feedback signal it is known that the current power of the mobile phone B is less than 90 of the total power of the battery 3B.
  • the controller 2A controls the wireless charging device to continue charging the mobile phone B; during the charging process, the mobile phone A can send the power inquiry signal multiple times at a certain time interval until it is known that the current power of the mobile phone B is greater than or equal to the total battery 3B.
  • the charging end signal is sent to the mobile phone B to notify the mobile phone B that the charging process is about to end.
  • the controller 2A controls the bidirectional converter 1A to disconnect from the battery 3A, and ends the charging.
  • the controller 2A controls the bidirectional converter 1A to disconnect from the battery 3A, and ends the charging process ahead of time to avoid unnecessary power loss.
  • the wireless charging device of the mobile phone B is turned on, and the state of receiving the electric energy is adjusted, that is, the adjustment controller 2B controls the bidirectional converter 1B to be connected to the battery 3B, and controls the first field effect transistor T b1 and the second field effect transistor T. B2 is all disconnected.
  • the controller 2B is not limited, and may be in a software mode or a hardware mode.
  • the controller 2B controls the dummy load 7B and the wireless charging device to be regularly turned on or off to generate a power feedback signal, and feed back the current power of the mobile phone A.
  • the controller 2B controls the dummy load 7B to be regularly turned on or off with the wireless charging device to generate an end feedback signal indicating the end of the confirmation, informing the mobile phone A that the charging process is about to be known. After that, the controller 2B controls the bidirectional converter 1B to be disconnected from the battery 3B, and ends the charging process.
  • the controller 2A controls the first FET T a1 and the second FET T a2 to be alternately turned on and off at a certain time interval, and the current flowing from the battery 3A enters the bidirectional converter 1A. , also in accordance with certain time intervals each line 1 and line 2. 3A returned to the battery, so that current is generated continuously varying across the induction coil L a, thereby generating a magnetic field around the induction coil such that L b is generated in the mobile phone B Current, thereby realizing the transmission of electrical energy to the mobile phone B.
  • the controller 2A controls the first field effect transistor T a1 to be turned on and the second field effect transistor T a2 to be turned off
  • the current entering the bidirectional converter 1A returns to the battery 3A according to the line 2, and the current flows from the b end into the induction.
  • the coil L a when the controller 2A controls the second field effect transistor T a2 to be turned on and the first field effect transistor T a1 to be turned off, the current entering the bidirectional converter 1A returns to the battery 3A according to the line 1, and the current flows from the a end.
  • Induction coil L a when the controller 2A controls the second field effect transistor T a2 to be turned on and the first field effect transistor T a1 to be turned off
  • the controller 2B controls the first field effect transistor T b1 , the second field effect transistor T b2 to be disconnected, the body diode of the first field effect transistor T b1 , and the body diode of the second field effect transistor T b2 .
  • the first diode D b1 and the second diode D b2 form a full bridge rectifier circuit, rectify the received alternating current, and convert it into a direct current battery for storage by the battery 3B.
  • the current flow direction of the bidirectional converter 1B is as shown by the line 11; when the voltage of the alternating current terminal d received by the induction coil L b is higher than c At the end, in the bidirectional converter B1, the current flows as indicated by line 22. After the rectification of the bidirectional converter B1, the current is always input from the e terminal to the battery 3B for storage.
  • the communication signal such as the power inquiry signal and the charging end signal of the mobile phone A is generated by the controller 2A, and the communication signal is loaded into the alternating current converted into the direct current by the battery A by the amplitude modulation device 4A.
  • the two-way converter 1A transmits to the mobile phone B; at the same time, the induction coil L a can sense the change of the current flowing through the induction coil L b in the mobile phone B, and the mobile phone B transmits the response to the communication signal according to the change of the current magnitude.
  • the mobile phone A can extract the communication feedback signal through the first detecting circuit 5A.
  • the second detection circuit 6B can extract the communication signal and transmit it to the controller 2B; after the controller 2B analyzes the communication signal, Regularly controlling the dummy load 7B to be turned on or off with the bidirectional converter 1B, thereby forming a communication feedback signal for the communication signal, such as a power feedback signal, an end feedback signal, etc., and the dummy load 7B is connected to the bidirectional converter 1B. when the on or off to change the current through the induction coil L b, thereby transmitting the communication feedback signal to the mobile phone a.
  • the wireless charging devices of the mobile phone A and the mobile phone B are the same, that is, when the mobile phone A has no power, and the mobile phone B has sufficient power, the mobile phone B can also serve as a power supply device.
  • the mobile phone A and the mobile phone B use the corresponding devices for charging and discharging, and will not be described here.
  • the mobile phone A can not only charge the mobile phone B, but also receive the electric energy of the mobile phone B to charge itself, thereby realizing the two-way charging and discharging of the mobile terminals, and the charging power can be independent of the power of the fixed place.
  • the transmission process is realized by the wireless method of electromagnetic induction, and does not depend on the cable connection, so that the charging process can be performed anytime and anywhere.
  • the mobile phone receives power or transmits power outward, and the communication signal or the communication feedback signal transmitted during the power transmission process uses the same bidirectional converter to save space, and the bidirectional converter uses only two.
  • the FET, two capacitors, two diodes and one induction coil have simple circuit and low manufacturing cost.
  • an embodiment of the present invention further provides a mobile terminal, including a battery, any of the wireless charging devices provided in the foregoing embodiments; and a drain of the first FET of the wireless charging device
  • a mobile terminal including a battery, any of the wireless charging devices provided in the foregoing embodiments; and a drain of the first FET of the wireless charging device
  • One end of the first capacitor and a node connected to the negative pole of the first diode are connected to the positive pole of the battery, the source of the second field effect transistor of the wireless charging device and one end of the second capacitor, and the second diode
  • the node to which the positive electrode is connected is connected to the negative electrode of the battery.
  • the mobile terminal can also implement various beneficial technical effects that can be implemented by the wireless charging device.
  • the mobile terminal may be at least one of a mobile phone, a tablet computer, a notebook computer, and a music player, which is not limited by the embodiment of the present invention.
  • an embodiment of the present invention further provides a working method of any of the foregoing wireless charging devices, including:
  • the embodiment of the present invention further provides another working method of the wireless charging apparatus as described above, including:
  • the AC power from the power supply device is received by electromagnetic induction coupling, and the received AC power is converted into DC power to charge the DC power source.
  • the controller can respectively control the conduction and disconnection of the first field effect transistor and the second field effect transistor as needed: when controlling the first field effect transistor and the second field effect transistor When alternately conducting, the bidirectional converter can convert the direct current power supplied by the direct current power source into alternating current power and transmit it to the device to be charged, thereby charging the device to be charged; when the controller controls the first field effect transistor and the second field effect transistor to be simultaneously disconnected When turned on, the bidirectional converter can convert the received alternating current into direct current to charge the direct current power source; that is, the direct current power source connected to the wireless charging device can serve as both a power supplier and a power receiver, and the wireless charging The device does not rely on the grid to replenish power, and the wireless charging device can be wirelessly charged by other power sources, such as terminals, so that the wireless charging device is more flexible in use. There is no such setting in the mobile terminal In the case of the line charging device, bidirectional charging and discharging between the mobile terminals can be
  • the wireless charging device can also be used to communicate with the device to be charged or the power supply device, so that the wireless charging device can perform energy transfer more efficiently with the device to be charged or the power supply device.
  • the working method of the wireless charging device is specifically:
  • the method further includes:
  • the bidirectional converter is controlled to be disconnected from the DC power source to stop charging the device to be charged.
  • the method further includes:
  • the transmitting the first power query signal to the device to be charged includes: transmitting the AC power carrying the first power query signal to the device to be charged, so as to implement the first power query signal to be transmitted to the device to be charged.
  • receiving the first power feedback signal that feeds back the current power of the device to be charged specifically includes: sensing a current change of the induction coil of the device to be charged, and carrying a current power feedback signal that feeds back the current power of the device to be charged, The current of the bidirectional converter changes with the current to realize receiving the first power feedback signal; and extracting the first power feedback signal.
  • stopping charging the device to be charged specifically includes:
  • the first FET and the second FET are all turned off to stop charging the device to be charged.
  • the method may further include:
  • the first FET and the second FET are continuously controlled to continue to charge the device to be charged; when the device to be charged is not detected, the bidirectional converter and the DC power are controlled to be off. On to stop charging the device to be charged.
  • the working method of the wireless charging device is specifically:
  • the AC power from the power supply device is received by electromagnetic induction coupling, and the received AC power is converted into DC power to charge the DC power source.
  • the method may further include:
  • a second power feedback signal that generates and transmits the current power of the feedback DC power source.
  • receiving the second power query signal from the power supply device specifically includes: receiving an alternating current from the power supply device carrying the second power query signal;
  • the second power inquiry signal is extracted from the alternating current carrying the second power inquiry signal.
  • the second power feedback signal for generating the current power of the feedback DC power source specifically includes: controlling the regular load on or off of the dummy load and the bidirectional converter to change the current flowing through the induction coil to form a first
  • the communication feedback signal is transmitted to the power supply device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供了一种无线充电装置与方法以及使用该装置的移动终端,涉及通信技术领域,能够不依赖固定电网补充电量,使得充电更加灵活。所述装置包括:双向变换器和控制器,所述双向变换器用于将所述直流电源的直流电转换为交流电,并通过电磁感应耦合方式将所述交流电向待充电设备传输,以为所述待充电设备充电;或者,用于通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的所述交流电转换为直流电,以为所述直流电源充电。本发明适用于需要充电的移动终端等设备中。

Description

无线充电装置与方法以及使用该装置的移动终端 技术领域
本发明涉及通信技术领域,尤其涉及一种无线充电装置与方法以及使用该装置的移动终端。
背景技术
目前,移动终端(如手机、平板电脑等)的智能化程度越来越高,屏幕越来越大,因此耗电量也就越来越大,而电池容量是有限的,这就需要经常地为其充电。目前主流的移动终端充电技术包括:传统的电源适配器(包括充电器,火车站、机场的充电站等),无线充电托盘以及数码充电伴侣。
采用电源适配器为电池充电的应用最为广泛,但其灵活性也最差,只能在家庭、办公室等固定环境中应用,不能移动充电,需要在固定地点通过接口连接电网进行充电,而且必须准备多个充电器或充电器随身携带才能在不同的环境中对电池充电。
无线充电托盘是一种近场无线充电装置,在使用时也需要将其插在连接电网的插座上,然后将移动终端放在充电托盘的发射源表面上,通过电磁感应为移动终端充电。
上述充电技术在应用过程中,只能通过外围设备在特定地点连接电网来对移动终端进行充电,在实际使用中有一定的限制。
发明内容
本发明的主要目的在于,提供一种无线充电装置与方法以及使用该装置的移动终端,能够实现不依赖固定电网补充电量,使得充电更加灵活。
为达到上述目的,本发明的采用如下技术方案:
本发明的第一方面,提供一种无线充电装置,包括:双向变换器和控制器,所述双向变换器与一直流电源串联;
所述双向变换器包括第一场效应管、第二场效应管、第一电容、第二电容、第一二极管、第二二极管和感应线圈;所述第一场效应管和所述第二场效应管串联后的组合与所述第一电容和所述第二电容串联后的组合以及所述第一二极管和所述第二二极管串联后的组合并联连接在所述直流电源的正负极之间,其中所述第一场效应管的漏极以及所述第一二极管的负极连接所述直流电源的正极,所述第二场效应管的源极与以及所述第二二极管的正极连接所述直流电源的负极;所述感应线圈的一端同时连接在所述第一电容与所述第二电容之间的节点以及所述第一二极管与所述第二二极管之间的连接点上,另一端连接在所述第一场效应管的源极与所述第二场效应管的漏极之间的连接点上;
所述双向变换器用于将所述直流电源的直流电转换为交流电,并通过电磁感应耦合方式将所述交流电向待充电设备传输,以为所述待充电设备充电;或者,用于通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的所述交流电转换为直流电,以为所述直流电源充电;
所述控制器分别与所述第一场效应管的栅极以及所述第二场效应管的栅极连接,所述控制器用于控制所述第一场效应管和所述第二场效应管交替导通,以为所述待充电设备充电;或者,用于控制所述第一场效应管和所述第二场效应管全都断开,以为所述直流电源充电。
在第一方面的第一种可能的实现方式中,所述控制器还用于在为所述待充电设备充电过程中产生第一电量查询信号,所述第一电量查询信号用于查询所述待充电设备的当前电量;
所述双向变换器还用于向所述待充电设备传输所述第一电量查询信号;
所述双向变换器还用于接收反馈所述待充电设备当前电量的第一电量反馈信号;
所述控制器还用于根据所述第一电量反馈信号,当所述待充电设备的当 前电量小于总电量的10%-100%中的任意一个值时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当所述待充电设备的当前电量大于或等于总电量的10%-100%中的任意一个值时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述无线充电装置还包括调制装置,所述调制装置一端与所述直流电源的正极连接,另一端与所述直流电源的负极连接;
所述调制装置用于将所述第一电量查询信号调制到由所述直流电转换成的所述交流电中;
所述双向变换器还用于向所述待充电设备传输所述第一电量查询信号具体包括:所述双向变换器还用于向所述待充电设备传输携带有所述第一电量查询信号的交流电,以实现向所述待充电设备传输所述第一电量查询信号。
结合第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式中,所述控制器还用于产生用于通知所述待充电设备充电结束的第一充电结束信号;
所述双向变换器还用于向所述待充电设备传输所述第一充电结束信号;
所述双向变换器还用于接收所述待充电设备确认充电结束的第一结束反馈信号;
所述控制器还用于当接收到所述第一结束反馈信号时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述控制器还用于产生用于通知所述待充电设备充电结束的第一充电结束信号;
所述双向变换器还用于向所述待充电设备传输所述第一充电结束信号;
所述双向变换器还用于接收所述待充电设备确认充电结束的第一结束反 馈信号;
所述控制器还用于当接收到所述第一结束反馈信号时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
结合第一方面,在第一方面的第五种可能的实现方式中,所述双向变换器还用于在为所述直流电源充电过程中接收来自所述供电设备的第二电量查询信号,所述第二电量查询信号用于查询所述直流电源的当前电量;
所述双向变换器还用于产生并传输反馈所述直流电源当前电量的第二电量反馈信号。
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现方式中,还包括第二检波电路,所述第二检波电路一端与所述直流电源的正极连接,另一端与所述直流电源的负极连接;
所述双向变换器还用于在为所述直流电源充电过程中接收来自所述供电设备的第二电量查询信号具体包括:所述双向变换器还用于在为所述直流电源充电过程中接收来自所述供电设备的携带有所述第二电量查询信号的交流电;
所述第二检波电路用于将所述第二电量查询信号从所述携带有所述第二电量查询信号的交流电中提取出来。
结合第一方面的第五种可能的实现方式,在第一方面的第七种可能的实现方式中,所述无线充电装置还包括假负载,所述假负载一端与所述直流电源的正极连接,另一端与所述直流电源的负极连接;所述假负载用于改变所述无线充电装置的负载,以使流过所述感应线圈的电流变化;
所述双向变换器还用于产生并传输反馈所述直流电源当前电量的第二电量反馈信号具体包括:所述控制器还用于控制所述假负载与所述双向变换器规律性的接通或断开,以使流过所述感应线圈的电流规律性的变化,从而形成所述第二电量反馈信号,向所述供电设备传输。
结合第一方面以及第一方面的第一种至地四种可能的实现方式,在第一方面的第八种可能的实现方式中,还包括检测装置,所述检测装置与所述控制器连接,用于在为所述待充电设备充电过程中检测所述无线充电装置附近是否存在所述待充电设备;
所述控制器还用于当所述检测装置检测到所述待充电设备时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当所述检测装置检测不到所述待充电设备时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
结合第一方面的第八种可能的实现方式,在第一方面的第九种可能的实现方式中,所述检测装置包括霍尔传感器或红外传感器。
本发明的第二方面,提供一种移动终端,包括蓄电池、第一方面以及第一方面的各个可能的实现方式中任一项所述的无线充电装置;所述无线充电装置的第一场效应管的漏极与第一电容的一端、以及第一二极管的负极相连接的节点连接所述蓄电池的正极,所述无线充电装置的第二场效应管的源极与第二电容的一端、以及第二二极管的正极相连接的节点连接所述蓄电池的负极。
本发明的第三方面,提供一种如第一方面以及第一方面的各个可能的实现方式中任一项所述的无线充电装置的工作方法,包括:
控制第一场效应管和第二场效应管交替导通;
将直流电源的直流电转换为交流电,并通过电磁感应耦合方式将所述交流电向待充电设备传输,以为所述待充电设备充电;
或者,
控制第一场效应管和第二场效应管全都断开;
通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的所述交流电转换为直流电,以为直流电源充电。
在第三方面的第一种可能的实现方式中,在所述为所述待充电设备充电过程中,所述方法还包括:
产生第一电量查询信号,所述第一电量查询信号用于查询所述待充电设备的当前电量;
向所述待充电设备传输所述第一电量查询信号;
接收反馈所述待充电设备当前电量的第一电量反馈信号;
根据所述第一电量反馈信号,当所述待充电设备的当前电量小于总电量的10%-100%中的任意一个值时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当所述待充电设备的当前电量大于或等于总电量的10%-100%中的任意一个值时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,在所述产生第一电量查询信号之后,所述方法还包括:
将所述第一电量查询信号调制到由所述直流电转换成的所述交流电中;
所述向所述待充电设备传输所述第一电量查询信号具体包括:向所述待充电设备传输携带有所述第一电量查询信号的交流电,以实现向所述待充电设备传输所述第一电量查询信号。
结合第三方面的第一种可能的实现方式,在第三方面的第三种可能的实现方式中,所述接收反馈所述待充电设备当前电量的第一电量反馈信号具体包括:
感应所述待充电设备的感应线圈的电流变化,所述电流变化的规律中携带有反馈所述待充电设备当前电量的第一电量反馈信号,所述双向变换器的电流随所述电流变化而变化,以实现接收所述第一电量反馈信号;
提取所述第一电量反馈信号。
结合第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述停止为所述待充电设备充电具体包括:
产生用于通知所述待充电设备充电结束的第一充电结束信号;
向所述待充电设备传输所述第一充电结束信号;
接收所述待充电设备确认充电结束的第一结束反馈信号;
当接收到所述第一结束反馈信号时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
结合第三方面、第三方面的各个可能的实现方式,在第三方面的第五种可能的实现方式中,在所述为所述待充电设备充电过程中,所述方法还包括:
检测所述无线充电装置附近是否存在所述待充电设备;
当检测到所述待充电设备时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当检测不到所述待充电设备时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
结合第三方面,在第三方面的第六种可能的实现方式中,在所述为直流电源充电过程中,所述方法还包括:
接收来自所述供电设备的第二电量查询信号,所述第二电量查询信号用于查询所述直流电源的当前电量;
产生并传输反馈所述直流电源当前电量的第二电量反馈信号。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,所述接收来自所述供电设备的第二电量查询信号具体包括:接收来自所述供电设备的携带有所述第二电量查询信号的交流电;
将所述第二电量查询信号从所述携带有所述第二电量查询信号的交流电中提取出来。
结合第三方面的第六种可能的实现方式,在第三方面的第八种可能的实现方式中,所述产生反馈所述直流电源当前电量的第二电量反馈信号具体包括:控制假负载与所述双向变换器规律性的接通或断开,以使流过所述感应线圈的电流规律性的变化,从而形成所述第二通信反馈信号,并向所述供电设备传输。
本发明提供的无线充电装置与方法以及使用该装置的移动终端,其控制器能够根据需要,分别控制第一场效应管和第二场效应管的导通和断开:当控制第一场效应管和第二场效应管交替导通时,双向变换器能够将直流电源提供的直流电转换为交流电,并向待充电设备传输,从而为待充电设备充电;当控制器控制第一场效应管和第二场效应管同时断开时,双向变换器能够将接收到的交流电转换为直流电,从而为直流电源充电;即与无线充电装置相连的直流电源既可以作为电能的提供者,也可以作为电能的接收者,该无线充电装置不依赖电网补充电量,可以通过其他电源,例如终端,通过无线的方式为该无线充电装置充电,这样,该无线充电装置在使用起来更加灵活。在移动终端设置有该无线充电装置时,可以进一步实现移动终端之间的双向充放电。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的无线充电装置的结构示意图;
图2为与无线充电装置相连的直流电源作为电能的提供者,第一场效应管T1导通、第二场效应管T2断开时的电流流向示意图;
图3为与无线充电装置相连的直流电源作为电能的提供者,第二场效应 管T2导通、第一场效应管T1断开时的电流流向示意图;
图4为双向变换器的电容和电感部分的等效电路图;
图5为与无线充电装置相连的直流电源作为电能的接收者,感应线圈L接收的交流电C端电压高于D端电压时,电路中的电流流向示意图;
图6为与无线充电装置相连的直流电源作为电能的接收者,感应线圈L接收的交流电D端电压高于C端电压时,电路中的电流流向示意图;
图7为本发明实施例提供的无线充电装置的另一种结构示意图;
图8为图7的无线充电装置中,第一电量查询信号的调制示意图;
图9为本发明实施例提供的无线充电装置的另一种结构示意图;
图10为本发明实施例提供的无线充电装置的另一种结构示意图;
图11为本发明实施例提供的两个无线充电装置的充电过程示意图;
图12为本发明实施例提供的无线充电装置工作方法的流程图;
图13为本发明实施例提供的无线充电装置工作方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供了一种无线充电装置,包括:双向变换器1和控制器2,双向变换器1与一直流电源3串联;其中,双向变换器1包括第一场效应管T1、第二场效应管T2、第一电容C1、第二电容C2、第一二极管D1、第二二极管D2和感应线圈L,第一场效应管T1和第二场效应管T2串联后的组合、与第一电容C1和第二电容C2串联后的组合、以及第一二极管D1和第二二极管D2串联后的组合并联连接,第一场效应管T1的漏极 与第一电容C1的一端、以及第一二极管D1的负极相连接的节点连接直流电源3的正极,第二场效应管T2的源极与第二电容C2的一端、以及第二二极管D2的正极相连接的节点连接直流电源3的负极;感应线圈L的一端连接在第一电容C1与第二电容C2之间的节点,以及第一二极管D1与第二二极管D2之间的节点上,另一端连接在第一场效应管T1的源极与第二场效应管T2的漏极之间的节点上;双向变换器1用于将直流电源3的直流电转换为交流电,并通过电磁感应耦合方式将交流电向待充电设备传输,以为待充电设备充电;或者,用于通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的交流电转换为直流电,以为直流电源3充电;控制器2分别与第一场效应管T1的栅极以及第二场效应管T2的栅极连接,控制器2用于控制第一场效应管T1和第二场效应管T2交替导通,以为待充电设备充电;或者,用于控制第一场效应管T1和第二场效应管T2全都断开,以为直流电源3充电。
本发明提供的无线充电装置,其控制器2能够根据需要,分别控制第一场效应管T1和第二场效应管T2的导通和断开:当控制第一场效应管T1和第二场效应管T2交替导通时,双向变换器1能够将直流电源3提供的直流电转换为交流电,并向待充电设备传输,从而为待充电设备充电;当控制器2控制第一场效应管T1和第二场效应管T2同时断开时,双向变换器1能够将接收到的交流电转换为直流电,从而为直流电源3充电;即与无线充电装置相连的直流电源3既可以作为电能的提供者,也可以作为电能接收者,该无线充电装置不依赖电网补充电量,可以通过其他电源,例如终端,通过无线的方式为该无线充电装置充电,这样,该无线充电装置在使用起来更加灵活。在移动终端设置有该无线充电装置时,可以进一步实现移动终端之间的双向充放电。
也就是说,本发明实施例提供的无线充电装置可以根据与其相连的直流电源3的电能存储情况以电磁感应耦合方式向待充电设备供电,或者以电磁 感应耦合方式接收供电设备的电能。需要说明的是,其中,直流电源3是可以对外提供电能也可以将电能存储起来的装置,如各种可充电的电池等。下面分别以与该无线充电装置相连的直流电源3作为电能的提供者和电能的接收者为例,详细说明本发明实施例提供的无线充电装置。
当与该无线充电装置相连的直流电源3作为电能的提供者时,电路中的电流流向如图2和图3所示,电能由A、B端输入该无线充电装置,并由C、D端向待充电设备传输。控制器2控制第一场效应管T1和第二场效应管T2以一定的时间间隔交替导通和断开,从而将直流电源3提供的直流电转换成交流电。其中,图2中,第一场效应管T1导通,第二场效应管T2断开,图3中,第二场效应管T2导通,第一场效应管T1断开。
如图2所示,当控制器2控制第一场效应管T1导通、第二场效应管T2断开时,电流流向如图2中带箭头的虚线所示,电流由直流电源3的正极经A端流过第一场效应管T1、感应线圈L、第二电容C2,再经B端流向直流电源3的负极。电流在感应线圈L和第二电容C2之间形成振荡,感应线圈L周围产生磁场,该磁场又使得附近的待充电设备的感应线圈中产生电流,从而实现电能向待充电设备的传输。
由于直流电源3只能提供沿一个方向流动的电流,这样当上述电流持续一段时间后就会进入电路的稳态,第二电容C2将把直流电流隔断从而使电流无法形成振荡并传输出去。因此,为了使直流电转换成交流电并持续向待充电设备传输,流过感应线圈L的电流方向必须在电路进入稳态之前改变。因此,控制器2应该控制第一场效应管T1、第二场效应管T2交替导通,以使流过感应线圈L的电流方向在电路进入稳态之前改变。
也就是说,当控制器2控制第一场效应管T1导通后,第二电容C2和感应线圈L的充放电过程进入稳态之前,控制器2控制第一场效应管T1断开、第二场效应管T2导通,此时的电流流向可以如图3中带箭头的虚线所示。
如图3所示,当控制器2控制第二场效应管T2导通、第一场效应管T1 断开时,电流由直流电源3的正极经过第一电容C1、感应线圈L、第二场效应管T2,流向直流电源3的负极。电流在感应线圈L和第一电容C1之间形成振荡,感应线圈L周围产生磁场,该磁场又使得附近的待充电设备的感应线圈中产生电流,从而实现电能向待充电设备的传输。
通过上述分析可知,以一定的时间间隔交替导通第一场效应管T1和第二场效应管T2,会在感应线圈L两端即输出端C、D之间产生持续变化的电流,该电流的大小持续变化,方向反复反转,即将直流电源3的直流电转换成了交流电,从而激发出电磁场,将电能以电磁感应耦合方式向待充电设备传输。
进一步的,控制器2交替导通第一场效应管T1和第二场效应管T2,电流在感应线圈L和第一电容C1之间或者在感应线圈L和第二电容C2之间形成振荡,振荡的交流电由感应线圈L向待充电设备传输。需要说明的是,由于结构限制,且供电设备的感应线圈与待充电设备的感应线圈之间存在空隙,二者的耦合系数一般情况下都小于1,能量传输时存在漏感。图4为双向变换器的电容和电感部分的等效电路图,如图4所示,漏感在电路中的作用相当于在感应线圈L旁边串联了另一个感应线圈L’,本应加在感应线圈L两端的电压,一部分加在了漏感感应线圈L’的两端,使得感应线圈L两端的电压降低,因而使从感应线圈L发射出去的能量也相应的减小,从而影响能量传输效率。
本发明实施例中,第一电容C1和第二电容C2的另一个作用就是能够减小或消除电路中漏感的影响。具体而言,当控制器2控制第一场效应管T1、第二场效应管T2交替导通时,电流在感应线圈L和第一电容C1之间或者在感应线圈L和第二电容C2之间形成振荡,如图4所示,振荡时,双向变换器的电容和电感部分的电路连接等效于第一电容C1和第二电容C2并联,然后和感应线圈L串联,电路中的漏感相当于在感应线圈L旁边串联了另一个感应线圈L’。当电流在感应线圈L和第一电容C1之间振荡时,第二电容C2处于放电状态,整个电路形成串联谐振,当交流电的频率为串联谐振频率时, 第一电容C1、第二电容C2的并联电容与感应线圈L’的串联整体阻抗为0,消除了漏感感应线圈L’的电抗对电路的影响,从而对电路中的漏感进行了补偿;当交流电的频率接近串联谐振频率时,第一电容C1、第二电容C2的并联电容与感应线圈L’的串联整体阻抗降低,减小了漏感感应线圈L’的电抗对电路的影响,对电路中的漏感进行了部分补偿;同理,当电流在感应线圈L和第二电容C2之间振荡时,第一电容C1处于放电状态,此时,第一电容C1、第二电容C2的并联电容也会消除或减小漏感感应线圈L’的电抗对电路的影响。
当与该无线充电装置相连的直流电源3作为电能的接收者时,此直流电源3相当于电能储存装置,如蓄电池等。此时,如图5和图6所示,感应线圈L相当于次级感应线圈,能够接收供电设备提供的电能。感应线圈L的两端即C、D端为交流电输入端;A、B端为直流电输出端,其中,A端连接直流电源3的正极,B端连接直流电源3的负极。此时,控制器2控制第一场效应管T1和第二场效应管T2断开,即控制器2施加在第一场效应管T1和第二场效应管T2的栅极的电压使得T1和T2中的导电沟道不导通,然而此时,寄生在第一场效应管T1和第二场效应管T2上的体二极管却依然发挥着作用。具体的,第一场效应管T1的体二极管和第二场效应管T2的体二极管分别相当于一个普通的二极管,场效应管的漏极相当于该二极管的负极,场效应管的源极相当于该二极管的正极。那么,第一场效应管T1的体二极管和第二场效应管T2的体二极管以及第一二极管D1和第二二极管D2构成全桥整流电路。
具体的,感应线圈L接收的交流电在某一时刻的电流流向可如图5中带箭头的虚线所示。该交流电在感应线圈L(相当于电源)的C端电压高于D端电压,则电流从C端依次流过第一二极管D1,直流电源(相当于负载为蓄电池)、第二场效应管T2,最后流回D端,形成一个完整的回路。
感应线圈L接收的交流电在另一时刻的电流流向可如图6中带箭头的虚 线所示。该交流电在感应线圈L(相当于电源)的D端电压高于为C端电压,则电流从D端依次流过第一场效应管T1,直流电源(相当于负载为蓄电池),第二二极管D2,最后流回C端,形成一个完整的回路。
通过上述分析可知,不论感应线圈L接收到的交流电方向如何,通过双向变换器1的转换,总是能保证电流由A端流入直流电源3,由B端返回双向变换器,从而将电能存储在直流电源3中。
此双向变换器1仅使用了两个场效应管、两个电容、两个二极管和一个感应线圈,电路简单,制造成本较低;并且,当与无线充电装置相连的直流电源3作为电能的提供者时,第一电容C1和第二电容C2可以交替对电路中产生的漏感进行补偿,从而减少了能量泄露,有效的提高了能量传输效率。
上述实施例中,无线充电装置使得与之相连的直流电源作为电能的提供者或接收者,实现了电能在直流电源与待充电设备或供电设备之间的传输,但本发明不限于此,在本发明的其他实施例中,在进行电能传输的过程中,无线充电装置与待充电设备或供电设备之间还能进行通信,比如关于当前电量情况、确认充电结束等信息进行交流,以便使无线充电装置与待充电设备或供电设备之间可以互相交流情况。
例如,在本发明的一个实施例中,当与无线充电装置相连的直流电源3作为电能的提供者,通过无线充电装置为待充电设备充电时,无线充电装置中的控制器2还能产生用于查询待充电设备当前电量的第一电量查询信号,且双向变换器1还能向待充电设备传输该第一电量查询信号,并接收反馈待充电设备当前电量的第一电量反馈信号;根据第一电量反馈信号反馈的当前电量值,当待充电设备的当前电量小于总电量的10%-100%中的任意一个值时,控制器2继续控制第一场效应管T1和第二场效应管T2交替导通,以继续为该待充电设备充电;当待充电设备的当前电量大于或等于总电量的10%-100%中的任意一个值时,控制器2控制双向变换器1与直流电源3断开,以停止为该待充电设备充电。需要说明的是,总电量的10%-100%中的任意一 个值是由操作者设置的,比如,当设置总电量的10%-100%中的任意一个值为90%时,即当待充电设备的当前电量小于总电量的90%时,继续为该待充电设备充电,当待充电设备的当前电量大于或等于总电量的90%时,停止为该待充电设备充电,至于设置该具体值的方法,本发明实施例对此不作限定。
一般来说,控制器2产生的第一电量查询信号含有直流分量和频率较低的频率分量,出于抗干扰和提高传输效率的考虑,往往不宜直接作为传输信号,因此必须将第一电量查询信号转变成其频带适合在双向变换器1的信道中传输的信号。优选的,可以以传送电能的交流电为载波,将第一电量查询信号调制到该载波中,形成已调信号,并通过双向变换器1将该已调信号发送,从而实现在能量传输的同时完成信息传递。可选的,可以采用调幅、调频或调相的方式,将该第一电量查询信号调制到载波中。具体的,调幅即载波交流电的振幅随着第一通信信号的特征的变换而变化,相应的,调频或调相即载波交流电的频率或相位随着第一通信信号的特征的变换而变化。
例如,在本发明的一个实施例中,如图7所示,无线充电装置还包括调制装置4,该调制装置4一端与直流电源3的正极连接,另一端与直流电源3的负极连接;该调制装置4用于将第一电量查询信号调制到由直流电转换成的交流电中,以使该第一电量查询信号随交流电向待充电设备传输。那么,上述所说的双向变换器1向待充电设备传输第一电量查询信号具体为:双向变换器1向待充电设备传输携带有第一电量查询信号的交流电,从而实现向待充电设备传输第一电量查询信号。可选的,该调制装置4可以为调幅装置、调频装置或者调相装置。
下面以调幅装置为例,详细介绍本发明实施例中调幅装置的调制情况。如图8所示,正弦波a为传送电能的交流电,即由直流电转换成的交流电,方波b为控制器2产生的第一电量查询信号。调幅装置将方波b加载到正弦波a中,使得正弦波a的振幅随方波b的特征的变换而变化,从而形成载有第一电量查询信号的交流电c,并通过感应线圈L将该交流电c向待充电设备传 输。具体的,该调幅装置可以为开关型电路,如双二极管平衡调幅电路、二极管环形调幅电路、二极管桥型调幅电路等,也可以为晶体管电路,如基极调幅电路、集电极调幅电路等,只要能实现调幅就可以,本发明对此不作限定。
如图7所示,无线充电装置还包括第一检波电路5,如滤波器等,该第一检波电路5一端与直流电源3的正极连接,另一端与直流电源3的负极连接;上述所说的双向变换器1接收反馈待充电设备当前电量的第一电量反馈信号具体可以包括:双向变换器1还能感应待充电设备的感应线圈的电流变化,该电流变化的规律中携带有反馈待充电设备当前电量的第一电量反馈信号,双向变换器1的电流随待充电设备的感应线圈的电流变化而变化,从而实现接收该第一电量反馈信号;流过双向变换器1的电流发生变化时,会导致流过第一检波电路5的电流也发生相应的变化,第一检波电路5可以将这种规律性的变化检测出来,即相当于提取了第一电量反馈信号,并将其传输至控制器2。
可选的,当无线充电装置停止为待充电设备充电之前,可以先向待充电设备发送一个第一充电结束信号,以通知待充电设备充电结束;当接收到待充电设备确认充电结束的第一结束反馈信号时,再停止为待充电设备充电。具体的,该第一充电结束信号也是由控制器2产生,并通过双向变换器1向待充电设备传输,具体传输方式与第一电量查询信号的传输方式可以相同,此处不再赘述;待充电设备确认充电结束的第一结束反馈信号也是由双向变换器1接收,具体接收方式与第一电量反馈信号的接收方式可以相同,此处不再赘述。
具体的,可以在直流电源3与双向变换器1之间设置一个场效应管,且该场效应管的栅极与控制器2相连,控制器2通过控制该场效应管的导通或断开,来控制双向变换器1与直流电源3的接通或断开。例如,可以在直流电源3的正极与第一场效应管T1的漏极之间设置一个第三场效应管,且该第 三场效应管的栅极与控制器2相连,当控制器2控制第三场效应管导通时,双向变换器1与直流电源3接通,从而为待充电设备充电;当控制器2控制第三场效应管断开时,双向变换器1与直流电源3断开,从而停止为待充电设备充电。
可选的,在上述任一个实施例中,无线充电装置还包括检测装置,如霍尔传感器或红外传感器或其他类型的传感器等。例如,如图9所示,在图1的基础上,还包括检测装置8,该检测装置8与控制器2连接。在为待充电设备充电过程中,该检测装置8能够检测无线充电装置附近是否存在待充电设备,以防止充电过程中待充电设备突然离开,而该无线充电装置却依然处于向外传输电能的状态,造成不必要的电能损耗。具体的,当检测装置8检测到待充电设备时,继续控制第一场效应管T1和第二场效应管T2交替导通,以继续为该待充电设备充电;当所述检测装置8检测不到待充电设备时,控制双向变换器1与直流电源3断开,以停止为待充电设备充电。
下面以检测装置8为霍尔传感器为例,详细介绍检测装置8的工作过程。由于霍尔传感器对周围磁场的变化较为敏感,因而,可以在无线充电装置上安装磁钢,具体的安装位置不限,只要有合适的空间安装即可;当无线充电装置附近的磁场发生变化时,会被霍尔传感器检测到,可以认为周围存在待充电设备;当无线充电装置附近的磁场没有变化时,则可以认为周围不存在待充电设备,即检测不到该待充电设备。
可选的,当与无线充电装置相连的直流电源3作为电能的接收者,在为直流电源3充电过程中,双向变换器1还能接收供电设备的通信信号,并根据通信信号的内容,向其传输反馈信号,例如,双向变换器1能够接收用于查询直流电源当前电量的第二电量查询信号,还能够产生并向供电设备传输第二电量反馈信号,以反馈直流电源的当前电量;当充电过程即将结束时,还能接收供电设备的第二充电结束信号,还能够产生并向供电设备传输第二结束反馈信号,以确认充电过程结束。
优选的,如图10所示,无线充电装置还可以包括第二检波电路6,如滤波器等,该第二检波电路6一端与直流电源的正极连接,另一端与直流电源的负极连接。双向变换器1接收第二电量查询信号的具体方式可以为:双向变换器1接收来自供电设备的携带有第二电量查询信号的交流电,通过第二检波电路6将该第二通信信号提取出来,并传输至控制器2。
无线充电装置还可以包括假负载7,如电阻、电感或电容等,该假负载7;该假负载可以改变无线充电装置的负载,以使流过感应线圈的电流发生变化。双向变换器产生并向供电设备传输第二电量反馈信号的具体方式可以为:控制器2控制假负载与双向变换器1规律性的接通或断开,以使流过感应线圈L的电流规律性的发生变化,从而形成第二电量反馈信号,并向供电设备传输。
下面,以假负载7为电阻为例,具体介绍第二电量反馈信号的产生及传输过程。假负载7一端与直流电源3的正极连接,另一端与直流电源3的负极连接,也可以看作是该假负载与双向变换器1并联连接。当假负载7为电阻时,可以在电阻旁边串联一个开关,例如场效应管,控制器2通过控制该开关的导通与断开来控制假负载7与双向变换器1接通或断开。当控制器2控制开关导通时,电阻与双向变换器1接通,即在双向变换器1旁边并联了一个电阻。对于感应线圈L而言,感应线圈L所带的负载由原来的双向变换器1变为双向变换器1和其旁边并联的电阻,这相当于增加了无线充电装置的负载,从而增大了流过感应线圈L的电流;当假负载5与双向变换器1断开时,流过感应线圈L的电流恢复到原来的大小。那么,通过规律性的控制假负载5的接通和断开,能使流过感应线圈L的电流规律性的变化,从而形成第二电量反馈信号;当流过感应线圈L的电流规律性变化时,使得流过供电设备的感应线圈的电流也发生规律性的变化,这样,就实现了第二电量反馈信号向供电设备的传输。
当充电过程即将结束时,双向变换器1还能接收供电设备的第二充电结束信号,并且,能够产生并向供电设备传输第二结束反馈信号。优选的,第 二充电结束信号的接收方式与第二电量查询信号的接收方式可以相同,此处不再赘述;第二结束反馈信号的产生与传输方式,与第二电量反馈信号的产生与传输方式可以相同,此处不再赘述。
下面以手机为例,详细介绍本发明的无线充电装置的工作情况。
本实施例中,手机A、手机B中分别设置有上述实施例中的任一种无线充电装置,例如该无线充电装置既可以使手机作为电能的提供者,为待充电设备充电,且充电过程中可以进行信号的传递,并且还可以使手机作为电能的接收者,为自身充电,且充电过程中也可以进行信号的传递。假定手机A电量充足,手机B电量不足,需要充电,则手机A相当于供电设备,手机B相当于待充电设备,手机A可以通过电磁感应耦合方式给手机B充电。将手机A和手机B背靠背放置,则手机A和手机B的无线充电装置的结构示意图如图11所示。
详细的,打开手机A的无线充电装置,调整为向外输出电能的状态,即调整控制器2A控制双向变换器1A与电池3A接通,并控制第一场效应管Ta1、第二场效应管Ta2交替导通,在此,对于如何调整控制器2A不作限定,可以为软件方式或硬件方式。当手机A的检测装置8A检测到手机B后,向其发送电量查询信号,以获知手机B的当前电量,当接收到电量反馈信号,获知手机B的当前电量少于电池3B的总电量的90%时,控制器2A控制无线充电装置继续为手机B充电;充电过程中,手机A可以以一定的时间间隔多次发送该电量查询信号,直到获知手机B的当前电量大于或等于电池3B的总电量的90%时,则向手机B发送充电结束信号,通知手机B充电过程即将结束,当接收到手机B的结束反馈信号后,控制器2A控制双向变换器1A与电池3A断开,结束充电过程;或者,充电过程中,手机B突然离开,检测装置8A检测不到手机B,则控制器2A控制双向变换器1A与电池3A断开,提前结束充电过程,以避免不必要的电能损耗。
相应的,打开手机B的无线充电装置,调整为接收电能的状态,即调整 控制器2B控制双向变换器1B与电池3B接通,并控制第一场效应管Tb1、第二场效应管Tb2全部断开,在此,对于如何调整控制器2B不作限定,可以为软件方式或硬件方式。接收电能过程中,当接收到手机A的电量查询信号时,控制器2B控制假负载7B与无线充电装置规律性的接通或断开,以产生电量反馈信号,向手机A反馈自身的当前电量;当接收到手机A的充电结束信号时,控制器2B控制假负载7B与无线充电装置规律性的接通或断开,以产生确认结束的结束反馈信号,通知手机A已经得知充电过程即将结束,之后,控制器2B控制双向变换器1B与电池3B断开,结束充电过程。
具体的,手机A给手机B充电时,如图11所示,电流流向如带箭头的虚线所示。对于手机A,控制器2A以一定的时间间隔控制第一场效应管Ta1和第二场效应管Ta2交替导通和断开,从电池3A中流出的电流,进入双向变换器1A中后,也以一定的时间间隔分别按照线路1和线路2返回电池3A,这样,在感应线圈La两端产生持续变化的电流,从而在周围产生磁场,使得手机B的感应线圈中Lb中产生电流,从而实现电能向手机B的传输。详细的,当控制器2A控制第一场效应管Ta1导通、第二场效应管Ta2断开时,进入双向变换器1A的电流按照线路2返回电池3A,电流从b端流进感应线圈La;当控制器2A控制第二场效应管Ta2导通、第一场效应管Ta1断开时,进入双向变换器1A的电流按照线路1返回电池3A,电流从a端流进感应线圈La
相应的,对于手机B,控制器2B控制第一场效应管Tb1、第二场效应管Tb2断开,第一场效应管Tb1的体二极管、第二场效应管Tb2的体二极管以及第一二极管Db1、第二二极管Db2形成全桥整流电路,对接收到的交流电进行整流,转换为直流电供电池3B存储。具体的,当感应线圈Lb接收到的交流电c端电压高于d端时,双向变换器1B中,电流流向如线路11所示;当感应线圈Lb接收到的交流电d端电压高于c端时,双向变换器B1中,电流流向如线路22所示。经过双向变换器B1的整流作用,电流总是从e端输入电池3B,供其存储。
进一步的,电能传输过程中,手机A的电量查询信号、充电结束信号等通信信号由控制器2A产生,该通信信号经调幅装置4A的作用,将其加载到由电池A的直流电转换成的交流电中,经双向变换器1A向手机B传输;同时,感应线圈La能感应到手机B中流过感应线圈Lb的电流大小的变化,当手机B以电流大小的变化传递针对该通信信号作出的通信反馈信号时,手机A通过第一检波电路5A,能将这一通信反馈信号提取出来。手机B的双向变换器1B接收到载有通信信号的交流电时,通过第二检波电路6B,能将这一通信信号提取出来,并传输至控制器2B;控制器2B分析这一通信信号后,规律性的控制假负载7B与双向变换器1B的接通或断开,从而形成针对通信信号作出的通信反馈信号,如电量反馈信号、结束反馈信号等,假负载7B与双向变换器1B接通或断开时,能改变通过感应线圈Lb的电流大小,从而向手机A传输该通信反馈信号。
需要说明的是,如图11所示,手机A和手机B的无线充电装置是相同的,也就是说,当手机A没电,而手机B电量充足时,手机B也能作为供电设备,向手机A供电,则手机A和手机B使用相应的器件进行充放电,此处不再赘述。
上述实施例中,手机A既可以给手机B充电,也可以接收手机B的电能为自身充电,从而实现移动终端相互之间的双向充放电,并且,充电时可以不依赖固定场所的电源,电能传输的过程,都是以电磁感应的无线方式实现,不依赖电缆连接,使得充电过程可以随时随地进行。另外,上述实施例中,手机接收电能或向外传输电能,及电能传输过程中传输的通信信号或通信反馈信号,都使用同一个双向变换器,节省空间,且该双向变换器仅使用了两个场效应管、两个电容、两个二极管和一个感应线圈,电路简单,制造成本较低。
相应的,本发明的实施例还提供一种移动终端,包括蓄电池、前述实施例中提供的任一种无线充电装置;且无线充电装置的第一场效应管的漏极与 第一电容的一端、以及第一二极管的负极相连接的节点连接该蓄电池的正极,无线充电装置的第二场效应管的源极与第二电容的一端、以及第二二极管的正极相连接的节点连接该蓄电池的负极。该移动终端也能实现该无线充电装置所能实现的各种有益技术效果,前文已经进行了详细的说明,此处不再赘述。具体而言,该移动终端可以为手机、平板电脑、笔记本电脑、音乐播放器中的至少一种,本发明的实施例对此不做限制。
相应的,如图12所示,本发明的实施例还提供一种如上述任一种无线充电装置的工作方法,包括:
控制第一场效应管和第二场效应管交替导通;
将直流电源的直流电转换为交流电,并通过电磁感应耦合方式将交流电向待充电设备传输,以为待充电设备充电。
或者,如图13所示,本发明的实施例还提供另一种如上述任一种无线充电装置的工作方法,包括:
控制第一场效应管和第二场效应管全都断开;
通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的交流电转换为直流电,以为直流电源充电。
本发明提供的无线充电装置的工作方法,控制器能够根据需要,分别控制第一场效应管和第二场效应管的导通和断开:当控制第一场效应管和第二场效应管交替导通时,双向变换器能够将直流电源提供的直流电转换为交流电,并向待充电设备传输,从而为待充电设备充电;当控制器控制第一场效应管和第二场效应管同时断开时,双向变换器能够将接收到的交流电转换为直流电,从而为直流电源充电;即与无线充电装置相连的直流电源既可以作为电能的提供者,也可以作为电能的接收者,该无线充电装置不依赖电网补充电量,可以通过其他电源,例如终端,通过无线的方式为该无线充电装置充电,这样,该无线充电装置在使用起来更加灵活。在移动终端设置有该无 线充电装置时,可以进一步实现移动终端之间的双向充放电。
进一步的,还可以利用无线充电装置与待充电设备或者供电设备进行通信,以便使无线充电装置能够与待充电设备或者供电设备更有效地进行能量传递。
具体的,当与无线充电装置相连的直流电源作为能量的提供者时,无线充电装置的工作方法具体为:
控制第一场效应管和第二场效应管交替导通;
将直流电源的直流电转换为交流电,并通过电磁感应耦合方式将交流电向待充电设备传输,以为待充电设备充电。
可选的,在为待充电设备充电过程中,该方法还包括:
产生第一电量查询信号,该第一电量查询信号用于查询待充电设备的当前电量;
向待充电设备传输第一电量查询信号;
接收反馈待充电设备当前电量的第一电量反馈信号;
根据第一电量反馈信号,当待充电设备的当前电量小于总电量的10%-100%中的任意一个值时,继续控制第一场效应管和第二场效应管交替导通,以继续为待充电设备充电;当待充电设备的当前电量大于或等于总电量的10%-100%中的任意一个值时,控制双向变换器与直流电源断开,以停止为待充电设备充电。
优选的,在产生第一电量查询信号之后,该方法还包括:
将第一电量查询信号调制到由直流电转换成的交流电中;
上述向待充电设备传输第一电量查询信号具体包括:向待充电设备传输携带有第一电量查询信号的交流电,以实现向待充电设备传输第一电量查询信号。
优选的,接收反馈待充电设备当前电量的第一电量反馈信号具体包括:感应待充电设备的感应线圈的电流变化,电流变化的规律中携带有反馈待充电设备当前电量的第一电量反馈信号,双向变换器的电流随电流变化而变化,以实现接收第一电量反馈信号;提取该第一电量反馈信号。
可选的,停止为待充电设备充电具体包括:
产生用于通知待充电设备充电结束的第一充电结束信号;
向待充电设备传输第一充电结束信号;
接收待充电设备确认充电结束的第一结束反馈信号;
当接收到第一结束反馈信号时,控制第一场效应管和第二场效应管全部断开,以停止为待充电设备充电。
可选的,在上述任一项工作方法中,在为待充电设备充电过程中,该方法还可以包括:
检测无线充电装置附近是否存在待充电设备;
当检测到待充电设备时,继续控制第一场效应管和第二场效应管交替导通,以继续为待充电设备充电;当检测不到待充电设备时,控制双向变换器与直流电源断开,以停止为待充电设备充电。
具体的,当与无线充电装置相连的直流电源作为能量的接收者时,无线充电装置的工作方法具体为:
控制第一场效应管和第二场效应管全都断开;
通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的交流电转换为直流电,以为直流电源充电。
可选的,在为直流电源充电过程中,该方法还可以包括:
接收来自供电设备的第二电量查询信号,该第二电量查询信号用于查询直流电源的当前电量;
产生并传输反馈直流电源当前电量的第二电量反馈信号。
优选的,接收来自供电设备的第二电量查询信号具体包括:接收来自供电设备的携带有第二电量查询信号的交流电;
将第二电量查询信号从携带有第二电量查询信号的交流电中提取出来。
优选的,产生反馈直流电源当前电量的第二电量反馈信号具体包括:控制假负载与双向变换器规律性的接通或断开,以使流过感应线圈的电流规律性的变化,从而形成第二通信反馈信号,并向供电设备传输。
关于本发明提供的双向充电装置的详细的工作方法,前文已经进行了详细的说明,此处不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种无线充电装置,包括:双向变换器和控制器,所述双向变换器与一直流电源串联;其特征在于,
    所述双向变换器包括第一场效应管、第二场效应管、第一电容、第二电容、第一二极管、第二二极管和感应线圈;所述第一场效应管和所述第二场效应管串联后的组合与所述第一电容和所述第二电容串联后的组合以及所述第一二极管和所述第二二极管串联后的组合并联连接在所述直流电源的正负极之间,其中所述第一场效应管的漏极以及所述第一二极管的负极连接所述直流电源的正极,所述第二场效应管的源极与以及所述第二二极管的正极连接所述直流电源的负极;所述感应线圈的一端同时连接在所述第一电容与所述第二电容之间的节点以及所述第一二极管与所述第二二极管之间的连接点上,另一端连接在所述第一场效应管的源极与所述第二场效应管的漏极之间的连接点上;
    所述双向变换器用于将所述直流电源的直流电转换为交流电,并通过电磁感应耦合方式将所述交流电向待充电设备传输,以为所述待充电设备充电;或者,用于通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的所述交流电转换为直流电,以为所述直流电源充电;
    所述控制器分别与所述第一场效应管的栅极以及所述第二场效应管的栅极连接,所述控制器用于控制所述第一场效应管和所述第二场效应管交替导通,以为所述待充电设备充电;或者,用于控制所述第一场效应管和所述第二场效应管全都断开,以为所述直流电源充电。
  2. 根据权利要求1所述的无线充电装置,其特征在于,所述控制器还用于在为所述待充电设备充电过程中产生第一电量查询信号,所述第一电量查询信号用于查询所述待充电设备的当前电量;
    所述双向变换器还用于向所述待充电设备传输所述第一电量查询信号;
    所述双向变换器还用于接收反馈所述待充电设备当前电量的第一电量反馈 信号;
    所述控制器还用于根据所述第一电量反馈信号,当所述待充电设备的当前电量小于总电量的10%-100%中的任意一个值时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当所述待充电设备的当前电量大于或等于总电量的10%-100%中的任意一个值时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
  3. 根据权利要求2所述的无线充电装置,其特征在于,所述无线充电装置还包括调制装置,所述调制装置一端与所述直流电源的正极连接,另一端与所述直流电源的负极连接;
    所述调制装置用于将所述第一电量查询信号调制到由所述直流电转换成的所述交流电中;
    所述双向变换器还用于向所述待充电设备传输所述第一电量查询信号具体包括:所述双向变换器还用于向所述待充电设备传输携带有所述第一电量查询信号的交流电,以实现向所述待充电设备传输所述第一电量查询信号。
  4. 根据权利要求2所述的无线充电装置,其特征在于,所述无线充电装置还包括第一检波电路,所述第一检波电路一端与所述直流电源的正极连接,另一端与所述直流电源的负极连接;
    所述双向变换器还用于接收反馈所述待充电设备当前电量的第一电量反馈信号具体包括:所述双向变换器还用于感应所述待充电设备的感应线圈的电流变化,所述电流变化的规律中携带有反馈所述待充电设备当前电量的第一电量反馈信号,所述双向变换器的电流随所述电流变化而变化,以实现接收所述第一电量反馈信号;
    所述第一检波电路用于提取所述第一电量反馈信号。
  5. 根据权利要求2所述的无线充电装置,其特征在于,所述控制器还用于产生用于通知所述待充电设备充电结束的第一充电结束信号;
    所述双向变换器还用于向所述待充电设备传输所述第一充电结束信号;
    所述双向变换器还用于接收所述待充电设备确认充电结束的第一结束反馈信号;
    所述控制器还用于当接收到所述第一结束反馈信号时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
  6. 根据权利要求1所述的无线充电装置,其特征在于,所述双向变换器还用于在为所述直流电源充电过程中接收来自所述供电设备的第二电量查询信号,所述第二电量查询信号用于查询所述直流电源的当前电量;
    所述双向变换器还用于产生并传输反馈所述直流电源当前电量的第二电量反馈信号。
  7. 根据权利要求6所述的无线充电装置,其特征在于,还包括第二检波电路,所述第二检波电路一端与所述直流电源的正极连接,另一端与所述直流电源的负极连接;
    所述双向变换器还用于在为所述直流电源充电过程中接收来自所述供电设备的第二电量查询信号具体包括:所述双向变换器还用于在为所述直流电源充电过程中接收来自所述供电设备的携带有所述第二电量查询信号的交流电;
    所述第二检波电路用于将所述第二电量查询信号从所述携带有所述第二电量查询信号的交流电中提取出来。
  8. 根据权利要求6所述的无线充电装置,其特征在于,所述无线充电装置还包括假负载,所述假负载一端与所述直流电源的正极连接,另一端与所述直流电源的负极连接;所述假负载用于改变所述无线充电装置的负载,以使流过所述感应线圈的电流变化;
    所述双向变换器还用于产生并传输反馈所述直流电源当前电量的第二电量反馈信号具体包括:所述控制器还用于控制所述假负载与所述双向变换器规律性的接通或断开,以使流过所述感应线圈的电流规律性的变化,从而形成所述 第二电量反馈信号,向所述供电设备传输。
  9. 根据权利要求1-5中任一项所述的无线充电装置,其特征在于,还包括检测装置,所述检测装置与所述控制器连接,用于在为所述待充电设备充电过程中检测所述无线充电装置附近是否存在所述待充电设备;
    所述控制器还用于当所述检测装置检测到所述待充电设备时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当所述检测装置检测不到所述待充电设备时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
  10. 根据权利要求9所述的无线充电装置,其特征在于,所述检测装置包括霍尔传感器或红外传感器。
  11. 一种移动终端,其特征在于,包括蓄电池、权利要求1-10中任一项所述的无线充电装置;所述无线充电装置的第一场效应管的漏极与第一电容的一端、以及第一二极管的负极相连接的节点连接所述蓄电池的正极,所述无线充电装置的第二场效应管的源极与第二电容的一端、以及第二二极管的正极相连接的节点连接所述蓄电池的负极。
  12. 一种如权利要求1-10任一项所述的无线充电装置的工作方法,其特征在于,包括:
    控制第一场效应管和第二场效应管交替导通;
    将直流电源的直流电转换为交流电,并通过电磁感应耦合方式将所述交流电向待充电设备传输,以为所述待充电设备充电;
    或者,
    控制第一场效应管和第二场效应管全都断开;
    通过电磁感应耦合方式接收来自供电设备的交流电,并将接收到的所述交流电转换为直流电,以为直流电源充电。
  13. 根据权利要求12所述的方法,其特征在于,在所述为所述待充电设备充电过程中,所述方法还包括:
    产生第一电量查询信号,所述第一电量查询信号用于查询所述待充电设备的当前电量;
    向所述待充电设备传输所述第一电量查询信号;
    接收反馈所述待充电设备当前电量的第一电量反馈信号;
    根据所述第一电量反馈信号,当所述待充电设备的当前电量小于总电量的10%-100%中的任意一个值时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当所述待充电设备的当前电量大于或等于总电量的10%-100%中的任意一个值时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
  14. 根据权利要求13所述的方法,其特征在于,在所述产生第一电量查询信号之后,所述方法还包括:
    将所述第一电量查询信号调制到由所述直流电转换成的所述交流电中;
    所述向所述待充电设备传输所述第一电量查询信号具体包括:向所述待充电设备传输携带有所述第一电量查询信号的交流电,以实现向所述待充电设备传输所述第一电量查询信号。
  15. 根据权利要求13所述的方法,其特征在于,所述接收反馈所述待充电设备当前电量的第一电量反馈信号具体包括:
    感应所述待充电设备的感应线圈的电流变化,所述电流变化的规律中携带有反馈所述待充电设备当前电量的第一电量反馈信号,所述双向变换器的电流随所述电流变化而变化,以实现接收所述第一电量反馈信号;
    提取所述第一电量反馈信号。
  16. 根据权利要求13所述的方法,其特征在于,所述停止为所述待充电设 备充电具体包括:
    产生用于通知所述待充电设备充电结束的第一充电结束信号;
    向所述待充电设备传输所述第一充电结束信号;
    接收所述待充电设备确认充电结束的第一结束反馈信号;
    当接收到所述第一结束反馈信号时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
  17. 根据权利要求12-16任一项所述的方法,其特征在于,在所述为所述待充电设备充电过程中,所述方法还包括:
    检测所述无线充电装置附近是否存在所述待充电设备;
    当检测到所述待充电设备时,继续控制所述第一场效应管和所述第二场效应管交替导通,以继续为所述待充电设备充电;当检测不到所述待充电设备时,控制所述双向变换器与所述直流电源断开,以停止为所述待充电设备充电。
  18. 根据权利要求12所述的方法,其特征在于,在所述为直流电源充电过程中,所述方法还包括:
    接收来自所述供电设备的第二电量查询信号,所述第二电量查询信号用于查询所述直流电源的当前电量;
    产生并传输反馈所述直流电源当前电量的第二电量反馈信号。
  19. 根据权利要求18所述的方法,其特征在于,所述接收来自所述供电设备的第二电量查询信号具体包括:接收来自所述供电设备的携带有所述第二电量查询信号的交流电;
    将所述第二电量查询信号从所述携带有所述第二电量查询信号的交流电中提取出来。
  20. 根据权利要求18所述的方法,其特征在于,所述产生反馈所述直流电源当前电量的第二电量反馈信号具体包括:控制假负载与所述双向变换器规律 性的接通或断开,以使流过所述感应线圈的电流规律性的变化,从而形成所述第二通信反馈信号,并向所述供电设备传输。
PCT/CN2014/086291 2013-09-11 2014-09-11 无线充电装置与方法以及使用该装置的移动终端 WO2015035924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310412501.6A CN104426205B (zh) 2013-09-11 2013-09-11 无线充电装置与方法以及使用该装置的移动终端
CN201310412501.6 2013-09-11

Publications (1)

Publication Number Publication Date
WO2015035924A1 true WO2015035924A1 (zh) 2015-03-19

Family

ID=52665080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086291 WO2015035924A1 (zh) 2013-09-11 2014-09-11 无线充电装置与方法以及使用该装置的移动终端

Country Status (2)

Country Link
CN (1) CN104426205B (zh)
WO (1) WO2015035924A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104193A1 (en) * 2017-11-21 2019-05-31 North Carolina Agricultural And Technical State University Wireless charge/discharge energy storage device
EP3940917A1 (en) * 2020-07-16 2022-01-19 STMicroelectronics (Shenzhen) R&D Co., Ltd. Wireless charging

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486372A (zh) * 2015-11-26 2016-04-13 成都聚汇才科技有限公司 一种基于驱动式逻辑门保护电路的智能电子水表控制系统
CN105509820A (zh) * 2015-11-26 2016-04-20 成都聚汇才科技有限公司 一种基于三线性缓冲驱动电路的智能电子水表控制系统
CN107623344A (zh) * 2016-07-15 2018-01-23 华为技术有限公司 无线充电电路、无线充电系统及电路控制方法
CN106961212B (zh) * 2017-03-29 2019-09-20 华为技术有限公司 一种电压转换装置及其控制方法
CN108377011B (zh) * 2018-02-27 2021-12-28 无锡华宸控制技术有限公司 充放电电路和充放电系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025182A (zh) * 2010-11-30 2011-04-20 梁一桥 多功能电动汽车动力电池组模块化充放电系统
CN103269114A (zh) * 2013-05-24 2013-08-28 奇瑞汽车股份有限公司 一种双向充电装置和系统
CN103280868A (zh) * 2013-05-24 2013-09-04 奇瑞汽车股份有限公司 一种双向充电装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8698450B2 (en) * 2011-12-27 2014-04-15 Ming-Hsiang Yeh Bidirectional wireless charging and discharging device for portable electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025182A (zh) * 2010-11-30 2011-04-20 梁一桥 多功能电动汽车动力电池组模块化充放电系统
CN103269114A (zh) * 2013-05-24 2013-08-28 奇瑞汽车股份有限公司 一种双向充电装置和系统
CN103280868A (zh) * 2013-05-24 2013-09-04 奇瑞汽车股份有限公司 一种双向充电装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104193A1 (en) * 2017-11-21 2019-05-31 North Carolina Agricultural And Technical State University Wireless charge/discharge energy storage device
US11444487B2 (en) 2017-11-21 2022-09-13 North Carolina Agricultural And Technical State University Wireless charge/discharge flexible energy storage devices
EP3940917A1 (en) * 2020-07-16 2022-01-19 STMicroelectronics (Shenzhen) R&D Co., Ltd. Wireless charging

Also Published As

Publication number Publication date
CN104426205B (zh) 2016-09-28
CN104426205A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2015035924A1 (zh) 无线充电装置与方法以及使用该装置的移动终端
US9948141B2 (en) Wireless power transfer apparatus
US20210006100A1 (en) Wireless power receiver and controlling method thereof
US9954581B2 (en) Apparatuses and related methods for communication with a wireless power receiver
US9641019B2 (en) Wireless power transmitter and method of controlling the same
US10063099B2 (en) Wireless power receiver for controlling wireless power by using switch
US9793747B2 (en) Wireless power receiving device and power control method thereof
WO2018077204A1 (zh) 用于无线电能传输的自适应调谐的系统,装置和方法
KR20130042992A (ko) 무선 전력의 크기를 조정하는 무선 전력 수신기
CN102355035A (zh) 无线充电发送装置、无线充电系统以及无线充电控制方法
CN104885330B (zh) 供电设备以及无线电力发送器
JP2016537951A (ja) 無線電力送受信方法及び装置
JP2013188127A (ja) 無線電力送信装置、無線電力受信装置、及び電力受信方法
CN104953682B (zh) 具有无线充电发射功能与无线充电接收功能的电路及其装置
US10148127B2 (en) Wireless power transmitting apparatus and method thereof
WO2021227652A1 (zh) 无线充电设备和待充电设备
WO2024051086A1 (zh) 一种电力接收装置、电力发送装置及电力传输方法
KR20230129621A (ko) 무접점 전력 수신 장치 및 수신 방법
CN110611359A (zh) 一种通过副边补偿网络切换实现单管逆变恒流恒压无线充电的装置及方法
CN114123537B (zh) 无线充电发射器、无线充电接收器及无线充电系统
KR101996966B1 (ko) 무전전력전송 시스템 및 이의 구동 방법.
CN108767998A (zh) 一种无线充电器
CN105119357A (zh) 一种远距离无线充电设备
JP2017070182A (ja) 受電装置および無線電力伝送システム
CN102651568A (zh) 一种无线充电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844703

Country of ref document: EP

Kind code of ref document: A1