WO2012133442A1 - 変速伝動装置および走行伝動装置 - Google Patents
変速伝動装置および走行伝動装置 Download PDFInfo
- Publication number
- WO2012133442A1 WO2012133442A1 PCT/JP2012/057983 JP2012057983W WO2012133442A1 WO 2012133442 A1 WO2012133442 A1 WO 2012133442A1 JP 2012057983 W JP2012057983 W JP 2012057983W WO 2012133442 A1 WO2012133442 A1 WO 2012133442A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transmission
- shift
- output
- continuously variable
- state
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H47/00—Combinations of mechanical gearing with fluid clutches or fluid gearing
- F16H47/02—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
- F16H47/04—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type the mechanical gearing being of the type with members having orbital motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/62—Gearings having three or more central gears
- F16H3/66—Gearings having three or more central gears composed of a number of gear trains without drive passing from one train to another
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/72—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/44—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
- F16H3/76—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with an orbital gear having teeth formed or arranged for obtaining multiple gear ratios, e.g. nearly infinitely variable
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H47/00—Combinations of mechanical gearing with fluid clutches or fluid gearing
- F16H47/06—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type
- F16H47/08—Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type the mechanical gearing being of the type with members having orbital motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H37/00—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
- F16H37/02—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
- F16H37/06—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
- F16H37/08—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
- F16H37/0833—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
- F16H37/084—Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
- F16H2037/088—Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
- F16H2037/0886—Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H2200/00—Transmissions for multiple ratios
- F16H2200/20—Transmissions using gears with orbital motion
- F16H2200/2002—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
- F16H2200/2005—Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
Definitions
- the present invention relates to a transmission transmission device and a traveling transmission device. More specifically, the present invention relates to a shift transmission device and a traveling transmission device for agricultural machines, but is not limited thereto.
- the speed change transmission includes an input shaft for inputting engine driving force, a hydraulic continuously variable transmission driven by the input shaft, a driving force for the input shaft, and an output of the hydraulic continuously variable transmission. And a planetary transmission unit that outputs a combined driving force and an output rotator that outputs to a traveling device.
- Patent Document 1 includes a pump shaft that penetrates a hydraulic pump of a continuously variable transmission (hydraulic continuously variable transmission), and is connected to a side projecting from the continuously variable transmission of the pump shaft from the engine.
- the driving force is input, the driving force of the pump shaft is transmitted to the composite planetary transmission portion from the side protruding from the continuously variable transmission portion of the pump shaft to the composite planetary transmission portion, and the continuously variable transmission portion is driven by the engine driving force.
- the power and the output from the continuously variable transmission unit are combined by a composite planetary transmission unit.
- a hydraulic continuously variable transmission (hydraulic continuously variable transmission), a planetary gear mechanism (planetary gear) is used as a transmission system that transmits engine output to the front and rear wheels.
- Drive section and two hydraulic clutches, and one of the two hydraulic clutches is connected to form an HST (Hydraulic-Static-Transmission) mode drive system (HST mode transmission), and the engine output is hydraulic
- HST Hydrophilic-Static-Transmission
- HMT mode transmission Hydraulic-Static-Transmission
- HMT mode transmission Hydraulic-Mechanical-Transmission
- the output of the step transmission is input to the planetary gear unit, and the planetary gear unit combines the output of the engine and the output of the hydraulic continuously variable transmission to output a combined drive force, and this combined drive There is transmitted to the front and rear wheels.
- a continuously variable transmission part (hydraulic continuously variable transmission), a planetary transmission in the transmission system which transmits an engine output to a front-wheel differential mechanism and a rear-wheel differential mechanism.
- a forward / reverse switching device the engine output is input to the continuously variable transmission unit and the planetary transmission unit
- the planetary gear unit combines the engine output and the output of the hydraulic continuously variable transmission
- the combined driving force to be output is input to the forward / reverse switching device and converted into the forward driving force and the backward driving force, and then transmitted to the front wheel differential mechanism and the rear wheel differential mechanism.
- the travel transmission device receives a driving force from the engine to change speed, and the hydrostatic continuously variable transmission that acts to shift the output shifting driving force along the HST shift line.
- a planetary transmission unit that acts to input and synthesize the driving force of the gear and the variable speed driving force from the continuously variable transmission unit and to shift the combined driving force that is output along the HMT shift line by the shift of the continuously variable transmission unit.
- the HST setting state for setting the HST transmission for outputting the shift driving force output from the continuously variable transmission unit to the traveling device and the combined driving force output from the planetary transmission unit are output to the traveling device.
- a clutch mechanism that can be switched to an HMT setting state for setting the HMT transmission is provided in the transmission, and the transmission control of the hydraulic pump that constitutes the continuously variable transmission unit is performed based on a transmission command from the transmission operation tool.
- a shift control means for controlling switching the serial clutch mechanism is provided.
- the travel transmission device described above has output characteristics as shown in FIG. 33, and the output speed is changed along the HST shift line by performing a shift operation to the forward side and the reverse side across the neutral state of the continuously variable transmission unit. It changes between the forward side and the reverse side, and is configured so that the aircraft can be switched between forward and backward simply by performing a simple shift operation that does not require a special operation for switching between forward and backward.
- the one described in Patent Document 2 described above is provided with a hydraulic continuously variable transmission, a planetary gear mechanism, and two hydraulic clutches in a transmission system that transmits engine output to the front and rear wheels.
- a drive system in the HST mode is constructed, and the driving force output from the motor output shaft of the hydraulic continuously variable transmission is not transmitted to the planetary gear mechanism but is transmitted to the front and rear wheels.
- Communicated is performed.
- an HMT mode drive system is configured, and the driving force output from the motor output shaft of the hydraulic continuously variable transmission is transmitted to the planetary gear mechanism to be transmitted to the planetary gear.
- the driving force from the hydraulic continuously variable transmission and the driving force from the engine are combined by the mechanism, and the combined driving force output from the planetary gear mechanism is transmitted to the front and rear wheels.
- the travel transmission device receives a driving force from the engine, shifts the gear, and outputs the shifting driving force that shifts along the HST shift line.
- a planetary transmission unit that acts to input and synthesize the driving force of the gear and the variable speed driving force from the continuously variable transmission unit and to shift the combined driving force that is output along the HMT shift line by the shift of the continuously variable transmission unit.
- the HST setting state for setting the HST transmission for outputting the shift driving force output from the continuously variable transmission unit to the traveling device and the combined driving force output from the planetary transmission unit are output to the traveling device.
- a clutch mechanism that can be switched to an HMT setting state for setting the HMT transmission is provided in the transmission, and the transmission control of the hydraulic pump that constitutes the continuously variable transmission unit is performed based on a transmission command from the transmission operation tool.
- a shift control means for controlling switching the serial clutch mechanism is provided.
- the travel transmission device described above has output characteristics as shown in FIG. 50, and the output speed is changed along the HST shift line by performing a shift operation to the forward side and the reverse side across the neutral state of the continuously variable transmission unit. It changes between the forward side and the reverse side, and is configured so that the aircraft can be switched between forward and backward simply by performing a simple shift operation that does not require a special operation for switching between forward and backward.
- the one described in Patent Document 2 described above includes a hydraulic continuously variable transmission, a planetary gear mechanism, and two hydraulic clutches in a transmission system that transmits engine output to the front and rear wheels.
- an HST mode drive system is constructed, and the driving force output from the motor output shaft of the hydraulic continuously variable transmission is not transmitted to the planetary gear mechanism. Transmitted to the wheel.
- an HMT mode drive system is configured, and the driving force output from the motor output shaft of the hydraulic continuously variable transmission is transmitted to the planetary gear mechanism to be transmitted to the planetary gear.
- the driving force from the hydraulic continuously variable transmission and the driving force from the engine are combined by the mechanism, and the combined driving force output from the planetary gear mechanism is transmitted to the front and rear wheels.
- an actuator for controlling a swash plate of a hydraulic motor constituting a continuously variable transmission is provided, and this actuator is operated by a command operation using a changeover switch so that the hydraulic motor is operated at high speed.
- Some are configured to switch to two low speed stages.
- An input shaft for inputting engine driving force, a hydraulic continuously variable transmission driven by the input shaft, and a planetary that outputs a combined driving force by combining the driving force of the input shaft and the output of the hydraulic continuously variable transmission In a speed change transmission device provided with a transmission unit and an output rotator that outputs to the traveling device, the engine driving force is not subjected to synthesis by the planetary transmission unit but is subjected to a shift by a hydraulic continuously variable transmission and transmitted to the output rotator. If the HST mode transmission and the HMT mode transmission in which the engine driving force is combined by the planetary transmission unit and transmitted to the output rotating body can be produced, the output performance as shown in FIG. The
- FIG. 26 is an explanatory diagram showing the relationship between the shift state of the hydraulic continuously variable transmission and the output speed of the output rotor.
- the horizontal axis of FIG. 26 shows the shift state of the hydraulic continuously variable transmission, and the vertical axis shows the rotation direction and output speed of the output rotating body.
- “N” on the horizontal axis indicates the neutral position of the hydraulic continuously variable transmission, and “ ⁇ max” on the horizontal axis indicates the highest speed position in the reverse transmission state of the hydraulic continuously variable transmission.
- “+ Max” indicates the highest speed position in the forward transmission state of the hydraulic continuously variable transmission.
- a solid line FH indicates the output of the forward drive force in a state where the HMT mode transmission is made to appear.
- the forward output speed increases, and the hydraulic continuously variable transmission
- the forward output speed becomes “FV1”.
- the HMT mode transmission is displayed instead of the HST mode transmission, and the HMT mode transmission is maintained.
- the output is set to zero “0” so that the traveling device can be stopped simply by shifting the hydraulic continuously variable transmission.
- the output can be switched between the forward output and the reverse output so that the traveling device can be driven by switching between the forward side and the reverse side.
- the HMT mode transmission can be transmitted with better transmission efficiency than the HST mode transmission, and the forward driving force is transmitted to the output rotating body by the HMT mode transmission, so that the shift range of the reverse output is the forward output speed range. It becomes narrower than the speed change range.
- FIG. 27 shows a hydraulic type in a case where the output of the hydraulic continuously variable transmission and the planetary transmission unit is converted into the forward drive force and the reverse drive force by the forward / reverse switching mechanism and then transmitted to the output rotating body.
- It is explanatory drawing which shows the relationship between the speed change state of a continuously variable transmission, and the output speed of an output rotary body.
- the solid lines FL and FH shown in FIG. 27 indicate the output of the forward drive force, and the solid lines RL and RH indicate the output of the reverse drive force.
- the hydraulic continuously variable transmission when the hydraulic continuously variable transmission reaches the maximum speed position “+ max” in the forward transmission state, the HMT mode transmission is displayed instead of the HST mode transmission, and the HMT mode transmission is maintained. And, while maintaining the forward / reverse switching mechanism in the forward transmission state, the hydraulic continuously variable transmission is shifted from the highest speed position “+ max” in the forward transmission state to the highest speed position “ ⁇ max” in the reverse transmission state.
- the forward output speed increases, and when the hydraulic continuously variable transmission reaches the maximum speed position “ ⁇ max” in the reverse transmission state, the forward output reaches the maximum speed “FV2.”
- the forward / reverse switching mechanism is switched to the reverse transmission state, while maintaining the HST mode transmission, the forward / reverse switching mechanism
- the reverse output speed increases.
- the hydraulic continuously variable transmission reaches the maximum speed position “+ max” in the forward transmission state, the reverse output speed becomes “RV1”.
- the HMT mode transmission is displayed by switching to the HST mode transmission while maintaining the HMT mode transmission. And, while maintaining the forward / reverse switching mechanism in the reverse transmission state, the hydraulic continuously variable transmission operates to shift from the highest speed position “+ max” in the forward transmission state to the highest speed position “ ⁇ max” in the reverse transmission state. As a result, the reverse output speed increases, and when the hydraulic continuously variable transmission reaches the maximum speed position “ ⁇ max” in the reverse transmission state, the reverse output reaches the maximum speed “RV2.”
- the forward drive is performed.
- the forward / reverse switching mechanism is changed from one of the forward transmission state and the reverse transmission state to the other. It is necessary to switch to.
- An object of the present invention is to provide a speed change transmission apparatus that can easily stop and change the forward / reverse switching of the traveling apparatus, can drive the traveling apparatus backward in a wide speed range, and can have a simple structure. It is in.
- FIG. 37 is a graph showing the output characteristics of the speed change transmission in the travel transmission.
- the vertical axis is a speed line indicating the rotational speed of the driving force output from the transmission.
- the horizontal axis passes through the position where the rotational speed of the vertical axis is zero “0”, and is an operation position line L indicating the swash plate position of the hydraulic pump constituting the continuously variable transmission.
- “N” in the operation position line L is a swash plate neutral operation position for setting the continuously variable transmission unit in a neutral state.
- “A” in the operation position line L is a set forward high speed position set as the maximum high speed position on the forward side of the swash plate operated by the shift control.
- “ ⁇ max” of the operation position line L is a set reverse high speed position set as the maximum high speed position on the reverse side of the swash plate operated by the shift control.
- the shift line S through which the rotational speed passes through zero “0” is the no-load HST shift line S indicating the setting of the HST transmission and the change in the output speed of the transmission in the no-load drive.
- a shift line area SF corresponding to a position between the swash plate positions “n” and “a” in the no-load HST shift line S indicates a change in output speed on the forward side. This is a no-load HST shift line SF.
- the shift line area SR corresponding to the position between the swash plate positions “n” and “ ⁇ max” of the no-load HST shift line S indicates a change in the output speed on the reverse side, and the reverse side This is an unloaded HST shift line SR.
- a shift line M continuous to the no-load HST shift line S is an unload HMT shift line M indicating the setting of the HMT transmission and the change in the output speed of the transmission in the no-load drive.
- the shift line SA through which the rotational speed passes zero “0” is a load HST shift line SA indicating the setting of the HST transmission and the change in the output speed of the transmission in the load drive.
- An inclined line MA intersecting the load HST shift line SA is a load HMT shift line MA indicating the setting of the HMT transmission and a change in the output speed of the transmission in the load drive.
- the no-load HST shift line SF and HMT shift line M and the load HST shift line SA and HMT shift line It will be different from MA. That is, the inclination angle of the load HST shift line SA with respect to the operation position line L becomes a gentler inclination angle than the inclination angle of the no-load HST shift line S with respect to the operation position line L.
- FIG. 44 is an explanatory diagram showing switching from HST transmission to HMT transmission. As shown in FIGS. 37 and 44, when the control for switching the setting from the HST transmission to the HMT transmission is performed by setting the output speed of the continuously variable transmission unit to the integral rotation output speed “V”, During actual travel in which the step transmission is driven by a load, the output speed of the continuously variable transmission as the output speed of the transmission is increased along the HST shift line SA of the load, and the integrated rotation appearing speed is increased.
- the output speed immediately after the setting switching from the HST transmission to the HMT transmission is reduced from “V” immediately before the switching to “V0” immediately after the switching, and the speed of the decrease is relatively large. It was. As the driving load increases, the inclination angle of the load with respect to the operation position line L of the HST shift line SA becomes smaller, and the difference between the output speed “V” immediately before switching and the output speed “V0” immediately after switching is greater. Become big.
- An object of the present invention is to provide a traveling transmission device capable of suppressing or eliminating a speed change associated with switching from HST transmission to HMT transmission.
- the hydraulic motor that constitutes the continuously variable transmission unit is configured to be a variable displacement type, includes a sub-transmission actuator that performs a swash plate angle change operation of the hydraulic motor, and operates the sub-transmission operation tool to operate the sub-transmission operation tool.
- the sub-shift actuator is controlled by issuing a shift command to shift the hydraulic motor to the high speed side, it is convenient to travel at high speed during traveling. However, even if the hydraulic motor performs a sub-shift operation so as to shift to a high speed side, the traveling speed may be reduced without increasing.
- FIG. 50 is a graph showing the output characteristics of the transmission.
- the vertical axis is a speed line indicating the rotational speed of the driving force output from the transmission.
- the horizontal axis passes through the position where the rotational speed of the vertical axis is zero “0”, and is an operation position line L indicating the swash plate position of the hydraulic pump constituting the continuously variable transmission.
- “N” in the operation position line L is a swash plate neutral operation position for setting the continuously variable transmission unit in a neutral state.
- “A” in the operation position line L is a set forward high speed position set as the maximum high speed position on the forward side of the swash plate operated by the shift control.
- “ ⁇ max” of the operation position line L is a set reverse high speed position set as the maximum high speed position on the reverse side of the swash plate operated by the shift control.
- the shift line S through which the rotational speed passes through zero “0” is the HST shift line S indicating the change in the output speed of the transmission in the setting of the HST transmission.
- a shift line portion SF corresponding to a position between the swash plate positions “n” and “a” in the HST shift line S indicates a change in the output speed on the forward side, and the HST shift line on the forward side.
- a shift line portion SR corresponding to a position between the swash plate positions “n” and “ ⁇ max” in the HST shift line S indicates a change in the output speed on the reverse side, and the HST shift on the reverse side.
- a shift line M that is continuous with the HST shift line S is an HMT shift line M that indicates a change in the output speed of the transmission in the setting of the HMT transmission.
- the switching control of the setting between the HST transmission and the HMT transmission is performed.
- the transmission in the transmission state in which the HMT transmission is set The continuously variable transmission unit is shifted to the high speed side in the reverse shift range, and the output speed of the continuously variable transmission unit is increased to increase the output speed.
- the transmission in the transmission state in which the HMT transmission is set is output when the continuously variable transmission is shifted to the low speed side in the forward shift range and the output speed of the continuously variable transmission is reduced. Increase the speed.
- the hydraulic motor is shifted to the higher speed side. Then, the continuously variable transmission unit is shifted to increase the output speed, the output speed as the transmission gear is reduced, and the traveling speed is reduced without increasing.
- An object of the present invention is to provide a traveling transmission device that can perform a sub-shift by a hydraulic motor while avoiding the occurrence of the above-described shift trouble.
- the means for solving the problem [1] is as follows. That is, an input shaft for inputting engine driving force, a hydraulic continuously variable transmission driven by the input shaft, and a combined drive by combining the driving force of the input shaft and the output of the hydraulic continuously variable transmission
- a transmission device provided with a planetary transmission unit that outputs force and an output rotating body that outputs to a traveling device
- the planetary transmission unit and the output rotating body are disposed on the same side as the side where the engine connection side of the input shaft is located with respect to the hydraulic continuously variable transmission, and the engine connection side of the input shaft is not hydraulically connected.
- a driving force is input to the planetary transmission unit from a portion between the step transmission and the transmission side.
- the planetary transmission unit and the output rotating body are arranged on the same side as the side where the engine connection side of the input shaft is located with respect to the hydraulic continuously variable transmission, Since the driving force is input to the planetary transmission unit from the portion between the transmission side and the step transmission connection side, the transmission structure from the input shaft to the planetary transmission unit can be made as simple as possible with a short transmission distance.
- the driving force is input to the planetary transmission portion from the portion between the engine connecting side of the input shaft and the hydraulic continuously variable transmission connecting portion, and the portion that outputs the engine driving force of the input shaft to the planetary transmission portion Distance can be made as small as possible, distortion of the input shaft due to the driving load of the planetary transmission section can be made difficult to prevent or increase the size of the input shaft, and the driving load of the planetary transmission section can be used as the pump shaft It can be difficult to engage, and the increase in size of the hydraulic continuously variable transmission can be suppressed or avoided by suppressing or avoiding the increase in size of the pump shaft.
- the input shaft is connected to the pump shaft in a state of being coaxially disposed with respect to the pump shaft of the hydraulic continuously variable transmission, and is integrally connected to the pump shaft so that the sun gear of the planetary transmission unit and the An output rotator is rotatably supported around a rotation axis that is coaxial with the motor axis of the hydraulic continuously variable transmission.
- the hydraulic continuously variable transmission can be driven by the input shaft with a compact interlocking structure in which the input shaft and the pump shaft are arranged coaxially. Further, a compact interlocking structure in which the sun gear, the output rotator, and the motor shaft are coaxially arranged allows transmission from the hydraulic continuously variable transmission to the planetary transmission unit and transmission from the planetary transmission unit to the output rotator.
- an input-side clutch mechanism that switches the planetary transmission unit between an interlocking state and an interlocking off state with respect to the input shaft is provided, and the output rotor is interlocked with respect to the motor shaft of the hydraulic continuously variable transmission.
- An output-side clutch mechanism that switches between the state and the interlocking cut-off state is provided.
- the planetary transmission unit is switched to the interlocked state with respect to the input shaft, and the output rotating body is switched to the interlocked state with respect to the motor shaft, so that the engine driving force input by the input shaft is controlled by the hydraulic continuously variable transmission. Shifting by HST mode transmission can be performed so that the output rotator is output after shifting.
- the engine driving force input by the input shaft is transmitted to the planetary transmission unit, and the engine driving force and hydraulic pressure Shift by HMT mode transmission can be performed so that the output from the continuously variable transmission is combined by the planetary transmission unit and the combined driving force is output from the output rotating body.
- a charge pump for supplying hydraulic oil to the hydraulic continuously variable transmission is provided between the engine connecting side and the hydraulic continuously variable transmission connecting side of the input shaft.
- the drive load of the charge pump is applied between the engine connection side of the input shaft and the hydraulic continuously variable transmission connection side, so that it is difficult to apply to the pump shaft of the hydraulic continuously variable transmission.
- a charge pump that supplies hydraulic oil to the hydraulic continuously variable transmission is provided between the engine connecting side of the input shaft and the input side clutch mechanism.
- the pump can be equipped compactly.
- the charge pump is driven by the driving force of the input shaft, the charge pump can be made compact and simple.
- Solution means corresponding to the problem [2] are as follows. That is, an input shaft for inputting engine driving force, a hydraulic continuously variable transmission driven by the input shaft, and a combined drive by combining the driving force of the input shaft and the output of the hydraulic continuously variable transmission
- a transmission device provided with a planetary transmission unit that outputs force and an output rotating body that outputs to a traveling device, A forward transmission state in which the driving force of the input shaft is converted into a forward driving force and transmitted to the planetary transmission portion, and a reverse transmission state in which the driving force of the input shaft is converted into a backward driving force and transmitted to the planetary transmission portion
- a forward / reverse switching mechanism that can be switched freely is provided.
- the forward / backward switching mechanism is configured to be freely switchable to a neutral state in which transmission between the input shaft and the planetary transmission unit is cut off,
- a clutch mechanism is provided that can switch the interlocking between the motor shaft of the hydraulic continuously variable transmission and the output rotating body between the on state and the off state.
- the forward / reverse switching mechanism when the forward / reverse switching mechanism is switched to the neutral state, and the clutch mechanism is switched so that the motor shaft of the hydraulic continuously variable transmission and the output rotating body are engaged, the input is input by the input shaft.
- the hydraulic continuously variable transmission is driven by the generated engine driving force, and the engine driving force input by the input shaft is not transmitted to the planetary transmission unit, and is output after the engine driving force is shifted by the hydraulic continuously variable transmission.
- the HST mode transmission can be made to appear so as to be transmitted to the rotating body.
- the travel device can be stopped simply by shifting the hydraulic continuously variable transmission to the neutral position, and the operation can be easily performed simply by shifting the hydraulic continuously variable transmission from the neutral position to the forward or reverse side.
- the traveling device can be driven by switching between the forward side and the backward side. Further, when the traveling device is driven backward, the HMT mode transmission on the reverse side can be driven over a wide speed range, for example, in a combine or dozer work vehicle Repeating with good operability and moving backwards at a relatively high speed makes it easy and quick to perform alignment and position change, etc. Further, in order to make the HST mode transmission appear, the forward / reverse switching mechanism can be used as the clutch means to cut off the transmission to the planetary transmission section, and the structure can be simplified.
- the sun gear, the planetary gear, and the ring gear that constitute the planetary transmission unit are interlocked with the motor shaft of the hydraulic continuously variable transmission so as to be integrally rotatable. It is configured.
- the sun gear, the planet gear, and the ring gear of the planetary transmission portion rotate integrally with the motor shaft, so that the relative rotation of the sun gear and the planet gear or the relative rotation of the planet gear and the ring gear does not occur.
- transmission in HST mode transmission can be performed while avoiding generation of power loss due to relative rotation of the sun gear, planetary gear, and ring gear.
- a forward transmission gear supported in a relatively rotatable manner on the input shaft in a state interlocked with the planetary transmission unit;
- a forward clutch that is supported on the input shaft so as to be integrally rotatable and slidable so that the forward transmission gear and the input shaft are switched between an interlocked state and an interlocked off state by being engaged and disengaged with respect to the forward gear.
- a reverse transmission shaft that supports one of the input gear interlocked with the input shaft and the reverse transmission gear interlocked with the planetary transmission unit so as to be relatively rotatable, and the other is rotatably supported integrally; Of the input gear and the reverse transmission gear, the clutch gear that is rotatably supported by the reverse transmission shaft is engaged and disengaged, and the clutch gear and the reverse transmission shaft are interlocked.
- the forward / reverse switching mechanism is configured to include a reverse clutch body that is supported on the reverse transmission shaft so as to be integrally rotatable and slidable so as to be switched between the on state and the interlocking cut state.
- the forward clutch body can be supported by using the input shaft as a support shaft, and as a result, only the reverse transmission shaft can be used as the transmission shaft to be added. Structure can be configured easily.
- the forward / reverse switching mechanism can be constructed simply and inexpensively.
- the forward transmission gear and the reverse transmission gear are connected to the planetary transmission portion with the input gear and a transmission gear supported by the input shaft so as to rotate integrally with the input gear. Placed on the side opposite the side where The forward transmission gear and the reverse transmission gear are meshed with an input gear provided at a position opposite to the side where the input gear and the transmission gear are located with respect to the sun gear of the planetary transmission unit.
- the forward / reverse switching mechanism and the planetary transmission unit are compactly equipped so that the outer peripheral part of the planetary transmission unit enters between the input gear and the reverse transmission gear or between the transmission gear and the forward transmission gear. Can do.
- a hydrostatic continuously variable transmission that operates to input and shift the driving force from the engine and shift the output driving force along the HST shift line, and the driving force from the engine and the continuously variable transmission.
- a shift transmission having a planetary transmission that acts so as to shift the combined drive force from the variable speed drive along the HMT shift line by the shift of the continuously variable transmission; HST setting state for setting the HST transmission for outputting the shift driving force output from the continuously variable transmission unit to the traveling device, and the HMT setting state for setting the HMT transmission for outputting the combined driving force output by the planetary transmission unit to the traveling device.
- a clutch mechanism that can be switched between and is provided in the transmission.
- a swash plate angle sensor for detecting a swash plate angle of the hydraulic pump; In a speed change state in which the continuously variable transmission portion in HST transmission and no-load drive outputs a speed change driving force corresponding to an integral rotation appearing speed at which the sun gear, carrier and ring gear of the planetary transmission portion appear to rotate integrally.
- the hydraulic pump is in a shift state in which the hydraulic pump includes a no-load swash plate angle and the continuously variable transmission unit with HST transmission and set load drive outputs a speed change driving force corresponding to the integrated rotation actual speed.
- a load swash plate angle provided with shift swash plate angle setting means for setting a swash plate angle between the unloaded swash plate angle and the load swash plate angle as a set shift swash plate angle;
- the shift control means is configured to switch the clutch mechanism from the HST set state to the HMT set state when the swash plate angle sensor detects a swash plate angle equal to the set shift swash plate angle.
- the setting is switched from HST transmission to HMT transmission as shown in FIG. 39, for example. That is, the output speed of the continuously variable transmission that increases along the load HST shift line SA does not become the integral rotation actual speed “V”, but the load HST shift line SA and the set shift swash plate angle “
- the setting is switched from the HST transmission to the HMT transmission, and the setting is switched from the HST transmission to the HMT transmission.
- the output speed that the speed change transmission will have immediately after being performed is the output speed [VM corresponding to the intersection “M1” between the HMT shift line MA of the load and the vertical line passing through the set speed change swash plate angle “c”. ]become.
- the output speed “VS” of the continuously variable transmission unit becomes an output speed lower than the integrated rotation appearing speed “V”. Furthermore, the output speed “VM” of the transmission immediately after the setting switching from the HST transmission to the HMT transmission is performed, and the output speed of the continuously variable transmission unit becomes the integrated rotation appearing speed “V”.
- the speed becomes higher than the output speed “V0” provided in the transmission immediately after switching, and the change in travel speed accompanying switching from HST transmission to HMT transmission
- the minute can be equivalent to the speed difference between the output speed “VS” immediately before switching and the output speed “VM” immediately after switching, and this speed difference is output when the setting is switched from HST transmission to HMT transmission.
- the difference between the output speed “V” immediately before switching and the output speed “V0” immediately after switching in the case of performing based on the speed can be made smaller.
- the setting is switched from HST transmission to HMT transmission as shown in FIG. That is, the output speed of the continuously variable transmission that increases along the load HST shift line SA becomes the output speed VS1 corresponding to the intersection “W” between the load HST shift line SA and the load HMT shift line MA.
- the setting is switched from the HST transmission to the HMT transmission, and the output speed “VS1” of the continuously variable transmission immediately before the setting is switched and the transmission immediately after the setting is switched.
- the output speed “VM1” of the motive becomes the output speed corresponding to the intersection “W”.
- the output speed “VS1” of the continuously variable transmission unit immediately before the switching of the setting from the HST transmission to the HMT transmission and the output of the transmission gear immediately after the switching of the setting from the HST transmission to the HMT transmission are performed.
- the speed [VM1] becomes the same, and the change in the traveling speed accompanying the switching of the setting from the HST transmission to the HMT transmission can be eliminated.
- the setting of HST transmission and HMT transmission can be switched, and the forward / reverse switching can be easily performed by simply performing the forward and reverse shift operations with the neutral position of the continuously variable transmission portion interposed therebetween.
- the shift from the speed range of the HST transmission to the speed range of the HMT transmission can be easily performed with little or no shift shock due to the speed reduction and a sense of incongruity.
- the shift swash plate angle setting means is configured to be adjustable so as to change and set the set shift swash plate angle.
- the setting speed change swash plate angle is changed by adjusting the speed change swash plate angle setting means, and the swash plate angle when changing the setting from HST transmission to HMT transmission is changed. It can be suppressed or prevented that the change in the traveling speed due to the switching of the setting to the HMT transmission becomes large due to the change in the driving load.
- the speed change from the speed range of the HST transmission to the speed range of the HMT transmission is performed in a state where there is little or no shift shock or a sense of discomfort. Can do.
- the shift swash plate angle setting means calculates and sets a calculation HST shift line for HST transmission and load driving based on detection information by the swash plate angle sensor, and corresponds to the calculation HST shift line.
- the determined swash plate angle is set as the set speed change swash plate angle.
- the calculation HST shift line and the calculation HMT shift line corresponding to the changing drive load are calculated.
- the swash plate angle corresponding to the intersection of the calculated HST shift line and the calculated HMT shift line is set based on the calculated HST shift line and the calculated HMT shift line, and switching from HST transmission to HMT transmission is performed.
- the swash plate angle at which the traveling speed immediately before switching is the same as the traveling speed immediately after switching is determined and set as the set speed swash plate angle, and switching from HST transmission to HMT transmission is performed. It is possible to reduce or eliminate a change in traveling speed associated with switching to HMT transmission.
- a hydrostatic continuously variable transmission that operates to input and shift the driving force from the engine and shift the output driving force along the HST shift line, and the driving force from the engine and the continuously variable transmission.
- a shift transmission having a planetary transmission that acts so as to shift the combined drive force from the variable speed drive along the HMT shift line by the shift of the continuously variable transmission; HST setting state for setting the HST transmission for outputting the shift driving force output from the continuously variable transmission unit to the traveling device, and the HMT setting state for setting the HMT transmission for outputting the combined driving force output by the planetary transmission unit to the traveling device.
- a clutch mechanism that can be switched between and is provided in the transmission.
- the traveling transmission device of an agricultural machine comprising shift control means for performing shift control of the hydraulic pump that constitutes the continuously variable transmission unit based on a main shift command from a main shift operation tool, and switching and controlling the clutch mechanism
- the hydraulic motor constituting the continuously variable transmission unit is configured in a variable displacement type, A sub-shift operating tool that is manually maneuverable and issues a sub-shift command, and a sub-shift actuator that performs a swash plate angle change operation of the hydraulic motor;
- the shift control means is configured to control the sub-shift actuator to shift the hydraulic motor to a high speed side based on the sub-shift command;
- the transmission transmission is set to the HMT transmission, and the combined driving force output to the traveling device is increased by a shift operation to the high speed side in the reverse transmission range of the continuously variable transmission, and the continuously variable transmission
- the restraint is released so as to allow the control of the auxiliary shifting actuator by the
- the shift control means controls the sub-shift actuator to shift the hydraulic motor to the high speed side. . Since the hydraulic motor is shifted to the high speed side in the transmission state where the output speed of the transmission is increased by increasing the output speed of the continuously variable transmission, the output speed of the transmission is increased. In response, the speed increases.
- the shift control means does not perform the shift operation to the high speed side of the hydraulic motor even if the shift control means makes a check for the shift control means and operates the sub shift operating tool to issue the sub shift command. Occurrence of a situation in which the hydraulic motor is shifted to the high speed side and the output speed of the transmission is reduced even though the output speed of the transmission is increased due to the reduction of the output speed of the continuously variable transmission. Can be avoided.
- the setting of HST transmission and HMT transmission can be switched, and the forward / backward switching of the machine can be easily performed by simply performing the shifting operation to the forward side and the reverse side across the neutral state of the continuously variable transmission.
- it is possible to perform the sub-shift by the shifting operation of the hydraulic motor it is possible to easily shift the gear so that there is no trouble of decelerating despite the operation of the sub-shift operating tool.
- the reference swash plate angle is set such that the swash plate angle of the hydraulic pump positioned at a low speed side by a set angle with respect to the swash plate angle for performing switching control of the setting from HST transmission to HMT transmission.
- plate angle setting means When the speed change transmission is set to the HST transmission and the swash plate angle of the hydraulic pump is lower than the reference swash plate angle, the check control means releases the check, and the speed change transmission moves to the HST transmission. Is set and the swash plate angle of the hydraulic pump is on the higher speed side than the reference swash plate angle, the check control means is used for checking.
- a sub-shift for shifting the hydraulic motor to the high speed side is performed with the HST transmission set, and the output speed increases along the HST shift line of the sub-shift setting that deviates from the HST shift line when there is no sub-shift setting.
- the intersection between the HST transmission line and the HMT transmission line, which has no sub-shift setting for switching the setting from HST transmission to HMT transmission does not occur, and the setting is switched from HST transmission to HMT transmission. This makes it difficult to smoothly switch the clutch mechanism for performing the operation.
- the check control means enters a check preparation state with respect to the shift control means, and the auxiliary control by the shift operation to the high speed side of the hydraulic motor is performed. Shift setting cannot be performed, and an intersection of the HST shift line and the HMT shift line without the sub shift setting is generated reliably, and the switching of the clutch mechanism for smoothly switching the setting from the HST transmission to the HMT transmission is facilitated. Can be done.
- the clutch mechanism is smoothly switched to perform the shift from the speed range of the HST transmission to the speed range of the HMT transmission. It can be done lightly so that shock does not easily occur.
- the output speed according to the main shift command of the shift transmission is increased by the sub shift command.
- the hydraulic pump is shift-controlled based on the main shift command and the sub-shift command.
- FIG. 3 is a block diagram showing a speed change operation device. These are longitudinal cross-sectional front views which show the speed change transmission apparatus provided with 1st another implementation structure. These are explanatory drawings which show the relationship between the operation state of a hydraulic continuously variable transmission, a forward clutch, a reverse clutch, and the clutch mechanism of an output side, and the transmission form of a transmission. These are explanatory drawings which show the output speed of the speed change transmission apparatus provided with 1st another implementation structure. These are block diagrams which show the speed change operation apparatus which carries out speed change operation of the speed change transmission apparatus provided with 1st another implementation structure.
- FIG. 3 is a block diagram showing a speed change operation device.
- FIG. 3 is a block diagram showing a speed change operation device. These are graphs showing the output characteristics of the transmission.
- FIG. 5 is a flowchart of setting switching control. These are explanatory drawings which show the switching of the setting from HST transmission to HMT transmission.
- FIG. 3 is a block diagram showing a speed change operation device. These are top views which show the operation position of the main transmission operating tool.
- a combine is configured to be self-propelled by a pair of left and right crawler type traveling devices 1, 1, and is equipped with a riding type driving unit 2, and a body frame of the traveling body 3, a cutting part 4 connected to the front part of the machine frame 3, a threshing device 5 provided behind the cutting part 4 on the rear side of the machine body frame 3, and a lateral side of the threshing apparatus 5 on the rear side of the machine body frame 3. And a grain tank 6 arranged and provided on the side, and harvesting rice, wheat and the like.
- the cutting unit 4 includes a cutting unit frame 4a that extends from the front portion of the body frame 3 so as to be able to swing up and down in the forward direction.
- the weeding tool 4b provided at the front end of the mowing unit 4 moves up and down to a lowering work position where the weeding tool 4b is lowered near the ground, and a rising non-working position where the weeding tool 4b is raised from the ground.
- the mowing unit 4 causes the planted culm to be harvested by the weeding tool 4b to be introduced into the path, and the planting that has been induced and introduced into the path.
- the threshing device 5 sandwiches the stock side of the harvested cereal meal from the supply device 4e by the threshing feed chain 5a and conveys it toward the rear of the machine body, and supplies the tip side of the harvested cereal meal to the handling room (not shown). The threshing process is performed, and the threshing grain is fed into the grain tank 6.
- the engine 8 is provided below the driver seat 2 a provided in the driving unit 2, and the driving force output from the engine 8 is driven by a pair of left and right traveling by the transmission structure 10 including the transmission case 11 provided at the front end of the body frame 3. It is configured to transmit to the devices 1 and 1.
- FIG. 2 is a front view showing a schematic structure of the transmission structure 10.
- the transmission structure 10 is provided with the engine driving force from the output shaft 8a of the engine 8 on the lateral side of the upper end portion of the transmission case 11 via the transmission mechanism 12 provided with the transmission belt 12a.
- Input to the transmission transmission device 20 and the output of the transmission transmission device 20 is input to the traveling mission 13 housed in the mission case 11 to the left of the pair of left and right steering clutch mechanisms 14, 14 provided in the traveling mission 13.
- the power is transmitted from the steering clutch mechanism 14 to the drive shaft 1a of the left traveling device 1, and is transmitted from the right steering clutch mechanism 14 to the drive shaft 1a of the right traveling device 1.
- the transmission structure 10 includes a cutting mission 15 incorporated in the transmission case 11, and the output of the transmission 20 is input to the cutting mission 15 and transmitted from the cutting output shaft 16 to the drive shaft 4 f of the cutting unit 4.
- the transmission 20 is connected to the planetary transmission unit 20 ⁇ / b> A having a transmission case 21 having a lateral side connected to the upper end side of the transmission case 11, and the transmission case 11 of the transmission case 21.
- a hydraulic continuously variable transmission 30 having a casing 31 connected to the lateral side opposite to the connecting side is provided.
- the transmission case 21 houses a main case portion 21a that accommodates the planetary transmission unit 40 and the transmission mechanism 50, a coupling portion between the input shaft 22, the transmission shaft 23, and the hydraulic continuously variable transmission 30, and the transmission case 21 and the casing.
- the connection case part 21b which connects the 31 port blocks 34 is provided.
- the transmission case 21 is connected to the transmission case 11 at a bulging portion 21c that is bulged outwardly on the lateral side of the lower side surface where the output rotor 24 of the main case portion 21a is located.
- the size of the connecting case portion 21b in the vertical direction of the traveling machine body is smaller than the size of the main case portion 21a in the vertical direction of the traveling machine body.
- the main case portion 21a is formed so that the longitudinal cross-sectional shape when viewed in the longitudinal direction of the fuselage is a longitudinally long shape, and the casing 31 is formed such that the longitudinal sectional shape when viewed in the longitudinal direction of the aircraft is longitudinally elongated. While the portion 20A and the hydraulic continuously variable transmission 30 are arranged in the lateral direction of the vehicle body, the lateral width of the vehicle body as a whole of the transmission transmission device 20 is reduced, and the transmission transmission device 20 is arranged on the left and right sides of the traveling vehicle body so as not to protrude laterally outward. The direction is connected to the lateral side of the mission case 11 in a compact state.
- the lower side surface of the casing 31 is formed with an inclined surface 31A inclined toward the inner side of the machine body at the lower end side, and a bulging portion 31B for supporting the bearing of the motor shaft 33a is formed on the inclined surface 31A. Is being made more compact.
- an oil filter 20F is disposed on the upper surface of the casing 31 so as to avoid protrusion of the oil filter 20F to the lateral outer side, thereby achieving further compactness.
- the planetary transmission unit 20A includes a laterally-facing input shaft 22 that is rotatably supported on the upper end side of the transmission case 21, and a transmission that is rotatably supported in parallel or substantially parallel to the input shaft 22 on the lower end side of the transmission case 21.
- the input shaft 22 is arranged so as to be arranged coaxially with the pump shaft 32a of the hydraulic continuously variable transmission 30.
- the input shaft 22 is configured to be coupled to the output shaft 8a of the engine 8 via the transmission mechanism 12 on the side projecting laterally outward from the transmission case 21, and the joint on the opposite side to the side coupled to the engine 8
- the hydraulic continuously variable transmission 30a is connected to the pump shaft 32a of the hydraulic continuously variable transmission 30 so as to be freely rotatable.
- the engine driving force is input via the transmission mechanism 12, and the hydraulic continuously variable transmission is driven by the engine driving force.
- the hydraulic pump 32 of the machine 30 is driven.
- the output rotating body 24 is arranged on the same side as the side where the engine connection side of the input shaft 22 is located with respect to the hydraulic continuously variable transmission 30 so as to be aligned coaxially with the motor shaft 33a of the hydraulic continuously variable transmission 30.
- the output rotator 24 is configured to be interlocked with the input portion of the traveling mission 13 on the side projecting laterally outward from the speed change case 21, and receives the driving force from the planetary transmission portion 40 and the hydraulic continuously variable transmission 30. Output to the pair of left and right traveling devices 1, 1 via the traveling mission 13.
- the hydraulic continuously variable transmission 30 includes a hydraulic pump 32 in which a pump shaft 32a is rotatably supported on an upper end side of a casing 31, and a hydraulic motor in which a motor shaft 33a is rotatably supported on a lower end side of the casing 31. 33.
- the hydraulic pump 32 is constituted by a variable displacement axial plunger pump, and the hydraulic motor 33 is constituted by an axial plunger motor.
- the hydraulic motor 33 is driven by pressure oil that is discharged by the hydraulic pump 32 and supplied through an oil passage formed inside the port block 34.
- the hydraulic continuously variable transmission 30 is supplied with supplementary hydraulic fluid by a charge pump 90 provided at the end of the pump shaft 32a.
- the charge pump 90 includes a rotor 90a that is attached to the pump shaft 32a so as to be integrally rotatable, and a pump casing 90b that is detachably connected to the casing 31.
- the hydraulic continuously variable transmission 30 is switched between the forward transmission state, the reverse transmission state, and the neutral state by performing an angle changing operation of the swash plate 32b included in the hydraulic pump 32.
- the hydraulic continuously variable transmission 30 is operated to switch to the forward transmission state, the engine driving force transmitted from the input shaft 22 to the pump shaft 32a is converted into the forward driving force and output from the motor shaft 33a for reverse transmission.
- the engine driving force transmitted from the input shaft 22 to the pump shaft 32a is converted into the reverse driving force and output from the motor shaft 33a, and the engine is driven in both the forward transmission state and the reverse transmission state.
- the driving force is steplessly shifted and output.
- the hydraulic continuously variable transmission 30 is switched to the neutral state, the output from the motor shaft 33a is stopped.
- the planetary transmission unit 40 is disposed on the same side as the side where the engine connection side of the input shaft 22 is positioned with respect to the hydraulic continuously variable transmission 30 and is positioned between the motor shaft 33 a and the output rotating body 24. .
- the planetary transmission unit 40 is configured to freely rotate a sun gear 42 supported by the transmission shaft 23, a plurality of planetary gears 43 that mesh with the sun gear 42, a ring gear 44 that meshes with each planetary gear 43, and a plurality of planetary gears 43.
- the carrier 41 includes an arm portion 41a that rotatably supports the planetary gear 43 at the extended end portion, and a cylindrical shaft portion 41b to which the base end sides of the plurality of arm portions 41a are connected.
- the transmission shaft 23 is rotatably supported via a bearing.
- the transmission shaft 23 and the motor shaft 33a are connected so as to be integrally rotatable via a joint 23a, and the transmission shaft 23 and the sun gear 42 are connected so as to be integrally rotatable via a spline structure.
- the shaft 33a is interlocked with the shaft 33a so as to be integrally rotatable.
- the ring gear 44 and the output rotating body 24 are integrally rotatable by an annular planetary interlocking body 26 and an annular output side interlocking body 27 that are externally fitted to the transmission shaft 23 so as to be relatively rotatable side by side in the axial direction. It is linked to. That is, the planetary interlocking body 26 includes a plurality of engagement arm portions 26 a that extend radially and integrally from the outer peripheral portion of the planetary interlocking body 26. The plurality of engagement arm portions 26 a are engaged with a plurality of locations of the ring gear 44, and the planetary interlocking body 26 is interlocked with the ring gear 44 so as to be integrally rotatable.
- the output-side interlocking body 27 is engaged with the planetary-side interlocking body 26 so as to be integrally rotatable with an engaging claw 27a, and is integrally engaged with the output rotating body 24 with a spline structure.
- the interlocking body 26 and the output rotating body 24 are connected so as to be rotatable together.
- the planetary interlocking body 26 is supported on the transmission shaft 23 through a bearing so as to be relatively rotatable.
- the output side interlocking body 27 is rotatably supported by the transmission case 21 via a bearing.
- the transmission mechanism 50 is a transmission gear 52 that is supported on the input shaft 22 through a needle bearing so as to be relatively rotatable while meshing with an input gear 41c of the carrier 41 that is provided rotatably on the cylindrical shaft portion 41b of the carrier 41. And an input side clutch mechanism 55 provided across the transmission gear 52 and the input shaft 22.
- the input-side clutch mechanism 55 includes a clutch body 56 that is supported on the input shaft 22 so as to be integrally rotatable and slidable, and a clutch mechanism main body provided across one end side of the clutch body 56 and the lateral side portion of the transmission gear 52. 57.
- the clutch body 56 is slid and operated by a hydraulic piston 58 fitted in the end of the clutch body 56.
- the clutch mechanism main body 57 is configured as a meshing clutch so that the engagement claw provided on the clutch body 56 and the engagement claw provided on the transmission gear 52 are engaged and disengaged to switch between the on state and the off state. .
- the input-side clutch mechanism 50 is switched to the input state so that the input shaft 22 and the transmission gear 52 are interlocked so as to be integrally rotatable when the clutch mechanism main body 57 is switched to the engaged state.
- the carrier 41 is switched to the interlocked state with respect to the input shaft 22.
- the input-side clutch mechanism 50 is switched to the disconnected state so that the input shaft 22 and the transmission gear 52 are disengaged when the clutch mechanism main body 57 is switched to the disconnected state, and the carrier 41 of the planetary transmission unit 40 is moved. Switch to the interlocking cut-off state for the input shaft 22.
- the planetary transmission unit 40 is switched from the portion located between the engine connecting side and the continuously variable transmission connecting side of the input shaft 22 by switching the input side clutch mechanism 50 to the engaged state.
- a driving force is input to the carrier 41 via the transmission mechanism 50.
- the planetary transmission unit 40 is disconnected from the input shaft 22 when the input side clutch mechanism 50 is switched to the disengaged state.
- An output side clutch mechanism 60 having a clutch body 61 fitted on the transmission shaft 23 is provided across the sun gear 42 of the planetary transmission unit 40 and the planetary side interlocking body 26.
- the clutch body 61 is slidably operated toward the sun gear 42 against the energizing spring 62 when pressure oil is supplied to an oil chamber formed on the inner peripheral side of the clutch body 61, so that the clutch body 61 is in the cut position.
- the urging spring 62 is slid toward the planetary interlocking body 26 to switch to the entry position.
- the clutch pawl 61 a provided on the clutch body 61 and the clutch pawl provided on the planetary interlocking body 26 are engaged with each other, so that the clutch body 61 is integrated with the planetary interlocking body 26. Connect freely.
- the clutch body 61 is slid while maintaining a state in which the clutch body 61 is engaged with the sun gear 42 by the engaging claws 61b so as to be integrally rotatable.
- the clutch pawl 61a is disengaged from the planetary interlocking body 26.
- the output side clutch mechanism 60 disconnects the sun gear 42 and the planetary side interlocking body 26 from each other, thereby disconnecting the motor shaft 33a from the output rotating body 24.
- the first transmission state in which the ring gear 44 of the planetary transmission unit 40 and the output rotator 24 are interlocked so as to be integrally rotatable appears, and the combined driving force of the planetary transmission unit 40 can be output from the output rotator 24. To do.
- the output-side clutch mechanism 60 rotates the motor shaft 33a integrally with the output rotating body 24 by interlocking the sun gear 42 and the planetary-side interlocking body 26 so that the clutch body 61 is switched to the entering position.
- the second transmission state to be freely interlocked appears, the output of the output by the hydraulic continuously variable transmission 30 can be output from the output rotating body 24, and the sun gear 42 and the transmission shaft 23 are interlocked so as to be integrally rotatable, and the ring gear. 44 and the planetary-side interlocking body 26 are interlocked so as to be integrally rotatable, so that the sun gear 42, the planetary gear 43, and the ring gear 44 can rotate integrally with the motor shaft 33a so that the planetary gear 43 does not rotate. To.
- the output-side clutch mechanism 60 keeps the ring gear 44 of the planetary transmission unit 40 and the output rotating body 24 in an interlocked state, while the sun gear 43 and the output rotating body 24 of the planetary transmission unit 40 are in an interlocked on state and an interlocked off state. Switch.
- the input side clutch mechanism 55 is switched to the on state and the output side clutch mechanism 60 is switched to the off state, so that the driving force of the input shaft 22 is transmitted via the transmission mechanism 50.
- the output from the motor shaft 33 a of the hydraulic continuously variable transmission 30 is input to the sun gear 42 via the transmission shaft 23, and the driving force of the input shaft 22 and the output of the hydraulic continuously variable transmission 30 are input to the carrier 41.
- a transmission switching clutch mechanism 70 is configured by including an input side clutch mechanism 55 and an output side clutch mechanism 60.
- the transmission switching clutch mechanism 70 is switched between the single transmission state and the combined transmission state when the input side clutch mechanism 55 and the output side crack mechanism 60 are switched.
- FIG. 5 is an explanatory diagram showing the relationship between the operation state of the input side clutch mechanism 55 and the output side clutch mechanism 60, the operation state of the transmission switching clutch mechanism 70, and the transmission mode of the transmission 20.
- “OFF” shown in FIG. 5 indicates the disengaged state of the input side clutch mechanism 55 and the output side clutch mechanism 60
- “ON” indicates the engaged state of the input side clutch mechanism 55 and the output side clutch mechanism 60.
- the transmission switching clutch mechanism 70 is switched to the single transmission state when the input side clutch mechanism 55 is switched to the disengaged state and the output side clutch mechanism 60 is switched to the on state.
- the side clutch mechanism 55 is switched to the engaged state and the output side clutch mechanism 60 is switched to the disconnected state, the combined transmission state is switched.
- FIG. 3 is a longitudinal front view showing the transmission 20 in the HMT (Hydraulic Mechanical Transmission) mode transmission.
- HMT Hydro Mechanical Transmission
- the transmission switching clutch mechanism 70 when the transmission switching clutch mechanism 70 is switched to the combined transmission state, the driving force of the input shaft 22 and the output of the hydraulic continuously variable transmission 30 are combined by the planetary transmission unit 40, and the planetary transmission is performed.
- HMT mode transmission in which the combined driving force by the unit 40 is transmitted to the output rotator 24 is caused to appear on the transmission 20.
- the transmission 20 shifts the engine driving force input to the input shaft 22 by both the hydraulic continuously variable transmission 30 and the planetary transmission unit 40, and transmits the driving force after the shift to the ring gear. 44 from the output rotator 24 to the pair of left and right traveling devices 1, 1.
- FIG. 4 is a longitudinal front view showing the transmission 20 in HST (Hydraulic Static Transmission) mode transmission.
- HST Hydrophilic Static Transmission
- the transmission 20 When in the HST mode transmission state, the transmission 20 is not shifted by the planetary transmission unit 40 of the hydraulic continuously variable transmission 30 and the planetary transmission unit 40, and the hydraulic continuously variable transmission 30, the driving force after the shift is transmitted from the motor shaft 33a to the output rotating body 24 via the transmission shaft 23, the sun gear 42, the clutch body 61, the planetary side interlocking body 26 and the output side interlocking body 27, This is transmitted from the output rotating body 24 to the pair of left and right traveling devices 1, 1.
- the transmission switching clutch mechanism 70 is in a state where transmission from the input shaft 22 to the carrier 41 of the planetary transmission unit 40 is cut off when the transmission 20 is operated in the HST mode transmission state, and the sun gear 42 is in the transmission shaft 23.
- the ring gear 44 is linked to the motor shaft 33a via the planetary side linkage body 26, the clutch body 61, the sun gear 42 and the transmission shaft 23 so as to be integrally rotatable. Therefore, the sun gear 42, the planetary gear 43, and the ring gear 44 of the planetary transmission unit 40 are operated so as to rotate integrally with the motor shaft 33a, and the transmission 20 is in a state in which the HST mode transmission appears.
- the planetary gear 43 does not rotate, that is, the relative rotation between the sun gear 42 and the planetary gear 43 and the planetary gear 43 Without causing relative rotation Gugiya 44, for transmitting the output of the motor shaft 33a of the hydraulic CVT 30 to the output rotor 24.
- FIG. 6 shows the state of the shift of the hydraulic continuously variable transmission 30 and the output speed of the output rotating body 24 of the transmission transmission 20 in a state where the engine 8 is accelerator-set so as to output a driving force at a set constant speed. It is explanatory drawing which shows a relationship.
- the horizontal axis in FIG. 6 indicates the shift state of the hydraulic continuously variable transmission 30, “n” indicates the neutral position of the hydraulic continuously variable transmission 30, and “ ⁇ max” indicates the hydraulic continuously variable transmission. 30 indicates the highest speed position in the reverse transmission state, and “+ max” indicates the highest speed position in the forward transmission state of the hydraulic continuously variable transmission 30.
- the vertical axis in FIG. 6 indicates the output speed by the output rotating body 24.
- a solid line FH shown in FIG. 6 indicates an output when the input side clutch mechanism 55 is operated in the engaged state and the output side clutch mechanism 60 is operated in the disengaged state, that is, when the transmission transmission 20 is operated in the HMT mode transmission state. Indicates the change in speed.
- the hydraulic continuously variable transmission 30 is in the most reverse transmission state.
- the output speed becomes the reverse maximum speed “RVH”.
- the reverse output speed is continuously reduced.
- the output speed becomes zero “0”.
- the forward output speed increases steplessly.
- the output speed becomes the forward intermediate speed “FVM”.
- FIG. 7 is a block diagram showing a speed change operation device 71 that changes the speed of the speed change transmission device 20.
- the speed change operation device 71 is a control device 72 linked to the speed change operation portion 30a of the hydraulic continuously variable transmission 30, the input side clutch mechanism 55, and the operation portions 55a and 60a of the output side clutch mechanism 60.
- a shift detection sensor 73, an engine speed sensor 74, a transmission output speed sensor 75, and an output speed sensor 76 linked to the control device 72.
- the shift operation unit 30a is configured by an electric actuator or a hydraulic actuator that performs an angle changing operation of the swash plate 32b of the hydraulic pump 32 in the hydraulic continuously variable transmission 30.
- the operation portion 55a of the input side clutch mechanism 55 is constituted by an operation valve connected to the hydraulic piston 58 via an operation oil passage formed inside the input shaft 22, and the clutch body is operated by operating the hydraulic piston 58. By sliding operation 56, the input side clutch mechanism 55 is switched.
- the operation portion 60 a of the output side clutch mechanism 60 is configured by an operation valve connected to the oil chamber of the clutch body 61 via an operation oil passage formed inside the transmission shaft 23. By supplying and discharging the operating oil, the clutch body 61 is slid and the output side clutch mechanism 60 is switched.
- the shift detection sensor 73 detects the operation position of the shift lever 77 and outputs the detection result to the control device 72.
- the engine speed sensor 74 detects the speed of the engine 8 and outputs the detection result to the control device 72.
- the transmission output rotation speed sensor 75 detects the output rotation speed of the hydraulic continuously variable transmission 30 and outputs the detection result to the control device 72.
- the output speed sensor 76 detects the output speed of the transmission 20 and outputs the detection result to the controller 72.
- the control device 72 is configured using a microcomputer and includes a shift control means 78.
- the shift control means 78 is configured so that the shift state of the hydraulic continuously variable transmission 30 corresponds to the operation position of the shift lever 77 based on detection information from the shift detection sensor 73 and the transmission output rotation speed sensor 75. Then, the shift control unit 30a is operated to control the shift of the hydraulic continuously variable transmission 30.
- the shift control means 78 detects the rotational speed of the accelerator-set engine 8 on the basis of information detected by the engine rotational speed sensor 74 in addition to controlling the shift of the hydraulic continuously variable transmission 30, Based on the detection information by the detection sensor 73, the transmission output speed sensor 75, and the output speed sensor 76, as shown in FIGS. 5 and 6, the speed change transmission device 20 appears to transmit the HST mode transmission and the HMT mode transmission. Further, the input side clutch mechanism 55 and the output side clutch mechanism 60 are controlled to be switched at a predetermined timing by operating the operation unit 55a and the operation unit 60a.
- FIG. 8 is a longitudinal front view showing the transmission device 20 having the first different embodiment structure.
- the speed change transmission device 20 provided with the first alternative embodiment includes a forward / reverse switching mechanism 80 provided across the input shaft 22 and the carrier 41 of the planetary transmission unit 40.
- the engine connection side of the input shaft 22 and the forward clutch 82 are provided between the engine connection side of the input shaft 22 and the hydraulic continuously variable transmission connection side.
- the charge pump 90 is provided between the hydraulic continuously variable transmission 30 and the hydraulic pump continuously supplied to the hydraulic continuously variable transmission 30.
- the charge pump 90 includes a rotor 90 a that is connected to the input shaft 22 so as to be integrally rotatable, and a pump casing 90 b that is detachably attached to the transmission case 21.
- the forward / reverse switching mechanism 80 includes a forward transmission gear 81 rotatably supported on the input shaft 22 via a needle bearing, a forward clutch 82 provided across the forward transmission gear 81 and the input shaft 22, and the input shaft 22. Relative rotation to the reverse transmission shaft 83 in mesh with a reverse transmission shaft 83 that is rotatably supported by the transmission case 21 in a parallel or substantially parallel arrangement, and a transmission gear 84 that is rotatably supported integrally with the input shaft 22.
- the forward transmission gear 81 and the reverse transmission gear 87 are meshed with an input gear 41c of the carrier 41 that is rotatably provided integrally with the cylindrical shaft portion 41b of the carrier 41.
- the input gear 85 and the transmission gear 84 are located on the opposite side of the planetary transmission unit 40 from the side where the forward transmission gear 81 and the reverse transmission gear 87 are located.
- the forward transmission gear 81 and the reverse transmission gear 87 mesh with the input gear 41c of the planetary transmission unit 40 located on the opposite side of the sun gear 42 from the side where the input gear 85 and the transmission gear 84 are located.
- the forward clutch 82 is a clutch mechanism provided across the forward clutch body 82a supported on the input shaft 22 so as to be integrally rotatable and slidable, and one end side of the forward clutch body 82a and the lateral side portion of the forward transmission gear 81. And a main body 82b.
- the forward clutch body 82a is slidably operated by a hydraulic piston 88 fitted in the end of the forward clutch body 82a.
- the clutch mechanism main body 82b is configured as a mesh clutch so that the engagement claw provided on the forward clutch body 82a and the mesh claw provided on the forward transmission gear 81 are engaged and disengaged to switch between the on state and the off state. It is.
- the reverse clutch 86 includes a reverse clutch body 86 a that is supported by the reverse transmission shaft 83 so as to be integrally rotatable and slidable, and a clutch mechanism that is provided across one end side of the reverse clutch body 86 a and the lateral side portion of the input gear 85. And a main body 86b.
- the reverse clutch body 86a is slidably operated by a hydraulic piston 89 fitted in the end portion of the reverse clutch body 86a.
- the clutch mechanism main body 86b is configured as a meshing clutch so that the engagement claw provided on the reverse clutch body 86a and the engagement claw provided on the input gear 85 are engaged and disengaged to switch between the on state and the off state. is there.
- the forward / reverse switching mechanism 80 is in a forward transmission state when the forward clutch 82 is switched to the engaged state and the reverse clutch 86 is switched to the disengaged state, and is connected to the engine connection side of the input shaft 22 and a hydraulic stepless.
- the driving force of the input shaft 22 is input from the forward clutch body 82a located between the transmission connecting side, the driving force of the input shaft 22 is converted into the forward driving force, and transmitted from the forward transmission gear 81 to the carrier 41.
- the forward / reverse switching mechanism 80 is switched to the disengaged state of the forward clutch 82 and is switched to the engaged state of the reverse clutch 86 to be in the reverse transmission state.
- the drive force of the input shaft 22 is input from the transmission gear 84 located between the transmission connecting side, the drive force of the input shaft 22 is converted into the reverse drive force, and the carrier 41 of the planetary transmission unit 40 is converted from the reverse drive gear 87. To communicate.
- the forward / reverse switching mechanism 80 is neutralized when the forward clutch 82 and the reverse clutch 86 are switched to the disengaged state, and the input shaft 22 and the carrier 41 of the planetary transmission unit 40 are disconnected from each other.
- FIG. 9 is an explanatory diagram showing the relationship between the operating state of the hydraulic continuously variable transmission 30, the forward clutch 82, the reverse clutch 86, and the output side clutch mechanism 60 and the transmission mode of the transmission 20.
- “Forward” shown in FIG. 9 indicates the forward transmission state of the hydraulic continuously variable transmission 30, and “reverse” indicates the reverse transmission state of the hydraulic continuously variable transmission 30.
- “OFF” shown in FIG. 9 indicates the disengagement state of the forward clutch 82, the reverse clutch 86 and the output-side clutch mechanism 60, and “ON” indicates the engagement of the forward clutch 82, the reverse clutch 86 and the output-side clutch mechanism 60. Indicates the state.
- the speed change transmission device 20 is brought into a state in which the HST mode transmission appears.
- the transmission 20 is in the HST mode transmission state, the engine drive force input to the input shaft 22 is not transmitted to the planetary transmission unit 40, and the engine drive force input to the input shaft 22 is hydraulically stepped.
- the speed is changed by the machine 30, and the driving force after the speed change is transmitted from the motor shaft 33a to the output rotating body 24 through the transmission shaft 23, the sun gear 42, the clutch body 61, the planetary side interlocking body 26 and the output side interlocking body 27 for output. This is transmitted from the rotating body 24 to the pair of left and right traveling devices 1, 1.
- the transmission 20 When the forward clutch 82 is controlled to be turned on and the reverse clutch 86 and the output side clutch mechanism 80 are controlled to be turned off, the transmission 20 is brought into a state in which the forward HMT mode transmission appears. .
- the transmission device 20 converts the engine driving force input by the input shaft 20 into the forward driving force by the forward / reverse switching mechanism 80 and transmits the forward driving force to the planetary transmission unit 40, thereby transmitting the planetary transmission unit. 40, the forward drive force from the forward / reverse switching mechanism 80 and the output from the motor shaft 33 a of the hydraulic continuously variable transmission 30 are combined to generate the forward drive force, and the forward drive force generated is generated. Is transmitted from the ring gear 44 to the output rotating body 24 via the planetary-side interlocking body 26 and the output-side interlocking body 27 and from the output rotating body 24 to the pair of left and right traveling devices 1, 1.
- the transmission 20 is brought into a state in which the reverse side HMT mode transmission appears.
- the transmission 20 is converted into a reverse drive force by the forward / reverse switching mechanism 80 and transmitted to the planetary transmission unit 40 by the forward / reverse switching mechanism 80, and the planetary transmission unit. 40, the reverse drive force from the forward / reverse switching mechanism 80 and the output from the motor shaft 33a of the hydraulic continuously variable transmission 30 are combined to generate the reverse drive force, and the reverse drive force generated is generated. Is transmitted from the ring gear 44 to the output rotating body 24 via the planetary-side interlocking body 26 and the output-side interlocking body 27 and from the output rotating body 24 to the pair of left and right traveling devices 1, 1.
- FIG. 10 is an explanatory view showing the output speed of the transmission 20 having the first alternative structure, and is hydraulic when the engine 8 is accelerator-set so as to output a set driving force at a constant speed.
- FIG. 4 is an explanatory diagram showing a relationship between a speed change state of a continuously variable transmission 30 and an output speed by an output rotating body 24 of the speed change transmission device 20.
- the horizontal axis in FIG. 10 indicates the shift state of the hydraulic continuously variable transmission 30, “n” indicates the neutral position of the hydraulic continuously variable transmission 30, and “ ⁇ max” indicates the hydraulic continuously variable transmission.
- 30 indicates the highest speed position in the reverse transmission state, and “+ max” indicates the highest speed position in the forward transmission state of the hydraulic continuously variable transmission 30.
- the solid line RL and the solid line FL shown in FIG. 10 indicate that the forward clutch 82 and the reverse clutch 86 are controlled to be switched to the disengaged state and the output side clutch mechanism 60 is controlled to be switched to the engaged state, that is, the transmission 20 is set to HST. It shows the change in output speed when operated in the mode transmission mode.
- Solid lines FM and FH shown in FIG. 10 indicate that the forward clutch 82 is controlled to be switched on and the reverse clutch 86 and the output side clutch mechanism 60 are controlled to be switched off, that is, the transmission 20 is connected to the forward side. The change of the output speed when operated in the state of HMT mode transmission is shown.
- the forward clutch 82 and the reverse clutch 86 are maintained in the disengaged state, and the output-side clutch mechanism 60 is maintained in the engaged state.
- the reverse drive force is output.
- the hydraulic continuously variable transmission 30 moves from the neutral position “n” to the highest speed position “ As the speed change operation is performed toward “ ⁇ max”, the reverse output increases steplessly.
- the hydraulic continuously variable transmission 30 reaches the maximum speed position “ ⁇ max” in the reverse transmission state, the output speed becomes the reverse intermediate speed “RV1”.
- the reverse clutch 86 is engaged.
- the output clutch mechanism 80 is controlled to be switched off, the reverse clutch 86 is maintained in the engaged state, the forward clutch 82 and the output clutch mechanism 60 are maintained in the disconnected state, and the hydraulic clutch
- the reverse output is stepless from the intermediate speed “RV1”. Increase speed.
- the output becomes the maximum reverse speed “RV2”.
- FIG. 11 is a block diagram showing a speed change operating device 91 for operating a speed change of the speed change transmission device 20 having the first different implementation structure.
- the speed change operation device 91 is connected to the speed change operation portion 30a of the hydraulic continuously variable transmission 30, and the operation portions 82c, 86c and 60a of the forward clutch 82, the reverse clutch 86 and the output side clutch mechanism 60.
- a linked control device 72, a shift detection sensor 73 linked to the control device 72, an engine speed sensor 74, a transmission output speed sensor 75, and an output speed sensor 76 are provided.
- the shift operation unit 30a is configured by an electric actuator or a hydraulic actuator that performs an angle changing operation of the swash plate 32b of the hydraulic pump 32 in the hydraulic continuously variable transmission 30.
- the operation portion 82c of the forward clutch 82 is constituted by an operation valve connected to the hydraulic piston 88 via an operation oil passage formed inside the input shaft 22, and the forward clutch body 82a is operated by operating the hydraulic piston 88.
- the forward clutch 82 is switched by performing a sliding operation.
- the operation portion 86c of the reverse clutch 86 is constituted by an operation valve connected to the hydraulic piston 89 via an operation oil passage formed inside the reverse transmission shaft 83.
- the reverse clutch body is operated by operating the hydraulic piston 89.
- the reverse clutch 86 is switched by sliding the 86a.
- the operation portion 60 a of the output-side clutch mechanism 60 is configured by an operation valve connected to the oil chamber of the clutch body 61 via an operation oil passage formed inside the transmission shaft 23. By supplying and discharging the operating oil to and from the chamber, the clutch body 61 is slid and the output side clutch mechanism 60 is switched.
- the shift detection sensor 73 detects the operation position of the shift lever 77 and outputs the detection result to the control device 72.
- the engine speed sensor 74 detects the speed of the engine 8 and outputs the detection result to the control device 72.
- the transmission output rotation speed sensor 75 detects the output rotation speed of the hydraulic continuously variable transmission 30 and outputs the detection result to the control device 72.
- the output speed line 76 detects the output speed of the transmission 20 and outputs the detection result to the controller 72.
- the control device 72 is configured using a microcomputer and includes a shift control means 78.
- the shift control means 78 is configured so that the shift state of the hydraulic continuously variable transmission 30 corresponds to the operation position of the shift lever 77 based on detection information from the shift detection sensor 73 and the transmission output rotation speed sensor 75. Then, the shift control unit 30a is operated to control the shift of the hydraulic continuously variable transmission 30.
- the shift control means 78 detects the rotational speed of the accelerator-set engine 8 on the basis of information detected by the engine rotational speed sensor 74 in addition to controlling the shift of the hydraulic continuously variable transmission 30, Based on the detection information by the detection sensor 73, the transmission output speed sensor 75, and the output speed sensor 76, the transmission 20 is operated in the HST mode transmission, the forward HMT mode transmission, and the reverse side as shown in FIGS.
- the operation unit 82c, the operation unit 86c, and the operation unit 60a are operated to switch the forward clutch 82, the reverse clutch 86, and the output-side clutch mechanism 60 at a predetermined timing so that the HMT mode transmission appears.
- FIG. 12 is a longitudinal front view showing the transmission 20 having the second alternative structure.
- the charge pump 90 for supplying hydraulic oil for supplement to the hydraulic continuously variable transmission 30 is connected to the engine coupling side of the input shaft 22. Between the engine connection side of the input shaft 22 and the input side clutch mechanism 55.
- the charge pump 90 includes a rotor 90 a that is connected to the input shaft 22 so as to be integrally rotatable, and a pump casing 90 b that is detachably connected to the transmission case 21.
- FIG. 13 is a longitudinal front view showing the transmission device 20 having the third alternative embodiment structure.
- a hydraulic continuously variable transmission 30 includes a variable displacement hydraulic pump 32 and a variable displacement hydraulic motor 33. It is.
- FIG. 14 is a longitudinal front view showing the transmission 20 having the fourth alternative structure.
- the output-side clutch mechanism 60 is provided on the support body 63 and the planetary-side interlocking body 26 that are provided to rotate integrally with the transmission shaft 23.
- a multi-plate friction clutch portion 64 provided over the clutch body portion is provided to constitute a friction clutch mechanism.
- the friction clutch portion 64 is switched between the on state and the off state by the hydraulic piston 65 supported by the sun gear 42, the motor shaft 33a and the output rotating body 24 are interlocked with the interlocked on state. Switch to the off state.
- FIG. 15 is a longitudinal sectional front view showing the transmission device 20 having the fifth alternative embodiment structure.
- the input side clutch mechanism 55 is integrally rotatable with the input shaft 22 and the support portion provided integrally with the transmission gear 52.
- a multi-plate type friction clutch portion 59 provided over the provided clutch body portion 59a is provided to constitute a friction type clutch mechanism.
- the friction clutch portion 59 is switched between an on state and a disengaged state by a hydraulic piston 59b built in the clutch body portion 59a, whereby the input shaft 22 and the transmission gear 52 are brought into an interlocked engaged state. Change over to the state where the interlocking is cut off.
- FIG. 16 is a longitudinal front view showing a transmission device 20 having a sixth different embodiment structure.
- the output-side clutch mechanism 60 is integrated with the support portion 66 and the output-side interlocking body 27 that are provided so as to be integrally rotatable with the transmission shaft 23.
- a multi-plate friction clutch portion 67 provided over a rotatable clutch body 67a is provided to constitute a friction clutch mechanism.
- the friction clutch portion 67 is switched between an on state and a disengaged state by a hydraulic piston 67b built in the clutch body 67a, whereby the motor shaft 33a and the output rotating body 24 are brought into an interlocked engaged state. Switch to the linked cut-off state.
- the speed change transmission device 20 having the sixth alternative structure includes a friction clutch mechanism 79 that allows the ring gear 44 and the motor shaft 33a to be switched between an interlocking state and an interlocking disengagement state, and in the HST mode transmission, the sun gear 42 and the planetary gears. 43 and the ring gear 44 can be switched between a state of rotating integrally with the motor shaft 33a and a state of rotating the ring gear 44 in the HST mode transmission.
- the input shaft 22 is formed separately from the pump shaft 32a and connected to the pump shaft 32a via the joint 22a, and the transmission shaft 23 is formed separately from the motor shaft 33a.
- the input shaft 22 may be integrally formed with the pump shaft 32a
- the transmission shaft 23 may be integrally formed with the motor shaft 33a.
- the combine is configured to be self-propelled by a pair of left and right crawler type traveling devices 101, 101 and is equipped with a riding type driving unit 102, and a body frame of the traveling body. 103, a threshing device 105 disposed on the rear side of the machine frame 103 and arranged behind the cutting unit 104, and a lateral side of the threshing device 105 on the rear side of the machine frame 103. And a grain tank 106 arranged and provided in the direction, and harvesting rice, wheat and the like.
- the mowing unit 104 includes a mowing unit frame 104a that extends from the front of the machine body frame 103 so as to be able to swing up and down forward, and the mowing unit frame 104a is swung by the elevating cylinder 107.
- the weeding tool 104b provided at the front end of the mowing unit 104 moves up and down to a descending work position where the weeding tool 104b is lowered near the ground, and a rising non-working position where the weeding tool 104b is elevated above the ground.
- the mowing unit 104 When the mowing unit 104 is lowered to the lowering operation position and the traveling machine body is caused to travel, the mowing unit 104 causes the planted culm to be harvested by the weeding tool 104b to be introduced into the path, and the planting that has been induced and introduced into the path. While raising the standing cereal and raising it by the device 104c, the clipper type reaping device 104d cuts it, and the reaped cereal is supplied to the threshing device 105 by the supply device 104e.
- the threshing device 105 sandwiches the stock side of the harvested cereal from the supply device 104e by the threshing feed chain 105a and conveys it toward the rear of the machine body, and supplies the tip side of the harvested cereal to the handling room (not shown). The threshing process is performed, and the threshing grain is fed into the grain tank 106.
- the engine 108 is provided below the driver seat 102 a provided in the driving unit 102, and the driving force output by the engine 108 is driven by a pair of left and right traveling by the transmission structure 110 including the transmission case 111 provided at the front end of the body frame 103.
- the information is transmitted to the devices 101 and 101.
- FIG. 18 is a front view showing a schematic structure of the transmission structure 110.
- the transmission structure 110 is provided with the engine driving force from the output shaft 108a of the engine 108 on the side of the upper end portion of the transmission case 111 via the transmission mechanism 112 provided with the transmission belt 112a.
- the transmission transmission device 120 is input, and the output of the transmission transmission device 120 is input to the traveling mission 113 housed in the transmission case 111 to the left of the pair of left and right steering clutch mechanisms 114, 114 included in the traveling mission 113. It is transmitted from the steering clutch mechanism 114 to the drive shaft 101a of the left traveling device 101, and transmitted from the right steering clutch mechanism 114 to the drive shaft 101a of the right traveling device 101.
- the transmission structure 110 includes a mowing mission 115 built in the mission case 111, and the output of the transmission device 120 is input to the mowing mission 115 and transmitted from the mowing output shaft 116 to the drive shaft 104f of the mowing unit 104.
- the transmission 120 is composed of a planetary transmission unit 120 ⁇ / b> A including a transmission case 121 having a lateral side connected to the upper end side of the transmission case 111, and a side connected to the transmission case 111 of the transmission case 121. And a hydraulic continuously variable transmission 130 having a casing 131 connected to the lateral side opposite to the above.
- the transmission case 121 houses a main case portion 121 a that houses the planetary transmission unit 140 and the forward / reverse switching mechanism 150, a coupling portion between the input shaft 122 and the transmission shaft 123, and the hydraulic continuously variable transmission 130, and the transmission case 121. And a connection case part 121b for connecting the port block 134 of the casing 131.
- the transmission case 121 is connected to the transmission case 111 at a bulging portion 121c that is bulged on the lateral outer side of the lower side surface where the output rotating body 124 of the main case portion 121a is located.
- the size of the connecting case part 121b in the vertical direction of the traveling machine body is smaller than the size of the main case part 121a in the vertical direction of the traveling machine body.
- the main case portion 121a is formed so that the longitudinal cross-sectional shape in the longitudinal direction of the fuselage is a vertically long shape
- the casing 131 is formed so that the longitudinal cross-sectional shape in the longitudinal direction of the fuselage is longitudinally long.
- 120A and the hydraulic continuously variable transmission 130 are arranged in the lateral direction of the vehicle body, and the lateral width of the vehicle body as a whole of the transmission gearbox 120 is reduced, so that the transmission gearbox 120 does not protrude laterally laterally. Then, it is connected to the lateral side portion of the mission case 111 in a compact state.
- An oil filter 120F is disposed upward on the upper surface of the casing 131, and further downsizing is achieved by avoiding the oil filter 120F from protruding outward.
- the planetary transmission unit 120A includes a laterally-facing input shaft 122 that is rotatably supported on the upper end side of the transmission case 121, and a transmission that is rotatably supported in parallel or substantially in parallel with the input shaft 122 on the lower end side of the transmission case 121.
- the input shaft 122 is arranged so as to be arranged coaxially with the pump shaft 132a of the hydraulic continuously variable transmission 130.
- the input shaft 122 is configured to be coupled to the output shaft 108a of the engine 108 via the transmission mechanism 112 on the side projecting laterally outward from the transmission case 121, and a joint on the side opposite to the side coupled to the engine 108.
- the hydraulic continuously variable transmission 130a is connected to the pump shaft 132a of the hydraulic continuously variable transmission 130 via the transmission mechanism 122a.
- the engine driving force is input via the transmission mechanism 112, and the hydraulic continuously variable transmission is driven by the engine driving force.
- the hydraulic pump 132 of the machine 130 is driven.
- the output rotator 124 is arranged on the same side as the side where the engine coupling side of the input shaft 122 is located with respect to the hydraulic continuously variable transmission 130 so as to be aligned coaxially with the motor shaft 133a of the hydraulic continuously variable transmission 130.
- the output rotating body 124 is configured to be interlocked with the input portion of the traveling mission 113 on the side projecting laterally outward from the speed change case 121, and the driving force from the planetary transmission portion 140 and the hydraulic continuously variable transmission 130 is obtained. Output to the pair of left and right traveling devices 101, 101 via the traveling mission 113.
- the hydraulic continuously variable transmission 130 includes a hydraulic pump 132 in which a pump shaft 132a is rotatably supported on an upper end side of a casing 131, and a hydraulic motor in which a motor shaft 133a is rotatably supported on a lower end side of the casing 131. 133.
- the hydraulic pump 132 is configured by a variable displacement type axial plunger pump
- the hydraulic motor 133 is configured by a variable displacement type axial plunger motor.
- the hydraulic motor 133 is driven by pressure oil that is discharged by the hydraulic pump 132 and supplied via an oil passage formed inside the port block 134.
- the hydraulic continuously variable transmission 130 is supplied with supplementary hydraulic fluid by a charge pump 190 provided on the engine coupling side of the input shaft 122.
- the charge pump 190 includes a rotor 190 a that is connected to the input shaft 122 so as to be integrally rotatable, and a pump casing 190 b that is detachably connected to the transmission case 121.
- the hydraulic continuously variable transmission 130 is switched between the forward transmission state, the reverse transmission state, and the neutral state by performing an angle changing operation of the swash plate 132b included in the hydraulic pump 132.
- the hydraulic continuously variable transmission 130 is switched to the forward transmission state
- the engine driving force transmitted from the input shaft 122 to the pump shaft 132a is converted into the forward driving force and output from the motor shaft 133a, and the reverse transmission is performed.
- the operation is switched to the state, the engine driving force transmitted from the input shaft 122 to the pump shaft 132a is converted into the reverse driving force and output from the motor shaft 133a, and the engine is driven in both the forward transmission state and the reverse transmission state.
- the driving force is steplessly shifted and output.
- the hydraulic continuously variable transmission 130 is switched to the neutral state
- the output from the motor shaft 133a is stopped.
- the planetary transmission unit 140 is arranged on the same side as the side where the engine connection side of the input shaft 122 is located with respect to the hydraulic continuously variable transmission 130 and is positioned between the motor shaft 133a and the output rotating body 124. .
- the planetary transmission unit 140 is capable of freely rotating a sun gear 142 supported by the transmission shaft 123, a plurality of planetary gears 143 engaged with the sun gear 142, a ring gear 144 engaged with each planetary gear 143, and a plurality of planetary gears 143.
- a carrier 141 for supporting the carrier.
- the carrier 141 includes an arm portion 141a that rotatably supports the planetary gear 143 at the extended end portion, and a cylindrical shaft portion 141b to which the base end sides of the plurality of arm portions 141a are connected.
- the transmission shaft 123 is rotatably supported via a bearing.
- the transmission shaft 123 and the motor shaft 133a are connected so as to be integrally rotatable via a joint 123a, and the transmission shaft 123 and the sun gear 142 are connected so as to be integrally rotatable via a spline structure.
- the shaft 133a is interlocked with the shaft 133a so as to be rotatable together.
- the ring gear 144 and the output rotating body 124 are integrally rotatable by an annular planetary interlocking body 126 and an annular output side interlocking body 127 that are externally fitted to the transmission shaft 123 so as to be relatively rotatable side by side in the axial direction. It is linked to. That is, the planetary interlocking body 126 includes a plurality of engaging arm portions 126a that extend radially from the outer peripheral portion of the planetary interlocking body 126 so as to be integrally rotatable. The plurality of engagement arm portions 126a are engaged with a plurality of locations of the ring gear 144, and the planetary interlocking body 126 is interlocked with the ring gear 144 so as to be integrally rotatable.
- the output side interlocking body 127 is engaged with the planetary side interlocking body 126 so as to be integrally rotatable with an engaging claw 127a, and is engaged with the output rotating body 124 so as to be integrally rotatable with a spline structure.
- the interlocking body 126 and the output rotating body 124 are coupled so as to be rotatable together.
- the planetary side interlocking body 126 is supported on the transmission shaft 123 through a bearing so as to be relatively rotatable.
- the output side interlocking body 127 is rotatably supported by the transmission case 121 via a bearing.
- the forward / reverse switching mechanism 150 includes a forward transmission gear 151 rotatably supported by an input shaft 122 via a needle bearing, a forward clutch 152 provided across the forward transmission gear 151 and the input shaft 122, Relative rotation to the reverse transmission shaft 153 in mesh with a reverse transmission shaft 153 that is rotatably supported by the transmission case 121 in a parallel or substantially parallel arrangement, and a transmission gear 154 that is rotatably supported by the input shaft 122.
- the forward transmission gear 151 and the reverse transmission gear 157 are meshed with an input gear 141c of a carrier 141 provided to be rotatable integrally with a cylindrical shaft portion 141b of the carrier 141.
- the input gear 155 and the transmission gear 154 are located on the opposite side of the planetary transmission unit 140 from the side where the forward transmission gear 151 and the reverse transmission gear 157 are located.
- the forward transmission gear 151 and the reverse transmission gear 157 mesh with the input gear 141c of the planetary transmission unit 140 located on the opposite side of the sun gear 142 from the side where the input gear 155 and the transmission gear 154 are located.
- the forward clutch 152 includes a forward clutch body 152a that is supported on the input shaft 122 so as to be integrally rotatable and slidable, and a clutch mechanism that is provided across one end side of the forward clutch body 152a and a lateral side portion of the forward transmission gear 151. And a main body 152b.
- the forward clutch body 152a is slidably operated by a hydraulic piston 158 fitted in the end portion of the forward clutch body 152a.
- the clutch mechanism main body 152b is configured as a mesh clutch so that the engagement claw provided on the forward clutch body 152a and the mesh claw provided on the forward transmission gear 151 are engaged and disengaged to switch between the on state and the off state. It is.
- the reverse clutch 156 includes a reverse clutch body 156a supported by the reverse transmission shaft 153 so as to be integrally rotatable and slidable, and a clutch mechanism provided across one end side of the reverse clutch body 156a and a lateral side portion of the input gear 155. And a main body 156b.
- the reverse clutch body 156a is slidably operated by a hydraulic piston 159 fitted inside the end of the reverse clutch body 156a.
- the clutch mechanism main body 156b is configured as a mesh clutch so that the engagement claw provided on the reverse clutch body 156a and the engagement claw provided on the input gear 155 are engaged and disengaged to switch between the on state and the off state. is there.
- the forward / reverse switching mechanism 150 is in a forward transmission state when the forward clutch 152 is switched to the engaged state and the reverse clutch 156 is switched to the disengaged state, and is connected to the engine coupling side of the input shaft 122 and a hydraulic stepless.
- the driving force of the input shaft 122 is input from the forward clutch body 152a located between the transmission coupling sides, the driving force of the input shaft 122 is converted into the forward driving force, and the carrier 141 of the planetary transmission unit 140 is converted from the forward transmission gear 151. To communicate.
- the forward / reverse switching mechanism 150 is in a reverse transmission state when the forward clutch 152 is switched to a disengaged state and the reverse clutch 156 is switched to an engaged state.
- the driving force of the input shaft 122 is input from the transmission gear 154 located between the transmission connecting sides, the driving force of the input shaft 122 is converted into the reverse driving force, and the reverse transmission gear 157 is transferred to the carrier 141 of the planetary transmission unit 140. introduce.
- the forward / reverse switching mechanism 150 is neutralized when the forward clutch 152 and the reverse clutch 156 are switched to the disengaged state, and the input shaft 122 and the carrier 141 of the planetary transmission unit 140 are disconnected from each other.
- An output side clutch mechanism 160 having a clutch body 161 externally fitted to the transmission shaft 123 is provided across the sun gear 142 of the planetary transmission section 140 and the planetary side interlocking body 126.
- the clutch body 161 is slid toward the sun gear 142 against the energizing spring 162 when pressure oil is supplied to an oil chamber formed on the inner peripheral side of the clutch body 161, so that the clutch body 161 is in the cut position.
- the urging spring 162 is slid toward the planetary interlocking body 126 to switch to the entry position.
- the clutch pawl 161 a provided on the clutch body 161 engages with the clutch pawl provided on the planetary interlocking body 126, so that the clutch body 161 is integrated with the planetary interlocking body 126. Connect freely.
- the clutch body 161 is slid while maintaining the state in which the clutch body 161 is integrally engaged with the sun gear 142 by the engaging claws 161 b, and enters the entry position while maintaining the engagement state with the sun gear 142.
- the clutch pawl 161a is disengaged from the planetary interlocking body 126.
- the clutch mechanism 160 on the output side switches the engagement of the motor shaft 133a to the output rotating body 124 by disconnecting the sun gear 142 and the planetary linkage body 126 by switching the clutch body 161 to the disengagement position.
- the first transmission state in which the ring gear 144 of the planetary transmission unit 140 and the output rotator 124 are interlocked so as to be integrally rotatable appears, and the combined driving force of the planetary transmission unit 140 can be output from the output rotator 124.
- the output-side clutch mechanism 160 is configured such that the motor shaft 133a is integrated with the output rotating body 124 by interlocking the sun gear 142 and the planetary-side interlocking body 126 so that the clutch body 161 is switched to the entering position.
- a second transmission state to be interlocked in a rotatable manner appears, the output of the output by the hydraulic continuously variable transmission device 130 can be output from the output rotating body 124, and the sun gear 142 and the transmission shaft 123 are interlocked so as to be integrally rotatable.
- the sun gear 142, the planetary gear 143, and the ring gear 144 are interlocked so as to be rotatable together, so that the sun gear 142, the planetary gear 143, and the ring gear 144 can rotate integrally with the motor shaft 133a so that the planetary gear 143 does not rotate.
- the planetary transmission unit 140 is operated from the input shaft 122 via the forward / reverse switching mechanism 150 by switching the forward / reverse switching mechanism 150 to the forward transmission state and switching the output-side clutch mechanism 160 to the disconnected state.
- the forward drive force is input to the carrier 141
- the output from the motor shaft 133a of the hydraulic continuously variable transmission 130 is input to the sun gear 142 via the transmission shaft 123
- the forward drive force and the hydraulic continuously variable transmission from the input shaft 122 are input.
- the output of the device 130 is combined to generate a forward-side combined driving force, and the generated forward-side combined driving force is output from the ring gear 144 via the planetary-side interlocking body 126 and the output-side interlocking body 127 to the output rotating body 124. Output to.
- the planetary transmission unit 140 is moved backward from the input shaft 122 via the forward / reverse switching mechanism 150 when the forward / reverse switching mechanism 150 is switched to the reverse transmission state and the output-side clutch mechanism 160 is switched to the disconnected state.
- the driving force is input to the carrier 141, the output from the motor shaft 133a of the hydraulic continuously variable transmission 130 is input to the sun gear 142 via the transmission shaft 123, the forward driving force from the input shaft 122 and the hydraulic continuously variable transmission 130 are input.
- the planetary transmission unit 140 is disconnected from the input shaft 122 when the forward / reverse switching mechanism 150 is operated in a neutral state.
- FIG. 22 is an explanatory diagram showing the relationship between the operation state of the hydraulic continuously variable transmission 130, the forward clutch 152, the reverse clutch 156, and the output-side clutch mechanism 160 and the transmission mode of the transmission 120.
- “Forward” shown in FIG. 22 indicates the forward transmission state of the hydraulic continuously variable transmission 130
- “Reverse” indicates the backward transmission state of the hydraulic continuously variable transmission 130.
- “OFF” shown in FIG. 22 indicates the disengagement state of the forward clutch 152, the reverse clutch 156, and the output side clutch mechanism 160
- “ON” indicates the engagement of the forward clutch 152, the reverse clutch 156, and the output side clutch mechanism 160.
- FIG. 19 is a longitudinal front view showing the speed change transmission 120 in a state where the HST mode transmission appears.
- FIG. 19 is a longitudinal sectional front view showing the transmission 120 in HST mode transmission.
- the transmission 120 is controlled so that the forward clutch 152 and the reverse clutch 156 are switched to the disengaged state and the output side clutch mechanism 160 is controlled to be switched to the engaged state. Appears.
- the transmission gear transmission 120 does not transmit the engine driving force input to the input shaft 122 to the planetary transmission unit 140, and hydraulically continuously changes the engine driving force input to the input shaft 122.
- the speed is changed by the machine 130, and the driving force after the speed change is transmitted from the motor shaft 133a to the output rotating body 124 via the transmission shaft 123, the sun gear 142, the clutch body 161, the planetary side interlocking body 126, and the output side interlocking body 127 for output. This is transmitted from the rotating body 124 to the pair of left and right traveling devices 101, 101.
- FIG. 20 is a longitudinal front view showing the transmission 120 in the forward-side HMT mode transmission.
- the forward clutch 152 is controlled to be switched on, and when the reverse clutch 156 and the output side clutch mechanism 160 are controlled to be switched off, the forward clutch 152 is controlled.
- HMT mode transmission appears.
- the transmission device 120 converts the engine driving force input by the input shaft 122 into the forward driving force by the forward / reverse switching mechanism 150 and transmits the forward driving force to the planetary transmission unit 140, thereby transmitting the planetary transmission unit.
- the forward drive force from the forward / reverse switching mechanism 150 and the output from the motor shaft 133a of the hydraulic continuously variable transmission 130 are combined by 140 to generate the forward drive force, and the generated forward drive force is generated. Is transmitted from the ring gear 144 to the output rotating body 124 via the planetary side interlocking body 126 and the output side interlocking body 127 and from the output rotating body 124 to the pair of left and right traveling devices 101, 101.
- FIG. 21 is a longitudinal sectional front view showing the speed change transmission device 120 in the reverse-side HMT mode transmission.
- the reverse clutch 156 is controlled to be switched on and the forward clutch 152 and the output side clutch mechanism 160 are controlled to be switched off, the reverse gear 156 is controlled.
- HMT mode transmission appears.
- the speed change transmission device 120 converts the engine driving force input by the input shaft 122 into the reverse driving force by the forward / reverse switching mechanism 150 and transmits the reverse driving force to the planetary transmission unit 140, thereby transmitting the planetary transmission unit.
- the reverse drive force from the forward / reverse switching mechanism 150 and the output from the motor shaft 133a of the hydraulic continuously variable transmission 130 are combined to generate a reverse drive force, and the generated reverse drive force is generated.
- FIG. 23 shows the state of the shift of the hydraulic continuously variable transmission 130 and the output speed of the output rotating body 124 of the transmission 120 when the engine 108 is accelerator-set so as to output a set constant driving force. It is explanatory drawing which shows a relationship.
- the horizontal axis in FIG. 23 indicates the shift state of the hydraulic continuously variable transmission 130, “n” indicates the neutral position of the hydraulic continuously variable transmission 130, and “ ⁇ max” indicates the hydraulic continuously variable transmission. 130 indicates the highest speed position in the reverse transmission state, and “+ max” indicates the highest speed position in the forward transmission state of the hydraulic continuously variable transmission 130.
- the vertical axis in FIG. 23 indicates the output speed by the output rotating body 124.
- the forward clutch 152 and the reverse clutch 156 are maintained in the disengaged state, and the output side clutch mechanism 160 is maintained in the engaged state.
- a reverse driving force is output.
- the hydraulic continuously variable transmission 130 is moved from the neutral position “n” to the highest speed position “ As the speed change operation is performed toward “ ⁇ max”, the reverse output increases steplessly.
- the hydraulic continuously variable transmission 130 reaches the maximum speed position “ ⁇ max” in the reverse transmission state, the output speed becomes the reverse intermediate speed “RV1”.
- N shown in FIG. 23 indicates the horizontal line when the solid lines FH and FM are extended to the point where the output rotation is zero “0” beyond the maximum speed position “+ max” on the forward side of the hydraulic continuously variable transmission 130. Indicates the axis value.
- FIG. 24 is a block diagram showing a speed change operation device 171 that changes the speed of the speed change transmission device 120.
- the speed change operation device 171 is connected to the speed change operation portion 130a of the hydraulic continuously variable transmission 130, the forward clutch 152, the reverse clutch 156, and the operation portions 152c, 156c, and 160a of the output side clutch mechanism 160.
- a linked control device 172, a shift detection sensor 173 linked to the control device 172, an engine speed sensor 174, a transmission output speed sensor 175, and an output speed sensor 176 are provided.
- the transmission operation unit 130a is configured by an electric actuator or a hydraulic actuator that performs an angle changing operation of the swash plate 132b of the hydraulic pump 132 in the hydraulic continuously variable transmission 130.
- the operation portion 152c of the forward clutch 152 is constituted by an operation valve connected to the hydraulic piston 158 via an operation oil passage formed inside the input shaft 122, and the forward clutch body 152a is operated by operating the hydraulic piston 158. Is operated to change over the forward clutch 152.
- the operation portion 156c of the reverse clutch 156 is constituted by an operation valve connected to the hydraulic piston 159 via an operation oil passage formed inside the reverse transmission shaft 153.
- the reverse clutch body is operated by operating the hydraulic piston 159.
- the reverse clutch 156 is changed over by sliding the 156a.
- the operation portion 160 c of the output-side clutch mechanism 160 is configured by an operation valve connected to the oil chamber of the clutch body 161 via an operation oil passage formed inside the transmission shaft 123. By supplying and discharging the operating oil to and from the chamber, the clutch body 161 is slid and the output side clutch mechanism 160 is switched.
- the shift detection sensor 173 detects the operation position of the shift lever 177 and outputs the detection result to the control device 172.
- the engine speed sensor 174 detects the speed of the engine 108 and outputs the detection result to the control device 172.
- the transmission output rotation speed sensor 175 detects the output rotation speed of the hydraulic continuously variable transmission 130 and outputs the detection result to the control device 172.
- the output rotation speed sensor 176 detects the output rotation speed of the transmission device 120 and outputs the detection result to the control device 172.
- the control device 172 is configured using a microcomputer and includes a shift control means 178.
- the shift control means 178 is configured so that the shift state of the hydraulic continuously variable transmission 130 corresponds to the operating position of the shift lever 177 based on detection information from the shift detection sensor 173 and the transmission output rotation speed sensor 175. Then, the shift control unit 130a is operated to control the shift of the hydraulic continuously variable transmission 130.
- the shift control means 178 detects the rotation speed of the accelerator-set engine 108 on the basis of information detected by the engine rotation speed sensor 174, in addition to controlling the shift of the hydraulic continuously variable transmission 130. Based on the detection information by the detection sensor 173, the transmission output speed sensor 175, and the output speed sensor 176, the transmission 120 is operated in the HST mode transmission, the forward HMT mode transmission, and the reverse side as shown in FIGS.
- the operation unit 152c, the operation unit 156c, and the operation unit 160c are operated to switch the forward clutch 152, the reverse clutch 156, and the output-side clutch mechanism 160 at a predetermined timing so that the HMT mode transmission is transmitted and transmitted. .
- FIG. 25 is a longitudinal sectional front view showing the transmission device 120 having another embodiment structure.
- a charge pump 190 for supplying supplementary hydraulic fluid to the hydraulic continuously variable transmission 130 is provided at the end of the pump shaft 132a.
- the charge pump 190 includes a rotor 190a that is connected to a pump shaft 132a so as to be integrally rotatable, and a pump casing 190b that is detachably connected to the casing 131.
- the transmission ratio from the input shaft 122 to the carrier 141 in the forward transmission state is the same as or substantially the same as the transmission ratio from the input shaft 122 to the carrier 141 in the reverse transmission state.
- the forward / reverse travel is configured such that the transmission ratio from the input shaft 122 to the carrier 141 in the forward transmission state is different from the transmission ratio from the input shaft 122 to the carrier 141 in the reverse transmission state.
- a switching mechanism may be employed.
- the solid lines RM and RH indicating the output speed in the reverse-side HMT mode transmission and the solid lines FM and FH indicating the output speed in the forward-side HMT mode transmission have the same inclination angle with respect to the horizontal axis. Therefore, the maximum speed of the reverse output and the maximum speed of the forward output are the same or different.
- the reverse clutch 156 is provided across the input gear 155 and the reverse transmission shaft 153.
- the input gear 155 is supported by the reverse transmission shaft 153 so as to be integrally rotatable, and the reverse drive
- the transmission gear 157 may be supported on the reverse transmission shaft 153 so as to be relatively rotatable, and the reverse clutch 156 may be provided across the reverse transmission gear 157 and the reverse transmission shaft 153.
- the forward clutch 152, the reverse clutch 156, and the output-side clutch mechanism 160 are configured as meshing clutches, but may be configured as a frictional clutch. Good.
- the forward drive force and the reverse drive force from the forward / reverse switching mechanism 150 are input to the carrier 141 of the planetary transmission unit 140, and the drive force of the ring gear 144 of the planetary transmission unit 140 is output to the output rotator 124.
- the forward drive force and the reverse drive force from the forward / reverse switching mechanism 150 are input to the ring gear 144 of the planetary transmission unit 140 and the drive force of the carrier 141 of the planetary transmission unit 140 is output. It may be configured to be transmitted to the rotating body 124.
- the hydraulic motor 133 is configured as a variable capacity type.
- the hydraulic motor 133 may be configured as a fixed capacity type.
- the combine is configured to be self-propelled by a pair of left and right crawler type traveling devices 201, 201 and equipped with a riding type driving unit 202, and a body frame of the traveling body
- a grain tank 206 disposed in the direction, and harvesting rice, wheat, etc. is performed.
- the cutting unit 204 includes a cutting unit frame 204a that extends from the front of the machine body frame 203 so as to be swingable up and down, and the cutting unit frame 204a is swung by the lifting cylinder 207.
- the weeding tool 204b provided at the front end portion of the mowing unit 204 moves up and down to a lowering work position where the weeding tool 204b is lowered near the ground, and a non-working position where the weeding tool 204b is raised higher from the ground.
- the cutting unit 204 When the cutting unit 204 is lowered to the lowering work position and the traveling machine body is traveled, the cutting unit 204 raises the planted culm to be harvested by the weeding tool 204b and introduces it into the path, and the planting that has been induced and introduced into the path. While raising the standing cereal and raising it by the device 204c, the clipper type reaping device 204d cuts it, and the reaped cereal is supplied to the threshing device 205 by the supply device 204e.
- the threshing device 205 sandwiches the stock side of the harvested cereal meal from the supply device 204e by the threshing feed chain 205a and conveys it toward the rear of the machine body, and supplies the tip side of the harvested cereal meal to the handling room (not shown). The threshing process is performed, and the threshing grain is fed into the grain tank 206.
- An engine 208 is provided below a driver seat 202 a provided in the driving unit 202, and driving force output from the engine 208 is transmitted to a pair of left and right by a traveling transmission device 210 including a transmission case 211 provided at the front end of the body frame 203. It is comprised so that it may transmit to the traveling apparatuses 201 and 201.
- a traveling transmission device 210 including a transmission case 211 provided at the front end of the body frame 203. It is comprised so that it may transmit to the traveling apparatuses 201 and 201.
- FIG. 29 is a front view showing a schematic structure of the traveling transmission device 210.
- the traveling transmission device 210 provides engine driving force from the output shaft 208a of the engine 208 to the side of the upper end portion of the transmission case 211 via the transmission mechanism 212 provided with the transmission belt 212a.
- the transmission gear 220 is input to the left side of the pair of left and right steering clutch mechanisms 214 and 214 provided in the traveling mission 213 by inputting the output of the transmission gear 220 to a traveling mission 213 built in the mission case 211. Is transmitted from the steering clutch mechanism 214 to the drive shaft 201a of the left traveling device 201, and is transmitted from the right steering clutch mechanism 214 to the drive shaft 201a of the right traveling device 201.
- the traveling transmission device 210 includes a cutting mission 215 built in the mission case 211, and the output of the transmission gear 220 is input to the cutting mission 215 and transmitted from the cutting output shaft 216 to the drive shaft 204f of the cutting unit 204.
- the transmission gear 220 includes a planetary transmission unit 220 ⁇ / b> A including a transmission case 221 having a lateral side connected to the upper end side of the mission case 211, and a transmission case 211 of the transmission case 221.
- a hydrostatic continuously variable transmission 230 having a casing 231 connected to the lateral side opposite to the connecting side is provided.
- the transmission case 221 accommodates a main case portion 221 a that accommodates the planetary transmission portion 240 and the transmission mechanism 250, a coupling portion between the input shaft 222, the transmission shaft 223, and the continuously variable transmission portion 230, and the transmission case 221 and the casing 231.
- a connection case portion 221b for connecting the port block 234 is provided.
- the transmission case 221 is connected to the transmission case 211 at a bulging portion 221c that is bulged outwardly on the lateral side of the lower side surface where the output rotator 224 of the main case portion 221a is located.
- the size of the connecting case part 221b in the vertical direction of the traveling machine body is smaller than the size of the main case part 221a in the vertical direction of the traveling machine body.
- the main case portion 221a is formed so that the longitudinal cross-sectional shape when viewed in the longitudinal direction of the fuselage is a vertically long shape
- the casing 231 is formed so that the longitudinal sectional shape when viewed in the longitudinal direction of the fuselage is longitudinally long. While the section 220A and the continuously variable transmission section 230 are arranged in the lateral direction of the vehicle body, the lateral width of the entire transmission gear transmission 220 is reduced, and the transmission gear transmission 220 does not protrude laterally in the lateral direction of the traveling vehicle body. It is connected to the lateral side of the mission case 211 in a compact state. Further, an inclined surface 231A that is inclined toward the inner side of the fuselage is formed on the lower side surface of the casing 231.
- a bulging portion 231B that supports the bearing of the motor shaft 233a is formed on the inclined surface 231A. Is being made more compact.
- an oil filter 220F is disposed on the upper surface of the casing 231 so as to avoid protrusion of the oil filter 220F to the lateral outer side, thereby achieving further compactness.
- the planetary transmission unit 220A includes a laterally-facing input shaft 222 that is rotatably supported on the upper end side of the transmission case 221 and a transmission that is rotatably supported in parallel or substantially parallel to the input shaft 222 on the lower end side of the transmission case 221.
- the input shaft 222 is arranged so as to be arranged coaxially with the pump shaft 232a of the continuously variable transmission 230.
- the input shaft 222 is configured to be connected to the output shaft 208a of the engine 208 via the transmission mechanism 212 on the side projecting laterally outward from the transmission case 221 and is connected to the joint on the side opposite to the side connected to the engine 208. It is connected to the pump shaft 232a of the continuously variable transmission 230 through the transmission mechanism 222a so as to rotate together.
- the engine driving force is input through the transmission mechanism 212 and driven by the engine driving force.
- the pump 232 is driven.
- the output rotator 224 is arranged on the same side as the side where the engine coupling side of the input shaft 222 is located with respect to the continuously variable transmission 230 so as to be aligned coaxially with the motor shaft 233a of the continuously variable transmission 230.
- the output rotator 224 is configured to interlock with the input portion of the traveling mission 213 on the side projecting laterally outward from the transmission case 221, and uses the driving force from the planetary transmission unit 240 and the continuously variable transmission unit 230 as the traveling mission. It outputs to a pair of left and right traveling devices 201, 201 via 213.
- the continuously variable transmission 230 includes a hydraulic pump 232 in which a pump shaft 232a is rotatably supported on the upper end side of the casing 231 and a hydraulic motor 233 in which a motor shaft 233a is rotatably supported on the lower end side of the casing 231. It is configured with.
- the hydraulic pump 232 is configured by a variable displacement axial plunger pump, and the hydraulic motor 233 is configured by an axial plunger motor.
- the hydraulic motor 233 is driven by pressure oil that is discharged by a hydraulic pump 232 and supplied via an oil passage formed inside the port block 234.
- the continuously variable transmission 230 is supplied with supplementary hydraulic fluid by a charge pump 290 provided at the end of the pump shaft 232a.
- the charge pump 290 includes a rotor 290a that is attached to a pump shaft 232a so as to be integrally rotatable, and a pump casing 290b that is detachably connected to the casing 231.
- the continuously variable transmission 230 is switched between a forward transmission state, a reverse transmission state, and a neutral state by performing an angle changing operation of the swash plate 232b included in the hydraulic pump 232.
- the continuously variable transmission 230 is operated to be switched to the forward transmission state, the engine driving force transmitted from the input shaft 222 to the pump shaft 232a is converted into the forward driving force and output from the motor shaft 233a to enter the reverse transmission state.
- the switching operation is performed, the engine driving force transmitted from the input shaft 222 to the pump shaft 232a is converted into a reverse driving force and output from the motor shaft 233a, and the engine driving force in both the forward transmission state and the reverse transmission state. Is output in a stepless manner.
- the continuously variable transmission 230 stops the output from the motor shaft 233a when switched to the neutral state.
- the planetary transmission unit 240 is disposed on the same side as the side where the engine connection side of the input shaft 222 is located with respect to the continuously variable transmission unit 230 and is positioned between the motor shaft 233a and the output rotating body 224.
- the planetary transmission unit 240 is capable of rotating the sun gear 242 supported by the transmission shaft 223, a plurality of planetary gears 243 that mesh with the sun gear 242, a ring gear 244 that meshes with each planetary gear 243, and a plurality of planetary gears 243.
- a carrier 241 to be supported.
- the carrier 241 includes an arm portion 241a that rotatably supports the planetary gear 243 at the extended end portion, and a cylindrical shaft portion 241b to which the base end sides of the plurality of arm portions 241a are connected, and the cylindrical shaft portion 241b
- the transmission shaft 223 is rotatably supported via a bearing.
- the transmission shaft 223 and the motor shaft 233a are connected so as to be integrally rotatable via a joint 223a, and the transmission shaft 223 and the sun gear 242 are connected so as to be integrally rotatable via a spline structure.
- the shaft 233a is interlocked with the shaft 233a so as to be integrally rotatable.
- the ring gear 244 and the output rotating body 224 are integrally rotatable by an annular planetary interlocking body 226 and an annular output side interlocking body 227 that are externally fitted to the transmission shaft 223 so as to be relatively rotatable side by side in the axial direction. It is linked to. That is, the planetary side interlocking body 226 includes a plurality of engagement arm portions 226a that extend radially from the outer peripheral portion of the planetary side interlocking body 226 so as to be integrally rotatable.
- the plurality of engagement arm portions 226 a are engaged with a plurality of locations of the ring gear 244, and the planetary interlocking body 226 is interlocked with the ring gear 244 so as to be integrally rotatable.
- the output-side interlocking body 227 is engaged with the planetary-side interlocking body 226 by an engaging claw 227a so as to be integrally rotatable, and the output-side interlocking body 227 is integrally engaged with the output rotating body 224 by a spline structure.
- the interlocking body 226 and the output rotating body 224 are coupled so as to be rotatable together.
- the planetary interlocking body 226 is supported by the transmission shaft 223 via a bearing so as to be relatively rotatable.
- the output side interlocking body 227 is rotatably supported by the transmission case 221 via a bearing.
- the transmission mechanism 250 is a transmission gear 252 supported on the input shaft 222 through a needle bearing so as to be relatively rotatable while meshing with an input gear 241c of the carrier 241 provided to be integrally rotatable with the cylindrical shaft portion 241b of the carrier 241. And an HMT clutch 255 provided across the transmission gear 252 and the input shaft 222.
- the HMT clutch 255 includes a clutch body 256 that is supported by the input shaft 222 so as to be integrally rotatable and slidable, and a clutch main body 257 provided across one end side of the clutch body 256 and the lateral side portion of the transmission gear 252. It is prepared.
- the clutch body 256 is slidably operated by a hydraulic piston 258 fitted inside the end of the clutch body 256.
- the clutch main body 257 is configured as a meshing clutch so that the engagement claw provided on the clutch body 256 and the engagement claw provided on the transmission gear 252 are engaged and disengaged to switch between the on state and the off state.
- the HMT clutch 255 is switched to the input state so as to interlock the input shaft 222 and the transmission gear 252 so that the input shaft 222 and the transmission gear 252 can rotate together.
- the HMT transmission is set so as to interlock with the input shaft 222.
- the HMT clutch 255 is switched to the disconnected state so that the input shaft 222 and the transmission gear 252 are disconnected from each other, and the carrier 241 of the planetary transmission unit 240 and the input shaft 222 are switched.
- the state where the setting of HMT transmission is canceled so as to cut off the interlocking of the motor is brought about.
- the planetary transmission unit 240 is switched from the portion located between the engine connecting side of the input shaft 222 and the continuously variable transmission unit connecting side to the input shaft when the HMT clutch 255 is switched to the state in which the HMT transmission is set.
- the driving force 222 is input to the carrier 241 through the transmission mechanism 250.
- the planetary transmission unit 240 is switched to the state in which the HMT clutch 255 has released the setting of the HMT transmission, so that the interlocking of the carrier 241 with the input shaft 222 is cut off.
- An HST clutch 260 including a clutch body 261 externally fitted to the transmission shaft 223 is provided across the sun gear 242 and the planetary side interlocking body 226 of the planetary transmission unit 240.
- the clutch body 261 is slid toward the sun gear 242 against the energizing spring 262 when pressure oil is supplied to an oil chamber formed on the inner peripheral side of the clutch body 261, so that the clutch body 261 is cut off.
- the urging spring 262 is slid toward the planetary interlocking body 226 to switch to the entry position.
- the clutch pawl 261a provided on the clutch body 261 and the clutch pawl provided on the planetary side interlocking body 226 are engaged with each other so as to be integrated with the planetary side interlocking body 226. Connect freely.
- the clutch body 261 is slid while maintaining a state in which the clutch body 261 is integrally engaged with the sun gear 242 by the engaging claws 261b, and enters a position where it is engaged with the sun gear 242.
- the clutch pawl 261a disengages from the planetary interlocking body 226.
- the HST clutch 260 rotates the motor shaft 233a integrally with the output rotating body 224 by interlocking the sun gear 242 and the planetary side interlocking body 226 so that the clutch body 261 is switched to the engaged position.
- the HST transmission is set so as to enable the output from the output rotating body 224 by the continuously variable transmission unit 230 in an interlocked manner.
- the sun gear 242 and the transmission shaft 223 are interlocked so as to be integrally rotatable, and the ring gear 244 and the planetary side interlocking body 226 are interlocked so as to be integrally rotatable.
- the sun gear 242, the carrier 241, and the ring gear 244 can rotate together with the motor shaft 233a so that the rotation does not occur.
- the HST clutch 260 switches the sun gear 242 and the output rotator 224 of the planetary transmission unit 240 between the interlocking on state and the interlocking off state while maintaining the ring gear 244 and the output rotator 224 of the planetary transmission unit 240 in an interlocking state.
- the HST clutch 260 is disengaged from the sun gear 242 and the planetary side interlocking body 226, and the motor shaft 233a is disengaged from the output rotating body 224, and planetary transmission is performed.
- the ring gear 244 of the unit 240 and the output rotator 224 are interlocked so that they can rotate together, and the HST transmission is set so that the combined driving force of the planetary transmission unit 240 can be output from the output rotator 224. It will be in a released state.
- the planetary transmission unit 240 is switched to the state in which the HMT clutch 255 is set to HST transmission, and the HST clutch 260 is switched to the state in which the setting of the HST transmission is canceled to be transmitted to the input shaft 222 from the engine.
- the driving force is input to the carrier 241 via the transmission mechanism 250, and the shift driving force output from the motor shaft 233a of the continuously variable transmission 230 is input to the sun gear 242 via the transmission shaft 223 to drive from the engine.
- the combined drive force is generated by combining the force and the speed change driving force from the continuously variable transmission unit 230, and the generated combined drive force is output from the ring gear 244 via the planetary side interlocking body 226 and the output side interlocking body 227. Output to the body 224.
- the HMT clutch 255 and the HST clutch 260 are provided, and the transmission setting clutch mechanism 270 is configured to switch the transmission gear 220 to the HMT transmission and the HST transmission.
- FIG. 32 is an explanatory diagram showing the relationship between the operating state of the HMT clutch 255 and the HST clutch 260, the operating state of the transmission-set clutch mechanism 270, and the transmission state of the transmission gear 220.
- 32 indicates the disengaged state of the HMT clutch 255 and the HST clutch 260
- “On” indicates the engaged state of the HMT clutch 255 and the HST clutch 260.
- the transmission setting clutch mechanism 270 enters the HST transmission setting state and the transmission 220 is changed.
- Set HST transmission to When the HMT clutch 255 is switched to the engaged state and the HST clutch 260 is switched to the disengaged state, the transmission setting clutch mechanism 270 enters the HMT transmission setting state and sets the HMT transmission in the transmission gear 220.
- FIG. 30 is a longitudinal front view showing the transmission 220 in HMT transmission.
- the transmission gear 220 is driven by the driving force of the input shaft 222 (the driving force from the engine 208).
- the planetary transmission unit 240 synthesizes the driving force from the engine 208 input from the input shaft 222 by the planetary transmission unit 240 and the transmission driving force input from the continuously variable transmission unit 230 by the planetary transmission unit 240.
- the combined driving force output from the ring gear 244 by the planetary transmission unit 240 is transmitted via the planetary side interlocking body 226 and the output side interlocking body 227. Te is transmitted to the end of the output rotor 224 and outputs from the output rotor 224 to travel missions 213.
- FIG. 31 is a longitudinal front view showing the transmission 220 in HST transmission.
- the continuously variable transmission unit 230 receives the drive input from the input shaft 222.
- the speed change driving force output from the motor shaft 233a after shifting the force is transmitted to the end of the output rotating body 224 via the transmission shaft 223, the HST clutch 260, the planetary side interlocking body 226, and the output side interlocking body 227, and output.
- the transmission setting clutch mechanism 270 When the HST transmission is set, the transmission setting clutch mechanism 270 is in a state where the transmission from the input shaft 222 to the carrier 241 of the planetary transmission unit 240 is cut off, and the sun gear 242 is connected to the motor shaft 233a via the transmission shaft 223. Since the ring gear 244 is linked to the motor shaft 233a via the planetary linkage body 226, the clutch body 261, the sun gear 242 and the transmission shaft 223, the ring gear 244 is linked to the motor shaft 233a.
- the sun gear 242, the carrier 241, and the ring gear 244 of the planetary transmission unit 240 are rotated integrally with the motor shaft 233a, and the speed change transmission 220 does not generate rotation of the planetary gear 243 in HST transmission, that is, the sun gear 242 and the planetary gear. Relative rotation of gear 243 and relative rotation of planetary gear 243 and ring gear 244 Without generating, transmitting the output of the motor shaft 233a of the continuously variable transmission section 230 to the output rotor 224.
- FIG. 33 is a graph (speed diagram) showing the output characteristics of the transmission gear 220 with no-load driving that is driven without applying a traveling load as a driving load to the output rotating body 224.
- the vertical axis of this graph is a speed line indicating the rotational speed of the output rotator 224.
- the horizontal axis of this graph passes through the position where the rotational speed of the vertical axis is zero “0”, and is an operation position line L indicating the swash plate position of the hydraulic pump 232 in the continuously variable transmission 230.
- “N” of the operation position line L is a neutral position of the swash plate 232b that makes the continuously variable transmission 230 the neutral state.
- “A” on the operation position line L is a set forward high speed position set as the maximum high speed position on the forward side of the swash plate 232b for switching between setting of HST transmission and HMT transmission in no-load drive.
- “+ Max” of the operation position line L is the actual forward maximum high-speed position of the continuously variable transmission 230, and when the continuously variable transmission 230 is shifted to the operation limit on the forward high speed side, the swash plate 232b of the hydraulic pump 232 is operated. Is the swash plate angle position actually generated.
- the set forward high speed position “a” is an actual forward movement in order to maintain speed continuity at the point where the HST transmission and the HMT transmission are switched in a simple configuration in which the rotation of the motor shaft 233a is input to the planetary terminal without increasing or decreasing. It is set to a position before the maximum speed position “+ max”. “ ⁇ max” of the operation position line L is a set reverse reverse high speed position set as the reverse maximum speed position on the reverse drive side of the swash plate 232b operated by the shift control. The set reverse high speed position “ ⁇ max” is set to the same position as the swash plate angular position actually generated in the swash plate 232b of the hydraulic pump 232 when the continuously variable transmission 230 is shifted to the operation limit on the reverse high speed side. It is.
- the shift line S shown in FIG. 33 indicates the rotational speed of the output rotating body 224 when the transmission transmission 220 is shifted by HST transmission in a state where the engine 208 is accelerator-set so as to output a set constant driving force.
- a no-load HST shift line (hereinafter abbreviated as HST shift line S) showing the change of the shift line M, and the shift line M is in an accelerator set state so that the engine 208 outputs a driving force at a set constant speed.
- 2 is a no-load HMT shift line (hereinafter abbreviated as HMT shift line M) indicating a change in the rotational speed of the output rotating body 224 when the transmission gear 220 is shifted by HMT transmission.
- the continuously variable transmission unit 230 is shifted from the neutral position “n” toward the set forward high speed position “a”, the rotational speed of the output rotating body 224 increases from zero “0” to the forward side along the forward range SF of the HST shift line S.
- the continuously variable transmission 230 reaches the set forward high speed position “a”, the rotational speed of the output rotating body 224 becomes the first forward intermediate speed “V1”.
- the HMT clutch 255 is controlled to be switched from the disengaged state to the engaged state, and the HST clutch 260 is controlled to be switched from the engaged state to the disengaged state to change to HST transmission.
- the continuously variable transmission unit 230 is shifted from the set forward high speed position “a” to the neutral position “n”, whereby the output rotating body 224
- the rotation speed of the output rotating body 224 becomes the second forward intermediate speed “V2”.
- the rotation speed of the output rotating body 224 is changed to the second speed by changing the continuously variable transmission 230 from the neutral position “n” toward the set reverse high speed position “ ⁇ max”.
- the output rotating body 224 is continuously increased from the forward intermediate speed “V2” of the HMT shift line M along the high speed range MH. Is the maximum forward speed “V3”.
- the continuously variable transmission unit 230 In a state where the setting of HST transmission is maintained, the continuously variable transmission unit 230 is shifted from the neutral position “n” toward the set reverse high speed position “ ⁇ max”, so that the rotational speed of the output rotating body 224 becomes zero.
- the continuously variable transmission 230 reaches the set reverse high speed position “ ⁇ max”, the speed of the output rotating body 224 is rotated. The speed becomes the reverse maximum speed “VR”.
- the driving force input from the engine 208 is adopted while adopting the continuously variable transmission unit 230 in which the discharge capacity of the hydraulic pump 232 is as small as possible so that the output driving force becomes a driving force having a rotation speed suitable for work travel.
- the inclination angle B of the HMT shift line M with respect to the operation position line L is set as follows so that the loss associated with the shift can be reduced as much as possible to obtain the driving force after the shift.
- the shift line extension line ME shown in FIG. 33 is an extension of the HMT shift line M toward the operation position line L, and the position “P” on the operation position line L indicates the shift line extension line ME and the operation position line. This is the intersection position where L intersects. It is assumed that the swash plate 232b of the hydraulic pump 232 of the continuously variable transmission 230 can be tilted to the crossing position “P” beyond the maximum forward maximum speed position “+ max” as the maximum tilt position on the forward side where the tilting operation can actually be performed.
- the value of the virtual inclination angle that the swash plate 232b has when the tilt operation is performed up to the intersection position “P” is “N”, and the continuously variable transmission unit 230 that has been shifted to the actual forward maximum high speed position “+ max”
- An inclination angle B with respect to the operation position line L is set.
- the inclination angle B of the HMT shift line M with respect to the operation position line L is such that the rotational speed of the output rotator 224 at the maximum forward speed “V3” is the rotational speed of the output rotator 224 at the first forward intermediate speed “V1”.
- the inclination angle is set to be twice or more.
- the HST power is Since the rotation speed is 1 / N, it is 1 / N times the mechanical transmission power that does not pass through the continuously variable transmission 230.
- the output power is constant mechanical power ⁇ HST power
- the total efficiency exhibited by the transmission 220 is the continuously variable transmission.
- FIG. 34 is an explanatory diagram showing the relationship between the overall efficiency and the shift position when the value of N / X is changed.
- KM 0.95
- KH 0.7
- N / X 1.0
- N / X 2.0
- N / X 3.0. Is shown.
- the horizontal axis shown in FIG. 34 indicates the shift position, and the reverse rotation high speed position is set for the output rotation speed when the continuously variable transmission 230 is shifted to an arbitrary shift position in the forward side in HST transmission and in the HMT transmission.
- the ratio of the output rotation speed when the gear is shifted to “ ⁇ max” is the shift position on the horizontal axis. That is, assuming that the rotation speed of the driving force output when the continuously variable transmission 230 is shifted to an arbitrary shift position in the forward side in the HST transmission and the HMT transmission is Vn / V3, Vn / V3 is the horizontal shift position. It is said.
- the efficiency line K shown in FIG. 34 shows the total efficiency of the continuously variable transmission 230.
- N / X 1.0
- the output rotation of the planetary transmission unit 240 in HMT transmission at this time can also be designed in a realistic region that does not exceed 10,000 rpm.
- the transmission gear transmission 220 unit is made independent, the influence of the torque cross due to the seal of the output portion can be reduced if the speed is reduced to about the number of revolutions from the drive source. This is also easy to configure realistically.
- N / X 1.5 to 2.5.
- FIG. 35 is an explanatory diagram showing the relationship between the value of N / X and the miniaturization of the continuously variable transmission unit 230.
- the horizontal axis of FIG. 35 shows the value of N / X.
- a line F shown in FIG. 35 indicates the ratio “W” of the HST power (1 / N) to the total power (1 + 1 / N). The larger the ratio “W”, the larger the continuously variable transmission unit 230 is required in which the discharge capacity of the hydraulic pump 232 increases.
- the continuously variable transmission unit 230 can be made smaller than that obtained by the output from the continuously variable transmission unit 230, as shown in FIG.
- Line G shows the relationship between the value of N / X and the degree to which the continuously variable transmission 230 can be miniaturized.
- the maximum speed in the HMT transmission (forward maximum speed “V3”) is similar to the maximum speed in the HST transmission.
- (N + 1) / (N-1) Z.
- the value indicated by the vertical axis in FIG. 35 is a value of 1 / Z.
- FIG. 37 shows the output characteristics of the variable speed transmission 220 with no-load drive that is driven without applying a traveling load as a driving load to the output rotator 224, and the traveling load as a driving load is applied to the output rotator 224.
- It is a graph (speed diagram) which shows the output characteristic with which the transmission gearbox 220 by the load drive driven in a state is equipped.
- FIG. 39 is an explanatory diagram showing switching of setting from HST transmission to HMT transmission.
- the vertical axis and horizontal axis in FIGS. 37 and 39 are the same as the vertical axis and horizontal axis of the graph shown in FIG. “N”, “a”, and “ ⁇ max” described in FIGS. 37 and 39 are the same as “n”, “a”, and “ ⁇ max” described in the graph of FIG.
- a shift line SA shown in FIG. 37 is in a state where the engine 208 is accelerator-set so as to output a set driving force at a constant speed, and in the state where a traveling load as a set value driving load is applied to the output rotating body 224. Further, it is a load HST shift line (hereinafter abbreviated as HST shift line SA) indicating a change in the rotational speed of the output rotating body 224 of the transmission gear 220 driven by the setting of the HST transmission.
- the shift line MA shown in FIG. 37 is in a state where the engine 208 is accelerator-set so as to output a driving force of a set constant speed, and in a state where a traveling load as a driving load of a set value is applied to the output rotating body 224.
- HMT shift line MA a load HMT shift line indicating a change in the rotational speed of the output rotating body 224 of the transmission gear 220 driven by the setting of the HMT transmission.
- HST shift line SA Since the HST shift line SA is in a state where a driving load is applied to the swash plate 232b, the inclination angle of the HST shift line SA with respect to the operation position line L is the inclination angle of the HST shift line S with respect to the operation position line L. Become smaller. Since the HMT shift line MA is in a state in which a driving load is applied to the swash plate 232b, the low speed side of the HMT shift line MA is shifted to the low speed side with respect to the HMT shift line M.
- the horizontal line L1 shown in FIG. 37 indicates that the clutch mechanism 270 for switching the setting from the HST transmission to the HMT transmission is provided in the motor shaft 233a when switching the setting from the HST transmission to the HMT transmission.
- a motor that causes the planetary transmission unit 240 to manifest the integral rotation of the sun gear 242, the carrier 241, and the ring gear 244 when the switching is completed and the driving force from the engine 208 is transmitted to the planetary transmission unit 240.
- the rotation speed of the motor shaft 233a is the same as the rotation speed “V1” of the output rotating body 224.
- the continuously variable transmission 230 in the HST transmission and no-load drive is provided with an integrated rotation appearing speed “V” by operating the swash plate 232b of the hydraulic pump 232 to the set forward high speed position “a”.
- FIG. 36 is a block diagram showing a speed change operating device 271 that changes the speed of the speed change transmission 220.
- the speed change operation device 271 includes a control device 272 linked to the speed change operation portion 230a of the continuously variable transmission portion 230, the operation portions 255a and 260a of the HMT clutch 255 and the HST clutch 260, and the control device 272.
- a gear shift operating tool 277, an engine speed sensor 274, a swash plate angle sensor 275, and an output speed sensor 276 are provided.
- the shift operation unit 230a is configured by an electric actuator or a hydraulic actuator that performs an angle changing operation of the swash plate 232b of the hydraulic pump 232 in the continuously variable transmission unit 230.
- the operation portion 255a of the HMT clutch 255 is configured by an operation valve connected to the hydraulic piston 258 via an operation oil passage formed inside the input shaft 222, and the clutch body 256 is operated by operating the hydraulic piston 258.
- the HMT clutch 255 is switched by performing a sliding operation.
- the operation portion 260a of the HST clutch 260 is configured by an operation valve connected to the oil chamber of the clutch body 261 via an operation oil passage formed inside the transmission shaft 223, and the operation of the clutch body 261 with respect to the oil chamber is performed. By supplying and discharging oil, the clutch body 261 is slid and the HST clutch 260 is switched.
- the speed change operation tool 277 is configured by a speed change lever provided in the driving portion 202 so as to be swingable in the longitudinal direction of the traveling machine body.
- the forward operation area extends from the neutral position “277N” and the neutral position “277N” to the front side of the machine body.
- the swing operation is performed in “277F” and a reverse operation range “277R” extending from the neutral position “277N” to the rear side of the machine body.
- the shift operation tool 277 is linked to the control device 272 via a shift detection sensor 273 that detects an operation position of the shift operation tool 277.
- the shift detection sensor 273 is configured by a rotary potentiometer having a rotation operation shaft linked to the shift operation tool 277, and the shift operation tool 277 is operated to swing, thereby operating the shift detection sensor 273 to change the speed.
- a shift command is output from the detection sensor 273 to the control device 272 as an electrical signal.
- the engine rotation speed sensor 274 detects the rotation speed of the engine 208 and outputs the detection result to the control device 272.
- the swash plate angle sensor 275 detects the swash plate angle of the hydraulic pump 232 of the continuously variable transmission 230 and outputs the detection result to the control device 272.
- the output rotation speed sensor 276 detects the rotation speed of the output rotating body 224 as the output rotation speed of the transmission gear 220 and outputs the detection result to the control device 272.
- the control device 272 is configured using a microcomputer, and includes a shift control unit 278 and a shift swash plate angle setting unit 280.
- the transmission swash plate angle setting means 280 is configured by a storage unit provided in the control device 272.
- the transmission swash plate angle setting means 280 is inputted with a swash plate angle for performing switching control of setting from HST transmission to HMT transmission being set as a preset transmission swash plate angle “c”.
- the shift control means 278 detects the rotation speed of the accelerator-set engine 208 based on the detection information from the engine rotation speed sensor 274, the detection result, the shift command from the shift operation tool 277, and the swash plate angle sensor.
- the hydraulic pump 232 is shift-controlled based on information detected by the H.275 and the output rotation speed sensor 276, and the HST clutch 260 and the HMT clutch 255 of the clutch mechanism 270 are switched.
- FIG. 38 is a flowchart showing setting switching control for switching the setting from HST transmission to HMT transmission.
- the speed change control means 278 compares the detected swash plate angle by the swash plate angle sensor 275 with the set speed change swash plate angle “c” by the speed change swash plate angle setting means 280 to obtain the detected swash plate angle. By determining whether or not the set speed swash plate angle “c” is equal, it is determined whether or not the swash plate angle sensor 275 has detected a swash plate angle equal to the set speed swash plate angle “c”.
- the shift control means 278 controls the HST clutch 260 of the clutch mechanism 270 to be switched off, and controls the HMT clutch. 255 is switched to the on state and the setting is switched from HST transmission to HMT transmission.
- the engine 208 is accelerator-set so as to output a driving force at a constant rotational speed, and the speed change operation tool 277 is operated over the reverse operation range “277R”, the neutral position “277N”, and the forward operation range “277F”.
- the shift control means 278 performs control to switch the transmission gear 220 by switching between HST transmission and HMT transmission and shift control of the hydraulic pump 232, and the traveling machine body is switched to the forward side and the reverse side to run. The vehicle can be shifted and stopped on the forward side and the reverse side.
- the transmission transmission 220 is set to HST transmission by switching control of the HMT clutch 255 and the HST clutch 260 of the transmission control means 278 based on the setting information by 280.
- the HMT clutch 255 of the speed change control means 278 based on the speed change command from the speed change operation tool 277 and the setting information by the speed change swash plate angle setting means 280 and
- the transmission transmission 220 is set to HMT transmission by switching control of the HST clutch 260.
- the gear shift control means 278 operates the swash plate 232b of the hydraulic pump 232 to the neutral position “n” based on the gear shift command from the gear shift operation tool 277, and continuously variable speed change.
- the part 230 is in a neutral state, and the transmission transmission 220 stops output.
- the shift control means 278 is operated by the shift command of the hydraulic pump 232 based on the shift command from the shift operation tool 277 and information detected by the output rotation speed sensor 276.
- the plate 232b is tilted on the forward side from the neutral position “n”, and the driving force output from the transmission gear 220 shifts along the forward region of the load HST shift line SA.
- the shift control means 278 is operated by the shift command of the hydraulic pump 232 based on the shift command from the shift operation tool 277 and information detected by the output rotation speed sensor 276.
- the plate 232b is tilted between the forward side and the reverse side, and the driving force output from the transmission gear 220 is shifted along the load HMT shift line MA.
- the shift control means 278 neutralizes the swash plate 232b of the hydraulic pump 232 based on the shift command from the shift operation tool 277 and the detection information by the output rotation speed sensor 276. Tilt operation is performed on the reverse side from the position “n”, and the driving force output from the transmission gear 220 shifts along the reverse region of the HST shift line SA of the load.
- FIG. 44 is an explanatory diagram showing switching from HST transmission to HMT transmission in the comparative example.
- the horizontal line L1 shown in FIG. 44 is the same as the horizontal line L1 shown in FIG.
- the rotation speed of the motor shaft 233a increasing along the HST shift line S becomes the integrated rotation appearing speed “V” because the HST shift line S and the HMT shift line M
- the swash plate angle of the hydraulic pump 232 at this point of time is a no-load swash plate angle “a” formed by the forward set high speed position “a”.
- the rotation speed of the motor shaft 233a increasing along the HST shift line SA becomes the integral rotation appearing speed “V” at the time point indicated by the intersection “X” between the HST shift line SA and the horizontal line L1,
- the swash plate angle of the hydraulic pump 232 becomes the load swash plate angle “b”, and the load swash plate angle “b” tilts the swash plate 232b to the higher speed side than the unloaded swash plate angle “a”. Swash plate corner.
- the output rotating body 224 The output speed is the rotation speed corresponding to the intersection “Y” where the HMT shift line MA and the vertical line passing through the position of the intersection “X” and the load swash plate angle “b” intersect from the integrated rotation appearance speed “V”. Therefore, the rotation speed changes to a lower rotation speed “V0” than the integrated rotation appearance speed “V”. That is, when the setting is switched from the HST transmission to the HMT transmission, the traveling speed decreases from the speed corresponding to the integral rotation actual speed “V” to the speed corresponding to the output speed “V0” immediately after the switching. .
- FIG. 39 is an explanatory diagram showing switching of setting from HST transmission to HMT transmission by the shift control means 278 according to the embodiment of this invention.
- the set speed change swash plate angle “c” a swash plate angle between the unloaded swash plate angle “a” and the loaded swash plate angle “b” is set.
- the set transmission swash plate angle “c” includes an intersection swash plate angle “d” and a load swash plate angle “b” corresponding to the intersection “W” between the HST transmission line SA and the HMT transmission line MA.
- a swash plate angle closer to the intersection swash plate angle “d” than the load swash plate angle “b” is set.
- the shift control means 278 is at the intersection “S1” where the rotational speed of the motor shaft 233a increasing along the HST shift line SA intersects the HST shift line SA and the vertical line passing through the set shift swash plate angle “c”.
- the corresponding rotational speed “VS” When the corresponding rotational speed “VS” is reached, setting switching control from HST transmission to HMT transmission is performed.
- the rotational speed of the output rotating body 224 as the output speed of the transmission gear 220 immediately after the switching control of the setting from the HST transmission to the HMT transmission is performed vertically through the HMT transmission line MA and the intersection “S1”.
- the rotation speed becomes “VM” corresponding to the intersection “M1” where the line intersects.
- the switching control of the setting from HST transmission to HMT transmission by the transmission control means 278 is performed when the transmission operation tool 277 is located at the center of the forward operation region “277F”.
- the rotational speed “VS” of the motor shaft 233a as the output speed of the continuously variable transmission 230 when the setting is switched from the HST transmission to the HMT transmission is lower than the integral rotation appearing speed “V”.
- the output speed of the output rotating body 224 as the output speed of the transmission gear 220 immediately after the setting switching from the HST transmission to the HMT transmission is performed, and the output speed of the continuously variable transmission unit 230 appears as an integral rotation.
- the rotation speed becomes “V”, which is higher than the rotation speed “V0” of the output rotating body 224 immediately after switching.
- the change in travel speed associated with switching from HST transmission to HMT transmission corresponds to the speed difference between the output speed “VS” immediately before switching and the output speed “VM” immediately after switching, and the HST transmission
- the speed of the HST transmission is made smaller than the speed difference between the output speed “V” immediately before switching and the output speed “V0” immediately after switching. Switching from the range to the speed range of HMT transmission is performed.
- FIG. 40 is a block diagram showing a speed change operating device 271 provided with the first alternative embodiment. As shown in this figure, in the speed change operation device 271 provided with the first alternative embodiment, the speed change swash plate angle setting means 280 is provided with an adjusting portion 281 linked to the control device 272.
- the adjustment unit 281 is constituted by a rotary potentiometer provided with a rotary operation tool 281a.
- the adjusting unit 281 is adjusted by the rotary operation tool 281a to change the swash plate angle of the hydraulic pump 232 when performing the setting switching control from the HST transmission to the HMT transmission to the high speed side or the low speed side.
- the speed change swash plate angle setting means 280 has already input the new set speed change swash plate angle from the adjusting unit 281.
- the shift swash plate angle setting means 280 is adjusted so as to input instead of the angle.
- the swash plate angle “c” of 232 is set as the set transmission swash plate angle by the transmission swash plate angle setting means 280, and the rotation speed “VS1” of the motor shaft 233a when the setting switching control from the HST transmission to the HMT transmission is performed.
- FIG. 42 is a block diagram showing a speed change operating device 271 provided with the second alternative embodiment.
- the speed change device 271 provided with the second alternative embodiment includes a storage unit 283 to which map control data is input.
- the storage unit 283 detects a detected swash plate angle detected by the swash plate angle sensor 275 when the transmission 220 is driven by HST transmission and load driving, and an appropriate corresponding HST shift line corresponding to the detected swash plate angle. And an appropriate corresponding HMT shift line corresponding to the corresponding HST shift line is input and stored in advance as map control data.
- FIG. 43 is an explanatory diagram showing setting switching control from HST transmission to HMT transmission by the speed change operation device 271 provided with the second alternative embodiment.
- the speed change swash plate angle setting means 280 is a swash plate until the speed change transmission 220 is driven by HST transmission and load drive until the setting switching control from HST transmission to HMT transmission is performed.
- Detection information from the angle sensor 275 is always input, and each time detection information from the swash plate angle sensor 275 is input, based on the detection information from the swash plate angle sensor 275 and the map control data input to the storage unit 283, A calculation HST shift line SA1 for HST transmission and load driving corresponding to the detected swash plate angle by the plate angle sensor 275 is calculated and set, and an appropriate calculation HMT shift line MA1 corresponding to the calculation HST shift line SA1 is calculated.
- the hydraulic pump 232 is in a shift state in which a shift driving force at a speed corresponding to the intersection W1 of the calculation HST shift line SA1 and the calculation HMT shift line MA1 is output. Comprising indexing the swash plate angle, sets a swash plate angle indexing as "c" set speed swash plate angle.
- the shift control means 278 switches the setting between the HST transmission and the HMT transmission as the set shift swash plate angle in order to switch the setting from the HST transmission to the HMT transmission even if the driving load changes during the traveling.
- the optimum setting speed change swash plate angle “c” is given to prevent the change of the running speed due to the change of the HST transmission speed range to the HMT transmission speed range regardless of the change of the driving load.
- the speed change is performed without the accompanying speed change, and the shift from the speed range of the HST transmission to the speed range of the HMT transmission is performed without generating a shift shock or a sense of incongruity.
- the continuously variable transmission unit 230 is configured by including the fixed displacement type hydraulic motor 233 .
- the continuously variable transmission unit 230 is configured by including the variable displacement type hydraulic motor. May be implemented.
- the combine is configured to be self-propelled by a pair of left and right crawler type traveling devices 301 and 301 and is equipped with a riding-type driving unit 302, and a body frame of the traveling body.
- a cutting part 304 connected to the front part of 303, a threshing device 305 provided behind the cutting part 304 on the rear side of the machine frame 303, and a lateral side of the threshing apparatus 305 on the rear side of the machine frame 303.
- a grain tank 306 disposed in the direction, and harvesting rice, wheat, etc. is performed.
- the cutting unit 304 includes a cutting unit frame 304a that extends from the front of the machine body frame 303 so as to be swingable up and down, and the cutting unit frame 304a is swung by the lifting cylinder 307.
- the weeding tool 304b provided at the front end of the mowing unit 304 moves up and down to a descending work position where the weeding tool 304b is lowered near the ground, and to a non-working position where the weeding tool 304b is lifted high from the ground.
- the cutting unit 304 When the cutting unit 304 is lowered to the lowering operation position and the traveling machine is driven, the cutting unit 304 causes the planted culm to be harvested by the weeding tool 304b to be introduced into the path, and the planting that has been induced and introduced into the path.
- the clippers While raising the standing cereals by the device 304c, the clippers are reaped by the clipper type reaping device 304d, and the reaped cereals are supplied to the threshing device 305 by the supply device 304e.
- the threshing device 305 clamps the stock side of the harvested cereal from the supply device 304e by the threshing feed chain 305a and conveys it toward the rear of the machine, and supplies the tip side of the harvested cereal to the handling room (not shown).
- the threshing process is performed, and the threshing grain is fed into the grain tank 306.
- An engine 308 is provided below a driver seat 302 a provided in the driver 302, and driving force output from the engine 308 is transmitted to a pair of left and right by a traveling transmission device 310 including a transmission case 311 provided at the front end of the body frame 303. It is comprised so that it may transmit to the traveling apparatuses 301 and 301.
- a traveling transmission device 310 including a transmission case 311 provided at the front end of the body frame 303. It is comprised so that it may transmit to the traveling apparatuses 301 and 301.
- FIG. 46 is a front view showing a schematic structure of the traveling transmission device 310.
- the traveling transmission device 310 provides engine driving force from the output shaft 308a of the engine 308 to the side of the upper end portion of the transmission case 311 via the transmission mechanism 312 provided with the transmission belt 312a.
- the transmission transmission 320 is input to the left side of the left and right steering clutch mechanisms 314 and 314 included in the traveling mission 313 by inputting the output of the transmission transmission 320 to the traveling mission 313 built in the mission case 311. Is transmitted from the steering clutch mechanism 314 to the drive shaft 301a of the left traveling device 301, and is transmitted from the right steering clutch mechanism 314 to the drive shaft 301a of the right traveling device 301.
- the traveling transmission device 310 includes a cutting mission 315 housed in the mission case 311, and the output of the transmission gear 320 is input to the cutting mission 315 and transmitted from the cutting output shaft 316 to the drive shaft 304 f of the cutting unit 304.
- the transmission gear 320 includes a planetary transmission unit 320 ⁇ / b> A including a transmission case 321 having a lateral side connected to the upper end side of the mission case 311, and a transmission case 311 of the transmission case 321.
- a hydrostatic continuously variable transmission 330 having a casing 331 connected to the lateral side opposite to the connecting side is provided.
- the transmission case 321 accommodates a main case portion 321 a that accommodates the planetary transmission portion 340 and the transmission mechanism 350, an input shaft 322, a transmission portion of the transmission shaft 323, and the continuously variable transmission portion 330, and the transmission case 321 and the casing 331.
- a connection case portion 321b for connecting the port block 334 is provided.
- the speed change case 321 is connected to the transmission case 311 by a bulging portion 321c bulging outwardly on the lateral side of the lower side surface where the output rotating body 324 of the main case portion 321a is located.
- the size of the connecting case part 321b in the vertical direction of the traveling machine body is smaller than the size of the main case part 321a in the vertical direction of the traveling machine body.
- the main case portion 321a is formed so that the longitudinal cross-sectional shape in the longitudinal direction of the fuselage is a vertically long shape
- the casing 331 is formed so that the longitudinal cross-sectional shape in the longitudinal direction of the fuselage is longitudinally long. While the section 320A and the continuously variable transmission section 330 are arranged in the lateral direction of the body, the lateral width of the entire body of the speed change transmission 320 is reduced, and the speed change transmission 320 does not protrude laterally in the lateral direction of the traveling body. It is connected to the lateral side of the mission case 311 in a compact state.
- a bulging portion 331B for supporting the bearing of the motor shaft 333a is formed on the lower side surface of the casing 331, so that the transmission gear 320 can be made more compact.
- an oil filter 320F is arranged on the upper surface of the casing 331, and further compaction is achieved by avoiding the oil filter 320F from projecting laterally outward.
- the planetary transmission unit 320 ⁇ / b> A includes a laterally-facing input shaft 322 that is rotatably supported on the upper end side of the transmission case 321, and a transmission that is rotatably supported in parallel or substantially parallel to the input shaft 322 on the lower end side of the transmission case 321.
- the input shaft 322 is arranged so as to be aligned coaxially with the pump shaft 332a of the continuously variable transmission 330.
- the input shaft 322 is configured to be coupled to the output shaft 308a of the engine 308 via the transmission mechanism 312 on the side projecting laterally outward from the transmission case 321 and is jointed on the side opposite to the side coupled to the engine 308.
- 22a is coupled to the pump shaft 332a of the continuously variable transmission unit 330 so as to be integrally rotatable.
- the engine driving force is input via the transmission mechanism 312, and the hydraulic pressure of the continuously variable transmission unit 330 is driven by the engine driving force.
- the pump 332 is driven.
- the output rotator 324 is arranged on the same side as the side where the engine coupling side of the input shaft 322 is located with respect to the continuously variable transmission unit 330 so as to be coaxial with the motor shaft 333a of the continuously variable transmission unit 330.
- the output rotator 324 is configured to interlock with the input portion of the traveling mission 313 on the side projecting laterally outward from the transmission case 321, and uses the driving force from the planetary transmission unit 340 and the continuously variable transmission unit 330 as the traveling mission. It outputs to a pair of left and right traveling devices 301, 301 via 313.
- the continuously variable transmission 330 includes a hydraulic pump 332 in which a pump shaft 332a is rotatably supported on the upper end side of the casing 331, and a hydraulic motor 333 in which a motor shaft 333a is rotatably supported on the lower end side of the casing 331. It is configured with.
- the hydraulic pump 332 is constituted by a variable displacement axial plunger pump
- the hydraulic motor 333 is constituted by a variable displacement axial plunger motor.
- the hydraulic motor 333 is driven by pressure oil that is discharged by a hydraulic pump 332 and supplied via an oil passage formed inside the port block 334.
- the continuously variable transmission 330 is supplied with supplementary hydraulic fluid by a charge pump 390 provided at the end of the pump shaft 332a.
- the charge pump 390 includes a rotor 390a attached to the pump shaft 332a so as to be integrally rotatable, and a pump casing 390b detachably connected to the casing 331.
- the continuously variable transmission 330 is switched between a forward transmission state, a reverse transmission state, and a neutral state by performing an angle change operation of the swash plate 332b included in the hydraulic pump 332.
- the continuously variable transmission unit 330 converts the engine driving force transmitted from the input shaft 322 to the pump shaft 332a into the forward driving force and outputs it from the motor shaft 333a.
- the engine driving force transmitted from the input shaft 322 to the pump shaft 332a is converted into a reverse driving force and output from the motor shaft 333a, and the engine driving force in both the forward transmission state and the reverse transmission state. Is output in a stepless manner.
- the continuously variable transmission unit 330 stops output from the motor shaft 333a when switched to the neutral state.
- the planetary transmission unit 340 is disposed between the motor shaft 333a and the output rotator 324 on the same side as the engine coupling side of the input shaft 322 with respect to the continuously variable transmission unit 330.
- the planetary transmission unit 340 can freely rotate a sun gear 342 supported by the transmission shaft 323, a plurality of planetary gears 343 that mesh with the sun gear 342, a ring gear 344 that meshes with each planetary gear 343, and a plurality of planetary gears 343.
- a carrier 341 for supporting the carrier.
- the carrier 341 includes an arm portion 341a that rotatably supports the planetary gear 343 at the extended end portion, and a cylindrical shaft portion 341b to which the base end sides of the plurality of arm portions 341a are connected, and the cylindrical shaft portion 341b
- the transmission shaft 323 is rotatably supported via a bearing.
- the transmission shaft 323 and the motor shaft 333a are connected so as to be integrally rotatable via a joint 323a, the transmission shaft 323 and the sun gear 342 are connected so as to be integrally rotatable via a spline structure, and the sun gear 342 is a motor
- the shaft 333a is interlocked so as to be integrally rotatable.
- the ring gear 344 and the output rotating body 324 are integrally rotatable with an annular planetary interlocking body 326 and an annular output side interlocking body 327 that are externally fitted to the transmission shaft 323 so as to be relatively rotatable side by side in the axial direction. It is linked to. That is, the planetary interlocking body 326 includes a plurality of engagement arm portions 326a that extend radially from the outer periphery of the planetary interlocking body 326 so as to be integrally rotatable.
- the plurality of engagement arm portions 326a are engaged with a plurality of locations of the ring gear 344, and the planetary interlocking body 326 is interlocked with the ring gear 344 so as to be integrally rotatable.
- the output-side interlocking body 327 is engaged with the planetary-side interlocking body 326 by an engaging claw 327a so as to be integrally rotatable, and the output-side interlocking body 327 is integrally engaged with the output rotating body 324 by a spline structure.
- the interlocking body 326 and the output rotating body 324 are coupled so as to be rotatable together.
- the planetary interlocking body 326 is supported on the transmission shaft 323 via a bearing so as to be relatively rotatable.
- the output side interlocking body 327 is rotatably supported by the transmission case 321 via a bearing.
- the transmission mechanism 350 is a transmission gear 352 supported on the input shaft 322 through a needle bearing so as to be relatively rotatable while meshing with an input gear 341c of the carrier 341 provided to be integrally rotatable with the cylindrical shaft portion 341b of the carrier 341. And an HMT clutch 355 provided across the transmission gear 352 and the input shaft 322.
- the HMT clutch 355 includes a clutch body 356 that is supported on the input shaft 322 so as to be integrally rotatable and slidable, and a clutch body 357 provided across one end side of the clutch body 356 and a lateral side portion of the transmission gear 352. It is prepared.
- the clutch body 356 is slidably operated by a hydraulic piston 358 fitted inside the end of the clutch body 356.
- the clutch body 357 is configured as a meshing clutch so that the engagement claw provided on the clutch body 356 and the engagement claw provided on the transmission gear 352 are engaged and disengaged to switch between the on state and the off state.
- the HMT clutch 355 is switched to the input state so as to interlock the input shaft 322 and the transmission gear 352 so that the input shaft 322 and the transmission gear 352 can rotate together.
- the HMT transmission is set so as to interlock with the input shaft 322.
- the HMT clutch 355 is switched to the disconnected state so as to disconnect the input shaft 322 and the transmission gear 352 by switching the clutch body 357 to the disconnected state, and the carrier 341 of the planetary transmission unit 340 and the input shaft 322 are switched.
- the state where the setting of HMT transmission is canceled so as to cut off the interlocking of the motor is brought about.
- the planetary transmission unit 340 is switched from the portion located between the engine connection side of the input shaft 322 and the continuously variable transmission unit connection side by switching the HMT clutch 355 to the state in which the HMT transmission is set.
- the driving force 322 is input to the carrier 341 through the transmission mechanism 350.
- the planetary transmission unit 340 is switched to the state in which the HMT clutch 355 cancels the setting of the HMT transmission, so that the interlocking of the carrier 341 with the input shaft 322 is cut off.
- An HST clutch 360 including a clutch body 361 externally fitted to the transmission shaft 323 is provided across the sun gear 342 of the planetary transmission section 340 and the planetary linkage body 326.
- the clutch body 361 is slid toward the sun gear 342 against the energizing spring 362 when pressure oil is supplied to the oil chamber formed on the inner peripheral side of the clutch body 361, and the cut position is reached.
- the urging spring 362 is slid toward the planetary interlocking body 326 to switch to the entry position.
- the clutch pawl 361a provided on the clutch body 361 and the clutch pawl provided on the planetary side interlocking body 326 are engaged with each other so as to be integrated with the planetary side interlocking body 326. Connect freely.
- the clutch body 361 is slid while maintaining the state in which the clutch body 361 is integrally engaged with the sun gear 342 by the engaging claws 361b, and enters the entry position while maintaining the state of engagement with the sun gear 342.
- the clutch pawl 361a disengages from the planetary interlocking body 326.
- the HST clutch 360 rotates the motor shaft 333a integrally with the output rotating body 324 by interlocking the sun gear 342 and the planetary interlocking body 326 with the clutch body 361 switched to the engaged position.
- the HST transmission is set so as to enable the output from the output rotating body 324 by the continuously variable transmission unit 330 in an interlocked manner.
- the sun gear 342 and the transmission shaft 323 are interlocked so as to be integrally rotatable, and the ring gear 344 and the planetary side interlocking body 326 are interlocked so as to be integrally rotatable.
- the sun gear 342, the carrier 341, and the ring gear 344 can rotate together with the motor shaft 333a so that the rotation does not occur.
- the HST clutch 360 switches the sun gear 342 and the output rotator 324 of the planetary transmission unit 340 between the interlocking on state and the interlocking off state while maintaining the ring gear 344 and the output rotator 324 of the planetary transmission unit 340 in an interlocking state.
- the HST clutch 360 is disengaged from the sun gear 342 and the planetary side interlocking body 326, and the motor shaft 333a is disengaged from the output rotating body 324, and planetary transmission is performed.
- the ring gear 344 of the unit 340 and the output rotator 324 are linked together so as to be integrally rotatable, and the HST transmission is set so that the combined driving force of the planetary transmission unit 340 can be output from the output rotator 324. It will be in a released state.
- the planetary transmission unit 340 is operated to be switched to the state in which the HMT clutch 355 is set to HST transmission, and the HST clutch 360 is operated to be switched to the state in which the setting of the HST transmission is released to transmit to the input shaft 322.
- the driving force is input to the carrier 341 via the transmission mechanism 350, and the shift driving force output from the motor shaft 333a of the continuously variable transmission unit 330 is input to the sun gear 342 via the transmission shaft 323 to drive from the engine.
- the combined drive force is generated by combining the force and the speed change driving force from the continuously variable transmission unit 330, and the generated drive force is output from the ring gear 344 via the planetary side interlocking body 326 and the output side interlocking body 327. Output to the body 324.
- the HMT clutch 355 and the HST clutch 360 are provided, and the transmission setting clutch mechanism 370 is configured to switch the transmission gear 320 to HMT transmission and HST transmission.
- FIG. 49 is an explanatory diagram showing the relationship between the operation state of the HMT clutch 355 and the HST clutch 360, the operation state of the transmission-set clutch mechanism 370, and the transmission state of the transmission gear 320.
- “OFF” indicates the disengaged state of the HMT clutch 355 and the HST clutch 360
- “ON” indicates the engaged state of the HMT clutch 355 and the HST clutch 360.
- the transmission setting clutch mechanism 370 enters the HST transmission setting state, and the speed change transmission 320 Set HST transmission to.
- the transmission setting clutch mechanism 370 enters the HMT transmission setting state and sets the HMT transmission in the transmission gear 320.
- FIG. 47 is a longitudinal front view showing the transmission gear 320 in HMT transmission.
- the transmission gear 320 is driven by the driving force of the input shaft 322 (the driving force from the engine 308).
- the planetary transmission unit Is input to the carrier 341 of the planetary transmission unit 340 via the transmission mechanism 350, and the planetary transmission unit generates a variable speed driving force that the continuously variable transmission unit 330 shifts the driving force input from the input shaft 322 and outputs it from the motor shaft 333a.
- the planetary transmission unit 340 combines the driving force from the engine 308 input from the input shaft 322 and the variable speed driving force input from the continuously variable transmission unit 330 by the planetary transmission unit 340 to synthesize the combined driving force. And the combined driving force output from the ring gear 344 by the planetary transmission unit 340 is transmitted via the planetary side interlocking body 326 and the output side interlocking body 327. Te is transmitted to the end of the output rotor 324 and outputs from the output rotor 324 to travel missions 313.
- FIG. 48 is a longitudinal front view showing the transmission gear 320 in HST transmission.
- the continuously variable transmission unit 330 receives the drive input from the input shaft 322.
- a speed change driving force output from the motor shaft 333a by shifting the force is transmitted to the end of the output rotating body 324 via the transmission shaft 323, the HST clutch 360, the planetary side interlocking body 326, and the output side interlocking body 327, and output.
- the transmission setting clutch mechanism 370 When the HST transmission is set, the transmission setting clutch mechanism 370 is in a state where the transmission from the input shaft 322 to the carrier 341 of the planetary transmission unit 340 is cut off, and the sun gear 342 is connected to the motor shaft 333a via the transmission shaft 323. Since the ring gear 344 is linked to the motor shaft 333a via the planetary linkage body 326, the clutch body 361, the sun gear 342, and the transmission shaft 323, the ring gear 344 is linked to the motor shaft 333a.
- the sun gear 342, the carrier 341, and the ring gear 344 of the planetary transmission unit 340 are rotated integrally with the motor shaft 333a, and the transmission gear 320 does not cause rotation of the planetary gear 343 in HST transmission, that is, the sun gear 342 and the planetary gear. Relative rotation of gear 343 and relative rotation of planetary gear 343 and ring gear 344 Without generating, transmitting the output of the motor shaft 333a of the continuously variable transmission section 330 to the output rotary member 324.
- Fig. 50 is a graph (speed diagram) showing the output characteristics of the transmission gear 320.
- the vertical axis of this graph is a speed line indicating the rotational speed of the output rotator 324.
- the horizontal axis of this graph passes through the position where the rotational speed of the vertical axis is zero “0”, and is an operation position line L indicating the swash plate position of the hydraulic pump 332 in the continuously variable transmission 330.
- “N” of the operation position line L is a neutral position of the swash plate 332b that makes the continuously variable transmission 330 the neutral state.
- “A” on the operation position line L is a set forward high speed position set as the fastest speed position on the forward side of the swash plate 332b for switching between setting of HST transmission and HMT transmission in no-load drive.
- “+ Max” of the operation position line L is the actual forward maximum high-speed position of the continuously variable transmission unit 330.
- the swash plate 332b of the hydraulic pump 332 is used. Is the swash plate angle position actually generated.
- the set forward high speed position “a” is an actual forward movement in order to maintain speed continuity at the point where HST transmission and HMT transmission are switched in a simple configuration in which the rotation of the motor shaft 333a is input to the planetary terminal without increasing or decreasing. It is set to a position before the maximum speed position “+ max”. “ ⁇ max” of the operation position line L is a set reverse high speed position set as the reverse high speed position on the reverse side of the swash plate 332b operated by the shift control. The set reverse high speed position “ ⁇ max” is set to the same position as the swash plate angular position actually generated in the swash plate 332b of the hydraulic pump 332 when the continuously variable transmission unit 330 is shifted to the operation limit on the reverse high speed side. It is.
- the shift line S shown in FIG. 50 indicates the rotational speed of the output rotating body 324 when the transmission gear 320 is shifted by HST transmission in a state where the engine 308 is accelerator-set so as to output a driving force at a set constant speed.
- HST shift line (hereinafter abbreviated as HST shift line S) showing the change in the shift line M.
- the shift line M is a shift transmission in a state where the engine 308 is accelerator-set so as to output a set driving force at a constant speed.
- HMT shift line M indicating a change in the rotational speed of the output rotating body 324 when the motive 320 is shifted by HMT transmission.
- the continuously variable transmission unit 330 is shifted from the neutral position “n” toward the set forward high-speed position “a”, so that the rotational speed of the output rotating body 324 increases from zero “0” to the forward side along the forward range SF of the HST shift line S.
- the continuously variable transmission 330 reaches the set forward high speed position “a”, the rotational speed of the output rotating body 324 becomes the first forward intermediate speed “V1”.
- the continuously variable transmission unit 330 When the continuously variable transmission unit 330 reaches the set forward high speed position “a”, the HMT clutch 355 is controlled to be switched from the disengaged state to the engaged state, and the HST clutch 360 is controlled to be switched from the engaged state to the disengaged state to change to HST transmission.
- the continuously variable transmission unit 330 In a state where the HMT transmission is set and the setting of the HMT transmission is maintained, the continuously variable transmission unit 330 is shifted from the set forward high speed position “a” to the neutral position “n”, thereby When the rotational speed increases steplessly from the first forward intermediate speed “V1” along the low speed region ML of the HMT shift line M and the continuously variable transmission unit 330 reaches the neutral position “n”, the output rotation The rotational speed of the body 324 becomes the second forward intermediate speed “V2”.
- the rotational speed of the output rotating body 324 is changed to the second speed by performing a speed change operation of the continuously variable transmission unit 330 from the neutral position “n” toward the set reverse high speed position “ ⁇ max”.
- the continuously variable transmission section 330 reaches the set reverse high speed position “ ⁇ max” from the forward intermediate speed “V2” of the HMT shift line M along the high speed range MH, the output rotating body 324 Is the maximum forward speed “V3”.
- the continuously variable transmission unit 330 In the state where the setting of HST transmission is maintained, the continuously variable transmission unit 330 is shifted from the neutral position “n” toward the set reverse high speed position “ ⁇ max”, so that the rotation speed of the output rotating body 324 becomes “0”. When the continuously variable transmission section 330 reaches the set reverse high speed position “ ⁇ max”, the speed of the output rotating body 324 rotates. The speed becomes the reverse maximum speed “VR”.
- the driving force input from the engine 308 is adopted while adopting the continuously variable transmission unit 330 in which the discharge capacity of the hydraulic pump 332 is as small as possible so that the output driving force becomes a driving force at a rotation speed suitable for work travel.
- the inclination angle B of the HMT shift line M with respect to the operation position line L is set as follows so that the loss associated with the shift can be reduced as much as possible to obtain the driving force after the shift.
- the shift line extension line ME shown in FIG. 50 is an extension of the HMT shift line M toward the operation position line L.
- the position “P” on the operation position line L is the shift line extension line ME and the operation position line. This is the intersection position where L intersects. It is assumed that the swash plate 332b of the hydraulic pump 332 of the continuously variable transmission unit 330 can be tilted to the crossing position "P" beyond the actual forward maximum high-speed position "+ max" as the maximum forward tilt position where the tilt can be actually tilted.
- the value of the virtual inclination angle that the swash plate 332b when the tilt operation is performed to the intersection position “P” is “N”, and the continuously variable transmission unit 330 that has been shifted to the actual forward maximum high speed position “+ max”
- An inclination angle B with respect to the operation position line L is set.
- the inclination angle B of the HMT shift line M with respect to the operation position line L is equal to the rotational speed of the output rotator 324 at the first forward intermediate speed “V1”.
- the inclination angle is set to be twice or more.
- the HST power is Since the rotation speed is 1 / N, it is 1 / N times the mechanical transmission power that does not pass through the continuously variable transmission unit 330.
- the mechanical efficiency is KM with mechanical transmission power and KH with power passing through the continuously variable transmission 330
- the output power is constant mechanical power ⁇ HST power
- the total efficiency exhibited by the transmission gear 320 is:
- (1 + 0 ⁇ 1 / N) / (1 / KM + 0 ⁇ 1 / N / KH) KM
- FIG. 51 is an explanatory diagram showing the relationship between the overall efficiency and the shift position when the value of N / X is changed.
- KM 0.95
- KH 0.7
- N / X 1.0
- N / X 2.0
- N / X 3.0. Is shown.
- the horizontal axis shown in FIG. 51 indicates the shift position, and the output reverse speed setting reverse high speed position when the continuously variable transmission section 330 is shifted to an arbitrary shift position in the forward side in HST transmission and in the HMT transmission.
- the ratio of the output rotation speed when the gear is shifted to “ ⁇ max” is the shift position on the horizontal axis. That is, when the rotational speed of the driving force output when the continuously variable transmission unit 330 is shifted to an arbitrary shift position in the forward side in HST transmission and in the HMT transmission is Vn / V3, the shift position on the horizontal axis is Vn / V3. It is said.
- the set forward high speed position “a” of the continuously variable transmission unit 330 is a position between 0.2 and 0.4 on the horizontal axis, and the neutral position “n” of the continuously variable transmission unit 330 is on the horizontal axis. Between 0.6 and 0.8.
- the efficiency line K shown in FIG. 51 indicates the total efficiency of the continuously variable transmission unit 330.
- N / X 1.0
- the output rotation of the planetary transmission unit 340 in the HMT transmission can also be designed in a realistic region not exceeding 10,000 rpm.
- the transmission gear transmission 320 unit is made independent, it is possible to reduce the influence of the torque cross due to the seal of the output unit when the speed is reduced to about the number of revolutions from the drive source. This is also easy to configure realistically.
- FIG. 52 is an explanatory diagram showing the relationship between the value of N / X and the miniaturization of the continuously variable transmission unit 330.
- the horizontal axis in FIG. 52 indicates the value of N / X.
- a line F illustrated in FIG. 52 indicates the ratio “W” of the HST power (1 / N) to the total power (1 + 1 / N). The larger the ratio “W” is, the larger the continuously variable transmission 330 is required to increase the discharge capacity of the hydraulic pump 332.
- the continuously variable transmission unit 330 can be made smaller than the case where it is obtained by the output from the continuously variable transmission unit 330, as shown in FIG.
- Line G shows the relationship between the value of N / X and the degree to which the continuously variable transmission 330 can be miniaturized.
- the maximum speed in the HMT transmission (forward maximum speed “V3”) is similar to the maximum speed in the HST transmission.
- (N + 1) / (N-1) Z.
- the value indicated by the vertical axis in FIG. 52 is a value of 1 / Z.
- FIG. 53 is a block diagram showing a speed change operating device 371 for operating the speed change transmission 320.
- the speed change operation device 371 is a control device linked to the main speed change operation portion 330a and the sub speed change operation portion 330b of the continuously variable transmission portion 330, the operation portions 355a and 360a of the HMT clutch 355 and the HST clutch 360.
- a main transmission operating tool 377 is linked to the main speed change operation portion 330a and the sub speed change operation portion 330b of the continuously variable transmission portion 330, the operation portions 355a and 360a of the HMT clutch 355 and the HST clutch 360.
- a main transmission operating tool 377 a main transmission operating tool 377
- an auxiliary transmission operating tool 385 an engine speed sensor 374
- a swash plate angle sensor 375 an output speed sensor 376a
- an output speed sensor 376b linked to the control device 372.
- the main transmission operation unit 330a operates the main transmission actuator 332c for changing the angle of the swash plate 332b of the hydraulic pump 332 in the continuously variable transmission unit 330, thereby changing the operation of the hydraulic pump 332.
- the sub-transmission operation unit 330b operates the sub-transmission actuator 333c for changing the angle of the swash plate 333b of the hydraulic motor 333 in the continuously variable transmission unit 330, thereby shifting the hydraulic motor 333.
- the main transmission actuator 332c and the auxiliary transmission actuator 333c are configured by hydraulic cylinders, and the main transmission operation unit 330a and the auxiliary transmission operation unit 330b are configured by operation valves of the hydraulic cylinder.
- the operation portion 355a of the HMT clutch 355 is configured by an operation valve connected to the hydraulic piston 358 via an operation oil passage formed inside the input shaft 322, and the clutch body 356 is operated by operating the hydraulic piston 358.
- the HMT clutch 355 is switched by performing a sliding operation.
- the operation portion 360a of the HST clutch 360 is configured by an operation valve connected to the oil chamber of the clutch body 361 through an operation oil passage formed inside the transmission shaft 323, and the operation of the clutch body 361 with respect to the oil chamber. By supplying and discharging oil, the clutch body 361 is slid and the HST clutch 360 is switched.
- FIG. 54 is a plan view showing the operation position of the main transmission operating tool 377.
- the main speed change operation tool 377 is constituted by a speed change lever that is provided on the driving portion 302 so as to be swingable in the longitudinal direction of the traveling machine, and has a neutral position “377N” and a neutral position “ The swinging operation is performed in a forward operation range “377F” extending from 377N to the front side of the aircraft and a reverse operation range “377R” extending from the neutral position “377N” to the rear side of the aircraft.
- the shift operation tool 377 is linked to the control device 372 via a shift detection sensor 373 that detects the operation position of the shift operation tool 377.
- the shift detection sensor 373 is configured by a rotary potentiometer in which a rotation operation shaft is linked to the shift operation tool 377, and the shift operation tool 377 is operated to swing, thereby operating the shift detection sensor 373 to change the speed.
- a main shift command is output from the detection sensor 373 to the control device 372 as an electric signal.
- the auxiliary transmission operating tool 385 is configured by a shift lever provided in the driving unit 302 so as to be swingable in the longitudinal direction of the traveling machine body, and swings to a low speed position “L” and a high speed position “H”. ing.
- the auxiliary transmission operation tool 385 is linked to the control device 372 via an operation position detection switch 386 that detects an operation position of the auxiliary transmission operation tool 385.
- the operation position detecting switch 386 is actuated to the off side, and a low-speed sub shift command is transmitted from the operating position detecting switch 386 by an electric signal to the control device 372. Output to.
- the operation position detection switch 386 When the sub-shift operating tool 385 is operated to the high speed position “H”, the operation position detection switch 386 is actuated to the ON side, and a high-speed sub shift command is output from the operation position detection switch 386 by an electric signal to the control device 372. Output to.
- the engine rotation speed sensor 374 detects the rotation speed of the engine 308 and outputs the detection result to the control device 372.
- the swash plate angle sensor 375 detects the swash plate angle of the hydraulic pump 332 of the continuously variable transmission 330 and outputs the detection result to the control device 372.
- the output rotation speed sensor 376a detects the rotation speed of the output rotating body 324 as the output rotation speed of the transmission gear 320, and outputs the detection result to the control device 372.
- the output rotation speed sensor 376b detects the rotation speed of the motor shaft 333a as the output rotation speed of the continuously variable transmission unit 330, and outputs the detection result to the control device 372.
- the control device 372 is configured using a microcomputer, and includes a shift control means 378, a check control means 381, a shift swash plate angle setting means 380, and a reference swash plate angle setting means 382.
- the transmission swash plate angle setting means 380 is constituted by a storage unit provided in the control device 372. As shown in FIG. 50, transmission swash plate angle setting means 380 sets and inputs a swash plate angle for performing switching control of setting from HST transmission to HMT transmission as a preset transmission swash plate angle “c”. Has been. The set forward high speed position “a” is set as the set speed change swash plate angle “c”.
- the reference swash plate angle setting means 382 is configured by the storage unit of the control device 372. As shown in FIG. 50, the reference swash plate angle setting means 382 sets the reference swash plate angle to the swash plate angle of the hydraulic pump 332 positioned on the low speed side by the set angle “d” with respect to the set speed change swash plate angle “c”. It is preset and input as “e”.
- the shift control means 378 detects the number of revolutions of the accelerator-set engine 308 based on the information detected by the engine revolution number sensor 374, the detection result, the main shift command from the main shift operation tool 377, and the sub-shift.
- the hydraulic pump 332 and the hydraulic motor 333 are shift-controlled based on the sub-shift command from the operation tool 385, the detection information by the swash plate angle sensor 375, and the detection information by the output rotation speed sensor 376a and the output rotation speed sensor 376b,
- the HST clutch 360 and the HMT clutch 355 of the clutch mechanism 370 are switched and controlled.
- the shift control means 378 compares the detected swash plate angle by the swash plate angle sensor 375 with the set shift swash plate angle “c” by the shift swash plate angle setting means 380, and detects the detected swash plate angle and the set shift swash plate angle “c”. ”Is determined to be equal to each other to determine whether the swash plate angle sensor 375 has detected a swash plate angle equal to the set speed change swash plate angle“ c ”.
- the shift control means 378 controls to switch the HST clutch 360 of the clutch mechanism 370 to the disengaged state, and 355 is switched to the on state and the setting is switched from HST transmission to HMT transmission.
- the shift control means 378 When a low-speed sub-shift command is input from the sub-transmission operation tool 385, the shift control means 378 outputs an output speed corresponding to the main shift command from the main transmission operation tool 377 by the output speed of the output rotating body 324 of the transmission gear 320. That is, the output speed of the output rotating body 324 of the transmission gear 320 is changed along the HST shift line S and the HMT shift line M as the main shift operation tool 377 is operated.
- the hydraulic pump 332 is shifted based on a main shift command from 377 and a low-speed sub-shift command from the sub-shift operating tool 385.
- the shift control means 378 When the high-speed sub-shift command is input from the sub-transmission operation tool 385, the shift control means 378 outputs the output speed corresponding to the main shift command from the main transmission operation tool 377 so that the output speed by the output rotating body 324 of the transmission gear 320 is The hydraulic pump 332 is shifted based on the main transmission command from the main transmission operation tool 377 and the high-speed auxiliary transmission command from the auxiliary transmission operation tool 385 so that the output speed is further increased.
- the check control means 381 includes detection information by the swash plate angle sensor 375, setting information of HST transmission and HMT transmission by the shift control means 378, setting information by the reference swash plate angle setting means 382, and setting by the transmission swash plate angle setting means 380. Based on the information, the transmission state of the transmission gear 320 is detected, and based on this detection result, the shift control means 378 is switched between a check-making state and a check release state.
- the check control means 381 increases the combined driving force output by the shift operation to the high speed side in the reverse shift range of the continuously variable transmission unit 330 when the transmission gear 320 is set to HST transmission, and further continuously variable.
- the shift control unit 378 is switched to the state in which the check is released, and the shift control unit Control of the auxiliary transmission actuator 333c by 378 to the high speed side is permitted.
- the check control means 381 is a high speed side between the neutral position “n” and the reference swash plate angle “e” in the forward transmission range of the continuously variable transmission 330 when the transmission gear 320 is set to HST transmission.
- the combined driving force output by the shifting operation to is increased, and further, toward the low speed side between the neutral position “n” and the reference swash plate angle “e” in the forward transmission range of the continuously variable transmission 330.
- the state is switched to a state in which the speed change control means 378 is released from the check state, and the speed change control means 378 moves to the high speed side of the auxiliary speed change actuator 333c. Allow control.
- the check control means 381 is configured such that the transmission gear 320 is set to HST transmission, and the reference swash plate angle “e” and the set transmission swash plate angle “c” in the forward transmission range of the continuously variable transmission 330 are set.
- the combined driving force output by the shifting operation to the high speed side is increased, and further, between the reference swash plate angle “e” and the set transmission swash plate angle “c” in the forward shift range of the continuously variable transmission 330.
- the shift control unit 378 is switched to a check-making state, and the sub-shift by the shift control unit 378 is performed.
- the control to the high speed side of the actuator 333c is restrained.
- the check control means 381 decelerates the combined driving force output by the shift operation to the high speed side in the forward shift range of the continuously variable transmission 330 when the transmission transmission 320 is set to HMT transmission, and further the continuously variable transmission
- the shift control means 378 is switched to a check-making state, and the shift is performed. Control to the high speed side of the auxiliary transmission actuator 333c by the control means 378 is restrained.
- the check control means 381 increases the combined driving force output by the gear shifting operation to the high speed side in the reverse gear range of the continuously variable transmission 330 when the transmission gear 320 is set to HMT transmission, and further continuously variable.
- the shift control unit 378 switches to the state in which the check is released.
- the control means 378 allows the control of the auxiliary transmission actuator 333c to the high speed side.
- the check control unit 381 causes the sub-shift by the hydraulic motor 333 to function when the output of the continuously variable transmission unit 330 is in the same rotational direction as the output of the planetary transmission unit 340.
- the restraint control means 381 and the shift control means 378 are configured to function as follows. That is, the speed range of the HMT transmission on the low speed side (n-th stage) in the process of increasing the speed by the main transmission operation tool 377 after switching the auxiliary transmission operation tool 385 from the low speed position “L” to the high speed position “H”.
- the swash plate position to be switched is set near the point where the speed line of the nth stage and the n + 1 stage of the auxiliary transmission high speed stage intersect.
- the sub-shift is switched at the position of the pump swash plate that is tilted deeper than the point at which the speed lines intersect, the motor swash plate is not tilted, and the pump swash plate is tilted by the speed increase by the motor.
- the check control unit 381 causes the sub-shift by the hydraulic pump 332 to function without performing the sub-shift by the hydraulic motor 333.
- the motor sub-shift is switched near the pump swash plate neutral.
- the shift control means 378 When the shift control means 378 receives a high-speed sub-shift command from the sub-shift operating tool 385 in a state where the check control means 381 receives the check-making work, the shift control means 378 sets the output speed corresponding to the main shift command of the transmission gear 320 to the sub-shift command.
- the hydraulic pump 332 is shift-controlled to the high-speed side based on the main shift command and the high-speed sub-shift command so that the speed is increased by the That is, as indicated by the arrow “I” in FIG. 50, the shift control means 378 has displaced the swash plate 332b of the hydraulic pump 332 by a set angle to the high speed side from the swash plate angular position “f” corresponding to the main shift command.
- the hydraulic pump 332 is sub-shift controlled to the high speed side so as to tilt to the swash plate angular position “a”.
- the shift control means 378 causes the swash plate 332 b of the hydraulic pump 332 to be displaced by a set angle from the swash plate angular position “g” corresponding to the main shift command to the lower speed side.
- the hydraulic pump 332 is sub-shift controlled to the low speed side so as to tilt to the swash plate angular position “h”.
- the set angle in these cases is the same or substantially the same speed increase as the output of the transmission gear 320 is increased by sub-shifting the hydraulic motor 333 to the high speed side based on the high-speed side sub-shift command.
- a swash plate angle corresponding to generating a speed increase of one minute at the output of the transmission gear 320 is set.
- the engine 308 is accelerator-set so as to output a driving force at a constant rotational speed, and the main transmission operating tool 377 is moved over the reverse operation range “377R”, the neutral position “377N”, and the forward operation range “377F”.
- the transmission control means 378 sets the transmission transmission 320 to switch between HST transmission and HMT transmission. Control and shift control of the hydraulic pump 332 and the hydraulic motor 333 can be performed to switch the traveling machine body between the forward side and the reverse side and to run while stopping at the forward side and the reverse side.
- the main transmission command from the main transmission operation tool 377 and Transmission transmission 320 is set to HST transmission by switching control of HMT clutch 355 and HST clutch 360 of transmission control means 378 based on setting information by transmission swash plate angle setting means 380.
- the main transmission operation tool 377 When the main transmission operation tool 377 is operated to the middle speed region “377FM” and the high speed region “377FH” of the forward operation region “377F”, the main transmission command and the transmission swash plate angle setting means 380 from the main transmission operation device 377
- the transmission transmission 320 is set to HMT transmission by switching control of the HMT clutch 355 and the HST clutch 360 of the transmission control means 378 based on the setting information.
- the transmission control means 378 operates the swash plate 332b of the hydraulic pump 332 to the neutral position “n” based on the main transmission command from the main transmission operation tool 377,
- the continuously variable transmission 330 is in a neutral state, and the transmission gear 320 stops outputting.
- the transmission control means 378 causes the main transmission operation tool 377 to operate.
- the swash plate 332b of the hydraulic pump 332 is tilted on the forward side from the neutral position “n” based on the main shift command from the sub-shift control tool 385, the low-speed sub-shift command from the sub-shift operating tool 385, and the detection information by the output rotational speed sensor 376a.
- the driving force output from the transmission gear 320 shifts along the forward travel area SF of the HST shift line S.
- the shift control is performed.
- the means 378 moves the swash plate 332b of the hydraulic pump 332 forward and backward based on the main transmission command from the main transmission operation tool 377, the low-speed auxiliary transmission command from the auxiliary transmission operation tool 385, and the detection information by the output rotational speed sensor 376a.
- the driving force output from the transmission gear 320 is shifted along the low speed range ML and the high speed range MH of the HMT shift line M.
- the transmission control means 378 causes the hydraulic pump 332 to operate.
- the gear shift operation is performed between the neutral position “n” and the reference swash plate angle “e”
- the check control means 381 is in the release state, and the shift control means 378 performs a sub-shift operation of the hydraulic motor 333 to the high speed side.
- the driving force output from the transmission gear 320 shifts along the forward travel area SAF of the HST shift line SA of the sub shift.
- the transmission control means 378 When the main transmission operating tool 377 is operated in the low speed region “377FL” of the forward operation area “377F”, even if the auxiliary transmission operating tool 385 is operated to the high speed position “H”, the transmission control means 378 is operated by the hydraulic pump.
- the gear shift operation is performed between the neutral position “n” and the reference swash plate angle “e”
- the check control unit 381 is switched to the check production state, and the shift control unit 378 is operated at a high speed of the hydraulic motor 333. Sub-shift control to the side is not performed. In this case, the shift control means 378 performs shift control to the high speed side of the hydraulic pump 332 as indicated by an arrow “I” in FIG.
- the driving force output from the shift transmission 320 is the forward range of the HST shift line S.
- the speed is changed along the SF, and the driving force is higher than the speed corresponding to the operation position of the main transmission operation tool 377 when the auxiliary transmission operation tool 385 is operated to the low speed position “L”.
- the sub transmission operation tool 385 With the main transmission operation tool 377 positioned at the operation position in the low speed region “377FL” of the forward operation area “377F”, the sub transmission operation tool 385 is switched from the low speed position “L” to the high speed position “H”.
- the check control means 381 if the swash plate 332b of the hydraulic pump 332 is located at a swash plate angle position between the neutral position “n” and the reference swash plate angle “e”, the check control means 381 is in a check release state.
- the shift control means 378 controls the hydraulic motor 333 to the sub-shift to the high speed side, and the driving force output from the shift transmission 320 becomes the driving force at the speed on the advance area SAF of the sub-shift HST shift line SA. Become.
- the checking control means 381 checks.
- the shift control means 378 does not perform the sub shift control to the high speed side of the hydraulic motor 333.
- the shift control means 378 performs sub-shift control to the high speed side of the hydraulic pump 332 as indicated by an arrow “B” in FIG. 50, for example, and the driving force output from the shift transmission 320 is applied to the HMT shift line M.
- the speed changes along the low speed region ML, and the driving force is higher than the speed corresponding to the operation position of the main transmission operation tool 377 when the auxiliary transmission operation tool 385 is operated to the low speed position “L”.
- the shift control means 378 performs sub-shift control to the high speed side of the hydraulic pump 332 as indicated by an arrow “B” in FIG. 50, for example, and the driving force output from the shift transmission 320 is applied to the HMT shift line M.
- the speed changes along the low speed region ML, and the driving force is higher than the speed corresponding to the operation position of the main transmission operation tool 377 when the auxiliary transmission operation tool 385 is operated to the low speed position “L”.
- the check control means 381 releases the check.
- the shift control means 378 performs a sub-shift operation of the hydraulic motor 333 to the high speed side, and the driving force output from the shift transmission 320 shifts along the HMT shift line MA of the sub-shift.
- the sub transmission operation tool 385 is switched from the low speed position “L” to the high speed position “H”.
- the restraint control means 381 is in a restraint release state
- the shift control means 378 performs sub-shift control of the hydraulic motor 333 to the high speed side
- the driving force output from the shift transmission 320 is the sub-shift HMT shift line.
- the driving force is at the speed on the line of MA.
- the transmission control means 378 causes the main transmission command from the main transmission operation tool 377 to Based on the low-speed sub-shift command from the shift operation tool 385 and the detection information by the output rotation speed sensor 376a, the swash plate 332b of the hydraulic pump 332 is tilted backward from the neutral position “n”, and the shift transmission 320 is output.
- the driving force is changed along the reverse range SR of the HST shift line S.
- the check control means 381 Is in a state in which the control is released, the shift control means 378 performs sub-shift control of the hydraulic motor 333 to the high speed side, and the driving force output from the shift transmission 320 is on the reverse shift SAR line of the sub-shift HST shift line SA. It becomes the driving force of the speed which got on.
- the shift control means 378 can only generate the control target speed by only the shift control of the hydraulic pump 332, and only the shift control of the hydraulic pump 332 is provided even if there is a high-speed sub-shift command.
- the speed increase control by the sub shift control of the hydraulic motor 333 is not performed.
- the present invention can be used for various vehicles such as combine harvesters, farmer machines such as rice transplanters, or transport vehicles.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Motor Power Transmission Devices (AREA)
- Transmission Devices (AREA)
- Control Of Transmission Device (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
大型化を抑制や回避しやすい変速伝動装置が開示される。エンジン駆動力を入力する入力軸22と、入力軸22によって駆動される油圧式無段変速機30と、入力軸22の駆動力と油圧式無段変速機30の出力とを合成して合成駆動力を出力する遊星伝動部40と、走行装置に出力する出力回転体24とを設けてある。遊星伝動部40及び出力回転体24を、油圧式無段変速機30に対して入力軸22のエンジン連結側が位置する側と同じ側に配置してある。入力軸22のエンジン連結側と油圧式無段変速機連結側との間の部位から遊星伝動部40に駆動力を入力するように構成してある。
Description
本発明は、変速伝動装置および走行伝動装置に関するものである。より特定的には、本発明は農作業機の変速伝動装置および走行伝動装置に関するが、これに限定するものではない。
[1]変速伝動装置には、エンジン駆動力を入力する入力軸と、前記入力軸によって駆動される油圧式無段変速機と、前記入力軸の駆動力と前記油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けたものがある。
従来、例えば特許文献1に記載された変速伝動装置があった。特許文献1に記載されたものでは、無段変速部(油圧式無段変速機)の油圧ポンプを貫通するポンプ軸を備え、ポンプ軸の無段変速部から一方に突出する側にエンジンからの駆動力を入力し、ポンプ軸の無段変速部から他方に突出する側から複合型遊星伝動部にポンプ軸の駆動力を伝達して、無段変速部をエンジン駆動力によって駆動し、エンジン駆動力と無段変速部による出力とを複合型遊星伝動部によって合成するよう構成されている。
[2]一方、特許文献2に記載された変速伝動装置では、エンジンの出力を前後輪に伝達する伝動系に、油圧式無段変速装置(油圧式無段変速機)、遊星歯車機構(遊星伝動部)及び2つの油圧クラッチを設け、2つの油圧クラッチの一方が接続されることにより、HST(Hydraulic Static Transmission)モードの駆動系(HSTモード伝動)が構成されて、エンジンの出力が油圧式無段変速装置によって変速された後に前後輪に伝達され、2つの油圧クラッチの他方が接続されることにより、HMT(Hydraulic Mechanical Transmission)モードの駆動系(HMTモード伝動)が構成され、油圧式無段変速装置の出力が遊星歯車装置に入力されて遊星歯車装置がエンジンの出力と油圧式無段変速装置の出力とを合成して合成駆動力を出力し、この合成駆動力が前後輪に伝達される。
また、上述した特許文献1に記載されたものでは、エンジンの出力を前輪差動機構及び後輪差動機構に伝達する伝動系に、無段変速部(油圧式無段変速機)、遊星伝動部、前後進切り換え装置を設け、エンジンの出力が無段変速部及び遊星伝動部に入力されて遊星歯車装置がエンジンの出力と油圧式無段変速装置の出力とを合成し、遊星歯車装置が出力する合成駆動力を前後進切り換え装置に入力して前進駆動力と後進駆動力とに変換した後に前輪差動機構及び後輪差動機構に伝達する。
[3]走行伝動装置には、エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、変速操作具からの変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備えるものがある。
たとえば農作業機では、作業列の終端での方向変換を行なう場合など、前後進の切換えを繰り返して行なわれることがある。上記した走行伝動装置は、図33に示す如き出力特性を備え、無段変速部の中立状態を挟んでの前進側と後進側への変速操作を行なうことで出力速度がHST変速線に沿って前進側と後進側とに変化し、前後進切換えのための特別な操作を必要としない簡単な変速操作を行なうだけで機体の前後進切換えを行なえるよう構成されたものである。
この種の走行伝動装置として、上述した特許文献2に記載されたものでは、エンジンの出力を前後輪に伝達する伝動系に油圧式無段変速装置、遊星歯車機構及び2つ油圧クラッチを設け、2つの油圧クラッチの接続切換えを行なうことにより、HSTモードの駆動系が構成されて、油圧式無段変速装置のモータ出力軸から出力される駆動力が遊星歯車機構に伝達されずに前後輪に伝達される。また、2つの油圧クラッチの接続切換えを行なうことにより、HMTモードの駆動系が構成されて、油圧式無段変速装置のモータ出力軸から出力される駆動力が遊星歯車機構に伝達されて遊星歯車機構によって油圧式無段変速装置からの駆動力とエンジンからの駆動力を合成され、遊星歯車機構から出力される合成駆動力が前後輪に伝達される。
[4]走行伝動装置には、エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、変速操作具からの変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備えるものがある。
たとえば農作業機では、作業列の終端での方向変換を行なう場合など、前後進の切換えを繰り返して行なわれることがある。上記した走行伝動装置は、図50に示す如き出力特性を備え、無段変速部の中立状態を挟んでの前進側と後進側への変速操作を行なうことで出力速度がHST変速線に沿って前進側と後進側とに変化し、前後進切換えのための特別な操作を必要としない簡単な変速操作を行なうだけで機体の前後進切換えを行なえるよう構成されたものである。
この種の走行伝動装置として、従来、上述した特許文献2に記載されたものでは、エンジンの出力を前後輪に伝達する伝動系に油圧式無段変速装置、遊星歯車機構及び2つ油圧クラッチを設け、2つの油圧クラッチの接続切換えを行なうことにより、HSTモードの駆動系が構成されて、油圧式無段変速装置のモータ出力軸から出力される駆動力が遊星歯車機構に伝達されずに前後輪に伝達される。また、2つの油圧クラッチの接続切換えを行なうことにより、HMTモードの駆動系が構成されて、油圧式無段変速装置のモータ出力軸から出力される駆動力が遊星歯車機構に伝達されて遊星歯車機構によって油圧式無段変速装置からの駆動力とエンジンからの駆動力を合成され、遊星歯車機構から出力される合成駆動力が前後輪に伝達される。
また従来、例えば特許文献3に示されるように、無段変速装置を構成する油圧モータの斜板を制御するアクチュエータを備え、このアクチュエータを切換えスイッチによる指令操作によって操作して、油圧モータを高速と低速の2段に切換えるよう構成されたものもある。
[1]背景技術[1]に対応する課題は以下の通りである。
上記した引用文献1記載の従来技術を採用した場合、ポンプ軸のエンジン駆動力を入力する部位から遊星伝動部に出力する部位までの距離が両部位の間に位置する油圧ポンプのために長くなり、遊星伝動部の駆動負荷に起因するポンプ軸の歪みが発生しにくいようにポンプ軸の強度アップを図る必要が生じ、ポンプ軸の強度アップのため、大径のポンプ軸を備えるなど大型の油圧式無段変速機を採用する必要があった。
本発明の目的は、大型化を抑制や回避しやすい変速伝動装置を提供することにある。
上記した引用文献1記載の従来技術を採用した場合、ポンプ軸のエンジン駆動力を入力する部位から遊星伝動部に出力する部位までの距離が両部位の間に位置する油圧ポンプのために長くなり、遊星伝動部の駆動負荷に起因するポンプ軸の歪みが発生しにくいようにポンプ軸の強度アップを図る必要が生じ、ポンプ軸の強度アップのため、大径のポンプ軸を備えるなど大型の油圧式無段変速機を採用する必要があった。
本発明の目的は、大型化を抑制や回避しやすい変速伝動装置を提供することにある。
[2]背景技術[2]に対応する課題は以下の通りである。
エンジン駆動力を入力する入力軸と、入力軸によって駆動される油圧式無段変速機と、入力軸の駆動力と油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置において、エンジン駆動力が遊星伝動部による合成を受けずに油圧式無段変速機による変速を受けて出力回転体に伝達されるHSTモード伝動、及び、エンジン駆動力が遊星伝動部による合成を受けて出力回転体に伝達されるHMTモード伝動を現出できるように構成すれば、図26に示す如き出力性能が具備される。
エンジン駆動力を入力する入力軸と、入力軸によって駆動される油圧式無段変速機と、入力軸の駆動力と油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置において、エンジン駆動力が遊星伝動部による合成を受けずに油圧式無段変速機による変速を受けて出力回転体に伝達されるHSTモード伝動、及び、エンジン駆動力が遊星伝動部による合成を受けて出力回転体に伝達されるHMTモード伝動を現出できるように構成すれば、図26に示す如き出力性能が具備される。
この図26は、油圧式無段変速機の変速状態と出力回転体の出力速度との関係を示す説明図である。図26の横軸は、油圧式無段変速機の変速状態を示し、縦軸は、出力回転体の回転方向及び出力速度を示す。横軸の「n」は、油圧式無段変速機の中立位置を示し、横軸の「-max」は、油圧式無段変速機の後進伝動状態での最高速位置を示し、横軸の「+max」は、油圧式無段変速機の前進伝動状態での最高速位置を示す。図26に示す実線RLは、HSTモード伝動を現出させた状態での後進駆動力の出力を示し、実線FLは、HSTモード伝動を現出させた状態での前進駆動力の出力を示し、実線FHは、HMTモード伝動を現出させた状態での前進駆動力の出力を示す。
実線RLで示すように、HSTモード伝動を現出させた状態において、油圧式無段変速機が後進伝動状態の最高速位置「-max」に操作されると、出力速度が後進の最高速度「RV」になり、HSTモード伝動を維持させながら、油圧式無段変速機が後進伝動状態の最高速位置「-max」から中立位置「n」に向けて変速操作されるに伴い、後進の出力速度が減速し、油圧式無段変速機が中立位置「n」に至ると、出力速度が「0」になる。実線FLで示すように、HSTモード伝動を維持させながら、油圧式無段変速機が中立位置「n」から前進伝動状態の側に変速操作されると、出力が後進出力から前進出力に切り換わり、油圧式無段変速機が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、前進の出力速度が増速し、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、前進の出力速度が「FV1」になる。実線FHで示すように、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、HSTモード伝動に替えてHMTモード伝動を現出させ、HMTモード伝動を維持させながら、油圧式無段変速機が前進伝動状態の最高速位置「+max」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、前進の出力速度が増速し、油圧式無段変速機が後進伝動状態の最高速位置「-max」に至ると、前進の出力が最高速度「FV2」になる。
つまり、HSTモード伝動及びHMTモード伝動を現出できるようにした場合、油圧式無段変速機を変速操作するだけで操作簡単に、走行装置が停止するように出力を零「0」にすることができ、かつ、走行装置を前進側と後進側に切り換えて駆動できるように出力を前進出力と後進出力に切り換えることができる。しかし、HSTモード伝動よりもHMTモード伝動の方が良好な伝動効率によって伝動でき、出力回転体への前進駆動力の伝達をHMTモード伝動によって行なわせることから、後進出力の変速範囲が前進出力の変速範囲に比して狭くなる。
遊星伝動部よりも伝動方向下手側に前後進切換え装置を設ける従来の技術を適用し、油圧式無段変速機及び遊星伝動部の出力を、前後進切換え機構に入力して前進駆動力と後進駆動力に変換してから出力回転体に伝達するよう構成すると、後進出力の変速範囲が前進出力の変速範囲と同様のものになる。
一方、図27は、油圧式無段変速機及び遊星伝動部の出力を前後進切換え機構によって前進駆動力と後進駆動力に変換してから出力回転体に伝達するように構成した場合における油圧式無段変速機の変速状態と出力回転体の出速速度との関係を示す説明図である。図27に示す実線FL及びFHは、前進駆動力の出力を示し、実線RL,RHは、後進駆動力の出力を示す。
実線FLで示すように、HSTモード伝動を現出させた状態で、油圧式無段変速機が中立位置「n」に操作されると、出力が零「0」になる。HSTモード伝動を維持させながら、かつ、前後進切換え機構を前進伝動状態に切り換えて前進伝動状態に維持しながら、油圧式無段変速機が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、前進の出力速度が増速し、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、前進の出力速度が「FV1」になる。実線FHで示すように、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、HSTモード伝動に替えてHMTモード伝動を現出させて、HMTモード伝動を維持させながら、かつ、前後進切換え機構を前進伝動状態に維持しながら、油圧式無段変速機が前進伝動状態の最高速位置「+max」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、前進の出力速度が増速し、油圧式無段変速機が後進伝動状態の最高速位置「-max」に至ると、前進の出力が最高速度「FV2」になる。実線RLで示すように、油圧式無段変速機が中立位置「n」に操作されると、前後進切換え機構を後進伝動状態に切り換え、HSTモード伝動を維持させながら、かつ、前後進切り換え機構を後進伝動状態に維持しながら、油圧式無段変速機が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、後進の出力速度が増速し、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、後進の出力速度が「RV1」になる。実線RHで示すように、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、HSTモード伝動に切換えてHMTモード伝動を現出させて、HMTモード伝動を維持させながら、かつ、前後進切換え機構を後進伝動状態に維持しながら、油圧式無段変速機が前進伝動状態の最高速位置「+max」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、後進の出力速度が増速し、油圧式無段変速機が後進伝動状態の最高速位置「-max」に至ると、後進の出力が最高速度「RV2」になる。
つまり、油圧式無段変速機及び遊星伝動部の出力を、前後進切換え機構に入力して前進駆動力と後進駆動力に変換してから出力回転体に伝達するよう構成した場合、前進駆動していた走行装置を停止させてから後進駆動に切り換える際、及び後進駆動していた走行装置を停止させてから前進駆動に切り換える際、前後進切換え機構を前進伝動状態と後進伝動状態の一方から他方に切り換え操作する必要がある。
本発明の目的は、走行装置の停止及び前後進切換えを操作簡単に行うことができながら、走行装置を広い変速範囲で後進駆動でき、かつ構造簡単に済ませることができる変速伝動装置を提供することにある。
[3]背景技術[3]に対応する課題は以下の通りである。
HST伝動からHMT伝動への設定の切り換えのためのクラッチ機構の切り換えが完了して遊星伝動部にエンジンからの駆動力が伝達されることになった時点で遊星伝動部のサンギヤ、キャリヤ及びリングギヤが一体回転することになると、HST伝動からHMT伝動への設定の切り換えのためのクラッチ機構の切り換えが、クラッチ機構を構成する伝動上手側部材と伝動下手側部材の相対位相の関係からスムーズに行われることになる。しかし、無段変速部の出力速度の検出を行なわせ、HST伝動からHMT伝動への設定の切り換えが行なわれる時点での無段変速部が設定の切り換え後の遊星伝動部にサンギヤ、キャリヤ及びリングギヤの一体回転を現出させるものに相当する出力速度(一体回転現出速度)を備えるように、無段変速部の出力速度の検出結果を基にクラッチ機構の切り換え制御が行なわれるよう構成した場合、HST伝動からHMT伝動に切り換わった直後に走行速度が変化する問題が発生しがちであった。この点について、図37および図44に基づいて説明する。
HST伝動からHMT伝動への設定の切り換えのためのクラッチ機構の切り換えが完了して遊星伝動部にエンジンからの駆動力が伝達されることになった時点で遊星伝動部のサンギヤ、キャリヤ及びリングギヤが一体回転することになると、HST伝動からHMT伝動への設定の切り換えのためのクラッチ機構の切り換えが、クラッチ機構を構成する伝動上手側部材と伝動下手側部材の相対位相の関係からスムーズに行われることになる。しかし、無段変速部の出力速度の検出を行なわせ、HST伝動からHMT伝動への設定の切り換えが行なわれる時点での無段変速部が設定の切り換え後の遊星伝動部にサンギヤ、キャリヤ及びリングギヤの一体回転を現出させるものに相当する出力速度(一体回転現出速度)を備えるように、無段変速部の出力速度の検出結果を基にクラッチ機構の切り換え制御が行なわれるよう構成した場合、HST伝動からHMT伝動に切り換わった直後に走行速度が変化する問題が発生しがちであった。この点について、図37および図44に基づいて説明する。
図37は、走行伝動装置における変速伝動機が備える出力特性を示すグラフである。縦軸は、変速伝動機が出力する駆動力の回転速度を示す速度線となっている。横軸は、縦軸の回転速度が零「0」の位置を通るものであり、無段変速部を構成する油圧ポンプの斜板位置を示す操作位置線Lとなっている。操作位置線Lの「n」は、無段変速部を中立状態にする斜板中立の操作位置である。操作位置線Lの「a」は、変速制御によって操作される斜板の前進側の最高速位置として設定した設定前進高速位置である。操作位置線Lの「-max」は、変速制御によって操作される斜板の後進側の最高速位置として設定した設定後進高速位置である。
回転速度が零「0」を通る変速線Sは、HST伝動の設定及び無負荷駆動での変速伝動機の出力速度の変化を示す無負荷のHST変速線Sである。無負荷のHST変速線Sのうちの斜板位置「n」と「a」の間に対応する変速線域部SFは、前進側での出力速度の変化を示すものであって、前進側での無負荷のHST変速線SFである。無負荷のHST変速線Sのうちの斜板位置「n」と「-max」の間に対応する変速線域分SRは、後進側での出力速度の変化を示すものであって、後進側での無負荷のHST変速線SRである。無負荷のHST変速線Sに連続する変速線Mは、HMT伝動の設定及び無負荷駆動での変速伝動機の出力速度の変化を示す無負荷のHMT変速線Mである。
回転速度が零「0」を通る変速線SAは、HST伝動の設定及び負荷駆動での変速伝動機の出力速度の変化を示す負荷のHST変速線SAである。負荷のHST変速線SAに交差する傾斜線MAは、HMT伝動の設定及び負荷駆動での変速伝動機の出力速度の変化を示す負荷のHMT変速線MAである。
変速伝動機に掛かる駆動負荷は、無段変速部を構成する油圧ポンプの斜板に作用することから、無負荷のHST変速線SF及びHMT変速線Mと負荷のHST変速線SA及びHMT変速線MAとは、異なるものになる。すなわち、負荷のHST変速線SAの操作位置線Lに対する傾斜角が無負荷のHST変速線Sの操作位置線Lに対する傾斜角よりも緩い傾斜角になる。無段変速部の出力軸の回転を遊星伝動部に増減せずに入力する簡単な構成において、HST伝動とHMT伝動の設定が切り換わる点での速度連続性を保つように、設定前進高速位置「a」として、無段変速部の油圧ポンプに実際に操作可能なものとして備えられている斜板の実前進最高速位置の手前の位置を設定した場合、無負荷のHST変速線S及びHMT変速線Mと負荷のHST変速線SA及びHMT変速線MAとの傾斜角の差が大になりがちである。
縦軸の回転速度「V」の位置を通る横線L1は、前記一体回転現出速度を示すものである。回転速度「V」は「V1」と同じものである。図44は、HST伝動からHMT伝動への切り換わりを示す説明図である。図37および図44に示すように、無段変速部の出力速度が一体回転現出速度「V」になることでHST伝動からHMT伝動への設定の切り換え制御が行なわれるよう構成した場合、無段変速部が負荷駆動となる実際の走行時においては、変速伝動機の出力速度としての無段変速部の出力速度が、負荷のHST変速線SAに沿って増速して一体回転現出速度[V]になることにより、すなわち負荷のHST変速線SAと横線L1との交点「X」に対応する出力速度になることにより、HST伝動からHMT伝動への設定の切り換えが行なわれることになる。この切り換えが行なわれた直後の変速伝動機の出力速度は、負荷のHMT変速線MAと、交点「X」を通る縦線との交点「Y」に対応する出力速度「V0」になる。
つまり、HST伝動からHMT伝動への設定の切り換えが行なわれた直後の出力速度が、切換え直前の「V」から切換え直後の「V0」に低下したものになり、低下分の速度が比較的大になっていた。駆動負荷が大になるほど、負荷のHST変速線SAの操作位置線Lに対する傾斜角が小になり、切り換わり直前の出力速度「V」と切り換わり直後の出力速度「V0」との差がより大になる。
本発明の目的は、HST伝動からHMT伝動への切り換わりに伴う速度変化を抑制や解消することができる走行伝動装置を提供することにある。
[4]背景技術[4]に対応する課題は以下の通りである。
上記した走行伝動装置において、無段変速部を構成する油圧モータを可変容量形に構成し、油圧モータの斜板角変更操作を行なう副変速アクチュエータを備えるとともに、副変速操作具を操作して副変速指令を発することにより、副変速アクチュエータが制御されて油圧モータを高速側に変速操作するよう構成した場合、移動走行などの際、高速走行できて便利である。ところが、油圧モータが高速側に変速操作するよう副変速操作しても、走行速度が上昇せずに減速することがあった。
上記した走行伝動装置において、無段変速部を構成する油圧モータを可変容量形に構成し、油圧モータの斜板角変更操作を行なう副変速アクチュエータを備えるとともに、副変速操作具を操作して副変速指令を発することにより、副変速アクチュエータが制御されて油圧モータを高速側に変速操作するよう構成した場合、移動走行などの際、高速走行できて便利である。ところが、油圧モータが高速側に変速操作するよう副変速操作しても、走行速度が上昇せずに減速することがあった。
すなわち、図50は、変速伝動機が備える出力特性を示すグラフである。縦軸は、変速伝動機が出力する駆動力の回転速度を示す速度線となっている。横軸は、縦軸の回転速度が零「0」の位置を通るものであり、無段変速部を構成する油圧ポンプの斜板位置を示す操作位置線Lとなっている。操作位置線Lの「n」は、無段変速部を中立状態にする斜板中立の操作位置である。操作位置線Lの「a」は、変速制御によって操作される斜板の前進側の最高速位置として設定した設定前進高速位置である。操作位置線Lの「-max」は、変速制御によって操作される斜板の後進側の最高速位置として設定した設定後進高速位置である。
回転速度が零「0」を通る変速線Sは、HST伝動の設定での変速伝動機の出力速度の変化を示すHST変速線Sである。HST変速線Sのうちの斜板位置「n」と「a」の間に対応する変速線部分SFは、前進側での出力速度の変化を示すものであって、前進側でのHST変速線SFである。HST変速線Sのうちの斜板位置「n」と「-max」の間に対応する変速線部分SRは、後進側での出力速度の変化を示すものであって、後進側でのHST変速線SRである。HST変速線Sに連続する変速線Mは、HMT伝動の設定での変速伝動機の出力速度の変化を示すHMT変速線Mである。
油圧ポンプの斜板が設定前進高速位置「a」になることで、HST伝動とHMT伝動との設定の切り換え制御が行なわれるのであり、HMT伝動を設定された伝動状態にある変速伝動機は、無段変速部が後進変速域で高速側に変速操作されて無段変速部の出力速度が増速していくことによって出力速度を増速していく。これに対し、HMT伝動を設定された伝動状態にある変速伝動機は、無段変速部が前進変速域で低速側に変速操作されて無段変速部の出力速度が減速していくことによって出力速度を増速していく。
つまり、変速伝動機がHMT伝動を設定され、かつ無段変速部の前進変速域での変速操作によって出力する合成駆動力を増減させる伝動状態にある場合、油圧モータが増速側に変速操作されると、無段変速部は出力速度を増速するよう変速されることになって変速伝動機としての出力速度が減速することになり、走行速度が増速せずに減速する。
本発明の目的は、上記した変速トラブルの発生を回避しながら、油圧モータによる副変速を行なうことができる走行伝動装置を提供することにある。
[1]課題[1]に対応する解決手段は以下の通りである。
すなわち、エンジン駆動力を入力する入力軸と、前記入力軸によって駆動される油圧式無段変速機と、前記入力軸の駆動力と前記油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置において、
前記遊星伝動部及び前記出力回転体を、前記油圧式無段変速機に対して前記入力軸のエンジン連結側が位置する側と同じ側に配置するとともに、前記入力軸のエンジン連結側と油圧式無段変速機連結側との間の部位から前記遊星伝動部に駆動力を入力するように構成してある。
すなわち、エンジン駆動力を入力する入力軸と、前記入力軸によって駆動される油圧式無段変速機と、前記入力軸の駆動力と前記油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置において、
前記遊星伝動部及び前記出力回転体を、前記油圧式無段変速機に対して前記入力軸のエンジン連結側が位置する側と同じ側に配置するとともに、前記入力軸のエンジン連結側と油圧式無段変速機連結側との間の部位から前記遊星伝動部に駆動力を入力するように構成してある。
本構成によると、遊星伝動部及び出力回転体を、油圧式無段変速機に対して入力軸のエンジン連結側が位置する側と同じ側に配置するとともに、入力軸のエンジン連結側と油圧式無段変速機連結側との間の部位から遊星伝動部に駆動力を入力するから、入力軸から遊星伝動部に至る伝動構造を伝動距離が極力短い簡単なものに済ませることができる。入力軸のエンジン連結側と油圧式無段変速機連結側との間の部位から遊星伝動部に駆動力を入力するから、入力軸のエンジン駆動力を入力する部位から遊星伝動部に出力する部位までの距離を極力小にでき、遊星伝動部の駆動負荷に起因する入力軸の歪みを発生しにくくして入力軸の大型化を抑制や回避でき、かつ遊星伝動部の駆動負荷をポンプ軸に掛かりにくくでき、ポンプ軸の大型化を抑制や回避して油圧式無段変速機の大型化を抑制や回避できる。
従って、入力軸から遊星伝動部に伝動する伝動構造の面においても、入力軸及び油圧式無段変速機の面においても大型化を抑制や回避したコンパクトな状態に得ることができる。
一好適実施形態では、前記入力軸を前記油圧式無段変速機のポンプ軸に対して同軸芯状に配置した状態で前記ポンプ軸に一体回転自在に連結し、前記遊星伝動部のサンギヤ及び前記出力回転体を、前記油圧式無段変速機のモータ軸芯に対して同軸芯状に位置する回転軸芯まわりに回転自在に支持してある。
本構成によると、入力軸とポンプ軸を同軸芯状態に配置したコンパクトな連動構造で入力軸による油圧式無段変速機の駆動を可能にできる。さらに、サンギヤ、出力回転体及びモータ軸を同軸芯状に配置したコンパクトな連動構造で油圧式無段変速機から遊星伝動部に伝動できるとともに遊星伝動部から出力回転体に伝動できる。
従って、入力軸による油圧式無段変速機の駆動の面からも、油圧式無段変速機から遊星伝動部への伝動や遊星伝動部から出力回転体への伝動の面からもコンパクトに得ることができる。
一好適実施形態では、前記遊星伝動部を前記入力軸に対する連動入り状態と連動切り状態とに切り換える入力側クラッチ機構を設け、前記出力回転体を前記油圧式無段変速機のモータ軸に対する連動入り状態と連動切り状態とに切り換える出力側クラッチ機構を設けてある。
本構成によると、遊星伝動部を入力軸に対する連動切り状態に切り換え、出力回転体をモータ軸に対する連動入り状態に切り換えることにより、入力軸によって入力されるエンジン駆動力が油圧式無段変速機によって変速した後に出力回転体から出力されるようにHSTモード伝動による変速を行なわせることができる。遊星伝動部を入力軸に対する連動入り状態に切り換え、出力回転体をモータ軸に対する連動切り状態に切り換えることにより、入力軸によって入力されるエンジン駆動力が遊星伝動部に伝達され、エンジン駆動力と油圧式無段変速機による出力とが遊星伝動部によって合成して合成駆動力が出力回転体から出力されるようにHMTモード伝動による変速を行なわせることができる。
従って、HSTモード伝動による出力を行なわせて、油圧式無段変速機の変速操作を行なうだけで操作簡単に走行の停止や前後進切換えを行なえるようにでき、HMTモード伝動による出力を行なわせて、伝動効率のよい状態で変速走行を行なえるようにできる。
一好適実施形態では、前記油圧式無段変速機に作動油を供給するチャージポンプを、前記入力軸のエンジン連結側と油圧式無段変速機連結側との間に装備してある。
本構成によると、チャージポンプの駆動負荷を入力軸のエンジン連結側と油圧式無段変速機連結側との間に掛かって、油圧式無段変速機のポンプ軸に掛かり難くできる。
従って、チャージポンプを入力軸の駆動力によって駆動するものでありながら、油圧式無段変速機のポンプ軸の大型化を抑制して、油圧式無段変速機を有利に得ることができる。
一好適実施形態では、前記油圧式無段変速機に作動油を供給するチャージポンプを、前記入力軸のエンジン連結側と前記入力側クラッチ機構との間に装備してある。
入力軸のエンジン連結側と入力側クラッチ機構の間にあっては、油圧式無段変速機が無くてポンプ設置スペースを確保しやすいのであり、本構成によると、ポンプ設置スペースを確保しやすい部位にチャージポンプをコンパクトに装備できる。
従って、チャージポンプを入力軸の駆動力によって駆動するものでありながら、チャージポンプをコンパクトに装備した簡素なものにできる。
[2]課題[2]に対応する解決手段は以下の通りである。
すなわち、エンジン駆動力を入力する入力軸と、前記入力軸によって駆動される油圧式無段変速機と、前記入力軸の駆動力と前記油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置において、
前記入力軸の駆動力を前進駆動力に変換して前記遊星伝動部に伝達する前進伝動状態と、前記入力軸の駆動力を後進駆動力に変換して前記遊星伝動部に伝達する後進伝動状態とに切換え自在な前後進切換え機構を設け、
前記前後進切換え機構を、前記入力軸と前記遊星伝動部との伝動を絶つ中立状態に切換え自在に構成し、
前記油圧式無段変速機のモータ軸と前記出力回転体との連動を入り状態と切り状態とに切り換え自在なクラッチ機構を設けてある。
すなわち、エンジン駆動力を入力する入力軸と、前記入力軸によって駆動される油圧式無段変速機と、前記入力軸の駆動力と前記油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置において、
前記入力軸の駆動力を前進駆動力に変換して前記遊星伝動部に伝達する前進伝動状態と、前記入力軸の駆動力を後進駆動力に変換して前記遊星伝動部に伝達する後進伝動状態とに切換え自在な前後進切換え機構を設け、
前記前後進切換え機構を、前記入力軸と前記遊星伝動部との伝動を絶つ中立状態に切換え自在に構成し、
前記油圧式無段変速機のモータ軸と前記出力回転体との連動を入り状態と切り状態とに切り換え自在なクラッチ機構を設けてある。
本構成によると、前後進切換え機構が中立状態に切り換え操作され、油圧式無段変速機のモータ軸と出力回転体を連動入り状態にするようクラッチ機構が切り換え操作されると、入力軸によって入力されるエンジン駆動力によって油圧式無段変速機が駆動され、入力軸によって入力されるエンジン駆動力が遊星伝動部に伝達されず、エンジン駆動力が油圧式無段変速機によって変速されてから出力回転体に伝達されるようにHSTモード伝動を現出させることができる。
前後進切換え機構が前進伝動状態に切り換え操作され、油圧式無段変速機のモータ軸と出力回転体を連動切り状態にするようクラッチ機構が切り換え操作されると、入力軸によって入力されるエンジン駆動力によって油圧式無段変速機が駆動され、入力軸によって入力されるエンジン駆動力が前後進切換え機構によって前進駆動力に変換して遊星伝動部に伝達され、油圧式無段変速機の出力と前後進切換え機構からの前進駆動力とが遊星伝動部によって合成されて遊星伝動部が前進側の合成駆動力を出力し、前進側の合成駆動力が出力回転体に伝達されるように前進側のHMTモード伝動を現出させることができる。
前後進切換え機構が後進伝動状態に切り換え操作され、油圧式無段変速機のモータ軸と出力回転体を連動切り状態にするようクラッチ機構が切り換え操作されると、入力軸によって入力されるエンジン駆動力によって油圧式無段変速機が駆動され、入力軸によって入力されるエンジン駆動力が前後進切換え機構によって後進駆動力に変換して遊星伝動部に伝達され、油圧式無段変速機の出力と前後進切換え機構からの後進駆動力とが遊星伝動部によって合成されて遊星伝動部が後進側の合成駆動力を出力し、後進側の合成駆動力が出力回転体に伝達されるように後進側のHMTモード伝動を現出させることができる。
前後進切換え機構が前進伝動状態に切り換え操作され、油圧式無段変速機のモータ軸と出力回転体を連動切り状態にするようクラッチ機構が切り換え操作されると、入力軸によって入力されるエンジン駆動力によって油圧式無段変速機が駆動され、入力軸によって入力されるエンジン駆動力が前後進切換え機構によって前進駆動力に変換して遊星伝動部に伝達され、油圧式無段変速機の出力と前後進切換え機構からの前進駆動力とが遊星伝動部によって合成されて遊星伝動部が前進側の合成駆動力を出力し、前進側の合成駆動力が出力回転体に伝達されるように前進側のHMTモード伝動を現出させることができる。
前後進切換え機構が後進伝動状態に切り換え操作され、油圧式無段変速機のモータ軸と出力回転体を連動切り状態にするようクラッチ機構が切り換え操作されると、入力軸によって入力されるエンジン駆動力によって油圧式無段変速機が駆動され、入力軸によって入力されるエンジン駆動力が前後進切換え機構によって後進駆動力に変換して遊星伝動部に伝達され、油圧式無段変速機の出力と前後進切換え機構からの後進駆動力とが遊星伝動部によって合成されて遊星伝動部が後進側の合成駆動力を出力し、後進側の合成駆動力が出力回転体に伝達されるように後進側のHMTモード伝動を現出させることができる。
つまり、油圧式無段変速機構の変速操作に伴って前後進切換え機構及びクラッチ機構が適切に操作されると、油圧式無段変速機の変速状態と出力回転体による出力速度との関係が図23に示す如くなる。すなわち、図23の実線FLで示すように、HSTモード伝動が現出された状態で、油圧式無段変速機が中立位置「n」に操作されると、出力が零「0」になる。HSTモード伝動が維持されながら、油圧式無段変速機が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、前進の出力速度が増速し、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、前進の出力速度が「FV1」になる。実線FM,FHで示すように、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、HSTモード伝動に替えて前進側のHMTモード伝動が現出され、前進側のHMTモード伝動が維持されながら、油圧式無段変速機が前進伝動状態の最高速位置「+max」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、前進の出力速度が無段階に増速し、油圧式無段変速機が後進伝動状態の最高速位置「-max」に至ると、前進の出力が最高速度「FV2」になる。
実線RLで示すように、HSTモード伝動が維持された状態で、油圧式無段変速機が中立位置「n」から後進伝動状態の最高速位置「-max」に向けて変速操作されると、出力が後進出力になり、油圧式無段変速機が中立位置「n」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、後進の出力速度が無段階に増速し、油圧式無段変速機が後進伝動状態の最高速位置「-max」に至ると、後進の出力速度が「RV1」になる。実線RM,RHで示すように、油圧式無段変速機が後進伝動状態の最高速位置「-max」に至ると、HSTモード伝動に替えて後進側のHMTモード伝動が現出され、後進側のHMTモード伝動が維持されながら、油圧式無段変速機が後進伝動状態の最高速位置「-max」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、後進の出力速度が無段階に増速し、油圧式無段変速機が前進伝動状態の最高速位置「+max」に至ると、後進の出力速度が最高速度「RV2」になる。後進の最高の出力速度「RV2」は、油圧式無段変速機が後進伝動状態の最高速位置「-max」に操作されたときの後進の出力速度「RV1」よりも高速になる。
前進の出力速度「FV1」と後進の出力速度「RV1」の変速範囲では、油圧式無段変速機を変速操作するだけで、前後進切換え機構の切換えを行なわずに変速及び前後進切換えを行なえる。
前進の出力速度「FV1」と後進の出力速度「RV1」の変速範囲では、油圧式無段変速機を変速操作するだけで、前後進切換え機構の切換えを行なわずに変速及び前後進切換えを行なえる。
従って、油圧式無段変速機を中立位置に変速操作するだけで操作簡単に走行装置を停止でき、油圧式無段変速機を中立位置から前進側や後進側に変速操作するだけで操作簡単に走行装置を前進側と後進側に切り換えて駆動でき、さらに、走行装置を後進駆動する場合、後進側のHMTモード伝動によって広い変速範囲にわたって変速駆動でき、例えばコンバインやドーザ作業車において、前後進の繰り返しを操作性よく行ない、かつ後進を比較的高速で行ない、条合わせや位置変更などを楽にかつ迅速に行なって能率よく作業できる。
さらに、HSTモード伝動を現出させるのに、前後進切換え機構をクラッチ手段に利用して遊星伝動部への伝動を絶つことができ、構造簡単に済ませることができる。
さらに、HSTモード伝動を現出させるのに、前後進切換え機構をクラッチ手段に利用して遊星伝動部への伝動を絶つことができ、構造簡単に済ませることができる。
一好適実施形態では、前記クラッチ機構の前記入り状態において、前記遊星伝動部を構成するサンギヤと遊星ギヤとリングギヤとが前記油圧式無段変速機のモータ軸に対して一体回転自在に連動するように構成してある。
本構成によると、HSTモード伝動を現出させる場合、遊星伝動部のサンギヤ、遊星ギヤ及びリングギヤがモータ軸と一体回転してサンギヤと遊星ギヤの相対回転や遊星ギヤとリングギヤの相対回転が発生しない。
従って、サンギヤ、遊星ギヤ、リングギヤの相対回転による動力ロスの発生を回避しながらHSTモード伝動での伝動を行なわせることができる。
一好適実施形態では、前記遊星伝動部に連動する状態で前記入力軸に相対回転自在に支持される前進伝動ギヤと、
前記前進伝動ギヤに対して係脱操作されて前記前進伝動ギヤと前記入力軸を連動入り状態と連動切り状態に切り換えるように、前記入力軸に一体回転及び摺動操作自在に支持される前進クラッチ体と、
前記入力軸に連動する入力ギヤと前記遊星伝動部に連動する後進伝動ギヤのうちの一方を相対回転自在に支持し、他方を一体回転自在に支持する後進伝動軸と、
前記入力ギヤと前記後進伝動ギヤとのうちの前記後進伝動軸に相対回転自在に支持されるクラッチ用のギヤに対して係脱操作されて、そのクラッチ用のギヤと前記後進伝動軸とを連動入り状態と連動切り状態に切り換えるように、前記後進伝動軸に一体回転及び摺動操作自在に支持される後進クラッチ体とを備えて、前記前後進切換え機構を構成してある。
前記前進伝動ギヤに対して係脱操作されて前記前進伝動ギヤと前記入力軸を連動入り状態と連動切り状態に切り換えるように、前記入力軸に一体回転及び摺動操作自在に支持される前進クラッチ体と、
前記入力軸に連動する入力ギヤと前記遊星伝動部に連動する後進伝動ギヤのうちの一方を相対回転自在に支持し、他方を一体回転自在に支持する後進伝動軸と、
前記入力ギヤと前記後進伝動ギヤとのうちの前記後進伝動軸に相対回転自在に支持されるクラッチ用のギヤに対して係脱操作されて、そのクラッチ用のギヤと前記後進伝動軸とを連動入り状態と連動切り状態に切り換えるように、前記後進伝動軸に一体回転及び摺動操作自在に支持される後進クラッチ体とを備えて、前記前後進切換え機構を構成してある。
本構成によると、入力軸を支軸に利用して前進クラッチ体を支持することができ、この結果、付加するべき伝動軸としては後進伝動軸だけで済ませることができて、前後進切換え機構を構造簡単に構成できる。
従って、前後進切換え機構を構造簡単に構成して安価に済ませることができる。
一好適実施形態では、前記入力ギヤ、及び前記入力ギヤに噛合う状態で前記入力軸に一体回転自在に支持される伝動ギヤを、前記遊星伝動部に対して前記前進伝動ギヤ及び前記後進伝動ギヤが位置する側とは反対側に配置し、
前記前進伝動ギヤ及び前記後進伝動ギヤを、前記遊星伝動部のサンギヤに対して前記入力ギヤ及び前記伝動ギヤが位置する側とは反対側の部位に設けた入力ギヤに噛合わせてある。
前記前進伝動ギヤ及び前記後進伝動ギヤを、前記遊星伝動部のサンギヤに対して前記入力ギヤ及び前記伝動ギヤが位置する側とは反対側の部位に設けた入力ギヤに噛合わせてある。
本構成によると、入力ギヤと後進伝動ギヤの間あるいは伝動ギヤと前進伝動ギヤの間に遊星伝動部の外周側部分が入り込む状態に前後進切換え機構と遊星伝動部をコンパクトに纏めて装備することができる。
従って、前後進切換え機構と遊星伝動部をコンパクトに纏めた小型な状態で変速伝動装置を得ることができる。
[3]課題[3]に対応する解決手段は以下の通りである。
エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、
前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、
変速操作具からの変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備える農作業機の走行伝動装置において、
前記油圧ポンプの斜板角を検出する斜板角センサを備え、
HST伝動及び無負荷駆動での前記無段変速部が前記遊星伝動部のサンギヤ、キャリヤ及びリングギヤの一体回転を現出する一体回転現出速度に相当の速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える無負荷斜板角と、HST伝動及び設定負荷駆動での前記無段変速部が前記一体回転現出速度に相当の速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える負荷斜板角とにおいて、前記無負荷斜板角と前記負荷斜板角との間の斜板角を設定変速斜板角として設定する変速斜板角設定手段を備え、
前記変速制御手段を、前記斜板角センサが前記設定変速斜板角に等しい斜板角を検出すると、前記クラッチ機構を前記HST設定状態から前記HMT設定状態に切換え制御するよう構成してある。
エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、
前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、
変速操作具からの変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備える農作業機の走行伝動装置において、
前記油圧ポンプの斜板角を検出する斜板角センサを備え、
HST伝動及び無負荷駆動での前記無段変速部が前記遊星伝動部のサンギヤ、キャリヤ及びリングギヤの一体回転を現出する一体回転現出速度に相当の速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える無負荷斜板角と、HST伝動及び設定負荷駆動での前記無段変速部が前記一体回転現出速度に相当の速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える負荷斜板角とにおいて、前記無負荷斜板角と前記負荷斜板角との間の斜板角を設定変速斜板角として設定する変速斜板角設定手段を備え、
前記変速制御手段を、前記斜板角センサが前記設定変速斜板角に等しい斜板角を検出すると、前記クラッチ機構を前記HST設定状態から前記HMT設定状態に切換え制御するよう構成してある。
本構成によると、HST伝動からHMT伝動への設定の切り換えがたとえば図39に示す如く行なわれる。
すなわち、負荷のHST変速線SAに沿って増速する無段変速部の出力速度が一体回転現出速度「V」になるのではなく、負荷のHST変速線SAと、設定変速斜板角「c」を通る縦線との交点「S1」に対応した出力速度「VS」になることで、HST伝動からHMT伝動への設定の切り換えが行なわれ、HST伝動からHMT伝動への設定の切り換えが行なわれた直後において変速伝動機が備えることになる出力速度は、負荷のHMT変速線MAと、設定変速斜板角「c」を通る縦線との交点「M1」に対応する出力速度[VM]になる。
すなわち、負荷のHST変速線SAに沿って増速する無段変速部の出力速度が一体回転現出速度「V」になるのではなく、負荷のHST変速線SAと、設定変速斜板角「c」を通る縦線との交点「S1」に対応した出力速度「VS」になることで、HST伝動からHMT伝動への設定の切り換えが行なわれ、HST伝動からHMT伝動への設定の切り換えが行なわれた直後において変速伝動機が備えることになる出力速度は、負荷のHMT変速線MAと、設定変速斜板角「c」を通る縦線との交点「M1」に対応する出力速度[VM]になる。
つまり、HST伝動からHMT伝動への設定の切り換えが行なわれる際の無段変速部の出力速度「VS」が一体回転現出速度「V」より低速の出力速度になる。さらに、HST伝動からHMT伝動への設定の切り換えが行なわれた直後の変速伝動機の出力速度「VM」が、無段変速部の出力速度が一体回転現出速度「V」になることでHST伝動からHMT伝動への設定の切り換えが行なわれる場合における切り換わり直後の変速伝動機が備える出力速度「V0」よりも高速になるのであり、HST伝動からHMT伝動への切り換えに伴う走行速度の変化分を、切り換わり直前の出力速度「VS」と切り換わり直後の出力速度「VM」との速度差に相当するものにでき、この速度差は、HST伝動からHMT伝動への設定の切り換えが出力速度に基づいて行なわれる場合における切り換わり直前の出力速度「V」と切り換わり直後の出力速度「V0」との速度差より小にできる。
設定変速斜板角「c」の設定によっては、HST伝動からHMT伝動への設定の切り換えが図41に示す如く行なわれる。
すなわち、負荷のHST変速線SAに沿って増速する無段変速部の出力速度が、負荷のHST変速線SAと負荷のHMT変速線MAとの交点「W」に相当する出力速度VS1になることで、HST伝動からHMT伝動への設定の切り換えが行なわれることになり、設定の切り換えが行なわれる直前の無段変速部の出力速度「VS1」及び設定の切り換えが行なわれた直後の変速伝動機の出力速度「VM1」が交点「W」に対応する出力速度になる。
つまり、HST伝動からHMT伝動への設定の切り換えが行なわれる直前の無段変速部の出力速度「VS1」と、HST伝動からHMT伝動への設定の切り換えが行なわれた直後の変速伝動機の出力速度[VM1]とが同じものになり、HST伝動からHMT伝動への設定の切り換えに伴う走行速度の変化を解消することができる。
すなわち、負荷のHST変速線SAに沿って増速する無段変速部の出力速度が、負荷のHST変速線SAと負荷のHMT変速線MAとの交点「W」に相当する出力速度VS1になることで、HST伝動からHMT伝動への設定の切り換えが行なわれることになり、設定の切り換えが行なわれる直前の無段変速部の出力速度「VS1」及び設定の切り換えが行なわれた直後の変速伝動機の出力速度「VM1」が交点「W」に対応する出力速度になる。
つまり、HST伝動からHMT伝動への設定の切り換えが行なわれる直前の無段変速部の出力速度「VS1」と、HST伝動からHMT伝動への設定の切り換えが行なわれた直後の変速伝動機の出力速度[VM1]とが同じものになり、HST伝動からHMT伝動への設定の切り換えに伴う走行速度の変化を解消することができる。
従って、HST伝動とHMT伝動の設定の切り換えが可能であって、無段変速部の中立位置を挟んでの前進側と後進側の変速操作を行うだけで操作簡単に前後進切換えを行うことができるものでありながら、HST伝動の速度レンジからHMT伝動の速度レンジへの変速を速度ダウンによる変速ショックや違和感が少ないとか無くて軽快に行なうことができる。
一好適実施形態では、前記変速斜板角設定手段を、前記設定変速斜板角を変更設定するよう調節自在に構成してある。
本構成によると、変速斜板角設定手段の調節によって設定変速斜板角を変更設定して、HST伝動からHMT伝動への設定の切り換えを行なわせる際の斜板角を変更し、HST伝動からHMT伝動への設定の切り換えに伴う走行速度の変化が駆動負荷の変化に起因して大きくなるとか発生することを抑制や防止することができる。
従って、作業する圃場が異なるなどによって駆動負荷が変化する場合でも、HST伝動の速度レンジからHMT伝動の速度レンジに切り換わる変速を変速ショックや違和感が少ないとか無い状態で行なって軽快に走行することができる。
一好適実施形態では、前記変速斜板角設定手段を、前記斜板角センサによる検出情報に基づいてHST伝動及び負荷駆動での演算HST変速線を演算設定し、前記演算HST変速線に対応する演算HMT変速線を演算設定し、前記無段変速部が前記演算HST変速線と前記演算HMT変速線の交点に対応する速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える斜板角を割り出し、割り出した斜板角を前記設定変速斜板角として設定するよう構成してある。
本構成によると、走行途中で駆動負荷が変化して傾斜角が異なる負荷のHST変速線が発生することになっても、変化する駆動負荷に対応する演算HST変速線及び演算HMT変速線を演算設定し、演算HST変速線及び演算HMT変速線を基に、演算HST変速線と演算HMT変速線の交点に対応する斜板角であって、HST伝動からHMT伝動への切り換えを行なった場合に切り換え直前の走行速度と切り換え直後の走行速度とが同じになる斜板角を設定変速斜板角として割り出して設定して、HST伝動からHMT伝動への切り換えが行なわれることになり、HST伝動からHMT伝動への切り換えに伴う走行速度の変化をわずかにしたり無くしたりできる。
従って、走行時における駆動負荷の変化があっても、HST伝動の速度レンジからHMT伝動の速度レンジに切り換わる変速を変速ショックや違和感が少ないとか無い状態で行って軽快に走行することができる。
[4]課題[4]に対応する解決手段は以下の通りである。
エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、
前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、
主変速操作具からの主変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備える農作業機の走行伝動装置において、
前記無段変速部を構成する油圧モータを可変容量形に構成し、
人為操作自在であって副変速指令を発する副変速操作具と、前記油圧モータの斜板角変更操作を行なう副変速アクチュエータとを備え、
前記変速制御手段を、前記副変速指令に基づいて前記油圧モータを高速側に変速するべく前記副変速アクチュエータを制御するよう構成し、
前記変速伝動機が前記HMT伝動を設定され、かつ前記無段変速部の後進変速域での高速側への変速操作によって走行装置に出力する合成駆動力を増速させ、さらに前記無段変速部の後進変速域での低速側への変速操作によって走行装置に出力する合成駆動力を減速させる伝動状態にあると、前記変速制御手段による前記副変速アクチュエータの制御を許容するよう牽制解除し、前記変速伝動機が前記HMT伝動を設定され、かつ前記無段変速部の前進変速域での低速側への変速操作によって走行装置に出力する合成駆動力を増速させ、さらに前記無段変速部の前進変速域での高速側への変速操作によって走行装置に出力する合成駆動力を減速させる伝動状態にあると、前記変速制御手段による前記副変速アクチュエータの制御を停止させるよう牽制作用する牽制制御手段を備えてある。
エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、
前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、
主変速操作具からの主変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備える農作業機の走行伝動装置において、
前記無段変速部を構成する油圧モータを可変容量形に構成し、
人為操作自在であって副変速指令を発する副変速操作具と、前記油圧モータの斜板角変更操作を行なう副変速アクチュエータとを備え、
前記変速制御手段を、前記副変速指令に基づいて前記油圧モータを高速側に変速するべく前記副変速アクチュエータを制御するよう構成し、
前記変速伝動機が前記HMT伝動を設定され、かつ前記無段変速部の後進変速域での高速側への変速操作によって走行装置に出力する合成駆動力を増速させ、さらに前記無段変速部の後進変速域での低速側への変速操作によって走行装置に出力する合成駆動力を減速させる伝動状態にあると、前記変速制御手段による前記副変速アクチュエータの制御を許容するよう牽制解除し、前記変速伝動機が前記HMT伝動を設定され、かつ前記無段変速部の前進変速域での低速側への変速操作によって走行装置に出力する合成駆動力を増速させ、さらに前記無段変速部の前進変速域での高速側への変速操作によって走行装置に出力する合成駆動力を減速させる伝動状態にあると、前記変速制御手段による前記副変速アクチュエータの制御を停止させるよう牽制作用する牽制制御手段を備えてある。
本構成によると、変速伝動機がHMT伝動を設定され、かつ無段変速部の後進変速域での高速側への変速操作によって走行装置に出力する合成駆動力を増速させる伝動状態にあると、牽制制御手段が変速制御手段に対して牽制解除し、副変速操作具を操作して副変速指令を発すると、変速制御手段が副変速アクチュエータを制御して油圧モータを高速側に変速操作する。無段変速部の出力速度の増速によって変速伝動機の出力速度が増速する伝動状態において油圧モータが高速側に変速操作されるものだから、変速伝動機の出力速度が油圧モータの増速に応答して増速する。
本構成によると、変速伝動機がHMT伝動を設定され、かつ無段変速部の前進変速域での低速側への変速操作によって走行装置に出力する合成駆動力を増速させる伝動状態にあると、牽制制御手段が変速制御手段に対して牽制作用し、副変速操作具を操作して副変速指令を発しても、変速制御手段による油圧モータの高速側への変速操作が行なわれないのであり、無段変速部の出力速度の減速によって変速伝動機の出力速度が増速する伝動状態にあるにもかかわらず油圧モータが高速側に変速されて変速伝動機の出力速度が減速する事態の発生を回避できる。
従って、HST伝動とHMT伝動の設定の切り換えが可能であって、無段変速部の中立状態を挟んでの前進側と後進側への変速操作を行なうだけで操作簡単に機体の前後進切換えを行なうことができ、かつ油圧モータの変速操作による副変速を行なうことができるものでありながら、副変速操作具を操作したにもかかわらず減速走行するトラブルがないよう軽快に変速できる。
一好適実施形態では、HST伝動からHMT伝動への設定の切り換え制御を行なう斜板角に対して設定角だけ低速側に位置する前記油圧ポンプの斜板角を基準斜板角として設定する基準斜板角設定手段を備え、
前記変速伝動機が前記HST伝動を設定され、かつ前記油圧ポンプの斜板角が前記基準斜板角より低速側である場合、前記牽制制御手段が牽制解除し、前記変速伝動機が前記HST伝動を設定され、かつ前記油圧ポンプの斜板角が前記基準斜板角より高速側にある場合、前記牽制制御手段が牽制作用するよう構成してある。
前記変速伝動機が前記HST伝動を設定され、かつ前記油圧ポンプの斜板角が前記基準斜板角より低速側である場合、前記牽制制御手段が牽制解除し、前記変速伝動機が前記HST伝動を設定され、かつ前記油圧ポンプの斜板角が前記基準斜板角より高速側にある場合、前記牽制制御手段が牽制作用するよう構成してある。
HST伝動を設定された状態で油圧モータを高速側に変速する副変速が行なわれ、副変速設定がない場合のHST変速線から外れた副変速設定のHST変速線に沿って出力速度が増速していく場合、HST伝動からHMT伝動への設定の切り換えを行なわせるための副変速設定が無いHST変速線とHMT変速線との交点が発生しなくなり、HST伝動からHMT伝動への設定の切り換えを行なわせるためのクラッチ機構の円滑な切り換えを行なわせにくくなる。これに対し、本構成によると、油圧ポンプの斜板角が基準斜板角を超えると、牽制制御手段が変速制御手段に対する牽制作用の状態となって油圧モータの高速側への変速操作による副変速設定を行なえないのであり、副変速設定が無いHST変速線とHMT変速線との交点を確実に発生させ、HST伝動からHMT伝動への設定の切り換えを行なわせるためのクラッチ機構の切り換えを円滑に行わせることができる。
従って、油圧モータの変速操作による副変速を行なうことができるものでありながら、HST伝動の速度レンジからHMT伝動の速度レンジへの変速を行なうのに、クラッチ機構の切り換えが円滑に行なわれて変速ショックが生じにくいよう軽快に行なうことができる。
一好適実施形態では、前記変速制御手段を、前記牽制制御手段による牽制作用を受ける状態において、前記変速伝動機の前記主変速指令に応じた出力速度を前記副変速指令によって増速するように、前記主変速指令及び前記副変速指令に基づいて前記油圧ポンプを変速制御するよう構成してある。
副変速操作具を操作しても、牽制制御手段が牽制作用して油圧モータによる副変速が行なわれなくて走行速度が増速しないことになれば、副変速操作を行なっているにもかかわらず走行速度が増速しないという違和感を持たれることになる。本構成によると、副変速操作具を操作しても、牽制制御手段が牽制作用して油圧モータによる副変速が行なわれない場合、変速制御手段による油圧ポンプの変速制御が行なわれて、変速伝動機の出力速度が主変速指令に応じたものより増速したものになり、走行速度が増速するようにできる。
従って、副変速操作具を操作すれば、油圧モータによる副変速が行なわれない場合であっても油圧ポンプによる副変速が行なわれ、副変速操作を行なったのに走行速度がアップしないという違和感が無い良好な変速を行なわせることができる。
その他の特徴構成、およびこれから奏する有利な効果については、添付図面を参照しながら以下の説明を読めば明らかになろう。
以下、図面を参照しながら、本発明がコンバインに適用された各実施形態について説明する。
[第1実施形態]
図1に示すように、コンバインは、左右一対のクローラ式の走行装置1,1によって自走するように構成され、かつ乗用型の運転部2を装備された走行機体と、走行機体の機体フレーム3の前部に連結された刈取り部4と、機体フレーム3の後部側に刈取り部4の後方に配置して設けられた脱穀装置5と、機体フレーム3の後部側に脱穀装置5の横側方に配置して設けられた穀粒タンク6とを備えて構成してあり、稲、麦などの収穫作業を行う。
図1に示すように、コンバインは、左右一対のクローラ式の走行装置1,1によって自走するように構成され、かつ乗用型の運転部2を装備された走行機体と、走行機体の機体フレーム3の前部に連結された刈取り部4と、機体フレーム3の後部側に刈取り部4の後方に配置して設けられた脱穀装置5と、機体フレーム3の後部側に脱穀装置5の横側方に配置して設けられた穀粒タンク6とを備えて構成してあり、稲、麦などの収穫作業を行う。
すなわち、刈取り部4は、機体フレーム3の前部から前方向きに上下揺動自在に延出する刈取り部フレーム4aを備え、この刈取り部フレーム4aが昇降シリンダ7によって揺動操作されることにより、刈取り部4の前端部に設けられた分草具4bが地面近くに下降した下降作業位置と、分草具4bが地面から高く上昇した上昇非作業位置とに昇降する。刈取り部4を下降作業位置に下降させて走行機体を走行させると、刈取り部4は、分草具4bによって刈取対象の植立穀稈を引起し経路に導入し、引起し経路に導入した植立穀稈を引起し装置4cによって引起しながらバリカン型の刈取装置4dによって刈取り、刈取り穀稈を供給装置4eによって脱穀装置5に供給する。脱穀装置5は、供給装置4eからの刈取り穀稈の株元側を脱穀フィードチェーン5aによって挟持して機体後方向きに搬送し、刈取り穀稈の穂先側を扱室(図示せず)に供給して脱穀処理し、脱穀穀粒を穀粒タンク6に送り込む。
運転部2に備えられた運転座席2aの下方にエンジン8を設け、エンジン8が出力する駆動力を、機体フレーム3の前端部に設けたミッションケース11を備えた伝動構造10によって左右一対の走行装置1,1に伝達するように構成してある。
図2は、伝動構造10の概略構造を示す正面図である。この図に示すように、伝動構造10は、エンジン8の出力軸8aからのエンジン駆動力を、伝動ベルト12aが備えられた伝動機構12を介してミッションケース11の上端部の横側に設けられた変速伝動装置20に入力し、この変速伝動装置20の出力を、ミッションケース11に内装された走行ミッション13に入力して走行ミッション13が備える左右一対の操向クラッチ機構14,14の左側の操向クラッチ機構14から左側の走行装置1の駆動軸1aに伝達し、右側の操向クラッチ機構14から右側の走行装置1の駆動軸1aに伝達する。
伝動構造10は、ミッションケース11に内装された刈取りミッション15を備え、変速伝動装置20の出力を、刈取りミッション15に入力して刈取り出力軸16から刈取り部4の駆動軸4fに伝達する。
次に、変速伝動装置20について説明する。
図3および図4に示すように、変速伝動装置20は、ミッションケース11の上端側に横側部が連結される変速ケース21を備えた遊星変速部20Aと、変速ケース21のミッションケース11に連結する側とは反対側の横側部にケーシング31が連結された油圧式無段変速機30とを備えて構成してある。
図3および図4に示すように、変速伝動装置20は、ミッションケース11の上端側に横側部が連結される変速ケース21を備えた遊星変速部20Aと、変速ケース21のミッションケース11に連結する側とは反対側の横側部にケーシング31が連結された油圧式無段変速機30とを備えて構成してある。
変速ケース21は、遊星伝動部40及び伝動機構50を収容する主ケース部21aと、入力軸22及び伝動軸23と油圧式無段変速機30の連結部を収容し、かつ変速ケース21とケーシング31のポートブロック34を連結する連結ケース部21bとを備えて構成してある。変速ケース21は、主ケース部21aの出力回転体24が位置する下部側面の横外側に膨出形成された膨出部分21cでミッションケース11に連結される。連結ケース部21bの走行機体上下方向での大きさが主ケース部21aの走行機体上下方向での大きさよりも小になっている。主ケース部21aを、機体前後方向視での縦断面形状が縦長形状となるように形成し、ケーシング31を、機体前後方向視での縦断面形状が縦長形状となるように形成し、遊星変速部20Aと油圧式無段変速機30が機体横方向に並びながら、変速伝動装置20全体としての機体横方向幅が小となり、変速伝動装置20は、横外側に突出しないように走行機体の左右方向ではコンパクトな状態でミッションケース11の横側部に連結されている。さらに、ケーシング31の下部側面には下端側ほど機体内側に傾斜する傾斜面31Aが形成され、この傾斜面31Aにモータ軸33aのベアリングを支持する膨出部31Bが形成されて、変速伝動装置20の更なるコンパクト化が図られている。また、ケーシング31の上面には上向きにオイルフィルタ20Fが配置され、オイルフィルタ20Fの横外側への突出を回避して更なるコンパクトが図られている。
遊星変速部20Aは、変速ケース21の上端側に回転自在に支持された機体横向きの入力軸22と、変速ケース21の下端側に入力軸22と平行又はほぼ平行に回転自在に支持された伝動軸23及び回転軸型の出力回転体24と、伝動軸23に支持された遊星伝動部40と、入力軸22と遊星伝動部40のキャリヤ41とに亘って設けた伝動機構50とを備えている。
入力軸22は、油圧式無段変速機30のポンプ軸32aに対して同軸芯状に並ぶよう配置されている。入力軸22は、変速ケース21から横外側に突出している側で伝動機構12を介してエンジン8の出力軸8aに連結するように構成され、エンジン8に連結される側とは反対側でジョイント22aを介して油圧式無段変速機30のポンプ軸32aに一体回転自在に連結されており、伝動機構12を介してエンジン駆動力を入力し、エンジン駆動力によって駆動されて油圧式無段変速機30の油圧ポンプ32を駆動する。
出力回転体24は、油圧式無段変速機30に対して入力軸22のエンジン連結側が位置する側と同じ側に油圧式無段変速機30のモータ軸33aと同軸芯状に並ぶように配置されている。出力回転体24は、変速ケース21から横外側に突出している側で走行ミッション13の入力部に連動するよう構成されており、遊星伝動部40及び油圧式無段変速機30からの駆動力を走行ミッション13を介して左右一対の走行装置1,1に出力する。
油圧式無段変速機30は、ケーシング31の上端側にポンプ軸32aが回転自在に支持されている油圧ポンプ32と、ケーシング31の下端側にモータ軸33aが回転自在に支持されている油圧モータ33とを備えて構成してある。油圧ポンプ32は、可変容量形のアキシャルプランジャポンプによって構成し、油圧モータ33は、アキシャルプランジャモータによって構成してある。油圧モータ33は、油圧ポンプ32によって吐出され、ポートブロック34の内部に形成された油路を介して供給される圧油によって駆動される。油圧式無段変速機30には、ポンプ軸32aの端部に装備されたチャージポンプ90によって補充用の作動油が供給される。チャージポンプ90は、ポンプ軸32aに一体回転自在に取り付けられたロータ90a、及びケーシング31に脱着自在に連結されたポンプケーシング90bを備えている。
従って、油圧式無段変速機30は、油圧ポンプ32が備える斜板32bの角度変更操作が行なわれることにより、前進伝動状態と後進伝動状態と中立状態とに切り換わる。油圧式無段変速機30は、前進伝動状態に切換え操作されると、入力軸22からポンプ軸32aに伝達されるエンジン駆動力を前進駆動力に変換してモータ軸33aから出力し、後進伝動状態に切換え操作されると、入力軸22からポンプ軸32aに伝達されるエンジン駆動力を後進駆動力に変換してモータ軸33aから出力し、前進伝動状態と後進伝動状態のいずれにおいても、エンジン駆動力を無段階に変速して出力する。油圧式無段変速機30は、中立状態に切換え操作されると、モータ軸33aからの出力を停止する。
遊星伝動部40は、油圧式無段変速機30に対して入力軸22のエンジン連結側が位置する側と同じ側に、モータ軸33aと出力回転体24の間に位置する状態で配置されている。遊星伝動部40は、伝動軸23に支持されるサンギヤ42と、サンギヤ42に噛合う複数個の遊星ギヤ43と、各遊星ギヤ43に噛合うリングギヤ44と、複数個の遊星ギヤ43を回転自在に支持するキャリヤ41とを備えている。キャリヤ41は、遊星ギヤ43を延出端部で回転自在に支持するアーム部41aと、複数本のアーム部41aの基端側が連結している筒軸部41bとを備え、筒軸部41bで伝動軸23にベアリングを介して回転自在に支持されている。
伝動軸23とモータ軸33aとは、ジョイント23aを介して一体回転自在に連結し、伝動軸23とサンギヤ42とは、スプライン構造を介して一体回転自在に連結しており、サンギヤ42は、モータ軸33aに対して一体回転自在に連動している。
リングギヤ44と出力回転体24とは、伝動軸23に対してこれの軸芯方向に並んで相対回転自在に外嵌した環状の遊星側連動体26及び環状の出力側連動体27によって一体回転自在に連動している。すなわち、遊星側連動体26は、遊星側連動体26の外周部から放射状にかつ一体回転自在に延出する複数本の係合アーム部26aを備えている。複数本の係合アーム部26aは、リングギヤ44の複数箇所に係合しており、遊星側連動体26は、リングギヤ44に対して一体回転自在に連動している。出力側連動体27は、遊星側連動体26に対して係合爪27aによって一体回転自在に係合し、出力回転体24に対してスプライン構造によって一体回転自在に係合しており、遊星側連動体26と出力回転体24とを一体回転自在に連結している。遊星側連動体26は、伝動軸23にベアリングを介して相対回転自在に支持されている。出力側連動体27は、変速ケース21にベアリングを介して回転自在に支持されている。
伝動機構50は、キャリヤ41の筒軸部41bに一体回転自在に設けられたキャリヤ41の入力ギヤ41cに噛合う状態で入力軸22にニードルベアリングを介して相対回転自在に支持された伝動ギヤ52と、伝動ギヤ52と入力軸22に亘って設けた入力側クラッチ機構55とを備えて構成してある。
入力側クラッチ機構55は、入力軸22に一体回転及び摺動操作自在に支持されたクラッチ体56と、クラッチ体56の一端側と伝動ギヤ52の横側部とに亘って設けたクラッチ機構本体57とを備えて構成してある。クラッチ体56は、クラッチ体56の端部に内嵌された油圧ピストン58によって摺動操作される。クラッチ機構本体57は、クラッチ体56に設けた噛合い爪と伝動ギヤ52に設けた噛合い爪とが係脱することによって入り状態と切り状態に切り換わるように噛合いクラッチに構成してある。
入力側クラッチ機構50は、クラッチ機構本体57が入り状態に切換え操作されることにより、入力軸22と伝動ギヤ52を一体回転自在に連動させるように入り状態に切換え操作され、遊星伝動部40のキャリヤ41を入力軸22に対する連動入り状態に切り換える。
入力側クラッチ機構50は、クラッチ機構本体57が切り状態に切換え操作されることにより、入力軸22と伝動ギヤ52の連動を絶つように切り状態に切換え操作され、遊星伝動部40のキャリヤ41を入力軸22に対する連動切り状態に切り換える。
従って、遊星伝動部40は、入力側クラッチ機構50が入り状態に切換え操作されることにより、入力軸22のエンジン連結側と無段変速機連結側との間に位置する部位から入力軸22の駆動力を伝動機構50を介してキャリヤ41に入力する。遊星伝動部40は、入力側クラッチ機構50が切り状態に切換え操作されることにより、入力軸22に対する連動を絶たれた状態になる。
遊星伝動部40のサンギヤ42と遊星側連動体26とに亘り、伝動軸23に外嵌されたクラッチ体61を備えた出力側クラッチ機構60を設けてある。
クラッチ体61は、クラッチ体61の内周側に形成してある油室に圧油が供給されることにより、入り付勢ばね62に抗してサンギヤ42に向けて摺動操作されて切り位置に切り換わり、油室から圧油が排出されることにより、入り付勢ばね62によって遊星側連動体26に向けて摺動操作されて入り位置に切り換わる。クラッチ体61は、入り位置に切り換わると、クラッチ体61に設けてあるクラッチ爪61aと遊星側連動体26に設けてあるクラッチ爪とが係合して、遊星側連動体26に対して一体回転自在に連結する。クラッチ体61は、サンギヤ42に対して係合爪61bによって一体回転自在に係合した状態を維持しながら摺動操作され、サンギヤ42に対する係合状態を維持しながら入り位置になる。クラッチ体61は、切り位置に切り換わると、クラッチ爪61aによる遊星側連動体26に対する係合を解除する。
従って、出力側クラッチ機構60は、クラッチ体61が切り位置に切換え操作されることにより、サンギヤ42と遊星側連動体26の連動を絶つことで、モータ軸33aの出力回転体24に対する連動を絶ち、この状態において遊星伝動部40のリングギヤ44と出力回転体24が一体回転自在に連動する第1伝動状態を現出し、遊星伝動部40の合成駆動力の出力回転体24からの出力を可能にする。
出力側クラッチ機構60は、クラッチ体61が入り位置に切換え操作されることにより、サンギヤ42と遊星側連動体26を一体回転自在に連動させることで、モータ軸33aを出力回転体24に一体回転自在に連動させる第2伝動状態を現出し、油圧式無段変速機30による出力の出力回転体24からの出力を可能し、かつ、サンギヤ42と伝動軸23が一体回転自在に連動し、リングギヤ44と遊星側連動体26が一体回転自在に連動していることにより、遊星ギヤ43の自転が発生しないように、サンギヤ42と遊星ギヤ43とリングギヤ44がモータ軸33aと一体回転することを可能にする。
出力側クラッチ機構60は、遊星伝動部40のリングギヤ44と出力回転体24とを連動状態に維持しながら、遊星伝動部40のサンギヤ43と出力回転体24とを連動入り状態と連動切り状態に切換える。
従って、遊星伝動部40は、入力側クラッチ機構55が入り状態に切換え操作され、出力側クラッチ機構60が切り状態に切換え操作されることにより、入力軸22の駆動力を伝動機構50を介してキャリヤ41に入力し、油圧式無段変速機30のモータ軸33aからの出力を伝動軸23を介してサンギヤ42に入力し、入力軸22の駆動力と油圧式無段変速機30の出力とを合成して合成駆動力を発生させ、発生させた合成駆動力をリングギヤ44から遊星側連動体26及び出力側連動体27を介して出力回転体24に出力する。
入力側クラッチ機構55及び出力側クラッチ機構60を備えて、伝動切換えクラッチ機構70を構成してある。伝動切換えクラッチ機構70は、入力側クラッチ機構55及び出力側クラッキ機構60が切換え操作されることにより、単独伝動状態と合成伝動状態とに切り換わる。
図5は、入力側クラッチ機構55及び出力側クラッチ機構60の操作状態と、伝動切換えクラッチ機構70の操作状態と、変速伝動装置20の伝動形態との関係を示す説明図である。図5に示す「切」は、入力側クラッチ機構55及び出力側クラッチ機構60の切り状態を示し、「入」は、入力側クラッチ機構55及び出力側クラッチ機構60の入り状態を示す。この図に示すように、伝動切換えクラッチ機構70は、入力側クラッチ機構55が切り状態に切換え操作され、出力側クラッチ機構60が入り状態に切換え操作されると、単独伝動状態に切り換わり、入力側クラッチ機構55が入り状態に切換え操作され、出力側クラッチ機構60が切り状態に切換え操作されると、合成伝動状態に切り換わる。
図3は、HMT(Hydraulic Mechanical Transmission)モード伝動での変速伝動装置20を示す縦断正面図である。この図に示すように、伝動切換えクラッチ機構70は、合成伝動状態に切り換わると、入力軸22の駆動力と油圧式無段変速機30の出力とが遊星伝動部40によって合成され、遊星伝動部40による合成駆動力が出力回転体24に伝達されるHMTモード伝動を変速伝動装置20に現出させる。変速伝動装置20は、HMTモード伝動の状態になると、入力軸22に入力されたエンジン駆動力を油圧式無段変速機30及び遊星伝動部40の両方によって変速し、変速後の駆動力をリングギヤ44から出力回転体24に伝達して出力回転体24から左右一対の走行装置1,1に伝達する。
図4は、HST(Hydraulic Static Transmission)モード伝動での変速伝動装置20を示す縦断正面図である。この図に示すように、伝動切換えクラッチ機構70は、単独伝動状態に切り換わると、油圧式無段変速機30の出力が遊星伝動部40による変速を受けないで単独で出力回転体24に伝達されるHSTモード伝動を変速伝動装置20に現出させる。変速伝動装置20は、HSTモード伝動の状態になると、エンジン駆動力を、油圧式無段変速機30と遊星伝動部40のうちの遊星伝動部40による変速を行なわず、油圧式無段変速機30だけによる変速を行い、変速後の駆動力をモータ軸33aから伝動軸23、サンギヤ42、クラッチ体61、遊星側連動体26及び出力側連動体27を介して出力回転体24に伝達し、出力回転体24から左右一対の走行装置1,1に伝達する。
伝動切換えクラッチ機構70は、変速伝動装置20をHSTモード伝動の状態に操作した場合、入力軸22から遊星伝動部40のキャリヤ41への伝動が絶たれた状態にあり、サンギヤ42が伝動軸23を介してモータ軸33aに一体回転自在に連動された状態にあり、リングギヤ44が遊星側連動体26、クラッチ体61、サンギヤ42及び伝動軸23を介してモータ軸33aに一体回転自在に連動された状態にあることから、遊星伝動部40のサンギヤ42、遊星ギヤ43及びリングギヤ44をモータ軸33aと一体回転するよう操作することになり、変速伝動装置20は、HSTモード伝動を現出する状態に操作された場合、遊星ギヤ43の自転を発生させず、すなわちサンギヤ42と遊星ギヤ43の相対回転及び遊星ギヤ43とリングギヤ44の相対回転を発生させずに、油圧式無段変速機30のモータ軸33aの出力を出力回転体24に伝達する。
図6は、エンジン8が設定の一定速度の駆動力を出力するようにアクセルセットされた状態における油圧式無段変速機30の変速状態と変速伝動装置20の出力回転体24による出力速度との関係を示す説明図である。図6の横軸は、油圧式無段変速機30の変速状態を示し、「n」は、油圧式無段変速機30の中立位置を示し、「-max」は、油圧式無段変速機30の後進伝動状態での最高速位置を示し、「+max」は、油圧式無段変速機30の前進伝動状態での最高速位置を示す。図6の縦軸は、出力回転体24による出力速度を示す。図6に示す実線R及び実線FLは、入力側クラッチ機構55が切り状態に、出力側クラッチ機構60が入り状態に操作された場合、すなわち変速伝動装置20がHSTモード伝動の状態に操作された場合における出力速度の変化を示す。図6に示す実線FHは、入力側クラッチ機構55が入り状態に、出力側クラッチ機構60が切り状態に操作された場合、すなわち変速伝動装置20がHMTモード伝動の状態に操作された場合における出力速度の変化を示す。
実線R及び実線FLで示すように、入力側クラッチ機構55が切り状態に維持され、出力側クラッチ機構60が入り状態に維持された状態において、油圧式無段変速機30が後進伝動状態の最高速位置「-max」に操作されると、出力速度が後進の最高速度「RVH」になる。油圧式無段変速機30が後進伝動状態の最高速位置「-max」から中立位置「n」に向けて変速操作されるに伴い、後進の出力速度が無段階に減速していく。油圧式無段変速機30が中立位置「n」に至ると、出力速度が零「0」になる。油圧式無段変速機30が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、前進の出力速度が無段階に増速していく。油圧式無段変速機30が前進伝動状態の最高速位置「+max」に至ると、出力速度が前進の中間速度「FVM」になる。
実線FHで示すように、油圧式無段変速機30が前進伝動状態の最高速位置「+max」に至ると、入力側クラッチ機構55が切り状態から入り状態に切換え制御され、出力側クラッチ機構60が入り状態から切り状態に切換え制御され、入力側クラッチ機構55が入り状態に維持され、出力側クラッチ機構60が切り状態に維持された状態において、油圧式無段変速機30が前進伝動状態の最高速位置「+max」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、前進の出力速度が無段階に増速していく。油圧式無段変速機30が後進伝動状態の最高速位置「+max」に至ると、前進の出力速度が最高速度「FVH」になる。
図6に示す「N」は、実線FHを油圧式無段変速機30の前進側の最高速位置「+max」を超えて出力回転が零「0」となる点まで延長したときの横軸の値を示す。油圧式無段変速機30の前進側の最高速位置「+max」の横軸の値を1とすると、N=1.6~2.2となる。つまり、N=1.6~2.2となるように、油圧式無段変速機30における油圧ポンプ32及び油圧モータ33の容量、並びに遊星伝動部40の伝動ギヤ比を設定してある。
図7は、変速伝動装置20を変速操作する変速操作装置71を示すブロック図である。この図に示すように、変速操作装置71は、油圧式無段変速機30の変速操作部30a、入力側クラッチ機構55及び出力側クラッチ機構60の操作部55a,60aに連係された制御装置72と、制御装置72に連係された変速検出センサ73、エンジン回転数センサ74、変速機出力回転数センサ75及び出力回転数センサ76とを備えている。
変速操作部30aは、油圧式無段変速機30における油圧ポンプ32の斜板32bの角度変更操作を行なう電動アクチュエータ又は油圧アクチュエータによって構成してある。入力側クラッチ機構55の操作部55aは、入力軸22の内部に形成された操作油路を介して油圧ピストン58に接続された操作弁によって構成してあり、油圧ピストン58を操作してクラッチ体56を摺動操作することにより、入力側クラッチ機構55を切り換え操作する。出力側クラッチ機構60の操作部60aは、伝動軸23の内部に形成された操作油路を介してクラッチ体61の油室に接続された操作弁によって構成してあり、クラッチ体61の油室に対する操作油の供給及び排出を行なうことにより、クラッチ体61を摺動操作して出力側クラッチ機構60を切り換え操作する。
変速検出センサ73は、変速レバー77の操作位置を検出し、この検出結果を制御装置72に出力する。エンジン回転数センサ74は、エンジン8の回転数を検出し、この検出結果を制御装置72に出力する。変速機出力回転数センサ75は、油圧式無段変速機30の出力回転数を検出し、この検出結果を制御装置72に出力する。出力回転数センサ76は、変速伝動装置20の出力回転数を検出し、この検出結果を制御装置72に出力する。
制御装置72は、マイクロコンピュータを利用して構成してあり、変速制御手段78を備えている。変速制御手段78は、変速検出センサ73及び変速機出力回転数センサ75による検出情報を基に、油圧式無段変速機30の変速状態が変速レバー77の操作位置に対応したものになるように、変速操作部30aを操作して油圧式無段変速機30を変速制御する。
変速制御手段78は、油圧式無段変速機30を変速制御するに加え、エンジン回転数センサ74による検出情報を基に、アクセルセットされたエンジン8の回転数を検出し、この検出結果、変速検出センサ73、変速機出力回転数センサ75及び出力回転数センサ76による検出情報を基に、図5,6に示す如く変速伝動装置20がHSTモード伝動及びHMTモード伝動を現出して伝動するように、操作部55a及び操作部60aを操作して入力側クラッチ機構55及び出力側クラッチ機構60を所定のタイミングで切り換え制御する。
[第1の別実施形態]
図8は、第1の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第1の別実施構造を備えた変速伝動装置20では、入力軸22と遊星伝動部40のキャリヤ41とに亘って設けた前後進切換え機構80を備えている。
図8は、第1の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第1の別実施構造を備えた変速伝動装置20では、入力軸22と遊星伝動部40のキャリヤ41とに亘って設けた前後進切換え機構80を備えている。
第1の別実施構造を備えた変速伝動装置20では、入力軸22のエンジン連結側と油圧式無段変速機連結側との間であって、入力軸22のエンジン連結側と前進クラッチ82との間に装備したチャージポンプ90を備え、このチャージポンプ90によって油圧式無段変速機30に補充用の作動油が供給される。チャージポンプ90は、入力軸22に一体回転自在に連結したロータ90a、及び変速ケース21に脱着自在に取り付けたポンプケーシング90bを備えている。
前後進切換え機構80は、入力軸22にニードルベアリングを介して回転自在に支持される前進伝動ギヤ81と、前進伝動ギヤ81と入力軸22に亘って設けた前進クラッチ82と、入力軸22と平行又はほぼ平行な配置で変速ケース21に回転自在に支持された後進伝動軸83と、入力軸22に一体回転自在に支持された伝動ギヤ84に噛合った状態で後進伝動軸83に相対回転支持された逆転用の入力ギヤ85と、入力ギヤ85と後進伝動軸83に亘って設けた後進クラッチ86と、後進伝動軸83に一体回転自在に設けた後進伝動ギヤ87と、を備えて構成してある。
前進伝動ギヤ81及び後進伝動ギヤ87は、キャリヤ41の筒軸部41bに一体回転自在に設けられたキャリヤ41の入力ギヤ41cに噛合っている。入力ギヤ85及び伝動ギヤ84は、遊星伝動部40に対して前進伝動ギヤ81及び後進伝動ギヤ87が位置する側とは反対側に位置している。前進伝動ギヤ81及び後進伝動ギヤ87は、サンギヤ42に対して入力ギヤ85及び伝動ギヤ84が位置する側とは反対側に位置する遊星伝動部40の入力ギヤ41cに噛合っている。
前進クラッチ82は、入力軸22に一体回転及び摺動操作自在に支持された前進クラッチ体82aと、前進クラッチ体82aの一端側と前進伝動ギヤ81の横側部とに亘って設けたクラッチ機構本体82bとを備えて構成してある。前進クラッチ体82aは、前進クラッチ体82aの端部に内嵌された油圧ピストン88によって摺動操作される。クラッチ機構本体82bは、前進クラッチ体82aに設けた噛合い爪と前進伝動ギヤ81に設けた噛合い爪とが係脱することによって入り状態と切り状態に切り換わるように噛合いクラッチに構成してある。
後進クラッチ86は、後進伝動軸83に一体回転及び摺動操作自在に支持された後進クラッチ体86aと、後進クラッチ体86aの一端側と入力ギヤ85の横側部とに亘って設けたクラッチ機構本体86bとを備えて構成してある。後進クラッチ体86aは、後進クラッチ体86aの端部に内嵌された油圧ピストン89によって摺動操作される。クラッチ機構本体86bは、後進クラッチ体86aに設けた噛合い爪と入力ギヤ85に設けた噛合い爪とが係脱することによって入り状態と切り状態に切り換わるように噛合いクラッチに構成してある。
前後進切換え機構80は、前進クラッチ82が入り状態に切換え操作され、後進クラッチ86が切り状態に切換え操作されることにより、前進伝動状態になり、入力軸22のエンジン連結側と油圧式無段変速機連結側との間に位置する前進クラッチ体82aから入力軸22の駆動力を入力し、入力軸22の駆動力を前進駆動力に変換して前進伝動ギヤ81からキャリヤ41に伝達する。
前後進切換え機構80は、前進クラッチ82が切り状態に切換え操作され、後進クラッチ86が入り状態に切換え操作されることにより、後進伝動状態になり、入力軸22のエンジン連結側と油圧式無段変速機連結側との間に位置する伝動ギヤ84から入力軸22の駆動力を入力し、入力軸22の駆動力を後進駆動力に変換して後進伝動ギヤ87から遊星伝動部40のキャリヤ41に伝達する。
前後進切換え機構80は、前進クラッチ82及び後進クラッチ86が切り状態に切換え操作されることにより、中立状態になり、入力軸22と遊星伝動部40のキャリヤ41との連動を絶つ。
図9は、油圧式無段変速機30、前進クラッチ82、後進クラッチ86及び出力側のクラッチ機構60の操作状態と変速伝動装置20の伝動形態との関係を示す説明図である。図9に示す「前進」は、油圧式無段変速機30の前進伝動状態を示し、「後進」は、油圧式無段変速機30の後進伝動状態を示す。図9に示す「切」は、前進クラッチ82、後進クラッチ86及び出力側のクラッチ機構60の切り状態を示し、「入」は、前進クラッチ82、後進クラッチ86及び出力側のクラッチ機構60の入り状態を示す。
変速伝動装置20は、前進クラッチ82及び後進クラッチ86が切り状態に切換え制御され、出力側のクラッチ機構60が入り状態に切換え制御されると、HSTモード伝動を現出する状態になる。変速伝動装置20は、HSTモード伝動の状態になると、入力軸22に入力されたエンジン駆動力を遊星伝動部40に伝達せず、入力軸22に入力されたエンジン駆動力を油圧式無段変速機30によって変速し、変速後の駆動力をモータ軸33aから伝動軸23、サンギヤ42、クラッチ体61、遊星側連動体26及び出力側連動体27を介して出力回転体24に伝達して出力回転体24から左右一対の走行装置1,1に伝達する。
変速伝動装置20は、前進クラッチ82が入り状態に切換え制御され、後進クラッチ86及び出力側のクラッチ機構80が切り状態に切換え制御されると、前進側のHMTモード伝動を現出する状態になる。変速伝動装置20は、前進側のHMTモード伝動になると、入力軸20によって入力されたエンジン駆動力を前後進切換え機構80によって前進駆動力に変換して遊星伝動部40に伝達し、遊星伝動部40によって前後進切換え機構80からの前進駆動力と油圧式無段変速機30のモータ軸33aからの出力とを合成して前進側の合成駆動力を発生させ、発生した前進側の合成駆動力をリングギヤ44から遊星側連動体26及び出力側連動体27を介して出力回転体24に伝達して出力回転体24から左右一対の走行装置1,1に伝達する。
変速伝動装置20は、後進クラッチ86が入り状態に切換え制御され、前進クラッチ82及び出力側のクラッチ機構60が切り状態に切換え制御されると、後進側のHMTモード伝動を現出する状態になる。変速伝動装置20は、後進側のHMTモード伝動になると、入力軸20によって入力されたエンジン駆動力を前後進切換え機構80によって後進駆動力に変換して遊星伝動部40に伝達し、遊星伝動部40によって前後進切換え機構80からの後進駆動力と油圧式無段変速機30のモータ軸33aからの出力とを合成して後進側の合成駆動力を発生させ、発生した後進側の合成駆動力をリングギヤ44から遊星側連動体26及び出力側連動体27を介して出力回転体24に伝達して出力回転体24から左右一対の走行装置1,1に伝達する。
図10は、第1の別実施構造を備えた変速伝動装置20の出力速度を示す説明図であり、エンジン8が設定の一定速度の駆動力を出力するようにアクセルセットされた状態における油圧式無段変速機30の変速状態と変速伝動装置20の出力回転体24による出力速度との関係を示す説明図である。図10の横軸は、油圧式無段変速機30の変速状態を示し、「n」は、油圧式無段変速機30の中立位置を示し、「-max」は、油圧式無段変速機30の後進伝動状態での最高速位置を示し、「+max」は、油圧式無段変速機30の前進伝動状態での最高速位置を示す。図10の縦軸は、出力回転体24による出力速度を示す。図10に示す実線RL及び実線FLは、前進クラッチ82及び後進クラッチ86が切リ状態に切換え制御され、出力側のクラッチ機構60が入り状態に切換え制御された場合、すなわち変速伝動装置20がHSTモード伝動の状態に操作された場合における出力速度の変化を示す。図10に示す実線FM,FHは、前進クラッチ82が入り状態に切り換え制御され、後進クラッチ86及び出力側のクラッチ機構60が切り状態に切換え制御された場合、すなわち変速伝動装置20が前進側のHMTモード伝動の状態に操作された場合における出力速度の変化を示す。図10に示す実線RM,RHは、後進クラッチ86が入り状態に切り換え制御され、前進クラッチ82及び出力側のクラッチ機構60が切り状態に切換え制御された場合、すなわち変速伝動装置20が後進側のHMTモード伝動の状態に操作された場合における出力速度の変化を示す。
図9に示すように、かつ図10の実線FLで示すように、前進クラッチ82及び後進クラッチ86が切り状態に制御され、出力側のクラッチ機構60が入り状態に制御された状態において、油圧式無段変速機30が中立位置「n」に操作されると、出力が零「0」になる。
前進クラッチ82及び後進クラッチ86が切り状態に維持され、出力側のクラッチ機構60が入り状態に維持されながら、油圧式無段変速機30が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されると、前進駆動力が出力される。前進クラッチ82及び後進クラッチ86が切り状態に維持され、出力側のクラッチ機構60が入り状態に維持されながら、油圧式無段変速機30が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、前進の出力が無段階に増速する。油圧式無段変速機30が前進伝動状態の最高速位置「+max」に至ると、出力速度が前進の中間速度「FV1」になる。
図9に示すように、かつ図10の実線FM,FHで示すように、油圧式無段変速機30が前進伝動状態の最高速位置「+max」に至ると、前進クラッチ82が入り状態に切換え制御され、出力側のクラッチ機構60が切り状態に切換え制御され、前進クラッチ82が入り状態に維持されながら、後進クラッチ86及び出力側のクラッチ機構60が切り状態に維持されながら、油圧式無段変速機30が前進伝動状態の最高速位置「+max」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、前進の出力が中間速度「FV1」から無段階に増速する。油圧式無段変速機30が後進伝動状態の最高速位置「-max」に至ると、出力が前進の最高速度「FV2」になる。
図9に示すように、かつ図10の実線RLで示すように、前進クラッチ82及び後進クラッチ86が切り状態に維持され、出力側のクラッチ機構60が入り状態に維持されながら、油圧式無段変速機30が中立位置「n」から後進伝動状態の最高速位置「-max」に向けて変速操作されると、後進駆動力が出力される。前進クラッチ82及び後進クラッチ86が切り状態に維持され、出力側のクラッチ機構60が入り状態に維持されながら、油圧式無段変速機30が中立位置「n」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、後進の出力が無段階に増速する。油圧式無段変速機30が後進伝動状態の最高速位置「-max」に至ると、出力速度が後進の中間速度「RV1」になる。
図9に示すように、かつ図10の実線RM,RHで示すように、油圧式無段変速機30が後進伝動状態の最高速位置「-max」に至ると、後進クラッチ86が入り状態に切換え制御され、出力側のクラッチ機構80が切り状態に切換え制御され、後進クラッチ86が入り状態に維持されながら、前進クラッチ82及び出力側のクラッチ機構60が切り状態に維持されながら、油圧式無段変速機30が後進伝動状態の最高速位置「-max」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、後進の出力が中間速度「RV1」から無段階に増速する。油圧式無段変速機30が前進伝動状態の最高速位置「+max」に至ると、出力が後進の最高速度「RV2」になる。
図10に示す「N」は、実線FH,FMを油圧式無段変速機30の前進側の最高速位置「+max」を超えて出力回転が零「0」となる点まで延長したときの横軸の値を示す。油圧式無段変速機30の前進側の最高速位置「+max」の横軸の値を1とすると、N=1.6~2.2となる。つまり、N=1.6~2.2となるように、油圧式無段変速機30における油圧ポンプ32及び油圧モータ33の容量、並びに遊星伝動部40の伝動ギヤ比を設定してある。
図11は、第1の別実施構造を備えた変速伝動装置20を変速操作する変速操作装置91を示すブロック図である。この図に示すように、変速操作装置91は、油圧式無段変速機30の変速操作部30a、並びに前進クラッチ82、後進クラッチ86及び出力側のクラッチ機構60の操作部82c,86c,60aに連係された制御装置72と、制御装置72に連係された変速検出センサ73、エンジン回転数センサ74、変速機出力回転数センサ75及び出力回転数センサ76とを備えている。
変速操作部30aは、油圧式無段変速機30における油圧ポンプ32の斜板32bの角度変更操作を行なう電動アクチュエータ又は油圧アクチュエータによって構成してある。前進クラッチ82の操作部82cは、入力軸22の内部に形成された操作油路を介して油圧ピストン88に接続された操作弁によって構成してあり、油圧ピストン88を操作して前進クラッチ体82aを摺動操作することにより、前進クラッチ82を切り換え操作する。後進クラッチ86の操作部86cは、後進伝動軸83の内部に形成された操作油路を介して油圧ピストン89に接続された操作弁によって構成してあり、油圧ピストン89を操作して後進クラッチ体86aを摺動操作することにより、後進クラッチ86を切り換え操作する。出力側のクラッチ機構60の操作部60aは、伝動軸23の内部に形成された操作油路を介してクラッチ体61の油室に接続された操作弁によって構成してあり、クラッチ体61の油室に対する操作油の供給及び排出を行なうことにより、クラッチ体61を摺動操作して出力側のクラッチ機構60を切り換え操作する。
変速検出センサ73は、変速レバー77の操作位置を検出し、この検出結果を制御装置72に出力する。エンジン回転数センサ74は、エンジン8の回転数を検出し、この検出結果を制御装置72に出力する。変速機出力回転数センサ75は、油圧式無段変速機30の出力回転数を検出し、この検出結果を制御装置72に出力する。出力回転数線さ76は、変速伝動装置20の出力回転数を検出し、この検出結果を制御装置72に出力する。
制御装置72は、マイクロコンピュータを利用して構成してあり、変速制御手段78を備えている。変速制御手段78は、変速検出センサ73及び変速機出力回転数センサ75による検出情報を基に、油圧式無段変速機30の変速状態が変速レバー77の操作位置に対応したものになるように、変速操作部30aを操作して油圧式無段変速機30を変速制御する。
変速制御手段78は、油圧式無段変速機30を変速制御するに加え、エンジン回転数センサ74による検出情報を基に、アクセルセットされたエンジン8の回転数を検出し、この検出結果、変速検出センサ73、変速機出力回転数センサ75及び出力回転数センサ76による検出情報を基に、図9,10に示す如く変速伝動装置20がHSTモード伝動、前進側のHMTモード伝動及び後進側のHMTモード伝動を現出して伝動するように、操作部82c、操作部86c及び操作部60aを操作して前進クラッチ82、後進クラッチ86及び出力側のクラッチ機構60を所定のタイミングで切り換え制御する。
[第2の別実施形態]
図12は、第2の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第2の別実施構造を備えた変速伝動装置20では、油圧式無段変速機30に補充用の作動油を供給するチャージポンプ90を、入力軸22のエンジン連結側と油圧式無段変速機連結側との間であって、入力軸22のエンジン連結側と入力側クラッチ機構55との間に装備してある。チャージポンプ90は、入力軸22に一体回転自在に連結したロータ90a、及び変速ケース21に脱着自在に連結されたポンプケーシング90bを備えている。
図12は、第2の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第2の別実施構造を備えた変速伝動装置20では、油圧式無段変速機30に補充用の作動油を供給するチャージポンプ90を、入力軸22のエンジン連結側と油圧式無段変速機連結側との間であって、入力軸22のエンジン連結側と入力側クラッチ機構55との間に装備してある。チャージポンプ90は、入力軸22に一体回転自在に連結したロータ90a、及び変速ケース21に脱着自在に連結されたポンプケーシング90bを備えている。
[第3の別実施形態]
図13は、第3の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第3の別実施構造を備えた変速伝動装置20では、油圧式無段変速機30を、可変容量型の油圧ポンプ32と可変容量型の油圧モータ33を備えて構成してある。
図13は、第3の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第3の別実施構造を備えた変速伝動装置20では、油圧式無段変速機30を、可変容量型の油圧ポンプ32と可変容量型の油圧モータ33を備えて構成してある。
[第4の別実施形態]
図14は、第4の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第4の別実施構造を備えた変速伝動装置20では、出力側クラッチ機構60を、伝動軸23に一体回転自在に設けた支持体63と遊星側連動体26に設けたクラッチボディ部とに亘って設けた多板式の摩擦クラッチ部64を備えて、摩擦式のクラッチ機構に構成してある。この出力側クラッチ機構60は、摩擦クラッチ部64がサンギヤ42に支持された油圧ピストン65によって入り状態と切り状態に切換え操作されることにより、モータ軸33aと出力回転体24を連動入り状態と連動切り状態に切換え操作する。
図14は、第4の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第4の別実施構造を備えた変速伝動装置20では、出力側クラッチ機構60を、伝動軸23に一体回転自在に設けた支持体63と遊星側連動体26に設けたクラッチボディ部とに亘って設けた多板式の摩擦クラッチ部64を備えて、摩擦式のクラッチ機構に構成してある。この出力側クラッチ機構60は、摩擦クラッチ部64がサンギヤ42に支持された油圧ピストン65によって入り状態と切り状態に切換え操作されることにより、モータ軸33aと出力回転体24を連動入り状態と連動切り状態に切換え操作する。
[第5の別実施形態]
図15は、第5別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第5の別実施構造を備えた変速伝動装置20では、入力側クラッチ機構55を、伝動ギヤ52に一体回転自在に設けた支持部と入力軸22に一体回転自在に設けたクラッチボディ部59aとに亘って設けた多板式の摩擦クラッチ部59を備えて、摩擦式のクラッチ機構に構成してある。この入力側クラッチ機構55は、摩擦クラッチ部59がクラッチボディ部59aに内装された油圧ピストン59bによって入り状態と切り状態に切換え操作されることにより、入力軸22と伝動ギヤ52を連動入り状態と連動切る状態に切換え操作する。
図15は、第5別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第5の別実施構造を備えた変速伝動装置20では、入力側クラッチ機構55を、伝動ギヤ52に一体回転自在に設けた支持部と入力軸22に一体回転自在に設けたクラッチボディ部59aとに亘って設けた多板式の摩擦クラッチ部59を備えて、摩擦式のクラッチ機構に構成してある。この入力側クラッチ機構55は、摩擦クラッチ部59がクラッチボディ部59aに内装された油圧ピストン59bによって入り状態と切り状態に切換え操作されることにより、入力軸22と伝動ギヤ52を連動入り状態と連動切る状態に切換え操作する。
[第6の別実施形態]
図16は、第6の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第6の別実施構造を備えた変速伝動装置20では、出力側クラッチ機構60を、伝動軸23に一体回転自在に設けた支持部66と出力側連動体27に一体回転自在に連結されたクラッチボディ67aとに亘って設けた多板式の摩擦クラッチ部67を備えて、摩擦式のクラッチ機構に構成してある。この出力側クラッチ機構60は、摩擦クラッチ部67がクラッチボディ67aに内装された油圧ピストン67bによって入り状態と切り状態に切換え操作されることにより、モータ軸33aと出力回転体24を連動入り状態と連動切り状態に切換え操作する。
図16は、第6の別実施構造を備えた変速伝動装置20を示す縦断正面図である。この図に示すように、第6の別実施構造を備えた変速伝動装置20では、出力側クラッチ機構60を、伝動軸23に一体回転自在に設けた支持部66と出力側連動体27に一体回転自在に連結されたクラッチボディ67aとに亘って設けた多板式の摩擦クラッチ部67を備えて、摩擦式のクラッチ機構に構成してある。この出力側クラッチ機構60は、摩擦クラッチ部67がクラッチボディ67aに内装された油圧ピストン67bによって入り状態と切り状態に切換え操作されることにより、モータ軸33aと出力回転体24を連動入り状態と連動切り状態に切換え操作する。
第6の別実施構造を備えた変速伝動装置20では、リングギヤ44とモータ軸33aとを連動入り状態と連動切り状態に切換え自在な摩擦クラッチ機構79を備え、HSTモード伝動においてサンギヤ42、遊星ギヤ43及びリングギヤ44がモータ軸33aと一体回転する状態と、HSTモード伝動においてリングギヤ44が回転自在な状態とに切換え自在になっている。
[その他の別実施形態]
(1)上記した実施形態では、入力軸22の駆動力を遊星伝動部40のキャリヤ41に入力し、遊星伝動部40のリングギヤ44の駆動力を出力回転体24に伝達するよう構成した例を示したが、入力軸22の駆動力を遊星伝動部40のリングギヤ44に入力し、遊星伝動部40のキャリヤ41の駆動力を出力回転体24に伝達するよう構成して実施してもよい。
(1)上記した実施形態では、入力軸22の駆動力を遊星伝動部40のキャリヤ41に入力し、遊星伝動部40のリングギヤ44の駆動力を出力回転体24に伝達するよう構成した例を示したが、入力軸22の駆動力を遊星伝動部40のリングギヤ44に入力し、遊星伝動部40のキャリヤ41の駆動力を出力回転体24に伝達するよう構成して実施してもよい。
(2)上記した実施形態では、入力軸22をポンプ軸32aと別体に形成してポンプ軸32aにジョイント22aを介して連結し、伝動軸23をモータ軸33aと別体に形成してモータ軸33aにジョイント23aを介して連結した例を示したが、入力軸22をポンプ軸32aに一体形成し、伝動軸23をモータ軸33aに一体形成して実施してもよい。
[第2実施形態]
次に、図17~図25を参照しながら、第2実施形態を説明する。
次に、図17~図25を参照しながら、第2実施形態を説明する。
図17に示すように、コンバインは、左右一対のクローラ式の走行装置101,101によって自走するように構成され、かつ乗用型の運転部102を装備された走行機体と、走行機体の機体フレーム103の前部に連結された刈取り部104と、機体フレーム103の後部側に刈取り部104の後方に配置して設けられた脱穀装置105と、機体フレーム103の後部側に脱穀装置105の横側方に配置して設けられた穀粒タンク106とを備えて構成してあり、稲、麦などの収穫作業を行う。
すなわち、刈取り部104は、機体フレーム103の前部から前方向きに上下揺動自在に延出する刈取り部フレーム104aを備え、この刈取り部フレーム104aが昇降シリンダ107によって揺動操作されることにより、刈取り部104の前端部に設けられた分草具104bが地面近くに下降した下降作業位置と、分草具104bが地面から高く上昇した上昇非作業位置とに昇降する。刈取り部104を下降作業位置に下降させて走行機体を走行させると、刈取り部104は、分草具104bによって刈取対象の植立穀稈を引起し経路に導入し、引起し経路に導入した植立穀稈を引起し装置104cによって引起しながらバリカン型の刈取装置104dによって刈取り、刈取り穀稈を供給装置104eによって脱穀装置105に供給する。脱穀装置105は、供給装置104eからの刈取り穀稈の株元側を脱穀フィードチェーン105aによって挟持して機体後方向きに搬送し、刈取り穀稈の穂先側を扱室(図示せず)に供給して脱穀処理し、脱穀穀粒を穀粒タンク106に送り込む。
運転部102に備えられた運転座席102aの下方にエンジン108を設け、エンジン108が出力する駆動力を、機体フレーム103の前端部に設けたミッションケース111を備えた伝動構造110によって左右一対の走行装置101,101に伝達するように構成してある。
図18は、伝動構造110の概略構造を示す正面図である。この図に示すように、伝動構造110は、エンジン108の出力軸108aからのエンジン駆動力を、伝動ベルト112aが備えられた伝動機構112を介してミッションケース111の上端部の横側に設けられた変速伝動装置120に入力し、この変速伝動装置120の出力を、ミッションケース111に内装された走行ミッション113に入力して走行ミッション113が備える左右一対の操向クラッチ機構114,114の左側の操向クラッチ機構114から左側の走行装置101の駆動軸101aに伝達し、右側の操向クラッチ機構114から右側の走行装置101の駆動軸101aに伝達する。
伝動構造110は、ミッションケース111に内装された刈取りミッション115を備え、変速伝動装置120の出力を、刈取りミッション115に入力して刈取り出力軸116から刈取り部104の駆動軸104fに伝達する。
次に、変速伝動装置120について説明する。
図19に示すように、変速伝動装置120は、ミッションケース111の上端側に横側部が連結される変速ケース121を備えた遊星変速部120Aと、変速ケース121のミッションケース111に連結する側とは反対側の横側部にケーシング131が連結された油圧式無段変速機130とを備えて構成してある。
図19に示すように、変速伝動装置120は、ミッションケース111の上端側に横側部が連結される変速ケース121を備えた遊星変速部120Aと、変速ケース121のミッションケース111に連結する側とは反対側の横側部にケーシング131が連結された油圧式無段変速機130とを備えて構成してある。
変速ケース121は、遊星伝動部140及び前後進切換え機構150を収容する主ケース部121aと、入力軸122及び伝動軸123と油圧式無段変速機130の連結部を収容し、かつ変速ケース121とケーシング131のポートブロック134を連結する連結ケース部121bとを備えて構成してある。変速ケース121は、主ケース部121aの出力回転体124が位置する下部側面の横外側に膨出形成された膨出部分121cでミッションケース111に連結される。連結ケース部121bの走行機体上下方向での大きさが主ケース部121aの走行機体上下方向での大きさよりも小になっている。主ケース部121aを、機体前後方向視での縦断面形状が縦長形状となるように形成し、ケーシング131を、機体前後方向視での縦断面形状が縦長形状となるように形成し、遊星変速部120Aと油圧式無段変速機130が機体横方向に並びながら、変速伝動装置120全体としての機体横方向幅が小となり、変速伝動装置120は、横外側に突出しないように走行機体左右方向ではコンパクトな状態でミッションケース111の横側部に連結されている。ケーシング131の上面には上向きにオイルフィルタ120Fが配設され、オイルフィルタ120Fの横外側への突出を回避して更なるコンパクト化が図られている。
遊星変速部120Aは、変速ケース121の上端側に回転自在に支持された機体横向きの入力軸122と、変速ケース121の下端側に入力軸122と平行又はほぼ平行に回転自在に支持された伝動軸123及び回転軸型の出力回転体124と、伝動軸123に支持された遊星伝動部140と、入力軸122と遊星伝動部140のキャリヤ141とに亘って設けた前後進切換え機構150とを備えている。
入力軸122は、油圧式無段変速機130のポンプ軸132aに対して同軸芯状に並ぶよう配置されている。入力軸122は、変速ケース121から横外側に突出している側で伝動機構112を介してエンジン108の出力軸108aに連結するように構成され、エンジン108に連結される側とは反対側でジョイント122aを介して油圧式無段変速機130のポンプ軸132aに一体回転自在に連結されており、伝動機構112を介してエンジン駆動力を入力し、エンジン駆動力によって駆動されて油圧式無段変速機130の油圧ポンプ132を駆動する。
出力回転体124は、油圧式無段変速機130に対して入力軸122のエンジン連結側が位置する側と同じ側に油圧式無段変速機130のモータ軸133aと同軸芯状に並ぶように配置されている。出力回転体124は、変速ケース121から横外側に突出している側で走行ミッション113の入力部に連動するよう構成されており、遊星伝動部140及び油圧式無段変速機130からの駆動力を走行ミッション113を介して左右一対の走行装置101,101に出力する。
油圧式無段変速機130は、ケーシング131の上端側にポンプ軸132aが回転自在に支持されている油圧ポンプ132と、ケーシング131の下端側にモータ軸133aが回転自在に支持されている油圧モータ133とを備えて構成してある。油圧ポンプ132は、可変容量形のアキシャルプランジャポンプによって構成し、油圧モータ133は、可変容量形のアキシャルプランジャモータによって構成してある。油圧モータ133は、油圧ポンプ132によって吐出され、ポートブロック134の内部に形成された油路を介して供給される圧油によって駆動される。油圧式無段変速機130には、入力軸122のエンジン連結側に装備されたチャージポンプ190によって補充用の作動油が供給される。チャージポンプ190は、入力軸122に一体回転自在に連結したロータ190a、及び変速ケース121に脱着自在に連結されたポンプケーシング190bを備えている。
従って、油圧式無段変速機130は、油圧ポンプ132が備える斜板132bの角度変更操作が行なわれることにより、前進伝動状態と後進伝動状態と中立状態とに切り換わる。油圧式無段変速機130は、前進伝動状態に切換え操作されると、入力軸122からポンプ軸132aに伝達されるエンジン駆動力を前進駆動力に変換してモータ軸133aから出力し、後進伝動状態に切換え操作されると、入力軸122からポンプ軸132aに伝達されるエンジン駆動力を後進駆動力に変換してモータ軸133aから出力し、前進伝動状態と後進伝動状態のいずれにおいても、エンジン駆動力を無段階に変速して出力する。油圧式無段変速機130は、中立状態に切換え操作されると、モータ軸133aからの出力を停止する。
遊星伝動部140は、油圧式無段変速機130に対して入力軸122のエンジン連結側が位置する側と同じ側に、モータ軸133aと出力回転体124の間に位置する状態で配置されている。遊星伝動部140は、伝動軸123に支持されるサンギヤ142と、サンギヤ142に噛合う複数個の遊星ギヤ143と、各遊星ギヤ143に噛合うリングギヤ144と、複数個の遊星ギヤ143を回転自在に支持するキャリヤ141とを備えている。キャリヤ141は、遊星ギヤ143を延出端部で回転自在に支持するアーム部141aと、複数本のアーム部141aの基端側が連結している筒軸部141bとを備え、筒軸部141bで伝動軸123にベアリングを介して回転自在に支持されている。
伝動軸123とモータ軸133aとは、ジョイント123aを介して一体回転自在に連結し、伝動軸123とサンギヤ142とは、スプライン構造を介して一体回転自在に連結しており、サンギヤ142は、モータ軸133aに対して一体回転自在に連動している。
リングギヤ144と出力回転体124とは、伝動軸123に対してこれの軸芯方向に並んで相対回転自在に外嵌した環状の遊星側連動体126及び環状の出力側連動体127によって一体回転自在に連動している。すなわち、遊星側連動体126は、遊星側連動体126の外周部から放射状にかつ一体回転自在に延出する複数本の係合アーム部126aを備えている。複数本の係合アーム部126aは、リングギヤ144の複数箇所に係合しており、遊星側連動体126は、リングギヤ144に対して一体回転自在に連動している。出力側連動体127は、遊星側連動体126に対して係合爪127aによって一体回転自在に係合し、出力回転体124に対してスプライン構造によって一体回転自在に係合しており、遊星側連動体126と出力回転体124とを一体回転自在に連結している。遊星側連動体126は、伝動軸123にベアリングを介して相対回転自在に支持されている。出力側連動体127は、変速ケース121にベアリングを介して回転自在に支持されている。
前後進切換え機構150は、入力軸122にニードルベアリングを介して回転自在に支持される前進伝動ギヤ151と、前進伝動ギヤ151と入力軸122に亘って設けた前進クラッチ152と、入力軸122と平行又はほぼ平行な配置で変速ケース121に回転自在に支持された後進伝動軸153と、入力軸122に一体回転自在に支持された伝動ギヤ154に噛合った状態で後進伝動軸153に相対回転支持された逆転用の入力ギヤ155と、入力ギヤ155と後進伝動軸153に亘って設けた後進クラッチ156と、後進伝動軸153に一体回転自在に設けた後進伝動ギヤ157と、を備えて構成してある。
前進伝動ギヤ151及び後進伝動ギヤ157は、キャリヤ141の筒軸部141bに一体回転自在に設けられたキャリヤ141の入力ギヤ141cに噛合っている。入力ギヤ155及び伝動ギヤ154は、遊星伝動部140に対して前進伝動ギヤ151及び後進伝動ギヤ157が位置する側とは反対側に位置している。前進伝動ギヤ151及び後進伝動ギヤ157は、サンギヤ142に対して入力ギヤ155及び伝動ギヤ154が位置する側とは反対側に位置する遊星伝動部140の入力ギヤ141cに噛合っている。
前進クラッチ152は、入力軸122に一体回転及び摺動操作自在に支持された前進クラッチ体152aと、前進クラッチ体152aの一端側と前進伝動ギヤ151の横側部とに亘って設けたクラッチ機構本体152bとを備えて構成してある。前進クラッチ体152aは、前進クラッチ体152aの端部に内嵌された油圧ピストン158によって摺動操作される。クラッチ機構本体152bは、前進クラッチ体152aに設けた噛合い爪と前進伝動ギヤ151に設けた噛合い爪とが係脱することによって入り状態と切り状態に切り換わるように噛合いクラッチに構成してある。
後進クラッチ156は、後進伝動軸153に一体回転及び摺動操作自在に支持された後進クラッチ体156aと、後進クラッチ体156aの一端側と入力ギヤ155の横側部とに亘って設けたクラッチ機構本体156bとを備えて構成してある。後進クラッチ体156aは、後進クラッチ体156aの端部に内嵌された油圧ピストン159によって摺動操作される。クラッチ機構本体156bは、後進クラッチ体156aに設けた噛合い爪と入力ギヤ155に設けた噛合い爪とが係脱することによって入り状態と切り状態に切り換わるように噛合いクラッチに構成してある。
前後進切換え機構150は、前進クラッチ152が入り状態に切換え操作され、後進クラッチ156が切り状態に切換え操作されることにより、前進伝動状態になり、入力軸122のエンジン連結側と油圧式無段変速機連結側の間に位置する前進クラッチ体152aから入力軸122の駆動力を入力し、入力軸122の駆動力を前進駆動力に変換して前進伝動ギヤ151から遊星伝動部140のキャリヤ141に伝達する。
前後進切換え機構150は、前進クラッチ152が切り状態に切換え操作され、後進クラッチ156が入り状態に切換え操作されることにより、後進伝動状態になり、入力軸122のエンジン連結側と油圧式無段変速機連結側の間に位置する伝動ギヤ154から入力軸122の駆動力を入力し、入力軸122の駆動力を後進駆動力に変換して後進伝動ギヤ157から遊星伝動部140のキャリヤ141に伝達する。
前後進切換え機構150は、前進クラッチ152及び後進クラッチ156が切り状態に切換え操作されることにより、中立状態になり、入力軸122と遊星伝動部140のキャリヤ141との連動を絶つ。
遊星伝動部140のサンギヤ142と遊星側連動体126とに亘り、伝動軸123に外嵌されたクラッチ体161を備えた出力側のクラッチ機構160を設けてある。
クラッチ体161は、クラッチ体161の内周側に形成してある油室に圧油が供給されることにより、入り付勢ばね162に抗してサンギヤ142に向けて摺動操作されて切り位置に切り換わり、油室から圧油が排出されることにより、入り付勢ばね162によって遊星側連動体126に向けて摺動操作されて入り位置に切り換わる。クラッチ体161は、入り位置に切り換わると、クラッチ体161に設けてあるクラッチ爪161aと遊星側連動体126に設けてあるクラッチ爪とが係合して、遊星側連動体126に対して一体回転自在に連結する。クラッチ体161は、サンギヤ142に対して係合爪161bによって一体回転自在に係合した状態を維持しながら摺動操作され、サンギヤ142に対する係合状態を維持しながら入り位置になる。クラッチ体161は、切り位置に切り換わると、クラッチ爪161aによる遊星側連動体126に対する係合を解除する。
従って、出力側のクラッチ機構160は、クラッチ体161が切り位置に切換え操作されることにより、サンギヤ142と遊星側連動体126の連動を絶つことで、モータ軸133aの出力回転体124に対する連動を絶ち、この状態において遊星伝動部140のリングギヤ144と出力回転体124が一体回転自在に連動する第1伝動状態を現出し、遊星伝動部140の合成駆動力の出力回転体124からの出力を可能にする。
出力側のクラッチ機構160は、クラッチ体161が入り位置に切換え操作されることにより、サンギヤ142と遊星側連動体126を一体回転自在に連動させることで、モータ軸133aを出力回転体124に一体回転自在に連動させる第2伝動状態を現出し、油圧無段変速装置130による出力の出力回転体124からの出力を可能し、かつ、サンギヤ142と伝動軸123が一体回転自在に連動し、リングギヤ144と遊星側連動体126が一体回転自在に連動していることにより、遊星ギヤ143の自転が発生しないように、サンギヤ142と遊星ギヤ143とリングギヤ144がモータ軸133aと一体回転することを可能にする。
従って、遊星伝動部140は、前後進切換え機構150が前進伝動状態に切換え操作され、出力側のクラッチ機構160が切り状態に切換え操作されることにより、入力軸122から前後進切換え機構150を介して前進駆動力をキャリヤ141に入力し、油圧無段変速装置130のモータ軸133aからの出力を伝動軸123を介してサンギヤ142に入力し、入力軸122からの前進駆動力と油圧無段変速装置130の出力とを合成して前進側の合成駆動力を発生させ、発生させた前進側の合成駆動力をリングギヤ144から遊星側連動体126及び出力側連動体127を介して出力回転体124に出力する。
遊星伝動部140は、前後進切換え機構150が後進伝動状態に切換え操作され、出力側のクラッチ機構160が切り状態に切換え操作されることにより、入力軸122から前後進切換え機構150を介して後進駆動力をキャリヤ141に入力し、油圧無段変速装置130のモータ軸133aからの出力を伝動軸123を介してサンギヤ142に入力し、入力軸122からの前進駆動力と油圧無段変速装置130の出力とを合成して後進側の合成駆動力を発生させ、発生させた後進側の合成駆動力をリングギヤ144から遊星側連動体126及び出力側連動体127を介して出力回転体124に出力する。
遊星伝動部140は、前後進切換え機構150が中立状態に操作されることにより、入力軸122に対する連動を絶たれた状態になる。
図22は、油圧式無段変速機130、前進クラッチ152、後進クラッチ156及び出力側のクラッチ機構160の操作状態と変速伝動装置120の伝動形態との関係を示す説明図である。図22に示す「前進」は、油圧式無段変速機130の前進伝動状態を示し、「後進」は、油圧式無段変速機130の後進伝動状態を示す。図22に示す「切」は、前進クラッチ152、後進クラッチ156及び出力側のクラッチ機構160の切り状態を示し、「入」は、前進クラッチ152、後進クラッチ156及び出力側のクラッチ機構160の入り状態を示す。図19は、HSTモード伝動を現出する状態での変速伝動装置120を示す縦断正面図である。
図19は、HSTモード伝動での変速伝動装置120を示す縦断正面図である。図19および図22に示すように、変速伝動装置120は、前進クラッチ152及び後進クラッチ156が切り状態に切換え制御され、出力側のクラッチ機構160が入り状態に切換え制御されると、HSTモード伝動を現出する状態になる。変速伝動装置120は、HSTモード伝動の状態になると、入力軸122に入力されたエンジン駆動力を遊星伝動部140に伝達せず、入力軸122に入力されたエンジン駆動力を油圧式無段変速機130によって変速し、変速後の駆動力をモータ軸133aから伝動軸123、サンギヤ142、クラッチ体161、遊星側連動体126及び出力側連動体127を介して出力回転体124に伝達して出力回転体124から左右一対の走行装置101,101に伝達する。
図20は、前進側のHMTモード伝動での変速伝動装置120を示す縦断正面図である。図20および図22に示すように、変速伝動装置120は、前進クラッチ152が入り状態に切換え制御され、後進クラッチ156及び出力側のクラッチ機構160が切り状態に切換え制御されると、前進側のHMTモード伝動を現出する状態になる。変速伝動装置120は、前進側のHMTモード伝動になると、入力軸122によって入力されたエンジン駆動力を前後進切換え機構150によって前進駆動力に変換して遊星伝動部140に伝達し、遊星伝動部140によって前後進切換え機構150からの前進駆動力と油圧式無段変速機130のモータ軸133aからの出力とを合成して前進側の合成駆動力を発生させ、発生した前進側の合成駆動力をリングギヤ144から遊星側連動体126及び出力側連動体127を介して出力回転体124に伝達して出力回転体124から左右一対の走行装置101,101に伝達する。
図21は、後進側のHMTモード伝動での変速伝動装置120を示す縦断正面図である。図21および図22に示すように、変速伝動装置120は、後進クラッチ156が入り状態に切換え制御され、前進クラッチ152及び出力側のクラッチ機構160が切り状態に切換え制御されると、後進側のHMTモード伝動を現出する状態になる。変速伝動装置120は、後進側のHMTモード伝動になると、入力軸122によって入力されたエンジン駆動力を前後進切換え機構150によって後進駆動力に変換して遊星伝動部140に伝達し、遊星伝動部140によって前後進切換え機構150からの後進駆動力と油圧式無段変速機130のモータ軸133aからの出力とを合成して後進側の合成駆動力を発生させ、発生した後進側の合成駆動力をリングギヤ144から遊星側連動体126及び出力側連動体127を介して出力回転体124に伝達して出力回転体124から左右一対の走行装置101,101に伝達する。
図23は、エンジン108が設定の一定速度の駆動力を出力するようにアクセルセットされた状態における油圧式無段変速機130の変速状態と変速伝動装置120の出力回転体124による出力速度との関係を示す説明図である。図23の横軸は、油圧式無段変速機130の変速状態を示し、「n」は、油圧式無段変速機130の中立位置を示し、「-max」は、油圧式無段変速機130の後進伝動状態での最高速位置を示し、「+max」は、油圧式無段変速機130の前進伝動状態での最高速位置を示す。図23の縦軸は、出力回転体124による出力速度を示す。図23に示す実線RL及び実線FLは、前進クラッチ152及び後進クラッチ156が切リ状態に切換え制御され、出力側のクラッチ機構160が入り状態に切換え制御された場合、すなわち変速伝動装置120がHSTモード伝動の状態に操作された場合における出力速度の変化を示す。図23に示す実線FM,FHは、前進クラッチ152が入り状態に切り換え制御され、後進クラッチ156及び出力側のクラッチ機構160が切り状態に切換え制御された場合、すなわち変速伝動装置120が前進側のHMTモード伝動の状態に操作された場合における出力速度の変化を示す。図23に示す実線RM,RHは、後進クラッチ156が入り状態に切り換え制御され、前進クラッチ152及び出力側のクラッチ機構160が切り状態に切換え制御された場合、すなわち変速伝動装置120が後進側のHMTモード伝動の状態に操作された場合における出力速度の変化を示す。
図22に示すように、かつ図23の実線FLで示すように、前進クラッチ152及び後進クラッチ156が切り状態に制御され、出力側のクラッチ機構160が入り状態に制御された状態において、油圧式無段変速機130が中立位置「n」に操作されると、出力が零「0」になる。
前進クラッチ152及び後進クラッチ156が切り状態に維持され、出力側のクラッチ機構160が入り状態に維持されながら、油圧式無段変速機130が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されると、前進駆動力が出力される。前進クラッチ152及び後進クラッチ156が切り状態に維持され、出力側のクラッチ機構160が入り状態に維持されながら、油圧式無段変速機130が中立位置「n」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、前進の出力が無段階に増速する。油圧式無段変速機130が前進伝動状態の最高速位置「+max」に至ると、出力速度が前進の中間速度「FV1」になる。
図22に示すように、かつ図23の実線FM,FHで示すように、油圧式無段変速機130が前進伝動状態の最高速位置「+max」に至ると、前進クラッチ152が入り状態に切換え制御され、出力側のクラッチ機構160が切り状態に切換え制御され、前進クラッチ152が入り状態に維持されながら、後進クラッチ156及び出力側のクラッチ機構160が切り状態に維持されながら、油圧無段変速装置130が前進伝動状態の最高速位置「+max」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、前進の出力が中間速度「FV1」から無段階に増速する。油圧式無段変速機130が後進伝動状態の最高速位置「-max」に至ると、出力が前進の最高速度「FV2」になる。
図22に示すように、かつ図23の実線RLで示すように、前進クラッチ152及び後進クラッチ156が切り状態に維持され、出力側のクラッチ機構160が入り状態に維持されながら、油圧式無段変速機130が中立位置「n」から後進伝動状態の最高速位置「-max」に向けて変速操作されると、後進駆動力が出力される。前進クラッチ152及び後進クラッチ156が切り状態に維持され、出力側のクラッチ機構160が入り状態に維持されながら、油圧式無段変速機130が中立位置「n」から後進伝動状態の最高速位置「-max」に向けて変速操作されるに伴い、後進の出力が無段階に増速する。油圧式無段変速機130が後進伝動状態の最高速位置「-max」に至ると、出力速度が後進の中間速度「RV1」になる。
図22に示すように、かつ図23の実線RM,RHで示すように、油圧式無段変速機130が後進伝動状態の最高速位置「-max」に至ると、後進クラッチ156が入り状態に切換え制御され、出力側のクラッチ機構160が切り状態に切換え制御され、後進クラッチ156が入り状態に維持されながら、前進クラッチ152及び出力側のクラッチ機構160が切り状態に維持されながら、油圧無段変速装置130が後進伝動状態の最高速位置「-max」から前進伝動状態の最高速位置「+max」に向けて変速操作されるに伴い、後進の出力が中間速度「RV1」から無段階に増速する。油圧式無段変速機130が前進伝動状態の最高速位置「+max」に至ると、出力が後進の最高速度「RV2」になる。
図23に示す「N」は、実線FH,FMを油圧式無段変速機130の前進側の最高速位置「+max」を超えて出力回転が零「0」となる点まで延長したときの横軸の値を示す。油圧式無段変速機130の前進側の最高速位置「+max」の横軸の値を1とすると、N=1.6~2.2となる。つまり、N=1.6~2.2となるように、油圧式無段変速機130における油圧ポンプ132及び油圧モータ133の容量、並びに遊星伝動部140の伝動ギヤ比を設定してある。
図24は、変速伝動装置120を変速操作する変速操作装置171を示すブロック図である。この図に示すように、変速操作装置171は、油圧式無段変速機130の変速操作部130a、並びに前進クラッチ152、後進クラッチ156及び出力側のクラッチ機構160の操作部152c,156c,160aに連係された制御装置172と、制御装置172に連係された変速検出センサ173、エンジン回転数センサ174、変速機出力回転数センサ175及び出力回転数センサ176とを備えている。
変速操作部130aは、油圧式無段変速装置130における油圧ポンプ132の斜板132bの角度変更操作を行なう電動アクチュエータ又は油圧アクチュエータによって構成してある。前進クラッチ152の操作部152cは、入力軸122の内部に形成された操作油路を介して油圧ピストン158に接続された操作弁によって構成してあり、油圧ピストン158を操作して前進クラッチ体152aを摺動操作することにより、前進クラッチ152を切り換え操作する。後進クラッチ156の操作部156cは、後進伝動軸153の内部に形成された操作油路を介して油圧ピストン159に接続された操作弁によって構成してあり、油圧ピストン159を操作して後進クラッチ体156aを摺動操作することにより、後進クラッチ156を切り換え操作する。出力側のクラッチ機構160の操作部160cは、伝動軸123の内部に形成された操作油路を介してクラッチ体161の油室に接続された操作弁によって構成してあり、クラッチ体161の油室に対する操作油の供給及び排出を行なうことにより、クラッチ体161を摺動操作して出力側のクラッチ機構160を切り換え操作する。
変速検出センサ173は、変速レバー177の操作位置を検出し、この検出結果を制御装置172に出力する。エンジン回転数センサ174は、エンジン108の回転数を検出し、この検出結果を制御装置172に出力する。変速機出力回転数センサ175は、油圧式無段変速機130の出力回転数を検出し、この検出結果を制御装置172に出力する。出力回転数センサ176は、変速伝動装置120の出力回転数を検出し、この検出結果を制御装置172に出力する。
制御装置172は、マイクロコンピュータを利用して構成してあり、変速制御手段178を備えている。変速制御手段178は、変速検出センサ173及び変速機出力回転数センサ175による検出情報を基に、油圧式無段変速機130の変速状態が変速レバー177の操作位置に対応したものになるように、変速操作部130aを操作して油圧式無段変速機130を変速制御する。
変速制御手段178は、油圧式無段変速機130を変速制御するに加え、エンジン回転数センサ174による検出情報を基に、アクセルセットされたエンジン108の回転数を検出し、この検出結果、変速検出センサ173、変速機出力回転数センサ175及び出力回転数センサ176による検出情報を基に、図22および図23に示す如く変速伝動装置120がHSTモード伝動、前進側のHMTモード伝動及び後進側のHMTモード伝動を現出して伝動するように、操作部152c、操作部156c及び操作部160cを操作して前進クラッチ152、後進クラッチ156及び出力側のクラッチ機構160を所定のタイミングで切り換え制御する。
[別実施形態]
図25は、別実施構造を備えた変速伝動装置120を示す縦断正面図である。この図に示すように、別実施構造を備えた変速伝動装置120では、油圧式無段変速機130に補充用の作動油を供給するチャージポンプ190を、ポンプ軸132aの端部に装備してある。チャージポンプ190は、ポンプ軸132aに一体回転自在に連結したロータ190a、及びケーシング131に脱着自在に連結したポンプケーシング190bを備えている。
図25は、別実施構造を備えた変速伝動装置120を示す縦断正面図である。この図に示すように、別実施構造を備えた変速伝動装置120では、油圧式無段変速機130に補充用の作動油を供給するチャージポンプ190を、ポンプ軸132aの端部に装備してある。チャージポンプ190は、ポンプ軸132aに一体回転自在に連結したロータ190a、及びケーシング131に脱着自在に連結したポンプケーシング190bを備えている。
[その他の別実施形態]
(1)上記した実施形態では、前進伝動状態における入力軸122からキャリヤ141への伝動比と、後進伝動状態における入力軸122からキャリヤ141への伝動比とが同じ又はほぼ同じになるよう前後進切換え機構150を構成した例を示したが、前進伝動状態における入力軸122からキャリヤ141への伝動比と、後進伝動状態における入力軸122からキャリヤ141への伝動比とが異なるよう構成した前後進切換え機構を採用して実施してもよい。この場合、後進側のHMTモード伝動での出力速度を示す実線RM,RHと、前進側のHMTモード伝動での出力速度を示す実線FM,FHとの横軸に対する傾斜角が同一になるとか異なることになり、後進出力の最高速度と前進出力の最高速度が同一になるとか異なることになる。
(1)上記した実施形態では、前進伝動状態における入力軸122からキャリヤ141への伝動比と、後進伝動状態における入力軸122からキャリヤ141への伝動比とが同じ又はほぼ同じになるよう前後進切換え機構150を構成した例を示したが、前進伝動状態における入力軸122からキャリヤ141への伝動比と、後進伝動状態における入力軸122からキャリヤ141への伝動比とが異なるよう構成した前後進切換え機構を採用して実施してもよい。この場合、後進側のHMTモード伝動での出力速度を示す実線RM,RHと、前進側のHMTモード伝動での出力速度を示す実線FM,FHとの横軸に対する傾斜角が同一になるとか異なることになり、後進出力の最高速度と前進出力の最高速度が同一になるとか異なることになる。
(2)上記した実施形態では、後進クラッチ156を入力ギヤ155と後進伝動軸153とに亘って設けた例を示したが、入力ギヤ155を後進伝動軸153に一体回転自在に支持し、後進伝動ギヤ157を後進伝動軸153に相対回転自在に支持し、後進伝動ギヤ157と後進伝動軸153とに亘って後進クラッチ156を設けて実施してもよい。
(3)上記した実施形態では、前進クラッチ152、後進クラッチ156、出力側のクラッチ機構160を噛合い式のクラッチによって構成した例を示したが、摩擦式のクラッチによって構成して実施してもよい。
(4)上記した実施形態では、前後進切換え機構150からの前進駆動力及び後進駆動力を遊星伝動部140のキャリヤ141に入力し、遊星伝動部140のリングギヤ144の駆動力を出力回転体124に伝達するよう構成した例を示したが、前後進切換え機構150からの前進駆動力及び後進駆動力を遊星伝動部140のリングギヤ144に入力し、遊星伝動部140のキャリヤ141の駆動力を出力回転体124に伝達するよう構成して実施してもよい。
(5)上記した実施形態では、油圧モータ133を可変容量形に構成した例を示したが、固定容量形に構成して実施してもよい。
[第3実施形態]
次に、図28~図44を参照しながら、第3実施形態を説明する。
次に、図28~図44を参照しながら、第3実施形態を説明する。
図28に示すように、コンバインは、左右一対のクローラ式の走行装置201,201によって自走するように構成され、かつ乗用型の運転部202が装備された走行機体と、走行機体の機体フレーム203の前部に連結された刈取り部204と、機体フレーム203の後部側に刈取り部204の後方に配置して設けられた脱穀装置205と、機体フレーム203の後部側に脱穀装置205の横側方に配置して設けられた穀粒タンク206とを備えて構成してあり、稲、麦などの収穫作業を行う。
すなわち、刈取り部204は、機体フレーム203の前部から前方向きに上下揺動自在に延出する刈取り部フレーム204aを備え、この刈取り部フレーム204aが昇降シリンダ207によって揺動操作されることにより、刈取り部204の前端部に設けられた分草具204bが地面近くに下降した下降作業位置と、分草具204bが地面から高く上昇した上昇非作業位置とに昇降する。刈取り部204を下降作業位置に下降させて走行機体を走行させると、刈取り部204は、分草具204bによって刈取対象の植立穀稈を引起し経路に導入し、引起し経路に導入した植立穀稈を引起し装置204cによって引起しながらバリカン型の刈取装置204dによって刈取り、刈取り穀稈を供給装置204eによって脱穀装置205に供給する。脱穀装置205は、供給装置204eからの刈取り穀稈の株元側を脱穀フィードチェーン205aによって挟持して機体後方向きに搬送し、刈取り穀稈の穂先側を扱室(図示せず)に供給して脱穀処理し、脱穀穀粒を穀粒タンク206に送り込む。
運転部202に備えられた運転座席202aの下方にエンジン208を設け、エンジン208が出力する駆動力を、機体フレーム203の前端部に設けたミッションケース211を備えた走行伝動装置210によって左右一対の走行装置201,201に伝達するように構成してある。
図29は、走行伝動装置210の概略構造を示す正面図である。この図に示すように、走行伝動装置210は、エンジン208の出力軸208aからのエンジン駆動力を、伝動ベルト212aが備えられた伝動機構212を介してミッションケース211の上端部の横側に設けられた変速伝動機220に入力し、この変速伝動機220の出力を、ミッションケース211に内装された走行ミッション213に入力して走行ミッション213が備える左右一対の操向クラッチ機構214,214の左側の操向クラッチ機構214から左側の走行装置201の駆動軸201aに伝達し、右側の操向クラッチ機構214から右側の走行装置201の駆動軸201aに伝達する。
走行伝動装置210は、ミッションケース211に内装された刈取りミッション215を備え、変速伝動機220の出力を、刈取りミッション215に入力して刈取り出力軸216から刈取り部204の駆動軸204fに伝達する。
次に、変速伝動機220について説明する。
図30および図31に示すように、変速伝動機220は、ミッションケース211の上端側に横側部が連結される変速ケース221を備えた遊星変速部220Aと、変速ケース221のミッションケース211に連結する側とは反対側の横側部にケーシング231が連結された静油圧式の無段変速部230とを備えて構成してある。
図30および図31に示すように、変速伝動機220は、ミッションケース211の上端側に横側部が連結される変速ケース221を備えた遊星変速部220Aと、変速ケース221のミッションケース211に連結する側とは反対側の横側部にケーシング231が連結された静油圧式の無段変速部230とを備えて構成してある。
変速ケース221は、遊星伝動部240及び伝動機構250を収容する主ケース部221aと、入力軸222及び伝動軸223と無段変速部230の連結部を収容し、かつ変速ケース221とケーシング231のポートブロック234を連結する連結ケース部221bとを備えて構成してある。変速ケース221は、主ケース部221aの出力回転体224が位置する下部側面の横外側に膨出形成された膨出部分221cでミッションケース211に連結される。連結ケース部221bの走行機体上下方向での大きさが主ケース部221aの走行機体上下方向での大きさよりも小になっている。主ケース部221aを、機体前後方向視での縦断面形状が縦長形状となるように形成し、ケーシング231を、機体前後方向視での縦断面形状が縦長形状となるように形成し、遊星変速部220Aと無段変速部230が機体横方向に並びながら、変速伝動機220全体としての機体横方向幅が小となり、変速伝動機220は、横外側に突出しないように走行機体の左右方向ではコンパクトな状態でミッションケース211の横側部に連結されている。さらに、ケーシング231の下部側面には下端側ほど機体内側に傾斜する傾斜面231Aが形成され、この傾斜面231Aにモータ軸233aのベアリングを支持する膨出部231Bが形成されて、変速伝動機220の更なるコンパクト化が図られている。また、ケーシング231の上面には上向きにオイルフィルタ220Fが配置され、オイルフィルタ220Fの横外側への突出を回避して更なるコンパクトが図られている。
遊星変速部220Aは、変速ケース221の上端側に回転自在に支持された機体横向きの入力軸222と、変速ケース221の下端側に入力軸222と平行又はほぼ平行に回転自在に支持された伝動軸223及び回転軸型の出力回転体224と、伝動軸223に支持された遊星伝動部240と、入力軸222と遊星伝動部240のキャリヤ241とに亘って設けた伝動機構250とを備えている。
入力軸222は、無段変速部230のポンプ軸232aに対して同軸芯状に並ぶよう配置されている。入力軸222は、変速ケース221から横外側に突出している側で伝動機構212を介してエンジン208の出力軸208aに連結するように構成され、エンジン208に連結される側とは反対側でジョイント222aを介して無段変速部230のポンプ軸232aに一体回転自在に連結されており、伝動機構212を介してエンジン駆動力を入力し、エンジン駆動力によって駆動されて無段変速部230の油圧ポンプ232を駆動する。
出力回転体224は、無段変速部230に対して入力軸222のエンジン連結側が位置する側と同じ側に無段変速部230のモータ軸233aと同軸芯状に並ぶように配置されている。出力回転体224は、変速ケース221から横外側に突出している側で走行ミッション213の入力部に連動するよう構成されており、遊星伝動部240及び無段変速部230からの駆動力を走行ミッション213を介して左右一対の走行装置201,201に出力する。
無段変速部230は、ケーシング231の上端側にポンプ軸232aが回転自在に支持されている油圧ポンプ232と、ケーシング231の下端側にモータ軸233aが回転自在に支持されている油圧モータ233とを備えて構成してある。油圧ポンプ232は、可変容量形のアキシャルプランジャポンプによって構成し、油圧モータ233は、アキシャルプランジャモータによって構成してある。油圧モータ233は、油圧ポンプ232によって吐出され、ポートブロック234の内部に形成された油路を介して供給される圧油によって駆動される。無段変速部230には、ポンプ軸232aの端部に装備されたチャージポンプ290によって補充用の作動油が供給される。チャージポンプ290は、ポンプ軸232aに一体回転自在に取り付けられたロータ290a、及びケーシング231に脱着自在に連結されたポンプケーシング290bを備えている。
従って、無段変速部230は、油圧ポンプ232が備える斜板232bの角度変更操作が行なわれることにより、前進伝動状態と後進伝動状態と中立状態とに切り換わる。無段変速部230は、前進伝動状態に切換え操作されると、入力軸222からポンプ軸232aに伝達されるエンジン駆動力を前進駆動力に変換してモータ軸233aから出力し、後進伝動状態に切換え操作されると、入力軸222からポンプ軸232aに伝達されるエンジン駆動力を後進駆動力に変換してモータ軸233aから出力し、前進伝動状態と後進伝動状態のいずれにおいても、エンジン駆動力を無段階に変速して出力する。無段変速部230は、中立状態に切換え操作されると、モータ軸233aからの出力を停止する。
遊星伝動部240は、無段変速部230に対して入力軸222のエンジン連結側が位置する側と同じ側に、モータ軸233aと出力回転体224の間に位置する状態で配置されている。遊星伝動部240は、伝動軸223に支持されるサンギヤ242と、サンギヤ242に噛合う複数個の遊星ギヤ243と、各遊星ギヤ243に噛合うリングギヤ244と、複数個の遊星ギヤ243を回転自在に支持するキャリヤ241とを備えている。キャリヤ241は、遊星ギヤ243を延出端部で回転自在に支持するアーム部241aと、複数本のアーム部241aの基端側が連結している筒軸部241bとを備え、筒軸部241bで伝動軸223にベアリングを介して回転自在に支持されている。
伝動軸223とモータ軸233aとは、ジョイント223aを介して一体回転自在に連結し、伝動軸223とサンギヤ242とは、スプライン構造を介して一体回転自在に連結しており、サンギヤ242は、モータ軸233aに対して一体回転自在に連動している。
リングギヤ244と出力回転体224とは、伝動軸223に対してこれの軸芯方向に並んで相対回転自在に外嵌した環状の遊星側連動体226及び環状の出力側連動体227によって一体回転自在に連動している。すなわち、遊星側連動体226は、遊星側連動体226の外周部から放射状にかつ一体回転自在に延出する複数本の係合アーム部226aを備えている。複数本の係合アーム部226aは、リングギヤ244の複数箇所に係合しており、遊星側連動体226は、リングギヤ244に対して一体回転自在に連動している。出力側連動体227は、遊星側連動体226に対して係合爪227aによって一体回転自在に係合し、出力回転体224に対してスプライン構造によって一体回転自在に係合しており、遊星側連動体226と出力回転体224とを一体回転自在に連結している。遊星側連動体226は、伝動軸223にベアリングを介して相対回転自在に支持されている。出力側連動体227は、変速ケース221にベアリングを介して回転自在に支持されている。
伝動機構250は、キャリヤ241の筒軸部241bに一体回転自在に設けられたキャリヤ241の入力ギヤ241cに噛合う状態で入力軸222にニードルベアリングを介して相対回転自在に支持された伝動ギヤ252と、伝動ギヤ252と入力軸222に亘って設けたHMTクラッチ255とを備えて構成してある。
HMTクラッチ255は、入力軸222に一体回転及び摺動操作自在に支持されたクラッチ体256と、クラッチ体256の一端側と伝動ギヤ252の横側部とに亘って設けたクラッチ本体257とを備えて構成してある。クラッチ体256は、クラッチ体256の端部に内嵌された油圧ピストン258によって摺動操作される。クラッチ本体257は、クラッチ体256に設けた噛合い爪と伝動ギヤ252に設けた噛合い爪とが係脱することによって入り状態と切り状態に切り換わるように噛合いクラッチに構成してある。
HMTクラッチ255は、クラッチ本体257が入り状態に切換え操作されることにより、入力軸222と伝動ギヤ252を一体回転自在に連動させるように入り状態に切換え操作され、遊星伝動部240のキャリヤ241と入力軸222とを連動させるようHMT伝動を設定した状態になる。
HMTクラッチ255は、クラッチ本体257が切り状態に切換え操作されることにより、入力軸222と伝動ギヤ252の連動を絶つように切り状態に切換え操作され、遊星伝動部240のキャリヤ241と入力軸222の連動を絶つようHMT伝動の設定を解除した状態になる。
従って、遊星伝動部240は、HMTクラッチ255がHMT伝動を設定した状態に切換え操作されることにより、入力軸222のエンジン連結側と無段変速部連結側との間に位置する部位から入力軸222の駆動力を伝動機構250を介してキャリヤ241に入力する。遊星伝動部240は、HMTクラッチ255がHMT伝動の設定を解除した状態に切換え操作されることにより、キャリヤ241の入力軸222に対する連動が絶たれた状態になる。
遊星伝動部240のサンギヤ242と遊星側連動体226とに亘り、伝動軸223に外嵌されたクラッチ体261を備えたHSTクラッチ260を設けてある。
クラッチ体261は、クラッチ体261の内周側に形成してある油室に圧油が供給されることにより、入り付勢ばね262に抗してサンギヤ242に向けて摺動操作されて切り位置に切り換わり、油室から圧油が排出されることにより、入り付勢ばね262によって遊星側連動体226に向けて摺動操作されて入り位置に切り換わる。クラッチ体261は、入り位置に切り換わると、クラッチ体261に設けてあるクラッチ爪261aと遊星側連動体226に設けてあるクラッチ爪とが係合して、遊星側連動体226に対して一体回転自在に連結する。クラッチ体261は、サンギヤ242に対して係合爪261bによって一体回転自在に係合した状態を維持しながら摺動操作され、サンギヤ242に対する係合状態を維持しながら入り位置になる。クラッチ体261は、切り位置に切り換わると、クラッチ爪261aによる遊星側連動体226に対する係合を解除する。
従って、HSTクラッチ260は、クラッチ体261が入り位置に切換え操作されることにより、サンギヤ242と遊星側連動体226を一体回転自在に連動させることで、モータ軸233aを出力回転体224に一体回転自在に連動させて、無段変速部230による出力の出力回転体224からの出力を可能にするようHST伝動を設定した状態になる。HSTクラッチ260は、HST伝動を設定した場合、サンギヤ242と伝動軸223が一体回転自在に連動し、リングギヤ244と遊星側連動体226が一体回転自在に連動していることにより、遊星ギヤ243の自転が発生しないように、サンギヤ242とキャリヤ241とリングギヤ244がモータ軸233aと一体回転することを可能にする。
HSTクラッチ260は、遊星伝動部240のリングギヤ244と出力回転体224とを連動状態に維持しながら、遊星伝動部240のサンギヤ242と出力回転体224とを連動入り状態と連動切り状態に切換える。
HSTクラッチ260は、クラッチ体261が切り位置に切換え操作されることにより、サンギヤ242と遊星側連動体226の連動を絶ち、モータ軸233aの出力回転体224に対する連動を絶つように、かつ遊星伝動部240のリングギヤ244と出力回転体224が一体回転自在に連動する状態を現出して、遊星伝動部240の合成駆動力の出力回転体224からの出力を可能にするようにHST伝動の設定を解除した状態になる。
従って、遊星伝動部240は、HMTクラッチ255がHST伝動を設定した状態に切換え操作され、HSTクラッチ260がHST伝動の設定を解除し状態に切換え操作されることにより、エンジンから入力軸222に伝達された駆動力を伝動機構250を介してキャリヤ241に入力し、無段変速部230のモータ軸233aから出力される変速駆動力を伝動軸223を介してサンギヤ242に入力し、エンジンからの駆動力と無段変速部230からの変速駆動力とを合成して合成駆動力を発生させ、発生させた合成駆動力をリングギヤ244から遊星側連動体226及び出力側連動体227を介して出力回転体224に出力する。
つまり、HMTクラッチ255及びHSTクラッチ260を備えて、変速伝動機220をHMT伝動とHST伝動とに切換えて設定する伝動設定のクラッチ機構270を構成してある。
図32は、HMTクラッチ255及びHSTクラッチ260の操作状態と、伝動設定のクラッチ機構270の操作状態と、変速伝動機220の伝動状態との関係を示す説明図である。図32に示す「切」は、HMTクラッチ255及びHSTクラッチ260の切り状態を示し、「入」は、HMTクラッチ255及びHSTクラッチ260の入り状態を示す。この図に示すように、HMTクラッチ255が切り状態に切換え操作され、HSTクラッチ260が入り状態に切換え操作されると、伝動設定のクラッチ機構270は、HST伝動設定状態になり、変速伝動機220にHST伝動を設定する。HMTクラッチ255が入り状態に切換え操作され、HSTクラッチ260が切り状態に切換え操作されると、伝動設定のクラッチ機構270は、HMT伝動設定状態になり、変速伝動機220にHMT伝動を設定する。
図30は、HMT伝動での変速伝動機220を示す縦断正面図である。この図に示すように、変速伝動機220は、HMTクラッチ255が入り状態に切換え操作され、HSTクラッチ260が切り状態に切換え操作されると、入力軸222の駆動力(エンジン208からの駆動力)を伝動機構250を介して遊星伝動部240のキャリヤ241に入力し、無段変速部230が入力軸222から入力した駆動力を変速してモータ軸233aから出力する変速駆動力を遊星伝動部240のサンギヤ242に入力し、遊星伝動部240が入力軸222から入力するエンジン208からの駆動力と無段変速部230から入力する変速駆動力とを遊星伝動部240によって合成して合成駆動力を発生させ、遊星伝動部240がリングギヤ244から出力する合成駆動力を、遊星側連動体226及び出力側連動体227を介して出力回転体224の端部に伝達して出力回転体224から走行ミッション213に出力する。
図31は、HST伝動での変速伝動機220を示す縦断正面図である。この図に示すように、変速伝動機220は、HMTクラッチ255が切り状態に切換え操作され、HSTクラッチ260が入り状態に切換え操作されると、無段変速部230が入力軸222から入力した駆動力を変速してモータ軸233aから出力する変速駆動力を、伝動軸223、HSTクラッチ260、遊星側連動体226及び出力側連動体227を介して出力回転体224の端部に伝達し、出力回転体224から走行ミッション213に出力する。
伝動設定のクラッチ機構270は、HST伝動を設定した場合、入力軸222から遊星伝動部240のキャリヤ241への伝動が絶たれた状態にあり、サンギヤ242が伝動軸223を介してモータ軸233aに一体回転自在に連動された状態にあり、リングギヤ244が遊星側連動体226、クラッチ体261、サンギヤ242及び伝動軸223を介してモータ軸233aに一体回転自在に連動された状態にあることから、遊星伝動部240のサンギヤ242、キャリヤ241及びリングギヤ244をモータ軸233aと一体回転させることになり、変速伝動機220は、HST伝動において、遊星ギヤ243の自転を発生させず、すなわちサンギヤ242と遊星ギヤ243の相対回転及び遊星ギヤ243とリングギヤ244の相対回転を発生させずに、無段変速部230のモータ軸233aの出力を出力回転体224に伝達する。
図33は、出力回転体224に駆動負荷としての走行負荷を掛けないで駆動される無負荷駆動での変速伝動機220が備える出力特性を示すグラフ(速度線図)である。このグラフの縦軸は、出力回転体224の回転速度を示す速度線となっている。このグラフの横軸は、縦軸の回転速度が零「0」の位置を通るものであり、かつ無段変速部230における油圧ポンプ232の斜板位置を示す操作位置線Lとなっている。操作位置線Lの「n」は、無段変速部230を中立状態にする斜板232bの中立位置である。操作位置線Lの「a」は、無負荷駆動でのHST伝動とHMT伝動の設定の切換えを行なうための斜板232bの前進側の最高速位置として設定した設定前進高速位置である。操作位置線Lの「+max」は、無段変速部230の実前進最高速位置であって、無段変速部230を前進高速側の操作限界まで変速操作した場合、油圧ポンプ232の斜板232bに実際に発生する斜板角位置である。設定前進高速位置「a」は、モータ軸233aの回転を遊星端子に増減せずに入力する簡単な構成において、HST伝動とHMT伝動が切り換わる点での速度連続性を保つ為に、実前進最高速位置「+max」の手前の位置に設定してある。操作位置線Lの「-max」は、変速制御によって操作される斜板232bの後進側の最高速位置として設定した設定後進高速位置である。設定後進高速位置「-max」は、無段変速部230を後進高速側の操作限界まで変速操作した場合、油圧ポンプ232の斜板232bに実際に発生する斜板角位置と同じ位置に設定してある。
図33に示す変速線Sは、エンジン208が設定の一定速度の駆動力を出力するようにアクセルセットされた状態において変速伝動機220がHST伝動で変速された場合の出力回転体224の回転速度の変化を示す無負荷のHST変速線(以下、HST変速線Sと略称する。)であり、変速線Mは、エンジン208が設定の一定速度の駆動力を出力するようにアクセルセットされた状態において変速伝動機220がHMT伝動で変速された場合の出力回転体224の回転速度の変化を示す無負荷のHMT変速線(以下、HMT変速線Mと略称する。)である。
図33に示すように、HMTクラッチ255が切り状態に切換え制御され、HSTクラッチ260が入り状態に切換え制御されてHST伝動が設定され、HST伝動の設定が維持された状態において、無段変速部230を中立位置「n」から設定前進高速位置「a」に向けて変速操作することにより、出力回転体224の回転速度が零「0」からHST変速線Sの前進域SFに沿って前進側に無段階に増速していき、無段変速部230が設定前進高速位置「a」に至ると、出力回転体224の回転速度が第1の前進中間速度「V1」になる。
無段変速部230が設定前進高速位置「a」に至ると、HMTクラッチ255が切り状態から入り状態に切換え制御され、HSTクラッチ260が入り状態から切り状態に切換え制御されてHST伝動に替えてHMT伝動が設定され、HMT伝動の設定が維持された状態において、無段変速部230を設定前進高速位置「a」から中立位置「n」に向けて変速操作することにより、出力回転体224の回転速度が第1の前進中間速度「V1」からHMT変速線Mの低速域MLに沿って無段階に増速していき、無段変速部230が中立位置「n」に至ると、出力回転体224の回転速度が第2の前進中間速度「V2」になる。HMT伝動の設定が維持された状態において、無段変速部230を中立位置「n」から設定後進高速位置「-max」に向けて変速操作することにより、出力回転体224の回転速度が第2の前進中間速度「V2」からHMT変速線Mの高速域MHに沿って無段階に増速していき、無段変速部230が設定後進高速位置「-max」に至ると、出力回転体224の回転速度が前進最高速度「V3」になる。
HST伝動の設定が維持された状態において、無段変速部230を中立位置「n」から設定後進高速位置「-max」に向けて変速操作することにより、出力回転体224の回転速度が零「0」からHST変速線Sの後進域SRに沿って後進側に無段階に増速していき、無段変速部230が設定後進高速位置「-max」に至ると、出力回転体224の回転速度が後進最高速度「VR」になる。
HMT変速線Mの高速域MHに対応する変速状態で出力される駆動力が移動走行に適切な回転速度の駆動力になるように、かつHMT変速線Mの低速域MLに対応する変速状態で出力される駆動力が作業走行に適切な回転速度の駆動力になるように、さらに油圧ポンプ232の吐出容量が極力小である無段変速部230を採用しながらエンジン208から入力する駆動力を変速に伴うロスを極力少なくして変速後の駆動力として得ることができるように、HMT変速線Mの操作位置線Lに対する傾斜角Bを次の如く設定してある。
図33に示す変速線延長線MEは、HMT変速線Mを操作位置線Lに向けて延長したものであり、操作位置線Lでの位置「P」は、変速線延長線MEと操作位置線Lとが交差する交差位置である。無段変速部230の油圧ポンプ232の斜板232bを実際に傾斜操作できる前進側の最大傾斜位置としての実前進最高速位置「+max」を超えて交差位置「P」まで傾斜操作できると仮定し、交差位置「P」まで傾斜操作した場合の斜板232bが備えることとなる仮想傾斜角の値を「N」とし、実前進最高速速位置「+max」に変速操作した無段変速部230の油圧ポンプ232に実際に発生する実最大斜板角の値を「X」とすると、NがXの2倍(N/X=2.0)となるに相当する傾斜角に、HMT変速線Mの操作位置線Lに対する傾斜角Bを設定してある。N/X=2.0の設定は、油圧ポンプ232の吐出容量の設定、遊星伝動部240及び遊星伝動部240以外の機械伝動部におけるギヤ伝動比の設定による。
HMT変速線Mの操作位置線Lに対する傾斜角Bは、前進最高速度「V3」での出力回転体224の回転速度が第1の前進中間速度「V1」での出力回転体224の回転速度の2倍以上となる傾斜角に設定してある。
N/X=2.0の設定は、次に説明する根拠に基づくものである。
無段変速部230の出力回転が零で出力回転数がV2の時、全動力が無段変速部230を通らずに出力される。出力回転が零になる仮想斜板角の位置(P)では、出力回転数V2の時の動力が無段変速部230を通じて駆動側に戻され出力が零になる。すなわち、無段変速部230を通さない機械伝達力が無段変速部230の動力(以下、HST動力と呼称する。)と釣り合う。実際には、仮想斜板角の位置(P)は仮想的な位置なので、無段変速部230の実前進最高速位置「+max」での実最大傾斜角X=1を考えると、HST動力は、回転数が1/Nなので、無段変速部230を通さない機械伝達動力の1/N倍になる。
無段変速部230の出力回転が零で出力回転数がV2の時、全動力が無段変速部230を通らずに出力される。出力回転が零になる仮想斜板角の位置(P)では、出力回転数V2の時の動力が無段変速部230を通じて駆動側に戻され出力が零になる。すなわち、無段変速部230を通さない機械伝達力が無段変速部230の動力(以下、HST動力と呼称する。)と釣り合う。実際には、仮想斜板角の位置(P)は仮想的な位置なので、無段変速部230の実前進最高速位置「+max」での実最大傾斜角X=1を考えると、HST動力は、回転数が1/Nなので、無段変速部230を通さない機械伝達動力の1/N倍になる。
仮に機械効率を、機械伝達動力でKM、無段変速部230を通す動力でKHとすると、出力動力は一定機械動力±HST動力となり、変速伝動機220が発揮する全効率は、無段変速部230が中立位置「n」であると、
(1+0×1/N)/(1/KM+0×1/N/KH)=KM
と計算され、
無段変速部230が設定後進高速位置「-max」であると、
(1+1/N)/(1/KM+1/N/KH)=KM・KH(N+1)/(KM+KH・N)
と計算され、
無段変速部230が実前進最高速位置「+max」であると、
(1-1/N)/(1/KM-1/N・KH)=KM(N-1)/(N-KM・KH)
と計算され、計算上はNが大きいほど高効率化できる。
(1+0×1/N)/(1/KM+0×1/N/KH)=KM
と計算され、
無段変速部230が設定後進高速位置「-max」であると、
(1+1/N)/(1/KM+1/N/KH)=KM・KH(N+1)/(KM+KH・N)
と計算され、
無段変速部230が実前進最高速位置「+max」であると、
(1-1/N)/(1/KM-1/N・KH)=KM(N-1)/(N-KM・KH)
と計算され、計算上はNが大きいほど高効率化できる。
図34は、N/Xの値を変化させた場合の全効率と変速位置との関係を示す説明図である。ここでは、KM=0.95、KH=0.7とし、N/X=1.0、N/X=2.0、N/X=3.0と変化させて上記した如く概算した全効率を示している。
図34に示す横軸は、変速位置を示すものであり、HST伝動での前進側及びHMT伝動において無段変速部230を任意の変速位置に変速された場合における出力回転速度の設定後進高速位置「-max」に変速された場合における出力回転速度の割合を横軸の変速位置としている。すなわち、HST伝動での前進側及びHMT伝動において無段変速部230を任意の変速位置に変速された場合に出力される駆動力の回転速度=Vnとすると、Vn/V3を横軸の変速位置としている。図34に示す縦線Dは、N/X=2.0の時にHST伝動の最高速を示す線で、Vn/V3=0.33(0.2と0.4の間)を示すものである。図34に示す縦線Eは、N/X=2.0の時にHMT伝動で、油圧ポンプ232の斜板中立での速度を示す線で、Vn/V3=0.67(0.6と0.8の間)を示すものである。従って、無段変速部230の設定前進高速位置「a」は、横軸での0.2と0.4の間の位置となり、無段変速部230の中立位置「n」は、横軸での0.6と0.8の間の位置となる。
図34に示す効率線Kは、無段変速部230が備える全効率を示すものである。図34に示す効率線K1は、N/X=1.0として概算した全効率を示すものであり、効率線K2は、N/X=2.0として概算した全効率を示すものであり、効率線K3は、N/X=3.0として概算した全効率を示すものである。
縦線Dと縦線Eとの間では、全効率が良いのはN/X=1.0の場合であるが、高速側は出力も大きいので、ロス動力としては大きくなり、小さな効率差も無視できなくなる。ロス率と出力動力を掛けたロス動力を検討すると、N/X=1.8程度が極小値となる。ロス動力としての最適値はN/X=1.8を挟んでN/Xが小さい側に広いが、無段変速部230の小型化は、N/X=2.0が最適値となる。このバランスを取って、N/X=1.5~2.5程度とすれば、高速域での高効率化を実現しつつ、無段変速部230の小型化も38%程度にできて両立される。この時のHMT伝動での遊星伝動部240の出力回転も10000rpmを超えない現実的な領域で設計できる。変速伝動機220ユニットとして独立させる場合、駆動源からの回転数程度に減速した方が、出力部のシールなどによるトルクロスの影響を小さくできるので、2.5~3の減速を、遊星伝動部240で行なうが、これも現実的に構成しやすくなる。上記した如くシンプルな伝動設定のクラッチ機構270を採用して、高効率と無段変速部230の小型化を図るには、N/X=1.5~2.5の設定が好都合である。
図35は、N/Xの値と無段変速部230の小型化との関係を示す説明図である。図35の横軸は、N/Xの値を示す。図35に示す線Fは、HST動力(1/N)の全動力(1+1/N)に対する割合「W」を示す。この割合「W」が大になるほど、油圧ポンプ232の吐出容量が大となる大型の無段変速部230が必要になる。
所定の変速範囲に亘る駆動力を遊星伝動部240による出力によって得る場合、無段変速部230による出力によって得る場合よりも無段変速部230の小型化が可能になるのであり、図35に示す線Gは、N/Xの値と、無段変速部230を小型化できる度合との関係を示す。
すなわち、仮に、HST伝動とHMT伝動が切り換わる点を実最大傾斜位置「+max」とすると、HMT伝動での最高速度(前進最高速度「V3」)はHST伝動での最高速度に対し、相似形で計算して(N+1)/(N-1)=Zとなる。Zは、N/X=1.5とすると5.0となり、N/X=2.0とすると3.0となり、N/X=2.5とすると2.3となり、N/X=3.0とすると2.0となる。図35の縦軸で示す値は、1/Zの値である。
Zの値が大になるほど、HMT伝動によって得ることができる変速範囲がより広くなり、HST伝動による変速範囲をより小に済ませることができて、無段変速部230のより小型化を図ることができるが、油圧ポンプ232の吐出容量をあまり小にするとリリーフ回路が開き作動するなどの駆動トラブルが発生する。従って、線Fと線Gとの交差を現出するN/X=2.0を採用することにより、HMT伝動による前進最高速度「V3」や第2の前進中間速度「V2」を移動や作業に必要な速度にしながら、かつ無段変速部230の小型化を図りながら、無段変速部230の駆動トラブルの発生を回避した変速伝動が可能な変速伝動機220を得ることができる。
図37は、出力回転体224に駆動負荷としての走行負荷を掛けないで駆動される無負荷駆動での変速伝動機220が備える出力特性、及び出力回転体224に駆動負荷としての走行負荷が掛かる状態で駆動される負荷駆動での変速伝動機220が備える出力特性を示すグラフ(速度線図)である。図39は、HST伝動からHMT伝動への設定の切り換えを示す説明図である。図37および図39の縦軸及び横軸は、図31に記載のグラフの縦軸及び横軸と同じものである。図37および図39に記載の「n」、「a」及び「-max」は、図31のグラフに記載の「n」、「a」及び「-max」と同じものである。
図37に示す変速線SAは、エンジン208が設定の一定速度の駆動力を出力するようにアクセルセットされた状態で、かつ出力回転体224に設定値の駆動負荷としての走行負荷が掛かる状態で、さらにHST伝動の設定で駆動される変速伝動機220の出力回転体224の回転速度の変化を示す負荷のHST変速線(以下、HST変速線SAと略称する。)である。図37に示す変速線MAは、エンジン208が設定の一定速度の駆動力を出力するようにアクセルセットされた状態で、かつ出力回転体224に設定値の駆動負荷としての走行負荷が掛かる状態で、さらにHMT伝動の設定で駆動される変速伝動機220の出力回転体224の回転速度の変化を示す負荷のHMT変速線(以下、HMT変速線MAと略称する。)である。HST変速線SAは、斜板232bに駆動負荷が作用している状態のものであるから、HST変速線SAの操作位置線Lに対する傾斜角は、HST変速線Sの操作位置線Lに対する傾斜角より小になる。HMT変速線MAは、斜板232bに駆動負荷が作用している状態のものであるから、HMT変速線MAの低速側は、HMT変速線Mに対して低速側に位置ずれする。
図37に示す横線L1は、HST伝動からHMT伝動への設定の切り換えを行なわせる際のモータ軸233aに備えさせておけば、HST伝動からHMT伝動への設定の切り換えのためのクラッチ機構270の切り換えが完了して遊星伝動部240にエンジン208からの駆動力が伝達されることになった時点で遊星伝動部240にサンギヤ242、キャリヤ241及びリングギヤ244の一体回転を現出させることになるモータ軸233aの回転速度(一体回転現出速度「V」)を示すものである。このモータ軸233aの回転速度は、出力回転体224の回転速度「V1」と同じになる。HST伝動及び無負荷駆動での無段変速部230は、油圧ポンプ232の斜板232bが設定前進高速位置「a」に操作されることにより、一体回転現出速度「V」を備える。
図36は、変速伝動機220を変速操作する変速操作装置271を示すブロック図である。この図に示すように、変速操作装置271は、無段変速部230の変速操作部230a、HMTクラッチ255及びHSTクラッチ260の操作部255a,260aに連係された制御装置272と、制御装置272に連係された変速操作具277、エンジン回転数センサ274、斜板角センサ275及び出力回転数センサ276とを備えている。
変速操作部230aは、無段変速部230における油圧ポンプ232の斜板232bの角度変更操作を行なう電動アクチュエータ又は油圧アクチュエータによって構成してある。HMTクラッチ255の操作部255aは、入力軸222の内部に形成された操作油路を介して油圧ピストン258に接続された操作弁によって構成してあり、油圧ピストン258を操作してクラッチ体256を摺動操作することにより、HMTクラッチ255を切り換え操作する。HSTクラッチ260の操作部260aは、伝動軸223の内部に形成された操作油路を介してクラッチ体261の油室に接続された操作弁によって構成してあり、クラッチ体261の油室に対する操作油の供給及び排出を行なうことにより、クラッチ体261を摺動操作してHSTクラッチ260を切り換え操作する。
変速操作具277は、運転部202に走行機体前後方向に揺動操作自在に設けた変速レバーによって構成してあり、中立位置「277N」、中立位置「277N」から機体前方側に延びる前進操作域「277F」、及び中立位置「277N」から機体後方側に延びる後進操作域「277R」で揺動操作するようになっている。変速操作具277は、変速操作具277の操作位置を検出する変速検出センサ273を介して制御装置272に連係されている。変速検出センサ273は、変速操作具277に回転操作軸が連動された回転ポテンショメータによって構成してあり、変速操作具277は、揺動操作されることにより、変速検出センサ273を作動させて、変速検出センサ273から変速指令を電気信号で制御装置272に出力する。
エンジン回転数センサ274は、エンジン208の回転数を検出し、この検出結果を制御装置272に出力する。斜板角センサ275は、無段変速部230の油圧ポンプ232の斜板角を検出し、この検出結果を制御装置272に出力する。出力回転数センサ276は、出力回転体224の回転数を変速伝動機220の出力回転数として検出し、この検出結果を制御装置272に出力する。
制御装置272は、マイクロコンピュータを利用して構成してあり、変速制御手段278及び変速斜板角設定手段280を備えている。
変速斜板角設定手段280は、制御装置272に設けられた記憶部によって構成されている。変速斜板角設定手段280は、HST伝動からHMT伝動への設定の切り換え制御を行なわせるための斜板角を予め設定変速斜板角「c」として設定して入力されている。
変速制御手段278は、エンジン回転数センサ274による検出情報を基に、アクセルセットされたエンジン208の回転数を検出し、この検出結果と、変速操作具277からの変速指令と、斜板角センサ275及び出力回転数センサ276による検出情報とに基づいて油圧ポンプ232を変速制御し、かつクラッチ機構270のHSTクラッチ260及びHMTクラッチ255を切換え制御する。
図38は、HST伝動からHMT伝動への設定を切り換える設定切り換え制御を示すフロー図である。この図に示すように、変速制御手段278は、斜板角センサ275による検出斜板角と変速斜板角設定手段280による設定変速斜板角「c」とを比較し、検出斜板角と設定変速斜板角「c」とが等しいか否かを判断することで、斜板角センサ275が設定変速斜板角「c」に等しい斜板角を検出したか否かを判断する。変速制御手段278は、斜板角センサ275が設定変速斜板角「c」に等しい斜板角を検出したと判断した場合、クラッチ機構270のHSTクラッチ260を切り状態に切換え制御し、HMTクラッチ255を入り状態に切換え制御して、HST伝動からHMT伝動への設定の切換えを行なう。
従って、エンジン208を一定の回転速度での駆動力を出力するようアクセルセットしておいて、変速操作具277を後進操作域「277R」、中立位置「277N」及び前進操作域「277F」にわたって操作することにより、変速制御手段278が変速伝動機220をHST伝動とHMT伝動とに切り換えて設定する制御及び油圧ポンプ232の変速制御を行ない、走行機体を前進側と後進側に切り換えて走行させるとともに前進側及び後進側において変速走行させたり、停止させたりできる。
すなわち、変速操作具277を中立位置「277N」、後進操作域「277R」及び前進操作域「277F」の低速域部に操作した場合、変速操作具277からの変速指令及び変速斜板角設定手段280による設定情報に基づく変速制御手段278のHMTクラッチ255及びHSTクラッチ260の切り換え制御により、変速伝動機220がHST伝動に設定される。変速操作具277を前進操作域「277F」の高速域部に操作した場合、変速操作具277からの変速指令及び変速斜板角設定手段280による設定情報に基づく変速制御手段278のHMTクラッチ255及びHSTクラッチ260の切り換え制御により、変速伝動機220がHMT伝動に設定される。
変速操作具277を中立位置「277N」に操作すると、変速制御手段278が変速操作具277からの変速指令に基づいて油圧ポンプ232の斜板232bを中立位置「n」に操作し、無段変速部230が中立状態になって変速伝動機220が出力を停止する。
変速操作具277を前進操作域「277F」の低速域部で移動操作すると、変速制御手段278が変速操作具277からの変速指令及び出力回転数センサ276による検出情報に基づいて油圧ポンプ232の斜板232bを中立位置「n」より前進側で傾動操作し、変速伝動機220が出力する駆動力が負荷のHST変速線SAの前進域に沿って変速する。
変速操作具277を前進操作域「277F」の高速側部で移動操作すると、変速制御手段278が変速操作具277からの変速指令及び出力回転数センサ276による検出情報に基づいて油圧ポンプ232の斜板232bを前進側と後進側とにわたって傾動操作し、変速伝動機220が出力する駆動力が負荷のHMT変速線MAに沿って変速する。
変速操作具277を後進操作域「277R」で移動操作すると、変速制御手段278が変速操作具277からの変速指令及び出力回転数センサ276による検出情報に基づいて油圧ポンプ232の斜板232bを中立位置「n」より後進側で傾動操作し、変速伝動機220が出力する駆動力が負荷のHST変速線SAの後進域に沿って変速する。
図44は、比較例でのHST伝動からHMT伝動への切り換わりを示す説明図である。図44に示す横線L1は、図37に示す横線L1と同じものである。
図37および図44に示すように、HST変速線Sに沿って増速するモータ軸233aの回転速度が一体回転現出速度「V」になるのは、HST変速線SとHMT変速線Mとの交点で示される時点であり、この時点での油圧ポンプ232の斜板角は、前進設定高速位置「a」で成る無負荷斜板角「a」となる。HST変速線SAに沿って増速するモータ軸233aの回転速度が一体回転現出速度「V」になるのは、HST変速線SAと横線L1との交点「X」で示される時点であり、この時点での油圧ポンプ232の斜板角は、負荷斜板角「b」となり、この負荷斜板角「b」は、斜板232bが無負荷斜板角「a」より高速側に傾動した斜板角になる。
HST変速線SAに沿って増速するモータ軸233aの回転速度が一体回転現出速度「V」になった時点でHST伝動からHMT伝動への設定の切り換えが行なわれると、出力回転体224による出力速度が一体回転現出速度「V」から、HMT変速線MAと、交点「X」及び負荷斜板角「b」の位置を通る縦線とが交わる交点「Y」に対応する回転速度であって一体回転現出速度「V」より低速の回転速度「V0」に変化する。つまり、HST伝動からHMT伝動への設定の切り換えが行なわれると、切り換え直後には、一体回転現出速度「V」に対応する速度から出力速度「V0」に対応する速度に走行速度が低下する。
図39は、本発明の実施形態の変速制御手段278によるHST伝動からHMT伝動への設定の切り換えを示す説明図である。この図に示すように、設定変速斜板角「c」としては、前記無負荷斜板角「a」と前記負荷斜板角「b」との間の斜板角を設定してある。さらに詳述すると、設定変速斜板角「c」としては、HST変速線SAとHMT変速線MAとの交点「W」に対応する交点斜板角「d」と負荷斜板角「b」との間の斜板角であって、負荷斜板角「b」より交点斜板角「d」に近い斜板角を設定してある。
従って、変速制御手段278は、HST変速線SAに沿って増速するモータ軸233aの回転速度がHST変速線SAと設定変速斜板角「c」を通る縦線とが交わる交点「S1」に対応する回転速度「VS」になると、HST伝動からHMT伝動への設定の切り換え制御を行なう。これにより、HST伝動からHMT伝動への設定の切り換え制御が行なわれた直後の変速伝動機220の出力速度としての出力回転体224の回転速度は、HMT変速線MAと交点「S1」を通る縦線とが交わる交点「M1」に対応する回転速度「VM」になる。変速制御手段278によるHST伝動からHMT伝動への設定の切り換え制御は、変速操作具277が前進操作域「277F」の中央部に位置する場合に行なわれる。
つまり、HST伝動からHMT伝動への設定の切り換えが行なわれる際の無段変速部230の出力速度としてのモータ軸233aの回転速度「VS」が一体回転現出速度「V」より低速の回転速度になり、HST伝動からHMT伝動への設定の切り換えが行なわれた直後の変速伝動機220の出力速度としての出力回転体224の回転速度が、無段変速部230の出力速度が一体回転現出速度「V」になることでHST伝動からHMT伝動への設定の切り換えが行なわれる場合における切り換わり直後の出力回転体224の回転速度「V0」よりも高速になる。HST伝動からHMT伝動への切り換えに伴う走行速度の変化分を、切り換わり直前の出力速度「VS」と切り換わり直後の出力速度「VM」との速度差に相当するものであって、HST伝動からHMT伝動への設定の切り換えを出力速度に基づいて行なわせる場合における切り換わり直前の出力速度「V」と切り換わり直後の出力速度「V0」との速度差より小にしながら、HST伝動の速度レンジからHMT伝動の速度レンジへの切り換えが行なわれる。
[第1の別実施形態]
図40は、第1の別実施形態を備える変速操作装置271を示すブロック図である。この図に示すように、第1の別実施形態を備える変速操作装置271では、制御装置272に連係された調節部281を変速斜板角設定手段280に備えてある。
図40は、第1の別実施形態を備える変速操作装置271を示すブロック図である。この図に示すように、第1の別実施形態を備える変速操作装置271では、制御装置272に連係された調節部281を変速斜板角設定手段280に備えてある。
調節部281は、回転操作具281aを備えた回転ポテンショメータによって構成してある。調節部281は、回転操作具281aによって調節操作されることにより、HST伝動からHMT伝動への設定の切換え制御を行なわせる際の油圧ポンプ232の斜板角を高速側や低速側に変更して設定し、変更した設定変速斜板角を制御装置272に出力することにより、変速斜板角設定手段280が調節部281からの新たな設定変速斜板角を既に入力していた設定変速斜板角に替えて入力するように変速斜板角設定手段280を調節する。
つまり、変速斜板角設定手段280を調節部281によって調節操作することにより、例えば、図41に示すように、HST変速線SAとHMT変速線MAとが交わる交点「W」に対応する油圧ポンプ232の斜板角「c」を変速斜板角設定手段280による設定変速斜板角として設定し、HST伝動からHMT伝動への設定の切換え制御が行なわれる際のモータ軸233aの回転速度「VS1」と、HST伝動からHMT伝動への設定の切換え制御が行なわれた直後の出力回転体224の回転速度「VM1」とが同じ回転速度になる状態でHST伝動からHMT伝動への設定の切換え制御を行なわせることができる。
[第2の別実施形態]
図42は、第2の別実施形態を備える変速操作装置271を示すブロック図である。この図に示すように、第2の別実施形態を備える変速操作装置271では、マップ制御のデータが入力された記憶部283を備えている。
図42は、第2の別実施形態を備える変速操作装置271を示すブロック図である。この図に示すように、第2の別実施形態を備える変速操作装置271では、マップ制御のデータが入力された記憶部283を備えている。
記憶部283は、HST伝動及び負荷駆動で変速伝動機220が駆動される場合に斜板角センサ275によって検出される検出斜板角と、この検出斜板角に対応する適切な対応HST変速線と、この対応HST変速線に対応する適切な対応HMT変速線とをマップ制御のデータとして予め入力されて記憶している。
図43は、第2の別実施形態を備える変速操作装置271によるHST伝動からHMT伝動への設定の切り換え制御を示す説明図である。この図に示すように、変速斜板角設定手段280は、HST伝動及び負荷駆動で変速伝動機220が駆動され、HST伝動からHMT伝動への設定の切換え制御が行なわれるまでの間、斜板角センサ275による検出情報を常に入力し、斜板角センサ275による検出情報を入力する都度、斜板角センサ275による検出情報及び記憶部283に入力されているマップ制御のデータを基に、斜板角センサ275による検出斜板角に対応したHST伝動及び負荷駆動での演算HST変速線SA1を演算して設定し、この演算HST変速線SA1に対応する適切な演算HMT変速線MA1を演算して設定し、演算HST変速線SA1と演算HMT変速線MA1の交点W1に対応する速度の変速駆動力を出力する変速状態において油圧ポンプ232が備える斜板角を割り出し、割り出した斜板角を設定変速斜板角「c」として設定する。
従って、変速制御手段278は、走行途中で駆動負荷が変化しても、HST伝動からHMT伝動への設定の切り換えを行なうのに、設定変速斜板角として、HST伝動とHMT伝動の設定の切り換えに伴う走行速度の変化を防止するのに最適な設定変速斜板角「c」を付与され、HST伝動の速度レンジからHMT伝動の速度レンジへの切り換えを、駆動負荷の変化にかかわらず切り換えに伴う速度変化が無い状態で行なわせ、HST伝動の速度レンジからHMT伝動の速度レンジへの変速を変速ショックや違和感を発生させないで行わせる。
[その他の別実施形態]
(1)上記した実施形態では、咬み合い形式のHMTクラッチ255及びHSTクラッチ260によってクラッチ機構270を構成した例を示したが、摩擦式のHMTクラッチ255及びHSTクラッチ260によってクラッチ機構270を構成して実施してもよい。
(1)上記した実施形態では、咬み合い形式のHMTクラッチ255及びHSTクラッチ260によってクラッチ機構270を構成した例を示したが、摩擦式のHMTクラッチ255及びHSTクラッチ260によってクラッチ機構270を構成して実施してもよい。
(2)上記した実施形態では、固定容量形の油圧モータ233を備えて無段変速部230を構成した例を示したが、可変容量形の油圧モータを備えて無段変速部230を構成して実施してもよい。
[第4実施形態]
次に、図45~図54を参照しながら、第4実施形態を説明する。
次に、図45~図54を参照しながら、第4実施形態を説明する。
図45に示すように、コンバインは、左右一対のクローラ式の走行装置301,301によって自走するように構成され、かつ乗用型の運転部302が装備された走行機体と、走行機体の機体フレーム303の前部に連結された刈取り部304と、機体フレーム303の後部側に刈取り部304の後方に配置して設けられた脱穀装置305と、機体フレーム303の後部側に脱穀装置305の横側方に配置して設けられた穀粒タンク306とを備えて構成してあり、稲、麦などの収穫作業を行う。
すなわち、刈取り部304は、機体フレーム303の前部から前方向きに上下揺動自在に延出する刈取り部フレーム304aを備え、この刈取り部フレーム304aが昇降シリンダ307によって揺動操作されることにより、刈取り部304の前端部に設けられた分草具304bが地面近くに下降した下降作業位置と、分草具304bが地面から高く上昇した上昇非作業位置とに昇降する。刈取り部304を下降作業位置に下降させて走行機体を走行させると、刈取り部304は、分草具304bによって刈取対象の植立穀稈を引起し経路に導入し、引起し経路に導入した植立穀稈を引起し装置304cによって引起しながらバリカン型の刈取装置304dによって刈取り、刈取り穀稈を供給装置304eによって脱穀装置305に供給する。脱穀装置305は、供給装置304eからの刈取り穀稈の株元側を脱穀フィードチェーン305aによって挟持して機体後方向きに搬送し、刈取り穀稈の穂先側を扱室(図示せず)に供給して脱穀処理し、脱穀穀粒を穀粒タンク306に送り込む。
運転部302に備えられた運転座席302aの下方にエンジン308を設け、エンジン308が出力する駆動力を、機体フレーム303の前端部に設けたミッションケース311を備えた走行伝動装置310によって左右一対の走行装置301,301に伝達するように構成してある。
図46は、走行伝動装置310の概略構造を示す正面図である。この図に示すように、走行伝動装置310は、エンジン308の出力軸308aからのエンジン駆動力を、伝動ベルト312aが備えられた伝動機構312を介してミッションケース311の上端部の横側に設けられた変速伝動機320に入力し、この変速伝動機320の出力を、ミッションケース311に内装された走行ミッション313に入力して走行ミッション313が備える左右一対の操向クラッチ機構314,314の左側の操向クラッチ機構314から左側の走行装置301の駆動軸301aに伝達し、右側の操向クラッチ機構314から右側の走行装置301の駆動軸301aに伝達する。
走行伝動装置310は、ミッションケース311に内装された刈取りミッション315を備え、変速伝動機320の出力を、刈取りミッション315に入力して刈取り出力軸316から刈取り部304の駆動軸304fに伝達する。
次に、変速伝動機320について説明する。
図47および図48に示すように、変速伝動機320は、ミッションケース311の上端側に横側部が連結される変速ケース321を備えた遊星変速部320Aと、変速ケース321のミッションケース311に連結する側とは反対側の横側部にケーシング331が連結された静油圧式の無段変速部330とを備えて構成してある。
図47および図48に示すように、変速伝動機320は、ミッションケース311の上端側に横側部が連結される変速ケース321を備えた遊星変速部320Aと、変速ケース321のミッションケース311に連結する側とは反対側の横側部にケーシング331が連結された静油圧式の無段変速部330とを備えて構成してある。
変速ケース321は、遊星伝動部340及び伝動機構350を収容する主ケース部321aと、入力軸322及び伝動軸323と無段変速部330の連結部を収容し、かつ変速ケース321とケーシング331のポートブロック334を連結する連結ケース部321bとを備えて構成してある。変速ケース321は、主ケース部321aの出力回転体324が位置する下部側面の横外側に膨出形成された膨出部分321cでミッションケース311に連結される。連結ケース部321bの走行機体上下方向での大きさが主ケース部321aの走行機体上下方向での大きさよりも小になっている。主ケース部321aを、機体前後方向視での縦断面形状が縦長形状となるように形成し、ケーシング331を、機体前後方向視での縦断面形状が縦長形状となるように形成し、遊星変速部320Aと無段変速部330が機体横方向に並びながら、変速伝動機320全体としての機体横方向幅が小となり、変速伝動機320は、横外側に突出しないように走行機体の左右方向ではコンパクトな状態でミッションケース311の横側部に連結されている。さらに、ケーシング331の下部側面にモータ軸333aのベアリングを支持する膨出部331Bが形成されて、変速伝動機320の更なるコンパクト化が図られている。また、ケーシング331の上面には上向きにオイルフィルタ320Fが配置され、オイルフィルタ320Fの横外側への突出を回避して更なるコンパクトが図られている。
遊星変速部320Aは、変速ケース321の上端側に回転自在に支持された機体横向きの入力軸322と、変速ケース321の下端側に入力軸322と平行又はほぼ平行に回転自在に支持された伝動軸323及び回転軸型の出力回転体324と、伝動軸323に支持された遊星伝動部340と、入力軸322と遊星伝動部340のキャリヤ341とに亘って設けた伝動機構350とを備えている。
入力軸322は、無段変速部330のポンプ軸332aに対して同軸芯状に並ぶよう配置されている。入力軸322は、変速ケース321から横外側に突出している側で伝動機構312を介してエンジン308の出力軸308aに連結するように構成され、エンジン308に連結される側とは反対側でジョイント22aを介して無段変速部330のポンプ軸332aに一体回転自在に連結されており、伝動機構312を介してエンジン駆動力を入力し、エンジン駆動力によって駆動されて無段変速部330の油圧ポンプ332を駆動する。
出力回転体324は、無段変速部330に対して入力軸322のエンジン連結側が位置する側と同じ側に無段変速部330のモータ軸333aと同軸芯状に並ぶように配置されている。出力回転体324は、変速ケース321から横外側に突出している側で走行ミッション313の入力部に連動するよう構成されており、遊星伝動部340及び無段変速部330からの駆動力を走行ミッション313を介して左右一対の走行装置301,301に出力する。
無段変速部330は、ケーシング331の上端側にポンプ軸332aが回転自在に支持されている油圧ポンプ332と、ケーシング331の下端側にモータ軸333aが回転自在に支持されている油圧モータ333とを備えて構成してある。油圧ポンプ332は、可変容量形のアキシャルプランジャポンプによって構成し、油圧モータ333は、可変容量形のアキシャルプランジャモータによって構成してある。油圧モータ333は、油圧ポンプ332によって吐出され、ポートブロック334の内部に形成された油路を介して供給される圧油によって駆動される。無段変速部330には、ポンプ軸332aの端部に装備されたチャージポンプ390によって補充用の作動油が供給される。チャージポンプ390は、ポンプ軸332aに一体回転自在に取り付けられたロータ390a、及びケーシング331に脱着自在に連結されたポンプケーシング390bを備えている。
従って、無段変速部330は、油圧ポンプ332が備える斜板332bの角度変更操作が行なわれることにより、前進伝動状態と後進伝動状態と中立状態とに切り換わる。無段変速部330は、前進伝動状態に切換え操作されると、入力軸322からポンプ軸332aに伝達されるエンジン駆動力を前進駆動力に変換してモータ軸333aから出力し、後進伝動状態に切換え操作されると、入力軸322からポンプ軸332aに伝達されるエンジン駆動力を後進駆動力に変換してモータ軸333aから出力し、前進伝動状態と後進伝動状態のいずれにおいても、エンジン駆動力を無段階に変速して出力する。無段変速部330は、中立状態に切換え操作されると、モータ軸333aからの出力を停止する。
遊星伝動部340は、無段変速部330に対して入力軸322のエンジン連結側が位置する側と同じ側に、モータ軸333aと出力回転体324の間に位置する状態で配置されている。遊星伝動部340は、伝動軸323に支持されるサンギヤ342と、サンギヤ342に噛合う複数個の遊星ギヤ343と、各遊星ギヤ343に噛合うリングギヤ344と、複数個の遊星ギヤ343を回転自在に支持するキャリヤ341とを備えている。キャリヤ341は、遊星ギヤ343を延出端部で回転自在に支持するアーム部341aと、複数本のアーム部341aの基端側が連結している筒軸部341bとを備え、筒軸部341bで伝動軸323にベアリングを介して回転自在に支持されている。
伝動軸323とモータ軸333aとは、ジョイント323aを介して一体回転自在に連結し、伝動軸323とサンギヤ342とは、スプライン構造を介して一体回転自在に連結しており、サンギヤ342は、モータ軸333aに対して一体回転自在に連動している。
リングギヤ344と出力回転体324とは、伝動軸323に対してこれの軸芯方向に並んで相対回転自在に外嵌した環状の遊星側連動体326及び環状の出力側連動体327によって一体回転自在に連動している。すなわち、遊星側連動体326は、遊星側連動体326の外周部から放射状にかつ一体回転自在に延出する複数本の係合アーム部326aを備えている。複数本の係合アーム部326aは、リングギヤ344の複数箇所に係合しており、遊星側連動体326は、リングギヤ344に対して一体回転自在に連動している。出力側連動体327は、遊星側連動体326に対して係合爪327aによって一体回転自在に係合し、出力回転体324に対してスプライン構造によって一体回転自在に係合しており、遊星側連動体326と出力回転体324とを一体回転自在に連結している。遊星側連動体326は、伝動軸323にベアリングを介して相対回転自在に支持されている。出力側連動体327は、変速ケース321にベアリングを介して回転自在に支持されている。
伝動機構350は、キャリヤ341の筒軸部341bに一体回転自在に設けられたキャリヤ341の入力ギヤ341cに噛合う状態で入力軸322にニードルベアリングを介して相対回転自在に支持された伝動ギヤ352と、伝動ギヤ352と入力軸322に亘って設けたHMTクラッチ355とを備えて構成してある。
HMTクラッチ355は、入力軸322に一体回転及び摺動操作自在に支持されたクラッチ体356と、クラッチ体356の一端側と伝動ギヤ352の横側部とに亘って設けたクラッチ本体357とを備えて構成してある。クラッチ体356は、クラッチ体356の端部に内嵌された油圧ピストン358によって摺動操作される。クラッチ本体357は、クラッチ体356に設けた噛合い爪と伝動ギヤ352に設けた噛合い爪とが係脱することによって入り状態と切り状態に切り換わるように噛合いクラッチに構成してある。
HMTクラッチ355は、クラッチ本体357が入り状態に切換え操作されることにより、入力軸322と伝動ギヤ352を一体回転自在に連動させるように入り状態に切換え操作され、遊星伝動部340のキャリヤ341と入力軸322とを連動させるようHMT伝動を設定した状態になる。
HMTクラッチ355は、クラッチ本体357が切り状態に切換え操作されることにより、入力軸322と伝動ギヤ352の連動を絶つように切り状態に切換え操作され、遊星伝動部340のキャリヤ341と入力軸322の連動を絶つようHMT伝動の設定を解除した状態になる。
従って、遊星伝動部340は、HMTクラッチ355がHMT伝動を設定した状態に切換え操作されることにより、入力軸322のエンジン連結側と無段変速部連結側との間に位置する部位から入力軸322の駆動力を伝動機構350を介してキャリヤ341に入力する。遊星伝動部340は、HMTクラッチ355がHMT伝動の設定を解除した状態に切換え操作されることにより、キャリヤ341の入力軸322に対する連動が絶たれた状態になる。
遊星伝動部340のサンギヤ342と遊星側連動体326とに亘り、伝動軸323に外嵌されたクラッチ体361を備えたHSTクラッチ360を設けてある。
クラッチ体361は、クラッチ体361の内周側に形成してある油室に圧油が供給されることにより、入り付勢ばね362に抗してサンギヤ342に向けて摺動操作されて切り位置に切り換わり、油室から圧油が排出されることにより、入り付勢ばね362によって遊星側連動体326に向けて摺動操作されて入り位置に切り換わる。クラッチ体361は、入り位置に切り換わると、クラッチ体361に設けてあるクラッチ爪361aと遊星側連動体326に設けてあるクラッチ爪とが係合して、遊星側連動体326に対して一体回転自在に連結する。クラッチ体361は、サンギヤ342に対して係合爪361bによって一体回転自在に係合した状態を維持しながら摺動操作され、サンギヤ342に対する係合状態を維持しながら入り位置になる。クラッチ体361は、切り位置に切り換わると、クラッチ爪361aによる遊星側連動体326に対する係合を解除する。
従って、HSTクラッチ360は、クラッチ体361が入り位置に切換え操作されることにより、サンギヤ342と遊星側連動体326を一体回転自在に連動させることで、モータ軸333aを出力回転体324に一体回転自在に連動させて、無段変速部330による出力の出力回転体324からの出力を可能にするようHST伝動を設定した状態になる。HSTクラッチ360は、HST伝動を設定した場合、サンギヤ342と伝動軸323が一体回転自在に連動し、リングギヤ344と遊星側連動体326が一体回転自在に連動していることにより、遊星ギヤ343の自転が発生しないように、サンギヤ342とキャリヤ341とリングギヤ344がモータ軸333aと一体回転することを可能にする。
HSTクラッチ360は、遊星伝動部340のリングギヤ344と出力回転体324とを連動状態に維持しながら、遊星伝動部340のサンギヤ342と出力回転体324とを連動入り状態と連動切り状態に切換える。
HSTクラッチ360は、クラッチ体361が切り位置に切換え操作されることにより、サンギヤ342と遊星側連動体326の連動を絶ち、モータ軸333aの出力回転体324に対する連動を絶つように、かつ遊星伝動部340のリングギヤ344と出力回転体324が一体回転自在に連動する状態を現出して、遊星伝動部340の合成駆動力の出力回転体324からの出力を可能にするようにHST伝動の設定を解除した状態になる。
従って、遊星伝動部340は、HMTクラッチ355がHST伝動を設定した状態に切換え操作され、HSTクラッチ360がHST伝動の設定を解除し状態に切換え操作されることにより、エンジンから入力軸322に伝達された駆動力を伝動機構350を介してキャリヤ341に入力し、無段変速部330のモータ軸333aから出力される変速駆動力を伝動軸323を介してサンギヤ342に入力し、エンジンからの駆動力と無段変速部330からの変速駆動力とを合成して合成駆動力を発生させ、発生させた合成駆動力をリングギヤ344から遊星側連動体326及び出力側連動体327を介して出力回転体324に出力する。
つまり、HMTクラッチ355及びHSTクラッチ360を備えて、変速伝動機320をHMT伝動とHST伝動とに切換えて設定する伝動設定のクラッチ機構370を構成してある。
図49は、HMTクラッチ355及びHSTクラッチ360の操作状態と、伝動設定のクラッチ機構370の操作状態と、変速伝動機320の伝動状態との関係を示す説明図である。図49に示す「切」は、HMTクラッチ355及びHSTクラッチ360の切り状態を示し、「入」は、HMTクラッチ355及びHSTクラッチ360の入り状態を示す。この図に示すように、HMTクラッチ355が切り状態に切換え操作され、HSTクラッチ360が入り状態に切換え操作されると、伝動設定のクラッチ機構370は、HST伝動設定状態になり、変速伝動機320にHST伝動を設定する。HMTクラッチ355が入り状態に切換え操作され、HSTクラッチ360が切り状態に切換え操作されると、伝動設定のクラッチ機構370は、HMT伝動設定状態になり、変速伝動機320にHMT伝動を設定する。
図47は、HMT伝動での変速伝動機320を示す縦断正面図である。この図に示すように、変速伝動機320は、HMTクラッチ355が入り状態に切換え操作され、HSTクラッチ360が切り状態に切換え操作されると、入力軸322の駆動力(エンジン308からの駆動力)を伝動機構350を介して遊星伝動部340のキャリヤ341に入力し、無段変速部330が入力軸322から入力した駆動力を変速してモータ軸333aから出力する変速駆動力を遊星伝動部340のサンギヤ342に入力し、遊星伝動部340が入力軸322から入力するエンジン308からの駆動力と無段変速部330から入力する変速駆動力とを遊星伝動部340によって合成して合成駆動力を発生させ、遊星伝動部340がリングギヤ344から出力する合成駆動力を、遊星側連動体326及び出力側連動体327を介して出力回転体324の端部に伝達して出力回転体324から走行ミッション313に出力する。
図48は、HST伝動での変速伝動機320を示す縦断正面図である。この図に示すように、変速伝動機320は、HMTクラッチ355が切り状態に切換え操作され、HSTクラッチ360が入り状態に切換え操作されると、無段変速部330が入力軸322から入力した駆動力を変速してモータ軸333aから出力する変速駆動力を、伝動軸323、HSTクラッチ360、遊星側連動体326及び出力側連動体327を介して出力回転体324の端部に伝達し、出力回転体324から走行ミッション313に出力する。
伝動設定のクラッチ機構370は、HST伝動を設定した場合、入力軸322から遊星伝動部340のキャリヤ341への伝動が絶たれた状態にあり、サンギヤ342が伝動軸323を介してモータ軸333aに一体回転自在に連動された状態にあり、リングギヤ344が遊星側連動体326、クラッチ体361、サンギヤ342及び伝動軸323を介してモータ軸333aに一体回転自在に連動された状態にあることから、遊星伝動部340のサンギヤ342、キャリヤ341及びリングギヤ344をモータ軸333aと一体回転させることになり、変速伝動機320は、HST伝動において、遊星ギヤ343の自転を発生させず、すなわちサンギヤ342と遊星ギヤ343の相対回転及び遊星ギヤ343とリングギヤ344の相対回転を発生させずに、無段変速部330のモータ軸333aの出力を出力回転体324に伝達する。
図50は、変速伝動機320が備える出力特性を示すグラフ(速度線図)である。このグラフの縦軸は、出力回転体324の回転速度を示す速度線となっている。このグラフの横軸は、縦軸の回転速度が零「0」の位置を通るものであり、かつ無段変速部330における油圧ポンプ332の斜板位置を示す操作位置線Lとなっている。操作位置線Lの「n」は、無段変速部330を中立状態にする斜板332bの中立位置である。操作位置線Lの「a」は、無負荷駆動でのHST伝動とHMT伝動の設定の切換えを行なうための斜板332bの前進側の最高速位置として設定した設定前進高速位置である。操作位置線Lの「+max」は、無段変速部330の実前進最高速位置であって、無段変速部330を前進高速側の操作限界まで変速操作した場合、油圧ポンプ332の斜板332bに実際に発生する斜板角位置である。設定前進高速位置「a」は、モータ軸333aの回転を遊星端子に増減せずに入力する簡単な構成において、HST伝動とHMT伝動が切り換わる点での速度連続性を保つ為に、実前進最高速位置「+max」の手前の位置に設定してある。操作位置線Lの「-max」は、変速制御によって操作される斜板332bの後進側の最高速位置として設定した設定後進高速位置である。設定後進高速位置「-max」は、無段変速部330を後進高速側の操作限界まで変速操作した場合、油圧ポンプ332の斜板332bに実際に発生する斜板角位置と同じ位置に設定してある。
図50に示す変速線Sは、エンジン308が設定の一定速度の駆動力を出力するようにアクセルセットされた状態において変速伝動機320がHST伝動で変速された場合の出力回転体324の回転速度の変化を示すHST変速線(以下、HST変速線Sと略称する。)であり、変速線Mは、エンジン308が設定の一定速度の駆動力を出力するようにアクセルセットされた状態において変速伝動機320がHMT伝動で変速された場合の出力回転体324の回転速度の変化を示すHMT変速線(以下、HMT変速線Mと略称する。)である。
図50に示すように、HMTクラッチ355が切り状態に切換え制御され、HSTクラッチ360が入り状態に切換え制御されてHST伝動が設定され、HST伝動の設定が維持された状態において、無段変速部330を中立位置「n」から設定前進高速位置「a」に向けて変速操作することにより、出力回転体324の回転速度が零「0」からHST変速線Sの前進域SFに沿って前進側に無段階に増速していき、無段変速部330が設定前進高速位置「a」に至ると、出力回転体324の回転速度が第1の前進中間速度「V1」になる。
無段変速部330が設定前進高速位置「a」に至ると、HMTクラッチ355が切り状態から入り状態に切換え制御され、HSTクラッチ360が入り状態から切り状態に切換え制御されてHST伝動に替えてHMT伝動が設定され、HMT伝動の設定が維持された状態において、無段変速部330を設定前進高速位置「a」から中立位置「n」に向けて変速操作することにより、出力回転体324の回転速度が第1の前進中間速度「V1」からHMT変速線Mの低速域MLに沿って無段階に増速していき、無段変速部330が中立位置「n」に至ると、出力回転体324の回転速度が第2の前進中間速度「V2」になる。HMT伝動の設定が維持された状態において、無段変速部330を中立位置「n」から設定後進高速位置「-max」に向けて変速操作することにより、出力回転体324の回転速度が第2の前進中間速度「V2」からHMT変速線Mの高速域MHに沿って無段階に増速していき、無段変速部330が設定後進高速位置「-max」に至ると、出力回転体324の回転速度が前進最高速度「V3」になる。
HST伝動の設定が維持された状態において、無段変速部330を中立位置「n」から設定後進高速位置「-max」に向けて変速操作することにより、出力回転体324の回転速度が零「0」からHST変速線Sの後進域SRに沿って後進側に無段階に増速していき、無段変速部330が設定後進高速位置「-max」に至ると、出力回転体324の回転速度が後進最高速度「VR」になる。
HMT変速線Mの高速域MHに対応する変速状態で出力される駆動力が移動走行に適切な回転速度の駆動力になるように、かつHMT変速線Mの低速域MLに対応する変速状態で出力される駆動力が作業走行に適切な回転速度の駆動力になるように、さらに油圧ポンプ332の吐出容量が極力小である無段変速部330を採用しながらエンジン308から入力する駆動力を変速に伴うロスを極力少なくして変速後の駆動力として得ることができるように、HMT変速線Mの操作位置線Lに対する傾斜角Bを次の如く設定してある。
図50に示す変速線延長線MEは、HMT変速線Mを操作位置線Lに向けて延長したものであり、操作位置線Lでの位置「P」は、変速線延長線MEと操作位置線Lとが交差する交差位置である。無段変速部330の油圧ポンプ332の斜板332bを実際に傾斜操作できる前進側の最大傾斜位置としての実前進最高速位置「+max」を超えて交差位置「P」まで傾斜操作できると仮定し、交差位置「P」まで傾斜操作した場合の斜板332bが備えることとなる仮想傾斜角の値を「N」とし、実前進最高速速位置「+max」に変速操作した無段変速部330の油圧ポンプ332に実際に発生する実最大斜板角の値を「X」とすると、NがXの2倍(N/X=2.0)となるに相当する傾斜角に、HMT変速線Mの操作位置線Lに対する傾斜角Bを設定してある。N/X=2.0の設定は、油圧ポンプ332の吐出容量の設定、遊星伝動部340及び遊星伝動部340以外の機械伝動部におけるギヤ伝動比の設定による。
HMT変速線Mの操作位置線Lに対する傾斜角Bは、前進最高速度「V3」での出力回転体324の回転速度が第1の前進中間速度「V1」での出力回転体324の回転速度の2倍以上となる傾斜角に設定してある。
N/X=2.0の設定は、次に説明する根拠に基づくものである。
無段変速部330の出力回転が零で出力回転数がV2の時、全動力が無段変速部330を通らずに出力される。出力回転が零になる仮想斜板角の位置(P)では、出力回転数V2の時の動力が無段変速部330を通じて駆動側に戻され出力が零になる。すなわち、無段変速部30を通さない機械伝達力が無段変速部330の動力(以下、HST動力と呼称する。)と釣り合う。実際には、仮想斜板角の位置(P)は仮想的な位置なので、無段変速部330の実前進最高速位置「+max」での実最大傾斜角X=1を考えると、HST動力は、回転数が1/Nなので、無段変速部330を通さない機械伝達動力の1/N倍になる。
無段変速部330の出力回転が零で出力回転数がV2の時、全動力が無段変速部330を通らずに出力される。出力回転が零になる仮想斜板角の位置(P)では、出力回転数V2の時の動力が無段変速部330を通じて駆動側に戻され出力が零になる。すなわち、無段変速部30を通さない機械伝達力が無段変速部330の動力(以下、HST動力と呼称する。)と釣り合う。実際には、仮想斜板角の位置(P)は仮想的な位置なので、無段変速部330の実前進最高速位置「+max」での実最大傾斜角X=1を考えると、HST動力は、回転数が1/Nなので、無段変速部330を通さない機械伝達動力の1/N倍になる。
仮に機械効率を、機械伝達動力でKM、無段変速部330を通す動力でKHとすると、出力動力は一定機械動力±HST動力となり、変速伝動機320が発揮する全効率は、
無段変速部330が中立位置「n」であると、
(1+0×1/N)/(1/KM+0×1/N/KH)=KM
と計算され、
無段変速部330が設定後進高速位置「-max」であると、
(1+1/N)/(1/KM+1/N/KH)=KM・KH(N+1)/(KM+KH・N)
と計算され、
無段変速部330が実前進最高速位置「+max」であると、
(1-1/N)/(1/KM-1/N・KH)=KM(N-1)/(N-KM・KH)
と計算され、計算上はNが大きいほど高効率化できる。
無段変速部330が中立位置「n」であると、
(1+0×1/N)/(1/KM+0×1/N/KH)=KM
と計算され、
無段変速部330が設定後進高速位置「-max」であると、
(1+1/N)/(1/KM+1/N/KH)=KM・KH(N+1)/(KM+KH・N)
と計算され、
無段変速部330が実前進最高速位置「+max」であると、
(1-1/N)/(1/KM-1/N・KH)=KM(N-1)/(N-KM・KH)
と計算され、計算上はNが大きいほど高効率化できる。
図51は、N/Xの値を変化させた場合の全効率と変速位置との関係を示す説明図である。ここでは、KM=0.95、KH=0.7とし、N/X=1.0、N/X=2.0、N/X=3.0と変化させて上記した如く概算した全効率を示している。
図51に示す横軸は、変速位置を示すものであり、HST伝動での前進側及びHMT伝動において無段変速部330を任意の変速位置に変速された場合における出力回転速度の設定後進高速位置「-max」に変速された場合における出力回転速度の割合を横軸の変速位置としている。すなわち、HST伝動での前進側及びHMT伝動において無段変速部330を任意の変速位置に変速された場合に出力される駆動力の回転速度=Vnとすると、Vn/V3を横軸の変速位置としている。図51に示す縦線Dは、N/X=2.0の時にHST伝動の最高速を示す線で、Vn/V3=0.33(0.2と0.4の間)を示すものである。図51に示す縦線Eは、N/X=2.0の時にHMT伝動で、油圧ポンプ332の斜板中立での速度を示す線で、Vn/V3=0.67(0.6と0.8の間)を示すものである。従って、無段変速部330の設定前進高速位置「a」は、横軸での0.2と0.4の間の位置となり、無段変速部330の中立位置「n」は、横軸での0.6と0.8の間の位置となる。
図51に示す効率線Kは、無段変速部330が備える全効率を示すものである。図51に示す効率線K1は、N/X=1.0として概算した全効率を示すものであり、効率線K2は、N/X=2.0として概算した全効率を示すものであり、効率線K3は、N/X=3.0として概算した全効率を示すものである。
縦線Dと縦線Eとの間では、全効率が良いのはN/X=1.0の場合であるが、高速側は出力も大きいので、ロス動力としては大きくなり、小さな効率差も無視できなくなる。ロス率と出力動力を掛けたロス動力を検討すると、N/X=1.8程度が極小値となる。ロス動力としての最適値はN/X=1.8を挟んでN/Xが小さい側に広いが、無段変速部330の小型化は、N/X=2.0が最適値となる。このバランスを取って、N/X=1.5~2.5程度とすれば、高速域での高効率化を実現しつつ、無段変速部330の小型化も38%程度にできて両立される。この時のHMT伝動での遊星伝動部340の出力回転も10000rpmを超えない現実的な領域で設計できる。変速伝動機320ユニットとして独立させる場合、駆動源からの回転数程度に減速した方が、出力部のシールなどによるトルクロスの影響を小さくできるので、2.5~3の減速を、遊星伝動部340で行なうが、これも現実的に構成しやすくなる。上記した如くシンプルな伝動設定のクラッチ機構370を採用して、高効率と無段変速部330の小型化を図るには、N/X=1.5~2.5の設定が好都合である。
図52は、N/Xの値と無段変速部330の小型化との関係を示す説明図である。図52の横軸は、N/Xの値を示す。図52に示す線Fは、HST動力(1/N)の全動力(1+1/N)に対する割合「W」を示す。この割合「W」が大になるほど、油圧ポンプ332の吐出容量が大となる大型の無段変速部330が必要になる。
所定の変速範囲に亘る駆動力を遊星伝動部340による出力によって得る場合、無段変速部330による出力によって得る場合よりも無段変速部330の小型化が可能になるのであり、図52に示す線Gは、N/Xの値と、無段変速部330を小型化できる度合との関係を示す。
すなわち、仮に、HST伝動とHMT伝動が切り換わる点を実最大傾斜位置「+max」とすると、HMT伝動での最高速度(前進最高速度「V3」)はHST伝動での最高速度に対し、相似形で計算して(N+1)/(N-1)=Zとなる。Zは、N/X=1.5とすると5.0となり、N/X=2.0とすると3.0となり、N/X=2.5とすると2.3となり、N/X=3.0とすると2.0となる。図52の縦軸で示す値は、1/Zの値である。
Zの値が大になるほど、HMT伝動によって得ることができる変速範囲がより広くなり、HST伝動による変速範囲をより小に済ませることができて、無段変速部330のより小型化を図ることができるが、油圧ポンプ332の吐出容量をあまり小にするとリリーフ回路が開き作動するなどの駆動トラブルが発生する。従って、線Fと線Gとの交差を現出するN/X=2.0を採用することにより、HMT伝動による前進最高速度「V3」や第2の前進中間速度「V2」を移動や作業に必要な速度にしながら、かつ無段変速部330の小型化を図りながら、無段変速部330の駆動トラブルの発生を回避した変速伝動が可能な変速伝動機320を得ることができる。
図53は、変速伝動機320を変速操作する変速操作装置371を示すブロック図である。この図に示すように、変速操作装置371は、無段変速部330の主変速操作部330a及び副変速操作部330b、HMTクラッチ355及びHSTクラッチ360の操作部355a,360aに連係された制御装置372と、制御装置372に連係された主変速操作具377、副変速操作具385、エンジン回転数センサ374、斜板角センサ375、出力回転数センサ376a及び出力回転数センサ376bとを備えている。
主変速操作部330aは、無段変速部330における油圧ポンプ332の斜板332bの角度変更操作を行なう主変速アクチュエータ332cを操作することにより、油圧ポンプ332を変速操作する。副変速操作部330bは、無段変速部330における油圧モータ333の斜板333bの角度変更操作を行なう副変速アクチュエータ333cを操作することにより、油圧モータ333を変速操作する。主変速アクチュエータ332c及び副変速アクチュエータ333cは、油圧シリンダによって構成し、主変速操作部330a及び副変速操作部330bは、油圧シリンダの操作弁によって構成してある。HMTクラッチ355の操作部355aは、入力軸322の内部に形成された操作油路を介して油圧ピストン358に接続された操作弁によって構成してあり、油圧ピストン358を操作してクラッチ体356を摺動操作することにより、HMTクラッチ355を切り換え操作する。HSTクラッチ360の操作部360aは、伝動軸323の内部に形成された操作油路を介してクラッチ体361の油室に接続された操作弁によって構成してあり、クラッチ体361の油室に対する操作油の供給及び排出を行なうことにより、クラッチ体361を摺動操作してHSTクラッチ360を切り換え操作する。
図54は、主変速操作具377の操作位置を示す平面図である。図53および図54に示すように、主変速操作具377は、運転部302に走行機体前後方向に揺動操作自在に設けた変速レバーによって構成してあり、中立位置「377N」、中立位置「377N」から機体前方側に延びる前進操作域「377F」、及び中立位置「377N」から機体後方側に延びる後進操作域「377R」で揺動操作するようになっている。変速操作具377は、変速操作具377の操作位置を検出する変速検出センサ373を介して制御装置372に連係されている。変速検出センサ373は、変速操作具377に回転操作軸が連動された回転ポテンショメータによって構成してあり、変速操作具377は、揺動操作されることにより、変速検出センサ373を作動させて、変速検出センサ373から主変速指令を電気信号で制御装置372に出力する。
副変速操作具385は、運転部302に走行機体前後方向に揺動操作自在に設けた変速レバーによって構成してあり、低速位置「L」と高速位置「H」に揺動操作するようになっている。副変速操作具385は、副変速操作具385の操作位置を検出する操作位置検出スイッチ386を介して制御装置372に連係されている。副変速操作具385は、低速位置「L」に操作されることにより、操作位置検出スイッチ386をオフ側に作動させて、操作位置検出スイッチ386から低速の副変速指令を電気信号で制御装置372に出力する。副変速操作具385は、高速位置「H」に操作されることにより、操作位置検出スイッチ386をオン側に作動させて、操作位置検出スイッチ386から高速の副変速指令を電気信号で制御装置372に出力する。
エンジン回転数センサ374は、エンジン308の回転数を検出し、この検出結果を制御装置372に出力する。斜板角センサ375は、無段変速部330の油圧ポンプ332の斜板角を検出し、この検出結果を制御装置372に出力する。出力回転数センサ376aは、出力回転体324の回転数を変速伝動機320の出力回転数として検出し、この検出結果を制御装置372に出力する。出力回転数センサ376bは、モータ軸333aの回転数を無段変速部330の出力回転数として検出し、この検出結果を制御装置372に出力する。
制御装置372は、マイクロコンピュータを利用して構成してあり、変速制御手段378、牽制制御手段381、変速斜板角設定手段380及び基準斜板角設定手段382を備えている。
変速斜板角設定手段380は、制御装置372に設けられた記憶部によって構成されている。図50に示すように、変速斜板角設定手段380は、HST伝動からHMT伝動への設定の切り換え制御を行なわせるための斜板角を予め設定変速斜板角「c」として設定して入力されている。設定変速斜板角「c」としては、設定前進高速位置「a」を設定している。
基準斜板角設定手段382は、制御装置372の記憶部によって構成されている。図50に示すように、基準斜板角設定手段382は、設定変速斜板角「c」に対して設定角「d」だけ低速側に位置する油圧ポンプ332の斜板角を基準斜板角「e」として予め設定して入力されている。
変速制御手段378は、エンジン回転数センサ374による検出情報を基に、アクセルセットされたエンジン308の回転数を検出し、この検出結果と、主変速操作具377からの主変速指令と、副変速操作具385からの副変速指令と、斜板角センサ375による検出情報と、出力回転数センサ376a及び出力回転数センサ376bによる検出情報とに基づいて油圧ポンプ332及び油圧モータ333を変速制御し、かつクラッチ機構370のHSTクラッチ360及びHMTクラッチ355を切換え制御する。
変速制御手段378は、斜板角センサ375による検出斜板角と変速斜板角設定手段380による設定変速斜板角「c」とを比較し、検出斜板角と設定変速斜板角「c」とが等しいか否かを判断することで、斜板角センサ375が設定変速斜板角「c」に等しい斜板角を検出したか否かを判断する。変速制御手段378は、斜板角センサ375が設定変速斜板角「c」に等しい斜板角を検出したと判断した場合、クラッチ機構370のHSTクラッチ360を切り状態に切換え制御し、HMTクラッチ355を入り状態に切換え制御して、HST伝動からHMT伝動への設定の切換えを行なう。
変速制御手段378は、副変速操作具385から低速の副変速指令を入力した場合、変速伝動機320の出力回転体324による出力速度が主変速操作具377からの主変速指令に対応した出力速度になるように、すなわち変速伝動機320の出力回転体324による出力速度が主変速操作具377の操作に伴ってHST変速線S及びHMT変速線Mに沿って変化するように、主変速操作具377からの主変速指令及び副変速操作具385による低速の副変速指令に基づいて油圧ポンプ332を変速操作する。
変速制御手段378は、副変速操作具385から高速の副変速指令を入力した場合、変速伝動機320の出力回転体324による出力速度が主変速操作具377からの主変速指令に対応した出力速度より増速した出力速度になるように、主変速操作具377からの主変速指令及び副変速操作具385による高速の副変速指令に基づいて油圧ポンプ332を変速操作する。
牽制制御手段381は、斜板角センサ375による検出情報、変速制御手段378によるHST伝動及びHMT伝動の設定情報、基準斜板角設定手段382による設定情報、及び変速斜板角設定手段380による設定情報に基づいて変速伝動機320の伝動状態を検出し、この検出結果に基づいて変速制御手段378に対する牽制作用の状態と牽制解除の状態とに切り換わる。
牽制制御手段381は、変速伝動機320がHST伝動を設定され、かつ無段変速部330の後進変速域での高速側への変速操作によって出力する合成駆動力を増速させ、さらに無段変速部330の後進変速域での低速側への変速操作によって出力する合成駆動力を減速させる後進の伝動状態にあると検出した場合、変速制御手段378に対する牽制解除の状態に切り換わり、変速制御手段378による副変速アクチュエータ333cの高速側への制御を許容する。
牽制制御手段381は、変速伝動機320がHST伝動を設定され、かつ無段変速部330の前進変速域のうちの中立位置「n」と基準斜板角「e」との間での高速側への変速操作によって出力する合成駆動力を増速させ、さらに無段変速部330の前進変速域のうちの中立位置「n」と基準斜板角「e」との間での低速側への変速操作によって出力する合成駆動力を減速させる第1前進の伝動状態にあると検出した場合、変速制御手段378に対する牽制解除の状態に切り換わり、変速制御手段378による副変速アクチュエータ333cの高速側への制御を許容する。
牽制制御手段381は、変速伝動機320がHST伝動を設定され、かつ無段変速部330の前進変速域のうちの基準斜板角「e」と設定変速斜板角「c」との間での高速側への変速操作によって出力する合成駆動力を増速させ、さらに無段変速部330の前進変速域のうちの基準斜板角「e」と設定変速斜板角「c」との間での低速側への変速操作によって出力する合成駆動力を減速させる第2前進の伝動状態にあると検出した場合、変速制御手段378に対する牽制作用の状態に切り換わり、変速制御手段378による副変速アクチュエータ333cの高速側への制御を牽制する。
牽制制御手段381は、変速伝動機320がHMT伝動を設定され、かつ無段変速部330の前進変速域での高速側への変速操作によって出力する合成駆動力を減速させ、さらに無段変速部330の前進変速域での低速側への変速操作によって出力する合成駆動力を増速させる第3前進の伝動状態にあると検出した場合、変速制御手段378に対する牽制作用の状態に切り換わり、変速制御手段378による副変速アクチュエータ333cの高速側への制御を牽制する。
牽制制御手段381は、変速伝動機320がHMT伝動を設定され、かつ無段変速部330の後進変速域での高速側への変速操作によって出力する合成駆動力を増速させ、さらに無段変速部330の後進変速域での低速側への変速操作によって出力する合成駆動力を減速させる第4前進の伝動状態にあると検出した場合、変速制御手段378に対する牽制解除の状態に切り換わり、変速制御手段378による副変速アクチュエータ333cの高速側への制御を許容する。
つまり、牽制制御手段381は、無段変速部330の出力が遊星伝動部340の出力とが同じ回転方向となる場合、油圧モータ333による副変速を機能させる。HMT伝動の速度レンジが複数段備える場合にあっては、牽制制御手段381及び変速制御手段378を次の如く機能するよう構成する。すなわち、副変速操作具385を低速位置「L」から高速位置「H」に切り換えた後、主変速操作具377で増速する過程で、低速段側のHMT伝動の速度レンジ(n段目)から高速段側のHMT伝動の速度レンジ(n+1段目)に切り換える場合、切り換える斜板位置を副変速高速段のn段目とn+1段目の速度線が交わる点の近傍とする。上述の速度線が交わる点よりも深く傾転させたポンプ斜板位置で、副変速を切り換える場合は、モータ斜板を傾転させず、モータによる増速分だけポンプ斜板を傾転させる。牽制制御手段381は、無段変速部330の出力が遊星伝動部340の出力とが逆の回転方向となる場合、油圧モータ333による副変速を行なわず、油圧ポンプ332による副変速を機能させる。ポンプ斜板を傾転させた結果、無段変速部330の斜板中立を越える場合は、ポンプ斜板中立近傍でモータ副変速を切り換える。
変速制御手段378は、牽制制御手段381による牽制作用を受ける状態において副変速操作具385による高速の副変速指令を受けた場合、変速伝動機320の主変速指令に応じた出力速度を副変速指令によって増速するように、主変速指令及び高速の副変速指令に基づいて油圧ポンプ332を高速側に変速制御する。すなわち、図50に矢印「イ」で示すように、変速制御手段378は、油圧ポンプ332の斜板332bが主変速指令に対応する斜板角位置「f」より高速側に設定角度だけ変位した斜板角位置「a」に傾動するように油圧ポンプ332を高速側に副変速制御する。あるいは、図50に矢印「ロ」で示すように、変速制御手段378は、油圧ポンプ332の斜板332bが主変速指令に対応する斜板角位置「g」より低速側に設定角度だけ変位した斜板角位置「h」に傾動するように油圧ポンプ332を低速側に副変速制御する。これら場合の設定角度としては、高速側の副変速指令に基づいて油圧モータ333を高速側に副変速制御することによって変速伝動機320の出力が増速する増速分と同じまたはほぼ同じ増速分の増速を変速伝動機320の出力に発生させるに相当する斜板角を設定してある。
従って、エンジン308を一定の回転速度での駆動力を出力するようアクセルセットしておいて、主変速操作具377を後進操作域「377R」、中立位置「377N」及び前進操作域「377F」にわたって操作することにより、副変速操作具385を低速位置「L」と高速位置「H」に切り換え操作することにより、変速制御手段378が変速伝動機320をHST伝動とHMT伝動とに切り換えて設定する制御及び油圧ポンプ332及び油圧モータ333の変速制御を行ない、走行機体を前進側と後進側に切り換えて走行させるとともに前進側及び後進側において変速走行させたり、停止させたりできる。
すなわち、主変速操作具377を中立位置「377N」、後進操作域「377R」及び前進操作域「377F」の低速域部「377FL」に操作した場合、主変速操作具377からの主変速指令及び変速斜板角設定手段380による設定情報に基づく変速制御手段378のHMTクラッチ355及びHSTクラッチ360の切り換え制御により、変速伝動機320がHST伝動に設定される。主変速操作具377を前進操作域「377F」の中速域部「377FM」及び高速域部「377FH」に操作した場合、主変速操作具377からの主変速指令及び変速斜板角設定手段380による設定情報に基づく変速制御手段378のHMTクラッチ355及びHSTクラッチ360の切り換え制御により、変速伝動機320がHMT伝動に設定される。
主変速操作具377を中立位置「377N」に操作すると、変速制御手段378が主変速操作具377からの主変速指令に基づいて油圧ポンプ332の斜板332bを中立位置「n」に操作し、無段変速部330が中立状態になって変速伝動機320が出力を停止する。
副変速操作具385を低速位置「L」に操作した状態で、主変速操作具377を前進操作域「377F」の低速域部「377FL」で操作すると、変速制御手段378が主変速操作具377からの主変速指令、副変速操作具385からの低速の副変速指令及び出力回転数センサ376aによる検出情報に基づいて油圧ポンプ332の斜板332bを中立位置「n」より前進側で傾動操作し、変速伝動機320が出力する駆動力がHST変速線Sの前進域SFに沿って変速する。
副変速操作具385を低速位置「L」に操作した状態で、主変速操作具377を前進操作域「377F」の中速域部「377FM」及び高速域部「377FH」で操作すると、変速制御手段378が主変速操作具377からの主変速指令、副変速操作具385からの低速の副変速指令及び出力回転数センサ376aによる検出情報に基づいて油圧ポンプ332の斜板332bを前進側と後進側とにわたって傾動操作し、変速伝動機320が出力する駆動力がHMT変速線Mの低速域ML及び高速域MHに沿って変速する。
主変速操作具377を前進操作域「377F」の低速域部「377FL」で操作する際、副変速操作具385を高速位置「H」に操作してあると、変速制御手段378が油圧ポンプ332を中立位置「n」と基準斜板角「e」の間で変速操作する場合、牽制制御手段381が牽制解除の状態になって変速制御手段378が油圧モータ333を高速側に副変速操作し、変速伝動機320が出力する駆動力は、副変速のHST変速線SAの前進域SAFに沿って変速する。
主変速操作具377を前進操作域「377F」の低速域部「377FL」で操作する際、副変速操作具385を高速位置「H」に操作してあっても、変速制御手段378が油圧ポンプ332を中立位置「n」と基準斜板角「e」の間で変速操作する場合、牽制制御手段381が牽制作用の状態に切り換っており、変速制御手段378は、油圧モータ333の高速側への副変速制御を行なわない。この場合、変速制御手段378は、図50に矢印「イ」で示す如き油圧ポンプ332の高速側への変速制御を行ない、変速伝動機320が出力する駆動力が、HST変速線Sの前進域SFに沿って変速し、副変速操作具385を低速位置「L」に操作してある場合の主変速操作具377の操作位置に対応する速度より高速の駆動力になる。
主変速操作具377を前進操作域「377F」の低速域部「377FL」での操作位置に位置させた状態で、副変速操作具385を低速位置「L」から高速位置「H」に切り換え操作した場合、油圧ポンプ332の斜板332bが中立位置「n」と基準斜板角「e」の間の斜板角位置に位置しておれば、牽制制御手段381が牽制解除の状態になっており、変速制御手段378が油圧モータ333を高速側に副変速制御し、変速伝動機320が出力する駆動力が副変速のHST変速線SAの前進域SAFの線上に乗った速度の駆動力になる。
主変速操作具377を前進操作域「377F」の中速域部「377FM」で操作する際、副変速操作具385を高速位置「H」に操作してあっても、牽制制御手段381が牽制作用の状態に切り換っており、変速制御手段378は、油圧モータ333の高速側への副変速制御を行なわない。この場合、変速制御手段378は、たとえば図50に矢印「ロ」で示す如き油圧ポンプ332の高速側への副変速制御を行ない、変速伝動機320が出力する駆動力が、HMT変速線Mの低速域MLに沿って変速し、副変速操作具385を低速位置「L」に操作してある場合の主変速操作具377の操作位置に対応する速度より高速の駆動力になる。
主変速操作具377を前進操作域「377F」の中速域部「377FM」での操作位置に位置させた場合、副変速操作具385を低速位置「L」から高速位置「H」に切り換え操作しても、牽制制御手段381が牽制作用の状態になっており、変速制御手段378が油圧モータ333の高速側への副変速制御を行なわない。この場合、変速制御手段378は、たとえば図50の矢印「ロ」で示す如き油圧ポンプ332の高速側への副変速制御を行ない、変速伝動機320が出力する駆動力が、HMT変速線Mの低速域MLに沿って変速し、副変速操作具385を低速位置「L」に操作してある場合の主変速操作具377の操作位置に対応する速度より高速の駆動力になる。
主変速操作具377を前進操作域「377F」の高速域部「377FH」で操作する際、副変速操作具385を高速位置「H」に操作してあると、牽制制御手段381が牽制解除の状態になって変速制御手段378が油圧モータ333を高速側に副変速操作し、変速伝動機320が出力する駆動力は、副変速のHMT変速線MAに沿って変速する。
主変速操作具377を前進操作域「377F」の高速域部「377FH」での操作位置に位置させた状態で、副変速操作具385を低速位置「L」から高速位置「H」に切り換え操作した場合、牽制制御手段381が牽制解除の状態になっており、変速制御手段378が油圧モータ333を高速側に副変速制御し、変速伝動機320が出力する駆動力が副変速のHMT変速線MAの線上に乗った速度の駆動力になる。
副変速操作具385を低速位置「L」に操作した状態で、主変速操作具377を後進操作域「377R」で操作すると、変速制御手段378が主変速操作具377からの主変速指令、副変速操作具385からの低速の副変速指令及び出力回転数センサ376aによる検出情報に基づいて油圧ポンプ332の斜板332bを中立位置「n」より後進側で傾動操作し、変速伝動機320が出力する駆動力がHST変速線Sの後進域SRに沿って変速する。
主変速操作具377を後進操作域「377R」で操作する際、副変速操作具385を高速位置「H」に操作してあると、牽制制御手段381が牽制解除の状態になって変速制御手段378が油圧モータ333を高速側に副変速操作し、変速伝動機320が出力する駆動力は、副変速のHST変速線SAの後進域SARに沿って変速する。
主変速操作具377を後進操作域「377R」での操作位置に位置させた状態で、副変速操作具385を低速位置「L」から高速位置「H」に切り換え操作した場合、牽制制御手段381が牽制解除の状態になっており、変速制御手段378が油圧モータ333を高速側に副変速制御し、変速伝動機320が出力する駆動力が副変速のHST変速線SAの後進域SARの線上に乗った速度の駆動力になる。
変速制御手段378は、図50に示す変速域Aでは、油圧ポンプ332の変速制御だけで制御目標速度を現出できる場合、高速の副変速指令があっても、油圧ポンプ332の変速制御だけで済ませ、油圧モータ333の副変速制御による増速制御を行なわない。
[別実施形態]
(1)上記した実施形態では、HMT伝動の速度レンジを一段だけ備えるよう構成した例を示したが、HMT伝動の速度レンジを2段以上備えるよう構成して実施してもよい。
(1)上記した実施形態では、HMT伝動の速度レンジを一段だけ備えるよう構成した例を示したが、HMT伝動の速度レンジを2段以上備えるよう構成して実施してもよい。
(2)上記した実施形態では、咬み合い形式のHMTクラッチ355及びHSTクラッチ360によってクラッチ機構370を構成した例を示したが、摩擦式のHMTクラッチ355及びHSTクラッチ360によってクラッチ機構370を構成して実施してもよい。
本発明は、コンバインの他、田植機などの農作業機、又は運搬車など各種の車両に利用できる。
(第1実施形態)
1 走行装置
22 入力軸
24 出力回転体
30 油圧式無段変速機
32a ポンプ軸
33a モータ軸
40 遊星伝動部
42 サンギヤ
55 入力側クラッチ機構
60 出力側クラッチ機構
90 チャージポンプ
(第2実施形態)
101 走行装置
122 入力軸
124 出力回転体
130 油圧式無段変速機
133a モータ軸
140 遊星伝動部
141c 入力ギヤ
142 サンギヤ
143 遊星ギヤ
144 リングギヤ
150 前後進切換え機構
151 前進伝動ギヤ
152a 前進クラッチ体
153 後進伝動軸
154 伝動ギヤ
155 入力ギヤ
156a 後進クラッチ体
157 後進伝動ギヤ
160 クラッチ機構
(第3実施形態)
201 走行装置
208 エンジン
220 変速伝動機
230 無段変速部
232 油圧ポンプ
240 遊星伝動部
241 キャリヤ
242 サンギヤ
244 リングギヤ
270 クラッチ機構
275 斜板角センサ
277 変速操作具
278 変速制御手段
280 変速斜板角設定手段
a 無負荷斜板角
b 負荷斜板角
c 設定変速斜板角
S HST変速線
M HMT変速線
SA1 演算HST変速線
MA1 演算HMT変速線
V 一体回転現出速度
W 交点
(第4実施形態)
301 走行装置
308 エンジン
320 変速伝動機
330 無段変速部
332 油圧ポンプ
333 油圧モータ
340 遊星伝動部
370 クラッチ機構
375 斜板角センサ
377 主変速操作具
378 変速制御手段
381 牽制制御手段
382 基準斜板角設定手段
c 設定変速斜板角
e 基準斜板角
S HST変速線
1 走行装置
22 入力軸
24 出力回転体
30 油圧式無段変速機
32a ポンプ軸
33a モータ軸
40 遊星伝動部
42 サンギヤ
55 入力側クラッチ機構
60 出力側クラッチ機構
90 チャージポンプ
(第2実施形態)
101 走行装置
122 入力軸
124 出力回転体
130 油圧式無段変速機
133a モータ軸
140 遊星伝動部
141c 入力ギヤ
142 サンギヤ
143 遊星ギヤ
144 リングギヤ
150 前後進切換え機構
151 前進伝動ギヤ
152a 前進クラッチ体
153 後進伝動軸
154 伝動ギヤ
155 入力ギヤ
156a 後進クラッチ体
157 後進伝動ギヤ
160 クラッチ機構
(第3実施形態)
201 走行装置
208 エンジン
220 変速伝動機
230 無段変速部
232 油圧ポンプ
240 遊星伝動部
241 キャリヤ
242 サンギヤ
244 リングギヤ
270 クラッチ機構
275 斜板角センサ
277 変速操作具
278 変速制御手段
280 変速斜板角設定手段
a 無負荷斜板角
b 負荷斜板角
c 設定変速斜板角
S HST変速線
M HMT変速線
SA1 演算HST変速線
MA1 演算HMT変速線
V 一体回転現出速度
W 交点
(第4実施形態)
301 走行装置
308 エンジン
320 変速伝動機
330 無段変速部
332 油圧ポンプ
333 油圧モータ
340 遊星伝動部
370 クラッチ機構
375 斜板角センサ
377 主変速操作具
378 変速制御手段
381 牽制制御手段
382 基準斜板角設定手段
c 設定変速斜板角
e 基準斜板角
S HST変速線
Claims (15)
- エンジン駆動力を入力する入力軸と、前記入力軸によって駆動される油圧式無段変速機と、前記入力軸の駆動力と前記油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置であって、
前記遊星伝動部及び前記出力回転体を、前記油圧式無段変速機に対して前記入力軸のエンジン連結側が位置する側と同じ側に配置するとともに、前記入力軸のエンジン連結側と油圧式無段変速機連結側との間の部位から前記遊星伝動部に駆動力を入力するように構成してある変速伝動装置。 - 前記入力軸を前記油圧式無段変速機のポンプ軸に対して同軸芯状に配置した状態で前記ポンプ軸に一体回転自在に連結し、
前記遊星伝動部のサンギヤ及び前記出力回転体を、前記油圧式無段変速機のモータ軸芯に対して同軸芯状に位置する回転軸芯まわりに回転自在に支持してある請求項1記載の変速伝動装置。 - 前記遊星伝動部を前記入力軸に対する連動入り状態と連動切り状態とに切り換える入力側クラッチ機構を設け、前記出力回転体を前記油圧式無段変速機のモータ軸に対する連動入り状態と連動切り状態とに切り換える出力側クラッチ機構を設けてある請求項1又は2記載の変速伝動装置。
- 前記油圧式無段変速機に作動油を供給するチャージポンプを、前記入力軸のエンジン連結側と油圧式無段変速機連結側との間に装備してある請求項1~3のいずれか一項に記載の変速伝動装置。
- 前記油圧式無段変速機に作動油を供給するチャージポンプを、前記入力軸のエンジン連結側と前記入力側クラッチ機構との間に装備してある請求項3記載の変速伝動装置。
- エンジン駆動力を入力する入力軸と、前記入力軸によって駆動される油圧式無段変速機と、前記入力軸の駆動力と前記油圧式無段変速機の出力とを合成して合成駆動力を出力する遊星伝動部と、走行装置に出力する出力回転体とを設けた変速伝動装置であって、
前記入力軸の駆動力を前進駆動力に変換して前記遊星伝動部に伝達する前進伝動状態と、前記入力軸の駆動力を後進駆動力に変換して前記遊星伝動部に伝達する後進伝動状態とに切換え自在な前後進切換え機構を設け、
前記前後進切換え機構を、前記入力軸と前記遊星伝動部との伝動を絶つ中立状態に切換え自在に構成し、
前記油圧式無段変速機のモータ軸と前記出力回転体との連動を入り状態と切り状態とに切り換え自在なクラッチ機構を設けてある変速伝動装置。 - 前記クラッチ機構の前記入り状態において、前記遊星伝動部を構成するサンギヤと遊星ギヤとリングギヤとが前記油圧式無段変速機のモータ軸に対して一体回転自在に連動するように構成してある請求項6記載の変速伝動装置。
- 前記遊星伝動部に連動する状態で前記入力軸に相対回転自在に支持される前進伝動ギヤと、
前記前進伝動ギヤに対して係脱操作されて前記前進伝動ギヤと前記入力軸を連動入り状態と連動切り状態に切り換えるように、前記入力軸に一体回転及び摺動操作自在に支持される前進クラッチ体と、
前記入力軸に連動する入力ギヤと前記遊星伝動部に連動する後進伝動ギヤのうちの一方を相対回転自在に支持し、他方を一体回転自在に支持する後進伝動軸と、
前記入力ギヤと前記後進伝動ギヤとのうちの前記後進伝動軸に相対回転自在に支持されるクラッチ用のギヤに対して係脱操作されて、そのクラッチ用のギヤと前記後進伝動軸とを連動入り状態と連動切り状態に切り換えるように、前記後進伝動軸に一体回転及び摺動操作自在に支持される後進クラッチ体とを備えて、前記前後進切換え機構を構成してある請求項6又は7記載の変速伝動装置。 - 前記入力ギヤ、及び前記入力ギヤに噛合う状態で前記入力軸に一体回転自在に支持される伝動ギヤを、前記遊星伝動部に対して前記前進伝動ギヤ及び前記後進伝動ギヤが位置する側とは反対側に配置し、
前記前進伝動ギヤ及び前記後進伝動ギヤを、前記遊星伝動部のサンギヤに対して前記入力ギヤ及び前記伝動ギヤが位置する側とは反対側の部位に設けた入力ギヤに噛合わせてある請求項8記載の変速伝動装置。 - エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、
前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、
変速操作具からの変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備える走行伝動装置であって、
前記油圧ポンプの斜板角を検出する斜板角センサを備え、
HST伝動及び無負荷駆動での前記無段変速部が前記遊星伝動部のサンギヤ、キャリヤ及びリングギヤの一体回転を現出する一体回転現出速度に相当の速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える無負荷斜板角と、HST伝動及び設定負荷駆動での前記無段変速部が前記一体回転現出速度に相当の速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える負荷斜板角とにおいて、前記無負荷斜板角と前記負荷斜板角との間の斜板角を設定変速斜板角として設定する変速斜板角設定手段を備え、
前記変速制御手段を、前記斜板角センサが前記設定変速斜板角に等しい斜板角を検出すると、前記クラッチ機構を前記HST設定状態から前記HMT設定状態に切換え制御するよう構成してある走行伝動装置。 - 前記変速斜板角設定手段を、前記設定変速斜板角を変更設定するよう調節自在に構成してある請求項10記載の走行伝動装置。
- 前記変速斜板角設定手段を、前記斜板角センサによる検出情報に基づいてHST伝動及び負荷駆動での演算HST変速線を演算設定し、前記演算HST変速線に対応する演算HMT変速線を演算設定し、前記無段変速部が前記演算HST変速線と前記演算HMT変速線の交点に対応する速度の変速駆動力を出力する変速状態において前記油圧ポンプが備える斜板角を割り出し、割り出した斜板角を前記設定変速斜板角として設定するよう構成してある請求項10記載の走行伝動装置。
- エンジンからの駆動力を入力して変速し、出力する変速駆動力がHST変速線に沿って変速するよう作用する静油圧式の無段変速部、及びエンジンからの駆動力と前記無段変速部からの変速駆動力とを入力して合成し、出力する合成駆動力が前記無段変速部の変速によってHMT変速線に沿って変速するよう作用する遊星伝動部を有する変速伝動機を備え、
前記無段変速部が出力する変速駆動力を走行装置に出力するHST伝動を設定するHST設定状態と前記遊星伝動部が出力する合成駆動力を走行装置に出力するHMT伝動を設定するHMT設定状態とに切り換え自在なクラッチ機構を前記変速伝動機に設け、
主変速操作具からの主変速指令に基づいて前記無段変速部を構成する油圧ポンプを変速制御するとともに前記クラッチ機構を切換え制御する変速制御手段を備える走行伝動装置であって、
前記無段変速部を構成する油圧モータを可変容量形に構成し、
人為操作自在であって副変速指令を発する副変速操作具と、前記油圧モータの斜板角変更操作を行なう副変速アクチュエータとを備え、
前記変速制御手段を、前記副変速指令に基づいて前記油圧モータを高速側に変速するべく前記副変速アクチュエータを制御するよう構成し、
前記変速伝動機が前記HMT伝動を設定され、かつ前記無段変速部の後進変速域での高速側への変速操作によって走行装置に出力する合成駆動力を増速させ、さらに前記無段変速部の後進変速域での低速側への変速操作によって走行装置に出力する合成駆動力を減速させる伝動状態にあると、前記変速制御手段による前記副変速アクチュエータの制御を許容するよう牽制解除し、前記変速伝動機が前記HMT伝動を設定され、かつ前記無段変速部の前進変速域での低速側への変速操作によって走行装置に出力する合成駆動力を増速させ、さらに前記無段変速部の前進変速域での高速側への変速操作によって走行装置に出力する合成駆動力を減速させる伝動状態にあると、前記変速制御手段による前記副変速アクチュエータの制御を停止させるよう牽制作用する牽制制御手段を備えてある走行伝動装置。 - HST伝動からHMT伝動への設定の切り換え制御を行なう斜板角に対して設定角だけ低速側に位置する前記油圧ポンプの斜板角を基準斜板角として設定する基準斜板角設定手段を備え、
前記変速伝動機が前記HST伝動を設定され、かつ前記油圧ポンプの斜板角が前記基準斜板角より低速側である場合、前記牽制制御手段が牽制解除し、前記変速伝動機が前記HST伝動を設定され、かつ前記油圧ポンプの斜板角が前記基準斜板角より高速側にある場合、前記牽制制御手段が牽制作用するよう構成してある請求項13記載の走行伝動装置。 - 前記変速制御手段を、前記牽制制御手段による牽制作用を受ける状態において、前記変速伝動機の前記主変速指令に応じた出力速度を前記副変速指令によって増速するように、前記主変速指令及び前記副変速指令に基づいて前記油圧ポンプを変速制御するよう構成してある請求項13又は14記載の走行伝動装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/007,775 US9261182B2 (en) | 2011-03-31 | 2012-03-27 | Shift power transmission apparatus and travel power transmission device |
KR1020137022813A KR101936448B1 (ko) | 2011-03-31 | 2012-03-27 | 변속 전동 장치 및 주행 전동 장치 |
CN201280016685.8A CN103443507B (zh) | 2011-03-31 | 2012-03-27 | 变速传动装置及走行传动装置 |
EP12764294.0A EP2693081B1 (en) | 2011-03-31 | 2012-03-27 | Speed change transmission device and driving transmission device |
US15/001,713 US9897185B2 (en) | 2011-03-31 | 2016-01-20 | Shift power transmission apparatus and travel power transmission device |
US15/862,154 US10113625B2 (en) | 2011-03-31 | 2018-01-04 | Shift power transmission apparatus and travel power transmission device |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-078545 | 2011-03-31 | ||
JP2011078545A JP5667499B2 (ja) | 2011-03-31 | 2011-03-31 | 変速伝動装置 |
JP2011-078544 | 2011-03-31 | ||
JP2011078544A JP5552086B2 (ja) | 2011-03-31 | 2011-03-31 | 変速伝動装置 |
JP2011176198A JP5564016B2 (ja) | 2011-08-11 | 2011-08-11 | 農作業機の走行伝動装置 |
JP2011-176200 | 2011-08-11 | ||
JP2011-176198 | 2011-08-11 | ||
JP2011176200A JP5564017B2 (ja) | 2011-08-11 | 2011-08-11 | 農作業機の走行伝動装置 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/007,775 A-371-Of-International US9261182B2 (en) | 2011-03-31 | 2012-03-27 | Shift power transmission apparatus and travel power transmission device |
US15/001,713 Division US9897185B2 (en) | 2011-03-31 | 2016-01-20 | Shift power transmission apparatus and travel power transmission device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012133442A1 true WO2012133442A1 (ja) | 2012-10-04 |
Family
ID=46931157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/057983 WO2012133442A1 (ja) | 2011-03-31 | 2012-03-27 | 変速伝動装置および走行伝動装置 |
Country Status (5)
Country | Link |
---|---|
US (3) | US9261182B2 (ja) |
EP (1) | EP2693081B1 (ja) |
KR (1) | KR101936448B1 (ja) |
CN (2) | CN103443507B (ja) |
WO (1) | WO2012133442A1 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015045437A1 (ja) | 2013-09-27 | 2015-04-02 | 株式会社クボタ | コンバイン |
DE102014108026A1 (de) * | 2014-06-06 | 2015-12-17 | Claas Selbstfahrende Erntemaschinen Gmbh | Antriebssystem für eine selbstfahrende Erntemaschine |
US9975538B2 (en) * | 2015-05-18 | 2018-05-22 | Caterpillar Paving Products Inc. | Milling machine fuel efficiency control system |
JP2019044862A (ja) * | 2017-09-01 | 2019-03-22 | 株式会社 神崎高級工機製作所 | Hmt構造 |
CN109058412B (zh) * | 2018-09-06 | 2021-01-29 | 苏州萨伯工业设计有限公司 | 一种履带车辆双流转向的变速传动方法 |
CA3132266A1 (en) | 2019-03-01 | 2020-09-10 | Pratt & Whitney Canada Corp. | Distributed propulsion configurations for aircraft having mixed drive systems |
US11628942B2 (en) | 2019-03-01 | 2023-04-18 | Pratt & Whitney Canada Corp. | Torque ripple control for an aircraft power train |
US11732639B2 (en) | 2019-03-01 | 2023-08-22 | Pratt & Whitney Canada Corp. | Mechanical disconnects for parallel power lanes in hybrid electric propulsion systems |
WO2020190344A2 (en) | 2019-03-18 | 2020-09-24 | United Technologies Advanced Projects Inc. | Architectures for hybrid-electric propulsion |
DE102019206829A1 (de) * | 2019-05-10 | 2020-11-12 | Deere & Company | Antriebssystem für eine Erntemaschine |
JP7461115B2 (ja) * | 2019-06-14 | 2024-04-03 | 株式会社小松製作所 | 動力伝達装置の制御装置、動力伝達装置および動力伝達装置の制御方法 |
CN110778677B (zh) * | 2019-10-08 | 2020-08-11 | 长沙桑铼特农业机械设备有限公司 | 一种具有机械档的一体泵马达及其应用方法 |
US11486472B2 (en) | 2020-04-16 | 2022-11-01 | United Technologies Advanced Projects Inc. | Gear sytems with variable speed drive |
KR102294104B1 (ko) * | 2020-05-15 | 2021-08-26 | 엘에스엠트론 주식회사 | 농업용 작업차량 |
JP2024073228A (ja) * | 2022-11-17 | 2024-05-29 | 株式会社クボタ | 作業車用無段変速動力伝達装置及び作業車 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650410A (ja) * | 1992-07-28 | 1994-02-22 | Komatsu Ltd | 遊星歯車式変速装置 |
JPH08282311A (ja) * | 1995-04-06 | 1996-10-29 | Caterpillar Inc | トルク分割トランスミッション |
JPH08338507A (ja) * | 1995-06-06 | 1996-12-24 | Caterpillar Inc | 連続可変トランスミッションのシフト点制御方法 |
JPH10122336A (ja) * | 1996-10-17 | 1998-05-15 | Komatsu Ltd | 油圧−機械式変速装置 |
JP2000130558A (ja) * | 1998-10-27 | 2000-05-12 | Yanmar Diesel Engine Co Ltd | 油圧−機械式変速機のhst制御方法 |
JP2000335265A (ja) * | 1999-05-24 | 2000-12-05 | Kanzaki Kokyukoki Mfg Co Ltd | 車輌の走行用トランスミッション |
JP2001108061A (ja) | 1999-10-06 | 2001-04-20 | Yanmar Diesel Engine Co Ltd | 走行速度制御装置 |
JP2003130177A (ja) * | 2001-10-24 | 2003-05-08 | Yanmar Agricult Equip Co Ltd | 油圧−機械式変速装置 |
JP2003202067A (ja) | 2002-01-07 | 2003-07-18 | Iseki & Co Ltd | コンバイン走行装置 |
JP2005016562A (ja) * | 2003-06-23 | 2005-01-20 | Yanmar Co Ltd | 油圧−機械式変速装置 |
JP2008215499A (ja) | 2007-03-05 | 2008-09-18 | Kubota Corp | 変速伝動装置 |
JP2009280040A (ja) * | 2008-05-21 | 2009-12-03 | Suzuki Motor Corp | 無段変速機及び不整地走行車両 |
JP2010043675A (ja) * | 2008-08-11 | 2010-02-25 | Yanmar Co Ltd | 油圧−機械式変速装置 |
JP2010091090A (ja) * | 2008-10-10 | 2010-04-22 | Yanmar Co Ltd | 油圧−機械式変速装置 |
JP2010265939A (ja) * | 2009-05-13 | 2010-11-25 | Yanmar Co Ltd | 作業車両の変速装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05126233A (ja) | 1991-10-30 | 1993-05-21 | Daikin Ind Ltd | 機械油圧式変速機 |
CA2347827C (en) | 1998-10-26 | 2007-01-30 | Yanmar Diesel Engine Co., Ltd. | Continuously variable transmission |
BR9915635A (pt) * | 1998-11-24 | 2004-06-22 | Folsom Technologies Inc | Transmissão hidromecânica paralela de infrapropulsão |
US6533695B2 (en) * | 2000-10-30 | 2003-03-18 | Sauer-Danfoss, Inc. | Hydromechanical transmission |
JP2002243018A (ja) * | 2001-02-14 | 2002-08-28 | Sauer-Danfoss-Daikin Ltd | 液圧機械式変速装置及びその変速装置を搭載した車両 |
JP2002243037A (ja) * | 2001-02-19 | 2002-08-28 | Sauer-Danfoss-Daikin Ltd | 動力ユニット |
DE60226760D1 (de) * | 2001-10-22 | 2008-07-03 | Yanmar Co Ltd | Fahrzeug mit hydraulikgetriebe |
CN100457411C (zh) * | 2003-03-05 | 2009-02-04 | 天津天联复合材料有限公司 | 缠绕玻璃钢防护层的重型混凝土管桩旋转装置及其方法 |
CN100457410C (zh) * | 2006-01-23 | 2009-02-04 | 山东泰和东新股份有限公司 | 利用脱硫石膏和磷石膏生产纸面石膏板的方法 |
CN101037087A (zh) * | 2006-03-14 | 2007-09-19 | 朱荣辉 | 一种机动车无级变速混合动力节能装置 |
JP2008195334A (ja) | 2007-02-15 | 2008-08-28 | Kubota Corp | 変速伝動装置 |
KR101143062B1 (ko) | 2007-02-05 | 2012-05-11 | 가부시끼 가이샤 구보다 | 변속 전동 장치 |
ATE524341T1 (de) | 2007-03-05 | 2011-09-15 | Kubota Kk | Übertragungseinrichtung |
JP5126233B2 (ja) | 2007-10-05 | 2013-01-23 | 日立化成工業株式会社 | 接着剤組成物及びこれを用いた回路接続材料、並びに、回路部材の接続方法、回路接続体及び接着剤組成物の硬化物 |
KR101718147B1 (ko) | 2009-05-13 | 2017-03-20 | 얀마 가부시키가이샤 | 작업 차량의 변속 장치 |
JP4972186B2 (ja) | 2010-04-22 | 2012-07-11 | 株式会社クボタ | トラクタの変速伝動装置 |
-
2012
- 2012-03-27 US US14/007,775 patent/US9261182B2/en active Active
- 2012-03-27 CN CN201280016685.8A patent/CN103443507B/zh active Active
- 2012-03-27 CN CN201610336436.7A patent/CN105805267B/zh active Active
- 2012-03-27 EP EP12764294.0A patent/EP2693081B1/en active Active
- 2012-03-27 WO PCT/JP2012/057983 patent/WO2012133442A1/ja active Application Filing
- 2012-03-27 KR KR1020137022813A patent/KR101936448B1/ko active IP Right Grant
-
2016
- 2016-01-20 US US15/001,713 patent/US9897185B2/en active Active
-
2018
- 2018-01-04 US US15/862,154 patent/US10113625B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650410A (ja) * | 1992-07-28 | 1994-02-22 | Komatsu Ltd | 遊星歯車式変速装置 |
JPH08282311A (ja) * | 1995-04-06 | 1996-10-29 | Caterpillar Inc | トルク分割トランスミッション |
JPH08338507A (ja) * | 1995-06-06 | 1996-12-24 | Caterpillar Inc | 連続可変トランスミッションのシフト点制御方法 |
JPH10122336A (ja) * | 1996-10-17 | 1998-05-15 | Komatsu Ltd | 油圧−機械式変速装置 |
JP2000130558A (ja) * | 1998-10-27 | 2000-05-12 | Yanmar Diesel Engine Co Ltd | 油圧−機械式変速機のhst制御方法 |
JP2000335265A (ja) * | 1999-05-24 | 2000-12-05 | Kanzaki Kokyukoki Mfg Co Ltd | 車輌の走行用トランスミッション |
JP2001108061A (ja) | 1999-10-06 | 2001-04-20 | Yanmar Diesel Engine Co Ltd | 走行速度制御装置 |
JP2003130177A (ja) * | 2001-10-24 | 2003-05-08 | Yanmar Agricult Equip Co Ltd | 油圧−機械式変速装置 |
JP2003202067A (ja) | 2002-01-07 | 2003-07-18 | Iseki & Co Ltd | コンバイン走行装置 |
JP2005016562A (ja) * | 2003-06-23 | 2005-01-20 | Yanmar Co Ltd | 油圧−機械式変速装置 |
JP2008215499A (ja) | 2007-03-05 | 2008-09-18 | Kubota Corp | 変速伝動装置 |
JP2009280040A (ja) * | 2008-05-21 | 2009-12-03 | Suzuki Motor Corp | 無段変速機及び不整地走行車両 |
JP2010043675A (ja) * | 2008-08-11 | 2010-02-25 | Yanmar Co Ltd | 油圧−機械式変速装置 |
JP2010091090A (ja) * | 2008-10-10 | 2010-04-22 | Yanmar Co Ltd | 油圧−機械式変速装置 |
JP2010265939A (ja) * | 2009-05-13 | 2010-11-25 | Yanmar Co Ltd | 作業車両の変速装置 |
Also Published As
Publication number | Publication date |
---|---|
KR20140012983A (ko) | 2014-02-04 |
CN105805267B (zh) | 2018-09-14 |
CN103443507B (zh) | 2016-06-15 |
US20140155212A1 (en) | 2014-06-05 |
CN105805267A (zh) | 2016-07-27 |
US20160138693A1 (en) | 2016-05-19 |
US9897185B2 (en) | 2018-02-20 |
US10113625B2 (en) | 2018-10-30 |
EP2693081A4 (en) | 2015-04-08 |
CN103443507A (zh) | 2013-12-11 |
KR101936448B1 (ko) | 2019-01-08 |
US9261182B2 (en) | 2016-02-16 |
EP2693081A1 (en) | 2014-02-05 |
US20180142770A1 (en) | 2018-05-24 |
EP2693081B1 (en) | 2018-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012133442A1 (ja) | 変速伝動装置および走行伝動装置 | |
US8608605B2 (en) | Transmission apparatus for a tractor | |
US8657713B2 (en) | Power train for work vehicle | |
EP2567846A2 (en) | Hybrid working vehicle | |
JP5667499B2 (ja) | 変速伝動装置 | |
CN106461032B (zh) | 变换器辅助的变速器 | |
US20100204000A1 (en) | Power-branched transmission | |
CN110869648B (zh) | 变速器、以及工作车辆的控制系统 | |
US8840503B2 (en) | Hydrostatic mechanical transmission equipped with automatic manual sub-gearshift | |
JP5564016B2 (ja) | 農作業機の走行伝動装置 | |
JP5564017B2 (ja) | 農作業機の走行伝動装置 | |
JP2001108061A (ja) | 走行速度制御装置 | |
JP5739275B2 (ja) | 農作業機の走行伝動装置 | |
JP5676355B2 (ja) | コンバインの変速伝動装置 | |
JP5592829B2 (ja) | 農作業機の変速伝動装置 | |
JP5792544B2 (ja) | 農作業機の走行伝動装置 | |
JP3817251B2 (ja) | コンバインにおける動力伝達装置 | |
JP5552086B2 (ja) | 変速伝動装置 | |
JP5925283B2 (ja) | 変速伝動装置 | |
JP2011207448A (ja) | 収穫機の走行伝動装置 | |
JP2004276814A (ja) | 作業車 | |
JPH0834250A (ja) | 歩行型作業機の走行伝動構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12764294 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137022813 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14007775 Country of ref document: US |